WorldWideScience

Sample records for respective habitat requirements

  1. Demographic and habitat requirements for conservation of bull trout

    Science.gov (United States)

    Bruce E. Rieman; John D. Mclntyre

    1993-01-01

    Elements in bull trout biology, population dynamics, habitat, and biotic interactions important to conservation of the species are identified. Bull trout appear to have more specific habitat requirements than other salmonids, but no critical thresholds of acceptable habitat condition were found. Size, temporal variation, and spatial distribution are likely to influence...

  2. Determination of Habitat Requirements For Birds in Suburban Areas

    Science.gov (United States)

    Jack Ward Thomas; Richard M. DeGraaf; Joseph C. Mawson

    1977-01-01

    Songbird populations can be related to habitat components by a method that allows the simultaneous determination of habitat requirements for a variety of species . Through correlation and multiple-regression analyses, 10 bird species were studied in a suburban habitat, which was stratified according to human density. Variables used to account for bird distribution...

  3. Nesting habitat requirements and nestling diet in the Mediterranean populations of Crested Tits Lophophanes cristatus

    NARCIS (Netherlands)

    Atienzar, F.; Barba, E.; Holleman, L.J.M.; Belda, E.J.

    2009-01-01

    Most bird species show specific habitat requirements for breeding and feeding. We studied the pattern of habitat occupation, nestling diet and breeding performance of Crested Tits Lophophanes cristatus in a “typical” (coniferous) and an “atypical” (Holm Oak Quercus ilex) forest in eastern Spain

  4. Habitat requirements and burrowing depths of rodents in relation to shallow waste burial sites

    Energy Technology Data Exchange (ETDEWEB)

    Gano, K.A.; States, J.B.

    1982-05-01

    The purpose of this paper is to provide a review of the literature and summarize information on factors affecting habitat selection and maximum recorded burrowing depths for representative small mammals that we consider most likely to inhibit waste burial sites in arid and semi-arid regions of the West. The information is intended for waste management designers who need to know what to expect from small mammals that may be present at a particular site. Waste repositories oculd be designed to exclude the deep burrowing rodents of a region by creating an unattractive habitat over the waste. Summaries are given for habitat requirements of each group along with generalized modifications that could be employed to deter habitation. Representatives from the major groups considered to be deep burrowers are discussed. Further, detailed information about a particular species can be obtained from the references cited.

  5. Habitat requirements and burrowing depths of rodents in relation to shallow waste burial sites

    International Nuclear Information System (INIS)

    Gano, K.A.; States, J.B.

    1982-05-01

    The purpose of this paper is to provide a review of the literature and summarize information on factors affecting habitat selection and maximum recorded burrowing depths for representative small mammals that we consider most likely to inhibit waste burial sites in arid and semi-arid regions of the West. The information is intended for waste management designers who need to know what to expect from small mammals that may be present at a particular site. Waste repositories oculd be designed to exclude the deep burrowing rodents of a region by creating an unattractive habitat over the waste. Summaries are given for habitat requirements of each group along with generalized modifications that could be employed to deter habitation. Representatives from the major groups considered to be deep burrowers are discussed. Further, detailed information about a particular species can be obtained from the references cited

  6. Maternal habitat affects germination requirements of Anabasis setifera, a succulent shrub of the Arabian deserts

    Directory of Open Access Journals (Sweden)

    Ali El-Keblawy

    2016-03-01

    Full Text Available The effects of maternal habitat on light and temperature requirements during germination were assessed for the succulent desert shrub Anabasis setifera. Seeds were collected from the Mediterranean habitats of Egypt and the hyper-arid subtropical habitats of the United Arab Emirates (UAE. Seeds from the two populations were germinated in three temperature treatments in both a light/dark regime and continuous darkness. Seeds from the Egyptian population germinated significantly greater and faster than those of UAE. Seeds stored for four months at room temperatures have little dormancy and germinate at wide range of temperatures and light conditions, but seeds stored four months in the natural habitat lost their ability to germinate and rotted 10 days after incubation. The germination response to temperature depended on the habitat type. Seeds of the Egyptian population attained a significantly greater germination at lower temperatures, compared with seeds from the UAE population, but there was no difference in germination between the two populations at higher temperatures. Germination of A. setifera was very fast; most seeds germinated within four days. These results reflect the adaptive strategy of germination in both populations, and may help explain the wide distribution of this species in different climatic regions.

  7. Newly Discovered Orangutan Species Requires Urgent Habitat Protection.

    Science.gov (United States)

    Sloan, Sean; Supriatna, Jatna; Campbell, Mason J; Alamgir, Mohammed; Laurance, William F

    2018-05-03

    Nater, et al.[1] recently identified a new orangutan species (Pongo tapanuliensis) in northern Sumatra, Indonesia-just the seventh described species of living great ape. The population of this critically-endangered species is perilously small, at only ∼800 individuals [1], ranking it among the planet's rarest fauna. We assert that P. tapanuliensis is highly vulnerable to extinction because its remaining habitat is small, fragmented, and poorly protected. While road incursions within its habitat are modest-road density is only one-eighth that of northern Sumatra-over one-fifth of its habitat is zoned for agricultural conversion or is comprised of mosaic agricultural and regrowth/degraded forest. Additionally, a further 8% will be affected by flooding and infrastructure development for a hydroelectric project. We recommend urgent steps to increase the chance that P. tapanuliensis will persist in the wild. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Status and habitat requirements of the white sturgeon populations in the Columbia River downstream from McNary Dam

    International Nuclear Information System (INIS)

    Nigro, A.A.

    1991-09-01

    We report on our progress from April 1990 through March 1991 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). Study objectives addressed by each agency are to describe the life history and population dynamics of subadults and adults between Bonneville and McNary dams and evaluate the need and identify potential methods for protecting, mitigating and enhancing populations downstream from NcNary Dam; to describe the white sturgeon recreational fishery between Bonneville and McNary dams, describe reproductive and early life history characteristics downstream from Bonneville Dam and describe life history and population dynamics of subadults and adults downstream from Bonneville Dam; to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available between Bonneville and McNary dams; and to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available downstream from Bonneville Dam. Our approach is to work concurrently downstream and upstream from Bonneville Dam. Upstream from Bonneville Dam we began work in the Dalles Reservoir in 1987 and expanded efforts to Bonneville Reservoir in 1988 and John Day Reservoir in 1989. Highlights of results of this work in the Dalles, Bonneville and John Day reservoirs are included in the four pages included in this report

  9. Geographic variation in the diet of opaleye (Girella nigricans with respect to temperature and habitat.

    Directory of Open Access Journals (Sweden)

    Michael D Behrens

    Full Text Available We studied diet variation in an omnivorous fish across its range, which allowed us to test predictions about the effect of ocean temperature and habitat on herbivory. Throughout most of its geographic range, from Southern California to central Baja California, the opaleye (Girella nigricans fed primarily on red and green algae, but there was significant variation in the amount of algal material in the diet among sites. The proportion of algal material in the diet was related to habitat, with algae making up a larger proportion of a fish's diet in algal-dominated habitats than in urchin barrens. Independent of habitat, the proportion of algal material in the diet increased with environmental temperature. Analyses of stable isotopes revealed similar changes in trophic position and confirmed that these associations with diet persisted over relatively long time scales. The shift to a more herbivorous diet at warmer temperatures is in agreement with past laboratory studies on this species that show a diet-dependent change in performance with temperature and can indicate a diet shift across the species' geographic range to meet its physiological demands. A possible plastic response to herbivory was a longer gut relative to body size. The results of this study are consistent with past findings that associate temperature with increases in the relative diversity of herbivorous fishes in tropical parts of the ocean.

  10. Mapping critical habitat of waterbirds in the Arctic for risk management in respect of IFC PS6

    NARCIS (Netherlands)

    Hilarides, Lammert; Langendoen, Tom; Flink, Stephan; van Leeuwen, Merijn; Steen, Bart; Kondratyev, Alexander; Kölzsch, Andrea; Aarvak, Tomas; Kruckenberg, Helmut; Vangeluwe, Didier; Todorov, Emil; Harrison, Anne L.; Rees, Eileen; Dokter, Adriaan; Nolet, Bart; Mundkur, Taej

    2017-01-01

    Economic development and energy exploration are increasing in the Arctic. Important breeding habitats for many waterbird species, which have previously been relatively undisturbed, are now being subjected to these anthropogenic pressures. The conservation of the habitats and the species they support

  11. Coastal Critical Habitat Designations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Endangered Species Act (ESA) requires the Federal government to designate critical habitat, areas of habitat essential to the species' conservation, for ESA...

  12. Science evaluation of the environmental impact statement for the lower Churchill hydroelectric generation project to identify deficiencies with respect to fish and fish habitat

    International Nuclear Information System (INIS)

    Clarke, K.

    2009-01-01

    This report evaluated an environmental impact statement (EIS) submitted by a company proposing to develop a hydroelectric generation project in the lower Churchill River in Labrador. Construction of the facilities will alter the aquatic environment of the river as well as the receiving environment of lakes. The alterations are expected to have an impact on fish and fish habitats. The study evaluated the methods used to describe and predict impacts in the aquatic environment and examined models used for predictions in order to assess uncertainty levels. Results of the evaluation demonstrated that additional efforts are needed to document local knowledge of fish use and fish habitat, and that the magnitude of expected changes to fish habitat must be considered relative to the loss of fish habitat. The study also highlighted areas within the EIS that will require further clarification. A number of the studies used in the EIS had small sample sizes that increased the uncertainty of predictions made using the data. Uncertainties related to potential changes in flushing rates and morphological features was also needed. The impact of direct fish mortality from turbine operations was not addressed in a population context, and further information is needed to evaluate potential project-related effects on a species-by-species basis. 3 refs., 4 tabs.

  13. Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1989-1990 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, Anthony A. (Oregon Department of Fish and Wildlife, Portland, OR)

    1990-09-01

    We report on our progress from April 1989 through March 1990 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). Study objectives addressed by each agency are to describe the life history and population dynamics of subadults and adults between Bonneville and McNary dams and evaluate the need and identify potential methods for protecting, mitigating and enhancing populations downstream from McNary Dam, to describe the white sturgeon recreational fishery between Bonneville and McNary dams, describe reproductive and early life history characteristics downstream from Bonneville Dam and describe life history and population dynamics of subadults and adults downstream from Bonneville Dam, to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available between Bonneville and McNary dams, and to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available downstream from Bonneville Dam. Our approach is to work concurrently downstream and upstream from Bonneville Dam. Upstream from Bonneville Dam we began work in the Dalles Reservoir in 1987 and expanded efforts to Bonneville Reservoir in 1988 and John Day Reservoir in 1989. Highlights from this work is also included. 47 refs., 33 figs., 66 tabs.

  14. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  15. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects.

    Science.gov (United States)

    Phillipsen, Ivan C; Kirk, Emily H; Bogan, Michael T; Mims, Meryl C; Olden, Julian D; Lytle, David A

    2015-01-01

    Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population-level data for large numbers of species, ecologists seek to identify proximate organismal traits-such as dispersal ability, habitat preference and life history-that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape-based metrics of resistance. We found that the moderate-disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation-by-distance pattern, suggesting migration-drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong-flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best-fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale-dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities. © 2014 John Wiley & Sons Ltd.

  16. Riverine habitat dynamics

    Science.gov (United States)

    Jacobson, R.B.

    2013-01-01

    strategies requires that the role of physical habitat is correctly diagnosed and that restoration activities address true habitat limitations, including the role of dynamic habitats.

  17. Global screening for Critical Habitat in the terrestrial realm.

    Science.gov (United States)

    Brauneder, Kerstin M; Montes, Chloe; Blyth, Simon; Bennun, Leon; Butchart, Stuart H M; Hoffmann, Michael; Burgess, Neil D; Cuttelod, Annabelle; Jones, Matt I; Kapos, Val; Pilgrim, John; Tolley, Melissa J; Underwood, Emma C; Weatherdon, Lauren V; Brooks, Sharon E

    2018-01-01

    Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as 'likely' or 'potential' Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature's presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as 'unknown'. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC's Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate new and

  18. Loss and modification of habitat

    Science.gov (United States)

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.; Wilkinson, John W.; Heatwole, Harold

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  19. Habitat Suitability Index Models: Yellow-headed blackbird

    Science.gov (United States)

    Schroeder, Richard L.

    1982-01-01

    Habitat preferences of the yellow-headed blackbird (Xanthocephalus xanthocephalus) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available infomration on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities.

  20. Impact of habitat diversity on the sampling effort required for the assessment of river fish communities and IBI

    NARCIS (Netherlands)

    Van Liefferinge, C.; Simoens, I.; Vogt, C.; Cox, T.J.S.; Breine, J.; Ercken, D.; Goethals, P.; Belpaire, C.; Meire, P.

    2010-01-01

    The spatial variation in the fish communities of four small Belgian rivers with variable habitat diversity was investigated by electric fishing to define the minimum sampling distance required for optimal fish stock assessment and determination of the Index of Biotic Integrity. This study shows that

  1. Determination of Section 404 Permit and Habitat Mitigation Requirements

    Science.gov (United States)

    2012-09-01

    The Arizona Department of Transportation (ADOT) is committed to developing habitat, mitigation, : monitoring, and maintenance plans that replace the loss of the functions and values of an area and : are self-sustaining, thereby providing long-term co...

  2. Habitat segregation in fish assemblages

    OpenAIRE

    Ibbotson, A.T.

    1990-01-01

    The segregation of habitats of fish assemblages found in the chalk streams and rivers within the Wessex, South West and Southern Water Authority boundaries in southern England have been examined. Habitat segregation is the most frequent type of resource partitioning in natural communities. The habitat of individual fish species will be defined in order to determine the following: (1) the requirements of each species in terms of depth, current velocity, substrate, cover etc.; (2) identify the ...

  3. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  4. Habitat-specific population growth of a farmland bird.

    Directory of Open Access Journals (Sweden)

    Debora Arlt

    Full Text Available BACKGROUND: To assess population persistence of species living in heterogeneous landscapes, the effects of habitat on reproduction and survival have to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: We used a matrix population model to estimate habitat-specific population growth rates for a population of northern wheatears Oenanthe oenanthe breeding in farmland consisting of a mosaic of distinct habitat (land use types. Based on extensive long-term data on reproduction and survival, habitats characterised by tall field layers (spring- and autumn-sown crop fields, ungrazed grasslands displayed negative stochastic population growth rates (log lambda(s: -0.332, -0.429, -0.168, respectively, that were markedly lower than growth rates of habitats characterised by permanently short field layers (pastures grazed by cattle or horses, and farmyards, log lambda(s: -0.056, +0.081, -0.059. Although habitats differed with respect to reproductive performance, differences in habitat-specific population growth were largely due to differences in adult and first-year survival rates, as shown by a life table response experiment (LTRE. CONCLUSIONS/SIGNIFICANCE: Our results show that estimation of survival rates is important for realistic assessments of habitat quality. Results also indicate that grazed grasslands and farmyards may act as source habitats, whereas crop fields and ungrazed grasslands with tall field layers may act as sink habitats. We suggest that the strong decline of northern wheatears in Swedish farmland may be linked to the corresponding observed loss of high quality breeding habitat, i.e. grazed semi-natural grasslands.

  5. A technical guide for monitoring wildlife habitat

    Science.gov (United States)

    M.M. Rowland; C.D. Vojta

    2013-01-01

    Information about status and trend of wildlife habitat is important for the U.S. Department of Agriculture, Forest Service to accomplish its mission and meet its legal requirements. As the steward of 193 million acres (ac) of Federal land, the Forest Service needs to evaluate the status of wildlife habitat and how it compares with desired conditions. Habitat monitoring...

  6. Pleistocene sea level fluctuation and host plant habitat requirement influenced the historical phylogeography of the invasive species Amphiareus obscuriceps (Hemiptera: Anthocoridae) in its native range.

    Science.gov (United States)

    Zhang, Danli; Ye, Zhen; Yamada, Kazutaka; Zhen, Yahui; Zheng, Chenguang; Bu, Wenjun

    2016-08-31

    On account of repeated exposure and submergence of the East China Sea (ECS) land bridge, sea level fluctuation played an important role in shaping the population structure of many temperate species across the ECS during the glacial period. The flower bug Amphiareus obscuriceps (Poppius, 1909) (Hemiptera: Anthocoridae) is an invasive species native to the Sino-Japanese Region (SJR) of East Asia. We tested the hypothesis of the ECS land bridge acting as a dispersal corridor or filter for A. obscuriceps during the glacial period. Specifically, we tested whether and the extent to which dispersal ability and host plant habitat requirement influenced the genetic structure of A. obscuriceps during the exposure of the ECS land bridge. Phylogenetic and network analyses indicated that A. obscuriceps is composed of two major lineages, i.e., China and Japan. Divergence time on both sides of the ECS was estimated to be approximately 1.07 (0.79-1.32) Ma, which was about the same period that the sea level increased. No significant Isolation by Distance (IBD) relationship was found between Фst and Euclidean distances in the Mantel tests, which is consistent with the hypothesis that this species has a good dispersal ability. Our Last Glacial Maximum (LGM) niche modeling of plants that constitute preferred habitats for A. obscuriceps exhibited a similar habitat gap on the exposed ECS continental shelf between China and Japan, but showed a continuous distribution across the Taiwan Strait. Our results suggest that ecological properties (habitat requirement and dispersal ability), together with sea level fluctuation during the Pleistocene across the ECS, have shaped the genetic structure and demographic history of A. obscuriceps in its native area. The host plant habitat requirement could also be a key to the colonization of the A. obscuriceps species during the exposure of the ECS land bridge. Our findings will shed light on the potential role of habitat requirement in the process of

  7. Managing Environmental Flows for Impounded Rivers in Semi-Arid Regions- A Habitat Suitability Index (HSI) Approach for the Assessment of River Habitat for Salmonid Populations

    Science.gov (United States)

    Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.

    2013-12-01

    Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water

  8. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    Science.gov (United States)

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  9. Growing a Thicker Skin: An Exercise for Measuring Organismal Adaptations to Terrestrial Habitats

    Science.gov (United States)

    Nash, Troy R.; Yang, Suann; Inman, John C.

    2015-01-01

    We describe an alternative to the kinds of observation-based lab exercises that are often used to cover animal and plant evolution with respect to transitioning from aquatic to terrestrial habitats. We wrote this activity to address these objectives, but also to model the process of scientific inquiry and to require students to collect and analyze…

  10. Evaluation of two methods of estimating larval habitat productivity in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Munga Stephen

    2011-06-01

    Full Text Available Abstract Background Malaria vector intervention and control programs require reliable and accurate information about vector abundance and their seasonal distribution. The availability of reliable information on the spatial and temporal productivity of larval vector habitats can improve targeting of larval control interventions and our understanding of local malaria transmission and epidemics. The main objective of this study was to evaluate two methods of estimating larval habitat productivity in the western Kenyan highlands, the aerial sampler and the emergence trap. Methods The study was conducted during the dry and rainy seasons in 2008, 2009 and 2010. Aerial samplers and emergence traps were set up for sixty days in each season in three habitat types: drainage ditches, natural swamps, and abandoned goldmines. Aerial samplers and emergence traps were set up in eleven places in each habitat type. The success of each in estimating habitat productivity was assessed according to method, habitat type, and season. The effect of other factors including algae cover, grass cover, habitat depth and width, and habitat water volume on species productivity was analysed using stepwise logistic regression Results Habitat productivity estimates obtained by the two sampling methods differed significantly for all species except for An. implexus. For for An. gambiae s.l. and An. funestus, aerial samplers performed better, 21.5 and 14.6 folds, than emergence trap respectively, while the emergence trap was shown to be more efficient for culicine species. Seasonality had a significant influence on the productivity of all species monitored. Dry season was most productive season. Overall, drainage ditches had significantly higher productivity in all seasons compared to other habitat types. Algae cover, debris, chlorophyll-a, and habitat depth and size had significant influence with respect to species. Conclusion These findings suggest that the aerial sampler is the

  11. Deep Space Habitat Concept Demonstrator

    Science.gov (United States)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  12. Linking occurrence and fitness to persistence: Habitat-based approach for endangered Greater Sage-Grouse

    Science.gov (United States)

    Aldridge, Cameron L.; Boyce, Mark S.

    2007-01-01

    Detailed empirical models predicting both species occurrence and fitness across a landscape are necessary to understand processes related to population persistence. Failure to consider both occurrence and fitness may result in incorrect assessments of habitat importance leading to inappropriate management strategies. We took a two-stage approach to identifying critical nesting and brood-rearing habitat for the endangered Greater Sage-Grouse (Centrocercus urophasianus) in Alberta at a landscape scale. First, we used logistic regression to develop spatial models predicting the relative probability of use (occurrence) for Sage-Grouse nests and broods. Secondly, we used Cox proportional hazards survival models to identify the most risky habitats across the landscape. We combined these two approaches to identify Sage-Grouse habitats that pose minimal risk of failure (source habitats) and attractive sink habitats that pose increased risk (ecological traps). Our models showed that Sage-Grouse select for heterogeneous patches of moderate sagebrush cover (quadratic relationship) and avoid anthropogenic edge habitat for nesting. Nests were more successful in heterogeneous habitats, but nest success was independent of anthropogenic features. Similarly, broods selected heterogeneous high-productivity habitats with sagebrush while avoiding human developments, cultivated cropland, and high densities of oil wells. Chick mortalities tended to occur in proximity to oil and gas developments and along riparian habitats. For nests and broods, respectively, approximately 10% and 5% of the study area was considered source habitat, whereas 19% and 15% of habitat was attractive sink habitat. Limited source habitats appear to be the main reason for poor nest success (39%) and low chick survival (12%). Our habitat models identify areas of protection priority and areas that require immediate management attention to enhance recruitment to secure the viability of this population. This novel

  13. Loss and modification of habitat: Chapter 1

    Science.gov (United States)

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  14. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  15. Assessment of the landscape connectivity of the Puuc-Chenes region, Mexico, based on the habitat requirements of jaguar (Panthera onca

    Directory of Open Access Journals (Sweden)

    Eduardo Salazar

    2017-03-01

    Full Text Available The Yucatan Peninsula is included as part of the initiative for the Mesoamerican Biological Corridor. In its central area, are located three Protected Natural Areas (PNA: the Biocultural Puuc Reserve (RBP, by its Spanish acronym, the Bala’an K’aax flora and fauna protected area (APB, by its Spanish acronym, Quintana Roo, and the Calakmul Biosphere Reserve (RBC, by its Spanish acronym, Campeche. The Puuc-Chenes region is located in the center of the Yucatan Peninsula - among these PNAs - which included important fragments of vegetation that in the past formed a continuum through the forests of the Yucatan Peninsula, constituting an important link to keep the connectivity of the Mayan forest. However, the expansion of the agricultural frontier is causing the fragmentation of the habitat. In the present study, the structural and functional connectivity of the Puuc-Chenes region is analyzed, based on habitat requirements of the Panthera onca (jaguar by sex. Both, male and female, prefer tropical forest, however, P. onca males dare to transit in secondary vegetation and inclusively in agricultural areas. Males make inroads to villages more often than females, coming close to, and even crossing roads. P. onca males have a home range of 60 km2. In the present study, the ArcMap, FRAGSTATS and IDRISI software were used to analyses the structural and functional connectivity of the landscape, based on the known differences of habitat requirements for P. onca males and females. A vegetation and land use map of the studied area was elaborated, based on Landsat 7 ETM+ images, with 30 m size pixels. The following cover classes were differentiated: tropical forest, secondary forest, agriculture, urban, and water polls, which were validated in the fields. The Puuc-Chenes has an extension of 972 578 ha. Tropical forest was the dominant vegetation cover (49.8% with the largest patch index covering 19.7% of the total landscape. The landscape had 2 509 fragments

  16. Study on impact of habitat degradation on proximate composition and amino acid profile of Indian major carps from different habitats

    Directory of Open Access Journals (Sweden)

    Bilal Hussain

    2018-05-01

    Full Text Available This investigation is aimed to study an impact of habitat degradation on proximate composition and amino acid (AAs profile of Catla catla, Labeo rohita and Cirrhinus mrigala collected from polluted, non-polluted area (upstream and a commercial fish farm. The amino acid profile was estimated by the amino acid analyzer. C. catla collected from the polluted environment had highest lipid, protein and ash contents (12.04 ± 0.01, 13.45 ± 0.01 and 0.93 ± 0.03%, respectively. The high protein content (14.73 ± 0.01 and 14.12 ± 0. 01% was recorded in C. catla procured from non-polluted (upstream wild habitat of River Chenab and controlled commercial fish farm. Farmed fish species showed comparatively higher moisture contents followed by upstream and polluted area fishes. C. mrigala showed significant differences in amino acid and proximate composition collected from a polluted site of the river Chenab. C. catla collected from non-polluted site of the river showed an excellent nutrient profile, followed by L. rohita (wild and farmed and C. mrigala (polluted area, respectively. All fishes from the polluted areas of the River Chenab indicated a significant decrease in the concentration of some AAs when compared to farmed and wild (upstream major carps. Omitting of some important AAs was also observed in the meat of fish harvested from polluted habitat of this river. C. mrigala and L. rohita exhibited a significant increase in the concentration of some of non-essential amino acids such as cysteine in their meat. The results indicated that wild fish (upstream and farmed fish species had highest protein contents and amino acid profile and hence appeared to be the best for human consumption. The proximate composition and AAs profiles of fish harvested from the polluted area of the river clearly indicated that efforts shall be made for the restoration of habitat to continue the requirement of high quality fish meat at a low cost to the

  17. Study on impact of habitat degradation on proximate composition and amino acid profile of Indian major carps from different habitats.

    Science.gov (United States)

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Ahmed, Z; Mahboob, Shahid

    2018-05-01

    This investigation is aimed to study an impact of habitat degradation on proximate composition and amino acid (AAs) profile of Catla catla, Labeo rohita and Cirrhinus mrigala collected from polluted, non-polluted area (upstream) and a commercial fish farm. The amino acid profile was estimated by the amino acid analyzer. C. catla collected from the polluted environment had highest lipid, protein and ash contents (12.04 ± 0.01, 13.45 ± 0.01 and 0.93 ± 0.03%, respectively). The high protein content (14.73 ± 0.01 and 14.12 ± 0. 01%) was recorded in C. catla procured from non-polluted (upstream) wild habitat of River Chenab and controlled commercial fish farm. Farmed fish species showed comparatively higher moisture contents followed by upstream and polluted area fishes. C. mrigala showed significant differences in amino acid and proximate composition collected from a polluted site of the river Chenab. C. catla collected from non-polluted site of the river showed an excellent nutrient profile, followed by L. rohita (wild and farmed) and C. mrigala (polluted area), respectively. All fishes from the polluted areas of the River Chenab indicated a significant decrease in the concentration of some AAs when compared to farmed and wild (upstream) major carps. Omitting of some important AAs was also observed in the meat of fish harvested from polluted habitat of this river. C. mrigala and L. rohita exhibited a significant increase in the concentration of some of non-essential amino acids such as cysteine in their meat. The results indicated that wild fish (upstream) and farmed fish species had highest protein contents and amino acid profile and hence appeared to be the best for human consumption. The proximate composition and AAs profiles of fish harvested from the polluted area of the river clearly indicated that efforts shall be made for the restoration of habitat to continue the requirement of high quality fish meat at a low cost to the human

  18. Habitat selection by chironomid larvae: fast growth requires fast food.

    NARCIS (Netherlands)

    de Haas, E.M.; Wagner, C.; Koelmans, A.A.; Kraak, M.H.S.; Admiraal, W.

    2006-01-01

    1. Sediments have been considered as a habitat, a cover from predators and a source of food, but also as a source of potential toxic compounds. Therefore, the choice of a suitable substrate is essential for the development of chironomids. 2. For the midge Chironomus riparius (Meigen 1804) the growth

  19. Habitat Requirements of Breeding Black-Backed Woodpeckers (Picoides arcticus in Managed, Unburned Boreal Forest

    Directory of Open Access Journals (Sweden)

    Junior A. Tremblay

    2009-06-01

    Full Text Available We investigated home-range characteristics and habitat selection by Black-backed Woodpeckers (Picoides arcticus in an unburned, boreal forest landscape managed by mosaic harvesting in Quebec, Canada. Habitat selection by this species was specifically examined to determine home-range establishment and foraging activities. We hypothesized that Black-backed Woodpeckers would respond to harvesting by adjusting their home-range size as a function of the amount of dead wood available. Twenty-two birds were tracked using radiotelemetry, and reliable estimates of home-range size were obtained for seven breeding individuals (six males and one female. The average home-range size was 151.5 ± 18.8 ha (range: 100.4-256.4 ha. Our results indicate that this species establishes home ranges in areas where both open and forested habitats are available. However, during foraging activities, individuals preferentially selected areas dominated by old coniferous stands. The study also showed that the spatial distribution of preferred foraging habitat patches influenced space use, with home-range area increasing with the median distance between old coniferous habitat patches available within the landscape. Finally, these data show that Black-backed Woodpeckers may successfully breed in an unburned forest with at least 35 m3 • ha-1 of dead wood, of which 42% (15 m3 • ha-1 is represented by dead wood at the early decay stage.

  20. Specification of safety requirements for waste packages with respect to practicable quality control measures

    International Nuclear Information System (INIS)

    Gruendler, D.; Wurtinger, W.

    1987-01-01

    Waste packages for disposal in a repository in the Federal Republic of Germany have to meet safety requirements derived from site specific safety analyses. The examination of the waste packages with regard to compliance with these requirements is the main objective of quality control measures. With respect to quality control the requirements have to be specified in a way that practicable control measures can be applied. This is dealt with for the quality control of the activity inventory and the quality control of the waste form. The paper discusses the determination of the activity of hard-to-measure radionuclides and the specification of safety related requirements for the waste form and the packaging using typical examples

  1. Current practices in the identification of critical habitat for threatened species.

    Science.gov (United States)

    Camaclang, Abbey E; Maron, Martine; Martin, Tara G; Possingham, Hugh P

    2015-04-01

    The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections. © 2014 Society for Conservation Biology.

  2. Testing the Role of Habitat Isolation among Ecologically Divergent Gall Wasp Populations

    Directory of Open Access Journals (Sweden)

    Scott P. Egan

    2012-01-01

    Full Text Available Habitat isolation occurs when habitat preferences lower the probability of mating between individuals associated with differing habitats. While a potential barrier to gene flow during ecological speciation, the effect of habitat isolation on reproductive isolation has rarely been directly tested. Herein, we first estimated habitat preference for each of six populations of the gall wasp Belonocnema treatae inhabiting either Quercus virginiana or Q. geminata. We then estimated the importance of habitat isolation in generating reproductive isolation between B. treatae populations that were host specific to either Q. virginiana or Q. geminata by measuring mate preference in the presence and absence of the respective host plants. All populations exhibited host preference for their native plant, and assortative mating increased significantly in the presence of the respective host plants. This host-plant-mediated assortative mating demonstrates that habitat isolation likely plays an important role in promoting reproductive isolation among populations of this host-specific gall former.

  3. Fish Community Composition and Habitat Use in the Eg-Uur River System, Mongolia

    Directory of Open Access Journals (Sweden)

    Norman Mercado-Silva

    2008-06-01

    Full Text Available Mongolian rivers and their fi sh communities have suffered severe impacts from anthropogenic activities. However, the remoteness of some systems has allowed for the conservation of unique fi sh faunas, including robust populations of Hucho taimen . Conservation of H. taimen requires understanding the composition and ecology of other fi shes in the community. Using multiple sampling techniques, direct observation, and existing literature, we assessed the composition, relative abundance, and ecological attributes of fi shes in the Eg-Uur watershed (Selenge basin. We collected 6 of 12 species known in the watershed. Phoxinus cf. phoxinus and Lota lota were the most and least abundant species, respectively. We failed to detect H. taimen , indicating low abundance or unknown habitat requirements for juveniles. We compared the effectiveness of different sampling techniques (with electro fi shing producing the highest species richness, constructed length-weight relationships for four species , and identi fi ed ecological attributes (i.e., trophic guild, preferred habitat for resident fi shes.

  4. Species diversity and qualitative assessment of ground beetles (Coleoptera: Carabidae) in three riparian habitats.

    Science.gov (United States)

    Michels, G J; Carney, V A; Jones, E N; Pollock, D A

    2010-06-01

    In a 3-yr study involving saltcedar-free, saltcedar-infested, and burned habitats in a riparian area at Lake Meredith, TX, the number of carabid species collected, diversity indices, and indicator species varied significantly among habitats. A 3-yr average of 15, 14, and 24 carabid species were collected from the saltcedar-free, saltcedar-infested, and burned habitats, respectively. Values for species richness, Shannon's and Simpson's diversity indices, and evenness index for pooled data collected from 2005 to 2007 were higher in the burned habitat followed by the saltcedar-free habitat and the saltcedar-infested habitat. Within-year parameters across the three habitats generally followed the pooled data results with some variation. Nonmetric multidimensional scaling analyses clearly indicated groups of carabid species preferred specific habitats. Five species in the burned area had indicator species percentage values >50% (Agonum punctiforme, Agonum texanum, Brachinus alternans, Harpalus pensylvanicus, and Poecilus chalcites). In the saltcedar-infested and saltcedar-free habitats, only one species in each habitat had indicator species percentage values that exceeded 50%: Calathus opaculus and Cicindela punctulata punctulata, respectively.

  5. Impact of experimental habitat manipulation on northern bobwhite survival

    Science.gov (United States)

    Peters, David C.; Brooke, Jarred M.; Tanner, Evan P.; Unger, Ashley M.; Keyser, Patrick D.; Harper, Craig A.; Clark, Joseph D.; Morgan, John J.

    2015-01-01

    Habitat management for northern bobwhite (Colinus virginianus) should affect vital rates, but direct linkages with survival are not well documented; therefore, we implemented an experiment to evaluate those responses. We conducted our experiment on a reclaimed surface mine, a novel landscape where conditions were considered sub-optimal because of the dominance of non-native vegetation, such as sericea lespedeza (Lespedeza cuneata), which has been reported to provide marginal habitat for northern bobwhite and may negatively affect survival. Nonetheless, these areas have great potential for contributing to bobwhite conservation because of the amount of early successional cover they provide. Our study site, a 3,330-ha reclaimed surface mine in western Kentucky, consisted of 2 tracts (Sinclair and Ken, 1,471 ha and 1,853 ha, respectively) that served as replicates with each randomly divided into a treatment (i.e., habitat manipulation through a combination of disking, burning, and herbicide application) and an undisturbed control (n = 4 experimental units). Habitat treatments were applied October 2009 to September 2013. We used radio telemetry to monitor northern bobwhite (n = 1,198) during summer (1 Apr–30 Sep) and winter (1 Oct–31 Mar), 2009–2013. We used the known-fate model in Program MARK to evaluate treatment effects on seasonal survival rates. We included biological, home-range, landscape, and microhabitat metrics as covariates to help improve model sensitivity and further elucidate experimental impacts. Survival varied annually, ranging from 0.139 (SE = 0.031) to 0.301 (SE = 0.032), and seasonally (summer, 0.148 [SE = 0.015]; winter, 0.281 [SE = 0.022]). We found a treatment effect (β = 0.256, 95% CI = 0.057–0.456) with a seasonal interaction (β  = −0.598, 95% CI = −0.898 to −0.298) with survival being higher in summer (0.179 [SE = 0.022] vs. 0.109 [SE = 0.019]) and lower in winter (0.233 [SE

  6. Fish habitat mitigation measures for hydrotechnical projects

    International Nuclear Information System (INIS)

    McPhail, G.D.; MacMillan, D.B.; Katopodis, C.

    1992-01-01

    In recent years, the identification and mitigation of environmental impacts of hydrotechnical projects, particularly on fish and fish habitats, have become a major component of project planning and design. Potential impacts to fish and fish habitat may include increased fish mortality, decreased species diversity, and loss or decreases in fish production due to loss of habitat or alteration of its suitability. These impacts arise from flooding of riverine habitat, alteration of flow quantity and distribution, changes in morphology, and alteration of water quality, including suspended sediments, temperature, dissolved oxygen, and mercury. The results of a study for the Canadian Federal Department of Fisheries and Oceans Central and Arctic Region, examining fish habitat mitigation techniques for their applicability to hydrotechnical projects in Canada are summarized. The requirements for achievement and verification of the no net loss policy for a project are discussed. 10 refs., 2 tabs

  7. Habitat Use and Selection by Giant Pandas

    Science.gov (United States)

    Hull, Vanessa; Zhang, Jindong; Huang, Jinyan; Zhou, Shiqiang; Viña, Andrés; Shortridge, Ashton; Li, Rengui; Liu, Dian; Xu, Weihua; Ouyang, Zhiyun; Zhang, Hemin; Liu, Jianguo

    2016-01-01

    Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca). We constructed spatial autoregressive resource utilization functions (RUF) to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types) at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking. PMID:27627805

  8. Habitat Use and Selection by Giant Pandas.

    Directory of Open Access Journals (Sweden)

    Vanessa Hull

    Full Text Available Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca. We constructed spatial autoregressive resource utilization functions (RUF to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking.

  9. A habitat overlap analysis derived from maxent for tamarisk and the south-western willow flycatcher

    Science.gov (United States)

    York, Patricia; Evangelista, Paul; Kumar, Sunil; Graham, James; Flather, Curtis; Stohlgren, Thomas

    2011-06-01

    Biologic control of the introduced and invasive, woody plant tamarisk ( Tamarix spp, saltcedar) in south-western states is controversial because it affects habitat of the federally endangered South-western Willow Flycatcher ( Empidonax traillii extimus). These songbirds sometimes nest in tamarisk where floodplain-level invasion replaces native habitats. Biologic control, with the saltcedar leaf beetle ( Diorhabda elongate), began along the Virgin River, Utah, in 2006, enhancing the need for comprehensive understanding of the tamarisk-flycatcher relationship. We used maximum entropy (Maxent) modeling to separately quantify the current extent of dense tamarisk habitat (>50% cover) and the potential extent of habitat available for E. traillii extimus within the studied watersheds. We used transformations of 2008 Landsat Thematic Mapper images and a digital elevation model as environmental input variables. Maxent models performed well for the flycatcher and tamarisk with Area Under the ROC Curve (AUC) values of 0.960 and 0.982, respectively. Classification of thresholds and comparison of the two Maxent outputs indicated moderate spatial overlap between predicted suitable habitat for E. traillii extimus and predicted locations with dense tamarisk stands, where flycatcher habitat will potentially change flycatcher habitats. Dense tamarisk habitat comprised 500 km2 within the study area, of which 11.4% was also modeled as potential habitat for E. traillii extimus. Potential habitat modeled for the flycatcher constituted 190 km2, of which 30.7% also contained dense tamarisk habitat. Results showed that both native vegetation and dense tamarisk habitats exist in the study area and that most tamarisk infestations do not contain characteristics that satisfy the habitat requirements of E. traillii extimus. Based on this study, effective biologic control of Tamarix spp. may, in the short term, reduce suitable habitat available to E. traillii extimus, but also has the potential

  10. Columbia County Habitat for Humanity Passive Townhomes

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-03-01

    Columbia County Habitat for Humanity (CCHH) (New York, Climate Zone 5A) built a pair of townhomes to Passive House Institute U.S. (PHIUS+ 2015) criteria to explore approaches for achieving Passive House performance (specifically with respect to exterior wall, space-conditioning, and ventilation strategies) within the labor and budget context inherent in a Habitat for Humanity project. CCHH’s goal is to eventually develop a cost-justified Passive House prototype design for future projects.

  11. Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type.

    Science.gov (United States)

    Marshall, Leon; Carvalheiro, Luísa G; Aguirre-Gutiérrez, Jesús; Bos, Merijn; de Groot, G Arjen; Kleijn, David; Potts, Simon G; Reemer, Menno; Roberts, Stuart; Scheper, Jeroen; Biesmeijer, Jacobus C

    2015-10-01

    Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs' usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and

  12. Missouri River Emergent Sandbar Habitat Monitoring Plan - A Conceptual Framework for Adaptive Management

    Science.gov (United States)

    Sherfy, Mark H.; Stucker, Jennifer H.; Anteau, Michael J.

    2009-01-01

    Habitat conditions are one of the most important factors determining distribution and productivity of least terns (Sternula antillarum) and piping plovers (Charadrius melodus) in the upper Missouri River system (Ziewitz and others, 1992; Kruse and others, 2002). Habitat conditions are known to change within and among seasons in response to variation in river flows, weather conditions, and management actions targeted at providing for the needs of terns and plovers. Although these principles are generally agreed upon, there is little empirical information available on the quantity and quality of tern and plover habitats in this system, particularly with reference to the major life history events that must be supported (egg laying, incubation, and brood rearing). Habitat requirements for these events are composed of two major categories: nesting and foraging habitat. In the case of piping plovers, these two requirements must occur on the same area because plover chicks are constrained to foraging near nesting sites prior to fledging (Knetter and others, 2002; Haffner, 2005). In contrast, least terns chicks are fed by the adults, allowing food procurement for broods to occur outside the immediate nesting area; however, food resources must be close enough to nesting locations to minimize foraging time. The complexity and dynamics of the upper Missouri River system introduce considerable uncertainty into how best to manage tern and plover habitats, and how best to evaluate the effectiveness of this management. An extensive program of habitat monitoring will be needed to address this complexity and support the management of least terns and piping plovers under the Missouri River Recovery Program. These needs are being addressed, in part, through a program of habitat creation and management targeted at improving quality and quantity of habitats for terns and plovers. Given the momentum of these projects and their associated costs, it is imperative that the capacity be

  13. Coherence between harvest and habitat management -- Joint venture perspectives

    Science.gov (United States)

    Baxter, C.K.; Nelson, J.W.; Reinecke, K.J.; Stephens, S.E.

    2006-01-01

    Introduction: In recent months, an ad hoc group of waterfowl scientists, representing the International Association of Fish and Wildlife Agencies (IAFWA) Adaptive Harvest Management (ARM) Task Force and the North American Waterfowl Management Plan (NAWMP) Committee, have collaborated as a Joint Task Group (JTG) to assess options for unifying the population goals guiding waterfowl harvest management and habitat management. The JTG has been charged with bringing coherence to the population goals of the two programs. Characterizing the problem as one of coherence indicates value judgments exist regarding its significance or perhaps existence. For purposes of this paper, we characterize the lack of coherence as the absence of consistent population goals in the two related components of waterfowl conservation habitat and harvest management. Our purpose is to support continued dialogue on the respective goals of these programs and the possible implications of discordant goals to habitat joint ventures. Our objectives are two-fold: (1) illustrate how NAWMP habitat management goals and strategies have been interpreted and pursued in both breeding and wintering areas, and (2) provide perspectives on the linkages between regional habitat management programs and harvest management. The Lower Mississippi Valley and the Prairie Pothole joint ventures (LMVJV and PPJV, respectively) will be used as examples.

  14. Global patterns of fragmentation and connectivity of mammalian carnivore habitat

    OpenAIRE

    Crooks, Kevin R.; Burdett, Christopher L.; Theobald, David M.; Rondinini, Carlo; Boitani, Luigi

    2011-01-01

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges...

  15. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  16. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  17. Seasonal habitat associations of the wolverine in central Idaho

    Science.gov (United States)

    Jeffrey P. Copeland; James M. Peek; Craig R. Groves; Wayne E. Melquist; Kevin S. Mckelvey; Gregory W. McDaniel; Clinton D. Long; Charles E. Harris

    2007-01-01

    Although understanding habitat relationships remains fundamental to guiding wildlife management, these basic prerequisites remain vague and largely unstudied for the wolverine. Currently, a study of wolverine ecology conducted in Montana, USA, in the 1970s is the sole source of information on habitat requirements of wolverines in the conterminous United States. The...

  18. Impact assessment of ionising radiation on wildlife: meeting the requirements of the EU birds and habitat directives

    International Nuclear Information System (INIS)

    Copplestone, D.; Wood, M.D.; Bielby, S.; Jones, S.R.; Vives, J.; Beresford, N.A.; Zinger, I.

    2004-01-01

    In the UK, research funded by the Environment Agency/English Nature has provided a tool for calculating doses received by biota in coastal, freshwater and terrestrial ecosystems. The approach uses the reference organism concept where the organism of interest (feature organism) is equated to a particular reference organism (based on its physical geometry and ecology). The exposure of the reference organism, and consequently the feature organism, to different radionuclides and dose rates can be assessed using a spreadsheet-based mathematical tool. This assessment tool was developed in 2001 and provided an internationally recognised starting point from which more refined assessment tools could develop. As the need for conducting specific assessments under the UK Habitat Regulations became apparent, it was recognised that some targeted refinement of the assessment tool was required. One of the major problems with the tool related to a lack of species-specific data and a lack of information on certain radionuclides appearing in discharges that may be impacting on sites/species to be protected. A second research and development project was therefore undertaken to reduce the uncertainties associated with the assessment tool by collating additional species-specific data, developing a mathematical system for ensuring that the most appropriate reference organism was selected and extending the range of radionuclides included in the assessment. This specific expansion to the assessment tool was directed towards ensuring that species at Natura 2000 sites (Special Protection Areas (SPAs) and Special Areas of Conservation (SACs)) were adequately protected. The species targeted (feature species) for this assessment were species protected under the EC Habitats Directive and those that are characteristic of habitats protected under the Directive. The paper will show how typical dimensions of each feature species are collated and each feature species mathematically aligned with the

  19. Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas

    OpenAIRE

    Kurt Schnier; Dan Holland

    2005-01-01

    Fisheries managers in the United States are required to identify and mitigate the adverse impacts of fishing activity on essential fish habitat (EFH). There are additional concerns that the viability of noncommercial species, animals that are habitat dependent and/or are themselves constituents of fishery habitat may still be threatened. We consider a cap-and-trade system for habitat conservation, individual habitat quotas for fisheries, to achieve habitat conservation and species protection ...

  20. Saproxylic Hemiptera Habitat Associations

    Science.gov (United States)

    Michael D. Ulyshen; James L. Hanula; Robert L. Blinn; Gene. Kritsky

    2012-01-01

    Understanding the habitat requirements of organisms associated with dead wood is important in order to conserve them in managed forests. Unfortunately, many of the less diverse saproxylic taxa, including Hemiptera, remain largely unstudied. An effort to rear insects from dead wood taken from two forest types (an upland pine-dominated and a bottomland mixed hardwood),...

  1. Habitat Use Database - Groundfish Essential Fish Habitat (EFH) Habitat Use Database (HUD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Habitat Use Database (HUD) was specifically designed to address the need for habitat-use analyses in support of groundfish EFH, HAPCs, and fishing and nonfishing...

  2. Condition varies with habitat choice in postbreeding forest birds

    Science.gov (United States)

    Scott H. Stoleson

    2013-01-01

    Many birds that are experiencing population declines require extensive tracts of mature forest habitat for breeding. Recent work suggests that at least some may shift their habitat use to early-successional areas after nesting but before migration. I used constant-effort mist netting in regenerating clearcuts (4-8 years postcut) and dense mature-forest understories to...

  3. Impact of fisheries on seabed bottom habitat

    NARCIS (Netherlands)

    Piet, Gerjan; Hintzen, Niels; Quirijns, Floor

    2018-01-01

    The Marine Stewardship Council (MSC) released new certification requirements in 2014. The new requirements come with new guidelines for scoring fisheries for several Performance Indicators (PIs). One of the adjusted PIs is PI 2.4.1: the Habitats outcome indicator:“The Unit of Assessment (UoA) does

  4. The global distribution of deep-water Antipatharia habitat

    Science.gov (United States)

    Yesson, Chris; Bedford, Faye; Rogers, Alex D.; Taylor, Michelle L.

    2017-11-01

    Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

  5. CisLunar Habitat Internal Architecture Design Criteria

    Science.gov (United States)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    Lunar Habitat Internal Architecture Study is to become a forcing function to establish a common understanding of CisLunar Phase-1 Habitation Internal Architecture design criteria, processes, and tools. The scope of the CisLunar Habitat Internal Architecture study is to design, develop, demonstrate, and evaluate a Phase-1 CisLunar Habitat common module internal architecture based on design criteria agreed to by NASA, the International Partners, and Commercial Exploration teams. This task is to define the CisLunar Phase-1 Internal Architecture Government Reference Design, assist NASA in becoming a "smart buyer" for Phase-1 Habitat Concepts, and ultimately to derive standards and requirements from the Internal Architecture Design Process. The first step was to define a Habitat Internal Architecture Design Criteria and create a structured philosophy to be used by design teams as a filter by which critical aspects of consideration would be identified for the purpose of organizing and utilizing interior spaces. With design criteria in place, the team will develop a series of iterative internal architecture concept designs which will be assessed by means of an evaluation criteria and process. These assessments will successively drive and refine the design, leading to the combination and down-selection of design concepts. A single refined reference design configuration will be developed into in a medium-to-high fidelity mockup. A multi-day human-in-the-loop mission test will fully evaluate the reference design and validate its configuration. Lessons learned from the design and evaluation will enable the team to identify appropriate standards for Phase-1 CisLunar Habitat Internal Architecture and will enable NASA to develop derived requirements in support of maturing CisLunar Habitation capabilities. This paper will describe the criteria definition process, workshop event, and resulting CisLunar Phase-1 Habitat Internal Architecture Design Criteria.

  6. Advantages of a Modular Mars Surface Habitat Approach

    Science.gov (United States)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  7. The spatial structure of habitat selection: A caribou's-eye-view

    Science.gov (United States)

    Mayor, Stephen J.; Schaefer, James A.; Schneider, David C.; Mahoney, Shane P.

    2009-03-01

    Greater understanding of habitat selection requires investigation at the scales at which organisms perceive and respond to their environment. Such knowledge could reveal the relative importance of factors limiting populations and the extent of response to habitat changes, and so guide conservation initiatives. We conducted a novel, spatially explicit analysis of winter habitat selection by caribou ( Rangifer tarandus) in Newfoundland, Canada, to elucidate the spatial scales of habitat selection. We combined conventional hierarchical habitat analysis with a newly developed geospatial approach that quantifies selection across scales as the difference in variance between available and used sites. We used both ordination and univariate analyses of lichen and plant cover, snow hardness and depth. This represents the first use of ordination with geostatistics for the assessment of habitat selection. Caribou habitat selection was driven by shallow, soft snow and high cover of Cladina lichens and was strongest at feeding microsites (craters) and broader feeding areas. Habitat selection was most evident at distance lags of up to 15 km, perhaps an indication of the perceptual abilities of caribou.

  8. Surface Habitat Systems

    Science.gov (United States)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  9. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.

    2006-01-01

    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  10. Importance of considering riparian vegetation requirements for the long-term efficiency of environmental flows in aquatic microhabitats

    Directory of Open Access Journals (Sweden)

    R. Rivaes

    2017-11-01

    Full Text Available Environmental flows remain biased toward the traditional biological group of fish species. Consequently, these flows ignore the inter-annual flow variability that rules species with longer lifecycles and therefore disregard the long-term perspective of the riverine ecosystem. We analyzed the importance of considering riparian requirements for the long-term efficiency of environmental flows. For that analysis, we modeled the riparian vegetation development for a decade facing different environmental flows in two case studies. Next, we assessed the corresponding fish habitat availability of three common fish species in each of the resulting riparian landscape scenarios. Modeling results demonstrated that the environmental flows disregarding riparian vegetation requirements promoted riparian degradation, particularly vegetation encroachment. Such circumstance altered the hydraulic characteristics of the river channel where flow depths and velocities underwent local changes of up to 10 cm and 40 cm s−1, respectively. Accordingly, after a decade of this flow regime, the available habitat area for the considered fish species experienced modifications of up to 110 % when compared to the natural habitat. In turn, environmental flows regarding riparian vegetation requirements were able to maintain riparian vegetation near natural standards, thereby preserving the hydraulic characteristics of the river channel and sustaining the fish habitat close to the natural condition. As a result, fish habitat availability never changed more than 17 % from the natural habitat.

  11. Comparison of radio-telemetric home range analysis and acoustic detection for Little Brown Bat habitat evaluation

    Science.gov (United States)

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    With dramatic declines of bat populations due to mortality caused by Pseudogymnoascus destructans (White-nose Syndrome), assessing habitat preferences of bats in the northeastern US is now critical to guide the development of regional conservation efforts. In the summer of 2012, we conducted fixed-station simultaneous telemetry to determine nocturnal spatial use and fixed-kernel home-range estimates of available habitat of a Myotis lucifugus (Le Conte) (Little Brown Bat) maternity colony in an artificial bat house. In summers of 2011 and 2012, we also deployed a 52-ha grid of 4 × 4 Anabat acoustic detectors over five 6–8-day sampling periods in various riparian and non-riparian environments in close proximity to the same bat house. The mean telemetry home range of 143 ha for bats (n = 7) completely overlapped the acoustic grid. Rankings of habitats from telemetry data for these 7 bats and 5 additional bats not included in home-range calculations but added for habitat-use measures (n = 13) revealed a higher proportional use of forested riparian habitats than other types at the landscape scale. Pair-wise comparisons of habitats indicated that bats were found significantly closer to forested riparian habitats and forests than to open water, developed areas, fields, shrublands, or wetland habitats at the landscape scale. Acoustic sampling showed that naïve occupancy was 0.8 and 0.6 and mean nightly detection probabilities were 0.23 and 0.08 at riparian and non-riparian sites, respectively. Our findings suggest that Little Brown Bats select forested riparian and forested habitats for foraging at the landscape scale but may be most easily detected acoustically at riparian sites when a simple occupancy determination for an area is required.

  12. Global patterns of fragmentation and connectivity of mammalian carnivore habitat.

    Science.gov (United States)

    Crooks, Kevin R; Burdett, Christopher L; Theobald, David M; Rondinini, Carlo; Boitani, Luigi

    2011-09-27

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation.

  13. Landscape Metrics to Assess Habitat Suitability for Conversation Bird Species in the Southeastern United States

    National Research Council Canada - National Science Library

    Dove, Linda

    2001-01-01

    .... The degree to which a given species is affected by habitat fragmentation is dependent on the complex interaction of the habitat requirements of the species and the shape, size, and makeup of the fragmented habitat...

  14. Prisoners in their habitat? Generalist dispersal by habitat specialists: a case study in southern water vole (Arvicola sapidus.

    Directory of Open Access Journals (Sweden)

    Alejandro Centeno-Cuadros

    Full Text Available Habitat specialists inhabiting scarce and scattered habitat patches pose interesting questions related to dispersal such as how specialized terrestrial mammals do to colonize distant patches crossing hostile matrices. We assess dispersal patterns of the southern water vole (Arvicola sapidus, a habitat specialist whose habitat patches are distributed through less than 2% of the study area (overall 600 km² and whose populations form a dynamic metapopulational network. We predict that individuals will require a high ability to move through the inhospitable matrix in order to avoid genetic and demographic isolations. Genotypes (N = 142 for 10 microsatellites and sequences of the whole mitochondrial Control Region (N = 47 from seven localities revealed a weak but significant genetic structure partially explained by geographic distance. None of the landscape models had a significant effect on genetic structure over that of the Euclidean distance alone and no evidence for efficient barriers to dispersal was found. Contemporary gene flow was not severely limited for A. sapidus as shown by high migration rates estimates (>10% between non-neighbouring areas. Sex-biased dispersal tests did not support differences in dispersal rates, as shown by similar average axial parent-offspring distances, in close agreement with capture-mark-recapture estimates. As predicted, our results do not support any preferences of the species for specific landscape attributes on their dispersal pathways. Here, we combine field and molecular data to illustrate how a habitat specialist mammal might disperse like a habitat generalist, acquiring specific long-distance dispersal strategies as an adaptation to patchy, naturally fragmented, heterogeneous and unstable habitats.

  15. Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially?

    Science.gov (United States)

    Zabel, Jörg; Tscharntke, Teja

    1998-09-01

    Effects of habitat fragmentation on the insect community of stinging nettle (Urtica dioica L.) were studied, using 32 natural nettle patches of different area and degree of isolation in an agricultural landscape. Habitat fragmentation reduced the species richness of Heteroptera, Auchenorrhyncha, and Coleoptera, and the abundance of populations. Habitat isolation and area reduction did not affect all insect species equally. Monophagous herbivores had a higher probability of absence from small patches than all (monophagous and polyphagous) herbivore species, and the percentage of monophagous herbivores increased with habitat area. Abundance and population variability of species were negatively correlated and could both be used as a predictor of the percentage of occupied habitats. Species richness of herbivores correlated (positively) with habitat area, while species richness of predators correlated (negatively) with habitat isolation. In logistic regressions, the probability of absence of monophagous herbivores from habitat patches could only be explained by habitat area (in 4 out of 10 species) and predator absence probability only by habitat isolation (in 3 out of 14 species). Presumably because of the instability of higher-trophic-level populations and dispersal limitation, predators were more affected by habitat isolation than herbivores, while they did not differ from herbivore populations with respect to abundance or variability. Thus increasing habitat connectivity in the agricultural landscape should primarily promote predator populations.

  16. Modeling amphibian energetics, habitat suitability, and movements of western toads, Anaxyrus (=Bufo) boreas, across present and future landscapes

    Science.gov (United States)

    Bartelt, Paul E.; Klaver, Robert W.; Porter, Warren P.

    2010-01-01

    Effective conservation of amphibian populations requires the prediction of how amphibians use and move through a landscape. Amphibians are closely coupled to their physical environment. Thus an approach that uses the physiological attributes of amphibians, together with knowledge of their natural history, should be helpful. We used Niche Mapper™ to model the known movements and habitat use patterns of a population of Western toads (Anaxyrus (=Bufo) boreas) occupying forested habitats in southeastern Idaho. Niche Mapper uses first principles of environmental biophysics to combine features of topography, climate, land cover, and animal features to model microclimates and animal physiology and behavior across landscapes. Niche Mapper reproduced core body temperatures (Tc) and evaporation rates of live toads with average errors of 1.6 ± 0.4 °C and 0.8 ± 0.2 g/h, respectively. For four different habitat types, it reproduced similar mid-summer daily temperature patterns as those measured in the field and calculated evaporation rates (g/h) with an average error rate of 7.2 ± 5.5%. Sensitivity analyses indicate these errors do not significantly affect estimates of food consumption or activity. Using Niche Mapper we predicted the daily habitats used by free-ranging toads; our accuracy for female toads was greater than for male toads (74.2 ± 6.8% and 53.6 ± 15.8%, respectively), reflecting the stronger patterns of habitat selection among females. Using these changing to construct a cost surface, we also reconstructed movement paths that were consistent with field observations. The effect of climate warming on toads depends on the interaction of temperature and atmospheric moisture. If climate change occurs as predicted, results from Niche Mapper suggests that climate warming will increase the physiological cost of landscapes thereby limiting the activity for toads in different habitats.

  17. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    Science.gov (United States)

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  18. Predictive modelling of habitat use by marine predators with respect to the abundance and depth distribution of pelagic prey

    Science.gov (United States)

    Boyd, Charlotte; Castillo, Ramiro; Hunt, George L.; Punt, André E..; VanBlaricom, Glenn R.; Weimerskirch, Henri; Bertrand, Sophie

    2015-01-01

    Understanding the ecological processes that underpin species distribution patterns is a fundamental goal in spatial ecology. However, developing predictive models of habitat use is challenging for species that forage in marine environments, as both predators and prey are often highly mobile and difficult to monitor. Consequently, few studies have developed resource selection functions for marine predators based directly on the abundance and distribution of their prey.

  19. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    Science.gov (United States)

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  20. West Foster Creek 2007 Follow-up Habitat Evaluation Procedures (HEP) Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    2008-02-01

    A follow-up habitat evaluation procedures (HEP) analysis was conducted on the West Foster Creek (Smith acquisition) wildlife mitigation site in May 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance and maintain the project site as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The West Foster Creek 2007 follow-up HEP survey generated 2,981.96 habitat units (HU) or 1.51 HUs per acre for a 34% increase (+751.34 HUs) above baseline HU credit (the 1999 baseline HEP survey generated 2,230.62 habitat units or 1.13 HUs per acre). The 2007 follow-up HEP analysis yielded 1,380.26 sharp-tailed grouse (Tympanuchus phasianellus) habitat units, 879.40 mule deer (Odocoileus hemionus) HUs, and 722.29 western meadowlark (Sturnella neglecta) habitat units. Mule deer and sharp-tailed grouse habitat units increased by 346.42 HUs and 470.62 HUs respectively over baseline (1999) survey results due largely to cessation of livestock grazing and subsequent passive restoration. In contrast, the western meadowlark generated slightly fewer habitat units in 2007 (-67.31) than in 1999, because of increased shrub cover, which lowers habitat suitability for that species.

  1. Application of habitat thresholds in conservation: Considerations, limitations, and future directions

    Directory of Open Access Journals (Sweden)

    Yntze van der Hoek

    2015-01-01

    Full Text Available Habitat thresholds are often interpreted as the minimum required area of habitat, and subsequently promoted as conservation targets in natural resource policies and planning. Unfortunately, several recent reviews and messages of caution on the application of habitat thresholds in conservation have largely fallen on deaf ears, leading to a dangerous oversimplification and generalization of the concept. We highlight the prevalence of oversimplification/over-generalization of results from habitat threshold studies in policy documentation, the consequences of such over-generalization, and directions for habitat threshold studies that have conservation applications without risking overgeneralization. We argue that in order to steer away from misapplication of habitat thresholds in conservation, we should not focus on generalized nominal habitat values (i.e., amounts or percentages of habitat, but on the use of habitat threshold modeling for comparative exercises of area-sensitivity or the identification of environmental dangers. In addition, we should remain focused on understanding the processes and mechanisms underlying species responses to habitat change. Finally, studies could that focus on deriving nominal value threshold amounts should do so only if the thresholds are detailed, species-specific, and translated to conservation targets particular to the study area only.

  2. Habitat Concepts for Deep Space Exploration

    Science.gov (United States)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  3. Deep Space Habitat Wireless Smart Plug

    Science.gov (United States)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  4. Understanding Existing Salmonid Habitat Availability and Connectivity to Improve River Management

    Science.gov (United States)

    Duffin, J.; Yager, E.; Tonina, D.; Benjankar, R. M.

    2017-12-01

    In the Pacific Northwest river restoration is common for salmon conservation. Mangers need methods to help target restoration to problem areas in rivers to create habitat that meets a species' needs. Hydraulic models and habitat suitability curves provide basic information on habitat availability and overall quality, but these analyses need to be expanded to address habitat quality based on the accessibility of habitats required for multiple life stages. Scientists are starting to use connectivity measurements to understand the longitudinal proximity of habitat patches, which can be used to address the habitat variability of a reach. By evaluating the availability and quality of habitat and calculating the connectivity between complementary habitats, such as spawning and rearing habitats, we aim to identify areas that should be targeted for restoration. To meet these goals, we assessed Chinook salmon habitat on the Lemhi River in Idaho. The depth and velocity outputs from a 2D hydraulic model are used in conjunction with locally created habitat suitability curves to evaluate the availability and quality of habitat for multiple Chinook salmon life stages. To assess the variability of the habitat, connectivity between habitat patches necessary for different life stages is calculated with a proximity index. A spatial representation of existing habitat quality and connectivity between complimentary habitats can be linked to river morphology by the evaluation of local geomorphic characteristics, including sinuosity and channel units. The understanding of the current habitat availability for multiple life stage needs, the connectivity between these habitat patches, and their relationship with channel morphology can help managers better identify restoration needs and direct their limited resources.

  5. Habitat and food resources of otters (Mustelidae) in Peninsular Malaysia

    Science.gov (United States)

    Abdul-Patah, P.; Nur-Syuhada, N.; Md-Nor, S.; Sasaki, H.; Md-Zain, B. M.

    2014-09-01

    Habitat and food resources of otters were studied in several locations in Peninsular Malaysia. A total of 210 fecal samples were collected from April 2010 to March 2011 believed to be of otter's were analyzed for their diet composition and their habitat preferences. The DNA testing conducted revealed that only 126 samples were identified as Lultrogale perspicillata and Aonyx cinereus with 105 and 21 samples, respectively. Habitat analyses revealed that these two species preferred paddy fields and mangroves as their main habitats but L. perspicillata preferred to hunt near habitat with large water bodies, such as mangroves, rivers, ponds, and lakes. A. cinereus on the other hand, were mainly found near land-based habitat, such as paddy fields, casuarinas forest and oil palms near mangroves. Habitats chosen were influenced by their food preferences where L. perspicillata consumed a variety of fish species with a supplementary diet of prawns, small mammals, and amphibians, compared to A. cinereus which consumed less fish and more non-fish food items, such as insects, crabs, and snails. Since, the most of the otter habitats in this study are not located within the protected areas, conservation effort involving administrations, landowners, private organizations and public are necessary.

  6. Influence of seasonality and gestation on habitat selection by northern Mexican gartersnakes (Thamnophis eques megalops.

    Directory of Open Access Journals (Sweden)

    Tiffany A Sprague

    Full Text Available Species conservation requires a thorough understanding of habitat requirements. The northern Mexican gartersnake (Thamnophis eques megalops was listed as threatened under the U.S. Endangered Species Act in 2014. Natural resource managers are interested in understanding the ecology of this subspecies to guide management decisions and to determine what features are necessary for habitat creation and restoration. Our objective was to identify habitat selection of northern Mexican gartersnakes in a highly managed, constructed wetland hatchery. We deployed transmitters on 42 individual gartersnakes and documented use of habitat types and selection of specific habitat features. Habitat selection was similar between males and females and varied seasonally. During the active season (March-October, gartersnakes primarily selected wetland edge habitat with abundant cover. Gestating females selected similar locations but with less dense cover. During the inactive season (November-February, gartersnakes selected upland habitats, including rocky slopes with abundant vegetation. These results of this study can help inform management of the subspecies, particularly in human-influenced habitats. Conservation of this subspecies should incorporate a landscape-level approach that includes abundant wetland edge habitat with a mosaic of dense cover for protection and sparsely vegetated areas for basking connected to terrestrial uplands for overwintering.

  7. Competition and habitat selection in a forest-floor small mammal fauna

    Energy Technology Data Exchange (ETDEWEB)

    Dueser, R D [Univ. of Virginia, Charlottesville; Hallett, J G

    1980-01-01

    In a study of habitat exploitation in a forest-floor small mammal community, we have collected habitat and population data for Peromyscus leucopus, Ochrotomys nuttalli, and Tamias striatus. Using multiple regression analysis, researchers estimate the effects of habitat selection and competition on the local distributions of these species during three seasons. Each of the partial regression coefficients relating the density of an independent species to the density of the dependent species is negative. This result indicates that competition is pervasive among these species. Competitive ability and habitat selectivity both increase in the order Peromyscus-Tamias-Ochrotomys. Peromyscus is a poorly competitive habitat generalist, Ochrotomys is a strongly competitive habitat specialist, and Tamias is intermediate in both respects. The competitive hierarchy is stable between seasons. These results both confirm the conclusions reached in previous studies of this small mammal community and suggest the design of experiments to further clarify the mode and consequences of interaction between these species.

  8. Freshwater ecosystems and resilience of Pacific salmon: Habitat Management based on natural variability

    Science.gov (United States)

    Bisson, P.A.; Dunham, J.B.; Reeves, G.H.

    2009-01-01

    In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability. ?? 2009 by the author(s).

  9. Freshwater Ecosystems and Resilience of Pacific Salmon: Habitat Management Based on Natural Variability

    Directory of Open Access Journals (Sweden)

    Peter A. Bisson

    2009-06-01

    Full Text Available In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability.

  10. Global habitat preferences of commercially valuable tuna

    KAUST Repository

    Arrizabalaga, Haritz; Dufour, Florence; Kell, Laurence T.; Merino, Gorka; Ibaibarriaga, Leire; Chust, Guillem; Irigoien, Xabier; Santiago, Josu; Murua, Hilario; Fraile, Igaratza; Chifflet, Marina; Goikoetxea, Nerea; Sagarminaga, Yolanda; Aumont, Olivier; Bopp, Laurent; Herrera, Miguel Angel; Marc Fromentin, Jean; Bonhomeau, Sylvain

    2015-01-01

    In spite of its pivotal role in future implementations of the Ecosystem Approach to Fisheries Management, current knowledge about tuna habitat preferences remains fragmented and heterogeneous, because it relies mainly on regional or local studies that have used a variety of approaches making them difficult to combine. Therefore in this study we analyse data from six tuna species in the Pacific, Atlantic and Indian Oceans in order to provide a global, comparative perspective of habitat preferences. These data are longline catch per unit effort from 1958 to 2007 for albacore, Atlantic bluefin, southern bluefin, bigeye, yellowfin and skipjack tunas. Both quotient analysis and Generalised Additive Models were used to determine habitat preference with respect to eight biotic and abiotic variables. Results confirmed that, compared to temperate tunas, tropical tunas prefer warm, anoxic, stratified waters. Atlantic and southern bluefin tuna prefer higher concentrations of chlorophyll than the rest. The two species also tolerate most extreme sea surface height anomalies and highest mixed layer depths. In general, Atlantic bluefin tuna tolerates the widest range of environmental conditions. An assessment of the most important variables determining fish habitat is also provided. © 2014 Elsevier Ltd.

  11. Global habitat preferences of commercially valuable tuna

    KAUST Repository

    Arrizabalaga, Haritz

    2015-03-01

    In spite of its pivotal role in future implementations of the Ecosystem Approach to Fisheries Management, current knowledge about tuna habitat preferences remains fragmented and heterogeneous, because it relies mainly on regional or local studies that have used a variety of approaches making them difficult to combine. Therefore in this study we analyse data from six tuna species in the Pacific, Atlantic and Indian Oceans in order to provide a global, comparative perspective of habitat preferences. These data are longline catch per unit effort from 1958 to 2007 for albacore, Atlantic bluefin, southern bluefin, bigeye, yellowfin and skipjack tunas. Both quotient analysis and Generalised Additive Models were used to determine habitat preference with respect to eight biotic and abiotic variables. Results confirmed that, compared to temperate tunas, tropical tunas prefer warm, anoxic, stratified waters. Atlantic and southern bluefin tuna prefer higher concentrations of chlorophyll than the rest. The two species also tolerate most extreme sea surface height anomalies and highest mixed layer depths. In general, Atlantic bluefin tuna tolerates the widest range of environmental conditions. An assessment of the most important variables determining fish habitat is also provided. © 2014 Elsevier Ltd.

  12. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  13. A geospatial modelling approach to predict seagrass habitat recovery under multiple stressor regimes

    Science.gov (United States)

    Restoration of estuarine seagrass habitats requires a clear understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We have developed and demonstrated a geospatial modeling a...

  14. The Habitat Connection.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  15. Tracking changes and preventing loss in critical tiger habitat.

    Science.gov (United States)

    Joshi, Anup R; Dinerstein, Eric; Wikramanayake, Eric; Anderson, Michael L; Olson, David; Jones, Benjamin S; Seidensticker, John; Lumpkin, Susan; Hansen, Matthew C; Sizer, Nigel C; Davis, Crystal L; Palminteri, Suzanne; Hahn, Nathan R

    2016-04-01

    The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km(2)) that have been prioritized for conservation of wild tigers. Our analysis provides an update of the status of tiger habitat and describes new applications of technology to detect precisely where forest loss is occurring in order to curb future habitat loss. Across the 76 landscapes, forest loss was far less than anticipated (79,597 ± 22,629 km(2), 7.7% of remaining habitat) over the 14-year study period (2001-2014). Habitat loss was unevenly distributed within a subset of 29 landscapes deemed most critical for doubling wild tiger populations: 19 showed little change (1.5%), whereas 10 accounted for more than 98% (57,392 ± 16,316 km(2)) of habitat loss. Habitat loss in source population sites within 76 landscapes ranged from no loss to 435 ± 124 km(2) ([Formula: see text], SD = 89, total = 1676 ± 476 km(2)). Doubling the tiger population by 2022 requires moving beyond tracking annual changes in habitat. We highlight near-real-time forest monitoring technologies that provide alerts of forest loss at relevant spatial and temporal scales to prevent further erosion.

  16. Modified forest rotation lengths: Long-term effects on landscape-scale habitat availability for specialized species.

    Science.gov (United States)

    Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Felton, Adam; Ranius, Thomas; Lundmark, Tomas; Nordin, Annika

    2018-03-15

    We evaluated the long-term implications from modifying rotation lengths in production forests for four forest-reliant species with different habitat requirements. By combining simulations of forest development with habitat models, and accounting both for stand and landscape scale influences, we projected habitat availability over 150 years in a large Swedish landscape, using rotation lengths which are longer (+22% and +50%) and shorter (-22%) compared to current practices. In terms of mean habitat availability through time, species requiring older forest were affected positively by extended rotations, and negatively by shortened rotations. For example, the mean habitat area for the treecreeper Certhia familiaris (a bird preferring forest with larger trees) increased by 31% when rotations were increased by 22%, at a 5% cost to net present value (NPV) and a 7% decrease in harvested volume. Extending rotation lengths by 50% provided more habitat for this species compared to a 22% extension, but at a much higher marginal cost. In contrast, the beetle Hadreule elongatula, which is dependent on sun-exposed dead wood, benefited from shortened rather than prolonged rotations. Due to an uneven distribution of stand-ages within the landscape, the relative amounts of habitat provided by different rotation length scenarios for a given species were not always consistent through time during the simulation period. If implemented as a conservation measure, prolonging rotations will require long-term strategic planning to avoid future bottlenecks in habitat availability, and will need to be accompanied by complementary measures accounting for the diversity of habitats necessary for the conservation of forest biodiversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Habitat and Recreational Fishing Opportunity in Tampa Bay: Linking Ecological and Ecosystem Services to Human Beneficiaries

    Science.gov (United States)

    Estimating value of estuarine habitat to human beneficiaries requires that we understand how habitat alteration impacts function through both production and delivery of ecosystem goods and services (EGS). Here we expand on the habitat valuation technique of Bell (1997) with an es...

  18. Concurrent assessment of fish and habitat in warmwater streams in Wyoming

    Science.gov (United States)

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2006-01-01

    Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.

  19. River habitat assessment for ecological restoration of Wei River Basin, China.

    Science.gov (United States)

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  20. Coefficients of productivity for Yellowstone's grizzly bear habitat

    Science.gov (United States)

    Mattson, David John; Barber, Kim; Maw, Ralene; Renkin, Roy

    2004-01-01

    This report describes methods for calculating coefficients used to depict habitat productivity for grizzly bears in the Yellowstone ecosystem. Calculations based on these coefficients are used in the Yellowstone Grizzly Bear Cumulative Effects Model to map the distribution of habitat productivity and account for the impacts of human facilities. The coefficients of habitat productivity incorporate detailed information that was collected over a 20-year period (1977-96) on the foraging behavior of Yellowstone's bears and include records of what bears were feeding on, when and where they fed, the extent of that feeding activity, and relative measures of the quantity consumed. The coefficients also incorporate information, collected primarily from 1986 to 1992, on the nutrient content of foods that were consumed, their digestibility, characteristic bite sizes, and the energy required to extract and handle each food. Coefficients were calculated for different time periods and different habitat types, specific to different parts of the Yellowstone ecosystem. Stratifications included four seasons of bear activity (spring, estrus, early hyperphagia, late hyperphagia), years when ungulate carrion and whitebark pine seed crops were abundant versus not, areas adjacent to (bear activity in each region, habitat type, and time period were incorporated into calculations, controlling for the effects of proximity to human facilities. The coefficients described in this report and associated estimates of grizzly bear habitat productivity are unique among many efforts to model the conditions of bear habitat because calculations include information on energetics derived from the observed behavior of radio-marked bears.

  1. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran

    Impact from groundwater abstraction on freshwater resources and ecosystems is an issue of sincere concern in Denmark and many other countries worldwide. In addition, climate change projections add complexity to the existing conflict between water demands to satisfy human needs and water demands...... required to conserve streams as biologically diverse and healthy ecosystems. Solutions to this intensifying conflict require a holistic approach whereby stream biota is related to their physical environment at catchment scale, as also demanded by the EU Water Framework Directive. In the present study......, climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...

  2. Habitat Demonstration Unit Project Leadership and Management Strategies

    Science.gov (United States)

    Kennedy, Kriss J.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and

  3. Modeling of Iranian Cheetah Habitat using Ecological Niche Factor Analysis (Case Study: Dare Anjir Wildlife Refuge

    Directory of Open Access Journals (Sweden)

    N. Zamani

    2016-03-01

    Full Text Available Evaluation of habitat sustainability indexes is essential in wildlife management and conservation of rare species. Suitable habitats are required in wildlife managements and conservation also, they increase reproduction and survival rate of species. In this study in order to mapping habitat sustainability and recognizing habitat requirements of Iranian Cheetah (Acinonyx jubatus venaticus, field data from Dare Anjir  wildlife refuge were collected since autumn 2009 until summer 2011. Ecological Niche Factor Analysis approach has been used to develop habitat suitability model. In this method primary maps of  habitat variables including elevation, slope, aspect, vegetation cover, distance from water sources and environmental monitoring stations have been produced by Idrisi and Biomapper software and imported in Biomapper. The output scores obtained from the analysis showed that Iranian cheetah tends to mountain areas where has more topographical features for camouflage in order to hunting, and northern aspects which have more humidity, denser vegetation cover and more preys . Our result showed that the Iranian cheetah has medium niche width and prefer marginal habitats.

  4. Habitat requirements of the long-tailed ground squirrel (Spermophilus undulatus) in the southern Altai

    Czech Academy of Sciences Publication Activity Database

    Řičánková, V.; Fric, Zdeněk; Chlachula, J.; Šťastná, P.; Faltýnková, A.; Zemek, František

    2006-01-01

    Roč. 270, - (2006), s. 1-8 ISSN 0952-8369 Institutional research plan: CEZ:AV0Z60870520 Keywords : Spermophilus undulatus * Altai mountains * habitat selection * predation risk * grazing Subject RIV: EH - Ecology, Behaviour Impact factor: 1.413, year: 2006

  5. Respect for rational autonomy.

    Science.gov (United States)

    Walker, Rebecca L

    2009-12-01

    The standard notion of autonomy in medical ethics does not require that autonomous choices not be irrational. The paper gives three examples of seemingly irrational patient choices and discusses how a rational autonomy analysis differs from the standard view. It then considers whether a switch to the rational autonomy view would lead to overriding more patient decisions but concludes that this should not be the case. Rather, a determination of whether individual patient decisions are autonomous is much less relevant than usually considered in determining whether health care providers must abide by these decisions. Furthermore, respect for rational autonomy entails strong positive requirements of respect for the autonomy of the person as a rational decision maker. The rationality view of autonomy is conceptually stronger than the standard view, allows for a more nuanced understanding of the practical moral calculus involved in respecting patient autonomy, and promotes positive respect for patient autonomy.

  6. Naturalization of European plants on other continents: The role of donor habitats.

    Science.gov (United States)

    Kalusová, Veronika; Chytrý, Milan; van Kleunen, Mark; Mucina, Ladislav; Dawson, Wayne; Essl, Franz; Kreft, Holger; Pergl, Jan; Weigelt, Patrick; Winter, Marten; Pyšek, Petr

    2017-12-26

    The success of European plant species as aliens worldwide is thought to reflect their association with human-disturbed environments. However, an explicit test including all human-made, seminatural and natural habitat types of Europe, and their contributions as donor habitats of naturalized species to the rest of the globe, has been missing. Here we combine two databases, the European Vegetation Checklist and the Global Naturalized Alien Flora, to assess how human influence in European habitats affects the probability of naturalization of their plant species on other continents. A total of 9,875 native European vascular plant species were assigned to 39 European habitat types; of these, 2,550 species have become naturalized somewhere in the world. Species that occur in both human-made habitats and seminatural or natural habitats in Europe have the highest probability of naturalization (64.7% and 64.5% of them have naturalized). Species associated only with human-made or seminatural habitats still have a significantly higher probability of becoming naturalized (41.7% and 28.6%, respectively) than species confined to natural habitats (19.4%). Species associated with arable land and human settlements were recorded as naturalized in the largest number of regions worldwide. Our findings highlight that plant species' association with native-range habitats disturbed by human activities, combined with broad habitat range, play an important role in shaping global patterns of plant invasions.

  7. Food web structure shaped by habitat size and climate across a latitudinal gradient.

    Science.gov (United States)

    Romero, Gustavo Q; Piccoli, Gustavo C O; de Omena, Paula M; Gonçalves-Souza, Thiago

    2016-10-01

    Habitat size and climate are known to affect the trophic structure and dynamics of communities, but their interactive effects are poorly understood. Organisms from different trophic levels vary in terms of metabolic requirements and heat dissipation. Indeed, larger species such as keystone predators require more stable climatic conditions than their prey. Likewise, habitat size disproportionally affects large-sized predators, which require larger home ranges and are thus restricted to larger habitats. Therefore, food web structure in patchy ecosystems is expected to be shaped by habitat size and climate variations. Here we investigate this prediction using natural aquatic microcosm (bromeliad phytotelmata) food webs composed of litter resources (mainly detritus), detritivores, mesopredators, and top predators (damselflies). We surveyed 240 bromeliads of varying sizes (water retention capacity) across 12 open restingas in SE Brazil spread across a wide range of tropical latitudes (-12.6° to -27.6°, ca. 2,000 km) and climates (Δ mean annual temperature = 5.3°C). We found a strong increase in predator-to-detritivore mass ratio with habitat size, which was representative of a typical inverted trophic pyramid in larger ecosystems. However, this relationship was contingent among the restingas; slopes of linear models were steeper in more stable and favorable climates, leading to inverted trophic pyramids (and top-down control) being more pronounced in environments with more favorable climatic conditions. By contrast, detritivore-resource and mesopredator-detritivore mass ratios were not affected by habitat size or climate variations across latitudes. Our results highlight that the combined effects of habitat size, climate and predator composition are pivotal to understanding the impacts of multiple environmental factors on food web structure and dynamics. © 2016 by the Ecological Society of America.

  8. Habitat use of Alburnoides namaki, in the Jajroud River (Namak Lake basin, Iran)

    OpenAIRE

    Melahat Hoghoghi; Soheil Eagderi; Bahmen Shams-Esfandabad

    2016-01-01

    A fish species prefer a particular habitat where provides its biological requirements, hence, understanding their habitat use and preferences are crucial for their effective management and protection. This study was conducted to assess the habitat use and selection patterns of Alburnoides namaki, an endemic fish in Jajroud River, Namak Lake basin, Iran. The river was sampled at 18 equally spaced sites. A number of environmental variables, including elevation, water depth, river width, river s...

  9. Assessing habitat connectivity for ground-dwelling animals in an urban environment.

    Science.gov (United States)

    Braaker, S; Moretti, M; Boesch, R; Ghazoul, J; Obrist, M K; Bontadina, F

    To ensure viable species populations in fragmented landscapes, individuals must be able to move between suitable habitat patches. Despite the increased interest in biodiversity assessment in urban environments, the ecological relevance of habitat connectivity in highly fragmented landscapes remains largely unknown. The first step to understanding the role of habitat connectivity in urban ecology is the challenging task of assessing connectivity in the complex patchwork of contrasting habitats that is found in cities. We developed a data-based framework, minimizing the use of subjective assumptions, to assess habitat connectivity that consists of the following sequential steps: (1) identification of habitat preference based on empirical habitat-use data; (2) derivation of habitat resistance surfaces evaluating various transformation functions; (3) modeling of different connectivity maps with electrical circuit theory (Circuitscape), a method considering all possible pathways across the landscape simultaneously; and (4) identification of the best connectivity map with information-theoretic model selection. We applied this analytical framework to assess habitat connectivity for the European hedgehog Erinaceus europaeus, a model species for ground-dwelling animals, in the city of Zurich, Switzerland, using GPS track points from 40 individuals. The best model revealed spatially explicit connectivity “pinch points,” as well as multiple habitat connections. Cross-validation indicated the general validity of the selected connectivity model. The results show that both habitat connectivity and habitat quality affect the movement of urban hedgehogs (relative importance of the two variables was 19.2% and 80.8%, respectively), and are thus both relevant for predicting urban animal movements. Our study demonstrates that even in the complex habitat patchwork of cities, habitat connectivity plays a major role for ground-dwelling animal movement. Data-based habitat connectivity

  10. Does Wyoming's Core Area Policy Protect Winter Habitats for Greater Sage-Grouse?

    Science.gov (United States)

    Smith, Kurt T.; Beck, Jeffrey L.; Pratt, Aaron C.

    2016-10-01

    Conservation reserves established to protect important habitat for wildlife species are used world-wide as a wildlife conservation measure. Effective reserves must adequately protect year-round habitats to maintain wildlife populations. Wyoming's Sage-Grouse Core Area policy was established to protect breeding habitats for greater sage-grouse ( Centrocercus urophasianus). Protecting only one important seasonal habitat could result in loss or degradation of other important habitats and potential declines in local populations. The purpose of our study was to identify the timing of winter habitat use, the extent which individuals breeding in Core Areas used winter habitats, and develop resource selection functions to assess effectiveness of Core Areas in conserving sage-grouse winter habitats in portions of 5 Core Areas in central and north-central Wyoming during winters 2011-2015. We found that use of winter habitats occured over a longer period than current Core Area winter timing stipulations and a substantial amount of winter habitat outside of Core Areas was used by individuals that bred in Core Areas, particularly in smaller Core Areas. Resource selection functions for each study area indicated that sage-grouse were selecting habitats in response to landscapes dominated by big sagebrush and flatter topography similar to other research on sage-grouse winter habitat selection. The substantial portion of sage-grouse locations and predicted probability of selection during winter outside small Core Areas illustrate that winter requirements for sage-grouse are not adequately met by existing Core Areas. Consequently, further considerations for identifying and managing important winter sage-grouse habitats under Wyoming's Core Area Policy are warranted.

  11. Coastal vertebrate exposure to predicted habitat changes due to sea level rise

    Science.gov (United States)

    Hunter, Elizabeth A.; Nibbelink, Nathan P.; Alexander, Clark R.; Barrett, Kyle; Mengak, Lara F.; Guy, Rachel; Moore, Clinton; Cooper, Robert J.

    2015-01-01

    Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species’ fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species (n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species’ foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.

  12. The micro-habitat methodology. Application protocols

    Energy Technology Data Exchange (ETDEWEB)

    Sabaton, C; Valentin, S; Souchon, Y

    1995-06-01

    A strong need has been felt for guidelines to help various entities in applying the micro-habitat methodology, particularly in impact studies on hydroelectric installations. CEMAGREF and Electricite de France have developed separately two protocols with five major steps: reconnaissance of the river, selection of representative units to be studied in greater depth, morpho-dynamic measurements at one or more rates of discharge and hydraulic modeling, coupling of hydraulic and biological models, calculation of habitat-quality scores for fish, analysis of results. The two approaches give very comparable results and are essentially differentiated by the hydraulic model used. CEMAGREF uses a one-dimensional model requiring measurements at only one discharge rate. Electricite de France uses a simplified model based on measurements at several rates of discharge. This approach is possible when discharge can be controlled in the study area during data acquisition, as is generally the case downstream of hydroelectric installations. The micro-habitat methodology is now a fully operational tool with which to study changes in fish habitat quality in relation to varying discharge. It provides an element of assessment pertinent to the choice of instreaming flow to be maintained downstream of a hydroelectric installation; this information is essential when the flow characteristics (velocity, depth) and the nature of the river bed are the preponderant factors governing habitat suitability for trout or salmon. The ultimate decision must nonetheless take into account any other potentially limiting factors for the biocenoses on the one hand, and the target water use objectives on the other. In many cases, compromises must be found among different uses, different species and different stages in the fish development cycle. (Abstract Truncated)

  13. Clear-cutting affects habitat connectivity for a forest amphibian by decreasing permeability to juvenile movements.

    Science.gov (United States)

    Popescu, Viorel D; Hunter, Malcolm L

    2011-06-01

    Conservation of forest amphibians is dependent on finding the right balance between management for timber production and meeting species' habitat requirements. For many pond-breeding amphibians, successful dispersal of the juvenile stage is essential for long-term population persistence. We investigated the influence of timber-harvesting practices on the movements of juvenile wood frogs (Lithobates sylvaticus). We used a chronosequence of stands produced by clear-cutting to evaluate how stand age affects habitat permeability to movements. We conducted experimental releases of juveniles in 2008 (n = 350) and 2009 (n = 528) in unidirectional runways in four treatments: mature forest, recent clearcut, 11-year-old, and 20-year-old regeneration. The runways were 50 x 2.5-m enclosures extending into each treatment, perpendicular to a distinct edge, with four tracking stations at 10, 20, 30, and 40 m from the edge. We recorded the number of animals reaching each tracking station, and the proportion of animals changing their direction of movement at each distance. We found that the mature forest was 3.1 and 3.7 times more permeable than the 11-year-old regeneration and the recent clearcut, respectively. Animals actively avoided open-canopy habitats and sharp edges; significantly more animals returned toward the closed-canopy forest at 0 m and 10 m in the less permeable treatments. There were no significant differences in habitat permeability between the mature forest and the 20-year-old regeneration. Our study is the first to directly assess habitat permeability to juvenile amphibian movement in relation to various forestry practices. We argue that habitat permeability at this scale is largely driven by the behavior of animals in relation to habitat disturbance and that caution needs to be used when using spatial modeling and expert-derived permeability values to assess connectivity of amphibian populations. The effects of clear-cutting on the migratory success of juvenile

  14. Modeling habitat split: landscape and life history traits determine amphibian extinction thresholds.

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Fonseca

    Full Text Available Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.

  15. Modeling habitat split: landscape and life history traits determine amphibian extinction thresholds.

    Science.gov (United States)

    Fonseca, Carlos Roberto; Coutinho, Renato M; Azevedo, Franciane; Berbert, Juliana M; Corso, Gilberto; Kraenkel, Roberto A

    2013-01-01

    Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.

  16. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    Science.gov (United States)

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  17. A guide to calculating habitat-quality metrics to inform conservation of highly mobile species

    Science.gov (United States)

    Bieri, Joanna A.; Sample, Christine; Thogmartin, Wayne E.; Diffendorfer, James E.; Earl, Julia E.; Erickson, Richard A.; Federico, Paula; Flockhart, D. T. Tyler; Nicol, Sam; Semmens, Darius J.; Skraber, T.; Wiederholt, Ruscena; Mattsson, Brady J.

    2018-01-01

    Many metrics exist for quantifying the relative value of habitats and pathways used by highly mobile species. Properly selecting and applying such metrics requires substantial background in mathematics and understanding the relevant management arena. To address this multidimensional challenge, we demonstrate and compare three measurements of habitat quality: graph-, occupancy-, and demographic-based metrics. Each metric provides insights into system dynamics, at the expense of increasing amounts and complexity of data and models. Our descriptions and comparisons of diverse habitat-quality metrics provide means for practitioners to overcome the modeling challenges associated with management or conservation of such highly mobile species. Whereas previous guidance for applying habitat-quality metrics has been scattered in diversified tracks of literature, we have brought this information together into an approachable format including accessible descriptions and a modeling case study for a typical example that conservation professionals can adapt for their own decision contexts and focal populations.Considerations for Resource ManagersManagement objectives, proposed actions, data availability and quality, and model assumptions are all relevant considerations when applying and interpreting habitat-quality metrics.Graph-based metrics answer questions related to habitat centrality and connectivity, are suitable for populations with any movement pattern, quantify basic spatial and temporal patterns of occupancy and movement, and require the least data.Occupancy-based metrics answer questions about likelihood of persistence or colonization, are suitable for populations that undergo localized extinctions, quantify spatial and temporal patterns of occupancy and movement, and require a moderate amount of data.Demographic-based metrics answer questions about relative or absolute population size, are suitable for populations with any movement pattern, quantify demographic

  18. Competition and niche separation of pelagic bacteria in freshwater habitats.

    Science.gov (United States)

    Pernthaler, Jakob

    2017-06-01

    Freshwater bacterioplankton assemblages are composed of sympatric populations that can be delineated, for example, by ribosomal RNA gene relatedness and that differ in key ecophysiological properties. They may be free-living or attached, specialized for particular concentrations or subsets of substrates, or invest a variable amount of their resources in defence traits against protistan predators and viruses. Some may be motile and tactic whereas others are not, with far-reaching implications for their respective life styles and niche partitioning. The co-occurrence of competitors with overlapping growth requirements has profound consequences for the stability of community functions; it can to some extent be explained by habitat factors such as the microscale complexity and spatiotemporal variability of the lacustrine environments. On the other hand, the composition and diversity of freshwater microbial assemblages also reflects non-equilibrium states, dispersal and the stochasticity of community assembly processes. This review synoptically discusses the competition and niche separation of heterotrophic bacterial populations (defined at various levels of phylogenetic resolution) in the pelagic zone of inland surface waters from a variety of angles, focusing on habitat heterogeneity and the resulting biogeographic distribution patterns, the ecophysiological adaptations to the substrate field and the interactions of prokaryotes with predators and viruses. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Habitats and Species Covered by the EEC Habitats Directive

    DEFF Research Database (Denmark)

    Pihl, S.; Søgaard, B.; Ejrnæs, R.

    of Conservation (SAC's), Natura 2000. The designations are based upon the presence of 60 of the natural habitat types listed in Annex I of the Directive and approx. 44 of the species listed in Annex II which occur within the territory of Denmark and for the conservation of which the Community has a special...... and the Danish county authorities have initiated a co-operative programme to provide and compile the data necessary to assess the conservation status of the natural habitat types and species concerned. The purpose of this report is to present the conservation status of the habitats and species in Denmark...

  20. Habitat functionality for the ecosystem service of pest control: reproduction and feeding sites of pests and natural enemies

    NARCIS (Netherlands)

    Bianchi, F.J.J.A.; Schellhorn, N.A.; Cunningham, S.A.

    2013-01-01

    1 Landscape management for enhanced natural pest control requires knowledge of the ecological function of the habitats present in the landscape mosaic. However, little is known about which habitat types in agricultural landscapes function as reproduction habitats for arthropod pests and predators

  1. Modelling Fish Habitat Suitability in the Eastern English Channel. Application to community habitat level

    OpenAIRE

    Vaz, Sandrine; Carpentier, Andre; Loots, Christophe; Koubbi, Philippe

    2004-01-01

    Valuable marine habitats and living resources can be found in the Eastern English Channel and in 2003, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas for Marine Resource Management’ (CHARM), was initiated to support decision-making for management of essential fish habitats. Fish habitat corresponds to geographic areas within which ranges of environmental factors define the presence of a particular species. Habitat Suitability index (HSI) modelling was used to relate fi...

  2. The remnants of restinga habitats in the brazilian Atlantic Forest of Rio de Janeiro state, Brazil: habitat loss and risk of disappearance.

    Science.gov (United States)

    Rocha, C F D; Bergallo, H G; Van Sluys, M; Alves, M A S; Jamel, C E

    2007-05-01

    "Restingas" (herbaceous/shrubby coastal sand-dune habitats) used to cover most of Rio de Janeiro State coast, and have suffered extensive degradation over the last five centuries. Using satellite images and field work, we identified the remaining restingas in the State, recording the factors that might cause their degradation. We used two mosaics of Landsat 7 scenes (spatial resolution 15 and 30 m) to map and evaluate preliminarly the remaining areas and conservation status. Each remnant area was checked in the field, degraded areas within it were mapped and subtracted from the remnants. We identified 21 restinga remnants totalling 105,285 ha. The largest and smallest restinga remnants were Jurubatiba (25,141 ha) and Itaipu (23 ha), respectively. We identified 14 causes of degradation. The most important were vegetation removal for housing developments, establishment of exotic plant species, change of original substrate, and selective removal of species of economic importance for the horticultural industry. All restingas had disturbed parts under strong pressure due to human activities. Due to intense habitat loss, and occurrence of endemic/threatened vertebrate species in restinga habitats, we strongly indicate the implementation of new conservation units to protect these fragile remnants. This habitat is steadily decreasing and most remnants lack legal protection. Therefore, under the current human pressure most of this unique habitat is likely to be lost from the State within the next few years.

  3. A habitat assessment for Florida panther population expansion into central Florida

    Science.gov (United States)

    Thatcher, C.A.; Van Manen, F.T.; Clark, J.D.

    2009-01-01

    One of the goals of the Florida panther (Puma concolor coryi) recovery plan is to expand panther range north of the Caloosahatchee River in central Florida. Our objective was to evaluate the potential of that region to support panthers. We used a geographic information system and the Mahalanobis distance statistic to develop a habitat model based on landscape characteristics associated with panther home ranges. We used cross-validation and an independent telemetry data set to test the habitat model. We also conducted a least-cost path analysis to identify potential habitat linkages and to provide a relative measure of connectivity among habitat patches. Variables in our model were paved road density, major highways, human population density, percentage of the area permanently or semipermanently flooded, and percentage of the area in natural land cover. Our model clearly identified habitat typical of that found within panther home ranges based on model testing with recent telemetry data. We identified 4 potential translocation sites that may support a total of approximately 36 panthers. Although we identified potential habitat linkages, our least-cost path analyses highlighted the extreme isolation of panther habitat in portions of the study area. Human intervention will likely be required if the goal is to establish female panthers north of the Caloosahatchee in the near term.

  4. Habitat structure mediates biodiversity effects on ecosystem properties.

    Science.gov (United States)

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  5. Strategies for monitoring terrestrial animals and habitats

    Science.gov (United States)

    Richard Holthausen; Raymond L. Czaplewski; Don DeLorenzo; Greg Hayward; Winifred B. Kessler; Pat Manley; Kevin S. McKelvey; Douglas S. Powell; Leonard F. Ruggiero; Michael K. Schwartz; Bea Van Horne; Christina D. Vojta

    2005-01-01

    This General Technical Report (GTR) addresses monitoring strategies for terrestrial animals and habitats. It focuses on monitoring associated with National Forest Management Act planning and is intended to apply primarily to monitoring efforts that are broader than individual National Forests. Primary topics covered in the GTR are monitoring requirements; ongoing...

  6. Can Static Habitat Protection Encompass Critical Areas for Highly Mobile Marine Top Predators? Insights from Coastal East Africa.

    Directory of Open Access Journals (Sweden)

    Sergi Pérez-Jorge

    Full Text Available Along the East African coast, marine top predators are facing an increasing number of anthropogenic threats which requires the implementation of effective and urgent conservation measures to protect essential habitats. Understanding the role that habitat features play on the marine top predator' distribution and abundance is a crucial step to evaluate the suitability of an existing Marine Protected Area (MPA, originally designated for the protection of coral reefs. We developed species distribution models (SDM on the IUCN data deficient Indo-Pacific bottlenose dolphin (Tursiops aduncus in southern Kenya. We followed a comprehensive ecological modelling approach to study the environmental factors influencing the occurrence and abundance of dolphins while developing SDMs. Through the combination of ensemble prediction maps, we defined recurrent, occasional and unfavourable habitats for the species. Our results showed the influence of dynamic and static predictors on the dolphins' spatial ecology: dolphins may select shallow areas (5-30 m, close to the reefs (< 500 m and oceanic fronts (< 10 km and adjacent to the 100 m isobath (< 5 km. We also predicted a significantly higher occurrence and abundance of dolphins within the MPA. Recurrent and occasional habitats were identified on large percentages on the existing MPA (47% and 57% using presence-absence and abundance models respectively. However, the MPA does not adequately encompass all occasional and recurrent areas and within this context, we propose to extend the MPA to incorporate all of them which are likely key habitats for the highly mobile species. The results from this study provide two key conservation and management tools: (i an integrative habitat modelling approach to predict key marine habitats, and (ii the first study evaluating the effectiveness of an existing MPA for marine mammals in the Western Indian Ocean.

  7. European red list of habitats. Part 1: Marine habitats

    NARCIS (Netherlands)

    Gubbay, S.; Sanders, N.; Haynes, T.; Janssen, J.A.M.; Rodwell, J.R.; Nieto, A.; Garcia Criado, M.; Beal, S.; Borg, J.

    2016-01-01

    The European Red List of Habitats provides an overview of the risk
    of collapse (degree of endangerment) of marine, terrestrial and
    freshwater habitats in the European Union (EU28) and adjacent
    regions (EU28+), based on a consistent set of categories and
    criteria, and detailed data

  8. Integrated Systems Health Management for Sustainable Habitats (Using Sustainability Base as a Testbed)

    Science.gov (United States)

    Martin, Rodney A.

    2017-01-01

    Habitation systems provide a safe place for astronauts to live and work in space and on planetary surfaces. They enable crews to live and work safely in deep space, and include integrated life support systems, radiation protection, fire safety, and systems to reduce logistics and the need for resupply missions. Innovative health management technologies are needed in order to increase the safety and mission-effectiveness for future space habitats on other planets, asteroids, or lunar surfaces. For example, off-nominal or failure conditions occurring in safety-critical life support systems may need to be addressed quickly by the habitat crew without extensive technical support from Earth due to communication delays. If the crew in the habitat must manage, plan and operate much of the mission themselves, operations support must be migrated from Earth to the habitat. Enabling monitoring, tracking, and management capabilities on-board the habitat and related EVA platforms for a small crew to use will require significant automation and decision support software.Traditional caution and warning systems are typically triggered by out-of-bounds sensor values, but can be enhanced by including machine learning and data mining techniques. These methods aim to reveal latent, unknown conditions while still retaining and improving the ability to provide highly accurate alerts for known issues. A few of these techniques will briefly described, along with performance targets for known faults and failures. Specific system health management capabilities required for habitat system elements (environmental control and life support systems, etc.) may include relevant subsystems such as water recycling systems, photovoltaic systems, electrical power systems, and environmental monitoring systems. Sustainability Base, the agency's flagship LEED-platinum certified green building acts as a living laboratory for testing advanced information and sustainable technologies that provides an

  9. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  10. POPULASI DAN HABITAT Nepenthes ampullaria Jack. DI CAGAR ALAM MANDOR, KALIMANTAN BARAT

    Directory of Open Access Journals (Sweden)

    Maysarah .

    2017-04-01

    Full Text Available Nepenthes ampullaria Jack. is a species which adapted on the nutrient-poor areas in Mandor nature reserve.  Its could be increasing the quality of Mandor nature reserve as protected area. This research aims to study the population and habitat of N. ampullaria in the Mandor nature reserve. This study was conducted at two habitats, heath forest and peat swamp forest. Observations were made on, population abundance and habitat factors of  N. ampullaria. The results showed that the highest population density of N. ampullaria was in heath forest. Their are growth in groups. Vegetation analysis showed that constituent species habitat of N. ampullaria consist of 69 species from 39 familly. Result of identification to insects showed Formicidae is dominant family that trapped in pitcher of N. ampullaria. Temperature and humidity in N. ampullaria’s habitat has been switable for requirements growth of pitcher plant. Rainfall during the study was normally. Ratio of sand and soil on both affected the improvement of individual N. ampullaria in Mandor nature reserve. Keywords: habitat, Mandor nature reserve, Nepenthes ampullaria Jack, population

  11. Habitat degradation may affect niche segregation patterns in lizards

    Science.gov (United States)

    Pelegrin, N.; Chani, J. M.; Echevarria, A. L.; Bucher, E. H.

    2013-08-01

    Lizards partition resources in three main niche dimensions: time, space and food. Activity time and microhabitat use are strongly influenced by thermal environment, and may differ between species according to thermal requirements and tolerance. As thermal characteristics are influenced by habitat structure, microhabitat use and activity of lizards can change in disturbed habitats. We compared activity and microhabitat use of two abundant lizard species of the Semi-arid Chaco of Argentina between a restored and a highly degraded Chaco forest, to determine how habitat degradation affects lizard segregation in time and space, hypothesizing that as activity and microhabitat use of lizards are related to habitat structure, activity and microhabitat use of individual species can be altered in degraded habitats, thus changing segregation patterns between them. Activity changed from an overlapped pattern in a restored forest to a segregated pattern in a degraded forest. A similar trend was observed for microhabitat use, although to a less extent. No correlation was found between air temperature and lizard activity, but lizard activity varied along the day and among sites. Contrary to what was believed, activity patterns of neotropical diurnal lizards are not fixed, but affected by multiple factors related to habitat structure and possibly to interspecific interactions. Changes in activity patterns and microhabitat use in degraded forests may have important implications when analyzing the effects of climate change on lizard species, due to synergistic effects.

  12. Mosquito (Diptera: Culicidae) grouping based on larval habitat characteristics in high mountain ecosystems of Antioquia, Colombia.

    Science.gov (United States)

    Rosero-García, Doris; Rúa-Uribe, Guillermo; Correa, Margarita M; Conn, Jan E; Uribe-Soto, Sandra

    2018-06-01

    Information about mosquito ecology in the high mountain ecosystems of the Neotropical region is sparse. In general, few genera and species have been reported in these ecosystems and there is no information available on habitats and the mosquitoes occupying them. In the present study, specimens collected from NW Colombia in HME were grouped using larval habitat data via an Operational Taxonomic Unit (OTU) determination. A total of 719 mosquitoes was analyzed belonging to 44 OTUs. The analysis considered habitat features and clustered the specimens into six groups from A-F. Five of these included species from different genera, suggesting common habitat requirements. Group E with four genera, seven subgenera, and six species occupied the highest areas (above 3,000 m), whereas three groups (B, D, F) were detected at lower altitudes (1,960-2,002 m). Bromeliads were the most common larval habitat, with 47% (335/719) of the specimens; five genera, six subgenera, and eight species were identified and classified into 66% (29/44) of the OTUs. This work showed some similarities to the habitat requirements and provides a grouping system that constitutes an important baseline for the classification of mosquito fauna from high mountain ecosystems according to altitude and larval habitat. © 2018 The Society for Vector Ecology.

  13. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, J. R.; Dawley, Earl M.; Coleman, Andre M.; Ostrand, Kenneth G.; Hanson, Kyle C.; Woodruff, Dana L.; Donley, Erin E.; Ke, Yinghai; Buenau, Kate E.; Bryson, Amanda J.; Townsend, Richard L.

    2011-10-01

    This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the state of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2

  14. Diversity and Community Composition of Vertebrates in Desert River Habitats

    Science.gov (United States)

    Free, C. L.; Baxter, G. S.; Dickman, C. R.; Lisle, A.; Leung, L. K.-P.

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  15. A Human Centred Interior Design of a Habitat Module for the International Space Station

    Science.gov (United States)

    Burattini, C.

    Since the very beginning of Space exploration, the interiors of a space habitat had to meet technological and functional requirements. Space habitats have now to meet completely different requirements related to comfort or at least to liveable environments. In order to reduce psychological drawbacks afflicting the crew during long periods of isolation in an extreme environment, one of the most important criteria is to assure high habitability levels. As a result of the Transhab project cancellation, the International Space Station (ISS) is actually made up of several research laboratories, but it has only one module for housing. This is suitable for short-term missions; middle ­ long stays require new solutions in terms of public and private spaces, as well as personal compartments. A design concept of a module appositely fit for living during middle-long stays aims to provide ISS with a place capable to satisfy habitability requirements. This paper reviews existing Space habitats and crew needs in a confined and extreme environment. The paper then describes the design of a new and human centred approach to habitation module typologies.

  16. Habitat risk assessment for regional ocean planning in the U.S. Northeast and Mid-Atlantic.

    Science.gov (United States)

    Wyatt, Katherine H; Griffin, Robert; Guerry, Anne D; Ruckelshaus, Mary; Fogarty, Michael; Arkema, Katie K

    2017-01-01

    Coastal habitats provide important benefits to people, including habitat for species targeted by fisheries and opportunities for tourism and recreation. Yet, such human activities also can imperil these habitats and undermine the ecosystem services they provide to people. Cumulative risk assessment provides an analytical framework for synthesizing the influence of multiple stressors across habitats and decision-support for balancing human uses and ecosystem health. To explore cumulative risk to habitats in the U.S. Northeast and Mid-Atlantic Ocean Planning regions, we apply the open-source InVEST Habitat Risk Assessment model to 13 habitats and 31 stressors in an exposure-consequence framework. In doing so, we advance the science priorities of EBM and both regional planning bodies by synthesizing the wealth of available data to improve our understanding of human uses and how they affect marine resources. We find that risk to ecosystems is greatest first, along the coast, where a large number of stressors occur in close proximity and secondly, along the continental shelf, where fewer, higher consequence activities occur. Habitats at greatest risk include soft and hard-bottom nearshore areas, tidal flats, soft-bottom shelf habitat, and rocky intertidal zones-with the degree of risk varying spatially. Across all habitats, our results indicate that rising sea surface temperatures, commercial fishing, and shipping consistently and disproportionally contribute to risk. Further, our findings suggest that management in the nearshore will require simultaneously addressing the temporal and spatial overlap as well as intensity of multiple human activities and that management in the offshore requires more targeted efforts to reduce exposure from specific threats. We offer a transparent, generalizable approach to evaluating cumulative risk to multiple habitats and illustrate the spatially heterogeneous nature of impacts along the eastern Atlantic coast and the importance of

  17. Terminology report respect distance. The Use of the term respect distance in Posiva and SKB

    International Nuclear Information System (INIS)

    Lampinen, H.

    2007-09-01

    The term respect distance is used in some key publications of the Finnish Nuclear Waste Management Company, Posiva, and the Swedish Nuclear Waste Management Company, SKB (Svensk Kaernbrenslehantering). Posiva and SKB researchers use the same terms in their reports, and it is acknowledged that the terms used by both companies are not used in the same way, though the differences are often subtle. This report is a literature study of the term 'respect distance' and the terms immediately associated to it. Vital terms related to the respect distance and issues concerning the use of scale concepts in Posiva and SKB are gathered in the end of report. Posiva's respect distances consider the seismic, hydrological and mechanical properties of the deterministic deformation zones as important issues that constitute a risk for longterm safety. These requirements for respect distances are an interpretation of STUK's YVL 8.4 Guide. At present, Posiva's criteria regarding respect distances follow the instructions given in the Host Rock Classification system (HRC), whereas the size of a deformation zone to which respect distances are applied vary from the regional to local major and minor. This and other criteria that are given for respect distances may, however, change in the near future as Posiva's Rock Suitability Criteria (RSC) programme proceeds. SKB's considerations of respect distances acknowledge that the hydraulic and mechanical aspects of a deformation zone have an effect on the respect distance. However, the seismic risk is considered to overshadow the other effects on a regional scale. The respect distance defined for a deformation zone is coupled with the size of a fracture where secondary slip could occur. In the safety assessment it is assumed that this fracture cuts a deposition hole location. In SKB the respect distance is determined for regional and local major deformation zones. The trace length of such a zone is defined as being ≥ 3 km. For deformation zones

  18. The remnants of restinga habitats in the brazilian Atlantic Forest of Rio de Janeiro state, Brazil: habitat loss and risk of disappearance

    Directory of Open Access Journals (Sweden)

    CFD. Rocha

    Full Text Available "Restingas" (herbaceous/shrubby coastal sand-dune habitats used to cover most of Rio de Janeiro State coast, and have suffered extensive degradation over the last five centuries. Using satellite images and field work, we identified the remaining restingas in the State, recording the factors that might cause their degradation. We used two mosaics of Landsat 7 scenes (spatial resolution 15 and 30 m to map and evaluate preliminarly the remaining areas and conservation status. Each remnant area was checked in the field, degraded areas within it were mapped and subtracted from the remnants. We identified 21 restinga remnants totalling 105,285 ha. The largest and smallest restinga remnants were Jurubatiba (25,141 ha and Itaipu (23 ha, respectively. We identified 14 causes of degradation. The most important were vegetation removal for housing developments, establishment of exotic plant species, change of original substrate, and selective removal of species of economic importance for the horticultural industry. All restingas had disturbed parts under strong pressure due to human activities. Due to intense habitat loss, and occurrence of endemic/threatened vertebrate species in restinga habitats, we strongly indicate the implementation of new conservation units to protect these fragile remnants. This habitat is steadily decreasing and most remnants lack legal protection. Therefore, under the current human pressure most of this unique habitat is likely to be lost from the State within the next few years.

  19. Predicting habitat distribution to conserve seagrass threatened by sea level rise

    Science.gov (United States)

    Saunders, M. I.; Baldock, T.; Brown, C. J.; Callaghan, D. P.; Golshani, A.; Hamylton, S.; Hoegh-guldberg, O.; Leon, J. X.; Lovelock, C. E.; Lyons, M. B.; O'Brien, K.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.

    2013-12-01

    Sea level rise (SLR) over the 21st century will cause significant redistribution of valuable coastal habitats. Seagrasses form extensive and highly productive meadows in shallow coastal seas support high biodiversity, including economically valuable and threatened species. Predictive habitat models can inform local management actions that will be required to conserve seagrass faced with multiple stressors. We developed novel modelling approaches, based on extensive field data sets, to examine the effects of sea level rise and other stressors on two representative seagrass habitats in Australia. First, we modelled interactive effects of SLR, water clarity and adjacent land use on estuarine seagrass meadows in Moreton Bay, Southeast Queensland. The extent of suitable seagrass habitat was predicted to decline by 17% by 2100 due to SLR alone, but losses were predicted to be significantly reduced through improvements in water quality (Fig 1a) and by allowing space for seagrass migration with inundation. The rate of sedimentation in seagrass strongly affected the area of suitable habitat for seagrass in sea level rise scenarios (Fig 1b). Further research to understand spatial, temporal and environmental variability of sediment accretion in seagrass is required. Second, we modelled changes in wave energy distribution due to predicted SLR in a linked coral reef and seagrass ecosystem at Lizard Island, Great Barrier Reef. Scenarios where the water depth over the coral reef deepened due to SLR and minimal reef accretion, resulted in larger waves propagating shoreward, changing the existing hydrodynamic conditions sufficiently to reduce area of suitable habitat for seagrass. In a scenario where accretion of the coral reef was severely compromised (e.g. warming, acidification, overfishing), the probability of the presence of seagrass declined significantly. Management to maintain coral health will therefore also benefit seagrasses subject to SLR in reef environments. Further

  20. A NEW HABITAT CLASSIFICATION AND MANUAL FOR STANDARDIZED HABITAT MAPPING

    Directory of Open Access Journals (Sweden)

    A. KUN

    2007-01-01

    Full Text Available Today the documentation of natural heritage with scientific methods but for conservation practice – like mapping of actual vegetation – becomes more and more important. For this purpose mapping guides containing only the names and descriptions of vegetation types are not sufficient. Instead, new, mapping-oriented vegetation classification systems and handbooks are needed. There are different standardised systems fitted to the characteristics of a region already published and used successfully for surveying large territories. However, detailed documentation of the aims and steps of their elaboration is still missing. Here we present a habitat-classification method developed specifically for mapping and the steps of its development. Habitat categories and descriptions reflect site conditions, physiognomy and species composition as well. However, for species composition much lower role was given deliberately than in the phytosociological systems. Recognition and mapping of vegetation types in the field is highly supported by a definition, list of subtypes and list of ‘types not belonging to this habitat category’. Our system is two-dimensional: the first dimension is habitat type, the other is naturalness based habitat quality. The development of the system was conducted in two steps, over 200 mappers already tested it over 7000 field days in different projects.

  1. Habitat Ecology Visual Surveys of Demersal Fishes and Habitats off California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since 1992, the Habitat Ecology team has been conducting fishery independent, visual surveys of demersal fishes and associated habitats in deep water (20 to 900...

  2. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Directory of Open Access Journals (Sweden)

    Chantel E Markle

    Full Text Available Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015 and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  3. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Science.gov (United States)

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  4. Using multiscale spatial models to assess potential surrogate habitat for an imperiled reptile.

    Directory of Open Access Journals (Sweden)

    Jennifer M Fill

    Full Text Available In evaluating conservation and management options for species, practitioners might consider surrogate habitats at multiple scales when estimating available habitat or modeling species' potential distributions based on suitable habitats, especially when native environments are rare. Species' dependence on surrogates likely increases as optimal habitat is degraded and lost due to anthropogenic landscape change, and thus surrogate habitats may be vital for an imperiled species' survival in highly modified landscapes. We used spatial habitat models to examine a potential surrogate habitat for an imperiled ambush predator (eastern diamondback rattlesnake, Crotalus adamanteus; EDB at two scales. The EDB is an apex predator indigenous to imperiled longleaf pine ecosystems (Pinus palustris of the southeastern United States. Loss of native open-canopy pine savannas and woodlands has been suggested as the principal cause of the species' extensive decline. We examined EDB habitat selection in the Coastal Plain tidewater region to evaluate the role of marsh as a potential surrogate habitat and to further quantify the species' habitat requirements at two scales: home range (HR and within the home range (WHR. We studied EDBs using radiotelemetry and employed an information-theoretic approach and logistic regression to model habitat selection as use vs.We failed to detect a positive association with marsh as a surrogate habitat at the HR scale; rather, EDBs exhibited significantly negative associations with all landscape patches except pine savanna. Within home range selection was characterized by a negative association with forest and a positive association with ground cover, which suggests that EDBs may use surrogate habitats of similar structure, including marsh, within their home ranges. While our HR analysis did not support tidal marsh as a surrogate habitat, marsh may still provide resources for EDBs at smaller scales.

  5. Assessing Impacts of Hydropower Regulation on Salmonid Habitat Connectivity to Guide River Restoration

    Science.gov (United States)

    Buddendorf, Bas; Geris, Josie; Malcolm, Iain; Wilkinson, Mark; Soulsby, Chris

    2016-04-01

    Anthropogenic activity in riverine ecosystems has led to a substantial divergence from the natural state of many rivers globally. Many of Scotland's rivers have been regulated for hydropower with increasing intensity since the 1890s. At the same time they sustain substantial populations of Atlantic Salmon (Salmo salar L.), which have a range of requirements in terms of flow and access to habitat, depending on the different life-stages. River barriers for hydropower regulation can change the spatial and temporal connectivity within river networks, the impacts of which on salmon habitat are not fully understood. Insight into such changes in connectivity, and the link with the distribution and accessibility of suitable habitat and areas of high productivity, are essential to aid restoration and/or conservation efforts. This is because they indicate where such efforts might have a higher chance of being successful in terms of providing suitable habitat and increasing river productivity. In this study we applied a graph theory approach to assess historic (natural) and contemporary (regulated) in-stream habitat connectivity of the River Lyon, an important UK salmon river that is moderately regulated for hydropower. Historic maps and GIS techniques were used to construct the two contrasting river networks (i.e., natural vs. regulated). Subsequently, connectivity metrics were used to assess the impacts of hydropower infrastructure on upstream and downstream migration possibilities for adults and juveniles, respectively. A national juvenile salmon production model was used to weight the importance of reaches for juvenile salmon production. Results indicate that the impact of barriers in the Lyon on the connectivity indices depends on the type of barrier and its location within the network, but is generally low for both adults and juveniles, and that compared to the historic river network the reduction in the amount of suitable habitat and juvenile production is most marked

  6. Habitat Blocks and Wildlife Corridors

    Data.gov (United States)

    Vermont Center for Geographic Information — Habitat blocks are areas of contiguous forest and other natural habitats that are unfragmented by roads, development, or agriculture. Vermonts habitat blocks are...

  7. Comparative nest-site habitat of painted redstarts and red-faced warblers in the Madrean Sky Islands of southeastern Arizona

    Science.gov (United States)

    Joseph L. Ganey; William M. Block; Jamie S. Sanderlin; Jose M. Iniguez

    2015-01-01

    Conservation of avian species requires understanding their nesting habitat requirements. We compared 3 aspects of habitat at nest sites (topographic characteristics of nest sites, nest placement within nest sites, and canopy stratification within nest sites) of 2 related species of ground-nesting warblers (Red-faced Warblers, Cardellina rubrifrons, n = 17...

  8. Influences of forest and rangeland management on salmonid fishes and their habitats

    National Research Council Canada - National Science Library

    Meehan, William R

    1991-01-01

    Contents : Stream ecosystems - Salmonid distributions and life histories - Habitat requirements of salmonids in streams - Natural processes - Timber harvesting, silvicultrue and watershed processes - Forest...

  9. 75 FR 34975 - Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration...

    Science.gov (United States)

    2010-06-21

    ... Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration Strategy; Request... interagency Estuary Habitat Restoration Council, is providing notice of the Council's intent to revise the ''Estuary Habitat Restoration Strategy'' and requesting public comments to guide its revision. DATES...

  10. Vacant habitats in the Universe.

    Science.gov (United States)

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Regional prediction of basin-scale brown trout habitat suitability

    Directory of Open Access Journals (Sweden)

    S. Ceola

    2014-09-01

    Full Text Available In this study we propose a novel method for the estimation of ecological indices describing the habitat suitability of brown trout (Salmo trutta. Traditional hydrological tools are coupled with an innovative regional geostatistical technique, aiming at the prediction of the brown trout habitat suitability index where partial or totally ungauged conditions occur. Several methods for the assessment of ecological indices are already proposed in the scientific literature, but the possibility of exploiting a geostatistical prediction model, such as Topological Kriging, has never been investigated before. In order to develop a regional habitat suitability model we use the habitat suitability curve, obtained from measured data of brown trout adult individuals collected in several river basins across the USA. The Top-kriging prediction model is then employed to assess the spatial correlation between upstream and downstream habitat suitability indices. The study area is the Metauro River basin, located in the central part of Italy (Marche region, for which both water depth and streamflow data were collected. The present analysis focuses on discharge values corresponding to the 0.1-, 0.5-, 0.9-empirical quantiles derived from flow-duration curves available for seven gauging stations located within the study area, for which three different suitability indices (i.e. ψ10, ψ50 and ψ90 are evaluated. The results of this preliminary analysis are encouraging showing Nash-Sutcliffe efficiencies equal to 0.52, 0.65, and 0.69, respectively.

  12. Regional prediction of basin-scale brown trout habitat suitability

    Science.gov (United States)

    Ceola, S.; Pugliese, A.

    2014-09-01

    In this study we propose a novel method for the estimation of ecological indices describing the habitat suitability of brown trout (Salmo trutta). Traditional hydrological tools are coupled with an innovative regional geostatistical technique, aiming at the prediction of the brown trout habitat suitability index where partial or totally ungauged conditions occur. Several methods for the assessment of ecological indices are already proposed in the scientific literature, but the possibility of exploiting a geostatistical prediction model, such as Topological Kriging, has never been investigated before. In order to develop a regional habitat suitability model we use the habitat suitability curve, obtained from measured data of brown trout adult individuals collected in several river basins across the USA. The Top-kriging prediction model is then employed to assess the spatial correlation between upstream and downstream habitat suitability indices. The study area is the Metauro River basin, located in the central part of Italy (Marche region), for which both water depth and streamflow data were collected. The present analysis focuses on discharge values corresponding to the 0.1-, 0.5-, 0.9-empirical quantiles derived from flow-duration curves available for seven gauging stations located within the study area, for which three different suitability indices (i.e. ψ10, ψ50 and ψ90) are evaluated. The results of this preliminary analysis are encouraging showing Nash-Sutcliffe efficiencies equal to 0.52, 0.65, and 0.69, respectively.

  13. A concept for extraction of habitat features from laser scanning and hypersprectral imaging for evaluation of Natura 2000 sites - the ChangeHabitats2 project approach

    Science.gov (United States)

    Székely, B.; Kania, A.; Pfeifer, N.; Heilmeier, H.; Tamás, J.; Szöllősi, N.; Mücke, W.

    2012-04-01

    The goal of the ChangeHabitats2 project is the development of cost- and time-efficient habitat assessment strategies by employing effective field work techniques supported by modern airborne remote sensing methods, i.e. hyperspectral imagery and laser scanning (LiDAR). An essential task of the project is the design of a novel field work technique that on the one hand fulfills the reporting requirements of the Flora-Fauna-Habitat (FFH-) directive and on the other hand serves as a reference for the aerial data analysis. Correlations between parameters derived from remotely sensed data and terrestrial field measurements shall be exploited in order to create half- or fully-automated methods for the extraction of relevant Natura2000 habitat parameters. As a result of these efforts a comprehensive conceptual model has been developed for extraction and integration of Natura 2000 relevant geospatial data. This scheme is an attempt to integrate various activities within ChangeHabitats2 project defining pathways of development, as well as encompassing existing data processing chains, theoretical approaches and field work. The conceptual model includes definition of processing levels (similar to those existing in remote sensing), whereas these levels cover the range from the raw data to the extracted habitat feature. For instance, the amount of dead wood (standing or lying on the surface) is an important evaluation criterion for the habitat. The tree trunks lying on the ground surface typically can be extracted from the LiDAR point cloud, and the amount of wood can be estimated accordingly. The final result will be considered as a habitat feature derived from laser scanning data. Furthermore, we are also interested not only in the determination of the specific habitat feature, but also in the detection of its variations (especially in deterioration). In this approach the variation of this important habitat feature is considered to be a differential habitat feature, that can

  14. Relevance of multiple spatial scales in habitat models: A case study with amphibians and grasshoppers

    Science.gov (United States)

    Altmoos, Michael; Henle, Klaus

    2010-11-01

    Habitat models for animal species are important tools in conservation planning. We assessed the need to consider several scales in a case study for three amphibian and two grasshopper species in the post-mining landscapes near Leipzig (Germany). The two species groups were selected because habitat analyses for grasshoppers are usually conducted on one scale only whereas amphibians are thought to depend on more than one spatial scale. First, we analysed how the preference to single habitat variables changed across nested scales. Most environmental variables were only significant for a habitat model on one or two scales, with the smallest scale being particularly important. On larger scales, other variables became significant, which cannot be recognized on lower scales. Similar preferences across scales occurred in only 13 out of 79 cases and in 3 out of 79 cases the preference and avoidance for the same variable were even reversed among scales. Second, we developed habitat models by using a logistic regression on every scale and for all combinations of scales and analysed how the quality of habitat models changed with the scales considered. To achieve a sufficient accuracy of the habitat models with a minimum number of variables, at least two scales were required for all species except for Bufo viridis, for which a single scale, the microscale, was sufficient. Only for the European tree frog ( Hyla arborea), at least three scales were required. The results indicate that the quality of habitat models increases with the number of surveyed variables and with the number of scales, but costs increase too. Searching for simplifications in multi-scaled habitat models, we suggest that 2 or 3 scales should be a suitable trade-off, when attempting to define a suitable microscale.

  15. Certification of ERDA contractors' packaging with respect to compliance with DOT specification 7A performance requirements

    International Nuclear Information System (INIS)

    Edling, D.A.; Griffin, J.F.

    1975-01-01

    The purpose of this study was to have one ERDA contractor: (1) compile a list of specification packagings, proposed by ERDA contractors, for shipping Type A quantities of radioactive material, and (2) analyze these packages for conformance to Specification 7A requirements. This study was divided into two phases. Phase I provides a report on those packages which could be shown, based on existing test data and engineering analyses, to conform to DOT Specification 7A packaging requirements. The results of Phase I are discussed in detail in the publication, ''Certification of AEC Contractor's Packagings With Respect to Compliance with DOT Specification 7A Performance Requirements -- Phase I Summary Report,'' D. A. Edling, H. E. Meyer and G. L. Phillabaum (Schedule 189C, May 26, 1974). The objectives of Phase II were: (1) identification of packages from Phase I for which available information was not adequate for certification. (Those specification containers used by ERDA contractors and those containers for which adequate information was available for certification are listed in the Phase I summary report.); (2) identification of specific test/engineering analysis data required; (3) generation/procurement of these data; and (4) documentation of study results for use by all ERDA contractors and private industry. The results of Phase II of the study are presented. (U.S.)

  16. The minimum area requirements (MAR) for giant panda: an empirical study.

    Science.gov (United States)

    Qing, Jing; Yang, Zhisong; He, Ke; Zhang, Zejun; Gu, Xiaodong; Yang, Xuyu; Zhang, Wen; Yang, Biao; Qi, Dunwu; Dai, Qiang

    2016-12-08

    Habitat fragmentation can reduce population viability, especially for area-sensitive species. The Minimum Area Requirements (MAR) of a population is the area required for the population's long-term persistence. In this study, the response of occupancy probability of giant pandas against habitat patch size was studied in five of the six mountain ranges inhabited by giant panda, which cover over 78% of the global distribution of giant panda habitat. The probability of giant panda occurrence was positively associated with habitat patch area, and the observed increase in occupancy probability with patch size was higher than that due to passive sampling alone. These results suggest that the giant panda is an area-sensitive species. The MAR for giant panda was estimated to be 114.7 km 2 based on analysis of its occupancy probability. Giant panda habitats appear more fragmented in the three southern mountain ranges, while they are large and more continuous in the other two. Establishing corridors among habitat patches can mitigate habitat fragmentation, but expanding habitat patch sizes is necessary in mountain ranges where fragmentation is most intensive.

  17. Prioritizing tropical habitats for long-distance migratory songbirds: an assessment of habitat quality at a stopover site in Colombia

    Directory of Open Access Journals (Sweden)

    Nicholas J. Bayly

    2016-12-01

    Full Text Available Long-distance migratory birds are declining globally and migration has been identified as the primary source of mortality in this group. Despite this, our lack of knowledge of habitat use and quality at stopovers, i.e., sites where the energy for migration is accumulated, remains a barrier to designing appropriate conservation measures, especially in tropical regions. There is therefore an urgent need to assess stopover habitat quality and concurrently identify efficient and cost-effective methods for doing so. Given that fuel deposition rates directly influence stopover duration, departure fuel load, and subsequent speed of migration, they are expected to provide a direct measure of habitat quality and have the advantage of being measurable through body-mass changes. Here, we examined seven potential indicators of quality, including body-mass change, for two ecologically distinct Neotropical migratory landbirds on stopover in shade-coffee plantations and tropical humid premontane forest during spring migration in Colombia: (1 rate of body-mass change; (2 foraging rate; (3 recapture rate; (4 density; (5 flock size; (6 age and sex ratios; and (7 body-mass distribution. We found higher rates of mass change in premontane forest than in shade-coffee in Tennessee Warbler Oreothlypis peregrina, a difference that was mirrored in higher densities and body masses in forest. In Gray-cheeked Thrush Catharus minimus, a lack of recaptures in shade-coffee and higher densities in forest, also suggested that forest provided superior fueling conditions. For a reliable assessment of habitat quality, we therefore recommend using a suite of indicators, taking into account each species' ecology and methodological considerations. Our results also imply that birds stopping over in lower quality habitats may spend a longer time migrating and require more stopovers, potentially leading to important carryover effects on reproductive fitness. Evaluating habitat quality is

  18. BIOLOGI POPULASI RAJUNGAN (PORTUNUS PELAGICUS DAN KARAKTERISTIK LINGKUNGAN HABITAT ESENSIALNYA SEBAGAI UPAYA AWAL PERLINDUNGAN DI LAMPUNG TIMUR

    Directory of Open Access Journals (Sweden)

    Rahmat Kurnia

    2014-04-01

    Full Text Available There are several option management measures in preventing sustainability stock of the blue swimming crab (Portunus pelagicus, i.e., nursery ground conservation. Thus, the objective of this study was to analyses habitat characteristic and its population biology in the PGN marine embayment of Labuhan Maringgai, as one among crab habitat essential in East Lampung coastal water. The potential nursery ground conservation was assessed by habitat suitability index, carrying capacity, distribution and abundance as well as crabs size. The result shows that environmental condition was still suitable, even though the habitat carrying capacity tend to degraded by an increasing of turbidity and sedimentation at the embayment mouth. The crabs captured were also not representing of peak abundance season and recruitment during sampling period, while those crab size almost 100% under Lm50. The strategic management directive is required to control in utilization of crab’s essential habitat, including crab fishing by any fishing gear resulted undersize captured crabs. Meanwhile, to propose habitat essential conservation might need more consideration and comprehensive study, including social economic and cultural aspects and co-management approach may be required in management measure applied.

  19. Habitat modeling and genetic signatures of postglacial recolonization for tidal estuaries

    Science.gov (United States)

    Dolby, G. A.; Jacobs, D. K.

    2014-12-01

    Pleistocene glacial cycles are a foremost influence on the genetic diversity and species distribution patterns observed today. Though much work has centered on biotic response to such climatic forcing, little of it has regarded estuarine or other aquatic coastal taxa whose habitat formation is a function of sea level, hydrography, and coastal geomorphology. These physical parameters required for habitat formation suggest that glacial cycles impart a significant effect on such taxa through glacially driven eustatic changes. Additionally, the steepened coastline and rainfall-limited Mediterranean climate suggest limited glacial habitat for estuarine species in southern and Baja California. Here we present GIS modeled habitat for tidal estuaries for three co-distributed estuarine fishes (Gillichthys mirabilis, Quietula y-cauda, Fundulus parvipinnis) since the last glacial maximum. Parameterization of sea level and slope enables biologically relevant temporal resolution of near-millennial scale. At lowstand our approach reveals two refuges along the coast at 1000km distance from each other, with habitat rapidly increasing 15 - 12 ka during meltwater pulse 1A. Habitat area peaked in the early Holocene and began decreasing with the current stillstand roughly 7 ka, probably as a result of coastal maturation towards less tidal systems. To target the postglacial recolonization process we applied discriminant function analysis to highly polymorphic microsatellite data to partition out the alleles associated with refuges identified a priori by habitat modeling. The frequencies of these alleles were calculated for all individuals at intervening populations and regressed against geographic distance. This analysis revealed nonlinear mixing curves, suggesting uneven allelic mixing efficiency along the coastline, perhaps as a result of differential habitat origination times as indicated by the habitat models. These results highlight the dynamism of estuarine habitat in recent

  20. Habitat Effects on the Breeding Performance of Three Forest-Dwelling Hawks.

    Science.gov (United States)

    Björklund, Heidi; Valkama, Jari; Tomppo, Erkki; Laaksonen, Toni

    2015-01-01

    Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis), common buzzard (Buteo buteo) and European honey buzzard (Pernis apivorus). We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100-4000 m) around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992-2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.

  1. Habitat Effects on the Breeding Performance of Three Forest-Dwelling Hawks.

    Directory of Open Access Journals (Sweden)

    Heidi Björklund

    Full Text Available Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis, common buzzard (Buteo buteo and European honey buzzard (Pernis apivorus. We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100-4000 m around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992-2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.

  2. Habitat and conservation status of the beaver in the Sierra San Luis Sonora, Mexico

    Science.gov (United States)

    Karla Pelz Serrano; Eduardo Ponce Guevara; Carlos A. Lopez Gonzalez

    2005-01-01

    The status of beaver (Castor canadensis) in northeastern Sonora, Mexico, is uncertain. We surveyed the Cajon Bonito River to assess the beaver’s status and habitat and found five colonies. Limiting factors appear to be pollution due to animal waste, deforestation of riparian trees, and human exploitation. Beavers did not appear to require habitat...

  3. Dynamics of habitat selection in birds: adaptive response to nest predation depends on multiple factors.

    Science.gov (United States)

    Devries, J H; Clark, R G; Armstrong, L M

    2018-05-01

    According to theory, habitat selection by organisms should reflect underlying habitat-specific fitness consequences and, in birds, reproductive success has a strong impact on population growth in many species. Understanding processes affecting habitat selection also is critically important for guiding conservation initiatives. Northern pintails (Anas acuta) are migratory, temperate-nesting birds that breed in greatest concentrations in the prairies of North America and their population remains below conservation goals. Habitat loss and changing land use practices may have decoupled formerly reliable fitness cues with respect to nest habitat choices. We used data from 62 waterfowl nesting study sites across prairie Canada (1997-2009) to examine nest survival, a primary fitness metric, at multiple scales, in combination with estimates of habitat selection (i.e., nests versus random points), to test for evidence of adaptive habitat choices. We used the same habitat covariates in both analyses. Pintail nest survival varied with nest initiation date, nest habitat, pintail breeding pair density, landscape composition and annual moisture. Selection of nesting habitat reflected patterns in nest survival in some cases, indicating adaptive selection, but strength of habitat selection varied seasonally and depended on population density and landscape composition. Adaptive selection was most evident late in the breeding season, at low breeding densities and in cropland-dominated landscapes. Strikingly, at high breeding density, habitat choice appears to become maladaptive relative to nest predation. At larger spatial scales, the relative availability of habitats with low versus high nest survival, and changing land use practices, may limit the reproductive potential of pintails.

  4. Habitat evaluation for outbreak of Yangtze voles (Microtus fortis) and management implications.

    Science.gov (United States)

    Xu, Zhenggang; Zhao, Yunlin; Li, Bo; Zhang, Meiwen; Shen, Guo; Wang, Yong

    2015-05-01

    Rodent pests severely damage agricultural crops. Outbreak risk models of rodent pests often do not include sufficient information regarding geographic variation. Habitat plays an important role in rodent-pest outbreak risk, and more information about the relationship between habitat and crop protection is urgently needed. The goal of the present study was to provide an outbreak risk map for the Dongting Lake region and to understand the relationship between rodent-pest outbreak variation and habitat distribution. The main rodent pests in the Dongting Lake region are Yangtze voles (Microtus fortis). These pests cause massive damage in outbreak years, most notably in 2007. Habitat evaluation and ecological details were obtained by analyzing the correlation between habitat suitability and outbreak risk, as indicated by population density and historical events. For the source-sink population, 96.18% of Yangtze vole disaster regions were covered by a 10-km buffer zone of suitable habitat in 2007. Historical outbreak frequency and peak population density were significantly correlated with the proportion of land covered by suitable habitat (r = 0.68, P = 0.04 and r = 0.76, P = 0.03, respectively). The Yangtze vole population tends to migrate approximately 10 km in outbreak years. Here, we propose a practical method for habitat evaluation that can be used to create integrated pest management plans for rodent pests when combined with basic information on the biology, ecology and behavior of the target species. © 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  5. The importance of historical land use in the maintenance of early successional habitat for a threatened rattlesnake

    Directory of Open Access Journals (Sweden)

    Eric M. McCluskey

    2018-01-01

    Full Text Available Understanding how historic habitat changes have impacted species and searching the past for clues to better understand the current plight of threatened species can help inform and improve future conservation efforts. We coupled species distribution modeling with historical imagery analysis to assess how changes in land use/land cover have influenced the distribution of eastern massasauga rattlesnake (Sistrurus catenatus, a federally threatened species, and its habitat in northeastern Ohio over the past ∼75 years. We also examined land use/land cover changes throughout southern Michigan for a broader perspective on the influence of historical processes on contemporary habitat. There was a pronounced shift in northeastern Ohio land cover from 1938 to 2011 with forest cover becoming the predominant land cover type as agricultural fields were abandoned and succession occurred. Most known eastern massasauga locations in the area were at some point used for agriculture and higher habitat suitability values were associated with agricultural fields that were eventually abandoned. We observed more stable habitat conditions across southern Michigan populations indicating agricultural abandonment was not as necessary for habitat creation in this part of their range. We present a new approach for linking historical landscapes to present day habitat suitability models; permitting inferences on how prior land use/land cover states have influenced the current distribution of species and their habitats. We demonstrate how agricultural abandonment was an important source of early successional habitat for a species that requires an open canopy, a finding applicable to a broad array of species with similar habitat requirements. Keywords: Eastern massasauga, Agriculture, Aerial photography, Maxent

  6. Hydrologic and water-quality rehabilitation of environments for suitable fish habitat

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Xiang, H.; Liu, C. M.; Zhang, H. T.; Yang, Z. L.; Zhang, Y.; Sun, Y.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-11-01

    Aquatic ecological rehabilitation is attracting increasing public and research attention, but without knowledge of the responses of aquatic species to their habitats the success of habitat restoration is uncertain. Thus efficient study of species response to habitat, through which to prioritize the habitat factors influencing aquatic ecosystems, is highly important. However many current models have too high requirement for assemblage information and have great bias in results due to consideration of only the species' attribute of presence/absence, abundance or biomass, thus hindering the wider utility of these models. This paper, using fish as a case, presents a framework for identification of high-priority habitat factors based on the responses of aquatic species to their habitats, using presence/absence, abundance and biomass data. This framework consists of four newly developed sub-models aiming to determine weightings for the evaluation of species' contributions to their communities, to quantitatively calculate an integrated habitat suitability index for multi-species based on habitat factors, to assess the suitable probability of habitat factors and to assess the rehabilitation priority of habitat factors. The framework closely links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. Breakpoint identification techniques based on curvature in cumulated dominance along with a newly developed weighting calculation model based on theory of mass systems were used to help identify the dominant fish, based on which the presence and abundance of multiple fish were normalized to estimate the integrated habitat suitability index along gradients of various factors, based on their variation with principal habitat factors. Then, the appropriate probability of every principal habitat factor was

  7. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India.

    Science.gov (United States)

    Sarkar, Mriganka Shekhar; Krishnamurthy, Ramesh; Johnson, Jeyaraj A; Sen, Subharanjan; Saha, Goutam Kumar

    2017-01-01

    Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals' ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger ( Panthera tigris ), which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly's selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D 2 method and the Boyce index. There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory and settled periods. Based on threshold limits

  8. Proceedings of a workshop on fish habitat suitability index models

    Science.gov (United States)

    Terrell, James W.

    1984-01-01

    One of the habitat-based methodologies for impact assessment currently in use by the U.S. Fish and Wildlife Service is the Habitat Evaluation Procedures (HEP) (U.S. Fish and Wildlife Service 1980). HEP is based on the assumption that the quality of an area as wildlife habitat at a specified target year can be described by a single number, called a Habitat Suitability Index (HSI). An HSI of 1.0 represents optimum habitat: an HSI of 0.0 represents unsuitable habitat. The verbal or mathematical rules by which an HSI is assigned to an area are called an HSI model. A series of Habitat Suitability Index (HSI) models, described by Schamberger et al. (1982), have been published to assist users in applying HEP. HSI model building approaches are described in U.S. Fish and Wildlife Service (1981). One type of HSI model described in detail requires the development of Suitability Index (SI) graphs for habitat variables believed to be important for the growth, survival, standing crop, or other measure of well-being for a species. Suitability indices range from 0 to 1.0, with 1.0 representing optimum conditions for the variable. When HSI models based on suitability indices are used, habitat variable values are measured, or estimated, and converted to SI's through the use of a Suitability Index graph for each variable. Individual SI's are aggregated into an HSI. Standard methods for testing this type of HSI model did not exist at the time the studies reported in this document were performed. A workshop was held in Fort Collins, Colorado, February 14-15, 1983, that brought together biologists experienced in the use, development, and testing of aquatic HSI models, in an effort to address the following objectives: (1) review the needs of HSI model users; (2) discuss and document the results of aquatic HSI model tests; and (3) provide recommendations for the future development, testing, modification, and use of HSI models. Individual presentations, group discussions, and group

  9. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    Science.gov (United States)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  10. Impacts of habitat loss and fragmentation on the activity budget, ranging ecology and habitat use of Bale monkeys (Chlorocebus djamdjamensis) in the southern Ethiopian Highlands.

    Science.gov (United States)

    Mekonnen, Addisu; Fashing, Peter J; Bekele, Afework; Hernandez-Aguilar, R Adriana; Rueness, Eli K; Nguyen, Nga; Stenseth, Nils Chr

    2017-07-01

    Understanding the extent to which primates in forest fragments can adjust behaviorally and ecologically to changes caused by deforestation is essential to designing conservation management plans. During a 12-month period, we studied the effects of habitat loss and degradation on the Ethiopian endemic, bamboo specialist, Bale monkey (Chlorocebus djamdjamensis) by comparing its habitat quality, activity budget, ranging ecology and habitat use in continuous forest and two fragments. We found that habitat loss and fragmentation resulted in major differences in vegetation composition and structure between forest types. We also found that Bale monkeys in continuous forest spent more time feeding and traveling and less time resting and socializing than monkeys in fragments. Bale monkeys in continuous forest also had higher movement rates (m/hr) than monkeys in fragments. Bale monkeys in continuous forest used exclusively bamboo and mixed bamboo forest habitats while conspecifics in fragments used a greater variety of habitats including human use areas (i.e., matrix). Our findings suggest that Bale monkeys in fragments use an energy minimization strategy to cope with the lower availability of the species' primary food species, bamboo (Arundinaria alpina). We contend that Bale monkeys may retain some of the ancestral ecological flexibility assumed to be characteristic of the genus Chlorocebus, within which all extant species except Bale monkeys are regarded as ecological generalists. Our results suggest that, like other bamboo eating primates (e.g., the bamboo lemurs of Madagascar), Bale monkeys can cope with a certain threshold of habitat destruction. However, the long-term conservation prospects for Bale monkeys in fragments remain unclear and will require further monitoring to be properly evaluated. © 2017 Wiley Periodicals, Inc.

  11. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    Directory of Open Access Journals (Sweden)

    Eliningaya J Kweka

    Full Text Available Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60% and An.arabiensis (18.34%, the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024 and An. arabiensis (P = 0.002 larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001, grass cover (P≤0.001, while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001. The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001 when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002. When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines.These findings suggest that implementation of effective larval control programme should be targeted with larval

  12. Habitat stability and occurrences of malaria vector larvae in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Atieli Harrysone

    2009-10-01

    Full Text Available Abstract Background Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control. Methods A total of 128 potential larval habitats were identified in hilltops and along the seasonal streams in the Sigalagala area of Kakamega district, western Kenya. Water availability in the habitats was followed up daily from August 3, 2006 to February 23, 2007. A habitat is defined as stable when it remains aquatic continuously for at least 12 d. Mosquito larvae were observed weekly. Frequencies of aquatic, stable and larvae positive habitats were compared between the hilltop and seasonal stream area using χ2-test. Factors affecting the presence/absence of Anopheles gambiae larvae in the highlands were determined using multiple logistic regression analysis. Results Topography significantly affected habitat availability and stability. The occurrence of aquatic habitats in the hilltop was more sporadic than in the stream area. The percentage of habitat occurrences that were classified as stable during the rainy season is 48.76% and 80.79% respectively for the hilltop and stream area. Corresponding frequencies of larvae positive habitats were 0% in the hilltop and 5.91% in the stream area. After the rainy season, only 23.42% of habitat occurrences were stable and 0.01% larvae positive habitats were found in the hilltops, whereas 89.75% of occurrences remained stable in the stream area resulting in a frequency of 12.21% larvae positive habitats. The logistic regression analysis confirmed the association between habitat stability and larval occurrence and indicated that habitat surface area was negatively affecting the

  13. Keeping Pace with Climate Change: Habitat Protection in the Face of Uncertainty

    Science.gov (United States)

    Flitcroft, R. L.; Burnett, K.; Giannico, G.

    2014-12-01

    Estuaries provide critical habitat for many economically and culturally important species. In the Pacific Northwest, intertidal and subtidal areas provide critical habitat for production of native and commercial oysters (Olympia oyster Ostrea lurida and Pacific oyster Crassostrea gigas, respectively) that in turn provide refuge and rearing habitat for Dungeness Crab, Metacarcinus magister. Environments ranging from subtidal through freshwater zones provide nursery areas for juvenile salmonids at different development stages in their life history. Most Oregon estuaries have been significantly altered by humans over the past century, reducing the quantity and diversity of available habitats. Management agencies have responded with projects to restore and enhance estuarine habitats. Unfortunately, future climate change and sea-level rise could render many current restoration projects ineffective over time. Planning for habitat restoration that keeps pace with climate change will be critical to the sustainable production of seafood and maintenance of ecosystem function. However, land managers and citizens lack the spatially-explicit data needed to incorporate the potential effects of climate change and sea-level rise into planning for habitat improvement projects in estuarine areas. To meet this need, we developed simple models using LiDAR to characterize the geomorphologies of multiple Oregon estuaries. We were able to map the margin of current mean high tide, and contour intervals associated with different potential increases in mean high tide. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting changes in estuary shape. For each estuary, we assessed changes in the amount and complexity of edge habitats. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance

  14. Surface and groundwater drought evaluation with respect to aquatic habitat quality in the upper Nitra River Basin in Slovakia

    Science.gov (United States)

    Fendekova, M.; Fendek, M.; Macura, V.; Kralova, J.

    2012-04-01

    Hydrological drought is being broadly studied within last decades in many countries. It is because of increasing frequency of drought periods occurrence also in mild climate conditions, leading to unexpected and undesired consequences for environment and various spheres of the state economy. Drought affects water availability for plants, animals and human society. Natural conditions of drought occurrence are often combined with human activities strengthening drought consequences. Lack of water in the nature, connected to meteorological and hydrological drought occurrence, increases at the same time needs for surface and groundwater in many types of human activities (agriculture, industrial production, electric power generation…). Drought can be identified within the low flow phase of the flow regime. Flow regime is considered for one of the most important conditions influencing quality of the river ecosystems. Occurrence of meteorological, surface and groundwater droughts was analyzed for the upper part of the Nitra River catchment in Slovakia. Drought occurrence was studied in two gauging profiles on the Nitra River - in Klacno and Nedozery, both representing the headwater profiles. The threshold level method was used for groundwater drought analysis. Base flow values were separated from the discharge hydrograms using the HydroOffice 2010 statistical program package. The influence of surface water drought on groundwater level was analyzed. Habitat suitability curves derived according to IFIM methodology were constructed for different fish species at Nedozery profile. The influence of different low flow values from 600 to 150 L/s on fish amount, size and species variability was studied. In the end, the minimum flow, bellow which unfavourable life conditions occur, was estimated. The results showed the necessity of taking into account the ecological parameters when estimating the ecological status of surface water bodies. Such an approach is fully compatible with

  15. Identifying Farm Pond Habitat Suitability for the Common Moorhen (Gallinula chloropus: A Conservation-Perspective Approach

    Directory of Open Access Journals (Sweden)

    Chun-Hsien Lai

    2018-04-01

    Full Text Available The purpose of this study was to establish a habitat-suitability assessment model for Gallinula chloropus, or the Common Moorhen, to be applied to the selection of the most suitable farm pond for habitat conservation in Chiayi County, Taiwan. First, the fuzzy Delphi method was employed to evaluate habitat selection factors and calculate the weights of these factors. The results showed that the eight crucial factors, by importance, in descending order, were (1 area ratio of farmlands within 200 m of the farm pond; (2 pond area; (3 pond perimeter; (4 aquatic plant coverage of the pond surface; (5 drought period; (6 coverage of high and low shrubs around the pond bank; (7 bank type; and (8 water-surface-to-bank distance. Subsequently, field evaluations of 75 farm ponds in Chiayi County were performed. The results indicated that 15 farm ponds had highly-suitable habitats and were inhabited by unusually high numbers of Common Moorhens; these habitats were most in need of conservation. A total of two farm ponds were found to require habitat-environment improvements, and Common Moorhens with typical reproductive capacity could be appropriately introduced into 22 farm ponds to restore the ecosystem of the species. Additionally, the habitat suitability and number of Common Moorhens in 36 farm ponds were lower than average; these ponds could be used for agricultural irrigation, detention basins, or for recreational use by community residents. Finally, the total habitat suitability scores and occurrence of Common Moorhens in each farm pond were used to verify the accuracy of the habitat-suitability assessment model for the Common Moorhen. The overall accuracy was 0.8, and the Kappa value was 0.60, which indicates that the model established in this study exhibited high credibility. To sum up, this is an applicable framework not only to assess the habitat suitability of farm ponds for Common Moorhens, but also to determine whether a particular location may

  16. Changes in forest habitat classes under alternative climate and land-use change scenarios in the northeast and midwest, USA

    Science.gov (United States)

    Brian G. Tavernia; Mark D. Nelson; Michael E. Goerndt; Brian F. Walters; Chris Toney

    2013-01-01

    Large-scale and long-term habitat management plans are needed to maintain the diversity of habitat classes required by wildlife species. Planning efforts would benefit from assessments of potential climate and land-use change effects on habitats. We assessed climate and land-use driven changes in areas of closed- and open-canopy forest across the Northeast and Midwest...

  17. Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats.

    Science.gov (United States)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen Pieter; Bruun, Hans Henrik

    2013-02-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently accompanied by specialization in their regeneration niche; and (2) species are thereby adapted to utilize different windows of opportunity in time (season) and space (habitat). Seed germination response to temperature, light and stratification was tested for 17 congeneric pairs, each consisting of one forest species and one open-habitat species. A factorial design was used with temperature levels and diurnal temperature variation (10 °C constant, 15-5 °C fluctuating, 20 °C constant, 25-15 °C fluctuating), and two light levels (light and darkness) and a cold stratification treatment. The congeneric species pair design took phylogenetic dependence into account. Species from open habitats germinated better at high temperatures, whereas forest species performed equally well at low and high temperatures. Forest species tended to germinate only after a period of cold stratification that could break dormancy, while species from open habitats generally germinated without cold stratification. The empirically derived germination strategies correspond quite well with establishment opportunities for forest and open-habitat plant species in nature. Annual changes in temperature and light regime in temperate forest delimit windows of opportunity for germination and establishment. Germination strategies of forest plants are adaptations to utilize such narrow windows in time. Conversely, lack of fit between germination ecology and environment may explain why species of open habitats generally fail to establish in forests. Germination strategy should be considered an important mechanism for habitat specialization in temperate herbs to forest habitats. The findings strongly suggest that

  18. California Condor Critical Habitat

    Data.gov (United States)

    California Natural Resource Agency — These Data identify (in general) the areas where critical habitat for the California Condor occur. Critical habitat for the species consists of the following 10...

  19. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    Science.gov (United States)

    Jackson, C. R.

    2002-12-01

    Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships

  20. HABSEED: a Simple Spatially Explicit Meta-Populations Model Using Remote Sensing Derived Habitat Quality Data

    Science.gov (United States)

    Heumann, B. W.; Guichard, F.; Seaquist, J. W.

    2005-05-01

    The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.

  1. Evaluating the habitat of the critically endangered Kipunji monkey ...

    African Journals Online (AJOL)

    Effective conservation of threatened species requires a good understanding of their habitat. Most primates are threatened by tropical forest loss. One population of the critically endangered kipunji monkey Rungwecebus kipunji occurs in a restricted part of one forest in southern Tanzania. This restricted range is something of ...

  2. Habitat characteristics provide insights of carbon storage in seagrass meadows

    KAUST Repository

    Mazarrasa, Inés

    2018-02-17

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence Corg sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence Corg sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows.

  3. L-Reactor Habitat Mitigation Study

    International Nuclear Information System (INIS)

    1988-02-01

    The L-Reactor Fish and Wildlife Resource Mitigation Study was conducted to quantify the effects on habitat of the L-Reactor restart and to identify the appropriate mitigation for these impacts. The completed project evaluated in this study includes construction of a 1000 acre reactor cooling reservoir formed by damming Steel Creek. Habitat impacts identified include a loss of approximately 3,700 average annual habitat units. This report presents a mitigation plan, Plan A, to offset these habitat losses. Plan A will offset losses for all species studied, except whitetailed deer. The South Carolina Wildlife and Marine Resources Department strongly recommends creation of a game management area to provide realistic mitigation for loss of deer habitats. 10 refs., 5 figs., 3 tabs

  4. Stability of eelgrass (Zostera marina L.) depth limits: influence of habitat type

    DEFF Research Database (Denmark)

    Greve, T. M.; Krause-Jensen, D.

    2005-01-01

    significantly between habitat types, and neither did stability of physicochemical variables. However, when data from all habitat types were analysed together, they showed that eelgrass populations at the depth limit were significantly more constant and thus, in this respect, more stable when occurring in deep......Seagrass meadows are generally considered stable although few studies have specified and tested this statement. On the basis of a large monitoring dataset from Danish coastal waters, we aimed to test whether the stability of deep eelgrass populations changes along a eutrophication gradient...... waters as compared to shallow waters. Areas of good water quality may thus obtain the double benefit of deeper-growing and more stable eelgrass populations. The most likely reason why this pattern did not appear at habitat-type level is that the habitat types studied represented wide spatial variation...

  5. Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics.

    Science.gov (United States)

    Hodgson, Jenny A; Moilanen, Atte; Thomas, Chris D

    2009-06-01

    Many species have to track changes in the spatial distribution of suitable habitat from generation to generation. Understanding the dynamics of such species will likely require spatially explicit models, and patch-based metapopulation models are potentially appropriate. However, relatively little attention has been paid to developing metapopulation models that include habitat dynamics, and very little to testing the predictions of these models. We tested three predictions from theory about the differences between dynamic habitat metapopulations and their static counterparts using long-term survey data from two metapopulations of the butterfly Plebejus argus. As predicted, we showed first that the metapopulation inhabiting dynamic habitat had a lower level of habitat occupancy, which could not be accounted for by other differences between the metapopulations. Secondly, we found that patch occupancy did not significantly increase with increasing patch connectivity in dynamic habitat, whereas there was a strong positive connectivity-occupancy relationship in static habitat. Thirdly, we found no significant relationship between patch occupancy and patch quality in dynamic habitat, whereas there was a strong, positive quality-occupancy relationship in static habitat. Modeling confirmed that the differences in mean patch occupancy and connectivity-occupancy slope could arise without changing the species' metapopulation parameters-importantly, without changing the dependence of colonization upon connectivity. We found that, for a range of landscape scenarios, successional simulations always produced a lower connectivity-occupancy slope than comparable simulations with static patches, whether compared like-for-like or controlling for mean occupancy. We conclude that landscape-scale studies may often underestimate the importance of connectivity for species occurrence and persistence because habitat turnover can obscure the connectivity-occupancy relationship in commonly

  6. Genomics meets applied ecology: Characterizing habitat quality for sloths in a tropical agroecosystem.

    Science.gov (United States)

    Fountain, Emily D; Kang, Jung Koo; Tempel, Douglas J; Palsbøll, Per J; Pauli, Jonathan N; Zachariah Peery, M

    2018-01-01

    Understanding how habitat quality in heterogeneous landscapes governs the distribution and fitness of individuals is a fundamental aspect of ecology. While mean individual fitness is generally considered a key to assessing habitat quality, a comprehensive understanding of habitat quality in heterogeneous landscapes requires estimates of dispersal rates among habitat types. The increasing accessibility of genomic approaches, combined with field-based demographic methods, provides novel opportunities for incorporating dispersal estimation into assessments of habitat quality. In this study, we integrated genomic kinship approaches with field-based estimates of fitness components and approximate Bayesian computation (ABC) procedures to estimate habitat-specific dispersal rates and characterize habitat quality in two-toed sloths (Choloepus hoffmanni) occurring in a Costa Rican agricultural ecosystem. Field-based observations indicated that birth and survival rates were similar in a sparsely shaded cacao farm and adjacent cattle pasture-forest mosaic. Sloth density was threefold higher in pasture compared with cacao, whereas home range size and overlap were greater in cacao compared with pasture. Dispersal rates were similar between the two habitats, as estimated using ABC procedures applied to the spatial distribution of pairs of related individuals identified using 3,431 single nucleotide polymorphism and 11 microsatellite locus genotypes. Our results indicate that crops produced under a sparse overstorey can, in some cases, constitute lower-quality habitat than pasture-forest mosaics for sloths, perhaps because of differences in food resources or predator communities. Finally, our study demonstrates that integrating field-based demographic approaches with genomic methods can provide a powerful means for characterizing habitat quality for animal populations occurring in heterogeneous landscapes. © 2017 John Wiley & Sons Ltd.

  7. Analysis of NEPA/CEQ requirements with respect to nuclear materials transportation

    International Nuclear Information System (INIS)

    Ross, K.E.L.; Welles, B.W.; Pellettieri, M.W.

    1983-01-01

    This paper examines the responsibility of federal agencies concerned with nuclear materials transportation decisions that come within the scope of the National Environmental Policy Act of 1969 (NEPA) and the requirements established by the Council on Environmental Quality (CEQ). Two of the case histories presented in this paper focus on actions taken by the Nuclear Regulatory Commission (NRC) and the Department of Transportation (DOT). A third case history, in which the limits of environmental impact are judicially redefined, presents an analysis of NEPA application in an NRC licensing action. The decision by the US Supreme Court (April 19, 1983) disallowed psychological stress as a factor to be required in environmental analysis of federal actions. The review by the Supreme Court of environmental impact considerations required under NEPA is clearly transferable to federal actions involving transportation of nuclear materials. Of interest in these examples is the application of NEPA requirements for worst-case analysis and the employment of the rule of reason by a federal agency to determine the limits of its NEPA obligations

  8. New England wildlife: management forested habitats

    Science.gov (United States)

    Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier

    1992-01-01

    Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...

  9. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  10. History and Productivity Determine the Spatial Distribution of Key Habitats for Biodiversity in Norwegian Forest Landscapes

    Directory of Open Access Journals (Sweden)

    Magne Sætersdal

    2016-01-01

    Full Text Available Retention forestry, including the retention of woodland key habitats (WKH at the forest stand scale, has become an essential management practice in boreal forests. Here, we investigate the spatial distribution of 9470 habitat patches, mapped according to the Complementary Habitat Inventory method (CHI habitats, as potential WKHs in 10 sample areas in Norway. We ask whether there are parts of the forest landscapes that have consistently low or high density of CHI habitats compared to the surveyed landscape as a whole, and therefore have a low or high degree of conflict with harvesting, respectively. We found that there was a general pattern of clumped distribution of CHI habitats at distances up to a few kilometres. Furthermore, results showed that most types of CHI habitats were approximately two to three times as common in the 25% steepest slopes, lowest altitudes and highest site indices. CHI habitats that are most common in old-growth forests were found at longer distances from roads, whereas habitats rich in deciduous trees were found at shorter distances from roads than expected. Both environmental factors and the history of human impact are needed to explain the spatial distribution of CHI habitats. The overrepresentation of WKHs in parts of the forest landscapes represents a good starting point to develop more efficient inventory methods.

  11. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.

    Science.gov (United States)

    Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R

    2017-02-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream

  12. Wildlife habitat considerations

    Science.gov (United States)

    Helen Y. Smith

    2000-01-01

    Fire, insects, disease, harvesting, and precommercial thinning all create mosaics on Northern Rocky Mountain landscapes. These mosaics are important for faunal habitat. Consequently, changes such as created openings or an increase in heavily stocked areas affect the water, cover, and food of forest habitats. The “no action” alternative in ecosystem management of low...

  13. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  14. Mechanisms Affecting Population Density in Fragmented Habitat

    Directory of Open Access Journals (Sweden)

    Lutz Tischendorf

    2005-06-01

    Full Text Available We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density, and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive, effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors. First, when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post

  15. Sound solutions for habitat monitoring

    Science.gov (United States)

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  16. Shaken but not stirred: Multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula

    Science.gov (United States)

    Maria Vergara; Samuel A. Cushman; Fermin Urra; Aritz Ruiz-Gonzalez

    2016-01-01

    Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements. Objectives This study explores the multiscale relationships of habitat suitability for the pine (Martes...

  17. A Candidate Vegetation Index of Biological Integrity Based on Species Dominance and Habitat Fidelity

    Science.gov (United States)

    Gara, Brian D; Stapanian, Martin A.

    2015-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas of the USA and are used in some states to make critical management decisions. An underlying concept of all VIBIs is that they respond negatively to disturbance. The Ohio VIBI (OVIBI) is calculated from 10 metrics, which are different for each wetland vegetation class. We present a candidate vegetation index of biotic integrity based on floristic quality (VIBI-FQ) that requires only two metrics to calculate an overall score regardless of vegetation class. These metrics focus equally on the critical ecosystem elements of diversity and dominance as related to a species’ degree of fidelity to habitat requirements. The indices were highly correlated but varied among vegetation classes. Both indices responded negatively with a published index of wetland disturbance in 261 Ohio wetlands. Unlike VIBI-FQ, however, errors in classifying wetland vegetation may lead to errors in calculating OVIBI scores. This is especially critical when assessing the ecological condition of rapidly developing ecosystems typically associated with wetland restoration and creation projects. Compared to OVIBI, the VIBI-FQ requires less field work, is much simpler to calculate and interpret, and can potentially be applied to all habitat types. This candidate index, which has been “standardized” across habitats, would make it easier to prioritize funding because it would score the “best” and “worst” of all habitats appropriately and allow for objective comparison across different vegetation classes.

  18. Home-range size and habitat use of European Nightjars Caprimulgus europaeus nesting in a complex plantation-forest landscape

    OpenAIRE

    Sharps, Katrina; Henderson, Ian; Conway, Greg; Armour-Chelu, Neal; Dolman, Paul

    2015-01-01

    In Europe, the consequences of commercial plantation management for birds of conservation concern are poorly understood. The European Nightjar Caprimulgus europaeus is a species of conservation concern across Europe due to population depletion through habitat loss. Pine plantation-forest is now a key Nightjar nesting habitat, particularly in northwestern Europe, and increased understanding of foraging habitat selection is required. We radiotracked 31 Nightjars in an extensive (185-km2) comple...

  19. Indicators: Physical Habitat Complexity

    Science.gov (United States)

    Physical habitat complexity measures the amount and variety of all types of cove at the water’s edge in lakes. In general, dense and varied shoreline habitat is able to support more diverse communities of aquatic life.

  20. Remote Sensing for Threatened and Endangered Species Habitat Assessment on Military Lands: A Literature Review

    National Research Council Canada - National Science Library

    Tweddale, Scott A; Melton, Robert H

    2005-01-01

    .... To meet the requirements of the Endangered Species Act, the DoD requires accurate, cost-effective surveying and monitoring methods to characterize and monitor the habitats of TES on military training and testing lands...

  1. Microbial community diversity and composition varies with habitat characteristics and biofilm function in macrophyte-rich streams

    DEFF Research Database (Denmark)

    Levi, Peter S.; Starnawski, Piotr; Poulsen, Britta

    2017-01-01

    Biofilms in streams play an integral role in ecosystem processes and function yet few studies have investigated the broad diversity of these complex prokaryotic and eukaryotic microbial communities. Physical habitat characteristics can affect the composition and abundance of microorganisms...... in these biofilms by creating microhabitats. Here we describe the prokaryotic and eukaryotic microbial diversity of biofilms in sand and macrophyte habitats (i.e. epipsammon and epiphyton, respectively) in five macrophyte-rich streams in Jutland, Denmark. The macrophyte species varied in growth morphology, C......:N stoichiometry, and preferred stream habitat, providing a range in environmental conditions for the epiphyton. Among all habitats and streams, the prokaryotic communities were dominated by common phyla, including Alphaproteobacteria, Bacteriodetes, and Gammaproteobacteria, while the eukaryotic communities were...

  2. Are ant assemblages of Brazilian veredas characterised by location or habitat type?

    Science.gov (United States)

    Costa-Milanez, C B; Lourenço-Silva, G; Castro, P T A; Majer, J D; Ribeiro, S P

    2014-02-01

    Wetland areas in the Brazilian Cerrado, known as "veredas", represent ecosystems formed on sandy soils with high concentrations of peat, and are responsible for the recharge of aquiferous reservoirs. They are currently under threat by various human activities, most notably the clearing of vegetation for Eucalyptus plantations. Despite their ecological importance and high conservation value, little is known about the actual effects of human disturbance on the animal community. To assess how habitat within different veredas, and plantations surrounding them affect ant assemblages, we selected four independent vereda locations, two being impacted by Eucalyptus monoculture (one younger and one mature plantation) and two controls, where the wetland was surrounded by cerrado vegetation. Ant sampling was conducted in May 2010 (dry season) using three complementary methods, namely baits, pitfall traps, and hand collection, in the wetland and in the surrounding habitats. A total of 7,575 ants were sampled, belonging to seven subfamilies, 32 genera and 124 species. Ant species richness and abundance did not differ between vereda locations, but did between the habitats. When impacted by the monoculture, ant species richness and abundance decreased in wetlands, but were less affected in the cerrado habitat. Ant species composition differed between the three habitats and between vereda locations. Eucalyptus plantations had an ant species composition defined by high dominance of Pheidole sp. and Solenopsis invicta, while natural habitats were defined by Camponotus and Crematogaster species. Atta sexdens was strictly confined to native habitats of non-impacted "veredas". Eucalyptus monocultures require high quantities of water in the early stages, which may have caused a decrease in groundwater level in the wetland, allowing hypogeic ants such as Labidus praedator to colonise this habitat.

  3. Fuels Management and Habitat Restoration Activities Benefit Eastern Hognose Snakes (Heterodon platirhinos) in a Disturbance-Dependent Ecosystem

    Science.gov (United States)

    Michael E. Akresh; David I. King; Brad C. Timm; Robert T. Brooks

    2017-01-01

    Eastern Hognose Snakes (Heterodon platirhinos) are considered a species of conservation concern in the northeast United States because of their association with rare and declining habitats such as pine barrens and shrublands. These are disturbance-dependent habitats that currently require management to persist. We studied Eastern Hognose Snakes on...

  4. Mapping the seabed and habitats in National Marine Sanctuaries - Examples from the East, Gulf and West Coasts

    Science.gov (United States)

    Valentine, Page C.; Cochrane, Guy R.; Scanlon, Kathryn M.

    2003-01-01

    The National Marine Sanctuary System requires seabed and habitat maps to serve as a basis for managing sanctuary resources and for conducting research. NOAA, the agency that manages the sanctuaries, and the USGS have conducted mapping projects in three sanctuaries (Stellwagen Bank NMS, Flower Garden Banks NMS, and Channel Islands NMS) with an emphasis on collaboration of geologists and biologists from the two agencies and from academic institutions. Mapping of seabed habitats is a developing field that requires the integration of geologic and biologic studies and the use of swath imaging techniques such as multibeam and sidescan sonar. Major products of swath mapping are shaded-relief topographic imagery which shows seabed features in great detail, and backscatter imagery which provides an indication of the types of materials that constitute the seabed. Sea floor images provide an excellent basis for conducting the groundtruthing studies (using video, photo, and sampling techniques) that are required to collect the data necessary for making meaningful interpretative maps of the seabed. The compilation of interpretive maps showing seabed environments and habitats also requires the development of a sea floor classification system that will be a basis for comparing, managing, and researching characteristic areas of the seabed. Seabed maps of the sanctuaries are proving useful for management and research decisions that address commercial and recreational fishing, habitat disturbance, engineering projects, tourism, and cultural resources.

  5. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris population in central India

    Directory of Open Access Journals (Sweden)

    Mriganka Shekhar Sarkar

    2017-11-01

    Full Text Available Background Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals’ ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger (Panthera tigris, which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. Methods We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly’s selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D2 method and the Boyce index. Results There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory

  6. Habitat characteristics provide insights of carbon storage in seagrass meadows.

    Science.gov (United States)

    Mazarrasa, Inés; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S; Lovelock, Catherine E; Marbà, Núria; Duarte, Carlos M; Cortés, Jorge

    2018-02-16

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO 2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence C org sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence C org sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Architecture and life support systems for a rotating space habitat

    Science.gov (United States)

    Misra, Gaurav

    Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the

  8. 3.10. Habitat restoration and creation

    OpenAIRE

    2016-01-01

    1.12.1 Terrestrial habitat Based on the collated evidence, what is the current assessment of the effectiveness of interventions for terrestrial habitat restoration and creation? Beneficial ● Replant vegetation Likely to be beneficial ● Clear vegetation● Create artificial hibernacula or aestivation sites● Create refuges● Restore habitat connectivity Unknown effectiveness (limited evidence) ● Change mowing regime No evidence found (no assessment) ● Create habitat connectivity Beneficial Repla...

  9. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from the McNary Dam, 1994-1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beiningen, Kirk T. [Oregon Dept. of Fish and Wildlife, Portland, OR (US)

    1996-03-01

    The author reports on progress from April 1994 through March 1995 of research on white sturgeon in the lower Columbia River. The study began in July 1986 and is a cooperative effort of federal, state and tribal fisheries entities to determine the (1) the status and habitat requirements, and (2) the effects of mitigative measures on productivity of white sturgeon populations in the lower Columbia River. This report describes activities conducted during the third year of this contract's second phase. Information was collected, analyzed, and evaluated on sub-adult and adult life histories, population dynamics, quantity and quality of habitat, and production enhancement strategies. The report is divided into sections that evaluate success of developing and implementing a management plan for white sturgeon; evaluate growth, mortality, and contributions to fisheries of juvenile white sturgeon transplanted from areas downstream; describe the life history and population dynamics of sub-adult a nd adult white sturgeon; define habitat requirements for spawning and rearing of white sturgeon and quantify the extent of habitat available; describe reproductive and early life history characteristics of white sturgeon; and quantify physical habitat used by spawning and rearing white sturgeon in the free-flowing portion of the Columbia River.

  10. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem.

    Directory of Open Access Journals (Sweden)

    Victor K Muposhi

    Full Text Available An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats.

  11. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat.

    Science.gov (United States)

    Kang, Dongwei; Wang, Xiaorong; Li, Shuang; Li, Junqing

    2017-06-15

    Artificial restoration is an important way to restore forests, but little is known about its effect on the habitat restoration of the giant panda. In the present study, we investigated the characteristics of artificial forest in the Wanglang Nature Reserve to determine whether through succession it has formed a suitable habitat for the giant panda. We compared artificial forest characteristics with those of natural habitat used by the giant panda. We found that the dominant tree species in artificial forest differed from those in the natural habitat. The artificial forest had lower plant species richness and diversity in the tree and shrub layers than did the latter, and its community structure was characterized by smaller tree and bamboo sizes, and fewer and lower bamboo clumps, but more trees and larger shrub sizes. The typical community collocation of artificial forest was a "Picea asperata + no-bamboo" model, which differs starkly from the giant panda's natural habitat. After several years of restoration, the artificial forest has failed to become a suitable habitat for the giant panda. Therefore, a simple way of planting individual trees cannot restore giant panda habitat; instead, habitat restoration should be based on the habitat requirements of the giant panda.

  12. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    Science.gov (United States)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  13. Dos and Don’ts for butterflies of the Habitats Directive of the European Union

    Directory of Open Access Journals (Sweden)

    Chris van Swaay

    2012-03-01

    Full Text Available Twenty-nine butterfly species are listed on the Annexes of the Habitats Directive. To assist everyone who wants or needs to take action for one of these species, we compiled an overview of the habitat requirements and ecology of each species, as well as information on their conservation status in Europe. This was taken from the recent Red List and their main biogeographical regions (taken from the first reporting on Article 17 of the Directive. Most important are the Dos and Don`ts, which summarize in a few bullet points what to do and what to avoid in order to protect and conserve these butterflies and their habitats.

  14. Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    Interactions among hydrology and geomorphology create shifting mosaics of aquatic habitat patches in large river floodplains (e.g., main and side channels, floodplain lakes, and shallow backwater areas) and the connectivity among these habitat patches underpins high levels of biotic diversity and productivity. However, the diversity and connectivity among the habitats of most floodplain rivers have been negatively impacted by hydrologic and structural modifications that support commercial navigation and control flooding. We therefore tested the hypothesis that the rate of increase in patch richness (# of types) with increasing scale reflects anthropogenic modifications to habitat diversity and connectivity in a large floodplain river, the Upper Mississippi River (UMR). To do this, we calculated the number of aquatic habitat patch types within neighborhoods surrounding each of the ≈19 million 5-m aquatic pixels of the UMR for multiple neighborhood sizes (1–100 ha). For all of the 87 river-reach focal areas we examined, changes in habitat richness (R) with increasing neighborhood length (L, # pixels) were characterized by a fractal-like power function R = Lz (R2 > 0.92 (P z) measures the rate of increase in habitat richness with neighborhood size and is related to a fractal dimension. Variation in z reflected fundamental changes to spatial patterns of aquatic habitat richness in this river system. With only a few exceptions, z exceeded the river-wide average of 0.18 in focal areas where side channels, contiguous floodplain lakes, and contiguous shallow-water areas exceeded 5%, 5%, and 10% of the floodplain respectively. In contrast, z was always less than 0.18 for focal areas where impounded water exceeded 40% of floodplain area. Our results suggest that rehabilitation efforts that target areas with <5% of the floodplain in side channels, <5% in floodplain lakes, and/or <10% in shallow-water areas could improve habitat diversity across multiple scales in the UMR.

  15. Habitat associations of chorusing anurans in the Lower Mississippi River Alluvial valley

    Science.gov (United States)

    Lichtenberg, J.S.; King, S.L.; Grace, J.B.; Walls, S.C.

    2006-01-01

    Amphibian populations have declined worldwide. To pursue conservation efforts adequately, land managers need more information concerning amphibian habitat requirements. To address this need, we examined relationships between anurans and habitat characteristics of wetlands in the Lower Mississippi River Alluvial Valley (LMAV). We surveyed chorusing anurans in 31 wetlands in 2000 and 28 wetlands in 2001, and measured microhabitat variables along the shoreline within the week following each survey. We recorded 12 species of anurans during our study. Species richness was significantly lower in 2000 than 2001 (t-test, P < 0.001) and correlated with an ongoing drought. We found species richness to be significantly greater at lake sites compared to impoundment, swale, and riverine sites (ANOVA, P = 0.002). We used stepwise regression to investigate the wetland types and microhabitat characteristics associated with species richness of chorusing anurans. Microhabitat characteristics associated with species richness included dense herbaceous vegetation and accumulated litter along the shoreline. Individual species showed species-specific habitat associations. The bronze frog, American bullfrog, and northern cricket frog were positively associated with lake sites (Fisher's Exact Test, P < 0.05), however wetland type did not significantly influence any additional species. Using bivariate correlations, we found that six of the seven most common species had significant associations with microhabitat variables. Overall, our findings support the view that conservation and enhancement of amphibian communities in the LMAV and elsewhere requires a matrix of diverse wetland types and habitat conditions. ?? 2006, The Society of Wetland Scientists.

  16. 75 FR 24545 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Polar Bear...

    Science.gov (United States)

    2010-05-05

    ... Critical Habitat for the Polar Bear in the United States AGENCY: Fish and Wildlife Service, Interior... designation of critical habitat for the polar bear (Ursus maritimus) under the Endangered Species Act of 1973... for the polar bear and on the DEA, and an amended required determinations section of the proposal. We...

  17. Anthropogenic areas as incidental substitutes for original habitat.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Jiménez, Juan

    2016-06-01

    One speaks of ecological substitutes when an introduced species performs, to some extent, the ecosystem function of an extirpated native species. We suggest that a similar case exists for habitats. Species evolve within ecosystems, but habitats can be destroyed or modified by natural and human-made causes. Sometimes habitat alteration forces animals to move to or remain in a suboptimal habitat type. In that case, the habitat is considered a refuge, and the species is called a refugee. Typically refugee species have lower population growth rates than in their original habitats. Human action may lead to the unintended generation of artificial or semiartificial habitat types that functionally resemble the essential features of the original habitat and thus allow a population growth rate of the same magnitude or higher than in the original habitat. We call such areas substitution habitats and define them as human-made habitats within the focal species range that by chance are partial substitutes for the species' original habitat. We call species occupying a substitution habitat adopted species. These are 2 new terms in conservation biology. Examples of substitution habitats are dams for European otters, wheat and rice fields for many steppeland and aquatic birds, and urban areas for storks, falcons, and swifts. Although substitution habitats can bring about increased resilience against the agents of global change, the conservation of original habitat types remains a conservation priority. © 2016 Society for Conservation Biology.

  18. Indo-Pacific bottlenose dolphin (Tursiops aduncus) habitat preference in a heterogeneous, urban, coastal environment.

    Science.gov (United States)

    Cribb, Nardi; Miller, Cara; Seuront, Laurent

    2013-02-01

    Limited information is available regarding the habitat preference of the Indo-Pacific bottlenose dolphin (Tursiops aduncus) in South Australian estuarine environments. The need to overcome this paucity of information is crucial for management and conservation initiatives. This preliminary study investigates the space-time patterns of habitat preference by the Indo-Pacific bottlenose dolphin in the Port Adelaide River-Barker Inlet estuary, a South Australian, urbanised, coastal environment. More specifically, the study aim was to identify a potential preference between bare sand substrate and seagrass beds, the two habitat types present in this environment, through the resighting frequency of recognisable individual dolphins. Photo-identification surveys covering the 118 km2 sanctuary area were conducted over 2 survey periods May to August 2006 and from March 2009 to February 2010. Sighting frequency of recognisable individual Indo-Pacific bottlenose dolphins established a significant preference for the bare sand habitat. More specifically, 72 and 18% of the individuals sighted at least on two occasions were observed in the bare sand and seagrass habitats respectively. This trend was consistently observed at both seasonal and annual scales, suggesting a consistency in the distinct use of these two habitats. It is anticipated that these results will benefit the further development of management and conservation strategies.

  19. Birds and bird habitats: guidelines for wind power projects

    International Nuclear Information System (INIS)

    2010-10-01

    Established in 2009, the Green Energy Act aims to increase the use of renewable energy sources including wind, water, solar and bioenergy in Ontario. The development of these resources is a major component of the province's plan, which aims to mitigate the contribution to climate change and to involve the Ontario's economy in the improvement of the quality of the environment. The Green Energy Act also considers as important the implementation of a coordinated provincial approval process, suggesting the integration of all Ministry requirements into a unique process during the evaluation of newly proposed renewable energy projects. The Ministry of the Environment's Renewable Energy Approval Regulation details the requirements for wind power projects involving significant natural features. Birds are an important part of Ontario's biodiversity and, according to the Ministry of Natural Resources, their habitats are considered as significant wildlife habitat (SWH). The Renewable Energy Approval Regulation and this guideline are meant to provide elements and guidance in order to protect bird SWH during the selection of a location of wind power facilities. . 27 refs., 1 tab., 2 figs.

  20. Identifying western yellow-billed cuckoo breeding habitat with a dual modelling approach

    Science.gov (United States)

    Johnson, Matthew J.; Hatten, James R.; Holmes, Jennifer A.; Shafroth, Patrick B.

    2017-01-01

    The western population of the yellow-billed cuckoo (Coccyzus americanus) was recently listed as threatened under the federal Endangered Species Act. Yellow-billed cuckoo conservation efforts require the identification of features and area requirements associated with high quality, riparian forest habitat at spatial scales that range from nest microhabitat to landscape, as well as lower-suitability areas that can be enhanced or restored. Spatially explicit models inform conservation efforts by increasing ecological understanding of a target species, especially at landscape scales. Previous yellow-billed cuckoo modelling efforts derived plant-community maps from aerial photography, an expensive and oftentimes inconsistent approach. Satellite models can remotely map vegetation features (e.g., vegetation density, heterogeneity in vegetation density or structure) across large areas with near perfect repeatability, but they usually cannot identify plant communities. We used aerial photos and satellite imagery, and a hierarchical spatial scale approach, to identify yellow-billed cuckoo breeding habitat along the Lower Colorado River and its tributaries. Aerial-photo and satellite models identified several key features associated with yellow-billed cuckoo breeding locations: (1) a 4.5 ha core area of dense cottonwood-willow vegetation, (2) a large native, heterogeneously dense forest (72 ha) around the core area, and (3) moderately rough topography. The odds of yellow-billed cuckoo occurrence decreased rapidly as the amount of tamarisk cover increased or when cottonwood-willow vegetation was limited. We achieved model accuracies of 75–80% in the project area the following year after updating the imagery and location data. The two model types had very similar probability maps, largely predicting the same areas as high quality habitat. While each model provided unique information, a dual-modelling approach provided a more complete picture of yellow-billed cuckoo habitat

  1. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    Science.gov (United States)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity

  2. Bat habitat research. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, B.L.; Bosworth, W.R.; Doering, R.W.

    1993-12-31

    This progress report describes activities over the current reporting period to characterize the habitats of bats on the INEL. Research tasks are entitled Monitoring bat habitation of caves on the INEL to determine species present, numbers, and seasons of use; Monitor bat use of man-made ponds at the INEL to determine species present and rates of use of these waters; If the Big Lost River is flowing on the INEL and/or if the Big Lost River sinks contain water, determine species present, numbers and seasons of use; Determine the habitat requirement of Townsend`s big-eared bats, including the microclimate of caves containing Townsend`s big-eared bats as compared to other caves that do not contain bats; Determine and describe an economical and efficient bat census technique to be used periodically by INEL scientists to determine the status of bats on the INEL; and Provide a suggestive management and protective plan for bat species on the INEL that might, in the future, be added to the endangered and sensitive list;

  3. Predicting the effects of proposed Mississippi River diversions on oyster habitat quality; application of an oyster habitat suitability index model

    Science.gov (United States)

    Soniat, Thomas M.; Conzelmann, Craig P.; Byrd, Jason D.; Roszell, Dustin P.; Bridevaux, Joshua L.; Suir, Kevin J.; Colley, Susan B.

    2013-01-01

    In an attempt to decelerate the rate of coastal erosion and wetland loss, and protect human communities, the state of Louisiana developed its Comprehensive Master Plan for a Sustainable Coast. The master plan proposes a combination of restoration efforts including shoreline protection, marsh creation, sediment diversions, and ridge, barrier island, and hydrological restoration. Coastal restoration projects, particularly the large-scale diversions of fresh water from the Mississippi River, needed to supply sediment to an eroding coast potentially impact oyster populations and oyster habitat. An oyster habitat suitability index model is presented that evaluates the effects of a proposed sediment and freshwater diversion into Lower Breton Sound. Voluminous freshwater, needed to suspend and broadly distribute river sediment, will push optimal salinities for oysters seaward and beyond many of the existing reefs. Implementation and operation of the Lower Breton Sound diversion structure as proposed would render about 6,173 ha of hard bottom immediately east of the Mississippi River unsuitable for the sustained cultivation of oysters. If historical harvests are to be maintained in this region, a massive and unprecedented effort to relocate private leases and restore oyster bottoms would be required. Habitat suitability index model results indicate that the appropriate location for such efforts are to the east and north of the Mississippi River Gulf Outlet.

  4. Butterflies of the high altitude Atacama Desert: habitat use and conservation

    Directory of Open Access Journals (Sweden)

    Emma eDespland

    2014-09-01

    Full Text Available The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 500 m asl (prepuna, puna and Andean steppe habitats as well as in high and low altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life-history strategies and relationships with host plants.

  5. An Expert-Based Assessment Model for Evaluating Habitat Suitability of Pond-Breeding Amphibians

    Directory of Open Access Journals (Sweden)

    Shin-Ruoh Juang

    2017-02-01

    reliability of the habitat suitability assessment model. In brief, the proposed method can be applied, not only to assess the sustainability of frog habitats and degradation risks, but also to determine which locations may require future attention regarding conservation implementation. Furthermore, findings in this study provide useful background knowledge to all associated stakeholders when designing and implementing plans of wildlife habitat management and restoration at farm ponds.

  6. Isotopic Differences between Forage Consumed by a Large Herbivore in Open, Closed, and Coastal Habitats: New Evidence from a Boreal Study System.

    Directory of Open Access Journals (Sweden)

    Marie-Andrée Giroux

    Full Text Available Documenting habitat-related patterns in foraging behaviour at the individual level and over large temporal scales remains challenging for large herbivores. Stable isotope analysis could represent a valuable tool to quantify habitat-related foraging behaviour at the scale of individuals and over large temporal scales in forest dwelling large herbivores living in coastal environments, because the carbon (δ13C or nitrogen (δ15N isotopic signatures of forage can differ between open and closed habitats or between terrestrial and littoral forage, respectively. Here, we examined if we could detect isotopic differences between the different assemblages of forage taxa consumed by white-tailed deer that can be found in open, closed, supralittoral, and littoral habitats. We showed that δ13C of assemblages of forage taxa were 3.0 ‰ lower in closed than in open habitats, while δ15N were 2.0 ‰ and 7.4 ‰ higher in supralittoral and littoral habitats, respectively, than in terrestrial habitats. Stable isotope analysis may represent an additional technique for ecologists interested in quantifiying the consumption of terrestrial vs. marine autotrophs. Yet, given the relative isotopic proximity and the overlap between forage from open, closed, and supralittoral habitats, the next step would be to determine the potential to estimate their contribution to herbivore diet.

  7. How Do Landscape Structure, Management and Habitat Quality Drive the Colonization of Habitat Patches by the Dryad Butterfly (Lepidoptera: Satyrinae) in Fragmented Grassland?

    Science.gov (United States)

    Kalarus, Konrad; Nowicki, Piotr

    2015-01-01

    Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i) habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height); (ii) factors associated with habitat spatial structure (patch size, patch isolation and fragmentation); and (iii) features of patch surroundings (100-m buffers around patches) that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and more

  8. How Do Landscape Structure, Management and Habitat Quality Drive the Colonization of Habitat Patches by the Dryad Butterfly (Lepidoptera: Satyrinae in Fragmented Grassland?

    Directory of Open Access Journals (Sweden)

    Konrad Kalarus

    Full Text Available Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height; (ii factors associated with habitat spatial structure (patch size, patch isolation and fragmentation; and (iii features of patch surroundings (100-m buffers around patches that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and

  9. Habitat models to assist plant protection efforts in Shenandoah National Park, Virginia, USA

    Science.gov (United States)

    Van Manen, F.T.; Young, J.A.; Thatcher, C.A.; Cass, W.B.; Ulrey, C.

    2005-01-01

    During 2002, the National Park Service initiated a demonstration project to develop science-based law enforcement strategies for the protection of at-risk natural resources, including American ginseng (Panax quinquefolius L.), bloodroot (Sanguinaria canadensis L.), and black cohosh (Cimicifuga racemosa (L.) Nutt. [syn. Actaea racemosa L.]). Harvest pressure on these species is increasing because of the growing herbal remedy market. We developed habitat models for Shenandoah National Park and the northern portion of the Blue Ridge Parkway to determine the distribution of favorable habitats of these three plant species and to demonstrate the use of that information to support plant protection activities. We compiled locations for the three plant species to delineate favorable habitats with a geographic information system (GIS). We mapped potential habitat quality for each species by calculating a multivariate statistic, Mahalanobis distance, based on GIS layers that characterized the topography, land cover, and geology of the plant locations (10-m resolution). We tested model performance with an independent dataset of plant locations, which indicated a significant relationship between Mahalanobis distance values and species occurrence. We also generated null models by examining the distribution of the Mahalanobis distance values had plants been distributed randomly. For all species, the habitat models performed markedly better than their respective null models. We used our models to direct field searches to the most favorable habitats, resulting in a sizeable number of new plant locations (82 ginseng, 73 bloodroot, and 139 black cohosh locations). The odds of finding new plant locations based on the habitat models were 4.5 (black cohosh) to 12.3 (American ginseng) times greater than random searches; thus, the habitat models can be used to improve the efficiency of plant protection efforts, (e.g., marking of plants, law enforcement activities). The field searches also

  10. A spatial model of white sturgeon rearing habitat in the lower Columbia River, USA

    Science.gov (United States)

    Hatten, J.R.; Parsley, M.J.

    2009-01-01

    Concerns over the potential effects of in-water placement of dredged materials prompted us to develop a GIS-based model that characterizes in a spatially explicit manner white sturgeon Acipenser transmontanus rearing habitat in the lower Columbia River, USA. The spatial model was developed using water depth, riverbed slope and roughness, fish positions collected in 2002, and Mahalanobis distance (D2). We created a habitat suitability map by identifying a Mahalanobis distance under which >50% of white sturgeon locations occurred in 2002 (i.e., high-probability habitat). White sturgeon preferred relatively moderate to high water depths, and low to moderate riverbed slope and roughness values. The eigenvectors indicated that riverbed slope and roughness were slightly more important than water depth, but all three variables were important. We estimated the impacts that fill might have on sturgeon habitat by simulating the addition of fill to the thalweg, in 3-m increments, and recomputing Mahalanobis distances. Channel filling simulations revealed that up to 9 m of fill would have little impact on high-probability habitat, but 12 and 15 m of fill resulted in habitat declines of ???12% and ???45%, respectively. This is the first spatially explicit predictive model of white sturgeon rearing habitat in the lower Columbia River, and the first to quantitatively predict the impacts of dredging operations on sturgeon habitat. Future research should consider whether water velocity improves the accuracy and specificity of the model, and to assess its applicability to other areas in the Columbia River.

  11. Assessing Wild Bee Biodiversity in Cranberry Agroenvironments: Influence of Natural Habitats.

    Science.gov (United States)

    Gervais, Amélie; Fournier, Valérie; Sheffield, Cory S; Chagnon, Madeleine

    2017-08-01

    The conservation of bee populations for pollination in agricultural landscapes has attracted a lot of recent research interest, especially for crop industries undergoing expansion to meet increased production demands. In Canada, much growth has been occurring with commercial cranberry production, a field crop which is largely dependent on bee pollination. Wild bee pollinators could be negatively impacted by losses of natural habitat surrounding cranberry fields to accommodate increased production, but growers have little insight on how to manage their lands to maximize the presence of wild bees. Here, we described a 2-yr study where bee diversity and species composition were investigated to better understand the dynamic between natural habitat and cranberry fields. Bees were sampled using pan-traps and hand netting both within cranberry fields and in one of the three adjacent natural habitat types once a week during the crop flowering period. We found that bee community composition among cranberry fields did not differ based on the respective adjacent habitat type, but fields bordered by meadows were marginally less diverse than fields bordered by forest. As one would expect, field and natural habitat communities differed in terms of species composition and species richness. There was no evidence that one type of natural habitat was more favorable for the bees than another. Future agrobiodiversity studies should simultaneously examine bee diversity comprised in both crop fields and adjacent natural environments to better understand the species dynamics essential to the preservation of pollination services. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes.

    Science.gov (United States)

    Yates, Katherine L; Mellin, Camille; Caley, M Julian; Radford, Ben T; Meeuwig, Jessica J

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are

  13. Are ant assemblages of Brazilian veredas characterised by location or habitat type?

    Directory of Open Access Journals (Sweden)

    CB Costa-Milanez

    Full Text Available Wetland areas in the Brazilian Cerrado, known as “veredas”, represent ecosystems formed on sandy soils with high concentrations of peat, and are responsible for the recharge of aquiferous reservoirs. They are currently under threat by various human activities, most notably the clearing of vegetation for Eucalyptus plantations. Despite their ecological importance and high conservation value, little is known about the actual effects of human disturbance on the animal community. To assess how habitat within different veredas, and plantations surrounding them affect ant assemblages, we selected four independent vereda locations, two being impacted by Eucalyptus monoculture (one younger and one mature plantation and two controls, where the wetland was surrounded by cerrado vegetation. Ant sampling was conducted in May 2010 (dry season using three complementary methods, namely baits, pitfall traps, and hand collection, in the wetland and in the surrounding habitats. A total of 7,575 ants were sampled, belonging to seven subfamilies, 32 genera and 124 species. Ant species richness and abundance did not differ between vereda locations, but did between the habitats. When impacted by the monoculture, ant species richness and abundance decreased in wetlands, but were less affected in the cerrado habitat. Ant species composition differed between the three habitats and between vereda locations. Eucalyptus plantations had an ant species composition defined by high dominance of Pheidole sp. and Solenopsis invicta, while natural habitats were defined by Camponotus and Crematogaster species. Atta sexdens was strictly confined to native habitats of non-impacted “veredas”. Eucalyptus monocultures require high quantities of water in the early stages, which may have caused a decrease in groundwater level in the wetland, allowing hypogeic ants such as Labidus praedator to colonise this habitat.

  14. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen

    2004-01-01

    vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program. Longer-term benefits of protection and enhancement activities include increases in native species diversity and plant community resiliency in all cover types. Watershed conditions, including floodplain/riparian, and instream habitat quality should improve as well providing multiple benefits for terrestrial and aquatic resources. While such benefits are not necessarily recognized by HEP models and reflected in the number of habitat units generated, they are consistent with the NPPC Fish and Wildlife Program.

  15. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    Science.gov (United States)

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    km (2009 and 2010, respectively) as stream temperatures seasonally warmed, but subyearling Chinook salmon were also found farther upstream during this time.4. Our multiscale analysis suggests that bass were selecting habitat based on antecedent thermal history at a broad scale, and if satisfactory temperature conditions were met, mesoscale habitat features (i.e. channel-unit type and depth) played an additional role in determining bass abundance. The upstream extent of bass in the late summer corresponded to a high-gradient geomorphic discontinuity in the NFJDR, which probably hindered further upstream movements of bass. The habitat determinants and upstream extent of bass were largely consistent across years, despite marked differences in the magnitude and timing of spring peak flows prior to bass spawning.5. The overriding influence of water temperature on smallmouth bass distribution suggests that managers may be able limit future upstream range expansions of bass into salmon-rearing habitat by concentrating on restoration activities that mitigate climate- or land-use-related stream warming. These management activities could be prioritised to capitalise on survival bottlenecks in the life history of bass and spatially focused on landscape knick points such as high-gradient discontinuities to discourage further upstream movements of bass.

  16. Innate Host Habitat Preference in the Parasitoid Diachasmimorpha longicaudata: Functional Significance and Modifications through Learning.

    Directory of Open Access Journals (Sweden)

    Diego F Segura

    Full Text Available Parasitoids searching for polyphagous herbivores can find their hosts in a variety of habitats. Under this scenario, chemical cues from the host habitat (not related to the host represent poor indicators of host location. Hence, it is unlikely that naïve females show a strong response to host habitat cues, which would become important only if the parasitoids learn to associate such cues to the host presence. This concept does not consider that habitats can vary in profitability or host nutritional quality, which according to the optimal foraging theory and the preference-performance hypothesis (respectively could shape the way in which parasitoids make use of chemical cues from the host habitat. We assessed innate preference in the fruit fly parasitoid Diachasmimorpha longicaudata among chemical cues from four host habitats (apple, fig, orange and peach using a Y-tube olfactometer. Contrary to what was predicted, we found a hierarchic pattern of preference. The parasitism rate realized on these fruit species and the weight of the host correlates positively, to some extent, with the preference pattern, whereas preference did not correlate with survival and fecundity of the progeny. As expected for a parasitoid foraging for generalist hosts, habitat preference changed markedly depending on their previous experience and the abundance of hosts. These findings suggest that the pattern of preference for host habitats is attributable to differences in encounter rate and host quality. Host habitat preference seems to be, however, quite plastic and easily modified according to the information obtained during foraging.

  17. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Directory of Open Access Journals (Sweden)

    Gustaf Samelius

    Full Text Available Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1 before and after lynx re-established in the study area and (2 in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection. Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  18. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Science.gov (United States)

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  19. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    Science.gov (United States)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  20. A Tool for the Automated Design and Evaluation of Habitat Interior Layouts

    Science.gov (United States)

    Simon, Matthew A.; Wilhite, Alan W.

    2013-01-01

    The objective of space habitat design is to minimize mass and system size while providing adequate space for all necessary equipment and a functional layout that supports crew health and productivity. Unfortunately, development and evaluation of interior layouts is often ignored during conceptual design because of the subjectivity and long times required using current evaluation methods (e.g., human-in-the-loop mockup tests and in-depth CAD evaluations). Early, more objective assessment could prevent expensive design changes that may increase vehicle mass and compromise functionality. This paper describes a new interior design evaluation method to enable early, structured consideration of habitat interior layouts. This interior layout evaluation method features a comprehensive list of quantifiable habitat layout evaluation criteria, automatic methods to measure these criteria from a geometry model, and application of systems engineering tools and numerical methods to construct a multi-objective value function measuring the overall habitat layout performance. In addition to a detailed description of this method, a C++/OpenGL software tool which has been developed to implement this method is also discussed. This tool leverages geometry modeling coupled with collision detection techniques to identify favorable layouts subject to multiple constraints and objectives (e.g., minimize mass, maximize contiguous habitable volume, maximize task performance, and minimize crew safety risks). Finally, a few habitat layout evaluation examples are described to demonstrate the effectiveness of this method and tool to influence habitat design.

  1. Use of Occupancy Models to Evaluate Expert Knowledge-based Species-Habitat Relationships

    Directory of Open Access Journals (Sweden)

    Monica N. Iglecia

    2012-12-01

    Full Text Available Expert knowledge-based species-habitat relationships are used extensively to guide conservation planning, particularly when data are scarce. Purported relationships describe the initial state of knowledge, but are rarely tested. We assessed support in the data for suitability rankings of vegetation types based on expert knowledge for three terrestrial avian species in the South Atlantic Coastal Plain of the United States. Experts used published studies, natural history, survey data, and field experience to rank vegetation types as optimal, suitable, and marginal. We used single-season occupancy models, coupled with land cover and Breeding Bird Survey data, to examine the hypothesis that patterns of occupancy conformed to species-habitat suitability rankings purported by experts. Purported habitat suitability was validated for two of three species. As predicted for the Eastern Wood-Pewee (Contopus virens and Brown-headed Nuthatch (Sitta pusilla, occupancy was strongly influenced by vegetation types classified as "optimal habitat" by the species suitability rankings for nuthatches and wood-pewees. Contrary to predictions, Red-headed Woodpecker (Melanerpes erythrocephalus models that included vegetation types as covariates received similar support by the data as models without vegetation types. For all three species, occupancy was also related to sampling latitude. Our results suggest that covariates representing other habitat requirements might be necessary to model occurrence of generalist species like the woodpecker. The modeling approach described herein provides a means to test expert knowledge-based species-habitat relationships, and hence, help guide conservation planning.

  2. Habitat Suitability Index Models: Red-winged blackbird

    Science.gov (United States)

    Short, Henry L.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the red-winged blackbird (Agelaius phoeniceus L.). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  3. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  4. Effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and determine status and habitat requirements of white sturgeon populations in the Columbia and Snake Rivers upstream from the McNary Dam. Annual progress report, April 1994--March 1995

    International Nuclear Information System (INIS)

    Beiningen, K.T.

    1996-03-01

    The author reports on progress from April 1994 through March 1994 of research on white sturgeon in the lower Columbia River. The study began in July 1986 and is a cooperative effort of federal, state and tribal fisheries entities to determine the (1) the status and habitat requirements, and (2) the effects of mitigative measures on productivity of white sturgeon populations in the lower Columbia River. This report describes activities conducted during the third year of this contract's second phase. Information was collected, analyzed, and evaluated on subadult and adult life histories, population dynamics, quantity and quality of habitat, and production enhancement strategies. The report is divided into sections that evaluate success of developing and implementing a management plan for white sturgeon; evaluate growth, mortality, and contributions to fisheries of juvenile white sturgeon transplanted from areas downstream; describe the life history and population dynamics of subadult and adult white sturgeon; define habitat requirements for spawning and rearing of white sturgeon and quantify the extent of habitat available; describe reproductive and early life history characteristics of white sturgeon; and quantify physical habitat used by spawning and rearing white sturgeon in the free-flowing portion of the Columbia River

  5. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2004-01-01

    vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program.

  6. Moving Targets and Biodiversity Offsets for Endangered Species Habitat: Is Lesser Prairie Chicken Habitat a Stock or Flow?

    Directory of Open Access Journals (Sweden)

    Todd K. BenDor

    2014-03-01

    Full Text Available The US Fish and Wildlife Service will make an Endangered Species Act listing decision for the lesser prairie chicken (Tympanuchus pallidicinctus; “LPC” in March 2014. Based on the findings of a single, Uzbek antelope study, conservation plans put forth for the LPC propose to modify and re-position habitat in the landscape through a series of temporary preservation/restoration efforts. We argue that for certain species, including the LPC, dynamic habitat offsets represent a dangerous re-interpretation of habitat provision and recovery programs, which have nearly-universally viewed ecosystem offsets (habitat, wetlands, streams, etc. as “stocks” that accumulate characteristics over time. Any effort to create a program of temporary, moving habitat offsets must consider species’ (1 life history characteristics, (2 behavioral tendencies (e.g., avoidance of impacted areas, nesting/breeding site fidelity, and (3 habitat restoration characteristics, including long temporal lags in reoccupation. If misapplied, species recovery programs using temporary, moving habitat risk further population declines.

  7. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    Science.gov (United States)

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  8. Wildlife Habitat Evaluation Handbook.

    Science.gov (United States)

    Neilson, Edward L., Jr.; Benson, Delwin E.

    The National 4-H Wildlife Invitational is a competitive event to teach youth about the fundamentals of wildlife management. Youth learn that management for wildlife means management of wildlife habitat and providing for the needs of wildlife. This handbook provides information about wildlife habitat management concepts in both urban and rural…

  9. Linking stream flow and groundwater to avian habitat in a desert riparian system.

    Science.gov (United States)

    Merritt, David M; Bateman, Heather L

    2012-10-01

    Increasing human populations have resulted in aggressive water development in arid regions. This development typically results in altered stream flow regimes, reduced annual flow volumes, changes in fluvial disturbance regimes, changes in groundwater levels, and subsequent shifts in ecological patterns and processes. Balancing human demands for water with environmental requirements to maintain functioning ecosystems requires quantitative linkages between water in streams and ecosystem attributes. Streams in the Sonoran Desert provide important habitat for vertebrate species, including resident and migratory birds. Habitat structure, food, and nest-building materials, which are concentrated in riparian areas, are provided directly or indirectly by vegetation. We measured riparian vegetation, groundwater and surface water, habitat structure, and bird occurrence along Cherry Creek, a perennial tributary of the Salt River in central Arizona, USA. The purpose of this work was to develop an integrated model of groundwater-vegetation-habitat structure and bird occurrence by: (1) characterizing structural and provisioning attributes of riparian vegetation through developing a bird habitat index (BHI), (2) validating the utility of our BHI through relating it to measured bird community composition, (3) determining the riparian plant species that best explain the variability in BHI, (4) developing predictive models that link important riparian species to fluvial disturbance and groundwater availability along an arid-land stream, and (5) simulating the effects of changes in flow regime and groundwater levels and determining their consequences for riparian bird communities. Riparian forest and shrubland vegetation cover types were correctly classified in 83% of observations as a function of fluvial disturbance and depth to water table. Groundwater decline and decreased magnitude of fluvial disturbance caused significant shifts in riparian cover types from riparian forest to

  10. Effects of Changes in Lugu Lake Water Quality on Schizothorax Yunnansis Ecological Habitat Based on HABITAT Model

    Science.gov (United States)

    Huang, Wei; Mynnet, Arthur

    Schizothorax Yunnansis is an unique fish species only existing in Lugu Lake, which is located in the southwestern China. The simulation and research on Schizothorax Yunnansis habitat environment have a vital significance to protect this rare fish. With the development of the tourism industry, there bring more pressure on the environmental protection. The living environment of Schizothorax Yunnansis is destroyed seriously because the water quality is suffering the sustaining pollution of domestic sewage from the peripheral villages. This paper analyzes the relationship between water quality change and Schizothorax Yunnansis ecological habitat and evalutes Schizothorax Yunnansis's ecological habitat impact based on HABITAT model. The results show that when the TP concentration in Lugu Lake does not exceed Schizothorax Yunnansis's survival threshold, Schizothorax Yunnansis can get more nutrients and the suitable habitat area for itself is increased. Conversely, it can lead to TP toxicity in the Schizothorax Yunnansis and even death. Therefore, unsuitable habitat area for Schizothorax Yunnansis is increased. It can be seen from the results that HABITAT model can assist in ecological impact assessment studies by translating results of hydrological, water quality models into effects on the natural environment and human society.

  11. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    International Nuclear Information System (INIS)

    Vermeulen, Frouke; Van den Brink, Nico W.; D'Have, Helga; Mubiana, Valentine K.; Blust, Ronny; Bervoets, Lieven; De Coen, Wim

    2009-01-01

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  12. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Frouke, E-mail: frouke.vermeulen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Brink, Nico W., E-mail: nico.vandenbrink@wur.n [Alterra, Wageningen UR, Box 47, NL6700AA Wageningen (Netherlands); D' Have, Helga [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Mubiana, Valentine K., E-mail: kayawe.mubiana@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Blust, Ronny, E-mail: ronny.blust@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bervoets, Lieven, E-mail: lieven.bervoets@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); De Coen, Wim, E-mail: wim.decoen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2009-11-15

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  13. Critical Habitat :: NOAA Fisheries

    Science.gov (United States)

    occupied by the species at the time of listing, if they contain physical or biological features essential essential for conservation. Critical Habitat Maps NOTE: The critical habitat maps provided here are for Data Leatherback Turtle (U.S. West Coast) » Biological Report » Economic Report 2012 77 FR 4170 Go to

  14. Riparian Habitat - Product of 2 riparian habitat workshops

    Data.gov (United States)

    California Natural Resource Agency — In two riparian habitat workshops held between 2001 and 2002, scientists and managers identified the need for determining the scope of a consistent and acceptable...

  15. Habitat stability, predation risk and 'memory syndromes'.

    Science.gov (United States)

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  16. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees.

    Science.gov (United States)

    Felton, Adam; Sonesson, Johan; Nilsson, Urban; Lämås, Tomas; Lundmark, Tomas; Nordin, Annika; Ranius, Thomas; Roberge, Jean-Michel

    2017-04-01

    Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.

  17. NEPR Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  18. Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions

    Science.gov (United States)

    Jan, Darrell L.

    2010-01-01

    Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.

  19. Temporal habitat suitability modeling of Caspian shad (Alosa spp. in the southern Caspian Sea

    Directory of Open Access Journals (Sweden)

    Ali Haghi Vayghan

    2015-11-01

    Full Text Available To comprehensively manage an ecosystem such as that of the Caspian Sea, the world’s largest lake, detailed knowledge of the habitat traits of the living organisms in the ecosystem is essential. The present study examined environmental variables and used the Habitat Suitability Index (HSI model to determine the most preferred seasonal habitat and optimal environmental range of Caspian shad (Alosa spp. The fish preferred deep waters with low levels of total organic matter and sea level anomaly in winter and productive areas with a high concentration of chlorophyll-a (Chla and relatively high benthos biomass in spring. The number per unit area (NPUA-based HSI model determined that the geometric mean model (GMM was the optimal model for defining a suitable habitat in winter. For spring, the arithmetic mean model (or GMM in the NPUA-based HSI model most accurately predicted preferred habitat for Caspian shad. The average NPUA in both seasons increased with the HSI; areas with an HSI of between 0.4 and 0.6 in spring and between 0.6 and 0.8 in winter had a high percentage of total catch. Areas with an HSI of more than 0.5 had over 91% and 63% of the total catch in spring and winter, respectively, demonstrating the reliability of the NPUA-based HSI model in predicting Caspian shad habitat. The present study shows that remotely sensed data plus depth are the most critical environmental variables in Caspian shad habitats and that Chla and SLA are the most critical remotely sensed parameters for near real-time prediction of Caspian shad habitat.

  20. A single launch lunar habitat derived from an NSTS external tank

    Science.gov (United States)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.

  1. Home ranges and habitat use of sloth bears Melursus ursinus inornatus in Wasgomuwa National Park, Sri Lanka

    Science.gov (United States)

    Ratnayeke, S.; Van Manen, F.T.; Padmalal, U.K.G.K.

    2007-01-01

    We studied home ranges and habitat selection of 10 adult sloth bears Melursus ursinus inornatus at Wasgomuwa National Park, Sri Lanka during 2002-2003. Very little is known about the ecology and behaviour of M. u. inornatus, which is a subspecies found in Sri Lanka. Our study was undertaken to assess space and habitat requirements typical of a viable population of M. u. inornatus to facilitate future conservation efforts. We captured and radio-collared 10 adult sloth bears and used the telemetry data to assess home-range size and habitat use. Mean 95% fixed kernel home ranges were 2.2 km2 (SE = 0.61) and 3.8 km2 (SE = 1.01) for adult females and males, respectively. Although areas outside the national park were accessible to bears, home ranges were almost exclusively situated within the national park boundaries. Within the home ranges, high forests were used more and abandoned agricultural fields (chenas) were used less than expected based on availability. Our estimates of home-range size are among the smallest reported for any species of bear. Thus, despite its relatively small size, Wasgomuwa National Park may support a sizeable population of sloth bears. The restriction of human activity within protected areas may be necessary for long-term viability of sloth bear populations in Sri Lanka as is maintenance of forest or scrub cover in areas with existing sloth bear populations and along potential travel corridors. ?? Wildlife Biology 2007.

  2. What does respect for the patient's autonomy require?

    Science.gov (United States)

    Cheng, Kam-Yuen

    2013-11-01

    Personal autonomy presupposes the notion of rationality. What is not so clear is whether, and how, a compromise of rationality to various degrees will diminish a person's autonomy. In bioethical literature, three major types of threat to the rationality of a patient's medical decision are identified: insufficient information, irrational beliefs/desires, and influence of different framing effects. To overcome the first problem, it is suggested that patients be provided with information about their diseases and treatment choices according to the objective standard. I shall explain how this should be finessed. Regarding the negative impact of irrational beliefs/desires, some philosophers have argued that holding irrational beliefs can still be an expression of autonomy. I reject this argument because the degree of autonomy of a decision depends on the degree of rationality of the beliefs or desires on which the decision is based. Hence, to promote patient autonomy, we need to eliminate irrational beliefs by the provision of evidence and good arguments. Finally, I argue that the way to smooth out the framing effects is to present the same information in different perspectives: it is too often assumed that medical information can always be given in a complete and unadorned manner. This article concludes with a cautionary note that the protection of patient autonomy requires much more time and effort than the current practice usually allows. © 2012 John Wiley & Sons Ltd.

  3. Influence of Habitat and Intrinsic Characteristics on Survival of Neonatal Pronghorn.

    Directory of Open Access Journals (Sweden)

    Christopher N Jacques

    Full Text Available Increased understanding of the influence of habitat (e.g., composition, patch size and intrinsic (e.g., age, birth mass factors on survival of neonatal pronghorn (Antilocapra americana is a prerequisite to successful management programs, particularly as they relate to population dynamics and the role of population models in adaptive species management. Nevertheless, few studies have presented empirical data quantifying the influence of habitat variables on survival of neonatal pronghorn. During 2002-2005, we captured and radiocollared 116 neonates across two sites in western South Dakota. We documented 31 deaths during our study, of which coyote (Canis latrans predation (n = 15 was the leading cause of mortality. We used known fate analysis in Program MARK to investigate the influence of intrinsic and habitat variables on neonatal survival. We generated a priori models that we grouped into habitat and intrinsic effects. The highest-ranking model indicated that neonate mortality was best explained by site, percent grassland, and open water habitat; 90-day survival (0.80; 90% CI = 0.71-0.88 declined 23% when grassland and water increased from 80.1 to 92.3% and 0.36 to 0.40%, respectively, across 50% natal home ranges. Further, our results indicated that grassland patch size and shrub density were important predictors of neonate survival; neonate survival declined 17% when shrub density declined from 5.0 to 2.5 patches per 100 ha. Excluding the site covariates, intrinsic factors (i.e., sex, age, birth mass, year, parturition date were not important predictors of survival of neonatal pronghorns. Further, neonatal survival may depend on available land cover and interspersion of habitats. We have demonstrated that maintaining minimum and maximum thresholds for habitat factors (e.g., percentages of grassland and open water patches, density of shrub patches throughout natal home ranges will in turn, ensure relatively high (>0.50 neonatal survival rates

  4. Influence of habitat and intrinsic characteristics on survival of neonatal pronghorn

    Science.gov (United States)

    Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2015-01-01

    Increased understanding of the influence of habitat (e.g., composition, patch size) and intrinsic (e.g., age, birth mass) factors on survival of neonatal pronghorn (Antilocapra americana) is a prerequisite to successful management programs, particularly as they relate to population dynamics and the role of population models in adaptive species management. Nevertheless, few studies have presented empirical data quantifying the influence of habitat variables on survival of neonatal pronghorn. During 2002–2005, we captured and radiocollared 116 neonates across two sites in western South Dakota. We documented 31 deaths during our study, of which coyote (Canis latrans) predation (n = 15) was the leading cause of mortality. We used known fate analysis in Program MARK to investigate the influence of intrinsic and habitat variables on neonatal survival. We generated a priori models that we grouped into habitat and intrinsic effects. The highest-ranking model indicated that neonate mortality was best explained by site, percent grassland, and open water habitat; 90-day survival (0.80; 90% CI = 0.71–0.88) declined 23% when grassland and water increased from 80.1 to 92.3% and 0.36 to 0.40%, respectively, across 50% natal home ranges. Further, our results indicated that grassland patch size and shrub density were important predictors of neonate survival; neonate survival declined 17% when shrub density declined from 5.0 to 2.5 patches per 100 ha. Excluding the site covariates, intrinsic factors (i.e., sex, age, birth mass, year, parturition date) were not important predictors of survival of neonatal pronghorns. Further, neonatal survival may depend on available land cover and interspersion of habitats. We have demonstrated that maintaining minimum and maximum thresholds for habitat factors (e.g., percentages of grassland and open water patches, density of shrub patches) throughout natal home ranges will in turn, ensure relatively high (>0.50) neonatal survival rates

  5. Habitat Demonstration Unit Project: Leadership and Management Strategies for a Rapid Prototyping Project

    Science.gov (United States)

    Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project

  6. Habitat features and distribution of Salamandra salamandra in underground springs

    Directory of Open Access Journals (Sweden)

    Raoul Manenti

    2009-12-01

    Full Text Available Subterranean habitats are among the less known terrestrial habitats, but can reveal an unexpected biodiversity, and can play an underestimated role for amphibians. The fire salamander Salamandra salamandra is sometimes found in underground environments, but the factors affecting its distribution in subterranean spaces remain substantially unexplored. We repeatedly surveyed some hypogeous springs, such as draining galleries and “bottini” in NW Italy, in order to evaluate the relationship between environmental features and distribution of S. salamandra in these underground springs. We performed visual encounter surveys to assess the occurrence of larvae, juveniles or adults in springs. We also recorded four habitat variables: easy of access, isolation, macrobenthos richness and forest cover of the surrounding landscape. We used generalized linear models to evaluate the relationships between habitat features and occurrence of larvae. We observed larvae of S. salamandra in 13 out of 22 springs; their presence was associated to springs with high easy of access and with relatively rich macrobenthos communities. In underground springs, larval development apparently required longer time than in nearby epigeous streams. Nevertheless, S. salamandra can attain metamorphosis in this environment. The occurrence of S. salamandra in underground environments was not accidental, but repeated in the time and interesting from an ecological point of view, confirming the high plasticity of the species.

  7. Salmon River Habitat Enhancement, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  8. NORTHWOODS Wildlife Habitat Data Base

    Science.gov (United States)

    Mark D. Nelson; Janine M. Benyus; Richard R. Buech

    1992-01-01

    Wildlife habitat data from seven Great Lakes National Forests were combined into a wildlife-habitat matrix named NORTHWOODS. Several electronic file formats of NORTHWOODS data base and documentation are available on floppy disks for microcomputers.

  9. Climate change expands the spatial extent and duration of preferred thermal habitat for lake Superior fishes.

    Directory of Open Access Journals (Sweden)

    Timothy J Cline

    Full Text Available Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha, and walleye (Sander vitreus. Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km(2 per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km(2 per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species.

  10. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Hamilton, Stephen G; Castro de la Guardia, Laura; Derocher, Andrew E; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  11. Habitat fragmentation effects on birds in grasslands and wetlands: A critique of our knowledge

    Science.gov (United States)

    Johnson, D.H.

    2001-01-01

    Habitat fragmentation exacerbates the problem of habitat loss for grassland and wetland birds. Remaining patches of grasslands and wetlands may be too small, too isolated, and too influenced by edge effects to maintain viable populations of some breeding birds. Knowledge of the effects of fragmentation on bird populations is critically important for decisions about reserve design, grassland and wetland management, and implementation of cropland set-aside programs that benefit wildlife. In my review of research that has been conducted on habitat fragmentation, I found at least five common problems in the methodology used. The results of many studies are compromised by these problems: passive sampling (sampling larger areas in larger patches), confounding effects of habitat heterogeneity, consequences of inappropriate pooling of data from different species, artifacts associated with artificial nest data, and definition of actual habitat patches. As expected, some large-bodied birds with large territorial requirements, such as the northern harrier (Circus cyaneus), appear area sensitive. In addition, some small species of grassland birds favor patches of habitat far in excess of their territory size, including the Savannah (Passerculus sandwichensis), grasshopper (Ammodramus savannarum) and Henslow's (A. henslowii) sparrows, and the bobolink (Dolichonyx oryzivorus). Other species may be area sensitive as well, but the data are ambiguous. Area sensitivity among wetland birds remains unknown since virtually no studies have been based on solid methodologies. We need further research on grassland bird response to habitat that distinguishes supportable conclusions from those that may be artifactual.

  12. 50 CFR 17.94 - Critical habitats.

    Science.gov (United States)

    2010-10-01

    ... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the... physical constituent elements within the defined area of Critical Habitat that are essential to the... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Critical habitats. 17.94 Section 17.94...

  13. 36 CFR 254.3 - Requirements.

    Science.gov (United States)

    2010-07-01

    ... of fish and wildlife habitats, cultural resources, watersheds, and wilderness and aesthetic values... use of the conveyed Federal land will not substantially conflict with established management... human health and the environment with respect to any such substances remaining on the property has been...

  14. Habitat use of Alburnoides namaki, in the Jajroud River (Namak Lake basin, Iran

    Directory of Open Access Journals (Sweden)

    Melahat Hoghoghi

    2016-01-01

    Full Text Available A fish species prefer a particular habitat where provides its biological requirements, hence, understanding their habitat use and preferences are crucial for their effective management and protection. This study was conducted to assess the habitat use and selection patterns of Alburnoides namaki, an endemic fish in Jajroud River, Namak Lake basin, Iran. The river was sampled at 18 equally spaced sites. A number of environmental variables, including elevation, water depth, river width, river slope, velocity, substrate type, average diameter of bed stone, riparian vegetation type and total dissolved solid (TDS and the relative abundance of A. namaki were recorded at each site. The results showed that A. namaki mostly selects upper parts of the river with higher slope, higher depth, lower width, lower velocity, bed rock substrate i.e. bed with boulder cover, TDS of 100-150 ppm, and deciduous forest and residential area riparian type compared with the available ranges. This study provides the habitat use and environmental factors affecting on the distribution of A. namaki in the Jajroud River.

  15. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    Science.gov (United States)

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  16. Degradation of natural habitats by roads: Comparing land-take and noise effect zone

    International Nuclear Information System (INIS)

    Madadi, Hossein; Moradi, Hossein; Soffianian, Alireza; Salmanmahiny, Abdolrassoul; Senn, Josef; Geneletti, Davide

    2017-01-01

    Roads may act as barriers, negatively influencing the movement of animals, thereby causing disruption in landscapes. Roads cause habitat loss and fragmentation not only through their physical occupation, but also through traffic noise. The aim of this study is to provide a method to quantify the habitat degradation including habitat loss and fragmentation due to road traffic noise and to compare it with those of road land-take. Two types of fragmentation effects are determined: structural fragmentation (based on road land-take only), and functional fragmentation (noise effect zone fragmentation, buffer using a threshold of 40 dB). Noise propagation for roads with a traffic volume of more than 1000 vehicles per day was simulated by Calculation of Road Traffic Noise (CRTN) model. Habitat loss and fragmentation through land-take and noise effect zone were calculated and compared in Zagros Mountains in western Iran. The study area is characterized by three main habitat types (oak forest, scattered woodland and temperate grassland) which host endangered and protected wildlife species. Due to topographic conditions, land cover type, and the traffic volume in the region, the noise effect zone ranged from 50 to 2000 m which covers 18.3% (i.e. 516,929.95 ha) of the total study area. The results showed that the habitat loss due to noise effect zone is dramatically higher than that due to road land-take only (35% versus 1.04% of the total area). Temperate grasslands lost the highest proportion of the original area by both land-take and noise effect zone, but most area was lost in scattered woodland as compared to the other two habitat types. The results showed that considering the noise effect zone for habitat fragmentation resulted in an increase of 25.8% of the area affected (316,810 ha) as compared to using the land-take only (555,874 ha vs. 239,064 ha, respectively). The results revealed that the degree of habitat fragmentation is increasing by considering the noise

  17. Why Deep Space Habitats Should Be Different from the International Space Station

    Science.gov (United States)

    Griffin, Brand; Brown, MacAulay

    2016-01-01

    It is tempting to view the International Space Station (ISS) as a model for deep space habitats. This is not a good idea for many reasons. The ISS does not have a habitation module; instead the individual crew quarters are dispersed across several modules, the galley is in the US Laboratory and the waste hygiene compartment is in a Node. This distributed arrangement may be inconvenient but more important differences distinguish a deep space habitat from the ISS. First, the Space Shuttle launch system that shaped, sized, and delivered most ISS elements has been retired. Its replacement, the Space Launch System (SLS), is specifically designed for human exploration beyond low-Earth orbit and is capable of transporting more efficient, large diameter, heavy-lift payloads. Next, because of the Earth's protective geomagnetic field, ISS crews are naturally shielded from lethal radiation. Deep space habitat designs must include either a storm shelter or strategically positioned equipment and stowage for radiation protection. Another important difference is the increased transit time with no opportunity for an ISS-type emergency return. It takes 7 to 10 days to go between Earth and cis-lunar locations and 1000 days for the Mars habitat transit. This long commute calls for greater crew autonomy with habitats designed for the crew to fix their own problems. The ISS rack-enclosed, densely packaged subsystems are a product of the Shuttle era and not maintenance friendly. A solution better suited for deep space habitats spreads systems out allowing direct access to single-layer packaging and providing crew access to each component without having to remove another. Operational readiness is another important discriminator. The ISS required over 100 flights to build, resupply, and transport the crew, whereas SLS offers the capability to launch a fully provisioned habitat that is operational without additional outfitting or resupply flights.

  18. Life history comparison of two terrestrial isopods in relation to habitat specialization

    Science.gov (United States)

    Quadros, Aline Ferreira; Caubet, Yves; Araujo, Paula Beatriz

    2009-03-01

    For many animal species, there is a relationship between life history strategies, as predicted by the r- K-selection theory, degree of habitat specialization and response to habitat alteration and loss. Here we compare two sympatric woodlice species with contrasting patterns of habitat use and geographical distribution. We predict that Atlantoscia floridana (Philosciidae), considered a habitat generalist, would exhibit the r-selected traits, whereas Balloniscus glaber (Balloniscidae), considered a habitat specialist, should have the K-selected traits. We analyzed several life history traits as well as life and fecundity tables using 715 and 842 females of A. floridana and B. glaber, respectively, from populations living in syntopy in southern Brazil. As predicted, most evaluated traits allow A. floridana to be considered an r-strategist and B. glaber a K-strategist: A. floridana showed a shorter lifetime, faster development, earlier reproduction, a smaller parental investment, higher net reproductive rate ( R0), a higher growth rate ( r) and a shorter generation time ( T) in comparison to B. glaber. A. floridana seems to be a successful colonizer with a high reproductive output. These characteristics explain its local abundance, commonness and wide geographical distribution. On the contrary, B. glaber has a restricted geographical distribution that is mainly associated with Atlantic forest fragments, a biome threatened by deforestation and replacement by monocultures. Its narrow distribution combined with the K-selected traits may confer to this species an increased extinction risk.

  19. An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis. [Montana

    Science.gov (United States)

    Varney, J. R.; Craighead, J. J.; Sumner, J. S.

    1974-01-01

    Improved classification and mapping of grizzly habitat will permit better estimates of population density and distribution, and allow accurate evaluation of the potential effects of changes in land use, hunting regulation, and management policies on existing populations. Methods of identifying favorable habitat from ERTS-1 multispectral scanner imagery were investigated and described. This technique could reduce the time and effort required to classify large wilderness areas in the Western United States.

  20. Do nursery habitats provide shelter from flow for juvenile fish?

    Directory of Open Access Journals (Sweden)

    Darren M Parsons

    Full Text Available Juvenile fish nurseries are an essential life stage requirement for the maintenance of many fish populations. With many inshore habitats globally in decline, optimising habitat management by increasing our understanding of the relationship between juvenile fish and nursery habitats may be a prudent approach. Previous research on post-settlement snapper (Chrysophrys auratus has suggested that structure may provide a water flow refuge, allowing snapper to access high water flow sites that will also have a high flux of their pelagic prey. We investigated this hypothesis by describing how Artificial Seagrass Units (ASUs modified water flow while also using a multi-camera set up to quantify snapper position in relation to this water flow environment. Horizontal water flow was reduced on the down-current side of ASUs, but only at the height of the seagrass canopy. While the highest abundance of snapper did occur down-current of the ASUs, many snapper also occupied other locations or were too high in the water column to receive any refuge from water flow. The proportion of snapper within the water column was potentially driven by strategy to access zooplankton prey, being higher on the up-current side of ASUs and on flood tides. It is possible that post-settlement snapper alternate position to provide opportunities for both feeding and flow refuging. An alternative explanation relates to an observed interaction between post-settlement snapper and a predator, which demonstrated that snapper can utilise habitat structure when threatened. The nature of this relationship, and its overall importance in determining the value of nursery habitats to post-settlement snapper remains an elusive next step.

  1. Do nursery habitats provide shelter from flow for juvenile fish?

    Science.gov (United States)

    Parsons, Darren M; MacDonald, Iain; Buckthought, Dane; Middleton, Crispin

    2018-01-01

    Juvenile fish nurseries are an essential life stage requirement for the maintenance of many fish populations. With many inshore habitats globally in decline, optimising habitat management by increasing our understanding of the relationship between juvenile fish and nursery habitats may be a prudent approach. Previous research on post-settlement snapper (Chrysophrys auratus) has suggested that structure may provide a water flow refuge, allowing snapper to access high water flow sites that will also have a high flux of their pelagic prey. We investigated this hypothesis by describing how Artificial Seagrass Units (ASUs) modified water flow while also using a multi-camera set up to quantify snapper position in relation to this water flow environment. Horizontal water flow was reduced on the down-current side of ASUs, but only at the height of the seagrass canopy. While the highest abundance of snapper did occur down-current of the ASUs, many snapper also occupied other locations or were too high in the water column to receive any refuge from water flow. The proportion of snapper within the water column was potentially driven by strategy to access zooplankton prey, being higher on the up-current side of ASUs and on flood tides. It is possible that post-settlement snapper alternate position to provide opportunities for both feeding and flow refuging. An alternative explanation relates to an observed interaction between post-settlement snapper and a predator, which demonstrated that snapper can utilise habitat structure when threatened. The nature of this relationship, and its overall importance in determining the value of nursery habitats to post-settlement snapper remains an elusive next step.

  2. North American Brant: Effects of changes in habitat and climate on population dynamics

    Science.gov (United States)

    Ward, David H.; Reed, Austin; Sedinger, James S.; Black, Jeffrey M.; Derksen, Dirk V.; Castelli, Paul M.

    2005-01-01

    We describe the importance of key habitats used by four nesting populations of nearctic brant (Branta bernicla) and discuss the potential relationship between changes in these habitats and population dynamics of brant. Nearctic brant, in contrast to most geese, rely on marine habitats and native intertidal plants during the non-breeding season, particularly the seagrass, Zostera, and the macroalgae, Ulva. Atlantic and Eastern High Arctic brant have experienced the greatest degradation of their winter habitats (northeastern United States and Ireland, respectively) and have also shown the most plasticity in feeding behavior. Black and Western High Arctic brant of the Pacific Flyway are the most dependent on Zostera, and are undergoing a shift in winter distribution that is likely related to climate change and its associated effects on Zostera dynamics. Variation in breeding propensity of Black Brant associated with winter location and climate strongly suggests that food abundance on the wintering grounds directly affects reproductive performance in these geese. In summer, salt marshes, especially those containing Carex and Puccinellia, are key habitats for raising young, while lake shorelines with fine freshwater grasses and sedges are important for molting birds. Availability and abundance of salt marshes has a direct effect on growth and recruitment of goslings and ultimately, plays an important role in regulating size of local brant populations. ?? 2005 Blackwell Publishing Ltd.

  3. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  4. Does learning or instinct shape habitat selection?

    Directory of Open Access Journals (Sweden)

    Scott E Nielsen

    Full Text Available Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.

  5. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae)

    KAUST Repository

    Coker, Darren James; Hoey, Andrew S.; Wilson, Shaun K.; Depczynski, Martial; Graham, Nicholas A. J.; Hobbs, Jean-Paul A.; Holmes, Thomas H.; Pratchett, Morgan S.

    2015-01-01

    Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  6. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae.

    Directory of Open Access Journals (Sweden)

    Darren J Coker

    Full Text Available Hawkfishes (family: Cirrhitidae are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  7. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae).

    Science.gov (United States)

    Coker, Darren J; Hoey, Andrew S; Wilson, Shaun K; Depczynski, Martial; Graham, Nicholas A J; Hobbs, Jean-Paul A; Holmes, Thomas H; Pratchett, Morgan S

    2015-01-01

    Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  8. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae)

    KAUST Repository

    Coker, Darren James

    2015-11-03

    Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  9. Variability in leaf optical properties among 26 species from a broad range of habitats

    International Nuclear Information System (INIS)

    Knapp, A.K.; Carter, G.A.

    1998-01-01

    Leaves from 26 species with growth forms from annual herbs to trees were collected from open, intermediate, and shaded understory habitats in Mississippi and Kansas, USA. Leaf optical properties including reflectance, transmittance, and absorptance in visible and near infrared (NIR) wavelengths were measured along with leaf thickness and specific leaf mass (SLM). These leaf properties and internal light scattering have been reported to vary with light availability in studies that have focused on a limited number of species. Our objective was to determine whether these patterns in leaf optics and light availability were consistent when a greater number of species were evaluated. Leaf thickness and SLM varied by tenfold among species sampled, but within-habitat variance was high. Although there was a strong trend toward thicker leaves in open habitats, only SLM was significantly greater in open vs. understory habitats. In contrast, leaf optical properties were strikingly similar among habitats. Reflectance and reflectance/transmittance in the NIR were used to estimate internal light scattering and there were strong relationships (r2 0.65) between these optical properties and leaf thickness. We concluded that leaf thickness, which did not vary consistently among habitats, was the best predictor of NIR reflectance and internal light scattering. However, because carbon allocation to leaves was lower in understory species (low SLM) yet gross optical properties were similar among all habitats, the energy investment by shade leaves required to achieve optical equivalence with sun leaves was lower. Differences in leaf longevity and growth form within a habitat may help explain the lack of consistent patterns in leaf optics as the number of species sampled increases

  10. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, Andrew C., E-mail: andrew.mckinley@hotmail.com [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia); Miskiewicz, Anthony [Environment and Recreation, Wollongong City Council, 41 Burelli Street, Wollongong, New South Wales 2500 (Australia); Taylor, Matthew D.; Johnston, Emma L. [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2011-06-15

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: > We examine contamination/habitat modification impacts on larval fish. > Larvae communities differ between modified/unmodified estuaries. > Larvae are more abundant/diverse in modified areas. > Trends are strongly related to sediment metals/seagrass cover. > Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  11. Shape, colour plasticity, and habitat use indicate morph-specific camouflage strategies in a marine shrimp.

    Science.gov (United States)

    Duarte, Rafael C; Stevens, Martin; Flores, Augusto A V

    2016-10-18

    Colour and shape polymorphisms are important features of many species and may allow individuals to exploit a wider array of habitats, including through behavioural differences among morphs. In addition, differences among individuals in behaviour and morphology may reflect different strategies, for example utilising different approaches to camouflage. Hippolyte obliquimanus is a small shrimp species inhabiting different shallow-water vegetated habitats. Populations comprise two main morphs: homogeneous shrimp of variable colour (H) and transparent individuals with coloured stripes (ST). These morphs follow different distribution patterns between their main algal habitats; the brown weed Sargassum furcatum and the pink-red weed Galaxaura marginata. In this study, we first investigated morph-specific colour change and habitat selection, as mechanisms underlying camouflage and spatial distribution patterns in nature. Then, we examined habitat fidelity, mobility, and morphological traits, further indicating patterns of habitat use. H shrimp are capable of changing colour in just a few days towards their algal background, achieving better concealment in the more marginal, and less preferred, red weed habitat. Furthermore, laboratory trials showed that habitat fidelity is higher for H shrimp, whereas swimming activity is higher for the ST morph, aligned to morphological evidence indicating these two morphs comprise a more benthic (H) and a more pelagic (ST) life-style, respectively. Results suggest that H shrimp utilise a camouflage strategy specialised to a limited number of backgrounds at any one time, whereas ST individuals comprise a phenotype with more generalist camouflage (transparency) linked to a more generalist background utilisation. The coexistence within a population of distinct morphotypes with apparently alternative strategies of habitat use and camouflage may reflect differential responses to substantial seasonal changes in macroalgal cover. Our findings

  12. Habitat preference of Roan Antelope (Hippotragus equinus ...

    African Journals Online (AJOL)

    Key words: Habitat Preference, Roan Antelope, Seasons. INTRODUCTION. Habitat quality and quantity have been identified as the primary limiting factors that influence animal population dynamics. (Jansen et al., 2001). Habitat influences the presence, abundance, distribution, movement and behavior of game animals.

  13. The distribution and habitat requirements of the genus Orobanche L. (Orobanchaceae in SE Poland

    Directory of Open Access Journals (Sweden)

    Renata Piwowarczyk

    2011-05-01

    Full Text Available The distribution of the genus Orobanche in SE Poland is presented. The study area stretches between the Vistula and the Bug rivers, and comprises the Polish areas of the Lublin-Lwów Upland, the Wołyń Upland and the southern part of Polesie. Eight species of the genus Orobanche: O. alba, O. alsatica, O. arenaria, O. caryophyllacea, O. elatior, O. lutea, O. pallidiflora, O. picridis, were collected during floristic investigations conducted between 1999 and 2010. The hosts, abundance and habitat preferences at the localities are given and a supplemented map of the distribution in SE Poland is included.

  14. Temporal and Spatial Scales Matter: Circannual Habitat Selection by Bird Communities in Vineyards.

    Directory of Open Access Journals (Sweden)

    Claire Guyot

    Full Text Available Vineyards are likely to be regionally important for wildlife, but we lack biodiversity studies in this agroecosystem which is undergoing a rapid management revolution. As vine cultivation is restricted to arid and warm climatic regions, biodiversity-friendly management would promote species typical of southern biomes. Vineyards are often intensively cultivated, mostly surrounded by few natural features and offering a fairly mineral appearance with little ground vegetation cover. Ground vegetation cover and composition may further strongly vary with respect to season, influencing patterns of habitat selection by ecological communities. We investigated season-specific bird-habitat associations to highlight the importance of semi-natural habitat features and vineyard ground vegetation cover throughout the year. Given that avian habitat selection varies according to taxa, guilds and spatial scale, we modelled bird-habitat associations in all months at two spatial scales using mixed effects regression models. At the landscape scale, birds were recorded along 10 1-km long transects in Southwestern Switzerland (February 2014 -January 2015. At the field scale, we compared the characteristics of visited and unvisited vineyard fields (hereafter called parcels. Bird abundance in vineyards tripled in winter compared to summer. Vineyards surrounded by a greater amount of hedges and small woods harboured higher bird abundance, species richness and diversity, especially during the winter season. Regarding ground vegetation, birds showed a season-specific habitat selection pattern, notably a marked preference for ground-vegetated parcels in winter and for intermediate vegetation cover in spring and summer. These season-specific preferences might be related to species-specific life histories: more insectivorous, ground-foraging species occur during the breeding season whereas granivores predominate in winter. These results highlight the importance of

  15. The Relationship between Habitat Loss and Fragmentation during Urbanization: An Empirical Evaluation from 16 World Cities.

    Directory of Open Access Journals (Sweden)

    Zhifeng Liu

    Full Text Available Urbanization results in habitat loss and habitat fragmentation concurrently, both influencing biodiversity and ecological processes. To evaluate these impacts, it is important to understand the relationships between habitat loss and habitat fragmentation per se (HLHF during urbanization. The objectives of this study were two-fold: 1 to quantify the different forms of the HLHF relationship during urbanization using multiple landscape metrics, and 2 to test the validity of the HLHF relations reported in the literature. Our analysis was based on a long-term urbanization dataset (1800-2000 of 16 large cities from around the world. Habitat area was represented as the percentage of non-built-up area in the landscape, while habitat fragmentation was measured using several landscape metrics. Our results show that the relationship between habitat loss and habitat fragmentation during urbanization is commonly monotonic-linear, exponential, or logarithmic, indicating that the degree of habitat fragmentation per se increases with habitat loss in general. We compared our results with 14 hypothesized HLHF relationships based on simulated landscapes found in the literature, and found that four of them were consistent with those of urbanization, whereas the other ten were not. Also, we identified six new HLHF relationships when fragmentation was measured by total core area, normalized total core area, patch density, edge density and landscape shape index, respectively. In addition, our study demonstrated that the "space-for-time" approach, frequently used in ecology and geography, generated specious HLHF relationships, suggesting that this approach is largely inappropriate for analyses of urban landscapes that are highly heterogeneous in space and unusually contingent in dynamics. Our results show both generalities and idiosyncrasies of the HLHF relationship, providing new insights for assessing ecological effects of urbanization.

  16. Teaching animal habitat selection using wildlife tracking equipment

    Science.gov (United States)

    Laskowski, Jessica; Gillespie, Caitlyn R.; Corral, Lucia; Oden, Amy; Fricke, Kent A.; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce. Biologists track animal movement using radio telemetry technology to study habitat selection so they can better provide species with habitats that promote population growth. We present a curriculum in which students locate “animals” (transmitters) using radio telemetry equipment and apply math skills (use of fractions and percentages) to assess their “animal's” habitat selection by comparing the availability of habitat types with the proportion of “animals” they find in each habitat type.

  17. Creating complex habitats for restoration and reconciliation

    NARCIS (Netherlands)

    Loke, L.H.L.; Ladle, R.J.; Bouma, T.J.; Todd, P.A.

    2015-01-01

    Simplification of natural habitats has become a major conservation challenge and there is a growing consensus that incorporating and enhancing habitat complexity is likely to be critical for future restoration efforts. Habitat complexity is often ascribed an important role in controlling species

  18. Diet of the Fuscous Flycatcher Cnemotriccus fuscatus (Wied, 1831 – Aves, Tyrannidae - in three habitats of the northern Pantanal, Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    MG Gaiotti

    Full Text Available The Fuscous Flycatcher (Cnemotriccus fuscatus is a medium-sized Tyrannidae widespread in South America. Despite its large distribution, there have been very few studies on its diet, especially in different habitats. This study presents data on diet variation in three habitats in the Pantanal wetlands in the state of Mato Grosso, Brazil. The specimens were captured through a mist-netting programme between February 2000 and May 2010, in the Retiro Novo Farm, in the Poconé municipality. Birds were captured in three vegetation types: Landizal, Cambarazal and Cordilheira. Tartar emetic was used to obtain the regurgitation samples identified at order level. We captured 61 individuals (21, 26 and 14 in the above described habitats, respectively. Diet of C. fuscatus differed between the three habitats. Ants and beetles were the most relevant prey items either in numerical frequency (NF or in frequency of occurrence (OF, in terms of the overall diet (NF = 27.34% and 37.89%; OF = 36.06% and 75.4%, respectively. However, in Cordilheira, seeds and beetles dominated the NF (21.8% and 38.1%, respectively and OF (28.5% and 85.7%, respectively. Cnemotriccus fuscatus was found to have an omnivorous diet, although in Cambarazal, individuals preyed exclusively on arthropods. The present study provides an important contribution to the knowledge of the diet of a poorly studied Neotropical bird.

  19. The potential distributions, and estimated spatial requirements and population sizes, of the medium to large-sized mammals in the planning domain of the Greater Addo Elephant National Park project

    Directory of Open Access Journals (Sweden)

    A.F. Boshoff

    2002-12-01

    Full Text Available The Greater Addo Elephant National Park project (GAENP involves the establishment of a mega biodiversity reserve in the Eastern Cape, South Africa. Conservation planning in the GAENP planning domain requires systematic information on the potential distributions and estimated spatial requirements, and population sizes of the medium to largesized mammals. The potential distribution of each species is based on a combination of literature survey, a review of their ecological requirements, and consultation with conservation scientists and managers. Spatial requirements were estimated within 21 Mammal Habitat Classes derived from 43 Land Classes delineated by expert-based vegetation and river mapping procedures. These estimates were derived from spreadsheet models based on forage availability estimates and the metabolic requirements of the respective mammal species, and that incorporate modifications of the agriculture-based Large Stock Unit approach. The potential population size of each species was calculated by multiplying its density estimate with the area of suitable habitat. Population sizes were calculated for pristine, or near pristine, habitats alone, and then for these habitats together with potentially restorable habitats for two park planning domain scenarios. These data will enable (a the measurement of the effectiveness of the GAENP in achieving predetermined demographic, genetic and evolutionary targets for mammals that can potentially occur in selected park sizes and configurations, (b decisions regarding acquisition of additional land to achieve these targets to be informed, (c the identification of species for which targets can only be met through metapopulation management,(d park managers to be guided regarding the re-introduction of appropriate species, and (e the application of realistic stocking rates. Where possible, the model predictions were tested by comparison with empirical data, which in general corroborated the

  20. The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes.

    Science.gov (United States)

    Harborne, Alastair R; Mumby, Peter J; Micheli, Fiorenza; Perry, Christopher T; Dahlgren, Craig P; Holmes, Katherine E; Brumbaugh, Daniel R

    2006-01-01

    overall functional roles of different habitats. The resulting ordination suggests that each habitat has a unique suite of functional values and, potentially, a distinct role within the ecosystem. This review shows that further data are required for many habitat types and processes, particularly forereef and escarpment habitats on reefs and for seagrass beds and mangroves. Furthermore, many data were collected prior to the regional mass mortality of Diadema and Acropora, and subsequent changes to benthic communities have, in many cases, altered a habitat's functional value, hindering the use of these data for parameterising maps and models. Similarly, few data exist on how functional values change when environmental parameters, such as water clarity, are altered by natural or anthropogenic influences or the effects of a habitat's spatial context within the seascape. Despite these limitations, sufficient data are available to construct maps and models to better understand tropical marine ecosystem processes and assist more effective mitigation of threats that alter habitats and their functional values.

  1. Habitat specialization through germination cueing

    DEFF Research Database (Denmark)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen; Bruun, Hans Henrik

    2013-01-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently...

  2. Using EUNIS habitat classification for benthic mapping in European seas: present concerns and future needs.

    Science.gov (United States)

    Galparsoro, Ibon; Connor, David W; Borja, Angel; Aish, Annabelle; Amorim, Patricia; Bajjouk, Touria; Chambers, Caroline; Coggan, Roger; Dirberg, Guillaume; Ellwood, Helen; Evans, Douglas; Goodin, Kathleen L; Grehan, Anthony; Haldin, Jannica; Howell, Kerry; Jenkins, Chris; Michez, Noëmie; Mo, Giulia; Buhl-Mortensen, Pål; Pearce, Bryony; Populus, Jacques; Salomidi, Maria; Sánchez, Francisco; Serrano, Alberto; Shumchenia, Emily; Tempera, Fernando; Vasquez, Mickaël

    2012-12-01

    The EUNIS (European Union Nature Information System) habitat classification system aims to provide a common European reference set of habitat types within a hierarchical classification, and to cover all terrestrial, freshwater and marine habitats of Europe. The classification facilitates reporting of habitat data in a comparable manner, for use in nature conservation (e.g. inventories, monitoring and assessments), habitat mapping and environmental management. For the marine environment the importance of a univocal habitat classification system is confirmed by the fact that many European initiatives, aimed at marine mapping, assessment and reporting, are increasingly using EUNIS habitat categories and respective codes. For this reason substantial efforts have been made to include information on marine benthic habitats from different regions, aiming to provide a comprehensive geographical coverage of European seas. However, there still remain many concerns on its applicability as only a small fraction of Europe's seas are fully mapped and increasing knowledge and application raise further issues to be resolved. This paper presents an overview of the main discussion and conclusions of a workshop, organised by the MeshAtlantic project, focusing upon the experience in using the EUNIS habitats classification across different countries and seas, together with case studies. The aims of the meeting were to: (i) bring together scientists with experience in the use of the EUNIS marine classification and representatives from the European Environment Agency (EEA); (ii) agree on enhancements to EUNIS that ensure an improved representation of the European marine habitats; and (iii) establish practices that make marine habitat maps produced by scientists more consistent with the needs of managers and decision-makers. During the workshop challenges for the future development of EUNIS were identified, which have been classified into five categories: (1) structure and hierarchy; (2

  3. Species’ traits help predict small mammal responses to habitat homogenization by an invasive grass

    Science.gov (United States)

    Ceradini, Joseph P.; Chalfoun, Anna D.

    2017-01-01

    Invasive plants can negatively affect native species, however, the strength, direction, and shape of responses may vary depending on the type of habitat alteration and the natural history of native species. To prioritize conservation of vulnerable species, it is therefore critical to effectively predict species’ responses to invasive plants, which may be facilitated by a framework based on species’ traits. We studied the population and community responses of small mammals and changes in habitat heterogeneity across a gradient of cheatgrass (Bromus tectorum) cover, a widespread invasive plant in North America. We live-trapped small mammals over two summers and assessed the effect of cheatgrass on native small mammal abundance, richness, and species-specific and trait-based occupancy, while accounting for detection probability and other key habitat elements. Abundance was only estimated for the most common species, deer mice (Peromyscus maniculatus). All species were pooled for the trait-based occupancy analysis to quantify the ability of small mammal traits (habitat association, mode of locomotion, and diet) to predict responses to cheatgrass invasion. Habitat heterogeneity decreased with cheatgrass cover. Deer mouse abundance increased marginally with cheatgrass. Species richness did not vary with cheatgrass, however, pocket mouse (Perognathus spp.) and harvest mouse (Reithrodontomys spp.) occupancy tended to decrease and increase, respectively, with cheatgrass cover, suggesting a shift in community composition. Cheatgrass had little effect on occupancy for deer mice, 13-lined ground squirrels (Spermophilus tridecemlineatus), and Ord's kangaroo rat (Dipodomys ordii). Species’ responses to cheatgrass primarily corresponded with our a priori predictions based on species’ traits. The probability of occupancy varied significantly with a species’ habitat association but not with diet or mode of locomotion. When considered within the context of a rapid

  4. Assessing species habitat using Google Street View: a case study of cliff-nesting vultures.

    Science.gov (United States)

    Olea, Pedro P; Mateo-Tomás, Patricia

    2013-01-01

    The assessment of a species' habitat is a crucial issue in ecology and conservation. While the collection of habitat data has been boosted by the availability of remote sensing technologies, certain habitat types have yet to be collected through costly, on-ground surveys, limiting study over large areas. Cliffs are ecosystems that provide habitat for a rich biodiversity, especially raptors. Because of their principally vertical structure, however, cliffs are not easy to study by remote sensing technologies, posing a challenge for many researches and managers working with cliff-related biodiversity. We explore the feasibility of Google Street View, a freely available on-line tool, to remotely identify and assess the nesting habitat of two cliff-nesting vultures (the griffon vulture and the globally endangered Egyptian vulture) in northwestern Spain. Two main usefulness of Google Street View to ecologists and conservation biologists were evaluated: i) remotely identifying a species' potential habitat and ii) extracting fine-scale habitat information. Google Street View imagery covered 49% (1,907 km) of the roads of our study area (7,000 km²). The potential visibility covered by on-ground surveys was significantly greater (mean: 97.4%) than that of Google Street View (48.1%). However, incorporating Google Street View to the vulture's habitat survey would save, on average, 36% in time and 49.5% in funds with respect to the on-ground survey only. The ability of Google Street View to identify cliffs (overall accuracy = 100%) outperformed the classification maps derived from digital elevation models (DEMs) (62-95%). Nonetheless, high-performance DEM maps may be useful to compensate Google Street View coverage limitations. Through Google Street View we could examine 66% of the vultures' nesting-cliffs existing in the study area (n = 148): 64% from griffon vultures and 65% from Egyptian vultures. It also allowed us the extraction of fine-scale features of cliffs

  5. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    Science.gov (United States)

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  6. Varying energetic costs of Brent Geese along a continuum from aquatic to agricultural habitats: the importance of habitat-specific energy expenditure

    DEFF Research Database (Denmark)

    Clausen, Kevin Kuhlmann; Clausen, Preben; Fox, Anthony David

    2013-01-01

    and alert than birds feeding in aquatic areas, and also spent much less time roosting. Frequency of disturbance was found to be higher in terrestrial habitats compared to aquatic habitats. These stress-related behavioural differences between habitats highlight the vulnerability of the species associated...... with adapting to different food sources. Combining time-budgets with activity-specific BMR-multiplicators showed that activity-based metabolic rates ranged from 1.7 to 2.7 × BMR within habitats exploited by Brent Geese, and emphasized that aquatic areas represent the energetically least expensive foraging...... habitat for these birds. This is largely the result of habitat-specific variation in time spent flying. These findings underline the importance of measuring habitat-specific behaviour and disturbance when studying avian energetics, and demonstrate the risk of uncritically using allometric relationships...

  7. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.

    2015-01-01

    This report presents updates to methods, describes additional data collected, documents modeling results, and discusses implications from an updated habitat-flow model that can be used to predict ecological habitat for fish and recreational habitat for canoeing on the main stem Shenandoah River in Virginia. Given a 76-percent increase in population predictions for 2040 over 1995 records, increased water-withdrawal scenarios were evaluated to determine the effects on habitat and recreation in the Shenandoah River. Projected water demands for 2040 vary by watershed: the North Fork Shenandoah River shows a 55.9-percent increase, the South Fork Shenandoah River shows a 46.5-percent increase, and the main stem Shenandoah River shows a 52-percent increase; most localities are projected to approach the total permitted surface-water and groundwater withdrawals values by 2040, and a few localities are projected to exceed these values.

  8. Density and habitat requirements of sympatric hares and cottontails in northern Italy

    Directory of Open Access Journals (Sweden)

    Anna Vidus Rosin

    2010-06-01

    Full Text Available Abstract From 2005 to 2009, densities and habitat selection by the European hare (Lepus europaeus and Eastern cottontail (Sylvilagus floridanus were assessed during feeding activity in an intensively cultivated area in northern Italy. Hare average density (74 ind./km2 was comparable to the highest values reported for European farming areas. Preand post-breeding density fluctuated widely across the study years, probably as a consequence of changes in the carrying capacity of the study area. Cottontail population size progressively increased, as expected for a recently introduced species supported by high reproductive performances. Hares used both crops and spontaneous vegetation during their feeding activity. Conversely, cottontails avoided winter cereals and preferred to feed on alfalfa. Our results suggest that simplified agro-ecosystems cannot maintain high density hare populations even at a short time scale. Landscape heterogeneity could enhance the chances of coexistence between the two lagomorphs.
    Riassunto Densità ed esigenze ecologiche della lepre e del silvilago in condizioni di simpatria in Italia settentrionale Tra il 2005 e il 2009, la densità e l’uso del habitat durante l’attività di alimentazione da parte della Lepre europea (Lepus europaeus e del Silvilago (Sylvilagus floridanus sono stati indagati in un’area intensamente coltivata nell’Italia settentrionale. La densità media della lepre nell’area di studio (74 ind./km2 corrisponde ai valori maggiori riportati per le aree agricole europee. Le densità pre- e post riproduttive della lepre hanno mostrato sensibili fluttuazioni durante il periodo di studio, probabilmente dovute ai cambiamenti stagionali della capacità portante dell’area di studio. L’abbondanza del silvilago è aumentata durante gli ultimi tre anni di studio, come prevedibile per una

  9. Summary report for Bureau of Fisheries stream habitat surveys: Cowlitz River basin. Final report 1934--1942

    International Nuclear Information System (INIS)

    McIntosh, B.A.; Clark, S.E.; Sedell, J.R.

    1995-07-01

    This document contains summary reports of stream habitat surveys, conducted in the Cowlitz River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938--1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead. The purpose of the survey was to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949--1952 by the US Fish and Wildlife Service

  10. Assessing habitat selection when availability changes

    Science.gov (United States)

    Arthur, S.; Garner, G.; ,

    1996-01-01

    We present a method of comparing data on habitat use and availability that allows availability to differ among observations. This method is applicable when habitats change over time and when animals are unable to move throughout a predetermined study area between observations. We used maximum-likelihood techniques to derive an index that estimates the probability that each habitat type would be used if all were equally available. We also demonstrate how these indices can be used to compare relative use of available habitats, assign them ranks, and assess statistical differences between pairs of indices. The set of these indices for all habitats can be compared between groups of animals that represent different seasons, sex or age classes, or experimental treatments. This method allows quantitative comparisons among types and is not affected by arbitrary decisions about which habitats to include in the study. We provide an example by comparing the availability of four categories of sea ice concentration to their use by adult female polar bears, whose movements were monitored by satellite radio tracking in the Bering and Chukchi Seas during 1990. Use of ice categories by bears was nonrandom, and the pattern of use differed between spring and late summer seasons.

  11. Selection of habitat by the jaguar, Panthera onca (Carnivora: Felidae, in the upper Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    Laury Cullen Junior

    2013-08-01

    Full Text Available We used data from VHF and GPS radio-tagged jaguars, Panthera onca (Linnaeus, 1758 to quantify jaguar habitat selection and how adult individuals in the Upper Paraná River region selected among the available habitat types. We followed the framework in which animals make decisions about resource use at hierarchical stages, namely selection of home range within a study area (second-order selection and selection of patches within a home range (third-order selection. We quantified habitat preferences at two orders of selection with respect to habitat types and to test the null hypothesis that habitat utilization by jaguars was random at both study sites. Using compositional analysis, we assessed habitat selection by jaguars at second- and third-orders of selection. Jaguars consistently preferred dense marshes and primary forests, and avoided human-dominated areas such as intensively managed open pastures. Although the avoidance of disturbed and developed habitat types by jaguars is not surprising, this is the first study to document it. If small protected areas, such as the ones already existing in the Upper Paraná region, are to sustain jaguar populations they, must include and protect as many primary forests and marshlands as possible, so that jaguars can disperse, hunt wild prey and take care of their cubs without being disturbed. What is urgently needed in these jaguar-protected areas is the creation of larger protected areas that can sustain jaguars in their favored habitat.

  12. Habitat features and predictive habitat modeling for the Colorado chipmunk in southern New Mexico

    Science.gov (United States)

    Rivieccio, M.; Thompson, B.C.; Gould, W.R.; Boykin, K.G.

    2003-01-01

    Two subspecies of Colorado chipmunk (state threatened and federal species of concern) occur in southern New Mexico: Tamias quadrivittatus australis in the Organ Mountains and T. q. oscuraensis in the Oscura Mountains. We developed a GIS model of potentially suitable habitat based on vegetation and elevation features, evaluated site classifications of the GIS model, and determined vegetation and terrain features associated with chipmunk occurrence. We compared GIS model classifications with actual vegetation and elevation features measured at 37 sites. At 60 sites we measured 18 habitat variables regarding slope, aspect, tree species, shrub species, and ground cover. We used logistic regression to analyze habitat variables associated with chipmunk presence/absence. All (100%) 37 sample sites (28 predicted suitable, 9 predicted unsuitable) were classified correctly by the GIS model regarding elevation and vegetation. For 28 sites predicted suitable by the GIS model, 18 sites (64%) appeared visually suitable based on habitat variables selected from logistic regression analyses, of which 10 sites (36%) were specifically predicted as suitable habitat via logistic regression. We detected chipmunks at 70% of sites deemed suitable via the logistic regression models. Shrub cover, tree density, plant proximity, presence of logs, and presence of rock outcrop were retained in the logistic model for the Oscura Mountains; litter, shrub cover, and grass cover were retained in the logistic model for the Organ Mountains. Evaluation of predictive models illustrates the need for multi-stage analyses to best judge performance. Microhabitat analyses indicate prospective needs for different management strategies between the subspecies. Sensitivities of each population of the Colorado chipmunk to natural and prescribed fire suggest that partial burnings of areas inhabited by Colorado chipmunks in southern New Mexico may be beneficial. These partial burnings may later help avoid a fire

  13. Instream Physical Habitat Modelling Types

    DEFF Research Database (Denmark)

    Conallin, John; Boegh, Eva; Krogsgaard, Jørgen

    2010-01-01

    The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages and disadvanta......The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages...... suit their situations. This paper analyses the potential of different methods available for water managers to assess hydrological and geomorphological impacts on the habitats of stream biota, as requested by the WFD. The review considers both conventional and new advanced research-based instream...... physical habitat models. In parametric and non-parametric regression models, model assumptions are often not satisfied and the models are difficult to transfer to other regions. Research-based methods such as the artificial neural networks and individual-based modelling have promising potential as water...

  14. Integration Process for the Habitat Demonstration Unit

    Science.gov (United States)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Howe, A. Scott

    2010-01-01

    The Habitat Demonstration Unit (HDU) is an experimental exploration habitat technology and architecture test platform designed for analog demonstration activities The HDU project has required a team to integrate a variety of contributions from NASA centers and outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture To complete the development of the HDU from conception in June 2009 to rollout for operations in July 2010, a cohesive integration strategy has been developed to integrate the various systems of HDU and the payloads, such as the Geology Lab, that those systems will support The utilization of interface design standards and uniquely tailored reviews have allowed for an accelerated design process Scheduled activities include early fit-checks and the utilization of a Habitat avionics test bed prior to equipment installation into HDU A coordinated effort to utilize modeling and simulation systems has aided in design and integration concept development Modeling tools have been effective in hardware systems layout, cable routing and length estimation, and human factors analysis Decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU to maximize the efficiency of both integration and field operations Incremental test operations leading up to an integrated systems test allows for an orderly systems test program The HDU will begin its journey as an emulation of a Pressurized Excursion Module (PEM) for 2010 field testing and then may evolve to a Pressurized Core Module (PCM) for 2011 and later field tests, depending on agency architecture decisions The HDU deployment will vary slightly from current lunar architecture plans to include developmental hardware and software items and additional systems called opportunities for technology demonstration One of the HDU challenges has been designing to be prepared for the integration of

  15. Predicting occurrence of juvenile shark habitat to improve conservation planning.

    Science.gov (United States)

    Oh, Beverly Z L; Sequeira, Ana M M; Meekan, Mark G; Ruppert, Jonathan L W; Meeuwig, Jessica J

    2017-06-01

    Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark-monitoring data on large scales (100s-1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km 2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species-level models had higher accuracy (ĸ ≥ 0.69) and deviance explained (≥48%) than our order-level model (ĸ = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species-specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species-focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non-extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across

  16. Wandering stars: age-related habitat use and dispersal of Javan Hawk-eagles (Spizaetus bartelsi)

    NARCIS (Netherlands)

    Nijman, V.; Balen, van S.

    2003-01-01

    Natal dispersal and philopatry have rarely been studied in tropical forest raptors. Especially with respect to endangered species with fragmented distributions more knowledge of dispersal and age-related habitat preferences is needed for proper management. We conducted an island-wide study on

  17. Distribution, habitat and adaptability of the genus Tapirus.

    Science.gov (United States)

    García, Manolo J; Medici, Emília Patrícia; Naranjo, Eduardo J; Novarino, Wilson; Leonardo, Raquel S

    2012-12-01

    In this manuscript, as a starting point, the ancient and current distribution of the genus Tapirus are summarized, from its origins, apparently in Europe, to current ranges. Subsequently, original and current tapir habitats are described, as well as changes in ancient habitats. As the manuscript goes on, we examine the ways in which tapir species interact with their habitats and the main aspects of habitat use, spatial ecology and adaptability. Having reviewed the historic and current distribution of tapirs, as well as their use and selection of habitats, we introduce the concept of adaptability, considering that some of the tapir physiological characteristics and behavioral strategies can reduce the negative impact of habitat alteration and climate change. Finally, we provide recommendations for future research priorities. The conservation community is still missing important pieces of information for the effective conservation of tapirs and their remaining habitats in Central and South America and Southeast Asia. Reconstructing how tapir species reached their current distribution ranges, interpreting how they interact with their habitats and gathering information regarding the strategies they use to cope with habitat changes will increase our understanding about these animals and contribute to the development of conservation strategies. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  18. Habitat stability, predation risk and ‘memory syndromes’

    Science.gov (United States)

    Dalesman, S.; Rendle, A.; Dall, S.R.X.

    2015-01-01

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits (‘memory syndrome’) related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population. PMID:26013966

  19. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient.

    Science.gov (United States)

    Pillsbury, Finn C; Miller, James R

    2008-07-01

    Urbanization has been cited as an important factor in worldwide amphibian declines, and although recent work has illustrated the important influence of broad-scale ecological patterns and processes on amphibian populations, little is known about the factors structuring amphibian communities in urban landscapes. We therefore examined amphibian community responses to wetland habitat availability and landscape characteristics along an urban-rural gradient in central Iowa, USA, a region experiencing rapid suburban growth. We conducted call surveys at 61 wetlands to estimate anuran calling activity, and quantified wetland habitat structure and landscape context. We used canonical correspondence analysis (CCA) to examine patterns in anuran community structure and identify the most important variables associated with those patterns. Urban density at the landscape scale had a significant negative influence on overall anuran abundance and diversity. While every species exhibited a decrease in abundance with increasing urban density, this pattern was especially pronounced for species requiring post-breeding upland habitats. Anurans most affected by urbanization were those associated with short hydroperiods, early breeding activity, and substantial upland habitat use. We suggest that broad-scale landscape fragmentation is an important factor underlying anuran community structure in this region, possibly due to limitations on the accessibility of otherwise suitable habitat in fragmented urban landscapes. This study underscores the importance of a regional approach to amphibian conservation in urban and urbanizing areas; in fragmented landscapes, a network of interconnected wetland and upland habitats may be more likely to support a successful, diverse anuran community than will isolated sites.

  20. Red-shouldered hawk nesting habitat preference in south Texas

    Science.gov (United States)

    Strobel, Bradley N.; Boal, Clint W.

    2010-01-01

    We examined nesting habitat preference by red-shouldered hawks Buteo lineatus using conditional logistic regression on characteristics measured at 27 occupied nest sites and 68 unused sites in 2005–2009 in south Texas. We measured vegetation characteristics of individual trees (nest trees and unused trees) and corresponding 0.04-ha plots. We evaluated the importance of tree and plot characteristics to nesting habitat selection by comparing a priori tree-specific and plot-specific models using Akaike's information criterion. Models with only plot variables carried 14% more weight than models with only center tree variables. The model-averaged odds ratios indicated red-shouldered hawks selected to nest in taller trees and in areas with higher average diameter at breast height than randomly available within the forest stand. Relative to randomly selected areas, each 1-m increase in nest tree height and 1-cm increase in the plot average diameter at breast height increased the probability of selection by 85% and 10%, respectively. Our results indicate that red-shouldered hawks select nesting habitat based on vegetation characteristics of individual trees as well as the 0.04-ha area surrounding the tree. Our results indicate forest management practices resulting in tall forest stands with large average diameter at breast height would benefit red-shouldered hawks in south Texas.

  1. Habitat selection and post-release movement of reintroduced brown treecreeper individuals in restored temperate woodland.

    Directory of Open Access Journals (Sweden)

    Victoria A Bennett

    Full Text Available It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual's dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals of the brown treecreeper (Climacteris picumnus into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual's gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species' requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides, which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals

  2. [Quality evaluation and antioxidant activity research of Schisandra chinensis from various habitats].

    Science.gov (United States)

    Han, Zhi-Fu; Hu, Gao-Sheng; Li, Na; Fan, Xing; Jia, Jing-Ming

    2012-12-01

    To determine the contents of lignans, crude polysaccharides (CP) and total phenolic compounds (TPC) of Schisandra chinensis from various habitats in Liaoning province and evaluate their quality and free radical scavenging (FRS) activity. Contents of schisandrol, deoxyschizandrin and schisandrin B were determined by RP-HPLC. Contents of TPC, CP and FRS activity were determined by Folin-Cicalteu's, phenol-sulfuric acid and DPPH x method, respectively. Sample from Liaoyang city had the highest contents of lignans (21.75 mg/g); Sample from Shenbei New district of Shenyang city had the highest contents of CP (88.72 mg/g); Sample from Guanmenshan district of Benxi city had the highest contents of TPC and FRS activity (26.06 mg/g and 86.3%, respectively). Linear regression analysis results showed that contents of TPC had higher correlation coefficient with FRS activity than that of lignans. Their linear regression equations were Y = 1.3677X + 46.97, R2 = 0.6869 and Y = 2.5916X + 57.927, R2 = 0.1747 for TPC and lignans with FRS activity, respectively. The contents of lignans, CP and TPC are significantly different from samples collected from various habitats in Liaoning province. The main antioxidative substances are TPC, and lignans have no significant correlation with FRS activity.

  3. Environmental variation and habitat separation among small mammals

    International Nuclear Information System (INIS)

    Vickery, W.L.; Iverson, S.L.; Mihok, S.; Schwartz, B.

    1989-01-01

    Habitat use and population density of five species of forest small mammals were monitored by annual spring snap-trap censuses at Pinawa, Manitoba, over 14 years. Population sizes were positively correlated among species and showed no evidence of density-dependent effects. Species were habitat selectors. Habitat use by species did not vary among years. Habitat separation between the dominant species was not correlated with environmental variables or with population size. We suggest that habitat selection and positive covariance among species abundances are the principal factors characterizing the dynamics of this community

  4. Mourning Dove nesting habitat and nest success in Central Missouri

    Science.gov (United States)

    Drobney, R.D.; Schulz, J.H.; Sheriff, S.L.; Fuemmeler, W.J.

    1998-01-01

    Previous Mourning Dove (Zenaida macroura) nesting studies conducted in areas containing a mixture of edge and continuous habitats have focused on edge habitats. Consequently, little is known about the potential contribution of continuous habitats to dove production. In this study we evaluated the relative importance of these two extensive habitat types by monitoring the habitat use and nest success of 59 radio-marked doves during 1990-1991 in central Missouri. Of 83 nests initiated by our marked sample, most (81.9%) were located in edge habitats. Although continuous habitats were selected less as nest sites, the proportion of successful nests did not differ significantly from that in edge habitats. Our data indicate that continuous habitats should not be considered marginal nesting habitat. If the intensity of use and nest success that we observed are representative regionally or nationally, continuous habitats could contribute substantially to annual Mourning Dove production because of the high availability of these habitats throughout much of the Mourning Dove breeding range.

  5. Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1988-1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, Anthony A. (Oregon Dept. of Fish and Wildlife, Portland, OR (USA))

    1989-09-01

    We report on our progress from April 1988 through March 1989 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. Highlights of results of our work in the Dalles and Bonneville reservoirs are: using setlines, we caught 1,586 sturgeon in The Dalles Reservoir and 484 sturgeon in Bonneville Reservoir in 1988. Fork length of fish caught ranged from 34 cm to 274 cm. Of the fish caught we marked 1,248 in The Dalles Reservoir and 341 in Bonneville Reservoir. Of the fish marked in 1988, we recaptured 82 in The Dalles Reservoir and none in Bonneville Reservoir. We recaptured 89 fish marked in 1987 in The Dalles Reservoir. Anglers recaptured 35 fish marked in 1988 and 16 fish marked in 1987 in The Dalles Reservoir. Anglers recaptured 2 sturgeon marked in 1988 in Bonneville Reservoir. Individual papers were processed separately for the data base.

  6. A test of the substitution-habitat hypothesis in amphibians.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Galán, Pedro

    2017-12-08

    Most examples that support the substitution-habitat hypothesis (human-made habitats act as substitutes of original habitat) deal with birds and mammals. We tested this hypothesis in 14 amphibians by using percentage occupancy as a proxy of habitat quality (i.e., higher occupancy percentages indicate higher quality). We classified water body types as original habitat (no or little human influence) depending on anatomical, behavioral, or physiological adaptations of each amphibian species. Ten species had relatively high probabilities (0.16-0.28) of occurrence in original habitat, moderate probability of occurrence in substitution habitats (0.11-0.14), and low probability of occurrence in refuge habitats (0.05-0.08). Thus, the substitution-habitat hypothesis only partially applies to amphibians because the low occupancy of refuges could be due to the negligible human persecution of this group (indicating good conservation status). However, low occupancy of refuges could also be due to low tolerance of refuge conditions, which could have led to selective extinction or colonization problems due to poor dispersal capabilities. That original habitats had the highest probabilities of occupancy suggests amphibians have a good conservation status in the region. They also appeared highly adaptable to anthropogenic substitution habitats. © 2017 Society for Conservation Biology.

  7. The worldwide importance of honey bees as pollinators in natural habitats.

    Science.gov (United States)

    Hung, Keng-Lou James; Kingston, Jennifer M; Albrecht, Matthias; Holway, David A; Kohn, Joshua R

    2018-01-10

    The western honey bee ( Apis mellifera ) is the most frequent floral visitor of crops worldwide, but quantitative knowledge of its role as a pollinator outside of managed habitats is largely lacking. Here we use a global dataset of 80 published plant-pollinator interaction networks as well as pollinator effectiveness measures from 34 plant species to assess the importance of A. mellifera in natural habitats. Apis mellifera is the most frequent floral visitor in natural habitats worldwide, averaging 13% of floral visits across all networks (range 0-85%), with 5% of plant species recorded as being exclusively visited by A. mellifera For 33% of the networks and 49% of plant species, however, A. mellifera visitation was never observed, illustrating that many flowering plant taxa and assemblages remain dependent on non- A. mellifera visitors for pollination. Apis mellifera visitation was higher in warmer, less variable climates and on mainland rather than island sites, but did not differ between its native and introduced ranges. With respect to single-visit pollination effectiveness, A. mellifera did not differ from the average non- A. mellifera floral visitor, though it was generally less effective than the most effective non- A. mellifera visitor. Our results argue for a deeper understanding of how A. mellifera , and potential future changes in its range and abundance, shape the ecology, evolution, and conservation of plants, pollinators, and their interactions in natural habitats. © 2018 The Author(s).

  8. A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota.

    Directory of Open Access Journals (Sweden)

    Jochem Kail

    Full Text Available River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability/ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact

  9. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Science.gov (United States)

    Ripperger, Simon P; Kalko, Elisabeth K V; Rodríguez-Herrera, Bernal; Mayer, Frieder; Tschapka, Marco

    2015-01-01

    Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae), a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  10. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Directory of Open Access Journals (Sweden)

    Simon P Ripperger

    Full Text Available Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae, a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  11. Effects of Climate Change on Habitat Availability and Configuration for an Endemic Coastal Alpine Bird.

    Directory of Open Access Journals (Sweden)

    Michelle M Jackson

    Full Text Available North America's coastal mountains are particularly vulnerable to climate change, yet harbour a number of endemic species. With little room "at the top" to track shifting climate envelopes, alpine species may be especially negatively affected by climate-induced habitat fragmentation. We ask how climate change will affect the total amount, mean patch size, and number of patches of suitable habitat for Vancouver Island White-tailed Ptarmigan (Lagopus leucura saxatilis; VIWTP, a threatened, endemic alpine bird. Using a Random Forest model and a unique dataset consisting of citizen science observations combined with field surveys, we predict the distribution and configuration of potential suitable summer habitat for VIWTP under baseline and future (2020s, 2050s, and 2080s climates using three general circulation models and two greenhouse gas scenarios. VIWTP summer habitat is predicted to decline by an average of 25%, 44%, and 56% by the 2020s, 2050s, and 2080s, respectively, under the low greenhouse gas scenario and 27%, 59%, and 74% under the high scenario. Habitat patches are predicted to become fragmented, with a 52-79% reduction in mean patch size. The average elevation of suitable habitat patches is expected to increase, reflecting a loss of patches at lower elevations. Thus ptarmigan are in danger of being "squeezed off the mountain", as their remaining suitable habitat will be increasingly confined to mountaintops in the center of the island. The extent to which ptarmigan will be able to persist in increasingly fragmented habitat is unclear. Much will depend on their ability to move throughout a more heterogeneous landscape, utilize smaller breeding areas, and survive increasingly variable climate extremes. Our results emphasize the importance of continued monitoring and protection for high elevation specialist species, and suggest that White-tailed Ptarmigan should be considered an indicator species for alpine ecosystems in the face of

  12. Evolutionary bottlenecks in brackish water habitats drive the colonization of fresh water by stingrays.

    Science.gov (United States)

    Kirchhoff, K N; Hauffe, T; Stelbrink, B; Albrecht, C; Wilke, T

    2017-08-01

    Species richness in freshwater bony fishes depends on two main processes: the transition into and the diversification within freshwater habitats. In contrast to bony fishes, only few cartilaginous fishes, mostly stingrays (Myliobatoidei), were able to colonize fresh water. Respective transition processes have been mainly assessed from a physiological and morphological perspective, indicating that the freshwater lifestyle is strongly limited by the ability to perform osmoregulatory adaptations. However, the transition history and the effect of physiological constraints on the diversification in stingrays remain poorly understood. Herein, we estimated the geographic pathways of freshwater colonization and inferred the mode of habitat transitions. Further, we assessed habitat-related speciation rates in a time-calibrated phylogenetic framework to understand factors driving the transition of stingrays into and the diversification within fresh water. Using South American and Southeast Asian freshwater taxa as model organisms, we found one independent freshwater colonization event by stingrays in South America and at least three in Southeast Asia. We revealed that vicariant processes most likely caused freshwater transition during the time of major marine incursions. The habitat transition rates indicate that brackish water species switch preferably back into marine than forth into freshwater habitats. Moreover, our results showed significantly lower diversification rates in brackish water lineages, whereas freshwater and marine lineages exhibit similar rates. Thus, brackish water habitats may have functioned as evolutionary bottlenecks for the colonization of fresh water by stingrays, probably because of the higher variability of environmental conditions in brackish water. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  13. Predictive habitat modelling as a tool to assess the change in distribution and extent of an OSPAR priority habitat under an increased ocean temperature scenario: consequences for marine protected area networks and management.

    Science.gov (United States)

    Gormley, Kate S G; Porter, Joanne S; Bell, Michael C; Hull, Angela D; Sanderson, William G

    2013-01-01

    The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in "future-proofing" conservation and biodiversity management. Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer). The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC) was evaluated. The performance of the Maxent model was rated as 'good' to 'excellent' on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of "most suitable", "less suitable" and "unsuitable" habitat was calculated for the baseline year (2009) and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100). A loss of 100% of "most suitable" habitat was reported by 2080. Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible "conservation management tool".

  14. Predictive habitat modelling as a tool to assess the change in distribution and extent of an OSPAR priority habitat under an increased ocean temperature scenario: consequences for marine protected area networks and management.

    Directory of Open Access Journals (Sweden)

    Kate S G Gormley

    Full Text Available The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in "future-proofing" conservation and biodiversity management. Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer. The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC was evaluated. The performance of the Maxent model was rated as 'good' to 'excellent' on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of "most suitable", "less suitable" and "unsuitable" habitat was calculated for the baseline year (2009 and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100. A loss of 100% of "most suitable" habitat was reported by 2080. Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible "conservation management tool".

  15. Habitat modeling for biodiversity conservation.

    Science.gov (United States)

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  16. Partitioning mechanisms of predator interference in different habitats.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  17. Restricted cross-scale habitat selection by American beavers.

    Science.gov (United States)

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  18. Habitat specialization in tropical continental shelf demersal fish assemblages.

    Directory of Open Access Journals (Sweden)

    Ben M Fitzpatrick

    Full Text Available The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304 collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth, down the fore reef slope to the reef base (10-30 m depth then across the adjacent continental shelf (30-110 m depth. Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of

  19. Use of habitats as surrogates of biodiversity for efficient coral reef conservation planning in Pacific Ocean islands.

    Science.gov (United States)

    Dalleau, Mayeul; Andréfouët, Serge; Wabnitz, Colette C C; Payri, Claude; Wantiez, Laurent; Pichon, Michel; Friedman, Kim; Vigliola, Laurent; Benzoni, Francesca

    2010-04-01

    Marine protected areas (MPAs) have been highlighted as a means toward effective conservation of coral reefs. New strategies are required to more effectively select MPA locations and increase the pace of their implementation. Many criteria exist to design MPA networks, but generally, it is recommended that networks conserve a diversity of species selected for, among other attributes, their representativeness, rarity, or endemicity. Because knowledge of species' spatial distribution remains scarce, efficient surrogates are urgently needed. We used five different levels of habitat maps and six spatial scales of analysis to identify under which circumstances habitat data used to design MPA networks for Wallis Island provided better representation of species than random choice alone. Protected-area site selections were derived from a rarity-complementarity algorithm. Habitat surrogacy was tested for commercial fish species, all fish species, commercially harvested invertebrates, corals, and algae species. Efficiency of habitat surrogacy varied by species group, type of habitat map, and spatial scale of analysis. Maps with the highest habitat thematic complexity provided better surrogates than simpler maps and were more robust to changes in spatial scales. Surrogates were most efficient for commercial fishes, corals, and algae but not for commercial invertebrates. Conversely, other measurements of species-habitat associations, such as richness congruence and composition similarities provided weak results. We provide, in part, a habitat-mapping methodology for designation of MPAs for Pacific Ocean islands that are characterized by habitat zonations similar to Wallis. Given the increasing availability and affordability of space-borne imagery to map habitats, our approach could appreciably facilitate and improve current approaches to coral reef conservation and enhance MPA implementation.

  20. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    International Nuclear Information System (INIS)

    McKinley, Andrew C.; Miskiewicz, Anthony; Taylor, Matthew D.; Johnston, Emma L.

    2011-01-01

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: → We examine contamination/habitat modification impacts on larval fish. → Larvae communities differ between modified/unmodified estuaries. → Larvae are more abundant/diverse in modified areas. → Trends are strongly related to sediment metals/seagrass cover. → Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  1. Climate effects on the distribution of wetland habitats and connectivity in networks of migratory waterbirds

    Science.gov (United States)

    Bellisario, Bruno; Cerfolli, Fulvio; Nascetti, Giuseppe

    2014-07-01

    The establishment and maintenance of conservation areas are among the most common measures to mitigate the loss of biodiversity. However, recent advances in conservation biology have challenged the reliability of such areas to cope with variation in climate conditions. Climate change can reshuffle the geographic distribution of species, but in many cases suitable habitats become scarce or unavailable, limiting the ability to migrate or adapt in response to modified environments. In this respect, the extent to which existing protected areas are able to compensate changes in habitat conditions to ensure the persistence of species still remains unclear. We used a spatially explicit model to measure the effects of climate change on the potential distribution of wetland habitats and connectivity of Natura 2000 sites in Italy. The effects of climate change were measured on the potential for water accumulation in a given site, as a surrogate measure for the persistence of aquatic ecosystems and their associated migratory waterbirds. Climate impacts followed a geographic trend, changing the distribution of suitable habitats for migrants and highlighting a latitudinal threshold beyond which the connectivity reaches a sudden collapse. Our findings show the relative poor reliability of most sites in dealing with changing habitat conditions and ensure the long-term connectivity, with possible consequences for the persistence of species. Although alterations of climate suitability and habitat destruction could impact critical areas for migratory waterbirds, more research is needed to evaluate all possible long-term effects on the connectivity of migratory networks.

  2. Fine-scale habitat requirements of the Heidelberg Opal Butterfly (Chrysoritis aureus in Gauteng and Mpumalanga, South Africa

    Directory of Open Access Journals (Sweden)

    Rouxdene Deysel

    2017-10-01

    Conclusion: Monitoring of the C. aureus butterfly populations and of the vegetation structure, species composition and growth forms to determine trends in the vegetation condition after planned fires; regular burning of the habitats in order to maintain suitable vegetation composition and structure; and the monitoring and eradication of alien invader plants are very important management activities to ensure the conservation of C. aureus.

  3. Can soda ash dumping grounds provide replacement habitats for digger wasps (Hymenoptera, Apoidea, Spheciformes?

    Directory of Open Access Journals (Sweden)

    Lucyna Twerd

    Full Text Available Published sources document a loss of biodiversity at an extreme rate, mainly because natural and semi-natural ecosystems are becoming fragmented and isolated, thus losing their biological functions. These changes significantly influence biological diversity, which is a complex phenomenon that changes over time. Contemporary ecologists must therefore draw attention to anthropogenic replacement habitats and increase their conservation status. In our studies we show the positive role of soda ash dumping grounds as an alternative habitat for digger wasps, especially the thermophilic species.In the years 2007-2010 we carried out investigations in postindustrial soda ash dumping grounds located in Central Poland. We demonstrated that these areas serve as replacement habitats for thermophilic species of Spheciformes and, indirectly, for their potential prey. The studies were conducted in three microhabitat types, varying in soil moisture, salinity and alkalinity, that were changing in the course of ecological succession. We trapped 2571 specimens belonging to 64 species of digger wasps. Species typical of open sunny spaces comprised 73% of the whole inventory. The obtained results suggest that the stage of succession determines the richness, abundance and diversity of Spheciformes. The most favorable conditions for digger wasps were observed in habitats at late successional stages.Our results clearly showed that these habitats were replacement habitats for thermophilous Spheciformes, including rare taxa that require genetic, species and ecosystem protection, according to the Biodiversity Convention. We showed that some types of industry might play a positive role in the preservation of taxa in the landscape, and that even degraded industrial wasteland can replace habitats under anthropopressure, serving as refugia of biological diversity, especially for disturbance-dependent species.

  4. Evaluation of Four Supervised Learning Methods for Benthic Habitat Mapping Using Backscatter from Multi-Beam Sonar

    Directory of Open Access Journals (Sweden)

    Jacquomo Monk

    2012-11-01

    Full Text Available An understanding of the distribution and extent of marine habitats is essential for the implementation of ecosystem-based management strategies. Historically this had been difficult in marine environments until the advancement of acoustic sensors. This study demonstrates the applicability of supervised learning techniques for benthic habitat characterization using angular backscatter response data. With the advancement of multibeam echo-sounder (MBES technology, full coverage datasets of physical structure over vast regions of the seafloor are now achievable. Supervised learning methods typically applied to terrestrial remote sensing provide a cost-effective approach for habitat characterization in marine systems. However the comparison of the relative performance of different classifiers using acoustic data is limited. Characterization of acoustic backscatter data from MBES using four different supervised learning methods to generate benthic habitat maps is presented. Maximum Likelihood Classifier (MLC, Quick, Unbiased, Efficient Statistical Tree (QUEST, Random Forest (RF and Support Vector Machine (SVM were evaluated to classify angular backscatter response into habitat classes using training data acquired from underwater video observations. Results for biota classifications indicated that SVM and RF produced the highest accuracies, followed by QUEST and MLC, respectively. The most important backscatter data were from the moderate incidence angles between 30° and 50°. This study presents initial results for understanding how acoustic backscatter from MBES can be optimized for the characterization of marine benthic biological habitats.

  5. The estimation of some wild flowers seed material from the natural-valuable meadow habitats

    Directory of Open Access Journals (Sweden)

    Janicka Maria

    2016-12-01

    Full Text Available The restoration of the species composition of the meadow habitats is often linked to the introduction of the typical species’ seeds. The effectiveness of that treatment requires getting the acquired detailed knowledge of the germination biology of peculiar species. Eight typical plant species of four non-forest habitats of the river valleys, representing the following types: Cnidion dubii (6440, Molinion (6410, Arrhenatherion (6510 and Festuco-Brometea (6210 were investigated. The diasporas were collected in the years 2014–2015 on the meadows of PLH 140016 protection area near Mniszew (Kozienice county, Mazovian voivodeship. The ability of seeds’ germination in the laboratory conditions was studied. It was stated that Cnidion and Molinion meadows’ species require pre-chilling to break the seeds’ dormancy, while the Arrhenatherion meadows and xerotermophilous swards do not require such treatment. The Allium angulosum, Plantago lanceolata, Achillea millefolium and Eryngium planum were characterized by high vigour and germination capability as well as the low share of dead seeds. The extremely drought in 2015 caused the decreasing in germination capability and increasing in the dead seeds’ share. The preliminary studies, presented in this paper, show that Cnidion and Molinion meadows may be most difficult to restore because of the necessity of breaking the seeds’ dormancy and higher sensitiveness for the unfavourable weather conditions during the seed ripening stage. The studies have practical significance for the works connected with the floristic diversity’ increasing of threatened communities and the restoration of the destroyed meadow habitats.

  6. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach.

    Science.gov (United States)

    Hübner, Lena; Pennings, Steven C; Zimmer, Martin

    2015-08-01

    Distinct habitats are often linked through fluxes of matter and migration of organisms. In particular, intertidal ecotones are prone to being influenced from both the marine and the terrestrial realms, but whether or not small-scale migration for feeding, sheltering or reproducing is detectable may depend on the parameter studied. Within the ecotone of an upper saltmarsh in the United States, we investigated the sex-specific movement of the semi-terrestrial crab Armases cinereum using an approach of determining multiple measures of across-ecotone migration. To this end, we determined food preference, digestive abilities (enzyme activities), bacterial hindgut communities (genetic fingerprint), and the trophic position of Armases and potential food sources (stable isotopes) of males versus females of different sub-habitats, namely high saltmarsh and coastal forest. Daily observations showed that Armases moved frequently between high-intertidal (saltmarsh) and terrestrial (forest) habitats. Males were encountered more often in the forest habitat, whilst gravid females tended to be more abundant in the marsh habitat but moved more frequently. Food preference was driven by both sex and habitat. The needlerush Juncus was preferred over three other high-marsh detrital food sources, and the periwinkle Littoraria was the preferred prey of male (but not female) crabs from the forest habitats; both male and female crabs from marsh habitat preferred the fiddler crab Uca over three other prey items. In the field, the major food sources were clearly vegetal, but males have a higher trophic position than females. In contrast to food preference, isotope data excluded Uca and Littoraria as major food sources, except for males from the forest, and suggested that Armases consumes a mix of C4 and C3 plants along with animal prey. Digestive enzyme activities differed significantly between sexes and habitats and were higher in females and in marsh crabs. The bacterial hindgut community

  7. Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem.

    Directory of Open Access Journals (Sweden)

    Katrina E Amaral

    Full Text Available Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis. Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists.

  8. Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry.

    Science.gov (United States)

    Capra, Hervé; Plichard, Laura; Bergé, Julien; Pella, Hervé; Ovidio, Michaël; McNeil, Eric; Lamouroux, Nicolas

    2017-02-01

    Modeling individual fish habitat selection in highly variable environments such as hydropeaking rivers is required for guiding efficient management decisions. We analyzed fish microhabitat selection in the heterogeneous hydraulic and thermal conditions (modeled in two-dimensions) of a reach of the large hydropeaking Rhône River locally warmed by the cooling system of a nuclear power plant. We used modern fixed acoustic telemetry techniques to survey 18 fish individuals (five barbels, six catfishes, seven chubs) signaling their position every 3s over a three-month period. Fish habitat selection depended on combinations of current microhabitat hydraulics (e.g. velocity, depth), past microhabitat hydraulics (e.g. dewatering risk or maximum velocities during the past 15days) and to a lesser extent substrate and temperature. Mixed-effects habitat selection models indicated that individual effects were often stronger than specific effects. In the Rhône, fish individuals appear to memorize spatial and temporal environmental changes and to adopt a "least constraining" habitat selection. Avoiding fast-flowing midstream habitats, fish generally live along the banks in areas where the dewatering risk is high. When discharge decreases, however, they select higher velocities but avoid both dewatering areas and very fast-flowing midstream habitats. Although consistent with the available knowledge on static fish habitat selection, our quantitative results demonstrate temporal variations in habitat selection, depending on individual behavior and environmental history. Their generality could be further tested using comparative experiments in different environmental configurations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Beaked Whale Habitat Characterization and Prediction

    National Research Council Canada - National Science Library

    Ward, Jessica A; Mitchell, Glenn H; Farak, Amy M; Keane, Ellen P

    2005-01-01

    The objective of this study was to characterize known beaked whale habitat and create a predictive beaked whale habitat model of the Gulf of Mexico and east coast of the United States using available...

  10. Pacific Northwest Salmon Habitat Project Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the Pacific Northwest Salmon Habitat Project Database Across the Pacific Northwest, both public and private agents are working to improve riverine habitat for a...

  11. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  12. Interfacing models of wildlife habitat and human development to predict the future distribution of puma habitat

    Science.gov (United States)

    Burdett, Christopher L.; Crooks, Kevin R.; Theobald, David M.; Wilson, Kenneth R.; Boydston, Erin E.; Lyren, Lisa A.; Fisher, Robert N.; Vickers, T. Winston; Morrison, Scott A.; Boyce, Walter M.

    2010-01-01

    The impact of human land uses on ecological systems typically differ relative to how extensively natural conditions are modified. Exurban development is intermediate-intensity residential development that often occurs in natural landscapes. Most species-habitat models do not evaluate the effects of such intermediate levels of human development and even fewer predict how future development patterns might affect the amount and configuration of habitat. We addressed these deficiencies by interfacing a habitat model with a spatially-explicit housing-density model to study the effect of human land uses on the habitat of pumas (Puma concolor) in southern California. We studied the response of pumas to natural and anthropogenic features within their home ranges and how mortality risk varied across a gradient of human development. We also used our housing-density model to estimate past and future housing densities and model the distribution of puma habitat in 1970, 2000, and 2030. The natural landscape for pumas in our study area consisted of riparian areas, oak woodlands, and open, conifer forests embedded in a chaparral matrix. Pumas rarely incorporated suburban or urban development into their home ranges, which is consistent with the hypothesis that the behavioral decisions of individuals can be collectively manifested as population-limiting factors at broader spatial scales. Pumas incorporated rural and exurban development into their home ranges, apparently perceiving these areas as modified, rather than non-habitat. Overall, pumas used exurban areas less than expected and showed a neutral response to rural areas. However, individual pumas that selected for or showed a neutral response to exurban areas had a higher risk of mortality than pumas that selected against exurban habitat. Exurban areas are likely hotspots for puma-human conflict in southern California. Approximately 10% of our study area will transform from exurban, rural, or undeveloped areas to suburban or

  13. Habitat Effect on Allometry of a Xeric Shrub (Artemisia ordosica Krasch in the Mu Us Desert of Northern China

    Directory of Open Access Journals (Sweden)

    Weiwei She

    2015-12-01

    Full Text Available Allometric models are useful for assessment of aboveground net primary productivity (ANPP and aboveground biomass (AGB of forests and shrubs, and are widely implemented in forest inventory and management. Multiple forms of allometric models have been used to estimate vegetation carbon storage for desert shrubland, but their validity for biomass estimation has not been tested at a region scale with different habitats. To verify the validity of habitat-specific models, general models (combining data from all habitats/sites, and previously developed models for biomass prediction, we developed both general models and habitat-specific models for aboveground biomass and ANPP of Artemisia ordosica Krasch, a dominant shrub of the Mu Us Desert. Our results showed that models based on crown area or canopy volume consistently explained large parts of the variations in aboveground biomass and ANPP. Model fitting highlighted that general allometric models were inadequate across different habitats, and habitat-specific models were useful for that specific habitat. Previous models might be inappropriate for other sites because of site quality differences. There was a strong habitat effect on the allometric relationships of A. ordosica. Although our study is a case in point, the results indicate that allometric models for desert shrubs should be used with caution and require robust validation if adopted from other studies or applied to different sites/habitats.

  14. Biological conservation of aquatic inland habitats: these are better days

    Directory of Open Access Journals (Sweden)

    Ian J. Winfield

    2013-08-01

    Full Text Available The biodiversity of aquatic inland habitats currently faces unprecedented threats from human activities. At the same time, although much is known about the functioning of freshwater ecosystems the successful transfer of such knowledge to practical conservation has not been universal. Global awareness of aquatic conservation issues is also hampered by the fact that conditions under the water surface are largely hidden from the direct experience of most members of society. Connectivity, or lack of it, is another challenge to the conservation of freshwater habitats, while urban areas can play a perhaps unexpectedly important positive role. Freshwater habitats frequently enjoy benefits accruing from a sense of ownership or stewardship by local inhabitants, which has led to the development of conservation movements which commonly started life centred on the aquatic inland habitat itself but of which many have now matured into wider catchment-based conservation programmes. A demonstrable need for evidence-based conservation management in turn requires scientific assessments to be increasingly robust and standardised, while at the same time remaining open to the adoption of technological advances and welcoming the rapidly developing citizen science movement. There is evidence of real progress in this context and conservation scientists are now communicating their findings to environmental managers in a way and on a scale that was rarely seen a couple of decades ago. It is only in this way that scientific knowledge can be efficiently transferred to conservation planning, prioritisation and ultimately management in an increasingly scaled-up, joined-up and resource-limited world. The principle of ‘prevention is better than cure’ is particularly appropriate to most biological conservation issues in aquatic inland habitats and is inextricably linked to educating and/or nudging appropriate human behaviours. When prevention fails, some form of emergency

  15. Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci.

    Directory of Open Access Journals (Sweden)

    Nancai Pei

    Full Text Available Elucidating the ecological mechanisms underlying community assembly in subtropical forests remains a central challenge for ecologists. The assembly of species into communities can be due to interspecific differences in habitat associations, and there is increasing evidence that these associations may have an underlying phylogenetic structure in contemporary terrestrial communities. In other words, by examining the degree to which closely related species prefer similar habitats and the degree to which they co-occur, ecologists are able to infer the mechanisms underlying community assembly. Here we implement this approach in a diverse subtropical tree community in China using a long-term forest dynamics plot and a molecular phylogeny generated from three DNA barcode loci. We find that there is phylogenetic signal in plant-habitat associations (i.e. closely related species tend to prefer similar habitats and that patterns of co-occurrence within habitats are typically non-random with respect to phylogeny. In particular, we found phylogenetic clustering in valley and low-slope habitats in this forest, indicating a filtering of lineages plays a dominant role in structuring communities in these habitats and we found evidence of phylogenetic overdispersion in high-slope, ridge-top and high-gully habitats, indicating that distantly related species tended to co-occur in these high elevation habitats and that lineage filtering is less important in structuring these communities. Thus we infer that non-neutral niche-based processes acting upon evolutionarily conserved habitat preferences explain the assembly of local scale communities in the forest studied.

  16. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  17. Determinants of Habitat Selection by Hatchling Australian Freshwater Crocodiles

    Science.gov (United States)

    Somaweera, Ruchira; Webb, Jonathan K.; Shine, Richard

    2011-01-01

    Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle), most hatchling (banks rather than the more widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by stomach-flushing of recently-captured crocodiles) were highest in such areas. Predation risk may also differ among habitats: we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus, habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk. PMID:22163308

  18. Space use and habitat selection of migrant and resident American Avocets in San Francisco Bay

    Science.gov (United States)

    Demers, Scott A.; Takekawa, John Y.; Ackerman, Joshua T.; Warnock, N.; Athearn, N.D.

    2010-01-01

    San Francisco Bay is a wintering area for shorebirds, including American Avocets (Recurvirostra americana). Recently, a new resident population of avocets has emerged, presumably because of the development of tidal marshes into salt-evaporation ponds. In habitat restoration now underway, as many as 90% of salt ponds will be restored to tidal marsh. However, it is unknown if wintering and resident avocets coexist and if their requirements for space and habitat differ, necessitating different management for their populations to be maintained during restoration. We captured and radio-marked wintering avocets at a salt pond and a tidal flat to determine their population status (migrant or resident) and examine their space use and habitat selection. Of the radio-marked avocets, 79% were migrants and 21% were residents. At the salt pond, residents' fidelity to their location of capture was higher, and residents moved less than did migrants from the same site. Conversely, on the tidal flat, fidelity of residents to their site of capture was lower, and residents' home ranges were larger than those of migrants from the same site. Habitat selection of migrants and residents differed little; however, capture site influenced habitat selection far more than the birds' status as migrants or residents. Our study suggests that individual avocets have high site fidelity while wintering in San Francisco Bay, although the avocet as a species is plastic in its space use and habitat selection. This plasticity may allow wintering migrant and resident avocets to adapt to habitat change in San Francisco Bay. ?? The Cooper Ornithological Society 2010.

  19. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat

    Science.gov (United States)

    Kukulka, Tobias; Jay, David A.

    2003-09-01

    This is the second part of an investigation that analyzes human alteration of shallow-water habitat (SWH) available to juvenile salmonids in the tidal Lower Columbia River. Part 2 develops a one-dimensional, subtidal river stage model that explains ˜90% of the stage variance in the tidal river. This model and the tidal model developed in part 1 [, 2003] uncouple the nonlinear interaction of river tides and river stage by referring both to external forcing by river discharge, ocean tides, and atmospheric pressure. Applying the two models, daily high-water levels were predicted for a reach from rkm-50 to rkm-90 during 1974 to 1998, the period of contemporary management. Predicted water levels were related to the bathymetry and topography to determine the changes in shallow-water habitat area (SWHA) caused by flood control dikes and altered flow management. Model results suggest that diking and a >40% reduction of peak flows have reduced SWHA by ˜62% during the crucial spring freshet period during which juvenile salmon use of SWHA is maximal. Taken individually, diking and flow cycle alteration reduced spring freshet SWHA by 52% and 29%, respectively. SWHA has been both displaced to lower elevations and modified in its character because tidal range has increased. Our models of these processes are economical for the very long simulations (seasons to centuries) needed to understand historic changes and climate impacts on SWH. Through analysis of the nonlinear processes controlling surface elevation in a tidal river, we have identified some of the mechanisms that link freshwater discharge to SWH and salmonid survival.

  20. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea.

    Science.gov (United States)

    Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin

    2015-02-22

    In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  1. Hungry Horse Dam fisheries mitigation program: Fish passage and habitat improvement in the Upper Flathead River basin

    International Nuclear Information System (INIS)

    Knotek, W.L.; Deleray, M.; Marotz, B.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery of fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects

  2. Habitats at Risk. Global Warming and Species Loss in Globally Significant Terrestrial Ecosystems

    International Nuclear Information System (INIS)

    Malcolm, J.R.; Liu, Canran; Miller, L.B.; Allnutt, T.; Hansen, L.

    2002-02-01

    In this study, a suite of models of global climate and vegetation change is used to investigate three important global warming-induced threats to the terrestrial Global 200 ecoregions: (1) Invasions by new habitat types (and corresponding loss of original habitat types); (2) Local changes of habitat types; (3) High rates of required species migration. Seven climate models (general circulation models or GCMs) and two vegetation models (BIOME3 and MAPSS) were used to produce 14 impact scenarios under the climate associated with a doubling of atmospheric CO2 concentrations, which is expected to occur in less than 100 years. Previous analyses indicated that most of the variation among the impact scenarios was attributable to the particular vegetation model used, hence the authors provide results separately for the two models. The models do not provide information on biodiversity per se, but instead simulate current and future potential distributions of major vegetation types (biomes) such as tundra and broadleaf tropical rain forest

  3. Development of a Regional Habitat Classification Scheme for the ...

    African Journals Online (AJOL)

    development, image processing techniques and field survey methods are outlined. Habitat classification, and regional-scale comparisons of relative habitat composition are described. The study demonstrates the use of remote sensing data to construct digital habitat maps for the comparison of regional habitat coverage, ...

  4. Habitat selection and management of the Hawaiian crow

    Science.gov (United States)

    Giffen, J.G.; Scott, J.M.; Mountainspring, S.

    1987-01-01

    The abundance and range of the Hawaiian crow, or alala, (Corvus hawaiiensis) have decreased drastically since the 1890's. Fewer than 10 breeding pairs remained in the wild in 1985. A sample of 82 nests during 1970-82 were used to determine habitat associations. Two hundred firty-nine alala observations were used to estimate densities occurring in different vegetation types in 1978. Compared to available habitat, more nests and higher bird densities during the breeding season occurred in areas where: (1) canopy cover was > 60%; (2) koa (Acacia koa) and ohia (Metrosideros polymorpha) were dominant species in the crown layer; (3) native plants constituted > 75% of the understory cover; and (4) the elevation was 1,100-1,500 m. Compared to breeding habitat, nonbreeding habitat tended to lie at lower elevations and in wetter forests having the crown layer dominated by ohia but lacking koa. Habitat loss is a major factor underlying the decline of this species although predation on fledgings, avian disease, and shooting also have reduced the population. Remaining key habitat areas have little or no legal protection through zoning and land ownership. Preserves should be established to encompass the location of existing pairs and to assure the provision of optimum breeding habitat and suitable nonbreeding habitat.

  5. Does habitat variability really promote metabolic network modularity?

    Science.gov (United States)

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.

  6. Using forest inventory and analysis data and the forest vegetation simulator to predict and monitor fisher (Martes pennanti) resting habitat suitability

    Science.gov (United States)

    William J. Zielinski; Andrew N. Gray; Jeffrey R. Dunk; Joseph W. Sherlock; Gary E. Dixon

    2010-01-01

    New knowledge from wildlife-habitat relationship models is often difficult to implement in a management context. This can occur because researchers do not always consider whether managers have access to information about environmental covariates that permit the models to be applied. Moreover, ecosystem management requires knowledge about the condition of habitats over...

  7. Wildlife and wildlife habitat restoration and compensation in the event of an oil spill in the Beaufort Sea

    International Nuclear Information System (INIS)

    Lawrence, M.J.; Davies, S.L.

    1993-01-01

    A procedure for estimating the potential costs of a worst-case scenario for a Beaufort Sea oil spill has been developed by applying assessments of the vulnerability and sensitivity of valued wildlife species to oil, an evaluation of practicability of restoration options, and estimates of the costs of implementing specific measures to aid in the restoration of wildlife species and their habitat. The procedure was developed and tested using valued wildlife species and elements of selected worst-case oil spill scenarios. Proponent use of the procedure in a project-specific application will demand certain information prerequisites, including a project-specific oil spill scenario, an assessment of the potential impacts on wildlife and habitat, and the predicted effectiveness of countermeasures and cleanup. Total compensation costs that account for potential loss of harvest of wildlife in the event of a worst-case oil spill were estimated to be nearly $12.2 million. Recommendations were also made with respect to wildlife and wildlife habitat restoration, as well as with respect to compensation issues. 103 refs., 4 figs., 4 tabs

  8. Gulf-Wide Information System, Environmental Sensitivity Index Habitats Database, Geographic NAD83, LDWF (2001) [esi_habitats_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains sensitive biological resource data for coastal habitats in Louisiana. Vector polygons represent various habitats, including marsh types, other...

  9. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    NARCIS (Netherlands)

    Langevelde, van F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat

  10. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

  11. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Directory of Open Access Journals (Sweden)

    Stephen G Hamilton

    Full Text Available Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling.Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands.Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  12. Habitat and forage associations of a naturally colonising insect pollinator, the tree bumblebee Bombus hypnorum.

    Science.gov (United States)

    Crowther, Liam P; Hein, Pierre-Louis; Bourke, Andrew F G

    2014-01-01

    Bumblebees (Bombus species) are major pollinators of commercial crops and wildflowers but factors affecting their abundance, including causes of recent population declines, remain unclear. Investigating the ecology of species with expanding ranges provides a potentially powerful means of elucidating these factors. Such species may also bring novel pollination services to their new ranges. We therefore investigated landscape-scale habitat use and foraging preferences of the Tree Bumblebee, B. hypnorum, a recent natural colonist that has rapidly expanded its range in the UK over the past decade. Counts of B. hypnorum and six other Bombus species were made in March-June 2012 within a mixed landscape in south-eastern Norfolk, UK. The extent of different landscape elements around each transect was quantified at three scales (250 m, 500 m and 1500 m). We then identified the landscape elements that best predicted the density of B. hypnorum and other Bombus species. At the best fitting scale (250 m), B. hypnorum density was significantly positively associated with extent of both urban and woodland cover and significantly negatively associated with extent of oilseed rape cover. This combination of landscape predictors was unique to B. hypnorum. Urban and woodland cover were associated with B. hypnorum density at three and two, respectively, of the three scales studied. Relative to other Bombus species, B. hypnorum exhibited a significantly higher foraging preference for two flowering trees, Crataegus monogyna and Prunus spinosa, and significantly lower preferences for Brassica napus, Glechoma hederacea and Lamium album. Our study provides novel, quantitative support for an association of B. hypnorum with urban and woodland landscape elements. Range expansion in B. hypnorum appears to depend, on exploitation of widespread habitats underutilised by native Bombus species, suggesting B. hypnorum will readily co-exist with these species. These findings suggest that management

  13. Habitat connectivity and ecosystem productivity: implications from a simple model.

    Science.gov (United States)

    Cloern, James E

    2007-01-01

    The import of resources (food, nutrients) sustains biological production and food webs in resource-limited habitats. Resource export from donor habitats subsidizes production in recipient habitats, but the ecosystem-scale consequences of resource translocation are generally unknown. Here, I use a nutrient-phytoplankton-zooplankton model to show how dispersive connectivity between a shallow autotrophic habitat and a deep heterotrophic pelagic habitat can amplify overall system production in metazoan food webs. This result derives from the finite capacity of suspension feeders to capture and assimilate food particles: excess primary production in closed autotrophic habitats cannot be assimilated by consumers; however, if excess phytoplankton production is exported to food-limited heterotrophic habitats, it can be assimilated by zooplankton to support additional secondary production. Transport of regenerated nutrients from heterotrophic to autotrophic habitats sustains higher system primary production. These simulation results imply that the ecosystem-scale efficiency of nutrient transformation into metazoan biomass can be constrained by the rate of resource exchange across habitats and that it is optimized when the transport rate matches the growth rate of primary producers. Slower transport (i.e., reduced connectivity) leads to nutrient limitation of primary production in autotrophic habitats and food limitation of secondary production in heterotrophic habitats. Habitat fragmentation can therefore impose energetic constraints on the carrying capacity of aquatic ecosystems. The outcomes of ecosystem restoration through habitat creation will be determined by both functions provided by newly created aquatic habitats and the rates of hydraulic connectivity between them.

  14. Dry creek long-term watershed study: buffer zone performance as viable amphibian habitat

    Science.gov (United States)

    Brooke L. Talley; Thomas L. Crisman

    2006-01-01

    As bioindicators, amphibians typically require both terrestrial and aquatic habitats to complete their life cycles. Pre- timber-harvest monitoring (December 2002 through September 2003) of salamander and frog (Hylidae) populations was conducted in four watersheds of Decatur County, GA. Post- timber-harvest monitoring (December 2003 through September...

  15. Assessing species habitat using Google Street View: a case study of cliff-nesting vultures.

    Directory of Open Access Journals (Sweden)

    Pedro P Olea

    Full Text Available The assessment of a species' habitat is a crucial issue in ecology and conservation. While the collection of habitat data has been boosted by the availability of remote sensing technologies, certain habitat types have yet to be collected through costly, on-ground surveys, limiting study over large areas. Cliffs are ecosystems that provide habitat for a rich biodiversity, especially raptors. Because of their principally vertical structure, however, cliffs are not easy to study by remote sensing technologies, posing a challenge for many researches and managers working with cliff-related biodiversity. We explore the feasibility of Google Street View, a freely available on-line tool, to remotely identify and assess the nesting habitat of two cliff-nesting vultures (the griffon vulture and the globally endangered Egyptian vulture in northwestern Spain. Two main usefulness of Google Street View to ecologists and conservation biologists were evaluated: i remotely identifying a species' potential habitat and ii extracting fine-scale habitat information. Google Street View imagery covered 49% (1,907 km of the roads of our study area (7,000 km². The potential visibility covered by on-ground surveys was significantly greater (mean: 97.4% than that of Google Street View (48.1%. However, incorporating Google Street View to the vulture's habitat survey would save, on average, 36% in time and 49.5% in funds with respect to the on-ground survey only. The ability of Google Street View to identify cliffs (overall accuracy = 100% outperformed the classification maps derived from digital elevation models (DEMs (62-95%. Nonetheless, high-performance DEM maps may be useful to compensate Google Street View coverage limitations. Through Google Street View we could examine 66% of the vultures' nesting-cliffs existing in the study area (n = 148: 64% from griffon vultures and 65% from Egyptian vultures. It also allowed us the extraction of fine-scale features of

  16. Habitat connectivity as a metric for aquatic microhabitat quality: Application to Chinook salmon spawning habitat

    Science.gov (United States)

    Ryan Carnie; Daniele Tonina; Jim McKean; Daniel Isaak

    2016-01-01

    Quality of fish habitat at the scale of a single fish, at the metre resolution, which we defined here as microhabitat, has been primarily evaluated on short reaches, and their results have been extended through long river segments with methods that do not account for connectivity, a measure of the spatial distribution of habitat patches. However, recent...

  17. Particulate deposition in the human lung under lunar habitat conditions.

    Science.gov (United States)

    Darquenne, Chantal; Prisk, G Kim

    2013-03-01

    Lunar dust may be a toxic challenge to astronauts. While deposition in reduced gravity is less than in normal gravity (1 G), reduced gravitational sedimentation causes particles to penetrate deeper in the lung, potentially causing more harm. The likely design of the lunar habitat has a reduced pressure environment and low-density gas has been shown to reduce upper airway deposition and increase peripheral deposition. Breathing air and a reduced-density gas approximating the density of the proposed lunar habitat atmosphere, five healthy subjects inhaled 1 -microm diameter aerosol boluses at penetration volumes (V(p)) of 200 ml (central airways), 500 ml, and 1000 ml (lung periphery) in microgravity during parabolic flight, and in 1 G. Deposition in the lunar habitat was significantly less than for Earth conditions (and less than in 1 G with the low-density gas) with a relative decrease in deposition of -59.1 +/- 14.0% (-46.9 +/- 11.7%), -50.7 +/- 9.2% (-45.8 +/- 11.2%), and -46.0 +/- 8.3% (-45.3 +/- 11.1%) at V(p) = 200, 500, and 1000 ml, respectively. There was no significant effect of reduced density on deposition in 1 G. While minimally affected by gas density, deposition was significantly less in microgravity than in 1 G for both gases, with a larger portion of particles depositing in the lung periphery under lunar conditions than Earth conditions. Thus, gravity, and not gas properties, mainly affects deposition in the peripheral lung, suggesting that studies of aerosol transport in the lunar habitat need not be performed at the low density proposed for the atmosphere in that environment.

  18. Distribution and habitat use of king rails in the Illinois and Upper Mississippi River valleys

    Science.gov (United States)

    Darrah, Abigail J.; Krementz, David G.

    2009-01-01

    The migratory population of the king rail (Rallus elegans) has declined dramatically during the past 40 years, emphasizing the need to identify habitat requirements of this species to help guide conservation efforts. To assess distribution and habitat use of king rails along the Illinois and Upper Mississippi valleys, USA, we conducted repeated call-broadcast surveys at 83 locations in 2006 and 114 locations in 2007 distributed among 21 study sites. We detected king rails at 12 survey locations in 2006 and 14 locations in 2007, illustrating the limited distribution of king rails in this region. We found king rails concentrated at Clarence Cannon National Wildlife Refuge, an adjacent private Wetlands Reserve program site, and B. K. Leach Conservation Area, which were located in the Mississippi River floodplain in northeast Missouri. Using Program PRESENCE, we estimated detection probabilities and built models to identify habitat covariates that were important in king rail site occupancy. Habitat covariates included percentage of cover by tall (> 1 m) and short (wetlands that were characterized by high water-vegetation interspersion and little or no cover by woody vegetation. Our results suggest that biologists can improve king rail habitat by implementing management techniques that reduce woody cover and increase vegetation-water interspersion in wetlands.

  19. Determinants of habitat selection by hatchling Australian freshwater crocodiles.

    Directory of Open Access Journals (Sweden)

    Ruchira Somaweera

    Full Text Available Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle, most hatchling (<12-month-old freshwater crocodiles (Crocodylus johnstoni are found in floating vegetation mats or grassy banks rather than the more widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by stomach-flushing of recently-captured crocodiles were highest in such areas. Predation risk may also differ among habitats: we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus, habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk.

  20. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    OpenAIRE

    Langevelde, van, F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat connectivity affects processes at population and individual level. In this thesis, I report on a study of effects of habitat fragmentation and opportunities to mitigate these effects by planning ecological n...

  1. Summary Report for Bureau of Fisheries Stream Habitat Surveys: Cowlitz River Basin, 1934-1942 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Cowlitz River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead. The purpose of the survey was, as described by Rich, [open quotes]to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes[close quotes]. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946. Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin.

  2. Physical and chemical constraints limit the habitat window for an endangered mussel

    Science.gov (United States)

    Campbell, Cara; Prestegaard, Karen L.

    2016-01-01

    Development of effective conservation and restoration strategies for freshwater pearly mussels requires identification of environmental constraints on the distributions of individual mussel species. We examined whether the spatial distribution of the endangered Alasmidonta heterodon in Flat Brook, a tributary of the upper Delaware River, was constrained by water chemistry (i.e., calcium availability), bed mobility, or both. Alasmidonta heterodon populations were bracketed between upstream reaches that were under-saturated with respect to aragonite and downstream reaches that were saturated for aragonite during summer baseflow but had steep channels with high bed mobility. Variability in bed mobility and water chemistry along the length of Flat Brook create a “habitat window” for A. heterodon defined by bed stability (mobility index ≤1) and aragonite saturation (saturation index ≥1). We suggest the species may exist in a narrow biogeochemical window that is seasonally near saturation. Alasmidonta heterodon populations may be susceptible to climate change or anthropogenic disturbances that increase discharge, decrease groundwater inflow or chemistry, and thus affect either bed mobility or aragonite saturation. Identifying the biogeochemical microhabitats and requirements of individual mussel species and incorporating this knowledge into management decisions should enhance the conservation and restoration of endangered mussel species.

  3. The importance of distance to resources in the spatial modelling of bat foraging habitat.

    Directory of Open Access Journals (Sweden)

    Ana Rainho

    Full Text Available Many bats are threatened by habitat loss, but opportunities to manage their habitats are now increasing. Success of management depends greatly on the capacity to determine where and how interventions should take place, so models predicting how animals use landscapes are important to plan them. Bats are quite distinctive in the way they use space for foraging because (i most are colonial central-place foragers and (ii exploit scattered and distant resources, although this increases flying costs. To evaluate how important distances to resources are in modelling foraging bat habitat suitability, we radio-tracked two cave-dwelling species of conservation concern (Rhinolophus mehelyi and Miniopterus schreibersii in a Mediterranean landscape. Habitat and distance variables were evaluated using logistic regression modelling. Distance variables greatly increased the performance of models, and distance to roost and to drinking water could alone explain 86 and 73% of the use of space by M. schreibersii and R. mehelyi, respectively. Land-cover and soil productivity also provided a significant contribution to the final models. Habitat suitability maps generated by models with and without distance variables differed substantially, confirming the shortcomings of maps generated without distance variables. Indeed, areas shown as highly suitable in maps generated without distance variables proved poorly suitable when distance variables were also considered. We concluded that distances to resources are determinant in the way bats forage across the landscape, and that using distance variables substantially improves the accuracy of suitability maps generated with spatially explicit models. Consequently, modelling with these variables is important to guide habitat management in bats and similarly mobile animals, particularly if they are central-place foragers or depend on spatially scarce resources.

  4. Habitat fragmentation in coastal southern California disrupts genetic connectivity in the cactus wren (Campylorhynchus brunneicapillus).

    Science.gov (United States)

    Barr, Kelly R; Kus, Barbara E; Preston, Kristine L; Howell, Scarlett; Perkins, Emily; Vandergast, Amy G

    2015-05-01

    Achieving long-term persistence of species in urbanized landscapes requires characterizing population genetic structure to understand and manage the effects of anthropogenic disturbance on connectivity. Urbanization over the past century in coastal southern California has caused both precipitous loss of coastal sage scrub habitat and declines in populations of the cactus wren (Campylorhynchus brunneicapillus). Using 22 microsatellite loci, we found that remnant cactus wren aggregations in coastal southern California comprised 20 populations based on strict exact tests for population differentiation, and 12 genetic clusters with hierarchical Bayesian clustering analyses. Genetic structure patterns largely mirrored underlying habitat availability, with cluster and population boundaries coinciding with fragmentation caused primarily by urbanization. Using a habitat model we developed, we detected stronger associations between habitat-based distances and genetic distances than Euclidean geographic distance. Within populations, we detected a positive association between available local habitat and allelic richness and a negative association with relatedness. Isolation-by-distance patterns varied over the study area, which we attribute to temporal differences in anthropogenic landscape development. We also found that genetic bottleneck signals were associated with wildfire frequency. These results indicate that habitat fragmentation and alterations have reduced genetic connectivity and diversity of cactus wren populations in coastal southern California. Management efforts focused on improving connectivity among remaining populations may help to ensure population persistence. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. Habitat preferences and conservation threats to Black-necked Cranes wintering in Bhutan.

    Science.gov (United States)

    Namgay, Rinchen; Wangchuk, Sangay

    2016-01-01

    Black-necked Crane (Grus nigricollis) is a vulnerable Red list species whose populations are declining. However, little is known about Black-necked Cranes' habitat requirements or the causes of their population decline. We identified Black-necked Cranes' winter roost and foraging preferences of Black-necked Cranes in Bhutan during the winter of 2013-2014. Black-necked Cranes' roosts were recorded using Garmin GPSmap 60CSx, while foraging preferences and threats to the birds were identified based on a survey of household heads (n = 107) residing within a 3 km radius of roost sites. We grouped the threats identified by the communities into four major categories, viz. biological, social, political and natural threats based on the relevance. Of the four major threats, communities residing within the roosting and foraging habitat of the Black-necked Crane reported biological threat as major. Biological threats as reported by communities include loss of habitat, food shortage and competition from other animals. We recommend the present roosting areas be designated as part of the conservation areas for Black-necked Crane wintering in Bumthang district. In addition to preserving these areas, government should also encourage farming in foraging habitats of Black-necked Crane, because they mainly feed on barley, wheat, paddy, potatoes and buckwheat, besides roots, tubers and insects in the wetlands.

  6. Guidelines for using the Delphi Technique to develop habitat suitability index curves

    Science.gov (United States)

    Crance, Johnie H.

    1987-01-01

    Habitat Suitability Index (SI) curves are one method of presenting species habitat suitability criteria. The curves are often used with the Habitat Evaluation Procedures (HEP) and are necessary components of the Instream Flow Incremental Methodology (IFIM) (Armour et al. 1984). Bovee (1986) described three categories of SI curves or habitat suitability criteria based on the procedures and data used to develop the criteria. Category I curves are based on professional judgment, with 1ittle or no empirical data. Both Category II (utilization criteria) and Category III (preference criteria) curves have as their source data collected at locations where target species are observed or collected. Having Category II and Category III curves for all species of concern would be ideal. In reality, no SI curves are available for many species, and SI curves that require intensive field sampling often cannot be developed under prevailing constraints on time and costs. One alternative under these circumstances is the development and interim use of SI curves based on expert opinion. The Delphi technique (Pill 1971; Delbecq et al. 1975; Linstone and Turoff 1975) is one method used for combining the knowledge and opinions of a group of experts. The purpose of this report is to describe how the Delphi technique may be used to develop expert-opinion-based SI curves.

  7. Habitat, density and group size of primates in a Brazilian tropical forest.

    Science.gov (United States)

    Pinto, L P; Costa, C M; Strier, K B; da Fonseca, G A

    1993-01-01

    Habitats, population densities and group sizes of 5 primate species (Callithrix flaviceps, Callicebus personatus personatus, Cebus apella nigritus, Alouatta fusca clamitans, and Brachyteles arachnoides) were estimated, using the method of repeated transect sampling, in an area of montane pluvial forest in eastern Brazil (Atlantic forest). A. fusca and C. apella had the highest densities in terms of groups and individuals per square kilometer, respectively, while B. arachnoides was least abundant. The highest primate densities were observed in areas of secondary vegetation. Both group sizes and population densities for the 5 species were generally lower at the Reserva Biologica Augusto Ruschi than those reported in other areas of Atlantic forest. Hunting pressure and the different carrying capacity of the habitat are suggested as possible causes for the low number of sightings registered for these species.

  8. Simulating range-wide population and breeding habitat dynamics for an endangered woodland warbler in the face of uncertainty

    Science.gov (United States)

    Adam Duarte,; Hatfield, Jeffrey; Todd M. Swannack,; Michael R. J. Forstner,; M. Clay Green,; Floyd W. Weckerly,

    2015-01-01

    Population viability analyses provide a quantitative approach that seeks to predict the possible future status of a species of interest under different scenarios and, therefore, can be important components of large-scale species’ conservation programs. We created a model and simulated range-wide population and breeding habitat dynamics for an endangered woodland warbler, the golden-cheeked warbler (Setophaga chrysoparia). Habitat-transition probabilities were estimated across the warbler's breeding range by combining National Land Cover Database imagery with multistate modeling. Using these estimates, along with recently published demographic estimates, we examined if the species can remain viable into the future given the current conditions. Lastly, we evaluated if protecting a greater amount of habitat would increase the number of warblers that can be supported in the future by systematically increasing the amount of protected habitat and comparing the estimated terminal carrying capacity at the end of 50 years of simulated habitat change. The estimated habitat-transition probabilities supported the hypothesis that habitat transitions are unidirectional, whereby habitat is more likely to diminish than regenerate. The model results indicated population viability could be achieved under current conditions, depending on dispersal. However, there is considerable uncertainty associated with the population projections due to parametric uncertainty. Model results suggested that increasing the amount of protected lands would have a substantial impact on terminal carrying capacities at the end of a 50-year simulation. Notably, this study identifies the need for collecting the data required to estimate demographic parameters in relation to changes in habitat metrics and population density in multiple regions, and highlights the importance of establishing a common definition of what constitutes protected habitat, what management goals are suitable within those protected

  9. Multi-scale Mexican spotted owl (Strix occidentalis lucida) nest/roost habitat selection in Arizona and a comparison with single-scale modeling results

    Science.gov (United States)

    Brad C. Timm; Kevin McGarigal; Samuel A. Cushman; Joseph L. Ganey

    2016-01-01

    Efficacy of future habitat selection studies will benefit by taking a multi-scale approach. In addition to potentially providing increased explanatory power and predictive capacity, multi-scale habitat models enhance our understanding of the scales at which species respond to their environment, which is critical knowledge required to implement effective...

  10. Sage-grouse habitat selection during winter in Alberta

    Science.gov (United States)

    Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.

    2010-01-01

    Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.

  11. Macrofaunal communities associated with chemosynthetic habitats from the U.S. Atlantic margin: A comparison among depth and habitat types

    Science.gov (United States)

    Bourque, Jill R.; Robertson, Craig M.; Brooke, Sandra; Demopoulos, Amanda W.J.

    2016-01-01

    Hydrocarbon seeps support distinct benthic communities capable of tolerating extreme environmental conditions and utilizing reduced chemical compounds for nutrition. In recent years, several locations of methane seepage have been mapped along the U.S. Atlantic continental slope. In 2012 and 2013, two newly discovered seeps were investigated in this region: a shallow site near Baltimore Canyon (BCS, 366–412 m) and a deep site near Norfolk Canyon (NCS, 1467–1602 m), with both sites containing extensive chemosynthetic mussel bed and microbial mat habitats. Sediment push cores, suction samples, and Ekman box cores were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 μm) in mussel beds, mats, and slope habitats at both sites. Community data from the deep site were also assessed in relation to the associated sediment environment (organic carbon and nitrogen, stable carbon and nitrogen isotopes, grain size, and depth). Infaunal assemblages and densities differed both between depths and among habitat types. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments and were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in BCS microbial mat habitats, but higher in mussel and slope sediments compared to NCS habitats. Multivariate statistical analysis revealed specific sediment properties as important for distinguishing the macrofaunal communities, including larger grain sizes present within NCS microbial mat habitats and depleted stable carbon isotopes (δ13C) in sediments present at mussel beds. These results suggest that habitat differences in the quality and source of organic matter are driving the observed patterns in the infaunal assemblages, including high β diversity and high variability in the macrofaunal community composition. This

  12. The energetic consequences of habitat structure for forest stream salmonids.

    Science.gov (United States)

    Naman, Sean M; Rosenfeld, Jordan S; Kiffney, Peter M; Richardson, John S

    2018-05-08

    1.Increasing habitat availability (i.e. habitat suitable for occupancy) is often assumed to elevate the abundance or production of mobile consumers; however, this relationship is often nonlinear (threshold or unimodal). Identifying the mechanisms underlying these nonlinearities is essential for predicting the ecological impacts of habitat change, yet the functional forms and ultimate causation of consumer-habitat relationships are often poorly understood. 2.Nonlinear effects of habitat on animal abundance may manifest through physical constraints on foraging that restrict consumers from accessing their resources. Subsequent spatial incongruence between consumers and resources should lead to unimodal or saturating effects of habitat availability on consumer production if increasing the area of habitat suitable for consumer occupancy comes at the expense of habitats that generate resources. However, the shape of this relationship could be sensitive to cross-ecosystem prey subsidies, which may be unrelated to recipient habitat structure and result in more linear habitat effects on consumer production. 3.We investigated habitat-productivity relationships for juveniles of stream-rearing Pacific salmon and trout (Oncorhynchus spp.), which typically forage in low-velocity pool habitats, while their prey (drifting benthic invertebrates) are produced upstream in high-velocity riffles. However, juvenile salmonids also consume subsidies of terrestrial invertebrates that may be independent of pool-riffle structure. 4.We measured salmonid biomass production in 13 experimental enclosures each containing a downstream pool and upstream riffle, spanning a gradient of relative pool area (14-80% pool). Increasing pool relative to riffle habitat area decreased prey abundance, leading to a nonlinear saturating effect on fish production. We then used bioenergetics model simulations to examine how the relationship between pool area and salmonid biomass is affected by varying levels of

  13. Distribution and broadscale habitat relations of the wolverine in the contiguous United States

    Science.gov (United States)

    Keith B. Aubry; McKelvey Kevin S.; Copeland Jeffrey P.

    2007-01-01

    Conservation of the wolverine (Gulo gulo) at the southern extent of its North American range requires reliable understandings of past and present distribution patterns and broad-scale habitat relations. We compiled 820 verifiable and documented records of wolverine occurrence (specimens, DNA detections, photos, and accounts of wolverines being killed...

  14. Ground beetle habitat templets and riverbank integrity

    OpenAIRE

    Van Looy, Kris; Vanacker, Stijn; Jochems, Hans; De Blust, Geert; Dufrêne, M

    2006-01-01

    The habitat templet approach was used in a scale-sensitive bioindicator assessment for the ecological integrity of riverbanks and for specific responses to river management. Ground beetle habitat templets were derived from a catchment scale sampling, integrating the overall variety of bank types. This coarse-filter analysis was integrated in the reach scale fine-filtering approaches of community responses to habitat integrity and river management impacts. Higher species diversity was associat...

  15. A Review of Bioeconomic Modelling of Habitat-Fisheries Interactions

    Directory of Open Access Journals (Sweden)

    Naomi S. Foley

    2012-01-01

    Full Text Available This paper reviews the bioeconomic literature on habitat-fisheries connections. Many such connections have been explored in the bioeconomic literature; however, missing from the literature is an analysis merging the potential influences of habitat on both fish stocks and fisheries into one general, overarching theoretical model. We attempt to clarify the nature of linkages between the function of habitats and the economic activities they support. More specifically, we identify theoretically the ways that habitat may enter the standard Gordon-Schaefer model, and nest these interactions in the general model. Habitat influences are defined as either biophysical or bioeconomic. Biophysical effects relate to the functional role of habitat in the growth of the fish stock and may be either essential or facultative to the species. Bioeconomic interactions relate to the effect of habitat on fisheries and can be shown through either the harvest function or the profit function. We review how habitat loss can affect stock, effort, and harvest under open access and maximum economic yield managed fisheries.

  16. Bird assemblage patterns in relation to anthropogenic habitat ...

    African Journals Online (AJOL)

    Using habitat stratification, birds were surveyed along transects in tidal and supralittoral sub-habitats using DISTANCE sampling protocol, and along the river by encounter rates to determine abundance and species richness. Indices of human activity as well as habitat structure parameters including ground cover, plant ...

  17. Integrating and interpreting the Habitats- and Birds Directives

    NARCIS (Netherlands)

    Kistenkas, F.H.

    2005-01-01

    The Birds Directive of 1979 and the Habitats Directive of 1992 might be seen as the two major EU nature conservation directives, both protecting a habitats network throughout Europe and species. The transposition of both the Habitats and Birds Directive (HBD) into domestic national or subnational

  18. Adaptive breeding habitat selection: Is it for the birds?

    Science.gov (United States)

    Chalfoun, Anna D.; Schmidt, Kenneth A.

    2012-01-01

    The question of why animals choose particular habitats has important implications for understanding behavioral evolution and distribution of organisms in the wild and for delineating between habitats of different quality for conservation and management. Habitats chosen by animals can influence fitness outcomes via the costs (e.g., predation risk) and benefits (e.g., food availability) of habitat use. Habitat preferences should therefore be under selection to favor those that confer fitness advantages (Clark and Shutler 1999). Indeed, prevailing theory suggests that the habitat preferences of animals should be adaptive, such that fitness is higher in preferred habitats (Hildén 1965, Southwood 1977, Martin 1998). However, studies have often identified apparent mismatches between observed habitat preferences and fitness outcomes across a wide variety of taxa (Valladares and Lawton 1991, Mayhew 1997, Kolbe and Janzen 2002, Arlt and Pärt 2007, Mägi et al. 2009). Certainly, one limitation of studies may be that assessment of “fitness” is typically constrained to fitness surrogates such as nest success rather than lifetime reproductive success or classic Fisherian fitness (Endler 1986). Nevertheless, important habitat choices such as nest sites influence the probability that temporarily sedentary, dependent young are discovered by enemies such as predators and parasites. We therefore expect, on average, to see congruence between evolved habitat preferences and relevant components of fitness (e.g., nest success). Here, we (1) review the prevalence of apparent mismatches between avian breeding-habitat preferences and fitness outcomes using nest-site selection as a focus; (2) describe several potential mechanisms for such mismatches, including anthropogenic, methodological, and ecological–evolutionary; and (3) suggest a framework for understanding the contexts in which habitat preferences represent adaptive decisions, with a primary focus on ecological information

  19. Geomorphology and Sustainable Subsistence Habitats

    Science.gov (United States)

    Johnson, A. C.; Kruger, L. E.

    2016-02-01

    Climatic, tectonic, and human-related impacts are changing the distribution of shoreline habitats and associated species used as food resources. There is a need to summarize current and future shoreline geomorphic - biotic relationships and better understand potential impacts to native customary and traditional gathering patterns. By strategically integrating Native knowledge and observations, we create an inclusive vulnerability assessment strategy resulting in a win-win opportunity for resource users and research scientists alike. We merged the NOAA ShoreZone database with results from over sixty student intern discussions in six southeast Alaska Native communities. Changes in shore width and unit length were derived using near shore bathymetry depths and available isostatic rebound, tectonic movement, and rates of sea level rise. Physical attributes including slope, substrate, and exposure were associated with presence and abundance of specific species. Student interns, selected by Tribes and Tribal associations, conducted resource-based discussions with community members to summarize species use, characteristics of species habitat, transportation used to access collection areas, and potential threats to habitats. Geomorphic trends and community observations were summarized to assess potential threats within a spatial context. Given current measured rates of uplift and sea level rise, 2.4 to 0 m of uplift along with 0.20 m of sea level rise is expected in the next 100 years. Coastlines of southeast Alaska will be subject to both drowning (primarily to the south) and emergence (primarily to the north). We predict decreases in estuary and sediment-dominated shoreline length and an increase in rocky habitats. These geomorphic changes, combined with resident's concerns, highlight six major interrelated coastal vulnerabilities including: (1) reduction of clam and clam habitat quantity and quality, (2) reduction in chiton quality and quantity, (3) harmful expansion of

  20. Ghost of habitat past: historic habitat affects the contemporary distribution of giant garter snakes in a modified landscape.

    Science.gov (United States)

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2014-01-01

    Historic habitat conditions can affect contemporary communities and populations, but most studies of historic habitat are based on the reduction in habitat extent or connectivity. Little is known about the effects of historic habitat on contemporary species distributions when historic habitat has been nearly completely removed, but species persist in a highly altered landscape. More than 93% of the historic wetlands in the Central Valley of California, USA, have been drained and converted to agricultural and other uses, but agricultural wetlands, such as rice and its supporting infrastructure of canals, allow some species to persist. Little is known about the distribution of giant garter snakes Thamnophis gigas, a rare aquatic snake species inhabiting this predominantly agricultural landscape, or the variables that affect where this species occurs. We used occupancy modeling to examine the distribution of giant garter snakes at the landscape scale in the Sacramento Valley (northern portion of the Central Valley) of California, with an emphasis on the relative strength of historic and contemporary variables (landscape-scale habitat, local microhabitat, vegetation composition and relative prey counts) for predicting giant garter snake occurrence. Proximity to historic marsh best explained variation in the probability of occurrence of giant garter snakes at the landscape scale, with greater probability of occurrence near historic marsh. We suspect that the importance of distance to historic marsh represents dispersal limitations of giant garter snakes. These results suggest that preserving and restoring areas near historic marsh, and minimizing activities that reduce the extent of marsh or marsh-like (e.g. rice agriculture, canal) habitats near historic marsh may be advantageous to giant garter snakes.

  1. Modeling habitat connectivity to inform reintroductions: a case study with the Chiricahua Leopard Frog

    Science.gov (United States)

    Jarchow, Christopher J.; Hossack, Blake R.; Sigafus, Brent H.; Schwalbe, Cecil R.; Muths, Erin L.

    2016-01-01

    Managing species with intensive tools such as reintroduction may focus on single sites or entire landscapes. For vagile species, long-term persistence will require colonization and establishment in neighboring habitats. Therefore, both suitable colonization sites and suitable dispersal corridors between sites are required. Assessment of landscapes for both requirements can contribute to ranking and selection of reintroduction areas, thereby improving management success. Following eradication of invasive American Bullfrogs (Lithobates catesbeianus) from most of Buenos Aires National Wildlife Refuge (BANWR; Arizona, United States), larval Chiricahua Leopard Frogs (Lithobates chiricahuensis) from a private pond were reintroduced into three stock ponds. Populations became established at all three reintroduction sites followed by colonization of neighboring ponds in subsequent years. Our aim was to better understand colonization patterns by the federally threatened L. chiricahuensis which could help inform other reintroduction efforts. We assessed the influence of four landscape features on colonization. Using surveys from 2007 and information about the landscape, we developed a habitat connectivity model, based on electrical circuit theory, that identified potential dispersal corridors after explicitly accounting for imperfect detection of frogs. Landscape features provided little insight into why some sites were colonized and others were not, results that are likely because of the uniformity of the BANWR landscape. While corridor modeling may be effective in more-complex landscapes, our results suggest focusing on local habitat will be more useful at BANWR. We also illustrate that existing data, even when limited in spatial or temporal resolution, can provide information useful in formulating management actions.

  2. Field irradiator gamma: pre-irradiation occurrence of breeding birds in three boreal habitats

    International Nuclear Information System (INIS)

    Seabloom, R.W.

    1975-10-01

    A trail census was conducted of the breeding birds found in three major habitats in the Field Irradiator Gamma area at the Whiteshell Nuclear Research Establishment, Pinawa, Manitoba. The area sampled was about 10.50 ha in size, and included 4.25 ha of upland forest, 4.75 ha of lowland conifers, and 1.50 ha of black spruce-tamarack bog. Forty-four species of birds were identified, of which 24 were considered to be resident in the study area. The highest population density was observed in the bog, followed by upland forest and lowland conifer respectively. In contrast, species diversity was greatest in the upland forest, while it decreased markedly in the relatively monotypic lowland conifer and bog habitats. (author)

  3. An index of reservoir habitat impairment

    Science.gov (United States)

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  4. Associations of dragonflies (Odonata) to habitat variables within the Maltese Islands: a spatio-temporal approach.

    Science.gov (United States)

    Balzan, Mario V

    2012-01-01

    Relatively little information is available on environmental associations and the conservation of Odonata in the Maltese Islands. Aquatic habitats are normally spatio-temporally restricted, often located within predominantly rural landscapes, and are thereby susceptible to farmland water management practices, which may create additional pressure on water resources. This study investigates how odonate assemblage structure and diversity are associated with habitat variables of local breeding habitats and the surrounding agricultural landscapes. Standardized survey methodology for adult Odonata involved periodical counts over selected water-bodies (valley systems, semi-natural ponds, constructed agricultural reservoirs). Habitat variables relating to the type of water body, the floristic and physiognomic characteristics of vegetation, and the composition of the surrounding landscape, were studied and analyzed through a multivariate approach. Overall, odonate diversity was associated with a range of factors across multiple spatial scales, and was found to vary with time. Lentic water-bodies are probably of high conservation value, given that larval stages were mainly associated with this habitat category, and that all species were recorded in the adult stage in this habitat type. Comparatively, lentic and lotic seminatural waterbodies were more diverse than agricultural reservoirs and brackish habitats. Overall, different odonate groups were associated with different vegetation life-forms and height categories. The presence of the great reed, Arundo donax L., an invasive alien species that forms dense stands along several water-bodies within the Islands, seems to influence the abundance and/or occurrence of a number of species. At the landscape scale, roads and other ecologically disturbed ground, surface water-bodies, and landscape diversity were associated with particular components of the odonate assemblages. Findings from this study have several implications for the

  5. Habitat factors influencing the distribution of Cymbopogon validus in ...

    African Journals Online (AJOL)

    Habitat factors influencing the distribution of Cymbopogon validus in Mkambati Game Reserve, Transkei. ... disturbance; game reserve; grassland; grasslands; habitat conditions; habitat factors; mkambati game ... AJOL African Journals Online.

  6. 7 CFR 636.4 - Program requirements.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURE LONG TERM CONTRACTING WILDLIFE HABITAT INCENTIVES PROGRAM § 636.4 Program requirements. (a) To... members' tax identification numbers and percentage interest in the entity. Where applicable, American... individuals and payments made, by tax identification number or other unique identification number, during the...

  7. No Habitat Selection during Spring Migration at a Meso-Scale Range across Mosaic Landscapes: A Case Study with the Woodcock (Scolopax rusticola.

    Directory of Open Access Journals (Sweden)

    Ariñe Crespo

    Full Text Available Success of migration in birds in part depends on habitat selection. Overall, it is still poorly known whether there is habitat selection amongst landbird migrants moving across landscapes. Europe is chiefly covered by agro-forestry mosaic landscapes, so migratory species associated to either agricultural landscapes or woodland habitats should theoretically find suitable stopover sites along migration. During migration from wintering to breeding quarters, woodcocks (Scolopax rusticola tagged with PTT satellite-tracking transmitters were used to test for the hypothesis that migrants associated to agro-forest habitats have no habitat selection during migration, at a meso-scale level. Using a GIS platform we extracted at a meso-scale range habitat cover at stopover localities. Results obtained from comparisons of soil covers between points randomly selected and true stopover localities sites revealed, as expected, the species may not select for particular habitats at a meso-scale range, because the habitat (or habitats required by the species can be found virtually everywhere on their migration route. However, those birds stopping over in places richer in cropland or mosaic habitats including both cropland and forest and with proportionally less closed forest stayed for longer than in areas with lower surfaces of cropland and mosaic and more closed forest. This suggests that areas rich in cropland or mosaic habitat were optimal.

  8. HABITAT PREFERENSIAL TARSIUS BELITUNG (Cephalopachus bancanus saltator Elliot, 1910

    Directory of Open Access Journals (Sweden)

    Fifin Fitriana

    2017-04-01

    Full Text Available Belitung tarsier (Cephalopachus bancanus saltator is an endemic species in Belitung Island from Cephalopachus genus. Existence of belitung tarsier in its habitat is now under threatened by deforestatition. Due to lack information about its habitat and as conservation effort, this research was tackled to reveal the characteristic of habitat preference of belitung tarsier. The aim of this study are to identify characteristic of habitat preference of belitung tarsier. This research was conducted in March until May 2016 at around Mount Tajam Protected Forest and plantation area. Presence of tarsiers were identified by direct observation, urine odor detection, identifying based tarsier habitat suitability and the local information. Chi-square and Neu methode was used to analyze the variable of habitat preference of belitung tarsiers. This research found that characteristics of habitat preference of belitung tarsier consisted of its homerange was prefer to dry land agricultural and shurb land cover type, not too tight canopy cover (Leaf Area Index /LAI value of 0,83-2,46, close to the edge of forest (0 -874 m, roads (0 – 3.698 m and settlements (0-403 m, elevation range was between 1 -142 m asl, slope slightly (0-15%, temperature 24-25 0C and high rainfall (3.222 – 3.229 mm/year. Characteristic of habitat preference information could be considered to develop conservation action of belitung tarsier. Keywords: belitung tarsiers, habitat, habitat preference, tarsier  

  9. Enhancements of the "eHabitat

    Science.gov (United States)

    Santoro, M.; Dubois, G.; Schulz, M.; Skøien, J. O.; Nativi, S.; Peedell, S.; Boldrini, E.

    2012-04-01

    The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Social Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond the simple sharing of the data as it encourages the connectivity of models (the GEOSS Model Web), an approach easing the handling of often complex multi-disciplinary questions such as understanding the impact of environmental and climatological factors on ecosystems and habitats. In the context of GEOSS Architecture Implementation Pilot - Phase 3 (AIP-3), the EC-funded EuroGEOSS and GENESIS projects have developed and successfully demonstrated the "eHabitat" use scenario dealing with Climate Change and Biodiversity domains. Based on the EuroGEOSS multidisciplinary brokering infrastructure and on the DOPA (Digital Observatory for Protected Areas, see http://dopa.jrc.ec.europa.eu/), this scenario demonstrated how a GEOSS-based interoperability infrastructure can aid decision makers to assess and possibly forecast the irreplaceability of a given protected area, an essential indicator for assessing the criticality of threats this protected area is exposed to. The "eHabitat" use scenario was advanced in the GEOSS Sprint to Plenary activity; the advanced scenario will include the "EuroGEOSS Data Access Broker" and a new version of the eHabitat model in order to support the use of uncertain data. The multidisciplinary interoperability infrastructure which is used to demonstrate the "eHabitat" use scenario is composed of the following main components: a) A Discovery Broker: this component is able to discover resources from a plethora of different and heterogeneous geospatial services, presenting them on a single and

  10. CO2 dynamics on three habitats of mangrove ecosystem in Bintan Island, Indonesia

    Science.gov (United States)

    Dharmawan, I. W. E.

    2018-02-01

    Atmospheric carbon dioxide (CO2) has increased over time, implied on global warming and climate change. Blue carbon is one of interesting options to reduce CO2 concentration in the atmosphere. Indonesia has the largest mangrove area in the world which would be potential to mitigate elevated CO2 concentrations. A quantitative study on CO2 dynamic was conducted in the habitat-variable and pristine mangrove of Bintan island. The study was aimed to estimate CO2 flux on three different mangrove habitats, i.e., lagoon, oceanic and riverine. Even though all habitats were dominated by Rhizophora sp, they were significantly differed one another by species composition, density, and soil characteristics. Averagely, CO2 dynamics had the positive budget by ∼0.668 Mmol/ha (82.47%) which consisted of sequestration, decomposition, and soil efflux at 0.810 Mmol/ha/y, -0.125 Mmol/ha/y and -0.017 Mmol/ha/y, respectively. The study found that the fringing habitat had the highest CO2 capturing rate and the lowest rate of litter decomposition which was contrast to the riverine site. Therefore, oceanic mangrove was more efficient in controlling CO2 dynamics due to higher carbon storage on their biomass. A recent study also found that soil density and organic matter had a significant impact on CO2 dynamics.

  11. Habitat split and the global decline of amphibians.

    Science.gov (United States)

    Becker, Carlos Guilherme; Fonseca, Carlos Roberto; Haddad, Célio Fernando Baptista; Batista, Rômulo Fernandes; Prado, Paulo Inácio

    2007-12-14

    The worldwide decline in amphibians has been attributed to several causes, especially habitat loss and disease. We identified a further factor, namely "habitat split"-defined as human-induced disconnection between habitats used by different life history stages of a species-which forces forest-associated amphibians with aquatic larvae to make risky breeding migrations between suitable aquatic and terrestrial habitats. In the Brazilian Atlantic Forest, we found that habitat split negatively affects the richness of species with aquatic larvae but not the richness of species with terrestrial development (the latter can complete their life cycle inside forest remnants). This mechanism helps to explain why species with aquatic larvae have the highest incidence of population decline. These findings reinforce the need for the conservation and restoration of riparian vegetation.

  12. Different habitats within a region contain evolutionary heritage from different epochs depending on the abiotic environment

    NARCIS (Netherlands)

    Bartish, I.V.; Ozinga, W.A.; Bartish, M.I.; Wamelink, G.W.W.; Hennekens, S.M.; Prinzing, Andreas

    2016-01-01

    Aim: Biodiversity hot-spots are regions containing evolutionary heritage from ancient or recent geological epochs, i.e. evolutionary 'museums' or 'cradles', respectively. We hypothesize that: (1) there are also 'museums' and 'cradles' within regions - some species pools of particular habitat

  13. Steelhead Critical Habitat, Coast - NOAA [ds122

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Steelhead Critical Habitat as well as habitat type and quality in the Coastal California Steelhead ESUs (evolutionarily...

  14. A smartphone app and analysis framework for rapidly characterizing and predicting shorebird habitat

    Science.gov (United States)

    Thieler, E. R.; Zeigler, S. L.; Plant, N. G.; Gutierrez, B.; Winslow, L. A.; Hines, M. K.; Read, J. S.; Walker, J. I.

    2016-12-01

    We developed a smartphone application called iPlover as a distributed data collection system to gather synoptic observations of shorebird habitat selection preferences, and a Bayesian network that exploits the data to predict habitat suitability. We tested this approach to modeling habitat suitability for the federally listed piping plover (Charadrius melodus) on coastal beaches and barrier islands along 1500 km of coast from North Carolina to Maine, USA. Using agile software development approaches, the iPlover application was conceived, developed and deployed in just a few months following Hurricane Sandy in 2012. This application supported collaborative efforts of nearly 100 stakeholders, resulting in over 2000 data points describing piping plover habitat selection patterns. The data were analyzed in a Bayesian network to evaluate the probability that a specific combination of habitat variables is associated with a nesting site. Subsequent testing shows that iPlover data are robust to variability in user classification and that the Bayesian network has a high level of predictive accuracy. Our work addresses a variety of scientific problems in understanding and managing dynamic coastal landscapes for beach-dependent species that require biological and geological data that (1) span the range of relevant environments and habitats, (2) can be updated seasonally to interannually, and (3) capture spatial detail. It is difficult to acquire such data; the data often have limited focus due to resource constraints, can be challenging to coordinate between different regions, are collected by non-specialists, or lack observational uniformity. Furthermore, associated data analysis techniques are often limited in their ability to consider new information as data are collected from additional study sites and updated. We present examples of how this approach can be used to map past, present, and future habitat suitability for sites of interest. We also describe lessons learned

  15. 75 FR 35751 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Tumbling Creek...

    Science.gov (United States)

    2010-06-23

    ... lands requiring a Federal permit (such as a permit from the U.S. Army Corps of Engineers under section... habitat. Actions that would significantly alter water chemistry or water quality (for example, changes to...

  16. A simplified approach for simulating changes in beach habitat due to the combined effectgs of long-term sea level rise, storm erosion, and nourishment

    Science.gov (United States)

    Better understanding of vulnerability of coastal habitats to sea level rise and major storm events require the use of simulation models. Coastal habitats also undergo frequent nourishment restoration works in order to maintain their viability. Vulnerability models must be able to assess the combined...

  17. Modeling Louisiana pine snake (Pituophis ruthveni) habitat use in relation to soils

    Science.gov (United States)

    Robert O. Wagner; Josh B. Pierce; D. Craig Rudolph; Richard R. Schaefer; Dwayne A. Hightower

    2014-01-01

    Ongoing surveys suggest that Pituophis ruthveni (Louisiana Pine Snake) has declined range-wide and that known extant populations have continued to decline. Seven known populations remain and occupy small, isolated blocks of habitat. Population sizes are unknown, but all of them are believed to be critically small. Management for the species’ recovery requires an...

  18. Estimated spatial requirements of the medium- to large-sized ...

    African Journals Online (AJOL)

    Conservation planning in the Cape Floristic Region (CFR) of South Africa, a recognised world plant diversity hotspot, required information on the estimated spatial requirements of selected medium- to large-sized mammals within each of 102 Broad Habitat Units (BHUs) delineated according to key biophysical parameters.

  19. Designated Critical Habitat

    Data.gov (United States)

    Kansas Data Access and Support Center — Critical habitats include those areas documented as currently supporting self-sustaining populations of any threatened or endangered species of wildlife as well as...

  20. Northeast and Midwest regional species and habitats at greatest risk and most vulnerable to climate impacts

    Science.gov (United States)

    Staudinger, Michelle D.; Hilberg, Laura; Janowiak, Maria; Swanton, C.O.

    2016-01-01

    The objectives of this Chapter are to describe climate change vulnerability, it’s components, the range of assessment methods being implemented regionally, and examples of training resources and tools. Climate Change Vulnerability Assessments (CCVAs) have already been conducted for numerous Regional Species of Greatest Conservation Need and their dependent 5 habitats across the Northeast and Midwest. This chapter provides a synthesis of different assessment frameworks, information on the locations (e.g., States) where vulnerability assessments were conducted, lists of individual species and habitats with their respective vulnerability rankings, and a comparison of how vulnerability rankings were determined among studies.

  1. Linking snake habitat use to nest predation risk in grassland birds: the dangers of shrub cover.

    Science.gov (United States)

    Klug, Page E; Jackrel, Sara L; With, Kimberly A

    2010-03-01

    Extremes in rangeland management, varying from too-frequent fire and intensive grazing to the suppression of both, threaten rangeland ecosystems worldwide. Intensive fire and grazing denude and homogenize vegetation whereas their suppression increases woody cover. Although habitat loss is implicated in grassland bird declines, degradation through intensive management or neglect also decreases breeding habitat and may reduce nesting success through increased rates of nest predation. Snakes are important nest predators, but little is known about how habitat use in snakes relates to predation risk for grassland birds nesting within tallgrass prairie subjected to different grazing and fire frequencies. We evaluated nest survival in the context of habitat used by nesting songbirds and two bird-eating snakes, the eastern yellowbelly racer Coluber constrictor flaviventris and Great Plains ratsnake Pantherophis emoryi. Daily nest survival rates decreased with increasing shrub cover and decreasing vegetation height, which characterize grasslands that have been neglected or intensively managed, respectively. Discriminant function analysis revealed that snake habitats were characterized by higher shrub cover, whereas successful nests were more likely to occur in areas with tall grass and forbs but reduced shrub cover. Because snakes often use shrub habitat, birds nesting in areas with increased shrub cover may be at higher risk of nest predation by snakes in addition to other predators known to use shrub habitat (e.g., mid-sized carnivores and avian predators). Depredated nests also occurred outside the discriminant space of the snakes, indicating that other predators (e.g., ground squirrels Spermophilus spp. and bullsnakes Pituophis catenifer) may be important in areas with denuded cover. Targeted removal of shrubs may increase nest success by minimizing the activity of nest predators attracted to shrub cover.

  2. Chinook Critical Habitat, Coast - NOAA [ds124

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Chinook Critical Habitat as well as habitat type and quality in the California Coastal Evolutionary Significant Unit (ESU -...

  3. Transient habitats limit development time for periodical cicadas.

    Science.gov (United States)

    Karban, Richard

    2014-01-01

    Periodical cicadas (Magicicada spp.) mature in 13 or 17 years, the longest development times for any non-diapausing insects. Selection may favor prolonged development since nymphs experience little mortality and individuals taking 17 years have been shown to have greater fecundity than those taking 13 years. Why don't periodical cicadas take even longer to develop? Nymphs feed on root xylem fluid and move little. Ovipositing females prefer fast-growing trees at forest edges. I hypothesized that (1) adults emerging at edges would be heavier than those from forest interiors and (2) habitat changes could limit development time. I collected newly eclosed females that had neither fed as adults nor moved from their site of development. For M. septendecim, females from edges were 4.9% heavier than those from the interior. I assumed that emergence density indicated habitat quality and measured density at eight sites in 1979, 1996, and 2013. Over three generations, variation in densities was great; densities at two sites crashed, and at one site they exploded to 579/m2 Habitat transience may limit development time because only adults can reassess habitats and reposition offspring. In conclusion, cicadas are affected by habitat characteristics, habitats change over 17 years, and cicadas may emerge, mate, and redistribute their offspring to track habitat dynamics.

  4. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old

  5. 50 CFR 660.395 - Essential Fish Habitat (EFH)

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Essential Fish Habitat (EFH) 660.395... Groundfish Fisheries § 660.395 Essential Fish Habitat (EFH) Essential fish habitat (EFH) is defined as those waters and substrate necessary to fish for spawning, breeding, feeding or growth to maturity (16 U.S.C...

  6. Juvenile-adult habitat shift in permian fossil reptiles and amphibians.

    Science.gov (United States)

    Bakker, R T

    1982-07-02

    Among extant large reptiles, juveniles often occupy different habitats from those of adults or subadults and thus avoid competition with and predation from the older animals; small juveniles often choose cryptic habitats because they are vulnerable to a wide variety of predators. Evidence from fossil humeri and femora of Early Permian reptiles collected from sediments of several distinct habitats indicate that similar shifts in habitat occurred. Juvenile Dimetrodon seem to have favored cryptic habitats around swamp and swampy lake margins; adults favored open habitats on the floodplains. Similar patterns of habitat shift seem to be present in the reptile Ophiacodon and the amphibian Eryops and may have been common in fossil tetrapods of the Permian-Triassic.

  7. Analysis of habitat characteristics of small pelagic fish based on generalized additive models in Kepulauan Seribu Waters

    Science.gov (United States)

    Rivai, A. A.; Siregar, V. P.; Agus, S. B.; Yasuma, H.

    2018-03-01

    One of the required information for sustainable fisheries management is about the habitat characteristics of a fish species. This information can be used to map the distribution of fish and map the potential fishing ground. This study aimed to analyze the habitat characteristics of small pelagic fishes (anchovy, squid, sardine and scads) which were mainly caught by lift net in Kepulauan Seribu waters. Research on habitat characteristics had been widely done, but the use of total suspended solid (TSS) parameters in this analysis is still lacking. TSS parameter which was extracted from Landsat 8 along with five other oceanographic parameters, CPUE data and location of fishing ground data from lift net fisheries in Kepulauan Seribu were included in this analysis. This analysis used Generalized Additive Models (GAMs) to evaluate the relationship between CPUE and oceanographic parameters. The results of the analysis showed that each fish species had different habitat characteristics. TSS and sea surface height had a great influence on the value of CPUE from each species. All the oceanographic parameters affected the CPUE of each species. This study demonstrated the effective use of GAMs to identify the essential habitat of a fish species.

  8. Managing harvest and habitat as integrated components

    Science.gov (United States)

    Osnas, Erik; Runge, Michael C.; Mattsson, Brady J.; Austin, Jane E.; Boomer, G. S.; Clark, R. G.; Devers, P.; Eadie, J. M.; Lonsdorf, E. V.; Tavernia, Brian G.

    2014-01-01

    In 2007, several important initiatives in the North American waterfowl management community called for an integrated approach to habitat and harvest management. The essence of the call for integration is that harvest and habitat management affect the same resources, yet exist as separate endeavours with very different regulatory contexts. A common modelling framework could help these management streams to better understand their mutual effects. Particularly, how does successful habitat management increase harvest potential? Also, how do regional habitat programmes and large-scale harvest strategies affect continental population sizes (a metric used to express habitat goals)? In the ensuing five years, several projects took on different aspects of these challenges. While all of these projects are still on-going, and are not yet sufficiently developed to produce guidance for management decisions, they have been influential in expanding the dialogue and producing some important emerging lessons. The first lesson has been that one of the more difficult aspects of integration is not the integration across decision contexts, but the integration across spatial and temporal scales. Habitat management occurs at local and regional scales. Harvest management decisions are made at a continental scale. How do these actions, taken at different scales, combine to influence waterfowl population dynamics at all scales? The second lesson has been that consideration of the interface of habitat and harvest management can generate important insights into the objectives underlying the decision context. Often the objectives are very complex and trade-off against one another. The third lesson follows from the second – if an understanding of the fundamental objectives is paramount, there is no escaping the need for a better understanding of human dimensions, specifically the desires of hunters and nonhunters and the role they play in conservation. In the end, the compelling question is

  9. Habitat quality, water quality and otter distribution

    Directory of Open Access Journals (Sweden)

    Christopher Mason

    1995-12-01

    Full Text Available Abstract In recent decades the otter (Lutra lutra has declined over much of Europe. Good habitat has been shown to be essential to otters. Specific elements of cover have been identified in some studies but the minimum cover requirements to support otter populations are not known. These are likely to vary in relation to other factors, such as disturbance. Habitat destruction has been severe in many areas of Europe. Water quantity is important to otters, especially where low flows destroy the food base, namely fish. However the minimum food requirements to support populations are not known. The main cause of the decline in otter populations is almost certainly bioaccumulating pollutants, especially PCBs. These are likely to be inhibiting recolonization in many areas. In Britain, catchment distribution of otters within regions is negatively correlated to mean PCB levels in otter spraints, and these are indicative of tissue levels. PCBs have been found in all samples studied. Current EC statutory monitoring is inadequate to protect otter populations from bioaccumulating contaminants. Standards are presented here for otter protection. More fundamental research is required to refine our understanding of the requirements of the otter. Riassunto Qualità ambientale, qualità dell'acqua e distribuzione della lontra - Negli ultimi decenni la lontra (Lutra lutra è diminuita su buona parte del suo areale europeo, dove particolarmente pesante è stata la distruzione di ambienti favorevoli. Habitat qualitativamente idonei sono essenziali per la sopravvivenza della specie. In alcuni studi, specifici parametri di copertura vegetale dei corpi idrici sono stati ritenuti importanti per la specie, ma quale sia il valore minimo di copertura riparia in grado di supportare una popolazione resta sconosciuto. I parametri di copertura variano probabilmente in relazione ad altri fattori, quali, ad

  10. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance

    2003-08-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream

  11. A resource-based modelling framework to assess habitat suitability for steppe birds in semiarid Mediterranean agricultural systems.

    Directory of Open Access Journals (Sweden)

    Laura Cardador

    Full Text Available European agriculture is undergoing widespread changes that are likely to have profound impacts on farmland biodiversity. The development of tools that allow an assessment of the potential biodiversity effects of different land-use alternatives before changes occur is fundamental to guiding management decisions. In this study, we develop a resource-based model framework to estimate habitat suitability for target species, according to simple information on species' key resource requirements (diet, foraging habitat and nesting site, and examine whether it can be used to link land-use and local species' distribution. We take as a study case four steppe bird species in a lowland area of the north-eastern Iberian Peninsula. We also compare the performance of our resource-based approach to that obtained through habitat-based models relating species' occurrence and land-cover variables. Further, we use our resource-based approach to predict the effects that change in farming systems can have on farmland bird habitat suitability and compare these predictions with those obtained using the habitat-based models. Habitat suitability estimates generated by our resource-based models performed similarly (and better for one study species than habitat based-models when predicting current species distribution. Moderate prediction success was achieved for three out of four species considered by resource-based models and for two of four by habitat-based models. Although, there is potential for improving the performance of resource-based models, they provide a structure for using available knowledge of the functional links between agricultural practices, provision of key resources and the response of organisms to predict potential effects of changing land-uses in a variety of context or the impacts of changes such as altered management practices that are not easily incorporated into habitat-based models.

  12. Modeling effects of conservation grassland losses on amphibian habitat

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  13. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat.

    Science.gov (United States)

    Cheminée, Adrien; Rider, Mary; Lenfant, Philippe; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Mercader, Manon; Saragoni, Gilles; Neveu, Reda; Ternon, Quentin; Pastor, Jérémy

    2017-06-15

    Coastal nursery habitats are essential for the renewal of adult fish populations. We quantified the availability of a coastal nursery habitat (shallow heterogeneous rocky bottoms) and the spatial variability of its juvenile fish populations along 250km of the Catalan coastline (France and Spain). Nurseries were present in 27% of the coastline, but only 2% of them benefited from strict protection status. For nine taxa characteristic of this habitat, total juvenile densities varied significantly between nursery sites along the coastline, with the highest densities being found on the northern sites. Recruitment level (i.e. a proxy of nursery value) was not explained by protection level, but it was moderately and positively correlated with an anthropization index. Patterns of spatial variations were taxa-specific. Exceptional observations of four juveniles of the protected grouper Epinephelus marginatus were recorded. Our data on habitat availability and recruitment levels provides important informations which help to focus MPA management efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The harmoniation of cultural heritage and architectural conseration needs with socio-economic requirements of rural habitat in Danube Delta

    Directory of Open Access Journals (Sweden)

    SELA Florentina

    2016-12-01

    Full Text Available The paper present a study of cultural heritage of rural landscape in Danube Delta Biosphere Reserve focuses on cultural landscapes that reflect traditional lifestyle of the locals, activities of deltas’ resource sustainable exploitation, creating visual elements in the rural landscape, especially on traditional buildings, fishermens’ temporary shelters from fishing areas and other traditional activities. In order to highlight the necessity of cultural heritage harmonization and architectural conservation with the socio-economic requirements of rural habitat in Danube Delta were made some field activities through different methods of field investigation, like structured and semistructured interviews, questionnaires, focus groups. In Danube Delta villages, the changes imposed by the touristic function of most of existing or new construction have produced important changes in the architectural landscape of existing settlements impending danger of destroying traditional architectural values which demonstrates on the one hand the personality and inovation spirit of local people in their constructions, particularly in the use of local materials, and on the other hand gives a specific area feature that blends perfectly with the natural landscape. Danube Delta, the space of complex features in terms of cultural values, characterized as open gate of cultural interference, is the area that can provide options to balance cohabitation and cultural heritage.

  15. Intercohort density dependence drives brown trout habitat selection

    Science.gov (United States)

    Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana

    2013-01-01

    Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat

  16. Habitat modeling for brown trout population in alpine region of Slovenia with focus on determination of preference functions, fuzzy rules and fuzzy sets

    Science.gov (United States)

    Santl, Saso; Carf, Masa; Preseren, Tanja; Jenic, Aljaz

    2013-04-01

    Water withdrawals and consequently reduction of discharges in river streams for different water uses (hydro power, irrigation, etc.) usually impoverish habitat suitability for naturally present river fish fauna. In Slovenia reduction of suitable habitats resulting from water abstractions frequently impacts local brown trout (Salmo truta) populations. This is the reason for establishment of habitat modeling which can qualitatively and quantitatively support decision making for determination of the environmental flow and other mitigation measures. Paper introduces applied methodology for habitat modeling where input data preparation and elaboration with required accuracy has to be considered. For model development four (4) representative and heterogeneous sampling sites were chosen. Two (2) sampling sections were located within the sections with small hydropower plants and were considered as sections affected by water abstractions. The other two (2) sampling sections were chosen where there are no existing water abstractions. Precise bathymetric mapping for chosen river sections has been performed. Topographic data and series of discharge and water level measurements enabled establishment of calibrated hydraulic models, which provide data on water velocities and depths for analyzed discharges. Brief field measurements were also performed to gather required data on dominant and subdominant substrate size and cover type. Since the accuracy of fish distribution on small scale is very important for habitat modeling, a fish sampling method had to be selected and modified for existing river microhabitats. The brown trout specimen's locations were collected with two (2) different sampling methods. A method of riverbank observation which is suitable for adult fish in pools and a method of electro fishing for locating small fish and fish in riffles or hiding in cover. Ecological and habitat requirements for fish species vary regarding different fish populations as well as eco

  17. Remote identification of maternal polar bear (Ursus maritimus) denning habitat on the Colville River Delta, Alaska

    Science.gov (United States)

    Blank, Justin J.

    High resolution digital aerial photographs (1 foot pixel size) of the Colville River Delta, Alaska were examined in 3D, with the use of a digital photogrammetric workstation. Topographic features meeting the criteria required for adequate snow accumulation, and subsequent construction of terrestrial polar bear maternal dens, were identified and digitized into an ArcGIS line shapefile. Effectiveness, efficiency, and accuracy were improved when compared to previous polar bear denning habitat efforts which utilized contact photo prints and a pocket stereoscope in other geographic areas of northern Alaska. Accuracy of photograph interpretation was systematically evaluated visually from the air with the use of a helicopter and physically on the ground. Results show that the mapping efforts were successful in identifying den habitat 91.3% of the time. Knowledge denning habitat can improve and inform decision making by managers and regulators when considering travel and development in the study area. An understanding of polar bear denning habitat extent and location will be a crucial tool for planning activities within the study area in a way that minimizes conflicts with maternal dens.

  18. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea

    Directory of Open Access Journals (Sweden)

    Takaomi Arai

    2015-01-01

    Full Text Available BACKGROUND: In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. RESULTS: Proportions of saturated fatty acids (SAFA ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. CONCLUSIONS: Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  19. A radiation analysis of lunar surface habitats

    International Nuclear Information System (INIS)

    De Angelis, G.; Wilson, J.W.; Tripathi, R.K.; Clowdsley, M.S.; Nealy, J.E.

    2003-01-01

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to minimize the astronaut radiation exposure and at the same time control the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process performs minimization of mass along all phases of a mission scenario, considered in terms of time frame, equipment, location, crew characteristics and performance required, radiation exposure annual and career limit constraints (those proposed in NCRP 132), and implementation of the ALARA principle. In the lunar environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in detail (e.g. shape, thickness, materials, etc) with considerations of various shielding strategies. The results for all scenarios clearly showed that the direct exposure to the space environment like in transfers and EVAs phases gives the most of the dose, with the proposed shielded habitats and shelters giving quite a good protection from radiation. Operational constraints on hardware and scenarios have all been considered by the optimization techniques. Within the limits of this preliminary analysis, the three Moon Base related mission scenarios are perfectly feasible from the astronaut radiation safety point of view with the currently adopted and proposed

  20. Stream Habitat Reach Summary - NCWAP [ds158

    Data.gov (United States)

    California Natural Resource Agency — The Stream Habitat - NCWAP - Reach Summary [ds158] shapefile contains in-stream habitat survey data summarized to the stream reach level. It is a derivative of the...

  1. A Conceptual Approach to Recreation Habitat Analysis

    National Research Council Canada - National Science Library

    Hamilton, H. R

    1996-01-01

    .... The Habitat Evaluation Procedures (HEP) is a commonly used technique for assessing human impacts on the vigor of wildlife species, and serves as the model for the Recreation Habitat Analysis Method (RHAM...

  2. KARAKTERISTIK HABITAT DAN MORFOLOGI SIPUT ONGCOMELANIA HUPENSIS LINDOENSIS SEBAGAI HEWAN RESERVOIR DALAM PENULARAN SHISTOSOMIASIS PADA MANUSIA DAN TERNAK DI TAMAN NASIONAL LORE LINDU (Habitat Characteristics and Morphology of Oncomelania hupensis

    Directory of Open Access Journals (Sweden)

    Hafsah Hafsah

    2013-07-01

    were done by using a ring methods. The collected snails were observed in the laboratory for morphology identification and mirasidium determination using a microscope. Prevalence rate of schistosomiasis was estimated using modification of “Kato-Kars” methods. Data were analysed by descriptive methods for all parameter.  Results shown the habitat distribution of  Oncomelania hupensis lindoensis in Lore Lindu National Park were  144 places (focus. It was distributed in four villages i.e. Tomado (64 focuses, Anca (63 focuses, Puroo (11 focuses dan Langko (6 focuses.  The type of habitat consists of  44.44 % (wet rice field, 29.86 % (plantation, 18.06 % (wet savannah, dan 11 % (wet forest.  Soil characterictics of the habitat was clasified as a sandy clay with a relatively low in organic matter  (< 5%, the microclimate ((temperature and humidity ranges from 22.30 - 24.10 °C and  60 - 78 % respectively.  Snail are morphologically small in size (3-5mm, they are blackish dark brown in colour and amphibious. It becomes a hospes of shistosoma. The prevalence rate of shistosomiasis on humans  was relatively hight (up to 2%.  Whereas the prevalence rate of shistosomiasis on animals was 39.6% (buffalo; 39.92% (cattle; and 22.5% (pig. Conclusion for this study was found the habitat characteristics and morphological of O. hupensis lindoensis shown specifics term. The prevalence rate of schistosomiasis in Lore Lindu National Park was high enough.

  3. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA.

    Science.gov (United States)

    Arkle, Robert S; Pilliod, David S

    2015-09-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species' range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem

  4. A Modular Instrumentation System for NASA's Habitat Demonstration Unit

    Science.gov (United States)

    Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul

    2010-01-01

    NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the

  5. Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Quaempts, Eric

    2003-01-01

    , and the allowance of normative processes such as fire occurrence. Implementation of these alternatives could generate an estimated minimum of 393 enhancement credits in 10 years. Longer-term benefits of protection and enhancement activities include increases in native species diversity and structural complexity in all cover types. While such benefits are not readily recognized by HEP models and reflected in the number of habitat units generated, they also provide dual benefits for fisheries resources. Implementation of the alternatives will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program.

  6. Modeling habitat distributions of bats using GIS: wind energy and Indiana bats

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Jason; Jansen, Erik; Friedel, Robert

    2011-07-01

    Full text: Post-construction monitoring indicates that commercial wind energy facilities are a source of bat mortality resulting from collisions or other negative interactions with operational turbines. An understanding of the potential distribution and movement of bats on the landscape is essential to minimizing these impacts. Using remote sensing and Geographic Information Systems software, we present a modelling approach that evaluates the distribution of bat roosting and foraging habitat and potential flight paths at a landscape scale which may be used to assess the risk to bats from the development of a wind energy facility. Accurate assessment of these risks can minimize schedule delays and unexpected costs. Applied to the behaviour and ecology of the United States federally endangered Indiana bat (Myotis sodalis) at two hypothetical wind farms, this method predicts the areas where the species is likely to travel while foraging, thereby highlighting the riskiest areas within a project area. The results of our modelling indicate that risk to bats is not directly proportional to habitat availability or suitability, in part because risk is associated with areas where bats are travelling. This modelling approach will assist wind energy developers in making both large-scale (e.g., choosing between different development locations) and small-scale decisions (e.g., choosing where to locate turbines) aimed at minimizing impacts to bats. Using habitat models can provide a cost-effective method for evaluating bat risk, satisfying requirements of regulatory agencies, and limiting the more intensive survey methods to projects that absolutely require them. (Author)

  7. Benthos of Adjacent Mangrove, Seagrass and Non-vegetated Habitats in Rookery Bay, Florida, U.S.A.

    Science.gov (United States)

    Sheridan, P.

    1997-04-01

    Benthic faunal abundances and biomasses in adjacent mangrove, seagrass and non-vegetated mud habitats were compared in Rookery Bay, Florida, U.S.A. Although all habitats were intertidal, mangroves received the shortest duration of flooding, and non-vegetated mud received the longest. Replicate cores were taken at high tide in each habitat in July, September and December 1988, and in April 1989. Seagrass substrates were low organic content sands, whereas mangrove and non-vegetated substrates were high organic content sandy clays. Over 300 taxa were recorded, most of them relatively rare, and only 32 taxa were considered dominant (averaging ≥636 individuals m -2or five core -1in any habitat at a given time). Seagrass and non-vegetated mud faunas were more diverse than those of mangrove substrates. Total densities were always higher in red mangrove ( Rhizophora mangle) peat than elsewhere, averaging 22 591 to 52 914 individuals m -2. Densities in mixed seagrasses ranged between 6347 and 23 545 individuals m -2, while those in non-vegetated mud ranged between 3611 and 22 465 individuals m -2. Biomasses, however, were always higher in either seagrasses (15·7-87·4 g wet weight m -2) or non-vegetated mud (11·9-26·2 g m -2) than in mangroves (3·6-8·2 g m -2). Tanaids and annelids were the numerical dominants, reaching maximum densities of 35 127 and 31 388 m -2, respectively, in mangroves. Annelids were also the dominant biomass in most habitats each month. Variation in densities of most of the 32 dominant taxa were related to habitat not time. Each habitat harboured four to eight taxa that were significantly more abundant there than in alternate habitats. Feeding guild analysis indicated few differences among habitats, as surface deposit feeders and carnivores were predominant. Red mangrove appear capable of functioning in a manner similar to intertidal marsh habitats by providing high densities of small prey items for mobile consumers able to exploit the

  8. The evolution of mapping habitat for northern spotted owls (Strix occidentalis caurina): A comparison of photo-interpreted, Landsat-based, and lidar-based habitat maps

    Science.gov (United States)

    Ackers, Steven H.; Davis, Raymond J.; Olsen, K.; Dugger, Catherine

    2015-01-01

    Wildlife habitat mapping has evolved at a rapid pace over the last few decades. Beginning with simple, often subjective, hand-drawn maps, habitat mapping now involves complex species distribution models (SDMs) using mapped predictor variables derived from remotely sensed data. For species that inhabit large geographic areas, remote sensing technology is often essential for producing range wide maps. Habitat monitoring for northern spotted owls (Strix occidentalis caurina), whose geographic covers about 23 million ha, is based on SDMs that use Landsat Thematic Mapper imagery to create forest vegetation data layers using gradient nearest neighbor (GNN) methods. Vegetation data layers derived from GNN are modeled relationships between forest inventory plot data, climate and topographic data, and the spectral signatures acquired by the satellite. When used as predictor variables for SDMs, there is some transference of the GNN modeling error to the final habitat map.Recent increases in the use of light detection and ranging (lidar) data, coupled with the need to produce spatially accurate and detailed forest vegetation maps have spurred interest in its use for SDMs and habitat mapping. Instead of modeling predictor variables from remotely sensed spectral data, lidar provides direct measurements of vegetation height for use in SDMs. We expect a SDM habitat map produced from directly measured predictor variables to be more accurate than one produced from modeled predictors.We used maximum entropy (Maxent) SDM modeling software to compare predictive performance and estimates of habitat area between Landsat-based and lidar-based northern spotted owl SDMs and habitat maps. We explored the differences and similarities between these maps, and to a pre-existing aerial photo-interpreted habitat map produced by local wildlife biologists. The lidar-based map had the highest predictive performance based on 10 bootstrapped replicate models (AUC = 0.809 ± 0.011), but the

  9. L'habitat à une échelle globale : importance respective de l'immigration et de l'extinction pour les peuplements de poissons des petits lacs

    Directory of Open Access Journals (Sweden)

    TONN W. M.

    1995-04-01

    Full Text Available Les deux processus qui déterminent la structure des communautés dans les habitats insulaires sont l'immigration d'espèces vers une communauté et l'extinction de celles qui étaient présentes auparavant. Bien que l'immigration et l'extinction se produisent généralement à des échelles supérieures à celles qu'il est possible d'étudier avec des expériences plannifiées, les écologistes peuvent améliorer leur compréhension de ces processus par l'analyse des distributions observées ; l'isolation, le caractère discret et la réplication des systèmes insulaires présentent des avantages pour réaliser de telles analyses. Comme pour les communautés observées sur de vraies îles, la structure des peuplements de poissons dans les petits lacs forestiers est le résultat de l'immigration et de l'extinction. L'importance relative de ces processus peut dépendre des caractéristiques d'habitat des lacs et des espèces présentes, ainsi que du cadre régional et historique des lacs étudiés. Dans une région donnée, la composition des peuplements locaux de poissons peut être reliée à un ensemble particulier de conditions d'habitat et, dans la mesure où ces facteurs peuvent être liés à l'immigration et à l'extinction, il devrait être possible d'analyser les relations peuplement-environnement pour en déduire l'importance relative de ces processus dans la formation de peuplements locaux dans et entre les régions et les continents. Nous avons réalisé des analyses à large échelle des relations peuplement-environnement des petits lacs forestiers de quatre régions tempérées d'Europe et d'Amérique du Nord ; l'utilisation d'une série d'analyses canonique partielle des correspondances nous a permis de distinguer la variation due aux relations peuplements-environnement d'un ensemble de facteurs associés à l'immigration contre l'extinction. Les isolations passées et présentes varient selon les lacs et les régions, comme la

  10. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  11. Resource pulses in desert river habitats: productivity-biodiversity hotspots, or mirages?

    Science.gov (United States)

    Free, Carissa L; Baxter, Greg S; Dickman, Christopher R; Leung, Luke K P

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses.

  12. Hydrologic characteristics of freshwater mussel habitat: novel insights from modeled flows

    Science.gov (United States)

    Drew, C. Ashton; Eddy, Michele; Kwak, Thomas J.; Cope, W. Gregory; Augspurger, Tom

    2018-01-01

    The ability to model freshwater stream habitat and species distributions is limited by the spatially sparse flow data available from long-term gauging stations. Flow data beyond the immediate vicinity of gauging stations would enhance our ability to explore and characterize hydrologic habitat suitability. The southeastern USA supports high aquatic biodiversity, but threats, such as landuse alteration, climate change, conflicting water-resource demands, and pollution, have led to the imperilment and legal protection of many species. The ability to distinguish suitable from unsuitable habitat conditions, including hydrologic suitability, is a key criterion for successful conservation and restoration of aquatic species. We used the example of the critically endangered Tar River Spinymussel (Parvaspina steinstansana) and associated species to demonstrate the value of modeled flow data (WaterFALL™) to generate novel insights into population structure and testable hypotheses regarding hydrologic suitability. With ordination models, we: 1) identified all catchments with potentially suitable hydrology, 2) identified 2 distinct hydrologic environments occupied by the Tar River Spinymussel, and 3) estimated greater hydrological habitat niche breadth of assumed surrogate species associates at the catchment scale. Our findings provide the first demonstrated application of complete, continuous, regional modeled hydrologic data to freshwater mussel distribution and management. This research highlights the utility of modeling and data-mining methods to facilitate further exploration and application of such modeled environmental conditions to inform aquatic species management. We conclude that such an approach can support landscape-scale management decisions that require spatial information at fine resolution (e.g., enhanced National Hydrology Dataset catchments) and broad extent (e.g., multiple river basins).

  13. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    Science.gov (United States)

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446

  14. Predicting spatial and temporal distribution of Indo-Pacific lionfish (Pterois volitans) in Biscayne Bay through habitat suitability modeling

    Science.gov (United States)

    Bernal, Nicholas A.; DeAngelis, Donald L.; Schofield, Pamela J.; Sullivan Sealey, Kathleen

    2014-01-01

    Invasive species may exhibit higher levels of growth and reproduction when environmental conditions are most suitable, and thus their effects on native fauna may be intensified. Understanding potential impacts of these species, especially in the nascent stages of a biological invasion, requires critical information concerning spatial and temporal distributions of habitat suitability. Using empirically supported environmental variables (e.g., temperature, salinity, dissolved oxygen, rugosity, and benthic substrate), our models predicted habitat suitability for the invasive lionfish (Pterois volitans) in Biscayne Bay, Florida. The use of Geographic Information Systems (GIS) as a platform for the modeling process allowed us to quantify correlations between temporal (seasonal) fluctuations in the above variables and the spatial distribution of five discrete habitat quality classes, whose ranges are supported by statistical deviations from the apparent best conditions described in prior studies. Analysis of the resulting models revealed little fluctuation in spatial extent of the five habitat classes on a monthly basis. Class 5, which represented the area with environmental variables closest to the best conditions for lionfish, occupied approximately one-third of Biscayne Bay, with subsequent habitats declining in area. A key finding from this study was that habitat suitability increased eastward from the coastline, where higher quality habitats were adjacent to the Atlantic Ocean and displayed marine levels of ambient water quality. Corroboration of the models with sightings from the USGS-NAS database appeared to support our findings by nesting 79 % of values within habitat class 5; however, field testing (i.e., lionfish surveys) is necessary to confirm the relationship between habitat classes and lionfish distribution.

  15. Hibernal habitat selection by Wood Frogs (Lithobates sylvaticus) in a northern New England montane landscape

    Science.gov (United States)

    Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.

    2016-01-01

    Poikilothermic species, such as amphibians, endure harsh winter conditions via freeze-tolerance or freeze-avoidance strategies. Freeze-tolerance requires a suite of complex, physiological mechanisms (e.g., cryoprotectant synthesis); however, behavioral strategies (e.g., hibernal habitat selection) may be used to regulate hibernaculum temperatures and promote overwintering survival. We investigated the hibernal ecology of the freeze-tolerant Wood Frog (Lithobates sylvaticus) in north-central Maine. Our objectives were to characterize the species hibernaculum microclimate (temperature, relative humidity), evaluate hibernal habitat selection, and describe the spatial arrangement of breeding, post-breeding, and hibernal habitats. We monitored 15 frogs during two winters (2011/12: N = 10; 2012/13: N = 5), measured hibernal habitat features at micro (2 m) and macro (10 m) spatial scales, and recorded microclimate hourly in three strata (hibernaculum, leaf litter, ambient air). We compared these data to that of 57 random locations with logistic regression models, Akaike Information Criterion, and Kolmogorov–Smirnov tests. Hibernaculum microclimate was significantly different and less variable than leaf litter, ambient air, and random location microclimate. Model averaging indicated that canopy cover (−), leaf litter depth (+), and number of logs and stumps (+; microhabitat only) were important predictors of Wood Frog hibernal habitat. These habitat features likely act to insulate hibernating frogs from extreme and variable air temperatures. For example, decreased canopy cover facilitates increased snowpack depth and earlier snowpack accumulation and melt. Altered winter temperature and precipitation patterns attributable to climate change may reduce snowpack insulation, facilitate greater temperature variation in the underlying hibernacula, and potentially compromise Wood Frog winter survival.

  16. Evaluating the habitat capability model for Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1995-01-01

    Habitat capability (HABCAP) models for wildlife assist land managers in predicting the consequences of their management decisions. Models must be tested and refined prior to using them in management planning. We tested the predicted patterns of habitat selection of the R2 HABCAP model using observed patterns of habitats selected by radio-marked Merriam’s turkey (

  17. Influence of habitat degradation on fish replenishment

    Science.gov (United States)

    McCormick, M. I.; Moore, J. A. Y.; Munday, P. L.

    2010-09-01

    Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.

  18. Larval habitat choice in still water and flume flows by the opportunistic bivalve Mulinia lateralis

    Science.gov (United States)

    Grassle, Judith P.; Snelgrove, Paul V. R.; Butman, Cheryl Ann

    Competent pediveligers of the coot clam Mulinia lateralis (Say) clearly preferred an organically-rich mud over abiotic glass beads in 24-h flume experiments, and often demonstrated the same choice in still-water experiments. We hypothesize that peediveligers with characteristic helical swimming paths above the bottom can exercise habitat choice in both still water nad flow, but that the limited swimming ambits of physiologically older periveligers require near-bottom flows to move the larvae between sediment patches so that they can exercise habitat choice. Although M. lateralis larvae are planktotrophic, their ability to delay metamorphosis in the absence of a preferred sediment cue is limited to about five days, a shorter time than the lecithotrophi larvae of the opportunistic polychaete species, Capitella spp. I and II. Field distributions of all three opportunistic species may result, at least in part, from active habitat selection for high-organic sediments by settling larvae.

  19. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States

    Science.gov (United States)

    Henry, Lea-Anne; Nizinski, Martha S.; Ross, Steve W.

    2008-06-01

    Deep-water coral habitats off the southeastern USA (SEUS) support diverse fish and invertebrate assemblages, but are poorly explored. This study is the first to report on the hydroids collected from these habitats in this area. Thirty-five species, including two species that are likely new to science, were identified from samples collected primarily by manned submersible during 2001-2005 from deep-water coral habitats off North Carolina to east-central Florida. Eleven of the species had not been reported since the 19th to mid-20th century. Ten species, and one family, the Rosalindidae, are documented for the first time in the SEUS. Latitudinal ranges of 15 species are extended, and the deepest records in the western North Atlantic for 10 species are reported. A species accumulation curve illustrated that we continue to add to our knowledge of hydroid diversity in these habitats. Sexually mature individuals were collected for 19 species during the summer to early autumn months. Most of the observed species (89%) liberate planula larvae as part of their life cycles, suggesting that these species exhibit a reproductive strategy that reduces the risk of dispersal to sub-optimal habitats. Hydroids occurred across various substrata including coral rubble, live corals, rock and other animal hosts including hydroids themselves. All observed species were regionally widespread with typically deep-neritic to bathyal sub-tropical/tropical distributions. Hydroid assemblages from deep-water SEUS coral habitats were most similar to those from adjacent deep-water habitats off the SEUS (17 shared species), and those in the Straits of Florida/Bahamas and Caribbean/West Indian regions (14 and 8 shared species, respectively). The similarity to sub-tropical and tropical assemblages and the richness of plumularioids in the SEUS deep-water coral habitats support the idea of a Pleistocene intrusion of tropical species northwards following an intensification of the Gulf Stream from the

  20. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    Science.gov (United States)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  1. Estuaries and Tidal Marshes. Habitat Pac.

    Science.gov (United States)

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  2. Hudson Canyon benthic habitats characterization and mapping by integrated analysis of multidisciplinary data

    Science.gov (United States)

    Pierdomenico, Martina; Guida, Vincent G.; Rona, Peter A.; Macelloni, Leonardo; Scranton, Mary I.; Asper, Vernon; Diercks, Arne

    2013-04-01

    Hudson Canyon, about 180 km SE of New York City, is the largest eastern U.S. submarine canyon and is under consideration for HAPC (Habitat Area of Particular Concern) status, representing a fisheries and biodiversity hot spot. Interest in the area, within the perspective of ecosystem based management, marine spatial planning, habitat and species conservation, led to a joint project between NOAA Northeast Fisheries, U.S. Geological Survey (USGS), Mississippi Mineral Research Institute (MMRI), National Institute for Undersea Science and Technology (NIUST), Stony Brook and Rutgers Universities for the study of benthic habitats, that includes the assembly of existing data with newly collected ones: acoustic mapping, visual ground-truthing, hydrographic, sedimentological, and trawl data collections. Acoustic mapping, performed using AUV-mounted multibeam sonar, provided ultra-high resolution bathymetric and backscatter imagery (3m and 1m respectively) at all water depths for identification of geomorphological features and for the characterization of surficial sediments along the two thirds of the shelf portion of the canyon. Identification of benthic and demersal communities was accomplished by visual ground thruthing with underwater vehicle video and still cameras, and from trawl catch data. A CTD-rosette sampler provided water column salinity-temperature profiles and water samples for dissolved methane analysis in the vicinity of suspected bottom sources. Analysis of data revealed a complex of topographic structures and hydrological patterns that provide a wide range of physical habitats in a relatively small area. A mosaic of sandy and muddy substrates, gravel beds, rock outcrops, and semilithified clay outcrops host rich and varied faunal assemblages, including deepwater corals and sponge communities. Pockmark fields, occurring below 300 m depth, suggest that methane-based chemosynthetic carbonate deposition contributes to creation of specific hard bottom habitats

  3. 78 FR 52363 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Diamond...

    Science.gov (United States)

    2013-08-22

    ... causes of diamond darter habitat loss. Water quality degradation and siltation also played key roles. See... quantitatively define specific water quality standards required by the diamond darter. These organizations noted... conductivity poses to the diamond [[Page 52368

  4. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change.

    Science.gov (United States)

    Albert, Cécile H; Rayfield, Bronwyn; Dumitru, Maria; Gonzalez, Andrew

    2017-12-01

    Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land-use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land-use change projections with the latest developments in network-connectivity research and spatial, multipurpose conservation prioritization. We used land-use change simulations to explore robustness of species' habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land-use change. The application of connectivity criteria alongside habitat-quality criteria for protected-area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade-offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low. © 2017 Society for Conservation Biology.

  5. Complementary habitat use by wild bees in agro-natural landscapes.

    Science.gov (United States)

    Mandelik, Yael; Winfree, Rachael; Neeson, Thomas; Kremen, Claire

    2012-07-01

    Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat

  6. Use of aquaculture ponds and other habitats by autumn migrating shorebirds along the lower Mississippi river.

    Science.gov (United States)

    Lehnen, Sarah E; Krementz, David G

    2013-08-01

    Populations of many shorebird species are declining; habitat loss and degradation are among the leading causes for these declines. Shorebirds use a variety of habitats along interior migratory routes including managed moist soil units, natural wetlands, sandbars, and agricultural lands such as harvested rice fields. Less well known is shorebird use of freshwater aquaculture facilities, such as commercial cat- and crayfish ponds. We compared shorebird habitat use at drained aquaculture ponds, moist soil units, agricultural areas, sandbars and other natural habitat, and a sewage treatment facility in the in the lower Mississippi River Alluvial Valley (LMAV) during autumn 2009. Six species: Least Sandpiper (Calidris minutilla), Killdeer (Charadrius vociferous), Semipalmated Sandpiper (Calidris pusilla), Pectoral Sandpiper (C. melanotos), Black-necked Stilt (Himantopus himantopus), and Lesser Yellowlegs (Tringa flavipes), accounted for 92 % of the 31,165 individuals observed. Sewage settling lagoons (83.4, 95 % confidence interval [CI] 25.3-141.5 birds/ha), drained aquaculture ponds (33.5, 95 % CI 22.4-44.6 birds/ha), and managed moist soil units on public lands (15.7, CI 11.2-20.3 birds/ha) had the highest estimated densities of shorebirds. The estimated 1,100 ha of drained aquaculture ponds available during autumn 2009 provided over half of the estimated requirement of 2,000 ha by the LMAV Joint Venture working group. However, because of the decline in the aquaculture industry, autumn shorebird habitats in the LMAV may be limited in the near future. Recognition of the current aquaculture habitat trends will be important to the future management activities of federal and state agencies. Should these aquaculture habitat trends continue, there may be a need for wildlife biologists to investigate other habitats that can be managed to offset the current and expected loss of aquaculture acreages. This study illustrates the potential for freshwater aquaculture to

  7. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    Directory of Open Access Journals (Sweden)

    Neville Paul

    2006-12-01

    Full Text Available Abstract Background We conducted Geographic Information System (GIS habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We found 16% of suitable habitat (6% of the study area distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82% occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM. We identified 88,190 ha (10% of the study area of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Conclusion Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  8. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico.

    Science.gov (United States)

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-12-04

    We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. We found 16% of suitable habitat (6% of the study area) distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area) distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82%) occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM). We identified 88,190 ha (10% of the study area) of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA) contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  9. Physical habitat simulation system reference manual: version II

    Science.gov (United States)

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a

  10. Comparison of two methods for estimating the abundance, diversity and habitat preference of fluvial macroinvertebrates in contrasting habitats

    NARCIS (Netherlands)

    Alonso, A.; Camargo, J.A.

    2010-01-01

    In this research we evaluate the effects of the method used for estimating the potential surface available for benthic macroinvertebrates in macrophyte and unvegetated habitats on several metrics and habitat preference of aquatic macroinvertebrates in the upper catchment of the Henares River

  11. A Place to Call Home: A Synthesis of Delta Smelt Habitat in the Upper San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Ted Sommer

    2013-06-01

    Full Text Available We used a combination of published literature and field survey data to synthesize the available information about habitat use by delta smelt Hypomesus transpacificus, a declining native species in the San Francisco Estuary. Delta smelt habitat ranges from San Pablo and Suisun bays to their freshwater tributaries, including the Sacramento and San Joaquin rivers. In recent years, substantial numbers of delta smelt have colonized habitat in Liberty Island, a north Delta area that flooded in 1997. The species has a more upstream distribution during spawning as opposed to juvenile rearing periods. Post-larvae and juveniles tend to have a more downstream distribution during wetter years. Delta smelt are most common in low-salinity habitat (<6 psu with high turbidities (>12 NTU and moderate temperatures (7 °C to 25 °C. They do not appear to have strong substrate preferences, but sandy shoals are important for spawning in other osmerids. The evidence to date suggests that they generally require at least some tidal flow in their habitats. Delta smelt also occur in a wide range of channel sizes, although they seem to be rarer in small channels (<15 m wide. Nonetheless, there is some evidence that open water adjacent to habitats with long water-residence times (e.g. tidal marsh, shoal, low-order channels may be favorable. Other desirable features of delta smelt habitat include high calanoid copepod densities and low levels of submerged aquatic vegetation (SAV and the toxic algae Microcystis. Although enough is known to plan for large-scale pilot habitat projects, these efforts are vulnerable to several factors, most notably climate change, which will change salinity regimes and increase the occurrence of lethal temperatures. We recommend restoration of multiple geographical regions and habitats coupled with extensive monitoring and adaptive management. An overall emphasis on ecosystem processes rather than specific habitat features is also likely to be

  12. Wyoming greater sage-grouse habitat prioritization: A collection of multi-scale seasonal models and geographic information systems land management tools

    Science.gov (United States)

    O'Donnell, Michael S.; Aldridge, Cameron L.; Doherty, Kevin E.; Fedy, Bradley C.

    2015-01-01

    With rapidly changing landscape conditions within Wyoming and the potential effects of landscape changes on sage-grouse habitat, land managers and conservation planners, among others, need procedures to assess the location and juxtaposition of important habitats, land-cover, and land-use patterns to balance wildlife requirements with multiple human land uses. Biologists frequently develop habitat-selection studies to identify prioritization efforts for species of conservation concern to increase understanding and help guide habitat-conservation efforts. Recently, the authors undertook a large-scale collaborative effort that developed habitat-selection models for Greater Sage-grouse (Centrocercus urophasianus) across large landscapes in Wyoming, USA and for multiple life-stages (nesting, late brood-rearing, and winter). We developed these habitat models using resource selection functions, based upon sage-grouse telemetry data collected for localized studies and within each life-stage. The models allowed us to characterize and spatially predict seasonal sage-grouse habitat use in Wyoming. Due to the quantity of models, the diversity of model predictors (in the form of geographic information system data) produced by analyses, and the variety of potential applications for these data, we present here a resource that complements our published modeling effort, which will further support land managers.

  13. Fish habitat simulation models and integrated assessment tools

    International Nuclear Information System (INIS)

    Harby, A.; Alfredsen, K.

    1999-01-01

    Because of human development water use increases in importance, and this worldwide trend is leading to an increasing number of user conflicts with a strong need for assessment tools to measure the impacts both on the ecosystem and the different users and user groups. The quantitative tools must allow a comparison of alternatives, different user groups, etc., and the tools must be integrated while impact assessments includes different disciplines. Fish species, especially young ones, are indicators of the environmental state of a riverine system and monitoring them is a way to follow environmental changes. The direct and indirect impacts on the ecosystem itself are measured, and impacts on user groups is not included. Fish habitat simulation models are concentrated on, and methods and examples are considered from Norway. Some ideas on integrated modelling tools for impact assessment studies are included. One dimensional hydraulic models are rapidly calibrated and do not require any expert knowledge in hydraulics. Two and three dimensional models require a bit more skilled users, especially if the topography is very heterogeneous. The advantages of using two and three dimensional models include: they do not need any calibration, just validation; they are predictive; and they can be more cost effective than traditional habitat hydraulic models when combined with modern data acquisition systems and tailored in a multi-disciplinary study. Suitable modelling model choice should be based on available data and possible data acquisition, available manpower, computer, and software resources, and needed output and accuracy in the output. 58 refs

  14. Habitat Evaluation Procedures (HEP) Report; Gamblin Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 12, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Gamblin Lake property, an acquisition completed by the Kalispel Tribe of Indians in December 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Gamblin Lake Project provides a total of 273.28 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 127.92 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 21.06 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Wet meadow provides 78.05 HUs for Canada goose and mallard. Emergent wetland habitat provides 46.25 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the Gamblin Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  15. Linking hydrologic, physical and chemical habitat environments for the potential assessment of fish community rehabilitation in a developing city

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Liu, C. M.; Dou, T. W.; Yang, Z. L.; Yang, Z. Y.; Liu, X. L.; Xiang, H.; Nie, S. Y.; Zhang, J. L.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-04-01

    Aquatic ecological rehabilitation is increasingly attracting considerable public and research attention. An effective method that requires less data and expertise would help in the assessment of rehabilitation potential and in the monitoring of rehabilitation activities as complicated theories and excessive data requirements on assemblage information make many current assessment models expensive and limit their wide use. This paper presents an assessment model for restoration potential which successfully links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. In this model three newly developed sub-models, integrated habitat index (IHSI), integrated ecological niche breadth (INB) and integrated ecological niche overlap (INO), are established to study spatial heterogeneity of the restoration potential of fish assemblages based on gradient methods of habitat suitability index and ecological niche models. To reduce uncertainties in the model, as many fish species as possible, including important native fish, were selected as dominant species with monitoring occurring over several seasons to comprehensively select key habitat factors. Furthermore, a detrended correspondence analysis (DCA) was employed prior to a canonical correspondence analysis (CCA) of the data to avoid the "arc effect" in the selection of key habitat factors. Application of the model to data collected at Jinan City, China proved effective reveals that three lower potential regions that should be targeted in future aquatic ecosystem rehabilitation programs. They were well validated by the distribution of two habitat parameters: river width and transparency. River width positively influenced and transparency negatively influenced fish assemblages. The model can be applied for monitoring the effects of fish assemblage restoration

  16. Identifying Critical Habitat for Australian Freshwater Turtles in a Large Regulated Floodplain: Implications for Environmental Water Management

    Science.gov (United States)

    Ocock, J. F.; Bino, G.; Wassens, S.; Spencer, J.; Thomas, R. F.; Kingsford, R. T.

    2018-03-01

    Freshwater turtles face many threats, including habitat loss and river regulation reducing occupancy and contributing to population decline. Limited knowledge of hydrological conditions required to maintain viable turtle populations in large floodplain wetlands hinders effective adaptive management of environmental water in regulated rivers. We surveyed three turtle species over 4 years across the Lower Murrumbidgee River floodplain, a large wetland complex with a long history of water resource development. Using site and floodplain metrics and generalized linear models, within a Bayesian Model Averaging framework, we quantified the main drivers affecting turtle abundance. We also used a hierarchical modeling approach, requiring large sample sizes, quantifying possible environmental effects while accounting for detection probabilities of the eastern long-necked turtle ( Chelodina longicollis). The three species varied in their responses to hydrological conditions and connectivity to the main river channel. Broad-shelled turtles ( Chelodina expansa) and Macquarie River turtles ( Emydura macquarii macquarii) had restricted distributions, centered on frequently inundated wetlands close to the river, whereas the eastern long-necked turtles were more widely distributed, indicating an ability to exploit variable habitats. We conclude that turtle communities would benefit from long-term management strategies that maintain a spatiotemporal mosaic of hydrological conditions. More specifically, we identified characteristics of refuge habitats and stress the importance of maintaining their integrity during dry periods. Neighboring habitats can be targeted during increased water availability years to enhance feeding and dispersal opportunities for freshwater turtles.

  17. Habitat structure and body size distributions: Cross-ecosystem comparison for taxa with determinate and indeterminate growth

    Science.gov (United States)

    Nash, Kirsty L.; Allen, Craig R.; Barichievy, Chris; Nystrom, Magnus; Sundstrom, Shana M.; Graham, Nicholas A.J.

    2014-01-01

    Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross-ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi-modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross-scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual-level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions

  18. Reindeer habitat use in relation to two small wind farms, during preconstruction, construction, and operation.

    Science.gov (United States)

    Skarin, Anna; Alam, Moudud

    2017-06-01

    Worldwide there is a rush toward wind power development and its associated infrastructure. In Fennoscandia, large-scale wind farms comprising several hundred windmills are currently built in important grazing ranges used for Sámi reindeer husbandry. In this study, reindeer habitat use was assessed using reindeer fecal pellet group counts in relation to two relatively small wind farms, with 8 and 10 turbines, respectively. In 2009, 1,315 15-m 2 plots were established and pellet groups were counted and cleaned from the plots. This was repeated once a year in May, during preconstruction, construction, and operation of the wind farms, covering 6 years (2009-2014) of reindeer habitat use in the area. We modeled the presence/absence of any pellets in a plot at both the local (wind farm site) and regional (reindeer calving to autumn range) scale with a hierarchical logistic regression, where spatial correlation was accounted for via random effects, using vegetation type, and the interaction between distance to wind turbine and time period as predictor variables. Our results revealed an absolute reduction in pellet groups by 66% and 86% around each wind farm, respectively, at local scale and by 61% at regional scale during the operation phase compared to the preconstruction phase. At the regional, scale habitat use declined close to the turbines in the same comparison. However, at the local scale, we observed increased habitat use close to the wind turbines at one of the wind farms during the operation phase. This may be explained by continued use of an important migration route close to the wind farm. The reduced use at the regional scale nevertheless suggests that there may be an overall avoidance of both wind farms during operation, but further studies of reindeer movement and behavior are needed to gain a better understanding of the mechanisms behind this suggested avoidance.

  19. Crucial nesting habitat for gunnison sage-grouse: A spatially explicit hierarchical approach

    Science.gov (United States)

    Aldridge, Cameron L.; Saher, D.J.; Childers, T.M.; Stahlnecker, K.E.; Bowen, Z.H.

    2012-01-01

    Gunnison sage-grouse (Centrocercus minimus) is a species of special concern and is currently considered a candidate species under Endangered Species Act. Careful management is therefore required to ensure that suitable habitat is maintained, particularly because much of the species' current distribution is faced with exurban development pressures. We assessed hierarchical nest site selection patterns of Gunnison sage-grouse inhabiting the western portion of the Gunnison Basin, Colorado, USA, at multiple spatial scales, using logistic regression-based resource selection functions. Models were selected using Akaike Information Criterion corrected for small sample sizes (AIC c) and predictive surfaces were generated using model averaged relative probabilities. Landscape-scale factors that had the most influence on nest site selection included the proportion of sagebrush cover >5%, mean productivity, and density of 2 wheel-drive roads. The landscape-scale predictive surface captured 97% of known Gunnison sage-grouse nests within the top 5 of 10 prediction bins, implicating 57% of the basin as crucial nesting habitat. Crucial habitat identified by the landscape model was used to define the extent for patch-scale modeling efforts. Patch-scale variables that had the greatest influence on nest site selection were the proportion of big sagebrush cover >10%, distance to residential development, distance to high volume paved roads, and mean productivity. This model accurately predicted independent nest locations. The unique hierarchical structure of our models more accurately captures the nested nature of habitat selection, and allowed for increased discrimination within larger landscapes of suitable habitat. We extrapolated the landscape-scale model to the entire Gunnison Basin because of conservation concerns for this species. We believe this predictive surface is a valuable tool which can be incorporated into land use and conservation planning as well the assessment of

  20. A test of the habitat suitability model for Merriam's wild turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1996-01-01

    An important research area regarding the wild turkey (Meleagris gallopavo) is development of sound habitat models. Habitat models provide standardized methods to quantify wild turkey habitat and stimulate new research hypotheses. Habitat suitability index (HSI) models show species-habitat relationships on a scale of O-l, with 1 being optimum. A...

  1. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    OpenAIRE

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-01-01

    Abstract Background We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We f...

  2. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  3. Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea.

    Science.gov (United States)

    Buonomo, Roberto; Assis, Jorge; Fernandes, Francisco; Engelen, Aschwin H; Airoldi, Laura; Serrão, Ester A

    2017-02-01

    Effective predictive and management approaches for species occurring in a metapopulation structure require good understanding of interpopulation connectivity. In this study, we ask whether population genetic structure of marine species with fragmented distributions can be predicted by stepping-stone oceanographic transport and habitat continuity, using as model an ecosystem-structuring brown alga, Cystoseira amentacea var. stricta. To answer this question, we analysed the genetic structure and estimated the connectivity of populations along discontinuous rocky habitat patches in southern Italy, using microsatellite markers at multiple scales. In addition, we modelled the effect of rocky habitat continuity and ocean circulation on gene flow by simulating Lagrangian particle dispersal based on ocean surface currents allowing multigenerational stepping-stone dynamics. Populations were highly differentiated, at scales from few metres up to thousands of kilometres. The best possible model fit to explain the genetic results combined current direction, rocky habitat extension and distance along the coast among rocky sites. We conclude that a combination of variable suitable habitat and oceanographic transport is a useful predictor of genetic structure. This relationship provides insight into the mechanisms of dispersal and the role of life-history traits. Our results highlight the importance of spatially explicit modelling of stepping-stone dynamics and oceanographic directional transport coupled with habitat suitability, to better describe and predict marine population structure and differentiation. This study also suggests the appropriate spatial scales for the conservation, restoration and management of species that are increasingly affected by habitat modifications. © 2016 John Wiley & Sons Ltd.

  4. Mapping the Relative Probability of Common Toad Occurrence in Terrestrial Lowland Farm Habitat in the United Kingdom.

    Directory of Open Access Journals (Sweden)

    Rosie D Salazar

    Full Text Available The common toad (Bufo bufo is of increasing conservation concern in the United Kingdom (UK due to dramatic population declines occurring in the past century. Many of these population declines coincided with reductions in both terrestrial and aquatic habitat availability and quality and have been primarily attributed to the effect of agricultural land conversion (of natural and semi-natural habitats to arable and pasture fields and pond drainage. However, there is little evidence available to link habitat availability with common toad population declines, especially when examined at a broad landscape scale. Assessing such patterns of population declines at the landscape scale, for instance, require an understanding of how this species uses terrestrial habitat.We intensively studied the terrestrial resource selection of a large population of common toads in Oxfordshire, England, UK. Adult common toads were fitted with passive integrated transponder (PIT tags to allow detection in the terrestrial environment using a portable PIT antenna once toads left the pond and before going into hibernation (April/May-October 2012 and 2013. We developed a population-level resource selection function (RSF to assess the relative probability of toad occurrence in the terrestrial environment by collecting location data for 90 recaptured toads.The predicted relative probability of toad occurrence for this population was greatest in wooded habitat near to water bodies; relative probability of occurrence declined dramatically > 50 m from these habitats. Toads also tended to select habitat near to their breeding pond and toad occurrence was negatively related to urban environments.

  5. Habitat Fragmentation and Native Bees: a Premature Verdict?

    Directory of Open Access Journals (Sweden)

    James H. Cane

    2001-06-01

    Full Text Available Few studies directly address the consequences of habitat fragmentation for communities of pollinating insects, particularly for the key pollinator group, bees (Hymenoptera: Apiformes. Bees typically live in habitats where nesting substrates and bloom are patchily distributed and spatially dissociated. Bee studies have all defined habitat fragments as remnant patches of floral hosts or forests, overlooking the nesting needs of bees. Several authors conclude that habitat fragmentation is broadly deleterious, but their own data show that some native species proliferate in sampled fragments. Other studies report greater densities and comparable diversities of native bees at flowers in some fragment size classes relative to undisrupted habitats, but find dramatic shifts in species composition. Insightful studies of habitat fragmentation and bees will consider fragmentation, alteration, and loss of nesting habitats, not just patches of forage plants, as well as the permeability of the surrounding matrix to interpatch movement. Inasmuch as the floral associations and nesting habits of bees are often attributes of species or subgenera, ecological interpretations hinge on authoritative identifications. Study designs must accommodate statistical problems associated with bee community samples, especially non-normal data and frequent zero values. The spatial scale of fragmentation must be appreciated: bees of medium body size can regularly fly 1-2 km from nest site to forage patch. Overall, evidence for prolonged persistence of substantial diversity and abundances of native bee communities in habitat fragments of modest size promises practical solutions for maintaining bee populations. Provided that reserve selection, design, and management can address the foraging and nesting needs of bees, networks of even small reserves may hold hope for sustaining considerable pollinator diversity and the ecological services pollinators provide.

  6. Habitat associations of migrating and overwintering grassland birds in Southern Texas

    Science.gov (United States)

    Igl, Lawrence D.; Ballard, Bart M.

    1999-01-01

    We report on the habitat associations of 21 species of grassland birds overwintering in or migrating through southern Texas, during 1991-1992 and 1992-1993. Ninety percent of our grassland bird observations were made during winter and spring, and only 10% occurred during fall. Grassland species made up a high proportion of the total bird densities in grassland and shrub-grassland habitats, but much lower proportions in the habitats with more woody vegetation. Fewer grassland species were observed in grassland and woodland than in brushland, parkland, and shrub-grassland habitats. Grassland birds generally were found in higher densities in habitats that had woody canopy coverage of < 30%; densities of grassland birds were highest in shrub-grassland habitat and lowest in woodland habitat. Species that are grassland specialists on their breeding grounds tended to be more habitat specific during the nonbreeding season compared to shrub-grassland specialists, which were more general in their nonbreeding-habitat usage. Nonetheless, our data demonstrate that grassland birds occur in a variety of habitats during the nonbreeding season and seem to occupy a broader range of habitats than previously described.

  7. Data Mining Approaches for Habitats and Stopovers Discovery of Migratory Birds

    Directory of Open Access Journals (Sweden)

    Qiang Xu

    2013-03-01

    Full Text Available This paper focuses on using data mining technology to efficiently and accurately discover habitats and stopovers of migratory birds. The three methods we used are as follows: 1. a density-based clustering method, detecting stopovers of birds during their migration through density-based clustering of location points; 2. A location histories parser method, detecting areas that have been overstayed by migratory birds during a set time period by setting time and distance thresholds; and 3. A time-parameterized line segment clustering method, clustering directed line segments to analyze shared segments of migratory pathways of different migratory birds and discover the habitats and stopovers of these birds. Finally, we analyzed the migration data of the bar-headed goose in the Qinghai Lake Area through the three above methods and verified the effectiveness of the three methods and, by comparison, identified the scope and context of the use of these three methods respectively.

  8. Chamaedorea: diverse species in diverse habitats

    Directory of Open Access Journals (Sweden)

    1992-01-01

    Full Text Available DIVERSES ESPÈCES DANS DIVERS HABITATS. Des espèces extraordinairement diverses se trouvant dans des habitats également divers caractérisent Chamaedorea, un genre qui compte environ 90 espèces dioïques limitées aux sous-bois des forêts néo-tropicales constamment dans la pluie et les nuages du Mexique à la Bolivie et à l’Équateur. Une vaste gamme de formes biologiques, de tiges, de feuilles, d’inflorescences, de fleurs, et de fruits reflète la diversité des espèces. Bien que le genre soit plus riche en espèces dans les forêts denses et humides situées entre 800-1,500 mètres d’altitude, quelques espèces exceptionnelles se trouvent dans des forêts moins denses et/ou occasionnellement sèches, sur des substances dures ou dans d’autres habitats inhabituels. DIVERSAS ESPECIES EN DIVERSOS HÁBITATS. Especies notablemente diversas presentes en habitats igualmente diversos caracterizan a Chamaedorea, un genero de aproximadamente 90 especies dioicas limitadas al sotobosque de los bosques lluviosos y nubosos neotropicales desde Mexico hasta Bolivia y Ecuador. Una amplia gama de formas biológicas, tallos, hojas, inflorescencias, flores, y frutos refleja la diversidad de las especies. Aunque el género es más rico en especies en los bosques densos y húmedos de 800-1,500 metros de altura, unas pocas especies excepcionales ocurren en bosques abiertos o ocasionalmente secos, en substrato severo o en otros habitats extraordinarios. Remarkably diverse species occurring in equally diverse habitats characterize Chamaedorea, a genus of about 90, dioecious species restricted to the understory of neotropical rain and cloud forests from Mexico to Bolivia and Ecuador. A vast array of habits, stems, leaves, inflorescences, flowers, and fruits reflect the diversity of species. Although the genus is most species-rich in dense, moist or wet, diverse forests from 800-1,500 meters elevation, a few exceptional species occur in open and/or seasonally

  9. Assessment and management of dead-wood habitat

    Science.gov (United States)

    Hagar, Joan

    2007-01-01

    Oregon and Washington, approximately 150 species of wildlife are reported to use dead wood in forests (O’Neil et al., 2001). Forty-seven sensitive and special-status species are associated with dead wood (Appendix A). These are key species for management consideration because concern over small or declining populations is often related to loss of suitable dead-wood habitat (Marshall et al., 1996). Primary excavators (woodpeckers) also are often the focus of dead-wood management, because they perform keystone functions in forest ecosystems by creating cavities for secondary cavity-nesters (Martin and Eadie, 1999; Aubry and Raley, 2002). A diverse guild of secondary cavity-users (including swallows, bluebirds, several species of ducks and owls, ash-throated flycatcher, flying squirrel, bats, and many other species) is unable to excavate dead wood, and therefore relies on cavities created by woodpeckers for nesting sites. Suitable nest cavities are essential for reproduction, and their availability limits population size (Newton, 1994). Thus, populations of secondary cavity-nesters are tightly linked to the habitat requirements of primary excavators. Although managers often focus on decaying wood as habitat for wildlife, the integral role dead wood plays in ecological processes is an equally important consideration for management. Rose et al. (2001) provide a thorough review of the ecological functions of dead wood in Pacific Northwest forests, briefly summarized here. Decaying wood functions in: soil development and productivity, nutrient cycling, nitrogen fixation, and carbon storage. From ridge tops, to headwater streams, to estuaries and coastal marine ecosystems, decaying wood is fundamental to diverse terrestrial and aquatic food webs. Wildlife species that use dead wood for cover or feeding are linked to these ecosystem processes through a broad array of functional roles, including facilitation of decay and trophic interactions with other organisms (Marcot, 2002

  10. Specializing on vulnerable habitat: Acropora selectivity among damselfish recruits and the risk of bleaching-induced habitat loss

    Science.gov (United States)

    Bonin, M. C.

    2012-03-01

    Coral reef habitats are increasingly being degraded and destroyed by a range of disturbances, most notably climate-induced coral bleaching. Habitat specialists, particularly those associated with susceptible coral species, are clearly among the most vulnerable to population decline or extinction. However, the degree of specialization on coral microhabitats is still unclear for one of the most ubiquitous, abundant and well studied of coral reef fish families—the damselfishes (Pomacentridae). Using high taxonomic resolution surveys of microhabitat use and availability, this study provides the first species-level description of patterns of Acropora selectivity among recruits of 10 damselfish species in order to determine their vulnerability to habitat degradation. In addition, surveys of the bleaching susceptibility of 16 branching coral species revealed which preferred recruitment microhabitats are at highest risk of decline as a result of chronic coral bleaching. Four species (i.e., Chrysiptera parasema, Pomacentrus moluccensis, Dascyllus melanurus and Chromis retrofasciata) were identified as highly vulnerable because they used only branching hard corals as recruitment habitat and primarily associated with only 2-4 coral species. The bleaching surveys revealed that five species of Acropora were highly susceptible to bleaching, with more than 50% of colonies either severely bleached or already dead. These highly susceptible corals included two of the preferred microhabitats of the specialist C. parasema and represented a significant proportion of its total recruitment microhabitat. In contrast, highly susceptible corals were rarely used by another specialist, P. moluccensis, suggesting that this species faces a lower risk of bleaching-induced habitat loss compared to C. parasema. As degradation to coral reef habitats continues, specialists will increasingly be forced to use alternative recruitment microhabitats, and this is likely to reduce population

  11. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rien, Thomas A.; Beiningen, Kirk T. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-07-01

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  12. Microhabitat features influencing habitat use by Florida black bears

    Directory of Open Access Journals (Sweden)

    Dana L. Karelus

    2018-01-01

    Full Text Available Understanding fine-scale habitat needs of species and the factors influencing heterogeneous use of habitat within home range would help identify limiting resources and inform habitat management practices. This information is especially important for large mammals living in fragmented habitats where resources may be scarcer and more patchily distributed than in contiguous habitats. Using bihourly Global Position System (GPS location data collected from 10 individuals during 2011–2014, we investigated microhabitat features of areas within home ranges that received high vs. low intensity of use by Florida black bears (Ursus americanus floridanus in north-central, Florida. We identified areas receiving high and low levels of use by bears based on their utilization distributions estimated with the dynamic Brownian bridge movement model, and performed vegetation sampling at bear locations within high- and low-use areas. Using univariate analyses and generalized linear mixed models, we found that (1 canopy cover, visual obstruction, and hardwood density were important in defining high-use sites; (2 the probability of high use was positively associated with principal components that represented habitat closer to creeks and with high canopy and shrub cover and higher hardwood densities, likely characteristic of forested wetlands; and (3 the probability of high use was, to a lesser extent, associated with principal components that represented habitat with high canopy cover, high pine density, and low visual obstruction and hardwood density; likely representing sand pine and pine plantations. Our results indicate that the high bear-use sites were in forested wetlands, where cover and food resources for bears are likely to occur in higher abundance. Habitat management plans whereby bears are a focal species should aim to increase the availability and quality of forested wetlands. Keywords: Habitat selection, Heterogeneous habitat use, Forest management

  13. RESPECT

    DEFF Research Database (Denmark)

    Teyeb, Oumer; Boussif, Malek; Sørensen, Troels Bundgaard

    2005-01-01

    the performance from an end-2-end (E2E), user-perceived Quality Of Service (QoS) point of view. In this paper, the design and implementation of RESPECT, an easily configurable network emulator is described. RESPECT was originally geared towards Universal Mobile Communications System (UMTS) networks, but thanks...... to its modular and scalable design, it is being extended for generic heterogeneous networks. Using RESPECT, QoS studies can be carried out to study the behavior of different services in different network conditions, identify generalized service dependent performance metrics for already existing services...

  14. Desert tortoise use of burned habitat in the Eastern Mojave desert

    Science.gov (United States)

    Drake, Karla K.; Esque, Todd C.; Nussear, Kenneth E.; DeFalco, Lesley; Scoles, Sara; Modlin, Andrew T.; Medica, Philip A.

    2015-01-01

    Wildfires burned 24,254 ha of critical habitat designated for the recovery of the threatened Mojave desert tortoise (Gopherus agassizii) in southern Nevada during 2005. The proliferation of non-native annual grasses has increased wildfire frequency and extent in recent decades and continues to accelerate the conversion of tortoise habitat across the Mojave Desert. Immediate changes to vegetation are expected to reduce quality of critical habitat, yet whether tortoises will use burned and recovering habitat differently from intact unburned habitat is unknown. We compared movement patterns, home-range size, behavior, microhabitat use, reproduction, and survival for adult desert tortoises located in, and adjacent to, burned habitat to understand how tortoises respond to recovering burned habitat. Approximately 45% of home ranges in the post-fire environment contained burned habitat, and numerous observations (n = 12,223) corroborated tortoise use of both habitat types (52% unburned, 48% burned). Tortoises moved progressively deeper into burned habitat during the first 5 years following the fire, frequently foraging in burned habitats that had abundant annual plants, and returning to adjacent unburned habitat for cover provided by intact perennial vegetation. However, by years 6 and 7, the live cover of the short-lived herbaceous perennial desert globemallow (Sphaeralcea ambigua) that typically re-colonizes burned areas declined, resulting in a contraction of tortoise movements from the burned areas. Health and egg production were similar between burned and unburned areas indicating that tortoises were able to acquire necessary resources using both areas. This study documents that adult Mojave desert tortoises continue to use habitat burned once by wildfire. Thus, continued management of this burned habitat may contribute toward the recovery of the species in the face of many sources of habitat loss.

  15. Photosynthetic response of the floating-leaved macrophyte Nymphoides peltata to a temporary terrestrial habitat and its implications for ecological recovery of Lakeside zones

    Directory of Open Access Journals (Sweden)

    Yu H.

    2014-01-01

    Full Text Available For the ecological recovery of lakeside zones in shallow eutrophic lakes, choosing suitable aquatic macrophytes which could adapt to the temporary terrestrial habitat due to water level change is very important. In the present study, an experimental approach was carried out to explore the photosynthetic response of the typical floating-leaved aquatic plant Nymphoides peltata (N. peltata to varying environmental factors. N. peltata grown under aquatic and terrestrial habitats showed similar photosynthesis-irradiance response patterns. The investigation of diurnal changes in gas exchange revealed that the net photosynthetic rate (PN and water-use efficiency (WUE of the N. peltata grown in the terrestrial habitat were 68% and 94% higher, respectively, than those in the aquatic habitat at nine in the morning. N. peltata grown in the terrestrial habitat had approximately 51% less stomatal density and a 77% smaller stomatal aperture area compared with those grown in aquatic habitats. The above results indicated that N. peltata could be well-acclimated to the terrestrial habitat by developing a series of photosynthetic acclimation features. Our study may provide an important reference for restoration in lakeside zones of shallow eutrophic lakes.

  16. Beyond habitat structure: Landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees.

    Science.gov (United States)

    Salazar, Daniela A; Fontúrbel, Francisco E

    2016-09-01

    Habitat structure determines species occurrence and behavior. However, human activities are altering natural habitat structure, potentially hampering native species due to the loss of nesting cavities, shelter or movement pathways. The South American temperate rainforest is experiencing an accelerated loss and degradation, compromising the persistence of many native species, and particularly of the monito del monte (Dromiciops gliroides Thomas, 1894), an arboreal marsupial that plays a key role as seed disperser. Aiming to compare 2 contrasting habitats (a native forest and a transformed habitat composed of abandoned Eucalyptus plantations and native understory vegetation), we assessed D. gliroides' occurrence using camera traps and measured several structural features (e.g. shrub and bamboo cover, deadwood presence, moss abundance) at 100 camera locations. Complementarily, we used radio telemetry to assess its spatial ecology, aiming to depict a more complete scenario. Moss abundance was the only significant variable explaining D. gliroides occurrence between habitats, and no structural variable explained its occurrence at the transformed habitat. There were no differences in home range, core area or inter-individual overlapping. In the transformed habitats, tracked individuals used native and Eucalyptus-associated vegetation types according to their abundance. Diurnal locations (and, hence, nesting sites) were located exclusively in native vegetation. The landscape heterogeneity resulting from the vicinity of native and Eucalyptus-associated vegetation likely explains D. gliroides occurrence better than the habitat structure itself, as it may be use Eucalyptus-associated vegetation for feeding purposes but depend on native vegetation for nesting. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  17. Lowland tapir distribution and habitat loss in South America

    Directory of Open Access Journals (Sweden)

    Jose Luis Passos Cordeiro

    2016-09-01

    Full Text Available The development of species distribution models (SDMs can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19% of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management.

  18. Lowland tapir distribution and habitat loss in South America.

    Science.gov (United States)

    Cordeiro, Jose Luis Passos; Fragoso, José M V; Crawshaw, Danielle; Oliveira, Luiz Flamarion B

    2016-01-01

    The development of species distribution models (SDMs) can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA) at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs) better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management.

  19. Habitat Evaluation Procedures (HEP) Report; Beaver Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 14, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Beaver Lake Project provides a total of 232.26 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 136.58 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 20.02 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Scrub-shrub wetland habitat provides 7.67 HUs for mallard, yellow warbler, and white-tailed deer. Grassland meadow provides 22.69 HUs for Canada goose and mallard. Emergent wetlands provide 35.04 HUs for Canada goose, mallard, and muskrat. Open water provided 10.26 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  20. Creating a culture of mutual respect.

    Science.gov (United States)

    Kaplan, Kathryn; Mestel, Pamela; Feldman, David L

    2010-04-01

    The Joint Commission mandates that hospitals seeking accreditation have a process to define and address disruptive behavior. Leaders at Maimonides Medical Center, Brooklyn, New York, took the initiative to create a code of mutual respect that not only requires respectful behavior, but also encourages sensitivity and awareness to the causes of frustration that often lead to inappropriate behavior. Steps to implementing the code included selecting code advocates, setting up a system for mediating disputes, tracking and addressing operational system issues, providing training for personnel, developing a formal accountability process, and measuring the results. Copyright 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.