WorldWideScience

Sample records for resources including print

  1. The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints.

    Science.gov (United States)

    Coakley, Meghan F; Hurt, Darrell E; Weber, Nick; Mtingwa, Makazi; Fincher, Erin C; Alekseyev, Vsevelod; Chen, David T; Yun, Alvin; Gizaw, Metasebia; Swan, Jeremy; Yoo, Terry S; Huyen, Yentram

    2014-09-01

    The National Institutes of Health (NIH) has launched the NIH 3D Print Exchange, an online portal for discovering and creating bioscientifically relevant 3D models suitable for 3D printing, to provide both researchers and educators with a trusted source to discover accurate and informative models. There are a number of online resources for 3D prints, but there is a paucity of scientific models, and the expertise required to generate and validate such models remains a barrier. The NIH 3D Print Exchange fills this gap by providing novel, web-based tools that empower users with the ability to create ready-to-print 3D files from molecular structure data, microscopy image stacks, and computed tomography scan data. The NIH 3D Print Exchange facilitates open data sharing in a community-driven environment, and also includes various interactive features, as well as information and tutorials on 3D modeling software. As the first government-sponsored website dedicated to 3D printing, the NIH 3D Print Exchange is an important step forward to bringing 3D printing to the mainstream for scientific research and education.

  2. The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints

    OpenAIRE

    Coakley, Meghan F.; Hurt, Darrell E.; Weber, Nick; Mtingwa, Makazi; Fincher, Erin C.; Alekseyev, Vsevelod; Chen, David T.; Yun, Alvin; Gizaw, Metasebia; Swan, Jeremy; Yoo, Terry S.; Huyen, Yentram

    2014-01-01

    The National Institutes of Health (NIH) has launched the NIH 3D Print Exchange, an online portal for discovering and creating bioscientifically relevant 3D models suitable for 3D printing, to provide both researchers and educators with a trusted source to discover accurate and informative models. There are a number of online resources for 3D prints, but there is a paucity of scientific models, and the expertise required to generate and validate such models remains a barrier. The NIH 3D Print ...

  3. Including chemical-related impact categories in LCA on printed matter does it matter?

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Morten Søes; Hauschild, Michael Zwicky

    2004-01-01

    global warming, acidification and nutrification. The studies focus on energy consumption including the emissions and impact categories related to energy. The chemical-related impact categories comprising ecotoxicity and human toxicity are not included at all or only to a limited degree. In this paper we...... include these chemical-related impact categories by making use of some of the newest knowledge about emissions from the production at the printing industry combined with knowledge about the composition of the printing materials used during the production of offset printed matter. This paper is based...... printed matter produced on a fictitious sheet feed offset printing industry in Europe has been identified and shown in Figure 1 (light bars). „Ï The effect of including the chemical related impact categories is substantial as shown in Figure 1, e.g. the importance of paper is reduced from 67% to 31...

  4. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  5. A Cross-Disciplinary Examination of Print Resources on Abortion

    Science.gov (United States)

    Johnson, Wendell G.

    2011-01-01

    Abortion is a highly-charged, emotional topic which often appears in the news, particularly during the confirmation process for a Supreme Court nominee. Community College students continue to ask reference librarians for print resources dealing with this controversial issue. Often we turn to the reliable series "Current Controversies," "At Issue,"…

  6. Internet printing

    Science.gov (United States)

    Rahgozar, M. Armon; Hastings, Tom; McCue, Daniel L.

    1997-04-01

    The Internet is rapidly changing the traditional means of creation, distribution and retrieval of information. Today, information publishers leverage the capabilities provided by Internet technologies to rapidly communicate information to a much wider audience in unique customized ways. As a result, the volume of published content has been astronomically increasing. This, in addition to the ease of distribution afforded by the Internet has resulted in more and more documents being printed. This paper introduces several axes along which Internet printing may be examined and addresses some of the technological challenges that lay ahead. Some of these axes include: (1) submission--the use of the Internet protocols for selecting printers and submitting documents for print, (2) administration--the management and monitoring of printing engines and other print resources via Web pages, and (3) formats--printing document formats whose spectrum now includes HTML documents with simple text, layout-enhanced documents with Style Sheets, documents that contain audio, graphics and other active objects as well as the existing desktop and PDL formats. The format axis of the Internet Printing becomes even more exciting when one considers that the Web documents are inherently compound and the traversal into the various pieces may uncover various formats. The paper also examines some imaging specific issues that are paramount to Internet Printing. These include formats and structures for representing raster documents and images, compression, fonts rendering and color spaces.

  7. 78 FR 19530 - Eastman Kodak Company (GCG), Electrographic Print Solutions, Including On-Site Leased Workers...

    Science.gov (United States)

    2013-04-01

    ... Kodak Company (GCG), Electrographic Print Solutions, Including On-Site Leased Workers From Adecco and Datrose, Spencerport, New York; Eastman Kodak Company, IPS, Including On-Site Leased Workers From Adecco..., 2011, applicable to workers of Eastman Kodak Company (GCG), Electrographic Print Solutions, including...

  8. 78 FR 28642 - Eastman Kodak Company, Electrographic Print Solutions, Including On-Site Leased Workers From...

    Science.gov (United States)

    2013-05-15

    ... Kodak Company, Electrographic Print Solutions, Including On-Site Leased Workers From Adecco and Datrose, Spencerport, New York; Eastman Kodak Company, IPS, Including On-Site Leased Workers From Adecco, Dayton, Ohio... Trade Adjustment Assistance (TAA) filed on behalf of Eastman Kodak Company, Electrographic Print...

  9. Resourceful Thinking about Printing and Related Industries: Economic Considerations and Environmental Sustainability

    Science.gov (United States)

    Wikina, Suanu Bliss; Thompson, Cynthia Carlton; Blackwell, Elinor

    2010-01-01

    Increasing population, total economic volume, and human consumption levels have resulted in problems of resource shortages, climate change, ozone layer depletion, land regression, and deteriorating environmental pollution. Printing and related industries constitute one of the major sources of environmental pollution due to heavy energy and…

  10. QR Codes as Finding Aides: Linking Electronic and Print Library Resources

    Science.gov (United States)

    Kane, Danielle; Schneidewind, Jeff

    2011-01-01

    As part of a focused, methodical, and evaluative approach to emerging technologies, QR codes are one of many new technologies being used by the UC Irvine Libraries. QR codes provide simple connections between print and virtual resources. In summer 2010, a small task force began to investigate how QR codes could be used to provide information and…

  11. Fabrication of contacts for silicon solar cells including printing burn through layers

    Science.gov (United States)

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  12. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  13. Sources and Resources for Teaching about Ancient Greece

    Science.gov (United States)

    Spiridakis, John N.; Mantzanas, Theophilos

    1977-01-01

    This article identifies print, non-print, and human sources and resources useful to elementary and secondary teachers of ancient Greek history. A rationale for teaching Greek history is also included. (Author/RM)

  14. Print vs digital the future of coexistence

    CERN Document Server

    Lee, Sul H

    2013-01-01

    Libraries are currently confronted by the challenges of managing increasing amounts of electronic information. Print vs. Digital: The Future of Coexistence presents the expert perspectives of eight of America's leading library administrators on ways to effectively manage digital flow and offers strategies to provide a level of coexistence between digital and print information. This excellent overview explores how to best balance print and electronic resources, and explores important issues such as the selection of electronic resources, improving access to digital information for a larger user

  15. Saskatchewan resources. [including uranium

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.

  16. Managing nuclear knowledge: IAEA activities and international coordination. Including resource material full text CD-ROM

    International Nuclear Information System (INIS)

    2005-06-01

    The present CD-ROM summarizes some activities carried out by the Departments of Nuclear Energy and Nuclear Safety and Security in the area of nuclear knowledge management in the period 2003-2005. It comprises, as open resource, most of the relevant documents in full text, including policy level documents, reports, presentation material by Member States and meeting summaries. The collection starts with a reprint of the report to the IAEA General Conference 2004 on Nuclear Knowledge [GOV/2004/56-GC(48)/12] summarizing the developments in nuclear knowledge management since the 47th session of the General Conference in 2003 and covers Managing Nuclear Knowledge including safety issues and Information and Strengthening Education and Training for Capacity Building. It contains an excerpt on Nuclear Knowledge from the General Conference Resolution [GC(48)/RES/13] on Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications. On the CD-ROM itself, all documents can easily be accessed by clicking on their titles on the subject pages (also printed at the end of this Working Material). Part 1 of the CD-ROM covers the activities in the period 2003-2005 and part 2 presents a resource material full text CD-ROM on Managing Nuclear Knowledge issued in October 2003

  17. Print2Screen Mobile App: Embedding Multimedia in Printed ODL Course Materials Using QR Codes

    Science.gov (United States)

    Abeywardena, Ishan Sudeera

    2017-01-01

    With the rise of OER and multimedia such as YouTube videos, many academic institutions are becoming mindful of the richness they bring into the teaching and learning process. Given that multimedia resources cannot be directly integrated into printed material, the only available alternative is to print hyperlinks, which teachers and learners can…

  18. Using print focused collections development policies (CDPs) in digitally born libraries

    KAUST Repository

    Buck, Stephen

    2016-11-03

    The King Abdullah University of Science & Technology (KAUST) library is a ‘born digital’ library. The core, and vast majority, of library resources was acquired in electronic form and a smaller print collection, which complemented the wider collection, was acquired contemporaneously. The purpose of this paper is to determine whether, in conjunction with our specific print collections development policy, we need a complementary E-Resources policy. The writing of such a policy utilizes valuable resources (both staff and time) and involves itself with the sometimes vaguely defined and complex concept of collection evaluation. Issues in e-resources are constantly changing and updates will be necessary to reflect this. How, and how often, do we update our E-Resources CDP? While Biblarz (2001) maintains that the main argument for the existence of a print CDP is to prevent the library from being driven by events or by individual enthusiasms and from purchasing a random set of resources, which may not support the mission of the library this paper explores issues in maintaining a joint print and ‘E’ CDP.

  19. Using print focused collections development policies (CDPs) in digitally born libraries

    KAUST Repository

    Buck, Stephen; Vijayakumar, J.K.

    2016-01-01

    The King Abdullah University of Science & Technology (KAUST) library is a ‘born digital’ library. The core, and vast majority, of library resources was acquired in electronic form and a smaller print collection, which complemented the wider collection, was acquired contemporaneously. The purpose of this paper is to determine whether, in conjunction with our specific print collections development policy, we need a complementary E-Resources policy. The writing of such a policy utilizes valuable resources (both staff and time) and involves itself with the sometimes vaguely defined and complex concept of collection evaluation. Issues in e-resources are constantly changing and updates will be necessary to reflect this. How, and how often, do we update our E-Resources CDP? While Biblarz (2001) maintains that the main argument for the existence of a print CDP is to prevent the library from being driven by events or by individual enthusiasms and from purchasing a random set of resources, which may not support the mission of the library this paper explores issues in maintaining a joint print and ‘E’ CDP.

  20. Open Educational Resources

    Science.gov (United States)

    McShane, Michael Q.

    2017-01-01

    While digital products have made significant inroads into the educational resources market, textbooks and other print materials still command about 60 percent of sales. But whether print or digital, all of these commercial offerings now face threats from a burgeoning effort to promote "open" resources for education--that is, materials…

  1. Progressive IRP Models for Power Resources Including EPP

    Directory of Open Access Journals (Sweden)

    Yiping Zhu

    2017-01-01

    Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.

  2. Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters

    Science.gov (United States)

    Hashemi Sanatgar, Razieh; Campagne, Christine; Nierstrasz, Vincent

    2017-05-01

    In this paper, 3D printing as a novel printing process was considered for deposition of polymers on synthetic fabrics to introduce more flexible, resource-efficient and cost effective textile functionalization processes than conventional printing process like screen and inkjet printing. The aim is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity. Adhesion of polymer and nanocomposite layers which were 3D printed directly onto the textile fabrics using fused deposition modeling (FDM) technique was investigated. Different variables which may affect the adhesion properties including 3D printing process parameters, fabric type and filler type incorporated in polymer were considered. A rectangular shape according to the peeling standard was designed as 3D computer-aided design (CAD) to find out the effect of the different variables. The polymers were printed in different series of experimental design: nylon on polyamide 66 (PA66) fabrics, polylactic acid (PLA) on PA66 fabric, PLA on PLA fabric, and finally nanosize carbon black/PLA (CB/PLA) and multi-wall carbon nanotubes/PLA (CNT/PLA) nanocomposites on PLA fabrics. The adhesion forces were quantified using the innovative sample preparing method combining with the peeling standard method. Results showed that different variables of 3D printing process like extruder temperature, platform temperature and printing speed can have significant effect on adhesion force of polymers to fabrics while direct 3D printing. A model was proposed specifically for deposition of a commercial 3D printer Nylon filament on PA66 fabrics. In the following, among the printed polymers, PLA and its composites had high adhesion force to PLA fabrics.

  3. Printed MIMO antenna engineering

    CERN Document Server

    Sharawi, Mohammad S

    2014-01-01

    Wireless communications has made a huge leap during the past two decades. The multiple-input-multiple-output (MIMO) technology was proposed in the 1990's as a viable solution that can overcome the data rate limit experienced by single-input-single-output (SISO) systems. This resource is focused on printed MIMO antenna system design. Printed antennas are widely used in mobile and handheld terminals due to their conformity with the device, low cost, good integration within the device elements and mechanical parts, as well as ease of fabrication.A perfect design companion for practicing engineers

  4. Structural and congenital heart disease interventions: the role of three-dimensional printing.

    Science.gov (United States)

    Meier, L M; Meineri, M; Qua Hiansen, J; Horlick, E M

    2017-02-01

    Advances in catheter-based interventions in structural and congenital heart disease have mandated an increased demand for three-dimensional (3D) visualisation of complex cardiac anatomy. Despite progress in 3D imaging modalities, the pre- and periprocedural visualisation of spatial anatomy is relegated to two-dimensional flat screen representations. 3D printing is an evolving technology based on the concept of additive manufacturing, where computerised digital surface renders are converted into physical models. Printed models replicate complex structures in tangible forms that cardiovascular physicians and surgeons can use for education, preprocedural planning and device testing. In this review we discuss the different steps of the 3D printing process, which include image acquisition, segmentation, printing methods and materials. We also examine the expanded applications of 3D printing in the catheter-based treatment of adult patients with structural and congenital heart disease while highlighting the current limitations of this technology in terms of segmentation, model accuracy and dynamic capabilities. Furthermore, we provide information on the resources needed to establish a hospital-based 3D printing laboratory.

  5. Printed photodetectors

    International Nuclear Information System (INIS)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-01-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems. (paper)

  6. Printed photodetectors

    Science.gov (United States)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-10-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems.

  7. Intervention Mapping to Develop a Print Resource for Dog-Walking Promotion in Canada.

    Science.gov (United States)

    Campbell, Julia; Dwyer, John J M; Coe, Jason B

    Promoting dog walking among dog owners is consistent with One Health, which focuses on the mutual health benefits of the human-animal relationship for people and animals. In this study, we used intervention mapping (a framework to develop programs and resources for health promotion) to develop a clearer understanding of the determinants of dog walking to develop curricular and educational resources for promoting regular dog walking among dog owners. Twenty-six adult dog owners in Ontario participated in a semi-structured interview about dog walking in 2014. Thematic analysis entailing open, axial, and selective coding was conducted. Among the reasons why the participating dog owners walk their dog were the obligation to the dog, the motivation from the dog, self-efficacy, the dog's health, the owner's health, socialization, a well-behaved dog, and having a routine. The main barriers to dog walking were weather, lack of time, the dog's behavior while walking, and feeling unsafe. We compared interview results to findings in previous studies of dog walking to create a list of determinants of dog walking that we used to create a matrix of change objectives. Based on these results, we developed a print resource to promote regular dog walking among dog owners. The findings can be used by veterinary educators to inform course content that specifically educates veterinary students on the promotion of dog walking among dog owners and the benefits to both humans and animals. The study also offers veterinarians a further understanding upon which to initiate a conversation and develop educational resources for promoting regular dog walking among dog-owning clients.

  8. 3D printing with RepRap cookbook

    CERN Document Server

    Salinas, Richard

    2014-01-01

    A systematic guide consisting of over 100 recipes which focus on helping you understand the process of 3D printing using RepRap machines. The book aims at providing professionals with a series of working recipes to help make their fuzzy notions into real, saleable projects/objects using 3D printing technology. This book is for novice designers and artists who own a RepRap-based 3D printer, have fundamental knowledge of its working, and who desire to gain better mastery of the printing process. For the more experienced user, it will provide a handy visual resource, with side-by-side comparisons

  9. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution.

    Science.gov (United States)

    Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P

    2017-04-12

    In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid:glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements.

  10. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution

    Science.gov (United States)

    Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P

    2018-01-01

    In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid: glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements. PMID:28244880

  11. 3D printed optical phantoms and deep tissue imaging for in vivo applications including oral surgery

    Science.gov (United States)

    Bentz, Brian Z.; Costas, Alfonso; Gaind, Vaibhav; Garcia, Jose M.; Webb, Kevin J.

    2017-03-01

    Progress in developing optical imaging for biomedical applications requires customizable and often complex objects known as "phantoms" for testing, evaluation, and calibration. This work demonstrates that 3D printing is an ideal method for fabricating such objects, allowing intricate inhomogeneities to be placed at exact locations in complex or anatomically realistic geometries, a process that is difficult or impossible using molds. We show printed mouse phantoms we have fabricated for developing deep tissue fluorescence imaging methods, and measurements of both their optical and mechanical properties. Additionally, we present a printed phantom of the human mouth that we use to develop an artery localization method to assist in oral surgery.

  12. Printing nanotube/nanowire for flexible microsystems

    Science.gov (United States)

    Tortorich, Ryan P.; Choi, Jin-Woo

    2014-04-01

    Printing has become an emerging manufacturing technology for mechanics, electronics, and consumer products. Additionally, both nanotubes and nanowires have recently been used as materials for sensors and electrodes due to their unique electrical and mechanical properties. Printed electrodes and conductive traces particularly offer versatility of fabricating low-cost, disposable, and flexible electrical devices and microsystems. While various printing methods such as screen printing have been conventional methods for printing conductive traces and electrodes, inkjet printing has recently attracted great attention due to its unique advantages including no template requirement, rapid printing at low cost, on-demand printing capability, and precise control of the printed material. Computer generated conductive traces or electrode patterns can simply be printed on a thin film substrate with proper conductive ink consisting of nanotubes or nanowires. However, in order to develop nanotube or nanowire ink, there are a few challenges that need to be addressed. The most difficult obstacle to overcome is that of nanotube/nanowire dispersion within a solution. Other challenges include adjusting surface tension and controlling viscosity of the ink as well as treating the surface of the printing substrate. In an attempt to pave the way for nanomaterial inkjet printing, we present a method for preparing carbon nanotube ink as well as its printing technique. A fully printed electrochemical sensor using inkjet-printed carbon nanotube electrodes is also demonstrated as an example of the possibilities for this technology.

  13. MolPrint3D: Enhanced 3D Printing of Ball-and-Stick Molecular Models

    Science.gov (United States)

    Paukstelis, Paul J.

    2018-01-01

    The increased availability of noncommercial 3D printers has provided instructors and students improved access to printing technology. However, printing complex ball-and-stick molecular structures faces distinct challenges, including the need for support structures that increase with molecular complexity. MolPrint3D is a software add-on for the…

  14. Connecting Print and Electronic Titles: An Integrated Approach at the University of Nebraska-Lincoln

    Science.gov (United States)

    Wolfe, Judith; Konecky, Joan Latta; Boden, Dana W. R.

    2011-01-01

    Libraries make heavy investments in electronic resources, with many of these resources reflecting title changes, bundled subsets, or content changes of formerly print material. These changes can distance the electronic format from its print origins, creating discovery and access issues. A task force was formed to explore the enhancement of catalog…

  15. Latin American Folk Art Prints

    Science.gov (United States)

    Navah, Jan

    2011-01-01

    Latin American customs and colors play an important role as second graders are introduced to multicultural experiences through food, music, dance, art, and craft. In this article, the author describes a printing project inspired by Guatemalan weavings and amate bark paintings. (Contains 2 online resources.)

  16. Printing in Ubiquitous Computing Environments

    NARCIS (Netherlands)

    Karapantelakis, Athanasios; Delvic, Alisa; Zarifi Eslami, Mohammed; Khamit, Saltanat

    Document printing has long been considered an indispensable part of the workspace. While this process is considered trivial and simple for environments where resources are ample (e.g. desktop computers connected to printers within a corporate network), it becomes complicated when applied in a mobile

  17. Deaf-Blindness: National Organizations and Resources. Reference Circular No. 93-1.

    Science.gov (United States)

    Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.

    This circular lists national organizations and print and audiovisual resources on areas of service to persons with deaf blindness, including rehabilitation, education, information and referral, recreation, and sources for adaptive devices and products. Section I is an alphabetical list of 40 national organizations and resources, including…

  18. Assessing extraterrestrial regolith material simulants for in-situ resource utilization based 3D printing

    OpenAIRE

    Goulas, A; Binner, JGP; Harris, RA; Friel, RJ

    2017-01-01

    This research paper investigates the suitability of ceramic multi-component materials, which are found on the Martian and Lunar surfaces, for 3D printing (aka Additive Manufacturing) of solid structures. 3D printing is a promising solution as part of the cutting edge field of future in situ space manufacturing applications. 3D printing of physical assets from simulated Martian and Lunar regolith was successfully performed during this work by utilising laser-based powder bed fusion equipment. ...

  19. High speed printing with polygon scan heads

    Science.gov (United States)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  20. Correlative microscopy including CLSM and SEM to improve high-speed, high-resolution laser-engraved print and embossing forms

    Science.gov (United States)

    Bohrer, Markus; Schweitzer, Michael; Nirnberger, Robert; Weinberger, Bernhard

    2015-10-01

    The industrial market for processing large-scale films has seen dramatic changes since the 1980s and has almost completely been replaced by lasers and digital processes. A commonly used technology for engraving screens, print and embossing forms in the printing industry, well known since then, is the use of RF-excited CO2 lasers with a beam power up to about 1 kW, modulated in accordance to the pattern to be engraved. Future needs for high-security printing (banknotes, security papers, passports, etc.) will require laser engraving of at least half a million or even more structured elements with a depth from some μm up to 500 μm. Industry now wants photorealistic pictures in packaging design, which requires a similar performance. To ensure 'trusted pulses' from the digital process to the print result the use of correlative microscopy (CLSM and SEM) is demonstrated as a complete chain for a correlative print process in this paper.

  1. Three-dimensional bio-printing.

    Science.gov (United States)

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  2. Analysis and Recommendations for the DTIC Non-Print Collection

    National Research Council Canada - National Science Library

    Wiley, Connie

    2002-01-01

    ...) do not require the individualized attention and resources of the non-print collection. This study presents short- and long-term recommendations for balancing customers' need for long-term access with DTIC's need to make the most of finite resources...

  3. Suitability for 3D Printed Parts for Laboratory Use

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, Andrew P. [PPPL; Bloom, Josh [PPPL; Albertson, Robert [PPPL; Gershman, Sophia [PPPL

    2014-08-01

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  4. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 34, 1988.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  5. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 32, 1987.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  6. Including alternative resources in state renewable portfolio standards: Current design and implementation experience

    International Nuclear Information System (INIS)

    Heeter, Jenny; Bird, Lori

    2013-01-01

    As of October 2012, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). Each state policy is unique, varying in percentage targets, timetables, and eligible resources. Increasingly, new RPS polices have included alternative resources. Alternative resources have included energy efficiency, thermal resources, and, to a lesser extent, non-renewables. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation. - Highlights: • Increasingly, new RPS policies have included alternative resources. • Nearly all states provide a separate tier or cap on the quantity of eligible alternative resources. • Where allowed, non-renewables and energy efficiency are being heavily utilized

  7. Packaging Printing Today

    OpenAIRE

    Stanislav Bolanča; Igor Majnarić; Kristijan Golubović

    2015-01-01

    Printing packaging covers today about 50% of all the printing products. Among the printing products there are printing on labels, printing on flexible packaging, printing on folding boxes, printing on the boxes of corrugated board, printing on glass packaging, synthetic and metal ones. The mentioned packaging are printed in flexo printing technique, offset printing technique, intaglio halftone process, silk – screen printing, ink ball printing, digital printing and hybrid printing process. T...

  8. Print Quality of Ink Jet Printed PVC Foils

    Directory of Open Access Journals (Sweden)

    Nemanja Kašiković

    2015-09-01

    Full Text Available Digital printing technique is used for a wide variety of substrates, one of which are PVC foils. Samples used in this research were printed by digital ink jet printing technique using Mimaki JV22 printing machine and J-Eco Subly Nano inks. As printing substrates, two different types of materials were used (ORACAL 640 - Print Vinyl and LG Hausys LP2712. A test card consisting of fields of CMYK colours was created and printed, varying the number of ink layers applied. Samples were exposed to light after the printing process. Spectrophotometric measurements were conducted before and after the light treatment. Based on spectrophotometricaly obtained data, colour differences ΔE2000 were calculated. Results showed that increasing number of layers, as well as the right choice of substrates, can improve the behaviour of printed product during exploitation.

  9. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  10. 3D Modeling Techniques for Print and Digital Media

    Science.gov (United States)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  11. Cost viability of 3D printed house in UK

    Science.gov (United States)

    Tobi, A. L. Mohd; Omar, S. A.; Yehia, Z.; Al-Ojaili, S.; Hashim, A.; Orhan, O.

    2018-03-01

    UK has been facing housing crisis due to the rising price of the property on sale. This paper will look into the viability of 3D printing technology as an alternative way for house construction on UK. The analysis will be carried out based on the data until the year of 2014 due to limited resources availability. Details cost breakdown on average size house construction cost in UK were analysed and relate to the cost viability of 3D printing technology in reducing the house price in UK. It is found that the 3D printing generates saving of up to around 35% out of total house price in UK. This cost saving comes from the 3D printed construction of walls and foundations for material and labour cost.

  12. Education Program on Fossil Resources Including Coal

    Science.gov (United States)

    Usami, Masahiro

    Fossil fuels including coal play a key role as crucial energies in contributing to economic development in Asia. On the other hand, its limited quantity and the environmental problems causing from its usage have become a serious global issue and a countermeasure to solve such problems is very much demanded. Along with the pursuit of sustainable development, environmentally-friendly use of highly efficient fossil resources should be therefore, accompanied. Kyushu-university‧s sophisticated research through long years of accumulated experience on the fossil resources and environmental sectors together with the advanced large-scale commercial and empirical equipments will enable us to foster cooperative research and provide internship program for the future researchers. Then, this program is executed as a consignment business from the Ministry of Economy, Trade and Industry from 2007 fiscal year to 2009 fiscal year. The lecture that uses the textbooks developed by this program is scheduled to be started a course in fiscal year 2010.

  13. Packaging Printing Today

    Directory of Open Access Journals (Sweden)

    Stanislav Bolanča

    2015-12-01

    Full Text Available Printing packaging covers today about 50% of all the printing products. Among the printing products there are printing on labels, printing on flexible packaging, printing on folding boxes, printing on the boxes of corrugated board, printing on glass packaging, synthetic and metal ones. The mentioned packaging are printed in flexo printing technique, offset printing technique, intaglio halftone process, silk – screen printing, ink ball printing, digital printing and hybrid printing process. The possibilities of particular printing techniques for optimal production of the determined packaging were studied in the paper. The problem was viewed from the technological and economical aspect. The possible printing quality and the time necessary for the printing realization were taken as key parameters. An important segment of the production and the way of life is alocation value and it had also found its place in this paper. The events in the field of packaging printing in the whole world were analyzed. The trends of technique developments and the printing technology for packaging printing in near future were also discussed.

  14. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  15. The production of anatomical teaching resources using three-dimensional (3D) printing technology.

    Science.gov (United States)

    McMenamin, Paul G; Quayle, Michelle R; McHenry, Colin R; Adams, Justin W

    2014-01-01

    The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection-based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin-containing embalming fluids. This report details how additive manufacturing or three-dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form. © 2014 American Association of Anatomists.

  16. Building and Managing Electronic Resources in Digital Era in India with Special Reference to IUCAA and NIV, Pune: A Comparative Case Study

    Science.gov (United States)

    Sahu, H. K.; Singh, S. N.

    2015-04-01

    This paper discusses and presents a comparative case study of two libraries in Pune, India, Inter-University Centre for Astronomy and Astrophysics and Information Centre and Library of National Institute of Virology (Indian Council of Medical Research). It compares how both libraries have managed their e-resource collections, including acquisitions, subscriptions, and consortia arrangements, while also developing a collection of their own resources, including pre-prints and publications, video lectures, and other materials in an institutional repository. This study illustrates how difficult it is to manage electronic resources in a developing country like India, even though electronic resources are used more than print resources. Electronic resource management can be daunting, but with a systematic approach, various problems can be solved, and use of the materials will be enhanced.

  17. A pre-feasibility case study on integrated resource planning including renewables

    International Nuclear Information System (INIS)

    Yilmaz, Pelin; Hakan Hocaoglu, M.; Konukman, Alp Er S.

    2008-01-01

    In recent years, economical and environmental constraints force governments and energy policy decision-makers to change the prominent characteristics of the electricity markets. Accordingly, depending on local conditions on the demand side, usage of integrated resource planning approaches in conjunction with renewable technologies has gained more importance. In this respect, an integrated resource planning option, which includes the design and optimization of grid-connected renewable energy plants, should be evaluated to facilitate a cost-effective and green solution to a sustainable future. In this paper, an integrated resource planning case is studied for an educational campus, located in Gebze, Turkey. It is found that for the considered campus, the integrated resource planning scenario that includes renewables as a supply-side option with existing time-of-use tariff may provide a cost-effective energy production, particularly for the high penetration level of the renewables

  18. Medical 3D Printing for the Radiologist

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233

  19. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. (©)RSNA, 2015.

  20. Printed Wiring Board Cleaner Technologies Substitutes Assessment: Making Holes Conductive

    Science.gov (United States)

    This document presents comparative risk, competitiveness, and resource requirements on technologies for performing the “making holes conductive” function during printed wiring board manufacturing.

  1. Potentials for Improvement of Resource Efficiency in Printed Circuit Board Manufacturing: A Case Study Based on Material Flow Cost Accounting

    Directory of Open Access Journals (Sweden)

    Yi-Xuan Wang

    2017-05-01

    Full Text Available The pursuit of sustainable resource use by manufacturing companies is driven by resource scarcity, environmental awareness, and cost savings potentials. To address these issues, Material Flow Cost Accounting (MFCA has been developed and applied as an effective environmental management tool. Within MFCA’s general allocation, the accounts of products and losses are overrated by weight or volume. However, such a method is incompatible with Printed Circuit Board (PCB manufacturing because of industry characteristics in which primary inputs and products are measured by area. Based on MFCA, this case study systematically established several linear cost calculation models along the production process for capturing the actual waste flows as well as performing cost-benefit analysis. The recognition of previously ignored losses offered the incentive to find appropriate indicators to conduct cost-benefit analysis on hotspots for losses. Loss identification and analysis indicated that machining and wiring are the necessities and priorities of process optimization for resource efficiency improvement measures. Therefore, this research could not only advance the achievement of a profitable and sustainable production while improving resource efficiency at the source but could also provide support for decision making in PCB manufacturing.

  2. Mediagraphy: Print and Nonprint Resources.

    Science.gov (United States)

    Burdett, Anna E.

    2003-01-01

    Lists media-related journals, books, ERIC documents, journal articles, and nonprint resources published in 2001-2002. The annotated entries are classified under the following headings: artificial intelligence; computer assisted instruction; distance education; educational research; educational technology; information science and technology;…

  3. Customizing digital printing for fine art practice

    Science.gov (United States)

    Parraman, Carinna E.; Thirkell, Paul; Hoskins, Steve; Wang, Hong Qiang; Laidler, Paul

    2005-01-01

    The presentation will demonstrate how through alternative methods of digital print production the Centre for Fine Print Research (CFPR) is developing methodologies for digital printing that attempt to move beyond standard reproductive print methods. Profiling is used for input and output hardware, along with bespoke profiling for fine art printmaking papers. Examples of artist's work, and examples from the Perpetual Portfolio are included - an artist in residence scheme for selected artists wanting to work at the Centre and to make a large-format digital print. Colour is an important issue: colour fidelity, colour density on paper, colour that can be achieved through multiple-pass printing. Research is also underway to test colour shortfalls in the current inkjet ink range, and to extend colour through the use of traditional printing inks.

  4. Resources for blueberry growers

    Science.gov (United States)

    Local extension agents and USDA-ARS research scientists are excellent resources for various aspects of blueberry production, but several print and web-based resources are also available to help commercial blueberry growers. Growers are encouraged to consider the source for all web-based information....

  5. Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control.

    Science.gov (United States)

    Wang, Jianbo; Xu, Zhenming

    2015-01-20

    Over the past decades, China has been suffering from negative environmental impacts from distempered e-waste recycling activities. After a decade of effort, disassembly and raw materials recycling of environmentally friendly e-waste have been realized in specialized companies, in China, and law enforcement for illegal activities of e-waste recycling has also been made more and more strict. So up to now, the e-waste recycling in China should be developed toward more depth and refinement to promote industrial production of e-waste resource recovery. Waste printed circuit boards (WPCBs), which are the most complex, hazardous, and valuable components of e-waste, are selected as one typical example in this article that reviews the status of related regulations and technologies of WPCBs recycling, then optimizes, and integrates the proper approaches in existence, while the bottlenecks in the WPCBs recycling system are analyzed, and some preliminary experiments of pinch technologies are also conducted. Finally, in order to provide directional guidance for future development of WPCBs recycling, some key points in the WPCBs recycling system are proposed to point towards a future trend in the e-waste recycling industry.

  6. Selecting suitable enclosures for digitally printed materials

    International Nuclear Information System (INIS)

    Burge, D; Rima, L

    2010-01-01

    It cannot be assumed that storage enclosures considered safe for traditionally printed images and documents are suitable for modern, digitally printed materials. In this project, a large variety of digital print types were tested using a modified version of the ISO 18916 Imaging materials-Processed imaging materials-Photographic activity test for enclosure materials standard to assess the risk to digital prints by paper enclosures known to be inert or reactive with traditional photographic prints. The types of enclosures tested included buffered and non-buffered cotton papers, and groundwood paper. In addition, qualitative filter paper that had been wetted and dried with either an acidic or basic solution was also tested to determine the effects of enclosure pH on digitally printed materials. It was determined that, in general, digital prints tended to be less reactive with various enclosure types than traditional prints. Digital prints were most sensitive to paper that contained groundwood. The enclosure reactivity test results were then integrated with previous published work on the tendencies of various enclosure types to abrade, ferrotype, or block to digital prints in order to create a comprehensive set of recommendations for digital print storage enclosures.

  7. The influence of printing substrate on macro non-uniformity and line reproduction quality of imprints printed with electrophotographic process

    Directory of Open Access Journals (Sweden)

    Đorđe Vujčić

    2016-12-01

    Full Text Available Print quality is very important for every printing technique. It depends on many different quality attributes. This research included analysis of macro non-uniformities and line reproduction. 16 different paper substrates printed by electrophotographic process were analyzed. They were separated in two groups: coated and uncoated papers. Analysis of macro non-uniformity showed that print mottle has lower values when printed on coated papers than on uncoated papers. Line reproduction analysis showed that the toner spreaded, during melting and fixation, on line edges for both types of paper. According to these results it can be concluded that paper substrate affects the macro non-uniformity and line reproduction, thus overall print quality.

  8. A plastic surgery application in evolution: three-dimensional printing.

    Science.gov (United States)

    Gerstle, Theodore L; Ibrahim, Ahmed M S; Kim, Peter S; Lee, Bernard T; Lin, Samuel J

    2014-02-01

    Three-dimensional printing represents an evolving technology still in its infancy. Currently, individuals and small business entities have the ability to manufacture physical objects from digital renderings, computer-aided design, and open source files. Design modifications and improvements in extrusion methods have made this technology much more affordable. This article explores the potential uses of three-dimensional printing in plastic surgery. A review was performed detailing the known uses of three-dimensional printing in medicine. The potential applications of three-dimensional printing in plastic surgery are discussed. Various applications for three-dimensional printing technology have emerged in medicine, including printing organs, printing body parts, bio-printing, and computer-aided tissue engineering. In plastic surgery, these tools offer various prospective applications for surgical planning, resident education, and the development of custom prosthetics. Numerous applications exist in medicine, including the printing of devices, implants, tissue replacements, and even whole organs. Plastic surgeons may likely find this technology indispensable in surgical planning, education, and prosthetic device design and development in the near future.

  9. The Use of Print Materials in the Internet Age: A Comparative Study of Academic Library Circulation Patterns

    Science.gov (United States)

    Haley, Daniel Joseph

    2010-01-01

    The circulation records from 1997/98 to 2007/08 for UCLA and from 2000/01 to 2007/08 for Pasadena City College (PCC) were analyzed to examine patterns in the use of print materials during a period of increasingly available online digital information resources. The analysis included examinations of longitudinal circulation patterns broken down by…

  10. Digital Textile Printing

    OpenAIRE

    Moltchanova, Julia

    2011-01-01

    Rapidly evolving technology of digital printing opens new opportunities on many markets. One of them is the printed fabric market where printing companies as well as clients benefit from new printing methods. This thesis focuses on the digital textile printing technology and its implementation for fabric-on-demand printing service in Finland. The purpose of this project was to study the technology behind digital textile printing, areas of application of this technology, the requirements ...

  11. 3D printing technologies for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.; Swart, Benjamin; Shao, Yuyan; Wu, Gang; Zhou, Chi

    2017-10-01

    Fabrication of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limited capability in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale and from nanowatt to megawatt, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, morphology) and structure with enhanced specific energy and power densities. Moreover, the additive manufacturing nature of 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. With the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nanomaterials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focused on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from

  12. 3D printing: making things at the library.

    Science.gov (United States)

    Hoy, Matthew B

    2013-01-01

    3D printers are a new technology that creates physical objects from digital files. Uses for these printers include printing models, parts, and toys. 3D printers are also being developed for medical applications, including printed bone, skin, and even complete organs. Although medical printing lags behind other uses for 3D printing, it has the potential to radically change the practice of medicine over the next decade. Falling costs for hardware have made 3D printers an inexpensive technology that libraries can offer their patrons. Medical librarians will want to be familiar with this technology, as it is sure to have wide-reaching effects on the practice of medicine.

  13. Resource selection for an interdisciplinary field: a methodology.

    Science.gov (United States)

    Jacoby, Beth E; Murray, Jane; Alterman, Ina; Welbourne, Penny

    2002-10-01

    The Health Sciences and Human Services Library of the University of Maryland developed and implemented a methodology to evaluate print and digital resources for social work. Although this methodology was devised for the interdisciplinary field of social work, the authors believe it may lend itself to resource selection in other interdisciplinary fields. The methodology was developed in response to the results of two separate surveys conducted in late 1999, which indicated improvement was needed in the library's graduate-level social work collections. Library liaisons evaluated the print collection by identifying forty-five locally relevant Library of Congress subject headings and then using these subjects or synonymous terms to compare the library's titles to collections of peer institutions, publisher catalogs, and Amazon.com. The collection also was compared to social work association bibliographies, ISI Journal Citation Reports, and major social work citation databases. An approval plan for social work books was set up to assist in identifying newly published titles. The library acquired new print and digital social work resources as a result of the evaluation, thus improving both print and digital collections for its social work constituents. Visibility of digital resources was increased by cataloging individual titles in aggregated electronic journal packages and listing each title on the library Web page.

  14. A laser printing based approach for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.; Hu, M.; Guo, Q.; Zhang, W.; Yang, J., E-mail: jyang@eng.uwo.ca [Department of Mechanical and Materials Engineering, Western University, London N6A 3K7 (Canada); Liu, Y.; Lau, W. [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 355 Tengfei Road, 620107 Chengdu (China); Wang, X. [Department of Mechanical and Materials Engineering, Western University, London N6A 3K7 (Canada); Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-03-07

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  15. A laser printing based approach for printed electronics

    International Nuclear Information System (INIS)

    Zhang, T.; Hu, M.; Guo, Q.; Zhang, W.; Yang, J.; Liu, Y.; Lau, W.; Wang, X.

    2016-01-01

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  16. Active materials by four-dimension printing

    Science.gov (United States)

    Ge, Qi; Qi, H. Jerry; Dunn, Martin L.

    2013-09-01

    We advance a paradigm of printed active composite materials realized by directly printing glassy shape memory polymer fibers in an elastomeric matrix. We imbue the active composites with intelligence via a programmed lamina and laminate architecture and a subsequent thermomechanical training process. The initial configuration is created by three-dimension (3D) printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration—the four-dimension (4D) aspect. We design and print laminates in thin plate form that can be thermomechanically programmed to assume complex three-dimensional configurations including bent, coiled, and twisted strips, folded shapes, and complex contoured shapes with nonuniform, spatially varying curvature. The original flat plate shape can be recovered by heating the material again. We also show how the printed active composites can be directly integrated with other printed functionalities to create devices; here we demonstrate this by creating a structure that can assemble itself.

  17. 3D-PRINTING OF BUILD OBJECTS

    Directory of Open Access Journals (Sweden)

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  18. Print-Based Culture Meets An "Amazoogle" World: New Challenges To A Priesthood of Readers

    OpenAIRE

    Kellat, Stephen Michael

    2007-01-01

    Churches of Christ have historically existed deeply rooted in a print-based culture. With the push to a paperless society and the growing disregard among young persons toward print materials, Churches of Christ are faced with a problem. How can such a heritage survive in a digital world when print resources have no known generous benefactor to fund their digitization? How can such a heritage survive in a container that the “next generation” is less likely to approach today? Initial thoughts a...

  19. A Framework for 3d Printing

    DEFF Research Database (Denmark)

    Pilkington, Alan; Frandsen, Thomas; Kapetaniou, Chrystalla

    3D printing technologies and processes offer such a radical range of options for firms that we currently lack a structured way of recording possible impact and recommending actions for managers. The changes arising from 3d printing includes more than just new options for product design, but also...

  20. California Institute for Water Resources - California Institute for Water

    Science.gov (United States)

    Resources Skip to Content Menu California Institute for Water Resources Share Print Site Map Resources Publications Keep in Touch QUICK LINKS Our Blog: The Confluence Drought & Water Information University of California California Institute for Water Resources California Institute for Water Resources

  1. The application of 3-dimensional printing for preoperative planning in oral and maxillofacial surgery in dogs and cats.

    Science.gov (United States)

    Winer, Jenna N; Verstraete, Frank J M; Cissell, Derek D; Lucero, Steven; Athanasiou, Kyriacos A; Arzi, Boaz

    2017-10-01

    To describe the application of 3-dimensional (3D) printing in advanced oral and maxillofacial surgery (OMFS) and to discuss the benefits of this modality in surgical planning, student and resident training, and client education. Retrospective case series. Client-owned dogs (n = 28) and cats (n = 4) with 3D printing models of the skulls. The medical records of 32 cases with 3D printing prior to major OMFS were reviewed. Indications for 3D printing included preoperative planning for mandibular reconstruction after mandibulectomy (n = 12 dogs) or defect nonunion fracture (n = 6 dogs, 2 cats), mapping of ostectomy location for temporomandibular joint ankylosis or pseudoankylosis (n = 4 dogs), assessment of palatal defects (n = 2 dogs, 1 cat), improved understanding of complex anatomy in cases of neoplasia located in challenging locations (n = 2 dogs, 1 cat), and in cases of altered anatomy secondary to trauma (n = 2 dogs). In the authors' experience, 3D printed models serve as excellent tools for OMFS planning and resident training. Furthermore, 3D printed models are a valuable resource to improve clients' understanding of the pet's disorder and the recommended treatment. Three-dimensional printed models should be considered viable tools for surgical planning, resident training, and client education in candidates for complex OMFS. © 2017 The American College of Veterinary Surgeons.

  2. The best printing methods to print satellite images

    Directory of Open Access Journals (Sweden)

    G.A. Yousif

    2011-12-01

    In this paper different printing systems were used to print an image of SPOT-4 satellite, caver part of Sharm Elshekh area, Sinai, Egypt, on the same type of paper as much as possible, especially in the photography. This step is followed by measuring the experimental data, and analyzed colors to determine the best printing systems for satellite image printing data. The laser system is the more printing system where produce a wider range of color and highest densities of ink and access much color detail. Followed by the offset system which it recorded the best dot gain. Moreover, the study shows that it can use the advantages of each method according to the satellite image color and quantity to be produced.

  3. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  4. 5 CFR 532.279 - Special wage schedules for printing positions.

    Science.gov (United States)

    2010-01-01

    ... the printing survey as follows: (1) The lead agency must include North American Industry... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Special wage schedules for printing... printing positions. (a) The lead agency in a special printing schedule area listed in paragraph (j) of this...

  5. Language and Cultural Minorities Resource Catalog.

    Science.gov (United States)

    Maine State Dept. of Educational and Cultural Services, Augusta.

    The revised edition of the resource catalog lists nearly 1,000 print and non-print materials for use in Maine schools where close to 7,000 children of linguistic minorities are enrolled. There are 19 sections on these groups or topics: Afghan, Asian and refugee, bilingual education, Chinese, civil rights, Eastern Europe, English as a Second…

  6. Active origami by 4D printing

    International Nuclear Information System (INIS)

    Ge, Qi; Qi, H Jerry; Dunn, Martin L; Dunn, Conner K

    2014-01-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand. (paper)

  7. Active origami by 4D printing

    Science.gov (United States)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  8. Embedding complex objects with 3d printing

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-10-12

    A CMOS technology-compatible fabrication process for flexible CMOS electronics embedded during additive manufacturing (i.e. 3D printing). A method for such a process may include printing a first portion of a 3D structure; pausing the step of printing the 3D structure to embed the flexible silicon substrate; placing the flexible silicon substrate in a cavity of the first portion of the 3D structure to embed the flexible silicon substrate in the 3D structure; and resuming the step of printing the 3D structure to form the second portion of the 3D structure.

  9. 3D Printing the Complete CubeSat

    Science.gov (United States)

    Kief, Craig

    2015-01-01

    The 3D Printing the Complete CubeSat project is designed to advance the state-of-the-art in 3D printing for CubeSat applications. Printing in 3D has the potential to increase reliability, reduce design iteration time and provide greater design flexibility in the areas of radiation mitigation, communications, propulsion, and wiring, among others. This project is investigating the possibility of including propulsion systems into the design of printed CubeSat components. One such concept, an embedded micro pulsed plasma thruster (mPPT), could provide auxiliary reaction control propulsion for a spacecraft as a means to desaturate momentum wheels.

  10. Embedding complex objects with 3d printing

    KAUST Repository

    Hussain, Muhammad Mustafa; Diaz, Cordero Marlon Steven

    2017-01-01

    A CMOS technology-compatible fabrication process for flexible CMOS electronics embedded during additive manufacturing (i.e. 3D printing). A method for such a process may include printing a first portion of a 3D structure; pausing the step

  11. Novel Biomaterials Used in Medical 3D Printing Techniques

    Directory of Open Access Journals (Sweden)

    Karthik Tappa

    2018-02-01

    Full Text Available The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  12. Novel Biomaterials Used in Medical 3D Printing Techniques.

    Science.gov (United States)

    Tappa, Karthik; Jammalamadaka, Udayabhanu

    2018-02-07

    The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  13. Endodontic applications of 3D printing.

    Science.gov (United States)

    Anderson, J; Wealleans, J; Ray, J

    2018-02-27

    Computer-aided design (CAD) and computer-aided manufacturing (CAM) technologies can leverage cone beam computed tomography data for production of objects used in surgical and nonsurgical endodontics and in educational settings. The aim of this article was to review all current applications of 3D printing in endodontics and to speculate upon future directions for research and clinical use within the specialty. A literature search of PubMed, Ovid and Scopus was conducted using the following terms: stereolithography, 3D printing, computer aided rapid prototyping, surgical guide, guided endodontic surgery, guided endodontic access, additive manufacturing, rapid prototyping, autotransplantation rapid prototyping, CAD, CAM. Inclusion criteria were articles in the English language documenting endodontic applications of 3D printing. Fifty-one articles met inclusion criteria and were utilized. The endodontic literature on 3D printing is generally limited to case reports and pre-clinical studies. Documented solutions to endodontic challenges include: guided access with pulp canal obliteration, applications in autotransplantation, pre-surgical planning and educational modelling and accurate location of osteotomy perforation sites. Acquisition of technical expertise and equipment within endodontic practices present formidable obstacles to widespread deployment within the endodontic specialty. As knowledge advances, endodontic postgraduate programmes should consider implementing 3D printing into their curriculums. Future research directions should include clinical outcomes assessments of treatments employing 3D printed objects. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  14. Future of printing: changes and challenges, technologies and markets

    Science.gov (United States)

    Kipphan, Helmut

    1998-01-01

    Digitalization within the graphic arts industry is described and it is explained how it is improving and changing the print production strategies and which new kinds of print production systems are developed or can be expected. The relationship of printed media and electronic media is analyzed and a positioning for the next century is given. The state of the art of conventional printing technologies, especially using direct imagine techniques, and their position within the digital workflow are shortly described. Non-impact printing multicolor printing systems are explained, based on general design criteria and linked to existing and newly announced equipment. The use of high-tech components for building up successful systems with high reliability, high quality and low production costs is included with some examples. Digital printing systems open many opportunities in print production: distributed printing, personalization, print and book on demand are explained as examples. The overview of the several printing technologies and their positioning regarding quality and productivity leads to the scenario about the important position of printed media, also in the distant future.

  15. Recommended Resources for Planning to Evaluate Program Improvement Efforts (Including the SSIP)

    Science.gov (United States)

    National Center for Systemic Improvement at WestEd, 2015

    2015-01-01

    This document provides a list of recommended existing resources for state Part C and Part B 619 staff and technical assistance (TA) providers to utilize to support evaluation planning for program improvement efforts (including the State Systemic Improvement Plan, SSIP). There are many resources available related to evaluation and evaluation…

  16. Enhanced multimaterial 4D printing with active hinges

    Science.gov (United States)

    Akbari, Saeed; Hosein Sakhaei, Amir; Kowsari, Kavin; Yang, Bill; Serjouei, Ahmad; Yuanfang, Zhang; Ge, Qi

    2018-06-01

    Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.

  17. Despite 2007 law requiring FDA hotline to be included in print drug ads, reporting of adverse events by consumers still low.

    Science.gov (United States)

    Du, Dongyi; Goldsmith, John; Aikin, Kathryn J; Encinosa, William E; Nardinelli, Clark

    2012-05-01

    In 2007 the federal government began requiring drug makers to include in their print direct-to-consumer advertisements information for consumers on how to contact the Food and Drug Administration directly, either by phone or through the agency's website, to report any adverse events that they experienced after taking a prescription drug. Adverse events can range from minor skin problems like itching to serious injuries or illness that result in hospitalization, permanent disability, or even death. Even so, current rates of adverse event reporting are low. We studied adverse event reports about 123 drugs that came from patients before and after the enactment of the print advertising requirement and estimated that requirement's impact with model simulations. We found that if monthly spending on print direct-to-consumer advertising increased from zero to $7.7 million per drug, the presence of the Food and Drug Administration contact information tripled the increase in patient-reported adverse events, compared to what would have happened in the absence of the law. However, the absolute monthly increase was fewer than 0.24 reports per drug, suggesting that the public health impact of the increase was small and that the adverse event reporting rate would still be low. The study results suggest that additional measures, such as more publicity about the Adverse Event Reporting System or more consumer education, should be considered to promote patient reporting of adverse events.

  18. Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing applications

    NARCIS (Netherlands)

    Fedorovich, Natalja E.; Swennen, Ives; Girones, Jordi; Moroni, Lorenzo; van Blitterswijk, Clemens; Schacht, Etienne; Alblas, Jacqueline; Dhert, Wouter J.A.

    2009-01-01

    Application of hydrogels in tissue engineering and innovative strategies such as organ printing, which is based on layered 3D deposition of cell-laden hydrogels, requires design of novel hydrogel matrices. Hydrogel demands for 3D printing include: 1) preservation of the printed shape after the

  19. 3D Printing of Living Responsive Materials and Devices.

    Science.gov (United States)

    Liu, Xinyue; Yuk, Hyunwoo; Lin, Shaoting; Parada, German Alberto; Tang, Tzu-Chieh; Tham, Eléonore; de la Fuente-Nunez, Cesar; Lu, Timothy K; Zhao, Xuanhe

    2018-01-01

    3D printing has been intensively explored to fabricate customized structures of responsive materials including hydrogels, liquid-crystal elastomers, shape-memory polymers, and aqueous droplets. Herein, a new method and material system capable of 3D-printing hydrogel inks with programed bacterial cells as responsive components into large-scale (3 cm), high-resolution (30 μm) living materials, where the cells can communicate and process signals in a programmable manner, are reported. The design of 3D-printed living materials is guided by quantitative models that account for the responses of programed cells in printed microstructures of hydrogels. Novel living devices are further demonstrated, enabled by 3D printing of programed cells, including logic gates, spatiotemporally responsive patterning, and wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Digital printing

    Science.gov (United States)

    Sobotka, Werner K.

    1997-02-01

    Digital printing is described as a tool to replace conventional printing machines completely. Still this goal was not reached until now with any of the digital printing technologies to be described in the paper. Productivity and costs are still the main parameters and are not really solved until now. Quality in digital printing is no problem anymore. Definition of digital printing is to transfer digital datas directly on the paper surface. This step can be carried out directly or with the use of an intermediate image carrier. Keywords in digital printing are: computer- to-press; erasable image carrier; image carrier with memory. Digital printing is also the logical development of the new digital area as it is pointed out in Nicholas Negropotes book 'Being Digital' and also the answer to networking and Internet technologies. Creating images text and color in one country and publishing the datas in another country or continent is the main advantage. Printing on demand another big advantage and last but not least personalization the last big advantage. Costs and being able to coop with this new world of prepress technology is the biggest disadvantage. Therefore the very optimistic growth rates for the next few years are really nonexistent. The development of complete new markets is too slow and the replacing of old markets is too small.

  1. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  2. Advances and Future Challenges in Printed Batteries.

    Science.gov (United States)

    Sousa, Ricardo E; Costa, Carlos M; Lanceros-Méndez, Senentxu

    2015-11-01

    There is an increasing interest in thin and flexible energy storage devices to meet modern society's needs for applications such as radio frequency sensing, interactive packaging, and other consumer products. Printed batteries comply with these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and microbatteries are also included in the area of printed batteries when fabricated using printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this Review. The state-of-the-art takes into account both the research and industrial levels. On the academic level, the research progress of printed batteries is divided into lithium-ion and Zn-manganese dioxide batteries and other battery types, with emphasis on the different materials for anode, cathode, and separator as well as in the battery design. With respect to the industrial state-of-the-art, materials, device formulations, and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Recent trends in print portals and Web2Print applications

    Science.gov (United States)

    Tuijn, Chris

    2009-01-01

    For quite some time now, the printing business has been under heavy pressure because of overcapacity, dropping prices and the delocalization of the production to low income countries. To survive in this competitive world, printers have to invest in tools that, on one hand, reduce the production costs and, on the other hand, create additional value for their customers (print buyers). The creation of customer portals on top of prepress production systems allowing print buyers to upload their content, approve the uploaded pages based on soft proofs (rendered by the underlying production system) and further follow-up the generation of the printed material, has been illustrative in this respect. These developments resulted in both automation for the printer and added value for the print buyer. Many traditional customer portals assume that the printed products have been identified before they are presented to the print buyer in the portal environment. The products are, in this case, typically entered by the printing organization in a so-called MISi system after the official purchase order has been received from the print buyer. Afterwards, the MIS system then submits the product to the customer portal. Some portals, however, also support the initiation of printed products by the print buyer directly. This workflow creates additional flexibility but also makes things much more complex. We here have to distinguish between special products that are defined ad-hoc by the print buyer and standardized products that are typically selected out of catalogs. Special products are most of the time defined once and the level of detail required in terms of production parameters is quite high. Systems that support such products typically have a built-in estimation module, or, at least, a direct connection to an MIS system that calculates the prices and adds a specific mark-up to calculate a quote. Often, the markup is added by an account manager on a customer by customer basis; in this

  4. Printed Organic and Inorganic Electronics: Devices To Systems

    KAUST Repository

    Sevilla, Galo T.; Hussain, Muhammad Mustafa

    2016-01-01

    Affordable and versatile printed electronics can play a critical role for large area applications, such as for displays, sensors, energy harvesting, and storage. Significant advances including commercialization in the general area of printed

  5. Utilization and impact of electronic and print media on the patients’ health status: Physicians’ perspectives

    Directory of Open Access Journals (Sweden)

    Sadia Shakeel

    2017-01-01

    Full Text Available Aims: Despite an increased popularity of print and electronic media applications, there is a paucity of data reflecting doctors’ opinions regarding efficient utilization of these resources for the betterment of public health. Hence, this study aimed to investigate the perception of physicians toward the effect of electronic and print media on the health status of patients. Setting and Design: The current research is a cross-sectional study conducted from January 2015 to July 2015. The study population comprised physicians rendering their services in different hospitals of Karachi, Pakistan, selected by the nonprobability convenience sampling technique. In this study, 500 questionnaires were distributed through email or direct correspondence. Methods and Materials: Physicians’ perception toward the impact of electronic and print media on the health status of patients was assessed with a 20-item questionnaire. Different demographic characteristics, such as age, gender, institution, position, and experience of respondents, were recorded. Quantitative data were analyzed with the use of Statistical Package for Social Sciences, version 20.0 (SPSS, Chicago, IL. The association of the demographic characteristics of the responses of physicians was determined by one-way ANOVA using 0.05 level of significance. Results: In this study, 254 physicians provided consent to show their responses for research purposes. A response rate of 50.8% was obtained. Nearly one-third of the respondents negated that patients get health benefit using electronic and print media. The majority did not consider electronic and print media as lifestyle-modifying factors. Physicians thought that patients particularly do not rely on mass media for acquiring health information and consider healthcare professionals as unswerving information resource. Conclusions: Mass media can be productive resources to augment awareness among patients, although physicians seem unconvinced about

  6. Utilization and Impact of Electronic and Print Media on the Patients' Health Status: Physicians' Perspectives.

    Science.gov (United States)

    Shakeel, Sadia; Nesar, Shagufta; Rahim, Najia; Iffat, Wajiha; Ahmed, Hafiza Fouzia; Rizvi, Mehwish; Jamshed, Shazia

    2017-01-01

    Despite an increased popularity of print and electronic media applications, there is a paucity of data reflecting doctors' opinions regarding efficient utilization of these resources for the betterment of public health. Hence, this study aimed to investigate the perception of physicians toward the effect of electronic and print media on the health status of patients. The current research is a cross-sectional study conducted from January 2015 to July 2015. The study population comprised physicians rendering their services in different hospitals of Karachi, Pakistan, selected by the nonprobability convenience sampling technique. In this study, 500 questionnaires were distributed through email or direct correspondence. Physicians' perception toward the impact of electronic and print media on the health status of patients was assessed with a 20-item questionnaire. Different demographic characteristics, such as age, gender, institution, position, and experience of respondents, were recorded. Quantitative data were analyzed with the use of Statistical Package for Social Sciences, version 20.0 (SPSS, Chicago, IL). The association of the demographic characteristics of the responses of physicians was determined by one-way ANOVA using 0.05 level of significance. In this study, 254 physicians provided consent to show their responses for research purposes. A response rate of 50.8% was obtained. Nearly one-third of the respondents negated that patients get health benefit using electronic and print media. The majority did not consider electronic and print media as lifestyle-modifying factors. Physicians thought that patients particularly do not rely on mass media for acquiring health information and consider healthcare professionals as unswerving information resource. Mass media can be productive resources to augment awareness among patients, although physicians seem unconvinced about the extended usage of print/electronic media.

  7. Logistics of Three-dimensional Printing: Primer for Radiologists.

    Science.gov (United States)

    Hodgdon, Taryn; Danrad, Raman; Patel, Midhir J; Smith, Stacy E; Richardson, Michael L; Ballard, David H; Ali, Sayed; Trace, Anthony Paul; DeBenedectis, Carolynn M; Zygmont, Matthew E; Lenchik, Leon; Decker, Summer J

    2018-01-01

    The Association of University Radiologists Radiology Research Alliance Task Force on three-dimensional (3D) printing presents a review of the logistic considerations for establishing a clinical service using this new technology, specifically focused on implications for radiology. Specific topics include printer selection for 3D printing, software selection, creating a 3D model for printing, providing a 3D printing service, research directions, and opportunities for radiologists to be involved in 3D printing. A thorough understanding of the technology and its capabilities is necessary as the field of 3D printing continues to grow. Radiologists are in the unique position to guide this emerging technology and its use in the clinical arena. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  8. Printing technologies in fabrication of drug delivery systems.

    Science.gov (United States)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri; Genina, Natalja; Peltonen, Jouko; Sandler, Niklas

    2013-12-01

    There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way for personalized dosing and tailor-made dosage forms. In this review, the most recent observations and advancements in fabrication of drug delivery systems by utilizing printing technologies are summarized. A general overview of 2D printing techniques is presented including a review of the most recent literature where printing techniques are used in fabrication of drug delivery systems. The future perspectives and possible impacts on formulation strategies, flexible dosing and personalized medication of using printing techniques for fabrication of drug delivery systems are discussed. It is evident that there is an urgent need to meet the challenges of rapidly growing trend of personalization of medicines through development of flexible drug-manufacturing approaches. In this context, various printing technologies, such as inkjet and flexography, can play an important role. Challenges on different levels exist and include: i) technological development of printers and production lines; ii) printable formulations and carrier substrates; iii) quality control and characterization; and iv) regulatory perspectives.

  9. Digital Inkjet Textile Printing

    OpenAIRE

    Wang, Meichun

    2017-01-01

    Digital inkjet textile printing is an emerging technology developed with the rise of the digital world. It offers a possibility to print high-resolution images with unlimited color selection on fabrics. Digital inkjet printing brings a revolutionary chance for the textile printing industry. The history of textile printing shows the law how new technology replaces the traditional way of printing. This indicates the future of digital inkjet textile printing is relatively positive. Differen...

  10. A review on wax printed microfluidic paper-based devices for international health.

    Science.gov (United States)

    Altundemir, S; Uguz, A K; Ulgen, K

    2017-07-01

    Paper-based microfluidics has attracted attention for the last ten years due to its advantages such as low sample volume requirement, ease of use, portability, high sensitivity, and no necessity to well-equipped laboratory equipment and well-trained manpower. These characteristics have made paper platforms a promising alternative for a variety of applications such as clinical diagnosis and quantitative analysis of chemical and biological substances. Among the wide range of fabrication methods for microfluidic paper-based analytical devices ( μ PADs), the wax printing method is suitable for high throughput production and requires only a commercial printer and a heating source to fabricate complex two or three-dimensional structures for multipurpose systems. μ PADs can be used by anyone for in situ diagnosis and analysis; therefore, wax printed μ PADs are promising especially in resource limited environments where people cannot get sensitive and fast diagnosis of their serious health problems and where food, water, and related products are not able to be screened for toxic elements. This review paper is focused on the applications of paper-based microfluidic devices fabricated by the wax printing technique and used for international health. Besides presenting the current limitations and advantages, the future directions of this technology including the commercial aspects are discussed. As a conclusion, the wax printing technology continues to overcome the current limitations and to be one of the promising fabrication techniques. In the near future, with the increase of the current interest of the industrial companies on the paper-based technology, the wax-printed paper-based platforms are expected to take place especially in the healthcare industry.

  11. Qualitative Assessment of Key Messages about Nutrition and Weight Gain in Pregnancy in Printed Educational Materials in Alberta.

    Science.gov (United States)

    Forbes, Laura; Baarda, Janis; Mayan, Maria; Bell, Rhonda C

    2017-12-01

    Printed educational materials are a common source of health information, although their effectiveness in improving women's knowledge or self-care in pregnancy has been questioned. This study describes the information in printed educational materials that address healthy eating during pregnancy and gestational weight gain (GWG) that are currently used in Alberta, Canada. Content of 6 resources was analyzed using a constant comparison qualitative approach. Resources emphasized healthy eating, prenatal supplements, folate supplementation, and healthy weight gain. More resources discussed the importance of "eating enough" than provided guidance on avoiding excessive GWG. Themes identified were: "everything is important" meaning that all healthy behaviours are important, making prioritization difficult; "more is more" emphasized eating more over moderation; "everyone is individual" suggests women seek individualized care through the care provider; and "contradictions" describes differences in content and recommendations within and between resources. New or revised versions of resources should provide congruent information with up-to-date recommendations that are easily prioritized. Care providers should be aware of contradictory information or information that does not align with current recommendations within printed educational materials and be ready to help women address the areas important for her personal behaviour change.

  12. 3D Printing in Surgical Management of Double Outlet Right Ventricle.

    Science.gov (United States)

    Yoo, Shi-Joon; van Arsdell, Glen S

    2017-01-01

    Double outlet right ventricle (DORV) is a heterogeneous group of congenital heart diseases that require individualized surgical approach based on precise understanding of the complex cardiovascular anatomy. Physical 3-dimensional (3D) print models not only allow fast and unequivocal perception of the complex anatomy but also eliminate misunderstanding or miscommunication among imagers and surgeons. Except for those cases showing well-recognized classic surgical anatomy of DORV such as in cases with a typical subaortic or subpulmonary ventricular septal defect, 3D print models are of enormous value in surgical decision and planning. Furthermore, 3D print models can also be used for rehearsal of the intended procedure before the actual surgery on the patient so that the outcome of the procedure is precisely predicted and the procedure can be optimally tailored for the patient's specific anatomy. 3D print models are invaluable resource for hands-on surgical training of congenital heart surgeons.

  13. 3D Printing in Surgical Management of Double Outlet Right Ventricle

    Directory of Open Access Journals (Sweden)

    Shi-Joon Yoo

    2018-01-01

    Full Text Available Double outlet right ventricle (DORV is a heterogeneous group of congenital heart diseases that require individualized surgical approach based on precise understanding of the complex cardiovascular anatomy. Physical 3-dimensional (3D print models not only allow fast and unequivocal perception of the complex anatomy but also eliminate misunderstanding or miscommunication among imagers and surgeons. Except for those cases showing well-recognized classic surgical anatomy of DORV such as in cases with a typical subaortic or subpulmonary ventricular septal defect, 3D print models are of enormous value in surgical decision and planning. Furthermore, 3D print models can also be used for rehearsal of the intended procedure before the actual surgery on the patient so that the outcome of the procedure is precisely predicted and the procedure can be optimally tailored for the patient’s specific anatomy. 3D print models are invaluable resource for hands-on surgical training of congenital heart surgeons.

  14. Printed circuits and their applications: Which way forward?

    Science.gov (United States)

    Cantatore, E.

    2015-09-01

    The continuous advancements in printed electronics make nowadays feasible the design of printed circuits which enable meaningful applications. Examples include ultra-low cost sensors embedded in food packaging, large-area sensing surfaces and biomedical assays. This paper offers an overview of state-of-the-art digital and analog circuit blocks, manufactured with a printed complementary organic TFT technology. An analog to digital converter and an RFID tag implemented exploiting these building blocks are also described. The main remaining drawbacks of the printed technology described are identified, and new approaches to further improve the state of the art, enabling more innovative applications are discussed.

  15. Resource description and access 2013 revision

    CERN Document Server

    2013-01-01

    This e-book contains the 2013 Revision of RDA: Resource Description and Access, and includes the July 2013 Update. This e-book offers links within the RDA text and the capability of running rudimentary searches of RDA, but please note that this e-book does not have the full range of content or functionality provided by the subscription product RDA Toolkit. Included: A full accumulation of RDA- the revision contains a full set of all current RDA instructions. It replaces the previous version of RDA Print as opposed to being an update packet to that version. RDA has gone through many changes sin

  16. 3D Printed Multimaterial Microfluidic Valve.

    Directory of Open Access Journals (Sweden)

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  17. 3D-Printed Biopolymers for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    2014-01-01

    Full Text Available 3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.

  18. Contextual advertisement placement in printed media

    Science.gov (United States)

    Liu, Sam; Joshi, Parag

    2010-02-01

    Advertisements today provide the necessary revenue model supporting the WWW ecosystem. Targeted or contextual ad insertion plays an important role in optimizing the financial return of this model. Nearly all the current ads that appear on web sites are geared for display purposes such as banner and "pay-per-click". Little attention, however, is focused on deriving additional ad revenues when the content is repurposed for alternative mean of presentation, e.g. being printed. Although more and more content is moving to the Web, there are still many occasions where printed output of web content is desirable, such as maps and articles; thus printed ad insertion can potentially be lucrative. In this paper, we describe a contextual ad insertion network aimed to realize new revenue for print service providers for web printing. We introduce a cloud print service that enables contextual ads insertion, with respect to the main web page content, when a printout of the page is requested. To encourage service utilization, it would provide higher quality printouts than what is possible from current browser print drivers, which generally produce poor outputs, e.g. ill formatted pages. At this juncture we will limit the scope to only article-related web pages although the concept can be extended to arbitrary web pages. The key components of this system include (1) the extraction of article from web pages, (2) the extraction of semantics from article, (3) querying the ad database for matching advertisement or coupon, and (4) joint content and ad layout for print outputs.

  19. All-printed paper memory

    KAUST Repository

    He, Jr-Hau

    2016-08-11

    All-printed paper-based substrate memory devices are described. In an embodiment, a paper-based memory device is prepared by coating one or more areas of a paper substrate with a conductor material such as a carbon paste, to form a first electrode of a memory, depositing a layer of insulator material, such as titanium dioxide, over one or more areas of the conductor material, and depositing a layer of metal over one or more areas of the insulator material to form a second electrode of the memory. In an embodiment, the device can further include diodes printed between the insulator material and the second electrode, and the first electrode and the second electrodes can be formed as a crossbar structure to provide a WORM memory. The various layers and the diodes can be printed onto the paper substrate by, for example, an ink jet printer.

  20. Gauging User Interest in Non-Traditional Library Resources

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Tami; Abbott, Jennifer

    2015-06-23

    The National Renewable Energy Laboratory (NREL) is a government funded research laboratory based in Golden, Colorado. In addition to collecting traditional library resources such as journals, conference proceedings, and print and electronic books, the library also spends a significant portion of its collection development funds on resources not often found in many libraries: technical industry standards (e.g., ISO, IEC, ASTM, IEEE) and energy-related market reports. Assessing user needs for these resources is difficult for a number of reasons, particularly because standardized usage statistics are lacking or non-existent. Standards and market reports are generally costly and include fairly restrictive license agreements, which increase the importance of making informed collection development decisions. This presentation will discuss the NREL Library's current collection assessment and development practices as they relate to these unique resources.

  1. Current and emerging applications of 3D printing in medicine.

    Science.gov (United States)

    Liaw, Chya-Yan; Guvendiren, Murat

    2017-06-07

    Three-dimensional (3D) printing enables the production of anatomically matched and patient-specific devices and constructs with high tunability and complexity. It also allows on-demand fabrication with high productivity in a cost-effective manner. As a result, 3D printing has become a leading manufacturing technique in healthcare and medicine for a wide range of applications including dentistry, tissue engineering and regenerative medicine, engineered tissue models, medical devices, anatomical models and drug formulation. Today, 3D printing is widely adopted by the healthcare industry and academia. It provides commercially available medical products and a platform for emerging research areas including tissue and organ printing. In this review, our goal is to discuss the current and emerging applications of 3D printing in medicine. A brief summary on additive manufacturing technologies and available printable materials is also given. The technological and regulatory barriers that are slowing down the full implementation of 3D printing in the medical field are also discussed.

  2. Printed circuits and their applications : Which way forward?

    NARCIS (Netherlands)

    Cantatore, Eugenio; Kratochvil, E.J.W.L.

    2015-01-01

    The continuous advancements in printed electronics make nowadays feasible the design of printed circuits which enable meaningful applications. Examples include ultra-low cost sensors embedded in food packaging, large-area sensing surfaces and biomedical assays. This paper offers an overview of

  3. Topography printing to locally control wettability.

    Science.gov (United States)

    Zheng, Zijian; Azzaroni, Omar; Zhou, Feng; Huck, Wilhelm T S

    2006-06-21

    This paper reports a new patterning method, which utilizes NaOH to facilitate the irreversible binding between the PDMS stamp and substrates and subsequent cohesive mechanical failure to transfer the PDMS patterns. Our method shows high substrate tolerance and can be used to "print" various PDMS geometries on a wide range of surfaces, including Si100, glass, gold, polymers, and patterned SU8 photoresist. Using this technique, we are able to locally change the wettability of substrate surfaces by printing well-defined PDMS architectures on the patterned SU8 photoresist. It is possible to generate differential wetting and dewetting properties in microchannels and in the PDMS printed area, respectively.

  4. Three-dimensional Printing in Developing Countries.

    Science.gov (United States)

    Ibrahim, Ahmed M S; Jose, Rod R; Rabie, Amr N; Gerstle, Theodore L; Lee, Bernard T; Lin, Samuel J

    2015-07-01

    The advent of 3-dimensional (3D) printing technology has facilitated the creation of customized objects. The lack of regulation in developing countries renders conventional means of addressing various healthcare issues challenging. 3D printing may provide a venue for addressing many of these concerns in an inexpensive and easily accessible fashion. These may potentially include the production of basic medical supplies, vaccination beads, laboratory equipment, and prosthetic limbs. As this technology continues to improve and prices are reduced, 3D printing has the potential ability to promote initiatives across the entire developing world, resulting in improved surgical care and providing a higher quality of healthcare to its residents.

  5. A review of non-contact micro- and nano-printing technologies

    International Nuclear Information System (INIS)

    Ru, Changhai; Sun, Yu; Luo, Jun; Xie, Shaorong

    2014-01-01

    Printing technologies have undergone signficant development because they are an enabler in science and engineering research; they also have significant practical applications in manufacturing. Micro- and nano-printing techniques have found a number of applications in electronics, biotechnology, and material synthesis/patterning. In this review, we look at the important printing methods, including high precision traditional printing methods as well as recently emerging techniques. We also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing. (topical review)

  6. A review of non-contact micro- and nano-printing technologies

    Science.gov (United States)

    Ru, Changhai; Luo, Jun; Xie, Shaorong; Sun, Yu

    2014-05-01

    Printing technologies have undergone signficant development because they are an enabler in science and engineering research; they also have significant practical applications in manufacturing. Micro- and nano-printing techniques have found a number of applications in electronics, biotechnology, and material synthesis/patterning. In this review, we look at the important printing methods, including high precision traditional printing methods as well as recently emerging techniques. We also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing.

  7. Printing of Wearable Antenna on Textile

    Directory of Open Access Journals (Sweden)

    Khirotdin Rd. Khairilhijra

    2018-01-01

    Full Text Available A wearable antenna which is meant to be a part of the clothing used for communication purposes includes tracking, navigation and mobile computing has been seen in demand due to the recent miniaturization of wireless devices. Printing of conductive ink provides flexibility properties on electronics thus allowing it to be used on conformal surfaces. However, the current printing techniques mostly suffer from ink incompatibility and limited of substrates to be printed with. Hence, this paper intend to discloses the printing of wearable antenna using alternative technique via syringe-based deposition system with conductive ink on textile. A validation between simulation and measurement of return loss, (S11 and radiation pattern of the antenna printed is also performed. It was found that a functional antenna is successfully printed on textile since the performances obtained are as expected. The antenna resonated at a minimum resonant frequency of 1.82 GHz which the S11 gathered at-18.90 dB. The radiation pattern for both simulation and measurement is as predicted since both have a larger magnitude of the main lobe than the side lobe. The magnitude of the main lobe from measurement was observed to be 8.83 dB higher than the magnitude of the main lobe of the simulation which is only 3.77 dB. It is proven that the syringe-based deposition system is capable of printing functional antenna on textile.

  8. Color management: printing processes - opportunities and limitations

    Science.gov (United States)

    Ingram, Samuel T.

    2002-06-01

    Digital tools have impacted traditional methods employed to reproduce color images during the past decade. The shift from a purely photomechanical process in color reproduction to colorimetric reproduction offers tremendous opportunity in the graphic arts industry. But good things do not necessarily come to all in the same package. Printing processes possess different reproduction attributes: tone reproduction, gray balance and color correction requirements are as different as the ingredient sets selected for color reproduction. This paper will provide insight toward understanding advantages and limitations offered by the new digital technologies in printing, publishing and packaging. For the past five years the Clemson University Graphic Communications Department has conducted numerous color projects using the new digital colorimetric tools during the previous decade. Several approaches have been used including experimental research and typical production workflows. The use of colorimetric data in color reproduction has given an opportunity to realize real gains in color use, predictability and consistency. Meeting an image's separation and reproduction requirements for a specified printing process can involve disruption of the anticipated workflow. Understanding the printing process requirements and the fit within the specifications of a colorimetric workflow are critical to the successful adoption of a color managed workflow. The paper will also provide an insight into the issues and challenges experienced with a color managed workflow. The printing processes used include offset litho, narrow and wide-web flexography (paper, liner board, corrugated and film), screen printing (paper board and polycarbonates), and digital imaging with toner, ink and inkjet systems. A proposal for technology integration will be the focus of the presentation drawn from documented experiences in over 300 applications of color management tools. Discussion will include the structure of

  9. Printed organo-functionalized graphene for biosensing applications.

    Science.gov (United States)

    Wisitsoraat, A; Mensing, J Ph; Karuwan, C; Sriprachuabwong, C; Jaruwongrungsee, K; Phokharatkul, D; Daniels, T M; Liewhiran, C; Tuantranont, A

    2017-01-15

    Graphene is a highly promising material for biosensors due to its excellent physical and chemical properties which facilitate electron transfer between the active locales of enzymes or other biomaterials and a transducer surface. Printing technology has recently emerged as a low-cost and practical method for fabrication of flexible and disposable electronics devices. The combination of these technologies is promising for the production and commercialization of low cost sensors. In this review, recent developments in organo-functionalized graphene and printed biosensor technologies are comprehensively covered. Firstly, various methods for printing graphene-based fluids on different substrates are discussed. Secondly, different graphene-based ink materials and preparation methods are described. Lastly, biosensing performances of printed or printable graphene-based electrochemical and field effect transistor sensors for some important analytes are elaborated. The reported printed graphene based sensors exhibit promising properties with good reliability suitable for commercial applications. Among most reports, only a few printed graphene-based biosensors including screen-printed oxidase-functionalized graphene biosensor have been demonstrated. The technology is still at early stage but rapidly growing and will earn great attention in the near future due to increasing demand of low-cost and disposable biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Printing Insecurity? The Security Implications of 3D-Printing of Weapons.

    Science.gov (United States)

    Walther, Gerald

    2015-12-01

    In 2013, the first gun printed out of plastic by a 3D-printer was successfully fired in the U.S. This event caused a major media hype about the dangers of being able to print a gun. Law enforcement agencies worldwide were concerned about this development and the potentially huge security implications of these functional plastic guns. As a result, politicians called for a ban of these weapons and a control of 3D-printing technology. This paper reviews the security implications of 3D-printing technology and 3D guns. It argues that current arms control and transfer policies are adequate to cover 3D-printed guns as well. However, while this analysis may hold up currently, progress in printing technology needs to be monitored to deal with future dangers pre-emptively.

  11. 3D printing for soft robotics - a review.

    Science.gov (United States)

    Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun

    2018-01-01

    Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose.

  12. High-Throughput Printing Process for Flexible Electronics

    Science.gov (United States)

    Hyun, Woo Jin

    Printed electronics is an emerging field for manufacturing electronic devices with low cost and minimal material waste for a variety of applications including displays, distributed sensing, smart packaging, and energy management. Moreover, its compatibility with roll-to-roll production formats and flexible substrates is desirable for continuous, high-throughput production of flexible electronics. Despite the promise, however, the roll-to-roll production of printed electronics is quite challenging due to web movement hindering accurate ink registration and high-fidelity printing. In this talk, I will present a promising strategy for roll-to-roll production using a novel printing process that we term SCALE (Self-aligned Capillarity-Assisted Lithography for Electronics). By utilizing capillarity of liquid inks on nano/micro-structured substrates, the SCALE process facilitates high-resolution and self-aligned patterning of electrically functional inks with greatly improved printing tolerance. I will show the fabrication of key building blocks (e.g. transistor, resistor, capacitor) for electronic circuits using the SCALE process on plastics.

  13. Vision based error detection for 3D printing processes

    Directory of Open Access Journals (Sweden)

    Baumann Felix

    2016-01-01

    Full Text Available 3D printers became more popular in the last decade, partly because of the expiration of key patents and the supply of affordable machines. The origin is located in rapid prototyping. With Additive Manufacturing (AM it is possible to create physical objects from 3D model data by layer wise addition of material. Besides professional use for prototyping and low volume manufacturing they are becoming widespread amongst end users starting with the so called Maker Movement. The most prevalent type of consumer grade 3D printers is Fused Deposition Modelling (FDM, also Fused Filament Fabrication FFF. This work focuses on FDM machinery because of their widespread occurrence and large number of open problems like precision and failure. These 3D printers can fail to print objects at a statistical rate depending on the manufacturer and model of the printer. Failures can occur due to misalignment of the print-bed, the print-head, slippage of the motors, warping of the printed material, lack of adhesion or other reasons. The goal of this research is to provide an environment in which these failures can be detected automatically. Direct supervision is inhibited by the recommended placement of FDM printers in separate rooms away from the user due to ventilation issues. The inability to oversee the printing process leads to late or omitted detection of failures. Rejects effect material waste and wasted time thus lowering the utilization of printing resources. Our approach consists of a camera based error detection mechanism that provides a web based interface for remote supervision and early failure detection. Early failure detection can lead to reduced time spent on broken prints, less material wasted and in some cases salvaged objects.

  14. Characterizing Digital Light Processing (DLP) 3D Printed Primitives

    DEFF Research Database (Denmark)

    Tyge, Emil; Pallisgaard, Jens J.; Lillethorup, Morten

    2015-01-01

    The resolution and repeatability of 3D printing processes depends on a number of factors including the software, hardware, and material used. When printing parts with features that are near or below the nominal printing resolution, it is important to understand how the printer works. For example......, what is the smallest unit shape that can be produced? And what is the reproducibility of that process? This paper presents a method for automatically detecting and characterizing the height, width, and length of micro scale geometric primitives produced via a digital light processing (DLP) 3D printing...

  15. Printed organic thin-film transistor-based integrated circuits

    International Nuclear Information System (INIS)

    Mandal, Saumen; Noh, Yong-Young

    2015-01-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted. (paper)

  16. 3D Printed Bionic Nanodevices

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  17. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  18. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  19. Interpolating Spline Curve-Based Perceptual Encryption for 3D Printing Models

    OpenAIRE

    Giao N. Pham; Suk-Hwan Lee; Ki-Ryong Kwon

    2018-01-01

    With the development of 3D printing technology, 3D printing has recently been applied to many areas of life including healthcare and the automotive industry. Due to the benefit of 3D printing, 3D printing models are often attacked by hackers and distributed without agreement from the original providers. Furthermore, certain special models and anti-weapon models in 3D printing must be protected against unauthorized users. Therefore, in order to prevent attacks and illegal copying and to ensure...

  20. Non-Print Social Studies Materials--Elementary School Level.

    Science.gov (United States)

    Lynn, Karen

    Types of non-print social studies materials developed for presentation to, and use by, elementary school students are identified. "Non-print" materials include films, filmstrips, video cassettes, audio recordings, computer databases, telecommunications, and hypertext. An explanation of why elementary school students can benefit from the use of…

  1. Preservation of Chinese Print Astronomical Literature in the Digital and Network Age

    Science.gov (United States)

    Zhang, J.; Shi, W.

    2015-04-01

    Over the last few decades, more and more journals and books have been published in both electronic and print formats. Some journals have been digitized retrospectively going back to the first volume of more than a hundred years ago, which benefits researchers and librarians tremendously. As a result, many librarians subscribe to books and journals in both electronic and print versions when possible. In many cases, because of budget shortfalls and the low usage of print materials, many libraries have started to order electronic only. This trend heralds a potential demise of print literature as major library resources and has implications for the library services associated with them. This paper proposes some opinions on this issue. We believe that the librarians should pay attention to and conserve the published astronomical literature, a precious historical and cultural heritage, so that we could hand it down to future generations, just like our predecessors did for us.

  2. Life cycle assessment of offset printed matter with EDIP97

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Morten Søes; Hauschild, Michael Zwicky

    2009-01-01

    warming, acidification and nutrient enrichment. Ecotoxicity and human toxicity, which are related to emissions of chemicals etc., are only included to a limited degree or not at all. In this paper we include the impacts from chemicals emitted during the life cycle of sheet fed offset printed matter....... This is done by making use of some of the newest knowledge about emissions from the production at the printing industry combined with knowledge about the composition of the printing materials used. In cases with available data also upstream emissions from the production of printing materials are included....... The results show that inclusion of the chemical emission-related impacts makes the EDIP97 impact profile of sheet fed offset products much more varied, as well for the normalised profiles as for the profiles weighted by distance to political environmental targets. Especially the ecotoxicity impact potential...

  3. Printed Organic and Inorganic Electronics: Devices To Systems

    KAUST Repository

    Sevilla, Galo T.

    2016-11-11

    Affordable and versatile printed electronics can play a critical role for large area applications, such as for displays, sensors, energy harvesting, and storage. Significant advances including commercialization in the general area of printed electronics have been based on organic molecular electronics. Still some fundamental challenges remain: thermal instability, modest charge transport characteristics, and limited lithographic resolution. In the last decade, one-dimensional nanotubes and nanowires, like carbon nanotubes and silicon nanowires, followed by two-dimensional materials, like graphene and transitional dichalcogenide materials, have shown interesting promise as next-generation printed electronic materials. Challenges, such as non-uniformity in growth, limited scalability, and integration issues, need to be resolved for the viable application of these materials to technology. Recently, the concept of printed high-performance complementary metal\\\\text-oxide semiconductor electronics has also emerged and been proven successful for application to electronics. Here, we review progress in CMOS technology and applications, including challenges faced and opportunities revealed.

  4. The Resource Control Debate: Enthroning Parasitism or Instituting ...

    African Journals Online (AJOL)

    User

    ISSN 1994-9057 (Print). ISSN 2070--0083 (Online) ... considering materials as resources, it is imperative that the useful purpose of satisfying human needs in ..... advantage to the region in terms of resource allocation. The North it is argued has ...

  5. 3D printing for clinical application in otorhinolaryngology.

    Science.gov (United States)

    Zhong, Nongping; Zhao, Xia

    2017-12-01

    Three-dimensional (3D) printing is a promising technology that can use a patient's image data to create complex and personalized constructs precisely. It has made great progress over the past few decades and has been widely used in medicine including medical modeling, surgical planning, medical education and training, prosthesis and implants. Three-dimensional (3D) bioprinting is a powerful tool that has the potential to fabricate bioengineered constructs of the desired shape layer-by-layer using computer-aided deposition of living cells and biomaterials. Advances in 3D printed implants and future tissue-engineered constructs will bring great progress to the field of otolaryngology. By integrating 3D printing into tissue engineering and materials, it may be possible for otolaryngologists to implant 3D printed functional grafts into patients for reconstruction of a variety of tissue defects in the foreseeable future. In this review, we will introduce the current state of 3D printing technology and highlight the applications of 3D printed prosthesis and implants, 3D printing technology combined with tissue engineering and future directions of bioprinting in the field of otolaryngology.

  6. Highly Conductive Nano-Silver Circuits by Inkjet Printing

    Science.gov (United States)

    Zhu, Dongbin; Wu, Minqiang

    2018-06-01

    Inkjet technology has become popular in the field of printed electronics due to its superior properties such as simple processes and printable complex patterns. Electrical conductivity of the circuits is one of the key factors in measuring the performance of printed electronics, which requires great material properties and a manufactured process. With excellent conductivity and ductility, silver is an ideal material as the wire connecting components. This review summarizes the progress of conductivity studies on inkjet printed nano-silver lines, including ink composition and nanoparticle morphology, deposition of nano-silver lines with uniform and high aspect ratios, sintering mechanisms and alternative methods of thermal sintering. Finally, the research direction on inkjet printed electronics is proposed.

  7. Course Resource Lists.

    Science.gov (United States)

    England, Robert G.

    The Mountain-Plains Course Resource List is presented by job title for 26 curriculum areas. For each area the printed materials, audiovisual aids, and equipment needed for the course are listed. The 26 curriculum areas are: mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution,…

  8. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.

    Science.gov (United States)

    Cui, Zheng; Han, Yiwei; Huang, Qijin; Dong, Jingyan; Zhu, Yong

    2018-04-19

    A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc. With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices.

  9. Preliminary study of post mortem identification using lip prints.

    Science.gov (United States)

    Utsuno, Hajime; Kanoh, Takashi; Tadokoro, Osamu; Inoue, Katsuhiro

    2005-05-10

    Identification using lip prints was first performed in the 1950s and was the subject of much research in the 1960s and 70s, leading to the acceptance of this technique as evidence in the criminal justice system. Previous research has focused on identifying lip print types or on methods of obtaining hidden lip prints left at the crime scene. The present study aimed to clarify characteristics of lip prints from cadavers with various causes of death (including drowning and hanging) and to determine the effects of fixation on post mortem changes in lip impressions.

  10. Print Finishing: From Manual to Automated Print Finishing

    Directory of Open Access Journals (Sweden)

    Gareth Ward

    2004-12-01

    Full Text Available Meeting the demand for faster turnrounds and shorter print runs goes beyond making the printing press easier to set up and change. There is little point in producing plates and then sheets from a press if the post press area does not change to keep abreast of developments in prepress and the print room. The greatest impact is going to come from JDF, the end to end production data format which is finding wide spread acceptance in print areas. To date finishing equipment manufacturers are not as well represented within the CIP4 organisation as prepress and press vendors, but the major manufacturers are members. All are working to the goal of complete connectivity.The idea of JDF is that if the format of a print product like a magazine is known during the creation phases, the information can be used to preset machinery that is going to be used to produce it, so avoiding input errors and saving manufacturing time.A second aspect to JDF is that information about performance and progress is gathered and can be retrieved from a central point or made available to a customer. Production scheduling and costing becomes more accurate and customer relationships are deepened. However JDF to its fullest extent is not yet in use in connecting the finishing area to the rest of the printing plant. Around the world different companies are testing the idea of JDF to connect saddle stitchers, guillotines and binders with frantic work underway to be able to show results soon.

  11. A high speed electrohydrodynamic (EHD) jet printing method for line printing

    International Nuclear Information System (INIS)

    Phung, Thanh Huy; Kim, Seora; Kwon, Kye-Si

    2017-01-01

    Electrohydrodynamic (EHD) jet printing has drawn attention due to its capability to produce smaller dots and patterns with finer lines when compared to those obtained from using conventional inkjet printing. Previous studies have suggested that drop-on-demand EHD-patterning applications should be limited to very slow printing cases with speeds far less than 10 mm s −1 due to the small dot size and limited jetting frequency. In this study, a new EHD printing method is proposed to significantly increase the line-patterning printing speed by modifying the ink and thereby changing the relic shape. The proposed method has the additional advantage of reducing the line-pattern width. The results of the experiment show that the pattern width could be reduced from 20 µ m to 4 µ m by increasing the printing speed from 10 mm s −1 to 50 mm s −1 , respectively. (paper)

  12. Engraving Print Classification

    International Nuclear Information System (INIS)

    Hoelck, Daniel; Barbe, Joaquim

    2008-01-01

    A print is a mark, or drawing, made in or upon a plate, stone, woodblock or other material which is cover with ink and then is press usually into a paper reproducing the image on the paper. Engraving prints usually are image composed of a group of binary lines, specially those are made with relief and intaglio techniques. Varying the number and the orientation of lines, the drawing of the engraving print is conformed. For this reason we propose an application based on image processing methods to classify engraving prints

  13. Screen-printed nanoparticles as anti-counterfeiting tags

    Science.gov (United States)

    Campos-Cuerva, Carlos; Zieba, Maciej; Sebastian, Victor; Martínez, Gema; Sese, Javier; Irusta, Silvia; Contamina, Vicente; Arruebo, Manuel; Santamaria, Jesus

    2016-03-01

    Metallic nanoparticles with different physical properties have been screen printed as authentication tags on different types of paper. Gold and silver nanoparticles show unique optical signatures, including sharp emission bandwidths and long lifetimes of the printed label, even under accelerated weathering conditions. Magnetic nanoparticles show distinct physical signals that depend on the size of the nanoparticle itself. They were also screen printed on different substrates and their magnetic signals read out using a magnetic pattern recognition sensor and a vibrating sample magnetometer. The novelty of our work lies in the demonstration that the combination of nanomaterials with optical and magnetic properties on the same printed support is possible, and the resulting combined signals can be used to obtain a user-configurable label, providing a high degree of security in anti-counterfeiting applications using simple commercially-available sensors.

  14. Printing Insecurity? The Security Implications of 3D-Printing of Weapons

    OpenAIRE

    Walther, Gerald

    2014-01-01

    In 2013, the first gun printed out of plastic by a 3D-printer was successfully fired in the US. This event caused a major media hype about the dangers of being able to print a gun. Law enforcement agencies worldwide were concerned about this development and the potentially huge security implications of these functional plastic guns. As a result, politicians called for a ban of these weapons and a control of 3D-printing technology. This paper reviews the security implications of 3D-printing te...

  15. 3D Printing: current use in facial plastic and reconstructive surgery.

    Science.gov (United States)

    Hsieh, Tsung-Yen; Dedhia, Raj; Cervenka, Brian; Tollefson, Travis T

    2017-08-01

    To review the use of three-dimensional (3D) printing in facial plastic and reconstructive surgery, with a focus on current uses in surgical training, surgical planning, clinical outcomes, and biomedical research. To evaluate the limitations and future implications of 3D printing in facial plastic and reconstructive surgery. Studies reviewed demonstrated 3D printing applications in surgical planning including accurate anatomic biomodels, surgical cutting guides in reconstruction, and patient-specific implants fabrication. 3D printing technology also offers access to well tolerated, reproducible, and high-fidelity/patient-specific models for surgical training. Emerging research in 3D biomaterial printing have led to the development of biocompatible scaffolds with potential for tissue regeneration in reconstruction cases involving significant tissue absence or loss. Major limitations of utilizing 3D printing technology include time and cost, which may be offset by decreased operating times and collaboration between departments to diffuse in-house printing costs SUMMARY: The current state of the literature shows promising results, but has not yet been validated by large studies or randomized controlled trials. Ultimately, further research and advancements in 3D printing technology should be supported as there is potential to improve resident training, patient care, and surgical outcomes.

  16. Print and Electronic Resources: Usage Statistics at Guru Gobind Singh Indraprastha University Library

    Science.gov (United States)

    Kapoor, Kanta

    2010-01-01

    Purpose: The purpose of this paper is to quantify the use of electronic journals in comparison with the print collections in the Guru Gobind Singh Indraprastha University Library. Design/methodology/approach: A detailed analysis was made of the use of lending services, the Xerox facility and usage of electronic journals such as Science Direct,…

  17. EARLY ENGLISH PRINTING AND THE HANDS OF COMPOSITORS

    Directory of Open Access Journals (Sweden)

    Satoko Tokunaga

    2005-12-01

    Full Text Available This paper examines soine distinctive uses of typefaces by Caxton's compositors in his early products at Westminster and illustrates how useful such examples are in revealing the chronology of actual book production, as well as in identifying the compositors at work on individual volumes. An exhaustive analysis of early printed books can provide us with information about compositors at work in England's earliest printing house. This paper therefore argues that it is inost definitely worth considering such 'inechaiiical' aspects of book design as typography when editing any printed text, and introduces most recent research results contributed by a project at Keio University, which airns to establish a semiautomatic system that can transcribe every feature of the printed text including even minute differences in types.

  18. Large-Scale 3D Printing: The Way Forward

    Science.gov (United States)

    Jassmi, Hamad Al; Najjar, Fady Al; Ismail Mourad, Abdel-Hamid

    2018-03-01

    Research on small-scale 3D printing has rapidly evolved, where numerous industrial products have been tested and successfully applied. Nonetheless, research on large-scale 3D printing, directed to large-scale applications such as construction and automotive manufacturing, yet demands a great a great deal of efforts. Large-scale 3D printing is considered an interdisciplinary topic and requires establishing a blended knowledge base from numerous research fields including structural engineering, materials science, mechatronics, software engineering, artificial intelligence and architectural engineering. This review article summarizes key topics of relevance to new research trends on large-scale 3D printing, particularly pertaining (1) technological solutions of additive construction (i.e. the 3D printers themselves), (2) materials science challenges, and (3) new design opportunities.

  19. Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing

    International Nuclear Information System (INIS)

    Lorber, Barbara; Martin, Keith R; Hsiao, Wen-Kai; Hutchings, Ian M

    2014-01-01

    We have investigated whether inkjet printing technology can be extended to print cells of the adult rat central nervous system (CNS), retinal ganglion cells (RGC) and glia, and the effects on survival and growth of these cells in culture, which is an important step in the development of tissue grafts for regenerative medicine, and may aid in the cure of blindness. We observed that RGC and glia can be successfully printed using a piezoelectric printer. Whilst inkjet printing reduced the cell population due to sedimentation within the printing system, imaging of the printhead nozzle, which is the area where the cells experience the greatest shear stress and rate, confirmed that there was no evidence of destruction or even significant distortion of the cells during jet ejection and drop formation. Importantly, the viability of the cells was not affected by the printing process. When we cultured the same number of printed and non-printed RGC/glial cells, there was no significant difference in cell survival and RGC neurite outgrowth. In addition, use of a glial substrate significantly increased RGC neurite outgrowth, and this effect was retained when the cells had been printed. In conclusion, printing of RGC and glia using a piezoelectric printhead does not adversely affect viability and survival/growth of the cells in culture. Importantly, printed glial cells retain their growth-promoting properties when used as a substrate, opening new avenues for printed CNS grafts in regenerative medicine. (paper)

  20. Review: Polymeric-Based 3D Printing for Tissue Engineering.

    Science.gov (United States)

    Wu, Geng-Hsi; Hsu, Shan-Hui

    Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue engineering. There are advantages and limitations for each method. Future areas of interest and progress are the development of new 3D printing platforms, scaffold design software, and materials for tissue engineering applications.

  1. Student Reading Practices in Print and Electronic Media

    Science.gov (United States)

    Foasberg, Nancy M.

    2014-01-01

    This paper reports a diary-based qualitative study on college students' reading habits with regard to print and electronic media. Students used a form to record information about their reading practices for twelve days, including length of reading event, location, format used, and the purpose of reading. Students tended to use print for academic…

  2. Serious games for digital tablets as an introduction to 3D modeling and printing

    Directory of Open Access Journals (Sweden)

    José Luis SAORIN

    2015-07-01

    Full Text Available Currently, one of the most direct ways children access to digital technology is through games. This aspect is usually not considered in educational settings in the acquisition of Basic Skills. However, there are international reports assessing the potential of video games as an educational resource. Since 2006, the Horizon Report includes educational video games as a technology impact on teaching, learning and creative expression in education environments. In the 2012 Report, Digital Tablets are considered as one of the technologies most likely to be in widespread use in education in the short term. On the other hand, there are studies linking student interest in careers in science, art and technology to the premature use of 3D modeling tools or 3D printing. In this article, we want to value two applications, Blokify and Pottery, available for digital tablets, which work like games that introduce students to the three-dimensional digital modeling and printing.

  3. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  4. 3D printing for soft robotics – a review

    Science.gov (United States)

    Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun

    2018-01-01

    Abstract Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose. PMID:29707065

  5. Three-Dimensional Printing and Its Applications in Otorhinolaryngology-Head and Neck Surgery.

    Science.gov (United States)

    Crafts, Trevor D; Ellsperman, Susan E; Wannemuehler, Todd J; Bellicchi, Travis D; Shipchandler, Taha Z; Mantravadi, Avinash V

    2017-06-01

    Objective Three-dimensional (3D)-printing technology is being employed in a variety of medical and surgical specialties to improve patient care and advance resident physician training. As the costs of implementing 3D printing have declined, the use of this technology has expanded, especially within surgical specialties. This article explores the types of 3D printing available, highlights the benefits and drawbacks of each methodology, provides examples of how 3D printing has been applied within the field of otolaryngology-head and neck surgery, discusses future innovations, and explores the financial impact of these advances. Data Sources Articles were identified from PubMed and Ovid MEDLINE. Review Methods PubMed and Ovid Medline were queried for English articles published between 2011 and 2016, including a few articles prior to this time as relevant examples. Search terms included 3-dimensional printing, 3 D printing, otolaryngology, additive manufacturing, craniofacial, reconstruction, temporal bone, airway, sinus, cost, and anatomic models. Conclusions Three-dimensional printing has been used in recent years in otolaryngology for preoperative planning, education, prostheses, grafting, and reconstruction. Emerging technologies include the printing of tissue scaffolds for the auricle and nose, more realistic training models, and personalized implantable medical devices. Implications for Practice After the up-front costs of 3D printing are accounted for, its utilization in surgical models, patient-specific implants, and custom instruments can reduce operating room time and thus decrease costs. Educational and training models provide an opportunity to better visualize anomalies, practice surgical technique, predict problems that might arise, and improve quality by reducing mistakes.

  6. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering

    OpenAIRE

    Udayabhanu Jammalamadaka; Karthik Tappa

    2018-01-01

    Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the abi...

  7. Advances in Home Photo Printing

    Institute of Scientific and Technical Information of China (English)

    Qian Lin; Brian Atkins; Huitao Luo

    2004-01-01

    With digital camera adoptions going main stream, consumers capture a record number of photos.Currently, the majority of the digital photos are printed at home. One of the key enablers of this transformation is the advancement of home photo printing technologies. In the past few years, inkjet printing technologies have continued to deliver smaller drop size, larger number of inks, and longer-lasting prints. In the mean time, advanced image processing automatically enhances captured digital photos while being printed. The combination of the above two forces has closed the gap between the home photo prints and AgX prints. It will give an overview of the home photo printing market and technology trends, and discuss major advancements in automatic image processing.

  8. Printed Electronics

    Science.gov (United States)

    Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Lettow, John S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2018-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  9. Current Trends on Medical and Pharmaceutical Applications of Inkjet Printing Technology.

    Science.gov (United States)

    Scoutaris, Nicolaos; Ross, Steven; Douroumis, Dennis

    2016-08-01

    Inkjet printing is an attractive material deposition and patterning technology that has received significant attention in the recent years. It has been exploited for novel applications including high throughput screening, pharmaceutical formulations, medical devices and implants. Moreover, inkjet printing has been implemented in cutting-edge 3D-printing healthcare areas such as tissue engineering and regenerative medicine. Recent inkjet advances enabled 3D printing of artificial cartilage and skin, or cell constructs for transplantation therapies. In the coming years inkjet printing is anticipated to revolutionize personalized medicine and push the innovation portfolio by offering new paths in patient - specific treatments.

  10. Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials.

    Science.gov (United States)

    Jin, Yifei; Compaan, Ashley; Chai, Wenxuan; Huang, Yong

    2017-06-14

    Additive manufacturing (AM) enables the freeform fabrication of complex structures from various build materials. The objective of this study is to develop a novel Laponite nanoclay-enabled "printing-then-solidification" additive manufacturing approach to extrude complex three-dimensional (3D) structures made of various liquid build materials. Laponite, a member of the smectite mineral family, is investigated to serve as a yield-stress support bath material for the extrusion printing of liquid build materials. Using the printing-then-solidification approach, the printed structure remains liquid and retains its shape with the help of the Laponite support bath. Then the completed liquid structures are solidified in situ by applying suitable cross-linking mechanisms. Finally, the solidified structures are harvested from the Laponite nanoclay support bath for any further processing as needed. Due to its chemical and physical stability, liquid build materials with different solidification/curing/gelation mechanisms can be fabricated in the Laponite bath using the printing-then-solidification approach. The feasibility of the proposed Laponite-enabled printing-then-solidification approach is demonstrated by fabricating several complicated structures made of various liquid build materials, including alginate with ionic cross-linking, gelatin with thermal cross-linking, and SU-8 with photo-cross-linking. During gelatin structure printing, living cells are included and the postfabrication cell viability is above 90%.

  11. Printing Has a Future

    Directory of Open Access Journals (Sweden)

    Hans Georg Wenke

    2004-12-01

    Full Text Available Printing will also be done in the future. Printed items meet basic needs and are deeply anchored in people’s habits. Being able to handle and collect printed matter is highly attractive. And paper is now more alive than ever. It is therefore too shortsighted to disclaim the importance of one of the still large economic sectors just because of a few looming-recession instigated market shifts.The exciting aspect of drupa 2004 is: printing will be reinvented, so to speak. Much more printing will be done in the future than at present. On the one hand, people are concentrating on process optimization and automation to ensure this. Measuring and testing, process control and optimization, and linking up "office software" with printing technology will be very central topics at drupa 2004. Electronics and print are not rivals; a symbiosis exists. And printing is high-tech: hardly any other multifaceted sector which has been so successful for centuries is as computerized as the printing industry.A series of "new chapters" in the variety of printing possibilities will be opened at drupa. Talk will be generated by further technical developments, often the connection between paper/cardboard and electronics, the link between the office world and graphics industry, text databases and their link-up to graphic page production tools, and "on the fly" dynamic printing over networks.All of this and more belongs to future potentialities, which are so substantial overall, the outlook is by no means black for the "black art". Like its predecessors, drupa 2004 is also a product trade fair. However, more than ever before in its history, it is also an "information village". The exhibits are useful, because they occasionally make what this means visible.

  12. Innovations in 3D printing: a 3D overview from optics to organs.

    Science.gov (United States)

    Schubert, Carl; van Langeveld, Mark C; Donoso, Larry A

    2014-02-01

    3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. This process contrasts with traditional ink-based printers which produce a two dimensional object (ink on paper). To date, 3D printing has primarily been used in engineering to create engineering prototypes. However, recent advances in printing materials have now enabled 3D printers to make objects that are comparable with traditionally manufactured items. In contrast with conventional printers, 3D printing has the potential to enable mass customisation of goods on a large scale and has relevance in medicine including ophthalmology. 3D printing has already been proved viable in several medical applications including the manufacture of eyeglasses, custom prosthetic devices and dental implants. In this review, we discuss the potential for 3D printing to revolutionise manufacturing in the same way as the printing press revolutionised conventional printing. The applications and limitations of 3D printing are discussed; the production process is demonstrated by producing a set of eyeglass frames from 3D blueprints.

  13. Printing quality control automation

    Science.gov (United States)

    Trapeznikova, O. V.

    2018-04-01

    One of the most important problems in the concept of standardizing the process of offset printing is the control the quality rating of printing and its automation. To solve the problem, a software has been developed taking into account the specifics of printing system components and the behavior in printing process. In order to characterize the distribution of ink layer on the printed substrate the so-called deviation of the ink layer thickness on the sheet from nominal surface is suggested. The geometric data construction the surface projections of the color gamut bodies allows to visualize the color reproduction gamut of printing systems in brightness ranges and specific color sectors, that provides a qualitative comparison of the system by the reproduction of individual colors in a varying ranges of brightness.

  14. Clinical Applications of 3D Printing: Primer for Radiologists.

    Science.gov (United States)

    Ballard, David H; Trace, Anthony Paul; Ali, Sayed; Hodgdon, Taryn; Zygmont, Matthew E; DeBenedectis, Carolynn M; Smith, Stacy E; Richardson, Michael L; Patel, Midhir J; Decker, Summer J; Lenchik, Leon

    2018-01-01

    Three-dimensional (3D) printing refers to a number of manufacturing technologies that create physical models from digital information. Radiology is poised to advance the application of 3D printing in health care because our specialty has an established history of acquiring and managing the digital information needed to create such models. The 3D Printing Task Force of the Radiology Research Alliance presents a review of the clinical applications of this burgeoning technology, with a focus on the opportunities for radiology. Topics include uses for treatment planning, medical education, and procedural simulation, as well as patient education. Challenges for creating custom implantable devices including financial and regulatory processes for clinical application are reviewed. Precedent procedures that may translate to this new technology are discussed. The task force identifies research opportunities needed to document the value of 3D printing as it relates to patient care. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  15. Bringing 3D Printing to Geophysical Science Education

    Science.gov (United States)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  16. Solvents interactions with thermochromic print

    Directory of Open Access Journals (Sweden)

    Mirela Rožić

    2017-12-01

    Full Text Available In this study, the interactions between different solvents (benzene, acetone, cyclohexanone, various alcohols and water and thermochromic printing ink were investigated. Thermochromic printing ink was printed on metal surface. Components of thermochromic printing inks are polymeric microcapsules and classic yellow offset printing ink. Below its activation temperature, dye and developer within the microcapsules form a blue coloured complex. Therefore, thermochromic print is green. By heating above the activation temperature, blue colour of the complex turns into the leuco dye colourless state and the green colour of the prints turns into the yellow colour of the classic offset pigment. The results of the interaction with various solvents show that the thermochromic print is stable in all tested solvents except in ethanol, acetone and cyclohexanone. In ethanol, the green colour of the print becomes yellow. SEM analysis shows that microcapsules are dissolved. In acetone and cyclohexanone, the green colour of the print turns into blue, and the microcapsules become significantly more visible. Thus, the yellow pigment interacts with examined ketones. Based on the obtained interactions it can be concluded that the microcapsules have more polar nature than the classical pigment particles. Solvent-thermocromic print interactions were analysed using Hansen solubility parameters that rank the solvents based on their estimated interaction capabilities.

  17. PEMBERDAYAAN MASYARAKAT KEPULAUAN TALANGO KABUPATEN SUMENEP MELALUI USAHA PERCETAKAN DAN SABLON DIGITAL PRINTING

    Directory of Open Access Journals (Sweden)

    Budi Dwi Satoto

    2014-08-01

    Full Text Available The role of youth in development is very important because it is considered to be in the productive age to support various development activities in various sectors. Most youth can be absorbed in the labor market, and partly eliminated from the competition and become a static group. Not a few who engage in the business world ranging from the small to large, one form of business that is highly demanded by the youth is the Small and Medium Enterprises and Silk Screen Printing. However, the form of efforts among youth most still use manual design and printing due to lack of capital and expertise. With this activity, try to solve them with IBM is working with partners Silk Screen Printing Industry centers in villages Talango, Talango islands, Sumenep, Disperindag and local cooperative activities such as application of digital printing techniques, the design theme oflocal wisdom Madura images with coloror multi color mono color and entrepreneurship training and business management. IBM activity was done in the form of training, coaching and mentoring the youth group field of screen printing and printing for souvenirs and handicrafts which aims to: 1 increase the motivation of entrepreneurial partners; 2 improve the understanding of partner business planning and business management; 3 improve human resource capabilities in the production and marketing techniques; 4 develop a network to support youth entrepreneurship development of the creative economy. Youth empowerment group is expected to produce a model that can be used as a model youth entrepreneurial development youth empowerment-based society.Keywords: training, coaching, mentoring, printingandscreen printing, digital printing

  18. Nozzle geometry for organic vapor jet printing

    Science.gov (United States)

    Forrest, Stephen R.; McGraw, Gregory

    2017-10-25

    A first device is provided. The device includes a print head. The print head further includes a first nozzle hermetically sealed to a first source of gas. The first nozzle has an aperture having a smallest dimension of 0.5 to 500 microns in a direction perpendicular to a flow direction of the first nozzle. At a distance from the aperture into the first nozzle that is 5 times the smallest dimension of the aperture of the first nozzle, the smallest dimension perpendicular to the flow direction is at least twice the smallest dimension of the aperture of the first nozzle.

  19. [Application and outlook of three-dimensional printing in prosthetic dentistry].

    Science.gov (United States)

    Sun, Y C; Li, R; Zhou, Y S; Wang, Y

    2017-06-09

    At present, three-dimensional (3D) printing has been applied in many aspects in the field of prosthodontics, such as dental models, wax patterns, guide plates, dental restoration and customized implants. The common forming principles include light curing, sintering and melting-condensation, the materials include pure wax, resin, metal and ceramics. However, the printing precision and the strength of multi-material integrated forming, remains to be improved. In addition, as a technology by which the internal structure of a material can be customized manufacturing, further advantage of 3D printing used in the manufacture of dental restoration lies in the customization functional bionic micro-structures, but the related research is still in its infancy. The review briefly summarizes the commonly used 3D printing crafts in prosthetic dentistry, and details clinical applications and evaluations, provides references for clinical decision and further research.

  20. Print quality challenges for the next decade

    Science.gov (United States)

    Meyer, John D.

    1990-07-01

    The decade of the eighties has seen a remarkable transformation in the performance and capabilities of shared and personal printers. Dramatic gains have been made in four key areas: cost, throughput, reliability and most significantly, print quality. The improvements in text print quality due to algorithmic fonts and increased resolution have been pivotal in the creation of the desktop publishing market. Electronic pre-press systems now include hardware to receive Postscript files accompanied by color originals for scanning and separation. These systems have application in the commercial printing of a wide variety of material e.g. books, magazines, brochures, newspapers. The vision of the future of hardcopy now embraces the full spectrum from typeset text to full color reproduction of natural images due to the advent of grayscale and color capability in printer technology. This will place increased demands for improvements in print quality, particularly in the use of grayscale and color. This paper gives an overview of the challenges which must be met and discusses data communication standards and print quality measurement techniques as a means of meeting these challenges for both color and black and white output.

  1. Daylighting simulation: methods, algorithms, and resources

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, William L.

    1999-12-01

    This document presents work conducted as part of Subtask C, ''Daylighting Design Tools'', Subgroup C2, ''New Daylight Algorithms'', of the IEA SHC Task 21 and the ECBCS Program Annex 29 ''Daylight in Buildings''. The search for and collection of daylighting analysis methods and algorithms led to two important observations. First, there is a wide range of needs for different types of methods to produce a complete analysis tool. These include: Geometry; Light modeling; Characterization of the natural illumination resource; Materials and components properties, representations; and Usability issues (interfaces, interoperability, representation of analysis results, etc). Second, very advantageously, there have been rapid advances in many basic methods in these areas, due to other forces. They are in part driven by: The commercial computer graphics community (commerce, entertainment); The lighting industry; Architectural rendering and visualization for projects; and Academia: Course materials, research. This has led to a very rich set of information resources that have direct applicability to the small daylighting analysis community. Furthermore, much of this information is in fact available online. Because much of the information about methods and algorithms is now online, an innovative reporting strategy was used: the core formats are electronic, and used to produce a printed form only secondarily. The electronic forms include both online WWW pages and a downloadable .PDF file with the same appearance and content. Both electronic forms include live primary and indirect links to actual information sources on the WWW. In most cases, little additional commentary is provided regarding the information links or citations that are provided. This in turn allows the report to be very concise. The links are expected speak for themselves. The report consists of only about 10+ pages, with about 100+ primary links, but

  2. Utilization and Impact of Electronic and Print Media on the Patients’ Health Status: Physicians’ Perspectives

    OpenAIRE

    Shakeel, Sadia; Nesar, Shagufta; Rahim, Najia; Iffat, Wajiha; Ahmed, Hafiza Fouzia; Rizvi, Mehwish; Jamshed, Shazia

    2017-01-01

    Aims: Despite an increased popularity of print and electronic media applications, there is a paucity of data reflecting doctors’ opinions regarding efficient utilization of these resources for the betterment of public health. Hence, this study aimed to investigate the perception of physicians toward the effect of electronic and print media on the health status of patients. Setting and Design: The current research is a cross-sectional study conducted from January 2015 to July 2015. The study p...

  3. Utilization and impact of electronic and print media on the patients’ health status: Physicians’ perspectives

    OpenAIRE

    Sadia Shakeel; Shagufta Nesar; Najia Rahim; Wajiha Iffat; Hafiza Fouzia Ahmed; Mehwish Rizvi; Shazia Jamshed

    2017-01-01

    Aims: Despite an increased popularity of print and electronic media applications, there is a paucity of data reflecting doctors’ opinions regarding efficient utilization of these resources for the betterment of public health. Hence, this study aimed to investigate the perception of physicians toward the effect of electronic and print media on the health status of patients. Setting and Design: The current research is a cross-sectional study conducted from January 2015 to July 2015. The study p...

  4. Printing at CERN

    CERN Multimedia

    Otto, R

    2007-01-01

    For many years CERN had a very sophisticated print server infrastructure which supported several different protocols (AppleTalk, IPX and TCP/IP) and many different printing standards. Today’s situation differs a lot: we have a much more homogenous network infrastructure, where TCP/IP is used everywhere and we have less printer models, which almost all work using current standards (i.e. they all provide PostScript drivers). This change gave us the possibility to review the printing architecture aiming at simplifying the infrastructure in order to achieve full automation of the service. The new infrastructure offers both: LPD service exposing print queues to Linux and Mac OS X computers and native printing for Windows based clients. The printer driver distribution is automatic and native on Windows and automated by custom mechanisms on Linux, where the appropriate Foomatic drivers are configured. Also the process of printer registration and queue creation is completely automated following the printer regis...

  5. 3D Printing in Makerspaces: Health and Safety Concerns

    Science.gov (United States)

    Bharti, Neelam

    2017-01-01

    3D (three-dimensional) printing is included in makerspaces around the world and has become increasingly affordable and useful. Most makerspaces use Fused Deposition Modeling (FDM)-based 3D printers, using polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) as printing materials. However, heating PLA and ABS to high temperatures emits…

  6. Conceptual framework for opening sustainability in pratices of printing industry operations

    Directory of Open Access Journals (Sweden)

    Dalton Alexandre Kai (

    2014-12-01

    Full Text Available There is worldwide concern with global development and this has compelled organizations to modify their management and operations in order to remain competitive, even for their own survival. Develop sustainably means to be economically viable, change each operation to reduce or even not generate waste, conserve energy and natural resources, be safe and not harmful to workers, communities and consumers. Companies that make up the Brazilian printing sector still lack this understanding. The overall goal of this research is to propose a conceptual framework based on the Triple Bottom Line (3BL for sustainability practices in printing industry operations. A literature review process checked the particularities of this industry’s operations, with different perspectives on economic, environmental and social operations. The model presented is expected to be applied, becoming a starting point to enable printing industry companies to adapt their modes of operation, adopting best sustainable practices in sustainable development.

  7. Keeping the Classics in Print.

    Science.gov (United States)

    Lerner, Fred

    1993-01-01

    Provides an overview of science fiction titles in print and discusses the value of science fiction as a literary form. Specific titles are included, and the need for formats designed for permanent preservation in libraries is discussed. (EAM)

  8. Fully Printed Flexible and Stretchable Electronics

    Science.gov (United States)

    Zhang, Suoming

    Through this thesis proposal, the author has demonstrated series of flexible or stretchable sensors including strain gauge, pressure sensors, display arrays, thin film transistors and photodetectors fabricated by a direct printing process. By adopting the novel serpentine configuration with conventional non-stretchable materials silver nanoparticles, the fully printed stretchable devices are successfully fabricated on elastomeric substrate with the demonstration of stretchable conductors that can maintain the electrical properties under strain and the strain gauge, which could be used to measure the strain in desired locations and also to monitor individual person's finger motion. And by investigating the intrinsic stretchable materials silver nanowires (AgNWs) with the conventional configuration, the fully printed stretchable conductors are achieved on various substrates including Si, glass, Polyimide, Polydimethylsiloxane (PDMS) and Very High Bond (VHB) tape with the illustration of the capacitive pressure sensor and stretchable electroluminescent displays. In addition, intrinsically stretchable thin-film transistors (TFTs) and integrated logic circuits are directly printed on elastomeric PDMS substrates. The printed devices utilize carbon nanotubes and a type of hybrid gate dielectric comprising PDMS and barium titanate (BaTiO3) nanoparticles. The BaTiO3/PDMS composite simultaneously provides high dielectric constant, superior stretchability, low leakage, as well as good printability and compatibility with the elastomeric substrate. Both TFTs and logic circuits can be stretched beyond 50% strain along either channel length or channel width directions for thousands of cycles while showing no significant degradation in electrical performance. Finally, by applying the SWNTs as the channel layer of the thin film transistor, we successfully fabricate the fully printed flexible photodetector which exhibits good electrical characteristics and the transistors exhibit

  9. The Boom in 3D-Printed Sensor Technology

    Science.gov (United States)

    Xu, Yuanyuan; Wu, Xiaoyue; Guo, Xiao; Kong, Bin; Zhang, Min; Qian, Xiang; Mi, Shengli; Sun, Wei

    2017-01-01

    Future sensing applications will include high-performance features, such as toxin detection, real-time monitoring of physiological events, advanced diagnostics, and connected feedback. However, such multi-functional sensors require advancements in sensitivity, specificity, and throughput with the simultaneous delivery of multiple detection in a short time. Recent advances in 3D printing and electronics have brought us closer to sensors with multiplex advantages, and additive manufacturing approaches offer a new scope for sensor fabrication. To this end, we review the recent advances in 3D-printed cutting-edge sensors. These achievements demonstrate the successful application of 3D-printing technology in sensor fabrication, and the selected studies deeply explore the potential for creating sensors with higher performance. Further development of multi-process 3D printing is expected to expand future sensor utility and availability. PMID:28534832

  10. Embedded sensing: integrating sensors in 3-D printed structures

    Directory of Open Access Journals (Sweden)

    A. Dijkshoorn

    2018-03-01

    Full Text Available Current additive manufacturing allows for the implementation of electrically interrogated 3-D printed sensors. In this contribution various technologies, sensing principles and applications are discussed. We will give both an overview of some of the sensors presented in literature as well as some of our own recent work on 3-D printed sensors. The 3-D printing methods discussed include fused deposition modelling (FDM, using multi-material printing and poly-jetting. Materials discussed are mainly thermoplastics and include thermoplastic polyurethane (TPU, both un-doped as well as doped with carbon black, polylactic acid (PLA and conductive inks. The sensors discussed are based on biopotential sensing, capacitive sensing and resistive sensing with applications in surface electromyography (sEMG and mechanical and tactile sensing. As these sensors are based on plastics they are in general flexible and therefore open new possibilities for sensing in soft structures, e.g. as used in soft robotics. At the same time they show many of the characteristics of plastics like hysteresis, drift and non-linearity. We will argue that 3-D printing of embedded sensors opens up exciting new possibilities but also that these sensors require us to rethink how to exploit non-ideal sensors.

  11. Inkjet Printing of Paper-Based Wideband and High Gain Antennas

    KAUST Repository

    Cook, Benjamin

    2011-12-07

    This thesis represents a major contribution to wideband and high gain inkjet-printed antennas on paper. This work includes the complete characterization of the inkjet printing process for passive microwave devices on paper substrate as well as several ultra-wideband and high gain antenna designs. The characterization work includes the electrical characterization of the permittivity and loss tangent for paper substrate through 10 GHz, ink conductivity data for variable sintering conditions, and minimum feature sizes obtainable by today’s current inkjet processes for metallic nanoparticles. For the first time ever, inkjet-printed antennas are demonstrated that operate over the entire UWB band and demonstrate gains up to 8dB. This work also presents the first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced production costs, and a novel slow wave log periodic dipole array which shows minimizations of 20% in width over conventional log periodic antennas.

  12. Colour changes in prints during long-term dark storage of prints

    International Nuclear Information System (INIS)

    Parraman, Carinna

    2010-01-01

    The most significant impact on colour fading in prints is exposure to light and air. However what happens to coloured prints during long-term storage in boxes, drawers and on shelves? Measurements of samples, printed in July 2005, stored in a range of light and darkened storage conditions have shown some interesting initial results. As more emphasis is placed on the effects of light, the dark stability of inkjet prints is relatively overlooked when considering how to preserve or store coloured prints. This study and presentation builds on previous research [1] and has concentrated on the changes to colour during storage. With reference to ASTM F2035 - 00(2006) Standard Practice for Measuring the Dark Stability of Ink Jet Prints, the Standards outline points out that whilst natural aging is the most reliable method of assessing image stability, materials and inks any data that is produced quickly becomes redundant; therefore accelerated aging is more preferred. However, the fine art materials in this study are still very much in circulation. The leading fine art papers, and pigmented ink-sets used in these trials are still being used by artists. We can therefore demonstrate the characteristics of colour changes and the impact of ink on paper that utilises natural aging methods.

  13. A Vector Printing Method for High-Speed Electrohydrodynamic (EHD Jet Printing Based on Encoder Position Sensors

    Directory of Open Access Journals (Sweden)

    Thanh Huy Phung

    2018-02-01

    Full Text Available Electrohyrodynamic (EHD jet printing has been widely used in the field of direct micro-nano patterning applications, due to its high resolution printing capability. So far, vector line printing using a single nozzle has been widely used for most EHD printing applications. However, the application has been limited to low-speed printing, to avoid non-uniform line width near the end points where line printing starts and ends. At end points of line vector printing, the deposited drop amount is likely to be significantly large compared to the rest of the printed lines, due to unavoidable acceleration and deceleration. In this study, we proposed a method to solve the printing quality problems by producing droplets at an equally spaced distance, irrespective of the printing speed. For this purpose, an encoder processing unit (EPU was developed, so that the jetting trigger could be generated according to user-defined spacing by using encoder position signals, which are used for the positioning control of the two linear stages.

  14. Novel Materials for 3D Printing by Photopolymerization.

    Science.gov (United States)

    Layani, Michael; Wang, Xiaofeng; Magdassi, Shlomo

    2018-05-13

    The field of 3D printing, also known as additive manufacturing (AM), is developing rapidly in both academic and industrial research environments. New materials and printing technologies, which enable rapid and multimaterial printing, have given rise to new applications and utilizations. However, the main bottleneck for achieving many more applications is the lack of materials with new physical properties. Here, some of the recent reports on novel materials in this field, such as ceramics, glass, shape-memory polymers, and electronics, are reviewed. Although new materials have been reported for all three main printing approaches-fused deposition modeling, binder jetting or laser sintering/melting, and photopolymerization-based approaches, apparently, most of the novel physicochemical properties are associated with materials printed by photopolymerization approaches. Furthermore, the high resolution that can be achieved using this type of 3D printing, together with the new properties, has resulted in new implementations such as microfluidic, biomedical devices, and soft robotics. Therefore, the focus here is on photopolymerization-based additive manufacturing including the recent development of new methods, novel monomers, and photoinitiators, which result in previously inaccessible applications such as complex ceramic structures, embedded electronics, and responsive 3D objects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Photochemical Copper Coating on 3D Printed Thermoplastics

    Science.gov (United States)

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  16. Some Thoughts on Contemporary Graphic Print

    Directory of Open Access Journals (Sweden)

    Stefan Skiba

    2016-09-01

    Full Text Available The production requirements of original graphic works of art have changed since 1980. The development of digital printing using lightfast colors now rivals traditional techniques such as wood cut, screen print, lithography, etching etc. Today, with respect to artistic legitimacy, original graphics using traditional printing techniques compete with original graphics produced by digital printing techniques on the art market. What criteria distinguish traditional printing techniques from those of digital printing in the production and acquisition of original graphics? What consequences is the serious artist faced with when deciding to implement digital print production? How does digital print change original graphic acquisition decisions?

  17. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.

    Science.gov (United States)

    Jammalamadaka, Udayabhanu; Tappa, Karthik

    2018-03-01

    Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched.

  18. Three-dimensional (3D) printed endovascular simulation models: a feasibility study.

    Science.gov (United States)

    Mafeld, Sebastian; Nesbitt, Craig; McCaslin, James; Bagnall, Alan; Davey, Philip; Bose, Pentop; Williams, Rob

    2017-02-01

    Three-dimensional (3D) printing is a manufacturing process in which an object is created by specialist printers designed to print in additive layers to create a 3D object. Whilst there are initial promising medical applications of 3D printing, a lack of evidence to support its use remains a barrier for larger scale adoption into clinical practice. Endovascular virtual reality (VR) simulation plays an important role in the safe training of future endovascular practitioners, but existing VR models have disadvantages including cost and accessibility which could be addressed with 3D printing. This study sought to evaluate the feasibility of 3D printing an anatomically accurate human aorta for the purposes of endovascular training. A 3D printed model was successfully designed and printed and used for endovascular simulation. The stages of development and practical applications are described. Feedback from 96 physicians who answered a series of questions using a 5 point Likert scale is presented. Initial data supports the value of 3D printed endovascular models although further educational validation is required.

  19. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses.

    Science.gov (United States)

    Ripley, Beth; Levin, Dmitry; Kelil, Tatiana; Hermsen, Joshua L; Kim, Sooah; Maki, Jeffrey H; Wilson, Gregory J

    2017-03-01

    3D printing facilitates the creation of accurate physical models of patient-specific anatomy from medical imaging datasets. While the majority of models to date are created from computed tomography (CT) data, there is increasing interest in creating models from other datasets, such as ultrasound and magnetic resonance imaging (MRI). MRI, in particular, holds great potential for 3D printing, given its excellent tissue characterization and lack of ionizing radiation. There are, however, challenges to 3D printing from MRI data as well. Here we review the basics of 3D printing, explore the current strengths and weaknesses of printing from MRI data as they pertain to model accuracy, and discuss considerations in the design of MRI sequences for 3D printing. Finally, we explore the future of 3D printing and MRI, including creative applications and new materials. 5 J. Magn. Reson. Imaging 2017;45:635-645. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Dam, Henrik Friis; Krebs, Frederik C

    2015-01-01

    We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll-to-roll m...

  1. Comparing Usage and Cost- Effectiveness Analysis of English Printed and Electronic Books for University of Tehran

    OpenAIRE

    Davoud Haseli; Nader Naghshineh; fatemeh Fahimnia

    2014-01-01

    Libraries operate in a competitive environment, and this is essentially needed to prove its benefits for stockholders, and continuously evaluate and compare advantages for printed and electronic resources. In these cases, economic evaluation methods such as cost- effectiveness analysis, is one of the best methods, because of a comprehensive study of the use and cost of library sources. The purpose of this study is to discovery of use and cost- effectiveness analysis of English printed and ebo...

  2. Colour printing techniques

    OpenAIRE

    Parraman, C.

    2017-01-01

    Invited chapter in the book Colour Design: Theories and Applications. In PART 3 COLOUR, DESIGN AND COLORATION this chapter covers:\\ud - Hardcopy colour: analogue versus digital\\ud - Colour theory in relation to printing\\ud - Overview of halftoning and digital print technologies\\ud - Overview and development of inks\\ud - Inkjet papers and inks\\ud - Recent and future trends in colour, printing inks and hardware.\\ud \\ud This book differs from other existing books in the field, with the aim of an...

  3. Print and Manuscript

    OpenAIRE

    Erne, Lukas Christian

    2007-01-01

    Positioning Shakespeare at the "crossroads of manuscript and print" and exploring what the choice of print or manuscript reveals about the poet's intended audience and the social persona the poet wanted to assume and fashion, argues that "Shakespeare's authorial self-presentation begins as a poet and, more specifically, as a print-published poet" with the publication of Venus and Adonis in 1593 and the allusion to the publication of Rape of Lucrece in the next year. Yet also considers the imp...

  4. Printed Electronics

    Science.gov (United States)

    Wade, Jessica; Hollis, Joseph Razzell; Wood, Sebastian

    2018-04-01

    The combination of printing technology with manufacturing electronic devices enables a new paradigm of printable electronics, where 'smart' functionality can be readily incorporated into almost any product at low cost. Over recent decades, rapid progress has been made in this field, which is now emerging into the industrial andcommercial realm. However, successful development and commercialisation on a large scale presents some significant technical challenges. For fully-printable electronic systems, all the component parts must be deposited from solutions (inks), requiring the development of new inorganic, organic and hybrid materials.A variety of traditional printing techniques are being explored and adapted forprinting these new materials in ways that result in the best performing electronicdevices. Whilst printed electronics research has initially focused on traditional typesof electronic device such as light-emitting diodes, transistors, and photovoltaics, it is increasingly apparent that a much wider range of applications can be realised. The soft and stretchable nature of printable materials makes them perfect candidates forbioelectronics, resulting in a wealth of research looking at biocompatible printable inks and biosensors. Regardless of application, the properties of printed electronicmaterials depend on the chemical structures, processing conditions, device architecture,and operational conditions, the complex inter-relationships of which aredriving ongoing research. We focus on three particular 'hot topics', where attention is currently focused: novel materials, characterisation techniques, and device stability. With progress advancing very rapidly, printed electronics is expected to grow over the next decade into a key technology with an enormous economic and social impact.

  5. Aerosol jet printed silver nanowire transparent electrode for flexible electronic application

    Science.gov (United States)

    Tu, Li; Yuan, Sijian; Zhang, Huotian; Wang, Pengfei; Cui, Xiaolei; Wang, Jiao; Zhan, Yi-Qiang; Zheng, Li-Rong

    2018-05-01

    Aerosol jet printing technology enables fine feature deposition of electronic materials onto low-temperature, non-planar substrates without masks. In this work, silver nanowires (AgNWs) are proposed to be printed into transparent flexible electrodes using a Maskless Mesoscale Material Deposition Aerosol Jet® printing system on a glass substrate. The influence of the most significant process parameters, including printing cycles, printing speed, and nozzle size, on the performance of AgNW electrodes was systematically studied. The morphologies of printed patterns were characterized by scanning electron microscopy, and the transmittance was evaluated using an ultraviolet-visible spectrophotometer. Under optimum conditions, high transparent AgNW electrodes with a sheet resistance of 57.68 Ω/sq and a linewidth of 50.9 μm were obtained, which is an important step towards a higher performance goal for flexible electronic applications.

  6. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin

    Directory of Open Access Journals (Sweden)

    Changyong Liu

    2018-06-01

    Full Text Available 3D printing has attracted a lot of attention in recent years. Over the past three decades, various 3D printing technologies have been developed including photopolymerization-based, materials extrusion-based, sheet lamination-based, binder jetting-based, power bed fusion-based and direct energy deposition-based processes. 3D printing offers unparalleled flexibility and simplicity in the fabrication of highly complex 3D objects. Tactile sensors that emulate human tactile perceptions are used to translate mechanical signals such as force, pressure, strain, shear, torsion, bend, vibration, etc. into electrical signals and play a crucial role toward the realization of wearable electronics and electronic skin. To date, many types of 3D printing technologies have been applied in the manufacturing of various types of tactile sensors including piezoresistive, capacitive and piezoelectric sensors. This review attempts to summarize the current state-of-the-art 3D printing technologies and their applications in tactile sensors for wearable electronics and electronic skin. The applications are categorized into five aspects: 3D-printed molds for microstructuring substrate, electrodes and sensing element; 3D-printed flexible sensor substrate and sensor body for tactile sensors; 3D-printed sensing element; 3D-printed flexible and stretchable electrodes for tactile sensors; and fully 3D-printed tactile sensors. Latest advances in the fabrication of tactile sensors by 3D printing are reviewed and the advantages and limitations of various 3D printing technologies and printable materials are discussed. Finally, future development of 3D-printed tactile sensors is discussed.

  7. All-printed paper-based memory

    KAUST Repository

    He, Jr-Hau; Lin, Chun-Ho; Lien, Der-Hsien

    2016-01-01

    All-printed paper-based substrate memory devices are described which can be prepared by a process that includes coating, using a screen printer, one or more areas of a paper substrate (102) with a conductor material (104), such as a carbon paste

  8. A study of lip prints and its reliability as a forensic tool

    Science.gov (United States)

    Verma, Yogendra; Einstein, Arouquiaswamy; Gondhalekar, Rajesh; Verma, Anoop K.; George, Jiji; Chandra, Shaleen; Gupta, Shalini; Samadi, Fahad M.

    2015-01-01

    Introduction: Lip prints, like fingerprints, are unique to an individual and can be easily recorded. Therefore, we compared direct and indirect lip print patterns in males and females of different age groups, studied the inter- and intraobserver bias in recording the data, and observed any changes in the lip print patterns over a period of time, thereby, assessing the reliability of lip prints as a forensic tool. Materials and Methods: Fifty females and 50 males in the age group of 15 to 35 years were selected for the study. Lips with any deformity or scars were not included. Lip prints were registered by direct and indirect methods and transferred to a preformed registration sheet. Direct method of lip print registration was repeated after a six-month interval. All the recorded data were analyzed statistically. Results: The predominant patterns were vertical and branched. More females showed the branched pattern and males revealed an equal prevalence of vertical and reticular patterns. There was an interobserver agreement, which was 95%, and there was no change in the lip prints over time. Indirect registration of lip prints correlated with direct method prints. Conclusion: Lip prints can be used as a reliable forensic tool, considering the consistency of lip prints over time and the accurate correlation of indirect prints to direct prints. PMID:26668449

  9. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs

    International Nuclear Information System (INIS)

    Xiong, Ruitong; Zhang, Zhengyi; Chai, Wenxuan; Huang, Yong; Chrisey, Douglas B

    2015-01-01

    Laser printing is an orifice-free printing approach and has been investigated for the printing of two-dimensional patterns and simple three-dimensional (3D) constructs. To demonstrate the potential of laser printing as an effective bioprinting technique, both straight and Y-shaped tubes have been freeform printed using two different bioinks: 8% alginate solution and 2% alginate-based mouse fibroblast suspension. It has been demonstrated that 3D cellular tubes, including constructs with bifurcated overhang structures, can be adequately fabricated under optimal printing conditions. The post-printing cell viabilities immediately after printing as well as after 24 h incubation are above 60% for printed straight and Y-shaped fibroblast tubes. During fabrication, overhang and spanning structures can be printed using a dual-purpose crosslinking solution, which also functions as a support material. The advancement distance of gelation reaction front after a cycle time of the receiving platform downward motion should be estimated for experimental planning. The optimal downward movement step size of receiving platform should be chosen to be equal to the height of ungelled portion of a previously printed layer. (paper)

  10. Cost-estimating for commercial digital printing

    Science.gov (United States)

    Keif, Malcolm G.

    2007-01-01

    The purpose of this study is to document current cost-estimating practices used in commercial digital printing. A research study was conducted to determine the use of cost-estimating in commercial digital printing companies. This study answers the questions: 1) What methods are currently being used to estimate digital printing? 2) What is the relationship between estimating and pricing digital printing? 3) To what extent, if at all, do digital printers use full-absorption, all-inclusive hourly rates for estimating? Three different digital printing models were identified: 1) Traditional print providers, who supplement their offset presswork with digital printing for short-run color and versioned commercial print; 2) "Low-touch" print providers, who leverage the power of the Internet to streamline business transactions with digital storefronts; 3) Marketing solutions providers, who see printing less as a discrete manufacturing process and more as a component of a complete marketing campaign. Each model approaches estimating differently. Understanding and predicting costs can be extremely beneficial. Establishing a reliable system to estimate those costs can be somewhat challenging though. Unquestionably, cost-estimating digital printing will increase in relevance in the years ahead, as margins tighten and cost knowledge becomes increasingly more critical.

  11. MO-B-BRD-00: Clinical Applications of 3D Printing

    International Nuclear Information System (INIS)

    2015-01-01

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  12. MO-B-BRD-02: 3D Printing in the Clinic

    International Nuclear Information System (INIS)

    Remmes, N.

    2015-01-01

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  13. MO-B-BRD-00: Clinical Applications of 3D Printing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  14. MO-B-BRD-02: 3D Printing in the Clinic

    Energy Technology Data Exchange (ETDEWEB)

    Remmes, N. [Mayo Clinic (United States)

    2015-06-15

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  15. Characterization and optimization of an inkjet-printed smart textile UV-sensor cured with UV-LED light

    Science.gov (United States)

    Seipel, S.; Yu, J.; Periyasamy, A. P.; Viková, M.; Vik, M.; Nierstrasz, V. A.

    2017-10-01

    For the development of niche products like smart textiles and other functional high-end products, resource-saving production processes are needed. Niche products only require small batches, which makes their production with traditional textile production techniques time-consuming and costly. To achieve a profitable production, as well as to further foster innovation, flexible and integrated production techniques are a requirement. Both digital inkjet printing and UV-light curing contribute to a flexible, resource-efficient, energy-saving and therewith economic production of smart textiles. In this article, a smart textile UV-sensor is printed using a piezoelectric drop-on-demand printhead and cured with a UV-LED lamp. The UVcurable ink system is based on free radical polymerization and the integrated UVsensing material is a photochromic dye, Reversacol Ruby Red. The combination of two photoactive compounds, for which UV-light is both the curer and the activator, challenges two processes: polymer crosslinking of the resin and color performance of the photochromic dye. Differential scanning calorimetry (DSC) is used to characterize the curing efficiency of the prints. Color measurements are made to determine the influence of degree of polymer crosslinking on the developed color intensities, as well as coloration and decoloration rates of the photochromic prints. Optimized functionality of the textile UV-sensor is found using different belt speeds and lamp intensities during the curing process.

  16. A STUDY OF RELATIVE CORRELATION BETWEEN THE PATTERN OF FINGER PRINTS AND LIP PRINTS

    OpenAIRE

    Murugan; Karikalan

    2014-01-01

    BACKGROUND AND OBJECTIVE: The use of conventional methods such as dactylography (study of finger prints) & cheiloscopy (study of lip prints) is of paramount importance, since personal identification by other means such as DNA analysis is sophisticated and not available in rural and developing countries. Fingerprint in its narrow sense is an impression left by the friction ridges of human fingers. The second prints of interest are lip prints. Studies of association between ...

  17. Radiological health training resources 1979. Report for September 1977-August 1979

    International Nuclear Information System (INIS)

    Munzer, J.E.; Sauer, K.G.

    1979-08-01

    In an effort to reach radiation control personnel and user groups in greater numbers than is possible through direct training methods, the Training Resources Center distributes many types of radiological health movies, videocassettes, and course listings. The training collection maintained by the Division of Training and Medical Applications includes videocassettes, movies, and printed material. Titles in this publication are limited to radiological health subjects only and include a variety of topics ranging from basic fundamentals to historical perspectives to current state of the art. This publication is published and updated biennially

  18. The comparison of printed resources bacterial contamination in libraries of Al-Zahra Hospital and Sciences Faculty of Isfahan University and the determination of their antibiotic sensitivity pattern.

    Science.gov (United States)

    Rafiei, Hosein; Chadeganipour, Mostafa; Ojaghi, Rezvan; Maracy, Mohammad Reza; Nouri, Rasool

    2017-01-01

    During the library loan process, the printed resources can be a carrier of pathogenic bacteria. In this study, it was tried to compare the Bacterial Contamination Rates and their antibiotic sensitivity pattern in printed resources of a hospital and a non-hospital library. This is a cross-sectional study. Returning books from the Al-Zahra hospital library and library of Sciences faculty of Isfahan University provides the research community. The sample size, 96 cases, was calculated using quota sampling. For sampling sterile swab dipped in trypticase soy broth medium and transfer trypticase soy broth medium were used. To identify different type of isolated bacteria from Gram-staining test and biochemical tests such as; TSI, IMViC and etc., were used. 76 (79.2%) and 20 (20.8%) of cultured samples were negative and positive, the respectively. Of 20 positive samples, 11 samples (55%) belong to the family Enterobacteriaceae that after detecting by Differential teste identified all 11 samples of Enterobacter that all of them were sensitive to Gentamicin and Ofloxacin. Also the most resistance to Nitrofurantoin and Amikacin was observed. 9 cases remained (45%) were coagulase-negative Staphylococcus that all of them were sensitive to the Trimethoprim-sulfamethoxazole and Cephalexin antibiotics also the most resistance to Cefixime was observed. Considering that the Enterobacter sp and coagulase-negative Staphylococcus were separated from the books, the books as well as other hospital and medical equipment can transmit the infection to librarians, library users, patients and hospital staff, and also it can produce serious infections in patients with immune deficiency.

  19. CERN printing infrastructure

    International Nuclear Information System (INIS)

    Otto, R; Sucik, J

    2008-01-01

    For many years CERN had a very sophisticated print server infrastructure [13] which supported several different protocols (AppleTalk, IPX and TCP/IP) and many different printing standards. Today's situation differs a lot: we have a much more homogenous network infrastructure, where TCP/IP is used everywhere and we have less printer models, which almost all work using current standards (i.e. they all provide PostScript drivers). This change gave us the possibility to review the printing architecture aiming at simplifying the infrastructure in order to achieve full automation of the service. The new infrastructure offers both: LPD service exposing print queues to Linux and Mac OS X computers and native printing for Windows based clients. The printer driver distribution is automatic and native on Windows and automated by custom mechanisms on Linux, where the appropriate Foomatic drivers are configured. Also the process of printer registration and queue creation is completely automated following the printer registration in the network database. At the end of 2006 we have moved all (∼1200) CERN printers and all users' connections at CERN to the new service. This paper will describe the new architecture and summarize the process of migration

  20. Out-of-Print Digital Scanning.

    Science.gov (United States)

    Kellerman, L. Suzanne

    2002-01-01

    Describes the in-house operational procedures developed at the Penn State University libraries to produce facsimiles of hard-to-locate, out-of-print titles using digital scanning technologies. Highlights include identification and selection, costs, copyright issues, interlibrary loan, materials preparation, and future trends. (Author/LRW)

  1. 3D printing strategies for peripheral nerve regeneration.

    Science.gov (United States)

    Petcu, Eugen B; Midha, Rajiv; McColl, Erin; Popa-Wagner, Aurel; Chirila, Traian V; Dalton, Paul D

    2018-03-23

    After many decades of biomaterials research for peripheral nerve regeneration, a clinical product (the nerve guide), is emerging as a proven alternative for relatively short injury gaps. This review identifies aspects where 3D printing can assist in improving long-distance nerve guide regeneration strategies. These include (1) 3D printing of the customizable nerve guides, (2) fabrication of scaffolds that fill nerve guides, (3) 3D bioprinting of cells within a matrix/bioink into the nerve guide lumen and the (4) establishment of growth factor gradients along the length a nerve guide. The improving resolution of 3D printing technologies will be an important factor for peripheral nerve regeneration, as fascicular-like guiding structures provide one path to improved nerve guidance. The capability of 3D printing to manufacture complex structures from patient data based on existing medical imaging technologies is an exciting aspect that could eventually be applied to treating peripheral nerve injury. Ultimately, the goal of 3D printing in peripheral nerve regeneration is the automated fabrication, potentially customized for the patient, of structures within the nerve guide that significantly outperform the nerve autograft over large gap injuries.

  2. Cardiac 3D Printing and its Future Directions.

    Science.gov (United States)

    Vukicevic, Marija; Mosadegh, Bobak; Min, James K; Little, Stephen H

    2017-02-01

    Three-dimensional (3D) printing is at the crossroads of printer and materials engineering, noninvasive diagnostic imaging, computer-aided design, and structural heart intervention. Cardiovascular applications of this technology development include the use of patient-specific 3D models for medical teaching, exploration of valve and vessel function, surgical and catheter-based procedural planning, and early work in designing and refining the latest innovations in percutaneous structural devices. In this review, we discuss the methods and materials being used for 3D printing today. We discuss the basic principles of clinical image segmentation, including coregistration of multiple imaging datasets to create an anatomic model of interest. With applications in congenital heart disease, coronary artery disease, and surgical and catheter-based structural disease, 3D printing is a new tool that is challenging how we image, plan, and carry out cardiovascular interventions. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. Weather resistance of inkjet prints on plastic substrates

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2015-06-01

    Full Text Available The development of wide format inkjet printers made the technology available for large area commercials. Outdoor advertising uses a wide range of substrate including paperboard, vinyl, canvas, mesh; the material of the substrate itself has to endure the physical and chemical effects of local weather. Weather elements (humidity, wind, solar irradiation degrade printed products inevitably; plastic products have better resistance against them, than paper based substrates. Service life of the printed product for outdoor application is a key parameter from the customer’s point of view. There are two ways to estimate expected lifetime: on site outdoor testing or laboratory testing. In both cases weathering parameters can be monitored, however laboratory testing devices may produce the desired environmental effects and thus accelerate the aging process. Our research objective was to evaluate the effects of artificial weathering on prints produced by inkjet technology on plastic substrates. We used a large format CMYK inkjet printer (Mutoh Rockhopper II, with Epson DX 4 print heads to print our test chart on two similar substrates (PVC coated tarpaulins with grammages 400 g/m2 and 440 g/m2. Specimen were aged in an Atlas Suntest XLS+ material tester device for equal time intervals. We measured and calculated the gradual changes of the optical properties (optical density, tone value, colour shifts of the test prints.

  4. The role and impact of 3D printing technologies in casting

    Directory of Open Access Journals (Sweden)

    Jin-wu Kang

    2017-05-01

    Full Text Available 3D printing is such a magical technology that it extends into almost every sector relating to manufacturing, not to mention casting production. In this paper, the past, present and future of 3D printing in the foundry sector are profoundly reviewed. 3D printing has the potential to supplement or partially replace the casting method. Today, some castings can be directly printed by metal powders, for example, titanium alloys, nickel alloys and steel parts. Meanwhile, 3D printing has found an unique position in other casting aspects as well, such as printing the wax pattern, ceramic shell, sand core, sand mould, etc. Most importantly, 3D printing is not just a manufacturing method, it will also revolutionize the design of products, assemblies and parts, such as castings, patterns, cores, moulds and shells in casting production. The solid structure of castings and moulds will be redesigned in future into truss or spatially open and skeleton structures. This kind of revolution is just sprouting, but it will bring unimaginable impact on manufacturing including casting production. Nobody doubts the potential of 3D printing technologies in manufacturing, but they do have limitations and drawbacks.

  5. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Udayabhanu Jammalamadaka

    2018-03-01

    Full Text Available Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched.

  6. Low-Cost Inkjet-Printed Wireless Sensor Nodes for Environmental and Health Monitoring Applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-11-01

    Increase in population and limited resources have created a growing demand for a futuristic living environment where technology enables the efficient utilization and management of resources in order to increase quality of life. One characteristic of such a society, which is often referred to as a ‘Smart City’, is that the people are well informed about their physiological being as well as the environment around them, which makes them better equipped to handle crisis situations. There is a need, therefore, to develop wireless sensors which can provide early warnings and feedback during calamities such as floods, fires, and industrial leaks, and provide remote health care facilities. For these situations, low-cost sensor nodes with small form factors are required. For this purpose, the use of a low-cost, mass manufacturing technique such as inkjet printing can be beneficial due to its digitally controlled additive nature of depositing material on a variety of substrates. Inkjet printing can permit economical use of material on cheap flexible substrates that allows for the development of miniaturized freeform electronics. This thesis describes how low-cost, inkjet-printed, wireless sensors have been developed for real-time monitoring applications. A 3D buoyant mobile wireless sensor node has been demonstrated that can provide early warnings as well as real-time data for flood monitoring. This disposable paper-based module can communicate while floating in water up to a distance of 50 m, regardless of its orientation in the water. Moreover, fully inkjet-printed sensors have been developed to monitor temperature, humidity and gas levels for wireless environmental monitoring. The sensors are integrated and packaged using 3D inkjet printing technology. Finally, in order to demonstrate the benefits of such wireless sensor systems for health care applications, a low-cost, wearable, wireless sensing system has been developed for chronic wound monitoring. The system

  7. Making PMT halftone prints

    Energy Technology Data Exchange (ETDEWEB)

    Corey, J.D.

    1977-05-01

    In the printing process for technical reports presently used at Bendix Kansas City Division, photographs are reproduced by pasting up PMT halftone prints on the artwork originals. These originals are used to make positive-working plastic plates for offset lithography. Instructions for making good-quality halftone prints using Eastman Kodak's PMT materials and processes are given in this report. 14 figures.

  8. From the printer: Potential of three-dimensional printing for orthopaedic applications

    Directory of Open Access Journals (Sweden)

    Sze-Wing Mok

    2016-07-01

    Full Text Available Three-dimensional (3D printers can create complex structures based on digital models. The combination of medical diagnostic imaging with 3D printing has great potential in day-to-day clinics for patient-specific solutions and applications. In the musculoskeletal system, 3D printing is used to create custom-made implants, patient-specific instrumentation, and to regenerate tissues, in particular bone and cartilage. The major limiting factors for bioprinting include the lack of printing techniques with optimal printing resolution and materials with ideal mechanical strengths while maintaining cellular functionality. Before “tissues from the printer” can be widely applied, further research and development on improving and optimising printing techniques and biomaterials, and knowledge on the development of printed constructs into living tissues, is essential for future clinical application of this technology.

  9. Colorado Multicultural Resources for Arts Education: Dance, Music, Theatre, and Visual Art.

    Science.gov (United States)

    Cassio, Charles J., Ed.

    This Colorado resource guide is based on the premise that the arts (dance, music, theatre, and visual art) provide a natural arena for teaching multiculturalism to students of all ages. The guide provides information to Colorado schools about printed, disc, video, and audio tape visual prints, as well as about individuals and organizations that…

  10. Day-ahead resource scheduling including demand response for electric vehicles

    DEFF Research Database (Denmark)

    Soares, Joao; Morais, Hugo; Sousa, Tiago

    2014-01-01

    Summary form only given. The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering...

  11. Dynamic Membrane Technology for Printing Wastewater Reuse

    Science.gov (United States)

    Liu, Lin; Lu, Xujie; Chen, Jihua

    As environmental regulations become rigid and the cost of freshwater increases, wastewater is considered as a major resource in China. The paper presented a study on the implementation of the advanced treatment process using dynamic membrane (DM) in reusing of printing wastewater. The DM was well formed by circulating 1.5g/L of PAC in 20 minutes, the trans-membrane pressure of 200 kPa and the cross-flow velocity of 0.75m/s. The printing effluents were treated in effluent treatment plants comprising a physicochemical option followed by biological process. The treated effluent contained chemical oxygen demand (COD), color and turbidity in the range of 45-60 mg/L, 0.030-0.045 (absorbance at 420 nm) and 3-5 NTU. The results showed that the COD, color and turbidity removal efficiencies of the DM permeate were 84%, 85% and 80%, respectively. The wastewater treated by DM was reused as process water and the final concentrated retentate could be discharged directly into sewage treatment works with no additional treatments. Cleaning and regeneration of DM were very convenient if necessary. The proper process was that the polluted DM was cleaned with tap water at high cross-flow velocity. When irreversible pollutants accumulate, it would be rinsed with chemicals tested and the membrane flux would be restored up to 95%. The result showed that DM was considered as a promising method for purification aimed at reuse of printing wastewater, resulting in direct environmental and economic benefits.

  12. Survey of Public Understanding on Energy Resources including Nuclear Energy (I)

    International Nuclear Information System (INIS)

    Park, Se-Moon; Song, Sun-Ja

    2007-01-01

    Women in Nuclear-Korea (WINK) surveyed the public understanding on various energy resources in early September 2006 to offer the result for establishment of the nuclear communication policy. The reason why this survey includes other energy resources is because the previous works are only limited on nuclear energy, and also aimed to know the public's opinion on the present communication skill of nuclear energy for the public understanding. The present study is purposed of having data how public understands nuclear energy compared to other energies, such as fossil fuels, hydro power, and other sustainable energies. The data obtained from this survey have shown different results according to the responded group; age, gender, residential area, etc. Responded numbers are more than 2,000 of general public and university students. The survey result shows that nuclear understanding is more negative in women than in men, and is more negative in young than older age

  13. All inkjet printed 3D microwave capacitors and inductors with vias

    KAUST Repository

    McKerricher, Garret

    2013-06-01

    For the first time we present a method to create all inkjet printed multilayer RF passive components including vias. Although there has been previous work on multilayer RF components, they are not fully inkjet printed and involve complicated processing techniques such as laser cutting, conductive epoxy, or reactive ion etching This work demonstrates a truly all inkjet printed solution with a novel dissolving method for vias realization. A major issue with inkjet printing is often surface roughness, however by processing these materials at low temperature surface roughness <20nm RMS has been obtained which allows for high quality components to be fabricated and allows for stacked multilayer designs. © 2013 IEEE.

  14. All inkjet printed 3D microwave capacitors and inductors with vias

    KAUST Repository

    McKerricher, Garret; Gonzá lez, Juan Carlos Cano; Shamim, Atif

    2013-01-01

    For the first time we present a method to create all inkjet printed multilayer RF passive components including vias. Although there has been previous work on multilayer RF components, they are not fully inkjet printed and involve complicated processing techniques such as laser cutting, conductive epoxy, or reactive ion etching This work demonstrates a truly all inkjet printed solution with a novel dissolving method for vias realization. A major issue with inkjet printing is often surface roughness, however by processing these materials at low temperature surface roughness <20nm RMS has been obtained which allows for high quality components to be fabricated and allows for stacked multilayer designs. © 2013 IEEE.

  15. Fabrication of ultra-fine nanostructures using edge transfer printing.

    Science.gov (United States)

    Xue, Mianqi; Li, Fengwang; Cao, Tingbing

    2012-03-21

    The exploration of new methods and techniques for application in diverse fields, such as photonics, microfluidics, biotechnology and flexible electronics is of increasing scientific and technical interest for multiple uses over distance of 10-100 nm. This article discusses edge transfer printing--a series of unconventional methods derived from soft lithography for nanofabrication. It possesses the advantages of easy fabrication, low-cost and great serviceability. In this paper, we show how to produce exposed edges and use various materials for edge transfer printing, while nanoskiving, nanotransfer edge printing and tunable cracking for nanogaps are introduced. Besides this, different functional materials, such as metals, inorganic semiconductors and polymers, as well as localised heating and charge patterning, are described here as unconventional "inks" for printing. Edge transfer printing, which can effectively produce sub-100 nm scale ultra-fine structures, has broad applications, including metallic nanowires as nanoelectrodes, semiconductor nanowires for chemical sensors, heterostructures of organic semiconductors, plasmonic devices and so forth. This journal is © The Royal Society of Chemistry 2012

  16. 3D Printing A Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Zulkifl Hasan

    2017-08-01

    Full Text Available Solid free fabrication SFF are produced to enhance the printing instrument utilizing distinctive strategies like Piezo spout control multi-spout injet printers or STL arrange utilizing cutting information. The procedure is utilized to diminish the cost and enhance the speed of printing. A few techniques take long at last because of extra process like dry the printing. This study will concentrate on SFFS utilizing UV gum for 3D printing.

  17. CERN printing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Otto, R; Sucik, J [CERN, Geneva (Switzerland)], E-mail: Rafal.Otto@cern.ch, E-mail: Juraj.Sucik@cern.ch

    2008-07-15

    For many years CERN had a very sophisticated print server infrastructure [13] which supported several different protocols (AppleTalk, IPX and TCP/IP) and many different printing standards. Today's situation differs a lot: we have a much more homogenous network infrastructure, where TCP/IP is used everywhere and we have less printer models, which almost all work using current standards (i.e. they all provide PostScript drivers). This change gave us the possibility to review the printing architecture aiming at simplifying the infrastructure in order to achieve full automation of the service. The new infrastructure offers both: LPD service exposing print queues to Linux and Mac OS X computers and native printing for Windows based clients. The printer driver distribution is automatic and native on Windows and automated by custom mechanisms on Linux, where the appropriate Foomatic drivers are configured. Also the process of printer registration and queue creation is completely automated following the printer registration in the network database. At the end of 2006 we have moved all ({approx}1200) CERN printers and all users' connections at CERN to the new service. This paper will describe the new architecture and summarize the process of migration.

  18. Elektronik Bilgi Kaynaklarının Seçimi / Selection of Electronic Information Resources

    Directory of Open Access Journals (Sweden)

    Pınar Al

    2003-04-01

    Full Text Available For many years, library users have used only from the printed media in order to get the information that they have needed. Today with the widespread use of the Web and the addition of electronic information resources to library collections, the use of information in the electronic environment as well as in printed media is started to be used. In time, such types of information resources as, electronic journals, electronic books, electronic encyclopedias, electronic dictionaries and electronic theses have been added to library collections. In this study, selection criteria that can be used for electronic information resources are discussed and suggestions are provided for libraries that try to select electronic information resources for their collections.

  19. Drug-printing by flexographic printing technology--a new manufacturing process for orodispersible films.

    Science.gov (United States)

    Janssen, Eva Maria; Schliephacke, Ralf; Breitenbach, Armin; Breitkreutz, Jörg

    2013-01-30

    Orodispersible films (ODFs) are intended to disintegrate within seconds when placed onto the tongue. The common way of manufacturing is the solvent casting method. Flexographic printing on drug-free ODFs is introduced as a highly flexible and cost-effective alternative manufacturing method in this study. Rasagiline mesylate and tadalafil were used as model drugs. Printing of rasagiline solutions and tadalafil suspensions was feasible. Up to four printing cycles were performed. The possibility to employ several printing cycles enables a continuous, highly flexible manufacturing process, for example for individualised medicine. The obtained ODFs were characterised regarding their mechanical properties, their disintegration time, API crystallinity and homogeneity. Rasagiline mesylate did not recrystallise after the printing process. Relevant film properties were not affected by printing. Results were comparable to the results of ODFs manufactured with the common solvent casting technique, but the APIs are less stressed through mixing, solvent evaporation and heat. Further, loss of material due to cutting jumbo and daughter rolls can be reduced. Therefore, a versatile new manufacturing technology particularly for processing high-potent low-dose or heat sensitive drugs is introduced in this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Tinkering with Teachers: The Case for 3D Printing in the Education Library

    Science.gov (United States)

    Elrod, Rachael

    2016-01-01

    Opportunities to utilize 3D printing in the K-12 classroom are growing every day. This paper describes the process of implementing a 3D printing service in the Education Library of The University of Florida, Gainesville, a large, doctoral-degree granting, research university. Included are examples of lesson plans featuring 3D printing, creation of…

  1. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  2. ICTs as Placed Resources in a Rural Kenyan Secondary School Journalism Club

    Science.gov (United States)

    Kendrick, Maureen; Chemjor, Walter; Early, Margaret

    2012-01-01

    In this study, we draw on three interrelated concepts, i.e. placed resources, multiliteracies and the carnivalesque, to understand how information and communication technology (ICT) resources are taken up within the context of a print-based journalism club. Our research participants attend an under-resourced girls' residential secondary school in…

  3. The best printing methods to print satellite images

    OpenAIRE

    G.A. Yousif; R.Sh. Mohamed

    2011-01-01

    Printing systems operate in general as a system of color its color scale is limited as compared with the system color satellite images. Satellite image is building from very small cell named pixel, which represents the picture element and the unity of color when the image is displayed on the screen, this unit becomes lesser in size and called screen point. This unit posseses different size and shape from the method of printing to another, depending on the output resolution, tools and material...

  4. Why Should I Use University Library Website Resources? Discipline Differences

    Science.gov (United States)

    Kim, Yong-Mi

    2011-01-01

    Users across academic disciplines utilize different information sources based on the resource's usefulness and relevance. This study's findings show that users from arts and sciences disciplines are much more likely to utilize university library website resources and printed materials than business users who heavily rely on commercial websites.…

  5. Influence of printing speed on production of embossing tools using FDM 3D printing technology

    Directory of Open Access Journals (Sweden)

    Jelena Žarko

    2017-06-01

    Full Text Available Manufacturing of the embossing tools customary implies use of metals such as zinc, magnesium, copper, and brass. In the case of short run lengths, a conventional manufacturing process and the material itself represent a significant cost, not only in the terms of material costs and the need for using complex technological systems which are necessary for their production, but also in the terms of the production time. Alternatively, 3D printing can be used for manufacturing similar embossing tools with major savings in production time and costs. However, due to properties of materials used in the 3D printing technology, expected results of embossing by 3D printed tools cannot be identical to metal ones. This problem is emphasized in the case of long run lengths and high accuracy requirement for embossed elements. The objective of this paper is primarily focused on investigating the influence of the printing speed on reproduction quality of the embossing tools printed with FDM (Fused Deposition Modelling technology. The obtained results confirmed that printing speed as a process parameter affects the reproduction quality of the embossing tools printed with FDM technology: in the case of deposition rate of 90 mm/s was noted the poorest dimensional accuracy in relation to the 3D model, which is more emphasised in case of circular and square elements. Elements printed with the highest printing speed have a greater dimensional accuracy, but with evident cracks on the surface.

  6. Emergence of 3D Printed Dosage Forms: Opportunities and Challenges.

    Science.gov (United States)

    Alhnan, Mohamed A; Okwuosa, Tochukwu C; Sadia, Muzna; Wan, Ka-Wai; Ahmed, Waqar; Arafat, Basel

    2016-08-01

    The recent introduction of the first FDA approved 3D-printed drug has fuelled interest in 3D printing technology, which is set to revolutionize healthcare. Since its initial use, this rapid prototyping (RP) technology has evolved to such an extent that it is currently being used in a wide range of applications including in tissue engineering, dentistry, construction, automotive and aerospace. However, in the pharmaceutical industry this technology is still in its infancy and its potential yet to be fully explored. This paper presents various 3D printing technologies such as stereolithographic, powder based, selective laser sintering, fused deposition modelling and semi-solid extrusion 3D printing. It also provides a comprehensive review of previous attempts at using 3D printing technologies on the manufacturing dosage forms with a particular focus on oral tablets. Their advantages particularly with adaptability in the pharmaceutical field have been highlighted, which enables the preparation of dosage forms with complex designs and geometries, multiple actives and tailored release profiles. An insight into the technical challenges facing the different 3D printing technologies such as the formulation and processing parameters is provided. Light is also shed on the different regulatory challenges that need to be overcome for 3D printing to fulfil its real potential in the pharmaceutical industry.

  7. Introduction to printed electronics

    CERN Document Server

    Suganuma, Katsuaki

    2014-01-01

    This book describes in detail modern technologies for printed electronics, explaining how nanotechnology and modern printing technology are merging to revolutionize electronics fabrication of thin, lightweight, large, and inexpensive products. Readers will benefit from the explanations of materials, devices and circuits used to design and implement the latest applications of printed electronics, such as thin flexible OLED displays, organic solar cells, OLED lighting, smart wallpaper, sensors, logic, memory and more.

  8. Recent Progress in the Development of Printed Thin-Film Transistors and Circuits with High-Resolution Printing Technology.

    Science.gov (United States)

    Fukuda, Kenjiro; Someya, Takao

    2017-07-01

    Printed electronics enable the fabrication of large-scale, low-cost electronic devices and systems, and thus offer significant possibilities in terms of developing new electronics/optics applications in various fields. Almost all electronic applications require information processing using logic circuits. Hence, realizing the high-speed operation of logic circuits is also important for printed devices. This report summarizes recent progress in the development of printed thin-film transistors (TFTs) and integrated circuits in terms of materials, printing technologies, and applications. The first part of this report gives an overview of the development of functional inks such as semiconductors, electrodes, and dielectrics. The second part discusses high-resolution printing technologies and strategies to enable high-resolution patterning. The main focus of this report is on obtaining printed electrodes with high-resolution patterning and the electrical performance of printed TFTs using such printed electrodes. In the final part, some applications of printed electronics are introduced to exemplify their potential. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Prints Charles ja prints Michael külastasid Tallinna kirikuid / Allan Tammiku

    Index Scriptorium Estoniae

    Tammiku, Allan

    2001-01-01

    Prints Charles külastas 6. novembril Eesti-visiidi ajal Tallinna toomkirikut ja Pühavaimu kirikut, prints Michael viibis Tallinnas 11. novembril eravisiidil, ta külastas toomkirikut, Niguliste ja Pühavaimu kirikut

  10. Semiotic Analysis Of Mcdonald's Printed Advertisement

    OpenAIRE

    URAIDA, SITI

    2014-01-01

    Keywords: Semiotic, printed advertisement, sign, icon, symbol, index, connotation, myth Printed advertisement has a promotional function as medium to advertise aproduct. It implicitly persuades people to create demand of product which is being advertised. In this study, the writer uses printed advertisement of McDonald's fast food company as the object. The printed advertisement was analyzed by usingSemiotics study. There are seven printed advertisements that were analyzes in this study. All ...

  11. AirPrint Forensics: Recovering the Contents and Metadata of Printed Documents from iOS Devices

    Directory of Open Access Journals (Sweden)

    Luis Gómez-Miralles

    2015-01-01

    data they may store, opens new opportunities in the field of computer forensics. In 2010, version 4 of the iOS operating system introduced AirPrint, a simple and driverless wireless printing functionality supported by hundreds of printer models from all major vendors. This paper describes the traces left in the iOS device when AirPrint is used and presents a method for recovering content and metadata of documents that have been printed.

  12. Durability of ink jet prints

    International Nuclear Information System (INIS)

    Dobric, E; Mirkovic, I Bolanca; Bolanca, Z

    2010-01-01

    The aim of this paper is the result presentation of some optical properties research for ink jet prints after: exposing the prints to the mixed daylight and artificial light, exposing of prints to the sun-light through the glass window, and exposing of prints to outdoor conditions during the summer months. The prints obtained by piezoelectric and thermal ink jet technologies were used in the researches. The dye-based inks and the pigmented inks based on water and the low solvent inks were used. The results of these researches, except the scientific contribution in the domain of understanding and explaining the environmental conditions on the gamut size, i.e. the range of color tonality, colorimetric stability and print quality, can be used by the ink and paper manufacturers in new formulations, offer data for the printer producers for further production and evaluation of the position of their products.

  13. Luminous lip-prints as criminal evidence.

    Science.gov (United States)

    Castelló, Ana; Alvarez-Seguí, Mercedes; Verdú, Fernando

    2005-12-20

    Luminescence is specially a useful property for the search of invisible evidences at the scene of a crime. In the latent fingerprints particular case, there are at one's disposal fluorescent reagents for their localization. The study of latent lip prints (that is lip prints from protective lipstick, or permanent or long-lasting lipstick that do not leave any visible marks) is more recent than fingerprints study. Because of the different composition of both types of prints, different reagents have been tried out on their developing. Although, lysochromes are particularly useful reagents to obtain latent lip prints, it may occur on coloured or multicoloured surfaces, the developing is not perceived due to contrast problems between the reagent and the surface where the print is searched. Again, luminescence offers the possibility to solve this problem. Nile Red is being studied as a potential developer for latent lip prints. The results on very old prints (over 1year) indicate that this reagent is highly efficient to get latent lip prints.

  14. A microfabricated nickel-hydrogen battery using thick film printing techniques

    Science.gov (United States)

    Tam, Waiping G.; Wainright, Jesse S.

    To utilize the distinctive cycle life and safety characteristics of the nickel-hydrogen chemistry while eliminating the high pressure limitations of conventional nickel-hydrogen cells, a microfabricated nickel-hydrogen battery using a low-pressure metal hydride for hydrogen storage is being developed for powering micro-electromechanical systems (MEMS) devices and for biomedical applications where the battery would be implanted within the body. Thick film printing techniques which are simple and low cost were used to fabricate this battery. Inks were developed for each of the different battery components, including the electrodes, current collectors and separator. SEM images on these printed components showed the desired characteristics for each. Positive electrode cycling tests were performed on the printed positive electrodes while cyclic voltammetry was used to characterize the printed negative electrodes. Consistent charge and discharge performance was observed during positive electrode cycling. Full cells with printed positive and negative assemblies were assembled and tested.

  15. A microfabricated nickel-hydrogen battery using thick film printing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Waiping G.; Wainright, Jesse S. [Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2007-02-25

    To utilize the distinctive cycle life and safety characteristics of the nickel-hydrogen chemistry while eliminating the high pressure limitations of conventional nickel-hydrogen cells, a microfabricated nickel-hydrogen battery using a low-pressure metal hydride for hydrogen storage is being developed for powering micro-electromechanical systems (MEMS) devices and for biomedical applications where the battery would be implanted within the body. Thick film printing techniques which are simple and low cost were used to fabricate this battery. Inks were developed for each of the different battery components, including the electrodes, current collectors and separator. SEM images on these printed components showed the desired characteristics for each. Positive electrode cycling tests were performed on the printed positive electrodes while cyclic voltammetry was used to characterize the printed negative electrodes. Consistent charge and discharge performance was observed during positive electrode cycling. Full cells with printed positive and negative assemblies were assembled and tested. (author)

  16. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials

    Directory of Open Access Journals (Sweden)

    Amelia Yilin Lee

    2017-10-01

    Full Text Available The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D printing. With the right external stimulus, the need for human interaction, sensors, and batteries will be eliminated, and by using additive manufacturing, more complex devices and parts can be produced. With the current understanding of shape memory mechanisms and with improved design for additive manufacturing, reversibility in 4D printing has recently been proven to be feasible. Conventional one-way 4D printing requires human interaction in the programming (or shape-setting phase, but reversible 4D printing, or two-way 4D printing, will fully eliminate the need for human interference, as the programming stage is replaced with another stimulus. This allows reversible 4D printed parts to be fully dependent on external stimuli; parts can also be potentially reused after every recovery, or even used in continuous cycles—an aspect that carries industrial appeal. This paper presents a review on the mechanisms of shape memory materials that have led to 4D printing, current findings regarding 4D printing in alloys and polymers, and their respective limitations. The reversibility of shape memory materials and their feasibility to be fabricated using three-dimensional (3D printing are summarized and critically analyzed. For reversible 4D printing, the methods of 3D printing, mechanisms used for actuation, and strategies to achieve reversibility are also highlighted. Finally, prospective future research directions in reversible 4D printing are suggested.

  17. Print-to-print: printer-enabled out-of-cleanroom multiobject microprinting method.

    Science.gov (United States)

    Xing, Siyuan; Zhao, Siwei; Pan, Tingrui

    2014-01-01

    Micropatterning techniques have gained growing interests from a broad range of engineering and biology researches as it realizes the high-throughput and highly quantitative investigations on miniature biological objects (e.g., cells and bacteria) by spatially defined micropatterns. However, most of the existing techniques rely on expensive instruments or intensive cleanroom access which may not be easy to be utilized in a regular biological laboratory. Here, we present the detailed procedures of a simple versatile microprinting process, referred to as Print-to-Print (P2P), to form multiobject micropatterns for potential biological applications. Only a solid-phase printer and custom-made superhydrophobic (SH) films are utilized for the printing and no thermal or chemical treatment is involved during the entire printing process. Moreover, the noncontact nature of droplet transferring and printing steps can be highly advantageous for sensitive biological uses. By the P2P process, a minimal feature resolution of 229 ± 17 μm has been successfully achieved. What's more, this approach has been applied to form micropatterning on various commonly used substrates in biology as well as multiobject co-patterns. In addition, the SH substrates have also been demonstrated to be reusable. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Is there a sex difference in palm print ridge density?

    Science.gov (United States)

    Kanchan, Tanuj; Krishan, Kewal; Aparna, K R; Shyamsundar, S

    2013-01-01

    Analysis of fingerprints and palm prints at the crime scene is vital to identify the suspect and establish a crime. Dermatoglyphics can even be valuable in identification of a dismembered hand during medicolegal investigations to establish the identity of an individual in cases of mass disasters/mass homicides. The present research studies the variation in ridge density in different areas of the palm prints among men and women. The four prominent areas were analysed on the palm prints that included central prominent part of the thenar eminence (P1), hypothenar region; inner to the proximal axial triradius (P2), medial mount; proximal to the triradius of the second digit (P3) and lateral mount; proximal to the triradius of the fifth digit (P4). The mean palm print ridge density was significantly higher among women than men in all the designated areas in both hands except for the P3 area in the right hand. Statistically significant differences were observed in the palm print ridge density between the different palm areas in men and women in right and left hands. No significant right-left differences were observed in the palm print ridge density in any of the four areas of palm prints among men. In women, right-left differences were observed only in the P3 and P4 areas of palm prints. This preliminary study indicates that though the palm print ridge density is a sexually dimorphic variable, its utility for estimation of sex in forensic identification may be limited owing to significant overlapping of values.

  19. Three-dimensional printing of freeform helical microstructures: a review.

    Science.gov (United States)

    Farahani, R D; Chizari, K; Therriault, D

    2014-09-21

    Three-dimensional (3D) printing is a fabrication method that enables creation of structures from digital models. Among the different structures fabricated by 3D printing methods, helical microstructures attracted the attention of the researchers due to their potential in different fields such as MEMS, lab-on-a-chip systems, microelectronics and telecommunications. Here we review different types of 3D printing methods capable of fabricating 3D freeform helical microstructures. The techniques including two more common microfabrication methods (i.e., focused ion beam chemical vapour deposition and microstereolithography) and also five methods based on computer-controlled robotic direct deposition of ink filament (i.e., fused deposition modeling, meniscus-confined electrodeposition, conformal printing on a rotating mandrel, UV-assisted and solvent-cast 3D printings) and their advantages and disadvantages regarding their utilization for the fabrication of helical microstructures are discussed. Focused ion beam chemical vapour deposition and microstereolithography techniques enable the fabrication of very precise shapes with a resolution down to ∼100 nm. However, these techniques may have material constraints (e.g., low viscosity) and/or may need special process conditions (e.g., vacuum chamber) and expensive equipment. The five other techniques based on robotic extrusion of materials through a nozzle are relatively cost-effective, however show lower resolution and less precise features. The popular fused deposition modeling method offers a wide variety of printable materials but the helical microstructures manufactured featured a less precise geometry compared to the other printing methods discussed in this review. The UV-assisted and the solvent-cast 3D printing methods both demonstrated high performance for the printing of 3D freeform structures such as the helix shape. However, the compatible materials used in these methods were limited to UV-curable polymers and

  20. 3D-Printed Millimeter Wave Structures

    Science.gov (United States)

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  1. Inkjet-Printed Lithium-Sulfur Microcathodes for All-Printed, Integrated Nanomanufacturing.

    Science.gov (United States)

    Milroy, Craig A; Jang, Seonpil; Fujimori, Toshihiko; Dodabalapur, Ananth; Manthiram, Arumugam

    2017-03-01

    Improved thin-film microbatteries are needed to provide appropriate energy-storage options to power the multitude of devices that will bring the proposed "Internet of Things" network to fruition (e.g., active radio-frequency identification tags and microcontrollers for wearable and implantable devices). Although impressive efforts have been made to improve the energy density of 3D microbatteries, they have all used low energy-density lithium-ion chemistries, which present a fundamental barrier to miniaturization. In addition, they require complicated microfabrication processes that hinder cost-competitiveness. Here, inkjet-printed lithium-sulfur (Li-S) cathodes for integrated nanomanufacturing are reported. Single-wall carbon nanotubes infused with electronically conductive straight-chain sulfur (S@SWNT) are adopted as an integrated current-collector/active-material composite, and inkjet printing as a top-down approach to achieve thin-film shape control over printed electrode dimensions is used. The novel Li-S cathodes may be directly printed on traditional microelectronic semicoductor substrates (e.g., SiO 2 ) or on flexible aluminum foil. Profilometry indicates that these microelectrodes are less than 10 µm thick, while cyclic voltammetry analyses show that the S@SWNT possesses pseudocapacitive characteristics and corroborates a previous study suggesting the S@SWNT discharge via a purely solid-state mechanism. The printed electrodes produce ≈800 mAh g -1 S initially and ≈700 mAh g -1 after 100 charge/discharge cycles at C/2 rate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 76 FR 46854 - Hewlett Packard Company, Imaging and Printing Group, World Wide Product Data Management...

    Science.gov (United States)

    2011-08-03

    ..., Imaging and Printing Group, World Wide Product Data Management Operations, Including On-Site Leased... Company, Imaging and Printing Group, World Wide Products Data Management Operations, Boise, Idaho and Fort... of Hewlett Packard Company, Imaging and Printing Group, World Wide Product Data Management Operations...

  3. Remote Collaborative 3D Printing - Process Investigation

    Science.gov (United States)

    2016-04-01

    COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION Cody M. Reese, PE CAD MODEL PRINT MODEL PRINT PREVIEW PRINTED PART AERIAL VIRTUAL This...REMOTE COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Cody M. Reese...release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Remote Collaborative 3D Printing project is a collaboration between

  4. MO-B-BRD-04: Sterilization for 3D Printed Brachytherapy Applicators

    International Nuclear Information System (INIS)

    Cunha, J.

    2015-01-01

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  5. MO-B-BRD-04: Sterilization for 3D Printed Brachytherapy Applicators

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, J. [UC San Francisco (United States)

    2015-06-15

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  6. Biomimetic 4D printing

    Science.gov (United States)

    Sydney Gladman, A.; Matsumoto, Elisabetta A.; Nuzzo, Ralph G.; Mahadevan, L.; Lewis, Jennifer A.

    2016-04-01

    Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.

  7. 3D-Printing for Analytical Ultracentrifugation.

    Directory of Open Access Journals (Sweden)

    Abhiksha Desai

    Full Text Available Analytical ultracentrifugation (AUC is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation.

  8. A Fully Inkjet Printed 3D Honeycomb Inspired Patch Antenna

    KAUST Repository

    McKerricher, Garret

    2015-07-16

    The ability to inkjet print three-dimensional objects with integrated conductive metal provides many opportunities for fabrication of radio frequency electronics and electronics in general. Both a plastic material and silver conductor are deposited by inkjet printing in this work. This is the first demonstration of a fully 3D Multijet printing process with integrated polymer and metal. A 2.4 GHz patch antenna is successfully fabricated with good performance proving the viability of the process. The inkjet printed plastic surface is very smooth, with less than 100 nm root mean square roughness. The printed silver nanoparticles are laser sintered to achieve adequate conductivity of 1e6 S/m while keeping the process below 80oC and avoiding damage to the polymer. The antenna is designed with a honeycomb substrate which minimizes material consumption. This reduces the weight, dielectric constant and dielectric loss which are all around beneficial. The antenna is entirely inkjet printed including the ground plane conductor and achieves an impressive 81% efficiency. The honeycomb substrate weighs twenty times less than a solid substrate. For comparison the honeycomb antenna provides an efficiency nearly 15% greater than a similarly fabricated antenna with a solid substrate.

  9. 3D Printed Shock Mitigating Structures

    Science.gov (United States)

    Schrand, Amanda; Elston, Edwin; Dennis, Mitzi; Metroke, Tammy; Chen, Chenggang; Patton, Steven; Ganguli, Sabyasachi; Roy, Ajit

    Here we explore the durability, and shock mitigating potential, of solid and cellular 3D printed polymers and conductive inks under high strain rate, compressive shock wave and high g acceleration conditions. Our initial designs include a simple circuit with 4 resistors embedded into circular discs and a complex cylindrical gyroid shape. A novel ink consisting of silver-coated carbon black nanoparticles in a thermoplastic polyurethane was used as the trace material. One version of the disc structural design has the advantage of allowing disassembly after testing for direct failure analysis. After increasing impacts, printed and traditionally potted circuits were examined for functionality. Additionally, in the open disc design, trace cracking and delamination of resistors were able to be observed. In a parallel study, we examined the shock mitigating behavior of 3D printed cellular gyroid structures on a Split Hopkinson Pressure Bar (SHPB). We explored alterations to the classic SHPB setup for testing the low impedance, cellular samples to most accurately reflect the stress state inside the sample (strain rates from 700 to 1750 s-1). We discovered that the gyroid can effectively absorb the impact of the test resulting in crushing the structure. Future studies aim to tailor the unit cell dimensions for certain frequencies, increase print accuracy and optimize material compositions for conductivity and adhesion to manufacture more durable devices.

  10. Software for Quantitative Estimation of Coefficients of Ink Transfer on the Printed Substrate in Offset Printing

    Science.gov (United States)

    Varepo, L. G.; Trapeznikova, O. V.; Panichkin, A. V.; Roev, B. A.; Kulikov, G. B.

    2018-04-01

    In the framework of standardizing the process of offset printing, one of the most important tasks is the correct selection of the printing system components, taking into account the features of their interaction and behavior in the printing process. The program allows to calculate the transfer of ink on the printed material between the contacting cylindrical surfaces of the sheet-fed offset printing apparatus with the boundaries deformation. A distinctive feature of this software product is the modeling of the liquid flow having free boundaries and causing deformation of solid boundaries when flowing between the walls of two cylinders.

  11. Surgical applications of three-dimensional printing: a review of the current literature & how to get started

    Science.gov (United States)

    Hoang, Don; Perrault, David; Stevanovic, Milan

    2016-01-01

    Three dimensional (3D) printing involves a number of additive manufacturing techniques that are used to build structures from the ground up. This technology has been adapted to a wide range of surgical applications at an impressive rate. It has been used to print patient-specific anatomic models, implants, prosthetics, external fixators, splints, surgical instrumentation, and surgical cutting guides. The profound utility of this technology in surgery explains the exponential growth. It is important to learn how 3D printing has been used in surgery and how to potentially apply this technology. PubMed was searched for studies that addressed the clinical application of 3D printing in all surgical fields, yielding 442 results. Data was manually extracted from the 168 included studies. We found an exponential increase in studies addressing surgical applications for 3D printing since 2011, with the largest growth in craniofacial, oromaxillofacial, and cardiothoracic specialties. The pertinent considerations for getting started with 3D printing were identified and are discussed, including, software, printing techniques, printing materials, sterilization of printing materials, and cost and time requirements. Also, the diverse and increasing applications of 3D printing were recorded and are discussed. There is large array of potential applications for 3D printing. Decreasing cost and increasing ease of use are making this technology more available. Incorporating 3D printing into a surgical practice can be a rewarding process that yields impressive results. PMID:28090512

  12. 3D-printed patient-specific applications in orthopedics

    Directory of Open Access Journals (Sweden)

    Wong KC

    2016-10-01

    required for 3D printing, 2 reviews the current applications of 3D printing in patient-specific orthopedic procedures, 3 discusses the potential advantages and limitations of 3D-printed custom orthopedic implants, and 4 suggests the directions for future development. The 3D printing technology has been reported to be beneficial in patient-specific orthopedics, such as in the creation of anatomic models for surgical planning, education and surgical training, patient-specific instruments, and 3D-printed custom implants. Besides being anatomically conformed to a patient’s surgical requirement, 3D-printed implants can be fabricated with scaffold lattices that may facilitate osteointegration and reduce implant stiffness. However, limitations including high cost of the implants, the lead time in manufacturing, and lack of intraoperative flexibility need to be addressed. New biomimetic materials have been investigated for use in 3D printing. To increase utilization of 3D printing technology in orthopedics, an all-in-one computer platform should be developed for easy planning and seamless communications among different care providers. Further studies are needed to investigate the real clinical efficacy of 3D printings in orthopedic applications. Keywords: 3D printing, patient-specific orthopedics, custom implants, patient-specific instrument, image processing

  13. A beginner's guide to 3D printing 14 simple toy designs to get you started

    CERN Document Server

    Rigsby, Mike

    2014-01-01

    A Beginner''s Guide to 3D Printing is the perfect resource for those who would like to experiment with 3D design and manufacturing, but have little or no technical experience with the standard software. Author Mike Rigsby leads readers step-by-step through 15 simple toy projects, each illustrated with screen caps of Autodesk 123D Design, the most common free 3D software available. The projects are later described using Sketchup, another free popular software package. Beginning with basics projects that will take longer to print than design, readers are then given instruction on more advanced t

  14. Why and How to Measure the Use of Electronic Resources

    Directory of Open Access Journals (Sweden)

    Jean Bernon

    2008-11-01

    Full Text Available A complete overview of library activity implies a complete and reliable measurement of the use of both electronic resources and printed materials. This measurement is based on three sets of definitions: document types, use types and user types. There is a common model of definitions for printed materials, but a lot of questions and technical issues remain for electronic resources. In 2006 a French national working group studied these questions. It relied on the COUNTER standard, but found it insufficient and pointed out the need for local tools such as web markers and deep analysis of proxy logs. Within the French national consortium COUPERIN, a new working group is testing ERMS, SUSHI standards, Shibboleth authentication, along with COUNTER standards, to improve the counting of the electronic resources use. At this stage this counting is insufficient and its improvement will be a European challenge for the future.

  15. 3D micro-structures by piezoelectric inkjet printing of gold nanofluids

    International Nuclear Information System (INIS)

    Kullmann, Carmen; Lee, Ming-Tsang; Grigoropoulos, Costas P; Schirmer, Niklas C; Poulikakos, Dimos; Ko, Seung Hwan; Hotz, Nico

    2012-01-01

    3D solid and pocketed micro-wires and micro-walls are needed for emerging applications that require fine-scale functional structures in three dimensions, including micro-heaters, micro-reactors and solar cells. To fulfill this demand, 3D micro-structures with high aspect ratios (>50:1) are developed on a low-cost basis that is applicable for mass production with high throughput, also enabling the printing of structures that cannot be manufactured by conventional techniques. Additively patterned 3D gold micro-walls and -wires are grown by piezoelectric inkjet printing of nanofluids, selectively combined with in situ simultaneous laser annealing that can be applied to large-scale bulk production. It is demonstrated how the results of 3D printing depend on the piezoelectric voltage pulse, the substrate heating temperature and the structure height, resulting in the identification of thermal regions of optimal printing for best printing results. Furthermore a parametric analysis of the applied substrate temperature during printing leads to proposed temperature ranges for solid and pocketed micro-wire and micro-wall growth for selected frequency and voltages. (paper)

  16. 3D micro-structures by piezoelectric inkjet printing of gold nanofluids

    KAUST Repository

    Kullmann, Carmen

    2012-04-18

    3D solid and pocketed micro-wires and micro-walls are needed for emerging applications that require fine-scale functional structures in three dimensions, including micro-heaters, micro-reactors and solar cells. To fulfill this demand, 3D micro-structures with high aspect ratios (>50:1) are developed on a low-cost basis that is applicable for mass production with high throughput, also enabling the printing of structures that cannot be manufactured by conventional techniques. Additively patterned 3D gold micro-walls and -wires are grown by piezoelectric inkjet printing of nanofluids, selectively combined with in situ simultaneous laser annealing that can be applied to large-scale bulk production. It is demonstrated how the results of 3D printing depend on the piezoelectric voltage pulse, the substrate heating temperature and the structure height, resulting in the identification of thermal regions of optimal printing for best printing results. Furthermore a parametric analysis of the applied substrate temperature during printing leads to proposed temperature ranges for solid and pocketed micro-wire and micro-wall growth for selected frequency and voltages. © 2012 IOP Publishing Ltd.

  17. Applications of Open Source GMAW-Based Metal 3-D Printing

    Directory of Open Access Journals (Sweden)

    Yuenyong Nilsiam

    2018-03-01

    Full Text Available The metal 3-D printing market is currently dominated by high-end applications, which make it inaccessible for small and medium enterprises, fab labs, and individual makers who are interested in the ability to prototype and additively manufacture final products in metal. Recent progress led to low-cost open-source metal 3-D printers using a gas metal arc welding (GMAW-based print head. This reduced the cost of metal 3-D printers into the range of desktop prosumer polymer 3-D printers. Consequent research established good material properties of metal 3-D printed parts with readily-available weld filler wire, reusable substrates, thermal and stress properties, toolpath planning, bead-width control, mechanical properties, and support for overhangs. These previous works showed that GMAW-based metal 3-D printing has a good adhesion between layers and is not porous inside the printed parts, but they did not proceed far enough to demonstrate applications. In this study, the utility of the GMAW approach to 3-D printing is investigated using a low-cost open-source metal 3-D printer and a converted Computer Numerical Control router machine to make useful parts over a range of applications including: fixing an existing part by adding a 3-D metal feature, creating a product using the substrate as part of the component, 3-D printing in high resolution of useful objects, near net objects, and making an integrated product using a combination of steel and polymer 3-D printing. The results show that GMAW-based 3-D printing is capable of distributed manufacturing of useful products for a wide variety of applications for sustainable development.

  18. Inkjet printed ferrite-filled rectangular waveguide X-band isolator

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-06-01

    For the first time, a rectangular waveguide (RWG) isolator realized through inkjet printing on a ferrite substrate is presented. Yttrium iron garnet (YIG) substrate is used for the realization of the ferrite-filled isolator. Contrary to the substrate integrated waveguide (SIW) approach, all four walls of the waveguide have been inkjet printed on the YIG substrate demonstrating the utility of inkjet printing process for realizing non-planar microwave components. The isolation is achieved by applying an anti-symmetrical DC magnetic bias to the ferrite-filled waveguide which then exhibits a unidirectional mode of operation. The isolator is fed by a microstrip to RWG transition and demonstrates an isolation figure-of-merit (IFM) of more than 51 dB in the operating band from 9.95 GHz to 11.73 GHz with a very high peak IFM of 69 dB. The minimum insertion loss in the operating band is 2.73 dB (including losses from the transitions). The isolator measures 33 mm × 8 mm × 0.4 mm. This work introduces an inkjet printed non-planar microwave device which is easy to fabricate showing the ability of inkjet printing for fabricating complex microwave systems. © 2014 IEEE.

  19. Inkjet printed electronics using copper nanoparticle ink

    OpenAIRE

    Kang, Jin Sung; Kim, Hak Sung; Ryu, Jongeun; Thomas Hahn, H.; Jang, Seonhee; Joung, Jae Woo

    2010-01-01

    Inkjet printing of electrode using copper nanoparticle ink is presented. Electrode was printed on a flexible glass epoxy composite substrate using drop on demand piezoelectric dispenser and was sintered at 200 °C of low temperature in N2 gas condition. The printed electrodes were made with various widths and thickness. In order to control the thickness of the printed electrode, number of printing was varied. Resistivity of printed electrode was calculated from the cross-sectional area measure...

  20. Checking a printed board

    CERN Multimedia

    1977-01-01

    An 'Interactive Printed Circuit Board Design System' has been developed by a company in a Member-State. Printed circuits are now produced at the SB's surface treatment workshop using a digitized photo-plotter.

  1. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing.

    Science.gov (United States)

    Kuang, Xiao; Chen, Kaijuan; Dunn, Conner K; Wu, Jiangtao; Li, Vincent C F; Qi, H Jerry

    2018-02-28

    The three-dimensional (3D) printing of flexible and stretchable materials with smart functions such as shape memory (SM) and self-healing (SH) is highly desirable for the development of future 4D printing technology for myriad applications, such as soft actuators, deployable smart medical devices, and flexible electronics. Here, we report a novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomer via UV-light-assisted direct-ink-write printing. An ink containing urethane diacrylate and a linear semicrystalline polymer is developed for the 3D printing of a semi-interpenetrating polymer network elastomer that can be stretched by up to 600%. The 3D-printed complex structures show interesting functional properties, such as high strain SM and SM -assisted SH capability. We demonstrate that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices. This research paves a new way for the further development of novel 4D printing, soft robotics, and biomedical devices.

  2. 3D printing in orthognathic surgery - A literature review.

    Science.gov (United States)

    Lin, Hsiu-Hsia; Lonic, Daniel; Lo, Lun-Jou

    2018-07-01

    With the recent advances in three-dimensional (3D) imaging, computer-assisted surgical planning and simulation are now regularly used for analysis of craniofacial structures and improved prediction of surgical outcomes in orthognathic surgery. A variety of patient-specific surgical guides and devices have been designed and manufactured using 3D printing technology, which rapidly gained widespread popularity to improve the outcomes. The article presents an overview of 3D printing technology for state-of-the-art application in orthognathic surgery and discusses the impacts on treatment feasibility and patient outcome. The current available literature regarding the use of 3D printing methods in orthognathic surgery including 3D computer-aided design/computer-aided manufacturing, rapid prototyping, additive manufacturing, 3D printing, 3D printed models, surgical occlusal splints, custom-made guides, templates and fixation plates is reviewed. A Medline, PubMed, ProQuest and ScienceDirect search was performed to find relevant articles over the past 10 years. A total of 318 articles were found, out of which 69 were publications addressing the topic of this study. An additional 9 hand-searched articles were added. From the review, we can conclude that the use of 3D printing methods in orthognathic surgery provide the benefit of optimal functional and aesthetic results, patient satisfaction, and precise translation of the treatment plan. Copyright © 2018. Published by Elsevier B.V.

  3. A study on the utilization of serial resources in selected tertiary ...

    African Journals Online (AJOL)

    A study on the utilization of serial resources in selected tertiary institutions in Ogun State. ... Lagos Journal of Library and Information Science ... Serial resources are publications either in printed form or electronic format issued in successive parts usually having numerical or chronological designations and intended to be ...

  4. Roll-offset printed transparent conducting electrode for organic solar cells

    International Nuclear Information System (INIS)

    Kim, Inyoung; Kwak, Sun-Woo; Ju, Yeonkyeong; Park, Gun-Young; Lee, Taik-Min; Jang, Yunseok; Choi, Young-Man; Kang, Dongwoo

    2015-01-01

    Transparent conducting electrodes (TCEs) were developed through the roll-offset printing of Ag grid mesh patterns for the application of all-solution processed organic solar cells (OSCs). Due to the remarkable printability of roll-offset printing, the printed TCEs did not show the step coverage problem of subsequent thin layers, which was a chronic problem in other printing techniques. The control of ink cohesion was verified as a critical factor for the high printing quality, which was optimized by adding a polyurethane diol of 2 wt.%. The tensile strength of optimized Ag ink was 322 mN, which led to the clear patterning of Ag nanoparticles. The printed TCEs with different mesh densities of the Ag grid were designed to have a similar property of indium tin oxide (ITO). The measured sheet resistance was 13 Ω/□, and optical transmittance was 86%, including the glass substrate, which was found to be independent of wavelength in the visible spectrum, in contrast with the optical transmittance of ITO. To evaluate the TCE performance as bottom electrodes, all-solution processed OSCs were fabricated on top of the TCEs. The power conversion efficiency (PCE) of the OSCs increased with the increments of the mesh density due to the distinctive increase of the short circuit current density (J sc ), notwithstanding the similar transmittance and sheet resistance of the TCEs. In comparison with ITO, a higher PCE of OSCs was obtained because the printed TCEs with a high mesh density were able to facilitate effective current collection, leading to a significant increase of J sc . - Highlights: • Roll-offset printing provided a remarkable printability of Ag nano-ink. • Control of ink cohesion played a critical role on the patterning of Ag nano-ink. • Printed Ag mesh was used as a transparent conducting electrode. • Transparency and sheet resistance of printed Ag mesh can be designed simply. • Printed Ag mesh was effective for the current collection of organic solar

  5. Roll-offset printed transparent conducting electrode for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inyoung, E-mail: ikim@kimm.re.kr; Kwak, Sun-Woo; Ju, Yeonkyeong; Park, Gun-Young; Lee, Taik-Min; Jang, Yunseok; Choi, Young-Man; Kang, Dongwoo

    2015-04-01

    Transparent conducting electrodes (TCEs) were developed through the roll-offset printing of Ag grid mesh patterns for the application of all-solution processed organic solar cells (OSCs). Due to the remarkable printability of roll-offset printing, the printed TCEs did not show the step coverage problem of subsequent thin layers, which was a chronic problem in other printing techniques. The control of ink cohesion was verified as a critical factor for the high printing quality, which was optimized by adding a polyurethane diol of 2 wt.%. The tensile strength of optimized Ag ink was 322 mN, which led to the clear patterning of Ag nanoparticles. The printed TCEs with different mesh densities of the Ag grid were designed to have a similar property of indium tin oxide (ITO). The measured sheet resistance was 13 Ω/□, and optical transmittance was 86%, including the glass substrate, which was found to be independent of wavelength in the visible spectrum, in contrast with the optical transmittance of ITO. To evaluate the TCE performance as bottom electrodes, all-solution processed OSCs were fabricated on top of the TCEs. The power conversion efficiency (PCE) of the OSCs increased with the increments of the mesh density due to the distinctive increase of the short circuit current density (J{sub sc}), notwithstanding the similar transmittance and sheet resistance of the TCEs. In comparison with ITO, a higher PCE of OSCs was obtained because the printed TCEs with a high mesh density were able to facilitate effective current collection, leading to a significant increase of J{sub sc}. - Highlights: • Roll-offset printing provided a remarkable printability of Ag nano-ink. • Control of ink cohesion played a critical role on the patterning of Ag nano-ink. • Printed Ag mesh was used as a transparent conducting electrode. • Transparency and sheet resistance of printed Ag mesh can be designed simply. • Printed Ag mesh was effective for the current collection of organic

  6. A Case Study in Astronomical 3-D Printing: The Mysterious Eta Carinae

    OpenAIRE

    Madura, Thomas I.

    2016-01-01

    3-D printing moves beyond interactive 3-D graphics and provides an excellent tool for both visual and tactile learners, since 3-D printing can now easily communicate complex geometries and full color information. Some limitations of interactive 3-D graphics are also alleviated by 3-D printable models, including issues of limited software support, portability, accessibility, and sustainability. We describe the motivations, methods, and results of our work on using 3-D printing (1) to visualize...

  7. Including Alternative Resources in State Renewable Portfolio Standards: Current Design and Implementation Experience

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.; Bird, L.

    2012-11-01

    Currently, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). An RPS sets a minimum threshold for how much renewable energy must be generated in a given year. Each state policy is unique, varying in percentage targets, timetables, and eligible resources. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation.

  8. Novel Biomaterials Used in Medical 3D Printing Techniques

    OpenAIRE

    Karthik Tappa; Udayabhanu Jammalamadaka

    2018-01-01

    The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and c...

  9. 3D Printing in Liver Surgery: A Systematic Review.

    Science.gov (United States)

    Witowski, Jan Sylwester; Coles-Black, Jasamine; Zuzak, Tomasz Zbigniew; Pędziwiatr, Michał; Chuen, Jason; Major, Piotr; Budzyński, Andrzej

    2017-12-01

    Rapid growth of three-dimensional (3D) printing in recent years has led to new applications of this technology across all medical fields. This review article presents a broad range of examples on how 3D printing is facilitating liver surgery, including models for preoperative planning, education, and simulation. We have performed an extensive search of the medical databases Ovid/MEDLINE and PubMed/EMBASE and screened articles fitting the scope of review, following previously established exclusion criteria. Articles deemed suitable were analyzed and data on the 3D-printed models-including both technical properties and desirable application-and their impact on clinical proceedings were extracted. Fourteen articles, presenting unique utilizations of 3D models, were found suitable for data analysis. A great majority of articles (93%) discussed models used for preoperative planning and intraoperative guidance. PolyJet was the most common (43%) and, at the same time, most expensive 3D printing technology used in the development process. Many authors of reviewed articles reported that models were accurate (71%) and allowed them to understand patient's complex anatomy and its spatial relationships. Although the technology is still in its early stages, presented models are considered useful in preoperative planning and patient and student education. There are multiple factors limiting the use of 3D printing in everyday healthcare, the most important being high costs and the time-consuming process of development. Promising early results need to be verified in larger randomized trials, which will provide more statistically significant results.

  10. Dielectric properties of 3D-printed materials for anatomy specific 3D-printed MRI coils

    Science.gov (United States)

    Behzadnezhad, Bahareh; Collick, Bruce D.; Behdad, Nader; McMillan, Alan B.

    2018-04-01

    Additive manufacturing provides a low-cost and rapid means to translate 3D designs into the construction of a prototype. For MRI, this type of manufacturing can be used to construct various components including the structure of RF coils. In this paper, we characterize the material properties (dielectric constant and loss tangent) of several common 3D-printed polymers in the MRI frequency range of 63-300 MHz (for MRI magnetic field strengths of 1.5-7 T), and utilize these material properties in full-wave electromagnetic simulations to design and construct a very low-cost subject/anatomy-specific 3D-printed receive-only RF coil that fits close to the body. We show that the anatomy-specific coil exhibits higher signal-to-noise ratio compared to a conventional flat surface coil.

  11. High-resolution direct 3D printed PLGA scaffolds: print and shrink

    International Nuclear Information System (INIS)

    Chia, Helena N; Wu, Benjamin M

    2015-01-01

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds. (paper)

  12. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2014-12-17

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.

  13. 3D Printing of Biosamples: A Concise Review

    Science.gov (United States)

    Zhao, Victoria Xin Ting; Wong, Ten It; Zhou, Xiaodong

    This paper reviews the recent development of 3D printing of biosamples, in terms of the 3D structure design, suitable printing technology, and available materials. Successfully printed 3D biosamples should possess the properties of high cell viability, vascularization and good biocompatibility. These goals are attained by printing the materials of hydrogels, polymers and cells, with a carefully selected 3D printer from the categories of inkjet printing, extrusion printing and laser printing, based on the uniqueness, advantages and disadvantages of these technologies. For recent developments, we introduce the 3D applications of creating scaffolds, printing cells for self-assembly and testing platforms. We foresee more bio-applications of 3D printing will be developed, with the advancements on materials and 3D printing machines.

  14. 3D-printing techniques in a medical setting: a systematic literature review.

    Science.gov (United States)

    Tack, Philip; Victor, Jan; Gemmel, Paul; Annemans, Lieven

    2016-10-21

    Three-dimensional (3D) printing has numerous applications and has gained much interest in the medical world. The constantly improving quality of 3D-printing applications has contributed to their increased use on patients. This paper summarizes the literature on surgical 3D-printing applications used on patients, with a focus on reported clinical and economic outcomes. Three major literature databases were screened for case series (more than three cases described in the same study) and trials of surgical applications of 3D printing in humans. 227 surgical papers were analyzed and summarized using an evidence table. The papers described the use of 3D printing for surgical guides, anatomical models, and custom implants. 3D printing is used in multiple surgical domains, such as orthopedics, maxillofacial surgery, cranial surgery, and spinal surgery. In general, the advantages of 3D-printed parts are said to include reduced surgical time, improved medical outcome, and decreased radiation exposure. The costs of printing and additional scans generally increase the overall cost of the procedure. 3D printing is well integrated in surgical practice and research. Applications vary from anatomical models mainly intended for surgical planning to surgical guides and implants. Our research suggests that there are several advantages to 3D-printed applications, but that further research is needed to determine whether the increased intervention costs can be balanced with the observable advantages of this new technology. There is a need for a formal cost-effectiveness analysis.

  15. Progress in 3D Printing of Carbon Materials for Energy-Related Applications.

    Science.gov (United States)

    Fu, Kun; Yao, Yonggang; Dai, Jiaqi; Hu, Liangbing

    2017-03-01

    The additive-manufacturing (AM) technique, known as three-dimensional (3D) printing, has attracted much attention in industry and academia in recent years. 3D printing has been developed for a variety of applications. Printable inks are the most important component for 3D printing, and are related to the materials, the printing method, and the structures of the final 3D-printed products. Carbon materials, due to their good chemical stability and versatile nanostructure, have been widely used in 3D printing for different applications. Good inks are mainly based on volatile solutions having carbon materials as fillers such as graphene oxide (GO), carbon nanotubes (CNT), carbon blacks, and solvent, as well as polymers and other additives. Studies of carbon materials in 3D printing, especially GO-based materials, have been extensively reported for energy-related applications. In these circumstances, understanding the very recent developments of 3D-printed carbon materials and their extended applications to address energy-related challenges and bring new concepts for material designs are becoming urgent and important. Here, recent developments in 3D printing of emerging devices for energy-related applications are reviewed, including energy-storage applications, electronic circuits, and thermal-energy applications at high temperature. To close, a conclusion and outlook are provided, pointing out future designs and developments of 3D-printing technology based on carbon materials for energy-related applications and beyond. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 3D Bio-Printing Review

    Science.gov (United States)

    Du, Xianbin

    2018-01-01

    Ultimate goal of tissue engineering is to replace pathological or necrotic body tissue or organ by artificial tissue or organ and tissue engineering is a very promising research field. 3D bio-printing is a kind of emerging technologies and a branch of tissue engineering. It has made significant progress in the past decade. 3D bio-printing can realize tissue and organ construction in vitro and has wide application in basic research and pharmacy. This paper is to make an analysis and review on 3D bio-printing from the perspectives of bioink, printing technology and technology application.

  17. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  18. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    Directory of Open Access Journals (Sweden)

    Rubaiyet Iftekharul Haque

    2015-10-01

    Full Text Available A capacitive acoustic resonator developed by combining three-dimensional (3D printing and two-dimensional (2D printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  19. Sub-word image clustering in Farsi printed books

    Science.gov (United States)

    Soheili, Mohammad Reza; Kabir, Ehsanollah; Stricker, Didier

    2015-02-01

    Most OCR systems are designed for the recognition of a single page. In case of unfamiliar font faces, low quality papers and degraded prints, the performance of these products drops sharply. However, an OCR system can use redundancy of word occurrences in large documents to improve recognition results. In this paper, we propose a sub-word image clustering method for the applications dealing with large printed documents. We assume that the whole document is printed by a unique unknown font with low quality print. Our proposed method finds clusters of equivalent sub-word images with an incremental algorithm. Due to the low print quality, we propose an image matching algorithm for measuring the distance between two sub-word images, based on Hamming distance and the ratio of the area to the perimeter of the connected components. We built a ground-truth dataset of more than 111000 sub-word images to evaluate our method. All of these images were extracted from an old Farsi book. We cluster all of these sub-words, including isolated letters and even punctuation marks. Then all centers of created clusters are labeled manually. We show that all sub-words of the book can be recognized with more than 99.7% accuracy by assigning the label of each cluster center to all of its members.

  20. Interpolating Spline Curve-Based Perceptual Encryption for 3D Printing Models

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-02-01

    Full Text Available With the development of 3D printing technology, 3D printing has recently been applied to many areas of life including healthcare and the automotive industry. Due to the benefit of 3D printing, 3D printing models are often attacked by hackers and distributed without agreement from the original providers. Furthermore, certain special models and anti-weapon models in 3D printing must be protected against unauthorized users. Therefore, in order to prevent attacks and illegal copying and to ensure that all access is authorized, 3D printing models should be encrypted before being transmitted and stored. A novel perceptual encryption algorithm for 3D printing models for secure storage and transmission is presented in this paper. A facet of 3D printing model is extracted to interpolate a spline curve of degree 2 in three-dimensional space that is determined by three control points, the curvature coefficients of degree 2, and an interpolating vector. Three control points, the curvature coefficients, and interpolating vector of the spline curve of degree 2 are encrypted by a secret key. The encrypted features of the spline curve are then used to obtain the encrypted 3D printing model by inverse interpolation and geometric distortion. The results of experiments and evaluations prove that the entire 3D triangle model is altered and deformed after the perceptual encryption process. The proposed algorithm is responsive to the various formats of 3D printing models. The results of the perceptual encryption process is superior to those of previous methods. The proposed algorithm also provides a better method and more security than previous methods.

  1. Euler European Libraries and Electronic Resources in Mathematical Sciences

    CERN Document Server

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  2. 3D Printing: Print the future of ophthalmology.

    Science.gov (United States)

    Huang, Wenbin; Zhang, Xiulan

    2014-08-26

    The three-dimensional (3D) printer is a new technology that creates physical objects from digital files. Recent technological advances in 3D printing have resulted in increased use of this technology in the medical field, where it is beginning to revolutionize medical and surgical possibilities. It is already providing medicine with powerful tools that facilitate education, surgical planning, and organ transplantation research. A good understanding of this technology will be beneficial to ophthalmologists. The potential applications of 3D printing in ophthalmology, both current and future, are explored in this article. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  3. MO-A-9A-01: Innovation in Medical Physics Practice: 3D Printing Applications

    International Nuclear Information System (INIS)

    Ehler, E; Perks, J; Rasmussen, K; Bakic, P

    2014-01-01

    3D printing, also called additive manufacturing, has great potential to advance the field of medicine. Many medical uses have been exhibited from facial reconstruction to the repair of pulmonary obstructions. The strength of 3D printing is to quickly convert a 3D computer model into a physical object. Medical use of 3D models is already ubiquitous with technologies such as computed tomography and magnetic resonance imaging. Thus tailoring 3D printing technology to medical functions has the potential to impact patient care. This session will discuss applications to the field of Medical Physics. Topics discussed will include introduction to 3D printing methods as well as examples of real-world uses of 3D printing spanning clinical and research practice in diagnostic imaging and radiation therapy. The session will also compare 3D printing to other manufacturing processes and discuss a variety of uses of 3D printing technology outside the field of Medical Physics. Learning Objectives: Understand the technologies available for 3D Printing Understand methods to generate 3D models Identify the benefits and drawbacks to rapid prototyping / 3D Printing Understand the potential issues related to clinical use of 3D Printing

  4. MO-A-9A-01: Innovation in Medical Physics Practice: 3D Printing Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E [University of Minnesota, Minneapolis, MN (United States); Perks, J [UC Davis Medical Center, Sacramento, CA (United States); Rasmussen, K [East Carolina University, Greenville, NC (United States); Bakic, P [University of Pennsylvania, Philadelphia, PA (United States)

    2014-06-15

    3D printing, also called additive manufacturing, has great potential to advance the field of medicine. Many medical uses have been exhibited from facial reconstruction to the repair of pulmonary obstructions. The strength of 3D printing is to quickly convert a 3D computer model into a physical object. Medical use of 3D models is already ubiquitous with technologies such as computed tomography and magnetic resonance imaging. Thus tailoring 3D printing technology to medical functions has the potential to impact patient care. This session will discuss applications to the field of Medical Physics. Topics discussed will include introduction to 3D printing methods as well as examples of real-world uses of 3D printing spanning clinical and research practice in diagnostic imaging and radiation therapy. The session will also compare 3D printing to other manufacturing processes and discuss a variety of uses of 3D printing technology outside the field of Medical Physics. Learning Objectives: Understand the technologies available for 3D Printing Understand methods to generate 3D models Identify the benefits and drawbacks to rapid prototyping / 3D Printing Understand the potential issues related to clinical use of 3D Printing.

  5. Application to printed resistors

    International Nuclear Information System (INIS)

    Hachiyanagi, Yoshimi; Uraki, Hisatsugu; Sawamura, Masashi

    1989-01-01

    Most of printed circuit boards are made at present by etching copper foils which are laminated on insulating composite boards of paper/phenol resin or glass nonwoven fabric/epoxy rein. This is called subtractive process, and since this is a wet process, the problem of coping with the pollution due to etching solution, plating solution and others is involved. As the method of solving this problem, attention has been paid to the dry process which forms conductor patterns by screen printing using electro-conductive paste. For such resin substrates, generally polymer thick films (PTF) using thermosetting resin as the binder are used. Also the research on the formation of resistors, condensers and other parts by printing using the technology of cermet thick films (CTF) and PTF is active, and it is partially put in practical use. The problems are the deformation and deterioration of substrates, therefore, as the countermeasures, electron beam hardening type PTF has been studied, and various pastes have been developed. In this paper, electron beam hardening type printed resistors are reported. The features, resistance paste, and a number of the experiments on printed resistors are described. (K.I.)

  6. Effects of ozone on the various digital print technologies: Photographs and documents

    Energy Technology Data Exchange (ETDEWEB)

    Burge, D; Gordeladze, N; Bigourdan, J-L; Nishimura, D, E-mail: dmbpph@rit.ed [Image Permanence Institute at Rochester Institute of Technology, 70 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2010-06-01

    The harmful effects of ozone on inkjet photographs have been well documented. This project expands on that research by performing ozone tests on a greater variety of digital prints including colour electrophotographic and dye sublimation. The sensitivities of these materials are compared to traditionally printed materials (black-and-white electrophotographic, colour photographic and offset lithographic) to determine if the digital prints require special care practices. In general, the digital prints were more sensitive to ozone than traditional prints. Dye inkjet prints were more sensitive to fade than pigment inkjet, though pigment was not immune. The dye sublimation, colour electrophotographic (dry and liquid toner), and traditional print systems were relatively resistant to ozone. Text-based documents were evaluated in addition to photographic images, since little work has been done to determine if the type of object (image or text) has an impact on its sensitivity to ozone. The results showed that documents can be more resistant to ozone than photographs even when created using the same printer and inks. It is recommended that cultural heritage institutions not expose their porous-coated, dye-based inkjet photos to open air for extended periods of time. Other inkjet prints should be monitored for early signs of change.

  7. Effects of ozone on the various digital print technologies: Photographs and documents

    International Nuclear Information System (INIS)

    Burge, D; Gordeladze, N; Bigourdan, J-L; Nishimura, D

    2010-01-01

    The harmful effects of ozone on inkjet photographs have been well documented. This project expands on that research by performing ozone tests on a greater variety of digital prints including colour electrophotographic and dye sublimation. The sensitivities of these materials are compared to traditionally printed materials (black-and-white electrophotographic, colour photographic and offset lithographic) to determine if the digital prints require special care practices. In general, the digital prints were more sensitive to ozone than traditional prints. Dye inkjet prints were more sensitive to fade than pigment inkjet, though pigment was not immune. The dye sublimation, colour electrophotographic (dry and liquid toner), and traditional print systems were relatively resistant to ozone. Text-based documents were evaluated in addition to photographic images, since little work has been done to determine if the type of object (image or text) has an impact on its sensitivity to ozone. The results showed that documents can be more resistant to ozone than photographs even when created using the same printer and inks. It is recommended that cultural heritage institutions not expose their porous-coated, dye-based inkjet photos to open air for extended periods of time. Other inkjet prints should be monitored for early signs of change.

  8. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    Science.gov (United States)

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  9. Banner Pages on the New Printing Infrastructure

    CERN Multimedia

    2006-01-01

    Changes to the printing service were announced in CERN Bulletin No. 37-38/2006. In the new infrastructure, the printing of the banner page has been disabled in order to reduce paper consumption. Statistics show that the average print job size is small and the paper savings by not printing the banner page could be up to 20 %. When each printer is moved onto the new infrastructure banner page printing will be disabled. In the case of corridor printers which are shared by several users, the Helpdesk can re-enable banner page printing upon request. We hope ultimately to arrive at a situation where banner page printing is enabled on fewer than 10% of printers registered on the network. You can still print banner pages on printers where it has been centrally disabled by using Linux. Simply add it to your print job on the client side by adding the -o job-sheets option to your lpr command. Detailed documentation is available on each SLC3/4 under the following link: http://localhost:631/sum.html#4_2 Please bea...

  10. Balkan Print Forum – Dynamic Balkan Print Media Community

    Directory of Open Access Journals (Sweden)

    Rossitza Velkova

    2011-11-01

    Full Text Available Founded in October 2006, the Balkan Print Forum is gradually becoming an important regional institution. Its main targets are to share experiences and know-how,to initiate and intensify contacts and to support joint projects in the Balkan region.Since drupa 2008 there are 11 member countries of the Balkan Print Forum:Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Former Yugoslav Republic of Macedonia, Greece, Hungary, Romania, Serbia, Slovenia and Turkey. Partners of BPF are some companies and universities from Russia and Ukraine.

  11. Inkjet and screen printing for electronic applications

    OpenAIRE

    Medina Rodríguez, Beatriz

    2016-01-01

    Printed electronics (PE) is a set of printing methods used to create electrical devices on various substrates. Printing typically uses common printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography, and inkjet. Electrically functional, electronic or optical inks are deposited on the substrate, creating active or passive devices. PE offers a great advantage when compared to traditional processes or microelectronics du...

  12. Can lip prints provide biologic evidence?

    Science.gov (United States)

    Sharma, Preeti; Sharma, Neeraj; Wadhwan, Vijay; Aggarwal, Pooja

    2016-01-01

    Lip prints are unique and can be used in personal identification. Very few studies are available which establish them as biological evidence in the court of law. Thus, the objective of this study was to attempt to isolate DNA and obtain full short tandem repeat (STR) loci of the individual from the lip prints on different surfaces. Twelve lip prints were procured on different surfaces such as tissue paper, cotton cloth, ceramic tile, and glass surface. Latent lip prints were developed using fingerprint black powder. Lipstick-coated lip prints were also collected on the same supporting items. DNA was isolated, quantified, and amplified using Identifiler™ kit to type 15 STR loci. Ample quantity of DNA was extracted from all the lip print impressions and 15 loci were successfully located in seven samples. Fourteen loci were successfully typed in 3 lip impressions while 13 loci were typed in 2 samples. This study emphasizes the relevance of lip prints at the scene of crime. Extraction of DNA followed by typing of STR loci establishes the lip prints as biological evidence too. Tissue papers, napkins, cups, and glasses may have imprints of the suspect's lips. Thus, the full genetic profile is extremely useful for the forensic team.

  13. 3D printed e-tongue

    Science.gov (United States)

    Gaál, Gabriel; da Silva, Tatiana A.; Gaál, Vladimir; Hensel, Rafael C.; Amaral, Lucas R.; Rodrigues, Varlei; Riul, Antonio

    2018-05-01

    Nowadays, one of the biggest issues addressed to electronic sensor fabrication is the build-up of efficient electrodes as an alternative way to the expensive, complex and multistage processes required by traditional techniques. Printed electronics arises as an interesting alternative to fulfill this task due to the simplicity and speed to stamp electrodes on various surfaces. Within this context, the Fused Deposition Modeling 3D printing is an emerging, cost-effective and alternative technology to fabricate complex structures that potentiates several fields with more creative ideas and new materials for a rapid prototyping of devices. We show here the fabrication of interdigitated electrodes using a standard home-made CoreXY 3D printer using transparent and graphene-based PLA filaments. Macro 3D printed electrodes were easily assembled within 6 minutes with outstanding reproducibility. The electrodes were also functionalized with different nanostructured thin films via dip-coating Layer-by-Layer technique to develop a 3D printed e-tongue setup. As a proof of concept, the printed e-tongue was applied to soil analysis. A control soil sample was enriched with several macro-nutrients to the plants (N, P, K, S, Mg and Ca) and the discrimination was done by electrical impedance spectroscopy of water solution of the soil samples. The data was analyzed by Principal Component Analysis and the 3D printed sensor distinguished clearly all enriched samples despite the complexity of the soil chemical composition. The 3D printed e-tongue successfully used in soil analysis encourages further investments in developing new sensory tools for precision agriculture and other fields exploiting the simplicity and flexibility offered by the 3D printing techniques.

  14. Facile synthesis of amorphous FeOOH/MnO2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors

    Science.gov (United States)

    Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei

    2017-09-01

    More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.

  15. 3D printing in orthognathic surgery − A literature review

    Directory of Open Access Journals (Sweden)

    Hsiu-Hsia Lin

    2018-07-01

    Full Text Available With the recent advances in three-dimensional (3D imaging, computer-assisted surgical planning and simulation are now regularly used for analysis of craniofacial structures and improved prediction of surgical outcomes in orthognathic surgery. A variety of patient-specific surgical guides and devices have been designed and manufactured using 3D printing technology, which rapidly gained widespread popularity to improve the outcomes. The article presents an overview of 3D printing technology for state-of-the-art application in orthognathic surgery and discusses the impacts on treatment feasibility and patient outcome. The current available literature regarding the use of 3D printing methods in orthognathic surgery including 3D computer-aided design/computer-aided manufacturing, rapid prototyping, additive manufacturing, 3D printing, 3D printed models, surgical occlusal splints, custom-made guides, templates and fixation plates is reviewed. A Medline, PubMed, ProQuest and ScienceDirect search was performed to find relevant articles over the past 10 years. A total of 318 articles were found, out of which 69 were publications addressing the topic of this study. An additional 9 hand-searched articles were added. From the review, we can conclude that the use of 3D printing methods in orthognathic surgery provide the benefit of optimal functional and aesthetic results, patient satisfaction, and precise translation of the treatment plan. Keywords: Orthognathic surgery, 3D printing, Computer-aided design, Computer-aided manufacturing, Rapid prototyping, Additive manufacturing

  16. Plasma jet printing for flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gandhiraman, Ram P.; Singh, Eric; Diaz-Cartagena, Diana C.; Koehne, Jessica; Meyyappan, M. [Center for Nanotechnology, NASA Ames Research Center, Moffett Field, California 94035 (United States); Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-03-21

    Recent interest in flexible electronics and wearable devices has created a demand for fast and highly repeatable printing processes suitable for device manufacturing. Robust printing technology is critical for the integration of sensors and other devices on flexible substrates such as paper and textile. An atmospheric pressure plasma-based printing process has been developed to deposit different types of nanomaterials on flexible substrates. Multiwalled carbon nanotubes were deposited on paper to demonstrate site-selective deposition as well as direct printing without any type of patterning. Plasma-printed nanotubes were compared with non-plasma-printed samples under similar gas flow and other experimental conditions and found to be denser with higher conductivity. The utility of the nanotubes on the paper substrate as a biosensor and chemical sensor was demonstrated by the detection of dopamine, a neurotransmitter, and ammonia, respectively.

  17. A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery.

    Science.gov (United States)

    Cho, Woojin; Job, Alan Varkey; Chen, Jing; Baek, Jung Hwan

    2018-02-01

    Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting.

  18. Integrating 3D Printing into an Early Childhood Teacher Preparation Course: Reflections on Practice

    Science.gov (United States)

    Sullivan, Pamela; McCartney, Holly

    2017-01-01

    This reflection on practice describes a case study integrating 3D printing into a creativity course for preservice teachers. The theoretical rationale is discussed, and the steps for integration are outlined. Student responses and reflections on the experience provide the basis for our analysis. Examples and resources are provided, as well as a…

  19. Recent progress in printed 2/3D electronic devices

    Science.gov (United States)

    Klug, Andreas; Patter, Paul; Popovic, Karl; Blümel, Alexander; Sax, Stefan; Lenz, Martin; Glushko, Oleksandr; Cordill, Megan J.; List-Kratochvil, Emil J. W.

    2015-09-01

    New, energy-saving, efficient and cost-effective processing technologies such as 2D and 3D inkjet printing (IJP) for the production and integration of intelligent components will be opening up very interesting possibilities for industrial applications of molecular materials in the near future. Beyond the use of home and office based printers, "inkjet printing technology" allows for the additive structured deposition of photonic and electronic materials on a wide variety of substrates such as textiles, plastics, wood, stone, tiles or cardboard. Great interest also exists in applying IJP in industrial manufacturing such as the manufacturing of PCBs, of solar cells, printed organic electronics and medical products. In all these cases inkjet printing is a flexible (digital), additive, selective and cost-efficient material deposition method. Due to these advantages, there is the prospect that currently used standard patterning processes can be replaced through this innovative material deposition technique. A main issue in this research area is the formulation of novel functional inks or the adaptation of commercially available inks for specific industrial applications and/or processes. In this contribution we report on the design, realization and characterization of novel active and passive inkjet printed electronic devices including circuitry and sensors based on metal nanoparticle ink formulations and the heterogeneous integration into 2/3D printed demonstrators. The main emphasis of this paper will be on how to convert scientific inkjet knowledge into industrially relevant processes and applications.

  20. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing.

    Science.gov (United States)

    Gao, Peng; Hunter, Aaron; Benavides, Sherwood; Summe, Mark J; Gao, Feng; Phillip, William A

    2016-02-10

    The fabrication of functional nanomaterials with complex structures has been serving great scientific and practical interests, but current fabrication and patterning methods are generally costly and laborious. Here, we introduce a versatile, reliable, and rapid method for fabricating nanostructured polymeric materials. The novel method is based on a combination of inkjet printing and template synthesis, and its utility and advantages in the fabrication of polymeric nanomaterials is demonstrated through three examples: the generation of polymeric nanotubes, nanowires, and thin films. Layer-by-layer-assembled nanotubes can be synthesized in a polycarbonate track-etched (PCTE) membrane by printing poly(allylamine hydrochloride) and poly(styrenesulfonate) sequentially. This sequential deposition of polyelectrolyte ink enables control over the surface charge within the nanotubes. By a simple change of the printing conditions, polymeric nanotubes or nanowires were prepared by printing poly(vinyl alcohol) in a PCTE template. In this case, the high-throughput nature of the method enables functional nanomaterials to be generated in under 3 min. Furthermore, we demonstrate that inkjet printing paired with template synthesis can be used to generate patterns comprised of chemically distinct nanomaterials. Thin polymeric films of layer-by-layer-assembled poly(allylamine hydrochloride) and poly(styrenesulfonate) are printed on a PCTE membrane. Track-etched membranes covered with the deposited thin films reject ions and can potentially be utilized as nanofiltration membranes. When the fabrication of these different classes of nanostructured materials is demonstrated, the advantages of pairing template synthesis with inkjet printing, which include fast and reliable deposition, judicious use of the deposited materials, and the ability to design chemically patterned surfaces, are highlighted.

  1. Electron beam hardening type copper plate printing ink

    International Nuclear Information System (INIS)

    Kawamura, Eiji; Inoue, Mitsuo; Kusaki, Satoichiro

    1989-01-01

    Copper plate printing is the printing method of filling ink in the parts of concave printing elements on a type area, and transferring the ink to a base, and it is the feature that the ink in the printing element parts of a print rises. Copper plate prints show profound feeling, in addition, its effect of preventing forgery is high. This method is generally called engraving printing, and is used frequently for printing various bills and artistic prints. The electron beam irradiation apparatus installed in the laboratory of the Printing Bureau, Ministry of Finance, is an experimental machine of area beam type, and is so constructed as to do batch conveyance and web conveyance. As the ink in printing element parts rises, the offset at the delivery part of a printing machine becomes a problem. Electron beam is superior in its transparency, and can dry instantaneously to the inside of opaque ink. At 200 kV of acceleration voltage, the ink of copper plate prints can be hardened by electron beam irradiation. The dilution monomers as the vehicle for ink were tested for their dilution capability and the effect of electron beam hardening. The problem in the utilization of electron beam is the deterioration of papers, and the counter-measures were tested. (K.I.)

  2. The dimension added by 3D scanning and 3D printing of meteorites

    Science.gov (United States)

    de Vet, S. J.

    2016-01-01

    An overview for the 3D photodocumentation of meteorites is presented, focussing on two 3D scanning methods in relation to 3D printing. The 3D photodocumention of meteorites provides new ways for the digital preservation of culturally, historically or scientifically unique meteorites. It has the potential for becoming a new documentation standard of meteorites that can exist complementary to traditional photographic documentation. Notable applications include (i.) use of physical properties in dark flight-, strewn field-, or aerodynamic modelling; (ii.) collection research of meteorites curated by different museum collections, and (iii.) public dissemination of meteorite models as a resource for educational users. The possible applications provided by the additional dimension of 3D illustrate the benefits for the meteoritics community.

  3. Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology

    Science.gov (United States)

    Roberson, Luke; Williams, Martha; Tate, LaNetra; Fortier, Craig; Smith, David; Davia, Kyle; Gibson, Tracy; Snyder, Sarah

    2013-01-01

    Inkjet printing is a common commercial process. In addition to the familiar use in printing documents from computers, it is also used in some industrial applications. For example, wire manufacturers are required by law to print the wire type, gauge, and safety information on the exterior of each foot of manufactured wire, and this is typically done with inkjet or laser printers. The goal of this work was the creation of conductive inks that can be applied to a wire or flexible substrates via inkjet printing methods. The use of inkjet printing technology to print conductive inks has been in testing for several years. While researchers have been able to get the printing system to mechanically work, the application of conductive inks on substrates has not consistently produced adequate low resistances in the kilohm range. Conductive materials can be applied using a printer in single or multiple passes onto a substrate including textiles, polymer films, and paper. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes); graphene, a polycyclic aromatic hydrocarbon (e.g., pentacene and bisperipentacene); metal nanoparticles; inherently conductive polymers (ICP); and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. For certain formulations, increased conductivity can be achieved by printing on substrates supported by low levels of magnetic field alignment. The adherent conductive materials can be used in applications such as damage detection, dust particle removal, smart coating systems, and flexible electronic circuitry. By applying alternating layers of different electrical conductors to form a layered composite material, a single homogeneous layer can be produced with improved electrical properties. It is believed that patterning alternate layers of

  4. PRINTING TECHNIQUES: RECENT DEVELOPMENTS IN PHARMACEUTICAL TECHNOLOGY.

    Science.gov (United States)

    Jamroz, Witold; Kurek, Mateusz; Lyszczarz, Ewelina; Brniak, Witold; Jachowicz, Renata

    2017-05-01

    In the last few years there has been a huge progress in a development of printing techniques and their application in pharmaceutical sciences and particularly in the pharmaceutical technology. The variety of printing methods makes it necessary to systemize them, explain the principles of operation, and specify the possibilities of their use in pharmaceutical technology. This paper aims to review the printing techniques used in a drug development process. The growing interest in 2D and 3D printing methods results in continuously increasing number of scientific papers. Introduction of the first printed drug Spritam@ to the market seems to be a milestone of the 3D printing development. Thus, a particular aim of this review is to show the latest achievements of the researchers in the field of the printing medicines.

  5. Improving the printing quality of an inkjet printhead using MIMO model predictive control

    NARCIS (Netherlands)

    Ezzeldin Mahdy Abdelmonem, M.; Weiland, S.; Bosch, van den P.P.J.

    2011-01-01

    Drop-on-Demand inkjet printing is considered one of the most promising printing technologies that offers several advantages including high speed, quiet operation and compatibility with a variety of substrates. That makes it an important manufacturing technology serving a wide variety of markets.

  6. The Trope Tank: A Laboratory with Material Resources for Creative Computing

    Directory of Open Access Journals (Sweden)

    Nick Montfort

    2014-12-01

    Full Text Available http://dx.doi.org/10.5007/1807-9288.2014v10n2p53 Principles for organizing and making use of a laboratory with material computing resources are articulated. This laboratory, the Trope Tank, is a facility for teaching, research, and creative collaboration and offers hardware (in working condition and set up for use from the 1970s, 1980s, and 1990s, including videogame systems, home computers, and an arcade cabinet. To aid in investigating the material history of texts, the lab has a small 19th century letterpress, a typewriter, a print terminal, and dot-matrix printers. Other resources include controllers, peripherals, manuals, books, and software on physical media. These resources are used for teaching, loaned for local exhibitions and presentations, and accessed by researchers and artists. The space is primarily a laboratory (rather than a library, studio, or museum, so materials are organized by platform and intended use. Textual information about the historical contexts of the available systems, and resources are set up to allow easy operation, and even casual use, by researchers, teachers, students, and artists.

  7. 3D Printing and Digital Rock Physics for the Geosciences

    Science.gov (United States)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2014-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. For example, digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts, to the point where parts might be cheaper to print than to make by traditional means in a plant and ship. Some key benefits of additive manufacturing include short lead times, complex shapes, parts on demand, zero required inventory and less material waste. Even subtractive processing, such as milling and etching, may be economized by additive manufacturing. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that the marriage of these technologies can bring to geosciences, including examples from our current research initiatives in developing constitutive laws for transport and geomechanics via digital rock physics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  8. Influence of Parameters of a Printing Plate on Photoluminescence of Nanophotonic Printed Elements of Novel Packaging

    Directory of Open Access Journals (Sweden)

    Olha Sarapulova

    2015-01-01

    Full Text Available In order to produce nanophotonic elements for smart packaging, we investigated the influence of the parameters of screen and offset gravure printing plates on features of printed application of coatings with nanophotonic components and on parameters of their photoluminescence. To determine the dependence of luminescence intensity on the thickness of solid coating, we carried out the formation of nanophotonic solid surfaces by means of screen printing with different layer thickness on polypropylene film. The obtained analytical dependencies were used to confirm the explanation of the processes that occur during the fabrication of nanophotonic coverings with offset gravure printing plates. As a result of experimental studies, it was determined that the different character of the dependency of total luminescence intensity of nanophotonic elements from the percentage of a pad is explained by the use of different types of offset gravure printing plates, where the size of raster points remains constant in one case and changes in the other case, while the depth of the printing elements accordingly changes or remains constant. To obtain nanophotonic areas with predetermined photoluminescent properties, the influence of investigated factors on changes of photoluminescent properties of nanophotonic printed surfaces should be taken into consideration.

  9. Inkjet 3D printed check microvalve

    International Nuclear Information System (INIS)

    Walczak, Rafał; Adamski, Krzysztof; Lizanets, Danylo

    2017-01-01

    3D printing enables fast and relatively easy fabrication of various microfluidic structures including microvalves. A check microvalve is the simplest valve enabling control of the fluid flow in microchannels. Proper operation of the check valve is ensured by a movable element that tightens the valve seat during backward flow and enables free flow for forward pressure. Thus, knowledge of the mechanical properties of the movable element is crucial for optimal design and operation of the valve. In this paper, we present for the first time the results of investigations on basic mechanical properties of the building material used in multijet 3D printing. Specified mechanical properties were used in the design and fabrication of two types of check microvalve—with deflecting or hinge-fixed microflap—with 200 µ m and 300 µ m thickness. Results of numerical simulation and experimental data of the microflap deflection were obtained and compared. The valves were successfully 3D printed and characterised. Opening/closing characteristics of the microvalve for forward and backward pressures were determined. Thus, proper operation of the check microvalve so developed was confirmed. (technical note)

  10. An open source 3-d printed modular micro-drive system for acute neurophysiology.

    Directory of Open Access Journals (Sweden)

    Shaun R Patel

    Full Text Available Current, commercial, electrode micro-drives that allow independent positioning of multiple electrodes are expensive. Custom designed solutions developed by individual laboratories require fabrication by experienced machinists working in well equipped machine shops and are therefore difficult to disseminate into widespread use. Here, we present an easy to assemble modular micro-drive system for acute primate neurophysiology (PriED that utilizes rapid prototyping (3-d printing and readily available off the shelf-parts. The use of 3-d printed parts drastically reduces the cost of the device, making it available to labs without the resources of sophisticated machine shops. The direct transfer of designs from electronic files to physical parts also gives researchers opportunities to easily modify and implement custom solutions to specific recording needs. We also demonstrate a novel model of data sharing for the scientific community: a publicly available repository of drive designs. Researchers can download the drive part designs from the repository, print, assemble and then use the drives. Importantly, users can upload their modified designs with annotations making them easily available for others to use.

  11. 3D-printed Bioanalytical Devices

    Science.gov (United States)

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-01-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  12. Medical student use of digital learning resources.

    Science.gov (United States)

    Scott, Karen; Morris, Anne; Marais, Ben

    2018-02-01

    University students expect to use technology as part of their studies, yet health professional teachers can struggle with the change in student learning habits fuelled by technology. Our research aimed to document the learning habits of contemporary medical students during a clinical rotation by exploring the use of locally and externally developed digital and print self-directed learning resources, and study groups. We investigated the learning habits of final-stage medical students during their clinical paediatric rotation using mixed methods, involving learning analytics and a student questionnaire. Learning analytics tracked aggregate student usage statistics of locally produced e-learning resources on two learning management systems and mobile learning resources. The questionnaire recorded student-reported use of digital and print learning resources and study groups. The students made extensive use of digital self-directed learning resources, especially in the 2 weeks before the examination, which peaked the day before the written examination. All students used locally produced digital formative assessment, and most (74/98; 76%) also used digital resources developed by other institutions. Most reported finding locally produced e-learning resources beneficial for learning. In terms of traditional forms of self-directed learning, one-third (28/94; 30%) indicated that they never read the course textbook, and few students used face-to-face 39/98 (40%) or online 6/98 (6%) study groups. Learning analytics and student questionnaire data confirmed the extensive use of digital resources for self-directed learning. Through clarification of learning habits and experiences, we think teachers can help students to optimise effective learning strategies; however, the impact of contemporary learning habits on learning efficacy requires further evaluation. Health professional teachers can struggle with the change in student learning habits fuelled by technology. © 2017 John

  13. Printing and civilization; Insatsu to bunmei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T. [Dainippon Ink and Chemicals Inc., Tokyo (Japan)

    1995-01-01

    It can be said that the printing has not been only a barometer of culture, but also has formed a foundation of culture as the facilities of civilization, and has shouldered a role to drag the culture. In modern nation, that the freedom of speech and press has been clearly pointed out as the fundamental human right, shows straightforwardly an important significance of such a printing. Though it is also statistically clear that there is an exact relation between GNP and printed materials per capita, in this paper centering around the examples in Japan, a relation between the printing and civilization/culture is introduced like the episodes. It does not yet become definite that what kind of influence a proposition so called `printing is a barometer of culture` is affected by the information/communication revolution which is regarded to be advanced very rapidly. However, speaking conclusively it can not be thought that a demand for the printing which can produce the information in a great deal of quantity with a low cost, and for the printing which does not need special output terminal and is excellent in portability and glance ability, may largely be reduced. 1 fig.

  14. The Papers Printing Quality Complex Assessment Algorithm Development Taking into Account the Composition and Production Technological Features

    Science.gov (United States)

    Babakhanova, Kh A.; Varepo, L. G.; Nagornova, I. V.; Babluyk, E. B.; Kondratov, A. P.

    2018-04-01

    Paper is one of the printing system key components causing the high-quality printed products output. Providing the printing companies with the specified printing properties paper, while simultaneously increasing the paper products range and volume by means of the forecasting methods application and evaluation during the production process, is certainly a relevant problem. The paper presents the printing quality control algorithm taking into consideration the paper printing properties quality assessment depending on the manufacture technological features and composition variation. The information system including raw material and paper properties data and making possible pulp and paper enterprises to select paper composition optimal formulation is proposed taking into account the printing process procedure peculiarities of the paper manufacturing with specified printing properties.

  15. 3D printing of nano- and micro-structures

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Additive manufacturing or 3D printing techniques are being vigorously investigated as a replacement to the traditional and conventional methods in fabrication to bring forth cost and time effective approaches. Introduction of 3D printing has led to printing micro and nanoscale structures including tissues and organelles, bioelectric sensors and devices, artificial bones and transplants, microfluidic devices, batteries and various other biomaterials. Various microfabrication processes have been developed to fabricate micro components and assemblies at lab scale. 3D Fabrication processes that can accommodate the functional and geometrical requirements to realize complicated structures are becoming feasible through advances in additive manufacturing. This advancement could lead to simpler development mechanisms of novel components and devices exhibiting complex features. For instance, development of microstructure electrodes that can penetrate the epidermis of the skin to collect the bio potential signal may prove very effective than the electrodes that measure signal from the skin's surface. The micro and nanostructures will have to possess extraordinary material and mechanical properties for its dexterity in the applications. A substantial amount of research being pursued on stretchable and flexible devices based on PDMA, textiles, and organic electronics. Despite the numerous advantages these substrates and techniques could solely offer, 3D printing enables a multi-dimensional approach towards finer and complex applications. This review emphasizes the use of 3D printing to fabricate micro and nanostructures for that can be applied for human healthcare.

  16. Natural fibre composites for 3D Printing

    OpenAIRE

    Pandey, Kapil

    2015-01-01

    3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...

  17. Printing versus coating - What will be the future production technology for printed electronics?

    Energy Technology Data Exchange (ETDEWEB)

    Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank [KROENERT GmbH and Co KG, Schuetzenstrasse 105, 22761 Hamburg (Germany)

    2015-02-17

    The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.

  18. 3D-Printing in Congenital Cardiology: From Flatland to Spaceland.

    Science.gov (United States)

    Deferm, Sébastien; Meyns, Bart; Vlasselaers, Dirk; Budts, Werner

    2016-01-01

    Medical imaging has changed to a great extent over the past few decades. It has been revolutionized by three-dimensional (3D) imaging techniques. Despite much of modern medicine relying on 3D imaging, which can be obtained accurately, we keep on being limited by visualization of the 3D content on two-dimensional flat screens. 3D-printing of graspable models could become a feasible technique to overcome this gap. Therefore, we printed pre- and postoperative 3D-models of a complex congenital heart defect. With this example, we intend to illustrate that these models hold value in preoperative planning, postoperative evaluation of a complex procedure, communication with the patient, and education of trainees. At this moment, 3D printing only leaves a small footprint, but makes already a big impression in the domain of cardiology and cardiovascular surgery. Further studies including more patients and more validated applications are needed to streamline 3D printing in the clinical setting of daily practice.

  19. 3D-Printing in Congenital Cardiology: From Flatland to Spaceland

    Directory of Open Access Journals (Sweden)

    Sébastien Deferm

    2016-01-01

    Full Text Available Medical imaging has changed to a great extent over the past few decades. It has been revolutionized by three-dimensional (3D imaging techniques. Despite much of modern medicine relying on 3D imaging, which can be obtained accurately, we keep on being limited by visualization of the 3D content on two-dimensional flat screens. 3D-printing of graspable models could become a feasible technique to overcome this gap. Therefore, we printed pre- and postoperative 3D-models of a complex congenital heart defect. With this example, we intend to illustrate that these models hold value in preoperative planning, postoperative evaluation of a complex procedure, communication with the patient, and education of trainees. At this moment, 3D printing only leaves a small footprint, but makes already a big impression in the domain of cardiology and cardiovascular surgery. Further studies including more patients and more validated applications are needed to streamline 3D printing in the clinical setting of daily practice.

  20. Applications of Organic and Printed Electronics A Technology-Enabled Revolution

    CERN Document Server

    2013-01-01

    Organic and printed electronics can enable a revolution in the applications of electronics and this book offers readers an overview of the state-of-the-art in this rapidly evolving domain.  The potentially low cost, compatibility with flexible substrates and the wealth of devices that characterize organic and printed electronics will make possible applications that go far beyond the well-known displays made with large-area silicon electronics. Since organic electronics are still in their early stage, undergoing transition from lab-scale and prototype activities to production, this book serves as a valuable snapshot of the current landscape of the different devices enabled by this technology, reviewing all applications that are developing and those can be foreseen.   Provides a complete roadmap for organic and printed electronics research and development for the next several years; Includes an overview of the printing processes for organic electronics, along with state of the art applications, such as solar ...

  1. STRATEGI PEMASARAN PRODUK DIGITAL PRINTING PADA CV. FNB DIGITAL JAMBI

    OpenAIRE

    Yuniarti, Yenni; Mauliana, Sarah

    2012-01-01

    CV. Digital FNB is one of the companies that involved in Digital Printing business. Based on survey in the middle of 2011-2012, there are 31 digital printing businesses in the city of Jambi. In order to examine the marketing stratey implemented, descriptive study has been conducted, uses interview, observation, and documentation as instruments. The strategy that observed in this study consist of marketing strategy including market segmentation, targeting, product strategy, pricing strategy, ...

  2. Detection of latent prints by Raman imaging

    Science.gov (United States)

    Lewis, Linda Anne [Andersonville, TN; Connatser, Raynella Magdalene [Knoxville, TN; Lewis, Sr., Samuel Arthur

    2011-01-11

    The present invention relates to a method for detecting a print on a surface, the method comprising: (a) contacting the print with a Raman surface-enhancing agent to produce a Raman-enhanced print; and (b) detecting the Raman-enhanced print using a Raman spectroscopic method. The invention is particularly directed to the imaging of latent fingerprints.

  3. Surgeon-Based 3D Printing for Microvascular Bone Flaps.

    Science.gov (United States)

    Taylor, Erin M; Iorio, Matthew L

    2017-07-01

    Background  Three-dimensional (3D) printing has developed as a revolutionary technology with the capacity to design accurate physical models in preoperative planning. We present our experience in surgeon-based design of 3D models, using home 3D software and printing technology for use as an adjunct in vascularized bone transfer. Methods  Home 3D printing techniques were used in the design and execution of vascularized bone flap transfers to the upper extremity. Open source imaging software was used to convert preoperative computed tomography scans and create 3D models. These were printed in the surgeon's office as 3D models for the planned reconstruction. Vascularized bone flaps were designed intraoperatively based on the 3D printed models. Results  Three-dimensional models were created for intraoperative use in vascularized bone flaps, including (1) medial femoral trochlea (MFT) flap for scaphoid avascular necrosis and nonunion, (2) MFT flap for lunate avascular necrosis and nonunion, (3) medial femoral condyle (MFC) flap for wrist arthrodesis, and (4) free fibula osteocutaneous flap for distal radius septic nonunion. Templates based on the 3D models allowed for the precise and rapid contouring of well-vascularized bone flaps in situ, prior to ligating the donor pedicle. Conclusions  Surgeon-based 3D printing is a feasible, innovative technology that allows for the precise and rapid contouring of models that can be created in various configurations for pre- and intraoperative planning. The technology is easy to use, convenient, and highly economical as compared with traditional send-out manufacturing. Surgeon-based 3D printing is a useful adjunct in vascularized bone transfer. Level of Evidence  Level IV. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Printed optically transparent graphene cellulose electrodes

    Science.gov (United States)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas; Andrushchenko, Anatoly

    2016-02-01

    Optically transparent electrodes are a key component in variety of products including bioelectronics, touch screens, flexible displays, low emissivity windows, and photovoltaic cells. Although highly conductive indium tin oxide (ITO) films are often used in these electrode applications, the raw material is very expensive and the electrodes often fracture when mechanically stressed. An alternative low-cost material for inkjet printing transparent electrodes on glass and flexible polymer substrates is described in this paper. The water based ink is created by using a hydrophilic cellulose derivative, carboxymethyl cellulose (CMC), to help suspend the naturally hydrophobic graphene (G) sheets in a solvent composed of 70% DI water and 30% 2-butoxyethanol. The CMC chain has hydrophobic and hydrophilic functional sites which allow adsorption on G sheets and, therefore, permit the graphene to be stabilized in water by electrostatic and steric forces. Once deposited on the functionalized substrate the electrical conductivity of the printed films can be "tuned" by decomposing the cellulose stabilizer using thermal reduction. The entire electrode can be thermally reduced in an oven or portions of the electrode thermally modified using a laser annealing process. The thermal process can reduce the sheet resistance of G-CMC films to < 100 Ω/sq. Experimental studies show that the optical transmittance and sheet resistance of the G-CMC conductive electrode is a dependent on the film thickness (ie. superimposed printed layers). The printed electrodes have also been doped with AuCl3 to increase electrical conductivity without significantly increasing film thickness and, thereby, maintain high optical transparency.

  5. Intelligent keyframe extraction for video printing

    Science.gov (United States)

    Zhang, Tong

    2004-10-01

    Nowadays most digital cameras have the functionality of taking short video clips, with the length of video ranging from several seconds to a couple of minutes. The purpose of this research is to develop an algorithm which extracts an optimal set of keyframes from each short video clip so that the user could obtain proper video frames to print out. In current video printing systems, keyframes are normally obtained by evenly sampling the video clip over time. Such an approach, however, may not reflect highlights or regions of interest in the video. Keyframes derived in this way may also be improper for video printing in terms of either content or image quality. In this paper, we present an intelligent keyframe extraction approach to derive an improved keyframe set by performing semantic analysis of the video content. For a video clip, a number of video and audio features are analyzed to first generate a candidate keyframe set. These features include accumulative color histogram and color layout differences, camera motion estimation, moving object tracking, face detection and audio event detection. Then, the candidate keyframes are clustered and evaluated to obtain a final keyframe set. The objective is to automatically generate a limited number of keyframes to show different views of the scene; to show different people and their actions in the scene; and to tell the story in the video shot. Moreover, frame extraction for video printing, which is a rather subjective problem, is considered in this work for the first time, and a semi-automatic approach is proposed.

  6. Application and Research Status of Alternative Materials for 3D-printing Technology

    Directory of Open Access Journals (Sweden)

    WANG Yanqing

    2016-08-01

    Full Text Available Application features and research status of alternative 3D-printing materials for six typical 3D-printingtechniques were reviewed. From the point of view of physical forms, four kinds of materials of liquid photosensitive resin material, thin sheet material (paper or plastic film , low melting point filament material and powder material are included. And from the composition point of view, nearly all kinds of materials in the production and life are included such as polymer materials: plastic, resin, wax; metal and alloy materials; ceramic materials. Liquid photosensitive resin material is used for stereo lithigraphy apparatus(SLA; thin sheet materials such as paper or plastic film are used for laminated object manufacturing(LOM; low melting point polymer filament materials such as wax filament, polyolefin resin filament, polyamide filament and ABS filament are used for fused deposition modeling(FDM; very wide variety powder materials including nylon powder, nylon-coated glass powder, polycarbonate powder, polyamide powder, wax powder, metal powder(Re-sintering and infiltration of copper are needed after sintering, wax-coated ceramic powder, wax-coated metal powder and thermosetting resin-coated fine sand are used for selective laser sintering(SLS. Nearly the same above powder materials are used for selective laser melting(SLM, but the printed parts own much more higher density and better mechanical properties. Powder materials are likewise used for threedimensional printing and gluing(3DP, however, the powders are stuck together by tricolor binder sprayed through nozzle and cross-section shape of the part is color-printed on it. Finally, the development direction in both quality and the yield of 3D-printing materials were pointed out to be a bottle-neck issue and a hot topic in the field of 3D-printing.

  7. Plasma jet printing of electronic materials on flexible and nonconformal objects.

    Science.gov (United States)

    Gandhiraman, Ram P; Jayan, Vivek; Han, Jin-Woo; Chen, Bin; Koehne, Jessica E; Meyyappan, M

    2014-12-10

    We present a novel approach for the room-temperature fabrication of conductive traces and their subsequent site-selective dielectric encapsulation for use in flexible electronics. We have developed an aerosol-assisted atmospheric pressure plasma-based deposition process for efficiently depositing materials on flexible substrates. Silver nanowire conductive traces and silicon dioxide dielectric coatings for encapsulation were deposited using this approach as a demonstration. The paper substrate with silver nanowires exhibited a very low change in resistance upon 50 cycles of systematic deformation, exhibiting high mechanical flexibility. The applicability of this process to print conductive traces on nonconformal 3D objects was also demonstrated through deposition on a 3D-printed thermoplastic object, indicating the potential to combine plasma printing with 3D printing technology. The role of plasma here includes activation of the material present in the aerosol for deposition, increasing the deposition rate, and plasma polymerization in the case of inorganic coatings. The demonstration here establishes a low-cost, high-throughput, and facile process for printing electronic components on nonconventional platforms.

  8. Tensile, Creep, and Fatigue Behaviors of 3D-Printed Acrylonitrile Butadiene Styrene

    Science.gov (United States)

    Zhang, Hanyin; Cai, Linlin; Golub, Michael; Zhang, Yi; Yang, Xuehui; Schlarman, Kate; Zhang, Jing

    2018-01-01

    Acrylonitrile butadiene styrene (ABS) is a widely used thermoplastics in 3D printing. However, there is a lack of thorough investigation of the mechanical properties of 3D-printed ABS components, including orientation-dependent tensile strength and creep fatigue properties. In this work, a systematic characterization is conducted on the mechanical properties of 3D-printed ABS components. Specifically, the effect of printing orientation on the tensile and creep properties is investigated. The results show that, in tensile tests, the 0° printing orientation has the highest Young's modulus of 1.81 GPa, and ultimate strength of 224 MPa. In the creep test, the 90° printing orientation has the lowest k value of 0.2 in the plastics creep model, suggesting 90° is the most creep resistant direction. In the fatigue test, the average cycle number under load of 30 N is 3796 cycles. The average cycle number decreases to 128 cycles when the load is 60 N. Using the Paris law, with an estimated crack size of 0.75 mm, and stress intensity factor is varied from 352 to 700 N√ m, the derived fatigue crack growth rate is 0.0341 mm/cycle. This study provides important mechanical property data that is useful for applying 3D-printed ABS in engineering applications.

  9. Colour print workflow and methods for multilayering of colour and decorative inks using UV inkjet for fine art printing

    Science.gov (United States)

    Parraman, Carinna

    2012-01-01

    In order to increase density of colour and improve ink coverage when printing onto a range of non standard substrates, this paper will present research into multi-layering of colour and the appearance of colour at 'n' levels of ink coverage. Returning to our original investigation of artist's requirements when making inkjet prints, these observations are based on empirical approaches that address the need to present physical data that is more useful and meaningful to the designer. The study has used multi-pass printed colour charts to measure colour and to provide users with an understanding at a soft-preview level to demonstrate the appearance of printed colour on different substrates. Test results relating to the appearance of print on different surfaces, and a series of case studies will be presented using recent research into the capabilities of UV printing technology, which has widened the opportunities for the designer to print onto non-standard materials. It will also present a study into layering of greys and gloss in order to improve the appearance of printed images onto metal.

  10. Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-03-28

    Spectral-Domain Optical Coherence Tomography (SD-OCT) is an optical method capable of 3D imaging of object\\'s internal structure with micron-scale resolution. Modern SD-OCT tools offer the speed capable of online monitoring of printed devices. This paper demonstrates the use of SD-OCT in a simulated roll-to-roll (R2R) process through monitoring some structural properties of moving screen printed interdigitated electrodes. It is shown that structural properties can be resolved for speeds up to ca. 1m/min, which is the first step towards application of this method in real manufacturing processes, including roll-to-roll (R2R) printing.

  11. Principles of three-dimensional printing and clinical applications within the abdomen and pelvis.

    Science.gov (United States)

    Bastawrous, Sarah; Wake, Nicole; Levin, Dmitry; Ripley, Beth

    2018-04-04

    Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one's hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.

  12. Integrated digital printing of flexible circuits for wireless sensing (Conference Presentation)

    Science.gov (United States)

    Mei, Ping; Whiting, Gregory L.; Schwartz, David E.; Ng, Tse Nga; Krusor, Brent S.; Ready, Steve E.; Daniel, George; Veres, Janos; Street, Bob

    2016-09-01

    Wireless sensing has broad applications in a wide variety of fields such as infrastructure monitoring, chemistry, environmental engineering and cold supply chain management. Further development of sensing systems will focus on achieving light weight, flexibility, low power consumption and low cost. Fully printed electronics provide excellent flexibility and customizability, as well as the potential for low cost and large area applications, but lack solutions for high-density, high-performance circuitry. Conventional electronics mounted on flexible printed circuit boards provide high performance but are not digitally fabricated or readily customizable. Incorporation of small silicon dies or packaged chips into a printed platform enables high performance without compromising flexibility or cost. At PARC, we combine high functionality c-Si CMOS and digitally printed components and interconnects to create an integrated platform that can read and process multiple discrete sensors. Our approach facilitates customization to a wide variety of sensors and user interfaces suitable for a broad range of applications including remote monitoring of health, structures and environment. This talk will describe several examples of printed wireless sensing systems. The technologies required for these sensor systems are a mix of novel sensors, printing processes, conventional microchips, flexible substrates and energy harvesting power solutions.

  13. Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks

    Science.gov (United States)

    Jakus, Adam E.; Koube, Katie D.; Geisendorfer, Nicholas R.; Shah, Ramille N.

    2017-03-01

    Here, we present a comprehensive approach for creating robust, elastic, designer Lunar and Martian regolith simulant (LRS and MRS, respectively) architectures using ambient condition, extrusion-based 3D-printing of regolith simulant inks. The LRS and MRS powders are characterized by distinct, highly inhomogeneous morphologies and sizes, where LRS powder particles are highly irregular and jagged and MRS powder particles are rough, but primarily rounded. The inks are synthesized via simple mixing of evaporant, surfactant, and plasticizer solvents, polylactic-co-glycolic acid (30% by solids volume), and regolith simulant powders (70% by solids volume). Both LRS and MRS inks exhibit similar rheological and 3D-printing characteristics, and can be 3D-printed at linear deposition rates of 1-150 mm/s using 300 μm to 1.4 cm-diameter nozzles. The resulting LRS and MRS 3D-printed materials exhibit similar, but distinct internal and external microstructures and material porosity (~20-40%). These microstructures contribute to the rubber-like quasi-static and cyclic mechanical properties of both materials, with young’s moduli ranging from 1.8 to 13.2 MPa and extension to failure exceeding 250% over a range of strain rates (10-1-102 min-1). Finally, we discuss the potential for LRS and MRS ink components to be reclaimed and recycled, as well as be synthesized in resource-limited, extraterrestrial environments.

  14. Reprocessable thermosets for sustainable three-dimensional printing.

    Science.gov (United States)

    Zhang, Biao; Kowsari, Kavin; Serjouei, Ahmad; Dunn, Martin L; Ge, Qi

    2018-05-08

    Among all three-dimensional (3D) printing materials, thermosetting photopolymers claim almost half of the market, and have been widely used in various fields owing to their superior mechanical stability at high temperatures, excellent chemical resistance as well as good compatibility with high-resolution 3D printing technologies. However, once these thermosetting photopolymers form 3D parts through photopolymerization, the covalent networks are permanent and cannot be reprocessed, i.e., reshaped, repaired, or recycled. Here, we report a two-step polymerization strategy to develop 3D printing reprocessable thermosets (3DPRTs) that allow users to reform a printed 3D structure into a new arbitrary shape, repair a broken part by simply 3D printing new material on the damaged site, and recycle unwanted printed parts so the material can be reused for other applications. These 3DPRTs provide a practical solution to address environmental challenges associated with the rapid increase in consumption of 3D printing materials.

  15. Concept of heat-induced inkless eco-printing.

    Science.gov (United States)

    Chen, Jinxiang; Wang, Yong; Xie, Juan; Meng, Chuang; Wu, Gang; Zu, Qiao

    2012-07-01

    Existing laser and inkjet printers often produce adverse effects on human health, the recycling of printing paper and the environment. Therefore, this paper examines the thermogravimetry curves for printer paper, analyzes the discoloration of paper using heat-induction, and investigates the relationship between paper discoloration and the heat-inducing temperature. The mechanism of heat-induced printing is analyzed initially, and its feasibility is determined by a comparative analysis of heat-induced (laser ablation) printing and commercial printing. The innovative concept of heat-induced inkless eco-printing is proposed, in which the required text or graphics are formed on the printing paper via yellowing and blackening produced by thermal energy. This process does not require ink during the printing process; thus, it completely eliminates the aforementioned health and environmental issues. This research also contributes to related interdisciplinary research in biology, laser technology, photochemistry, nano-science, paper manufacturing and color science. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Print like an Egyptian.

    Science.gov (United States)

    Weisensee, Marilyn

    1990-01-01

    Describes a relief printmaking unit for sixth graders with the objective of decorating the inside of a pyramid. Ancient Egyptian imagery was used to help students become familiar with the style. Students designed and printed linoleum prints in different colors. They then critiqued their work and made their selection for the pyramid. (KM)

  17. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding

    OpenAIRE

    Hinton, Thomas J.; Hudson, Andrew; Pusch, Kira; Lee, Andrew; Feinberg, Adam W.

    2016-01-01

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In...

  18. Photooxidation stability of microcapsules in thermochromic prints

    Directory of Open Access Journals (Sweden)

    Mirela Rozic

    2018-03-01

    Full Text Available In this paper, photochemical stability of two thermochromic prints was investigated: vegetable oil based offset and UV curing screen printing ink. The obtained preliminary results can be used for further detailed examination of prints stability. It is well known that thermochromic printing inks are very unstabile when exsposed to UV irradiance and this is why they are mainly used for applications that are not directly exposed to sunlight. The results of the study show the heterogeneous nature of photooxidative degradation of thermochromic prints, and the opposite behaviour of photooxidation can be noticed comparing examined prints. Microcapsules in the UV curable screen print by fixation with polar polymer binder can create a new products stable to photoxidation. For this reason, the areas where the microcapsules and binder are bonded together are stable. Degraded only areas where binder is not related to microcapsules. Microcapsules in offset print do not have the ability to create new stabile forms due to smaller polarity and different chemical composition of the offset oxidized binder. In the offset print, the microcapsules are the least photooxidative stable and also cause lower photooxidative stability of the binder in contact with them. Cavities are formed in the areas where microcapsules are in contact with the binder, while the areas in which the binder is not in contact with microcapsules are not degraded.

  19. Three-dimensional printing in congenital heart disease: A systematic review.

    Science.gov (United States)

    Lau, Ivan; Sun, Zhonghua

    2018-02-17

    Three-dimensional (3D) printing has shown great promise in medicine with increasing reports in congenital heart disease (CHD). This systematic review aims to analyse the main clinical applications and accuracy of 3D printing in CHD, as well as to provide an overview of the software tools, time and costs associated with the generation of 3D printed heart models. A search of different databases was conducted to identify studies investigating the application of 3D printing in CHD. Studies based on patient's medical imaging datasets were included for analysis, while reports on in vitro phantom or review articles were excluded from the analysis. A total of 28 studies met selection criteria for inclusion in the review. More than half of the studies were based on isolated case reports with inclusion of 1-12 cases (61%), while 10 studies (36%) focused on the survey of opinion on the usefulness of 3D printing by healthcare professionals, patients, parents of patients and medical students, and the remaining one involved a multicentre study about the clinical value of 3D printed models in surgical planning of CHD. The analysis shows that patient-specific 3D printed models accurately replicate complex cardiac anatomy, improve understanding and knowledge about congenital heart diseases and demonstrate value in preoperative planning and simulation of cardiac or interventional procedures, assist surgical decision-making and intra-operative orientation, and improve patient-doctor communication and medical education. The cost of 3D printing ranges from USD 55 to USD 810. This systematic review shows the usefulness of 3D printed models in congenital heart disease with applications ranging from accurate replication of complex cardiac anatomy and pathology to medical education, preoperative planning and simulation. The additional cost and time required to manufacture the 3D printed models represent the limitations which need to be addressed in future studies. © 2018 The Authors

  20. Applications of three-dimensional printing technology in the cardiovascular field.

    Science.gov (United States)

    Shi, Di; Liu, Kai; Zhang, Xin; Liao, Hang; Chen, Xiaoping

    2015-10-01

    Three-dimensional (3-D) printing technology has rapidly developed in the last few decades. Meanwhile, the application of this technology has reached beyond the engineering field and expanded to almost all disciplines, including medicine. There has been much research on the medical applications of 3-D printing in neurosurgery, orthopedics, maxillofacial surgery, plastic surgery, tissue engineering, as well as other fields. Because of the complexity of the cardiovascular system, the application of this technology is limited and difficult, as compared to other disciplines, and thus there is much room for future development. Many of the difficulties associated with this technology must be overcome. Nonetheless, there is no doubt that 3-D printing technology will benefit patients with cardiovascular diseases in the near future.

  1. High-Throughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers

    DEFF Research Database (Denmark)

    Bohr, Adam; Boetker, Johan; Wang, Yingya

    2017-01-01

    3D printing allows a rapid and inexpensive manufacturing of custom made and prototype devices. Micromixers are used for rapid and controlled production of nanoparticles intended for therapeutic delivery. In this study, we demonstrate the fabrication of micromixers using computational design and 3D...... via bulk mixing. Moreover, each micromixer could process more than 2 liters per hour with unaffected performance and the setup could easily be scaled-up by aligning several micromixers in parallel. This demonstrates that 3D printing can be used to prepare disposable high-throughput micromixers...... printing, which enable a continuous and industrial scale production of nanocomplexes formed by electrostatic complexation, using the polymers poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Several parameters including polymer concentration, flow rate, and flow ratio were...

  2. All-printed capacitors with continuous solution dispensing technology

    Science.gov (United States)

    Ge, Yang; Plötner, Matthias; Berndt, Andreas; Kumar, Amit; Voit, Brigitte; Pospiech, Doris; Fischer, Wolf-Joachim

    2017-09-01

    Printed electronics have been introduced into the commercial markets in recent years. Various printing technologies have emerged aiming to process printed electronic devices with low cost, environmental friendliness, and compatibility with large areas and flexible substrates. The aim of this study is to propose a continuous solution dispensing technology for processing all-printed thin-film capacitors on glass substrates using a leading-edge printing instrument. Among all printing technologies, this study provides concrete proof of the following outstanding advantages of this technology: high tolerance to inks, high throughput, low cost, and precise pattern transfers. Ag nanoparticle ink based on glycol ethers was used to print the electrodes. To obtain dielectric ink, a copolymer powder of poly(methyl methacrylate-co-benzoylphenyl methacrylate) containing crosslinkable side groups was dissolved in anisole. Various layouts were designed to support multiple electronic applications. Scanning electron microscopy and atomic force microscopy were used to investigate the all-printed capacitor layers formed using the proposed process. Additionally, the printed capacitors were electrically characterized under direct current and alternating current. The measured electrical properties of the printed capacitors were consistent with the theoretical results.

  3. Influence of Parameters of a Printing Plate on Photoluminescence of Nano photonic Printed Elements of Novel Packaging

    International Nuclear Information System (INIS)

    Sarapulova, O.; Sherstiuk, V.

    2015-01-01

    In order to produce nano photonic elements for smart packaging, we investigated the influence of the parameters of screen and offset gravure printing plates on features of printed application of coatings with nano photonic components and on parameters of their photoluminescence. To determine the dependence of luminescence intensity on the thickness of solid coating, we carried out the formation of nano photonic solid surfaces by means of screen printing with different layer thickness on polypropylene film. The obtained analytical dependencies were used to confirm the explanation of the processes that occur during the fabrication of nano photonic coverings with offset gravure printing plates. As a result of experimental studies, it was determined that the different character of the dependency of total luminescence intensity of nano photonic elements from the percentage of a pad is explained by the use of different types of offset gravure printing plates, where the size of raster points remains constant in one case and changes in the other case, while the depth of the printing elements accordingly changes or remains constant. To obtain nano photonic areas with predetermined photo luminescent properties, the influence of investigated factors on changes of photo luminescent properties of nano photonic printed surfaces should be taken into consideration

  4. Review fantastic medical implications of 3D-printing in liver surgeries, liver regeneration, liver transplantation and drug hepatotoxicity testing: A review.

    Science.gov (United States)

    Wang, Jing-Zhang; Xiong, Nan-Yan; Zhao, Li-Zhen; Hu, Jin-Tian; Kong, De-Cheng; Yuan, Jiang-Yong

    2018-06-07

    The epidemiological trend in liver diseases becomes more serious worldwide. Several recent articles published by International Journal of Surgery in 2018 particularly emphasized the encouraging clinical benefits of hepatectomy, liver regeneration and liver transplantation, however, there are still many technical bottlenecks underlying these therapeutic approaches. Remarkably, a few preliminary studies have shown some clues to the role of three-dimensional (3D) printing in improving traditional therapy for liver diseases. Here, we concisely elucidated the curative applications of 3D-printing (no cells) and 3D Bio-printing (with hepatic cells), such as 3D-printed patient-specific liver models and devices for medical education, surgical simulation, hepatectomy and liver transplantation, 3D Bio-printed hepatic constructs for liver regeneration and artificial liver, 3D-printed liver tissues for evaluating drug's hepatotoxicity, and so on. Briefly, 3D-printed liver models and bioactive tissues may facilitate a lot of key steps to cure liver disorders, predictably bringing promising clinical benefits. This work further provides novel insights into facilitating treatment of hepatic carcinoma, promoting liver regeneration both in vivo and in vitro, expanding transplantable liver resources, maximizing therapeutic efficacy as well as minimizing surgical complications, medical hepatotoxicity, operational time, economic costs, etc. Copyright © 2018. Published by Elsevier Ltd.

  5. Review of Recent Inkjet-Printed Capacitive Tactile Sensors

    Directory of Open Access Journals (Sweden)

    Ahmed Salim

    2017-11-01

    Full Text Available Inkjet printing is an advanced printing technology that has been used to develop conducting layers, interconnects and other features on a variety of substrates. It is an additive manufacturing process that offers cost-effective, lightweight designs and simplifies the fabrication process with little effort. There is hardly sufficient research on tactile sensors and inkjet printing. Advancements in materials science and inkjet printing greatly facilitate the realization of sophisticated tactile sensors. Starting from the concept of capacitive sensing, a brief comparison of printing techniques, the essential requirements of inkjet-printing and the attractive features of state-of-the art inkjet-printed tactile sensors developed on diverse substrates (paper, polymer, glass and textile are presented in this comprehensive review. Recent trends in inkjet-printed wearable/flexible and foldable tactile sensors are evaluated, paving the way for future research.

  6. Emergence of 3D Printed Dosage Forms: Opportunities and Challenges

    OpenAIRE

    Albed Alhnan, Mohamed; Okwuosa, Tochukwu; Sadia, Muzna; Wan, Ka-Wai; Ahmed, Waqar; Arafat, Basel

    2016-01-01

    The recent introduction of the first FDA approved 3D-printed drug has fuelled interest in 3D printing technology, which is set to revolutionize healthcare. Since its initial use, this rapid prototyping (RP) technology has evolved to such as extent that it is currently being used in a wide range of applications including in tissue engineering, dentistry, construction, automotive and aerospace. However, in the pharmaceutical industry this technology is still in its infancy and its potential yet...

  7. Experiments on Printed Intelligence and Its Applications

    OpenAIRE

    Barbonelova, Angelina

    2015-01-01

    Printed intelligence technology refers to products and systems that are produced using traditional printing methods and that are able to communicate or react with the user, environment or other products and systems. The technology provides the foundations of innovative products such as printed OLEDs (organic light emitting device), electroluminescent displays, organic photovoltaics, thin film batteries and disposable sensors. This study presents research on different printing techniques i...

  8. Functional electronic screen printing – electroluminescent smart fabric watch

    OpenAIRE

    de Vos, Marc; Torah, Russel; Beeby, Steve; Tudor, John

    2013-01-01

    Motivation for screen printed smart fabrics.Introduce functional electronic screen printing on fabrics.Printed smart fabric watch design.Printing process for electroluminescent watch.Demonstration video.Conclusions and further work.Examples of other screen printed smart fabrics.

  9. College Students' Perceptions of the C-Print Speech-to-Text Transcription System.

    Science.gov (United States)

    Elliot, L B; Stinson, M S; McKee, B G; Everhart, V S; Francis, P J

    2001-01-01

    C-Print is a real-time speech-to-text transcription system used as a support service with deaf students in mainstreamed classes. Questionnaires were administered to 36 college students in 32 courses in which the C-Print system was used in addition to interpreting and note taking. Twenty-two of these students were also interviewed. Questionnaire items included student ratings of lecture comprehension. Student ratings indicated good comprehension with C-Print, and the mean rating was significantly higher than that for understanding of the interpreter. Students also rated the hard copy printout provided by C-Print as helpful, and they reported that they used these notes more frequently than the handwritten notes from a paid student note taker. Interview results were consistent with those for the questionnaire. Questionnaire and interview responses regarding use of C-Print as the only support service indicated that this arrangement would be acceptable to many students, but not to others. Communication characteristics were related to responses to the questionnaire. Students who were relatively proficient in reading and writing English, and in speech-reading, responded more favorably to C-Print.

  10. 3D-printed devices for continuous-flow organic chemistry.

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J; Cronin, Leroy

    2013-01-01

    We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  11. All-printed paper memory

    KAUST Repository

    Lien, Derhsien

    2014-08-26

    We report the memory device on paper by means of an all-printing approach. Using a sequence of inkjet and screen-printing techniques, a simple metal-insulator-metal device structure is fabricated on paper as a resistive random access memory with a potential to reach gigabyte capacities on an A4 paper. The printed-paper-based memory devices (PPMDs) exhibit reproducible switching endurance, reliable retention, tunable memory window, and the capability to operate under extreme bending conditions. In addition, the PBMD can be labeled on electronics or living objects for multifunctional, wearable, on-skin, and biocompatible applications. The disposability and the high-security data storage of the paper-based memory are also demonstrated to show the ease of data handling, which are not achievable for regular silicon-based electronic devices. We envision that the PPMDs manufactured by this cost-effective and time-efficient all-printing approach would be a key electronic component to fully activate a paper-based circuit and can be directly implemented in medical biosensors, multifunctional devices, and self-powered systems. © 2014 American Chemical Society.

  12. 3D Printed Paper-Based Microfluidic Analytical Devices

    Directory of Open Access Journals (Sweden)

    Yong He

    2016-06-01

    Full Text Available As a pump-free and lightweight analytical tool, paper-based microfluidic analytical devices (μPADs attract more and more interest. If the flow speed of μPAD can be programmed, the analytical sequences could be designed and they will be more popular. This reports presents a novel μPAD, driven by the capillary force of cellulose powder, printed by a desktop three-dimensional (3D printer, which has some promising features, such as easy fabrication and programmable flow speed. First, a suitable size-scale substrate with open microchannels on its surface is printed. Next, the surface of the substrate is covered with a thin layer of polydimethylsiloxane (PDMS to seal the micro gap caused by 3D printing. Then, the microchannels are filled with a mixture of cellulose powder and deionized water in an appropriate proportion. After drying in an oven at 60 °C for 30 min, it is ready for use. As the different channel depths can be easily printed, which can be used to achieve the programmable capillary flow speed of cellulose powder in the microchannels. A series of microfluidic analytical experiments, including quantitative analysis of nitrite ion and fabrication of T-sensor were used to demonstrate its capability. As the desktop 3D printer (D3DP is very cheap and accessible, this device can be rapidly printed at the test field with a low cost and has a promising potential in the point-of-care (POC system or as a lightweight platform for analytical chemistry.

  13. 40 CFR 63.824 - Standards: Publication rotogravure printing.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) National Emission Standards for the Printing and Publishing Industry § 63.824 Standards: Publication rotogravure printing. (a) Each owner or operator of any publication rotogravure printing affected... printing. 63.824 Section 63.824 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  14. Desktop Publishing as a Learning Resources Service.

    Science.gov (United States)

    Drake, David

    In late 1988, Midland College in Texas implemented a desktop publishing service to produce instructional aids and reduce and complement the workload of the campus print shop. The desktop service was placed in the Media Services Department of the Learning Resource Center (LRC) for three reasons: the LRC was already established as a campus-wide…

  15. Printing Ancient Terracotta Warriors

    Science.gov (United States)

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  16. FUTURE SCOPE OF WOMEN CARRIER IN THE PRINTING INDUSTRY: THE CHALLENGES OF WOMEN IN PRINTING OGANIZATIONS (A SURVEY OF TWENTY FIVE COMPANIES "SMALL, MEDIUM AND LARGE PRINTING ORGANIZATION" IN AREA "NCR DELHI AND HISAR, HR".)

    OpenAIRE

    Mr. Azad Singh*

    2017-01-01

    Women carrier in printing organization today, printing industry is growing with an expositional rate & required skills manpower. In this survey based paper to getting recruit of women 10%small, 30%medium and 60% large scale print industry. Objective of this paper is too filled out manpower skills printing industries are seaking in B.Tech women printing students to bridge the gap between skills and required in printing organization. A survey 25 companies was carried out. the result indicated t...

  17. Three-Dimensionally Printed Micro-electromechanical Switches.

    Science.gov (United States)

    Lee, Yongwoo; Han, Jungmin; Choi, Bongsik; Yoon, Jinsu; Park, Jinhee; Kim, Yeamin; Lee, Jieun; Kim, Dae Hwan; Kim, Dong Myong; Lim, Meehyun; Kang, Min-Ho; Kim, Sungho; Choi, Sung-Jin

    2018-05-09

    Three-dimensional (3D) printers have attracted considerable attention from both industry and academia and especially in recent years because of their ability to overcome the limitations of two-dimensional (2D) processes and to enable large-scale facile integration techniques. With 3D printing technologies, complex structures can be created using only a computer-aided design file as a reference; consequently, complex shapes can be manufactured in a single step with little dependence on manufacturer technologies. In this work, we provide a first demonstration of the facile and time-saving 3D printing of two-terminal micro-electromechanical (MEM) switches. Two widely used thermoplastic materials were used to form 3D-printed MEM switches; freely suspended and fixed electrodes were printed from conductive polylactic acid, and a water-soluble sacrificial layer for air-gap formation was printed from poly(vinyl alcohol). Our 3D-printed MEM switches exhibit excellent electromechanical properties, with abrupt switching characteristics and an excellent on/off current ratio value exceeding 10 6 . Therefore, we believe that our study makes an innovative contribution with implications for the development of a broader range of 3D printer applications (e.g., the manufacturing of various MEM devices and sensors), and the work highlights a uniquely attractive path toward the realization of 3D-printed electronics.

  18. Scalable, full-colour and controllable chromotropic plasmonic printing

    Science.gov (United States)

    Xue, Jiancai; Zhou, Zhang-Kai; Wei, Zhiqiang; Su, Rongbin; Lai, Juan; Li, Juntao; Li, Chao; Zhang, Tengwei; Wang, Xue-Hua

    2015-01-01

    Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber. More importantly, our approach also demonstrates controllable chromotropic capability, that is, the ability of reversible colour transformations. This chromotropic capability affords enormous potentials in building functionalized prints for anticounterfeiting, special label, and high-density data encryption storage. With such excellent performances in functional colour applications, this colour-printing approach could pave the way for plasmonic colour printing in real-world commercial utilization. PMID:26567803

  19. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models.

    Science.gov (United States)

    Favero, Christian S; English, Jeryl D; Cozad, Benjamin E; Wirthlin, John O; Short, Megan M; Kasper, F Kurtis

    2017-10-01

    Three-dimensional (3D) printing technologies enable production of orthodontic models from digital files; yet a range of variables associated with the process could impact the accuracy and clinical utility of the models. The objective of this study was to investigate the effect of print layer height on the accuracy of orthodontic models printed 3 dimensionally using a stereolithography format printer and to compare the accuracy of orthodontic models fabricated with several commercially available 3D printers. Thirty-six identical models were produced with a stereolithography-based 3D printer using 3 layer heights (n = 12 per group): 25, 50, and 100 μm. Forty-eight additional models were printed using 4 commercially available 3D printers (n = 12 per group). Each printed model was digitally scanned and compared with the input file via superimposition analysis using a best-fit algorithm to assess accuracy. Statistically significant differences were found in the average overall deviations of models printed at each layer height, with the 25-μm and 100-μm layer height groups having the greatest and least deviations, respectively. Statistically significant differences were also found in the average overall deviations of models produced using the various 3D printer models, but all values fell within clinically acceptable limits. The print layer height and printer model can affect the accuracy of a 3D printed orthodontic model, but the impact should be considered with respect to the clinical tolerances associated with the envisioned application. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Hybrid 3D printing by bridging micro/nano processes

    International Nuclear Information System (INIS)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-01-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques. (paper)

  1. Hybrid 3D printing by bridging micro/nano processes

    Science.gov (United States)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-06-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques.

  2. Simulations for printing contacts with near field x-rays

    International Nuclear Information System (INIS)

    Bourdillon, Antony J; Boothroyd, Chris B

    2005-01-01

    In ultra high resolution lithography, sometimes called near field x-ray lithography, Fresnel diffraction is deliberately used to increase resolution: the contraction in current occurring beyond a clear mask feature has, further, important experimentally beneficial effects that were previously overlooked. All the key features of the technique have, by now, been demonstrated and previously reported. The technique is also an enhancement of the most-developed next generation lithography. The enhancement has fundamental advantages, including an increase in mask-wafer Gap (the Gap scales as the square of the width of a clear mask feature); reduced exposure times; more easily fabricated masks; high density prints by multiple exposures; high contrast; elimination of sidebands; reduction in the effects of mask defects, compact masks, etc. We have, previously reported experimental and simulated prints from lines and more complex flag and bridge structures; here we report simulations for symmetrical contacts. More particularly, in the printing of circular features, it is shown that a demagnification factor around 7 can be routinely used to optimize mask-wafer Gap. Although the Gap is significantly extended by using larger clear mask features, finer prints can still be developed

  3. The rheological behavior of disperse systems for 3D print-ing in constrcution: the problem of control and possibility of «nano» tools application

    Directory of Open Access Journals (Sweden)

    Slavcheva Galina Stanislavovna

    2018-06-01

    Full Text Available The paper considers the problem of creating a wider class of building materials used for 3D printing. From the point of view of classical rheology of disperse systems, the application of 3D printing technology in construction has been analyzed. Theoretical analysis of the models of rheological behavior is performed according to state of their structure and the dynamic of the 3D printing processes such as mixing, pumping, extrusion, multilayer casting and structural built-up in the printing layers. The main factors and criteria for the stability of heterogeneous disperse systems in dynamic and static 3D printing processes have been identified. The general scientific concept for optimization of admixtures for 3D printable materials has been developed in terms of viscosity, consistency, and parameters of flocculation and structural built-up. The technological tools to control rheological behavior of visco-plastic admixtures are identified in all stages of 3D printing. The relevant considerations include the concentration, size, morphology, chemical and mineralogical composition, the physical and chemical activity of the solid phase’s surface, and the ionic composition, viscosity, and density of the liquid phase. It is shown that the practical engineering solutions to control the rheology, structure formation, properties of 3D printing admixtures and materials must be based on traditional factors as well as with the use of «nano» tools. According to the nanotechnological principle «bottom-up», a set of «nano» tools is proposed to control such admixture properties as extrudability, formability, and buildability. In conclusion the scientific and technical tasks to be researched have been formulated.

  4. Templated Dry Printing of Conductive Metal Nanoparticles

    Science.gov (United States)

    Rolfe, David Alexander

    Printed electronics can lower the cost and increase the ubiquity of electrical components such as batteries, sensors, and telemetry systems. Unfortunately, the advance of printed electronics has been held back by the limited minimum resolution, aspect ratio, and feature fidelity of present printing techniques such as gravure, screen printing and inkjet printing. Templated dry printing offers a solution to these problems by patterning nanoparticle inks into templates before drying. This dissertation shows advancements in two varieties of templated dry nanoprinting. The first, advective micromolding in vapor-permeable templates (AMPT) is a microfluidic approach that uses evaporation-driven mold filling to create submicron features with a 1:1 aspect ratio. We will discuss submicron surface acoustic wave (SAW) resonators made through this process, and the refinement process in the template manufacturing process necessary to make these devices. We also present modeling techniques that can be applied to future AMPT templates. We conclude with a modified templated dry printing that improves throughput and isolated feature patterning by transferring dry-templated features with laser ablation. This method utilizes surface energy-defined templates to pattern features via doctor blade coating. Patterned and dried features can be transferred to a polymer substrate with an Nd:YAG MOPA fiber laser, and printed features can be smaller than the laser beam width.

  5. Digital Dentistry — 3D Printing Applications

    Directory of Open Access Journals (Sweden)

    Zaharia Cristian

    2017-03-01

    Full Text Available Three-dimensional (3D printing is an additive manufacturing method in which a 3D item is formed by laying down successive layers of material. 3D printers are machines that produce representations of objects either planned with a CAD program or scanned with a 3D scanner. Printing is a method for replicating text and pictures, typically with ink on paper. We can print different dental pieces using different methods such as selective laser sintering (SLS, stereolithography, fused deposition modeling, and laminated object manufacturing. The materials are certified for printing individual impression trays, orthodontic models, gingiva mask, and different prosthetic objects. The material can reach a flexural strength of more than 80 MPa. 3D printing takes the effectiveness of digital projects to the production phase. Dental laboratories are able to produce crowns, bridges, stone models, and various orthodontic appliances by methods that combine oral scanning, 3D printing, and CAD/CAM design. Modern 3D printing has been used for the development of prototypes for several years, and it has begun to find its use in the world of manufacturing. Digital technology and 3D printing have significantly elevated the rate of success in dental implantology using custom surgical guides and improving the quality and accuracy of dental work.

  6. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes.

    Science.gov (United States)

    Bin Hamzah, Hairul Hisham; Keattch, Oliver; Covill, Derek; Patel, Bhavik Anil

    2018-06-14

    Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.

  7. Realizing what's essential: a case study on integrating electronic journal management into a print-centric technical services department.

    Science.gov (United States)

    Dollar, Daniel M; Gallagher, John; Glover, Janis; Marone, Regina Kenny; Crooker, Cynthia

    2007-04-01

    To support migration from print to electronic resources, the Cushing/Whitney Medical Library at Yale University reorganized its Technical Services Department to focus on managing electronic resources. The library hired consultants to help plan the changes and to present recommendations for integrating electronic resource management into every position. The library task force decided to focus initial efforts on the periodical collection. To free staff time to devote to electronic journals, most of the print subscriptions were switched to online only and new workflows were developed for e-journals. Staff learned new responsibilities such as activating e-journals, maintaining accurate holdings information in the online public access catalog and e-journals database ("electronic shelf reading"), updating the link resolver knowledgebase, and troubleshooting. All of the serials team members now spend significant amounts of time managing e-journals. The serials staff now spends its time managing the materials most important to the library's clientele (e-journals and databases). The team's proactive approach to maintenance work and rapid response to reported problems should improve patrons' experiences using e-journals. The library is taking advantage of new technologies such as an electronic resource management system, and library workflows and procedures will continue to evolve as technology changes.

  8. Four-dimensional Printing of Liquid Crystal Elastomers.

    Science.gov (United States)

    Ambulo, Cedric P; Burroughs, Julia J; Boothby, Jennifer M; Kim, Hyun; Shankar, M Ravi; Ware, Taylor H

    2017-10-25

    Three-dimensional structures capable of reversible changes in shape, i.e., four-dimensional-printed structures, may enable new generations of soft robotics, implantable medical devices, and consumer products. Here, thermally responsive liquid crystal elastomers (LCEs) are direct-write printed into 3D structures with a controlled molecular order. Molecular order is locally programmed by controlling the print path used to build the 3D object, and this order controls the stimulus response. Each aligned LCE filament undergoes 40% reversible contraction along the print direction on heating. By printing objects with controlled geometry and stimulus response, magnified shape transformations, for example, volumetric contractions or rapid, repetitive snap-through transitions, are realized.

  9. Hands-On Data Analysis: Using 3D Printing to Visualize Reaction Progress Surfaces

    Science.gov (United States)

    Higman, Carolyn S.; Situ, Henry; Blacklin, Peter; Hein, Jason E.

    2017-01-01

    Advances in 3D printing technology over the past decade have led to its expansion into all subfields of science, including chemistry. This technology provides useful teaching tools that facilitate communication of difficult chemical concepts to students and researchers. Presented here is the use of 3D printing technology to create tangible models…

  10. Strategies in the digital printing value system

    OpenAIRE

    Mejtoft, Thomas

    2006-01-01

    The research objective of this thesis is to identify corporate strategies and strategic decisions in the digital printing business and to analyze how these have evolved due to the introduction of digital printing. This thesis comprises three separate studies, all based on qualitative case methodology. The first study is focused on digital printing houses and how their business strategies have changed due to their investment in digital printing production equipment. The second study concentrat...

  11. Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets.

    Science.gov (United States)

    Gregory, David A; Zhang, Yu; Smith, Patrick J; Zhao, Xiubo; Ebbens, Stephen J

    2016-08-01

    Inkjet-printed enzyme-powered silk-based micro-rockets are able to undergo autonomous motion in a vast variety of fluidic environments including complex media such as human serum. By means of digital inkjet printing it is possible to alter the catalyst distribution simply and generate varying trajectory behavior of these micro-rockets. Made of silk scaffolds containing enzymes these micro-rockets are highly biocompatible and non-biofouling. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Visual Attention to Print-Salient and Picture-Salient Environmental Print in Young Children

    Science.gov (United States)

    Neumann, Michelle M.; Summerfield, Katelyn; Neumann, David L.

    2015-01-01

    Environmental print is composed of words and contextual cues such as logos and pictures. The salience of the contextual cues may influence attention to words and thus the potential of environmental print in promoting early reading development. The present study explored this by presenting pre-readers (n = 20) and beginning readers (n = 16) with…

  13. Image once, print thrice? Three-dimensional printing of replacement parts.

    Science.gov (United States)

    Rankin, Timothy M; Wormer, Blair A; Miller, John D; Giovinco, Nicholas A; Al Kassis, Salam; Armstrong, David G

    2018-02-01

    The last 20 years has seen an exponential increase in 3D printing as it pertains to the medical industry and more specifically surgery. Previous reviews in this domain have chosen to focus on applications within a specific field. To our knowledge, none have evaluated the broad applications of patient-specific or digital imaging and communications in medicine (DICOM) derived applications of this technology. We searched PUBMED and CINAHL from April 2012 to April 2017. 261 studies fulfilled the inclusion criteria. Proportions of articles reviewed: DICOM (5%), CT (38%), MRI (20%), Ultrasonography (28%), and Bio-printing (9%). There is level IV evidence to support the use of 3D printing for education, pre-operative planning, simulation and implantation. In order to make this technology widely applicable, it will require automation of DICOM to standard tessellation language to implant. Advances in knowledge: Recent lapses in intellectual property and greater familiarity with rapid prototyping in medicine has set the stage for the next generation of custom implants, simulators and autografts. Radiologists may be able to help establish reimbursable procedural terminology.

  14. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.

    Science.gov (United States)

    Rocha, Victoria G; García-Tuñón, Esther; Botas, Cristina; Markoulidis, Foivos; Feilden, Ezra; D'Elia, Eleonora; Ni, Na; Shaffer, Milo; Saiz, Eduardo

    2017-10-25

    The current lifestyles, increasing population, and limited resources result in energy research being at the forefront of worldwide grand challenges, increasing the demand for sustainable and more efficient energy devices. In this context, additive manufacturing brings the possibility of making electrodes and electrical energy storage devices in any desired three-dimensional (3D) shape and dimensions, while preserving the multifunctional properties of the active materials in terms of surface area and conductivity. This paves the way to optimized and more efficient designs for energy devices. Here, we describe how three-dimensional (3D) printing will allow the fabrication of bespoke devices, with complex geometries, tailored to fit specific requirements and applications, by designing water-based thermoresponsive inks to 3D-print different materials in one step, for example, printing the active material precursor (reduced chemically modified graphene (rCMG)) and the current collector (copper) for supercapacitors or anodes for lithium-ion batteries. The formulation of thermoresponsive inks using Pluronic F127 provides an aqueous-based, robust, flexible, and easily upscalable approach. The devices are designed to provide low resistance interface, enhanced electrical properties, mechanical performance, packing of rCMG, and low active material density while facilitating the postprocessing of the multicomponent 3D-printed structures. The electrode materials are selected to match postprocessing conditions. The reduction of the active material (rCMG) and sintering of the current collector (Cu) take place simultaneously. The electrochemical performance of the rCMG-based self-standing binder-free electrode and the two materials coupled rCMG/Cu printed electrode prove the potential of multimaterial printing in energy applications.

  15. Batch fabrication of disposable screen printed SERS arrays.

    Science.gov (United States)

    Qu, Lu-Lu; Li, Da-Wei; Xue, Jin-Qun; Zhai, Wen-Lei; Fossey, John S; Long, Yi-Tao

    2012-03-07

    A novel facile method of fabricating disposable and highly reproducible surface-enhanced Raman spectroscopy (SERS) arrays using screen printing was explored. The screen printing ink containing silver nanoparticles was prepared and printed on supporting materials by a screen printing process to fabricate SERS arrays (6 × 10 printed spots) in large batches. The fabrication conditions, SERS performance and application of these arrays were systematically investigated, and a detection limit of 1.6 × 10(-13) M for rhodamine 6G could be achieved. Moreover, the screen printed SERS arrays exhibited high reproducibility and stability, the spot-to-spot SERS signals showed that the intensity variation was less than 10% and SERS performance could be maintained over 12 weeks. Portable high-throughput analysis of biological samples was accomplished using these disposable screen printed SERS arrays.

  16. Networked Print Production: Does JDF Provide a Perfect Workflow?

    Directory of Open Access Journals (Sweden)

    Bernd Zipper

    2004-12-01

    Full Text Available The "networked printing works" is a well-worn slogan used by many providers in the graphics industry and for the past number of years printing-works manufacturers have been working on the goal of achieving the "networked printing works". A turning point from the concept to real implementation can now be expected at drupa 2004: JDF (Job Definition Format and thus "networked production" will form the center of interest here. The first approaches towards a complete, networked workflow between prepress, print and postpress in production are already available - the products and solutions will now be presented publicly at drupa 2004. So, drupa 2004 will undoubtedly be the "JDF-drupa" - the drupa where machines learn to communicate with each other digitally - the drupa, where the dream of general system and job communication in the printing industry can be first realized. CIP3, which has since been renamed CIP4, is an international consortium of leading manufacturers from the printing and media industry who have taken on the task of integrating processes for prepress, print and postpress. The association, to which nearly all manufacturers in the graphics industry belong, has succeeded with CIP3 in developing a first international standard for the transmission of control data in the print workflow.Further development of the CIP4 standard now includes a more extensive "system language" called JDF, which will guarantee workflow communication beyond manufacturer boundaries. However, not only data for actual print production will be communicated with JDF (Job Definition Format: planning and calculation data for MIS (Management Information systems and calculation systems will also be prepared. The German printing specialist Hans-Georg Wenke defines JDF as follows: "JDF takes over data from MIS for machines, aggregates and their control desks, data exchange within office applications, and finally ensures that data can be incorporated in the technical workflow

  17. Ridge Width Correlations between Inked Prints and Powdered Latent Fingerprints.

    Science.gov (United States)

    De Alcaraz-Fossoul, Josep; Barrot-Feixat, Carme; Zapico, Sara C; Mancenido, Michelle; Broatch, Jennifer; Roberts, Katherine A; Carreras-Marin, Clara; Tasker, Jack

    2017-10-03

    A methodology to estimate the time of latent fingerprint deposition would be of great value to law enforcement and courts. It has been observed that ridge topography changes as latent prints age, including the widths of ridges that could be measured as a function of time. Crime suspects are commonly identified using fingerprint databases that contain reference inked tenprints (flat and rolled impressions). These can be of interest in aging studies as they provide baseline information relating to the original (nonaged) ridges' widths. In practice, the age of latent fingerprints could be estimated following a comparison process between the evidentiary aged print and the corresponding reference inked print. The present article explores possible correlations between inked and fresh latent fingerprints deposited on different substrates and visualized with TiO 2 . The results indicate that the ridge width of flat inked prints is most similar to fresh latent fingerprints , and these should be used as the comparison standard for future aging studies. © 2017 American Academy of Forensic Sciences.

  18. Inkjet printing and inkjet infiltration of functional coatings for SOFCs fabrication

    Directory of Open Access Journals (Sweden)

    Tomov Rumen I.

    2016-01-01

    Full Text Available Inkjet printing fabrication and modification of electrodes and electrolytes of SOFCs were studied. Electromagnetic print-heads were utilized to reproducibly dispense droplets of inks at rates of several kHz on demand. Printing parameters including pressure, nozzle opening time and drop spreading were studied in order to optimize the inks jetting and delivery. Scanning electron microscopy revealed highly conformal ~ 6-10 μm thick dense electrolyte layers routinely produced on cermet and metal porous supports. Open circuit voltages ranging from 0.95 to 1.01 V, and a maximum power density of ~180 mW.cm−2 were measured at 750 °C on Ni-8YSZ/YSZ/LSM single cell 50×50 mm in size. The effect of anode and cathode microstructures on the electrochemical performance was investigated. Two - step fabrication of the electrodes using inkjet printing infiltration was implemented. In the first step the porous electrode scaffold was created printing suspension composite inks. During the second step inkjet printing infiltration was utilized for controllable loading of active elements and a formation of nano-grid decorations on the scaffolds radically reducing the activation polarization losses of both electrodes. Symmetrical cells of both types were characterized by impedance spectroscopy in order to reveal the relation between the microstructure and the electrochemical performance.

  19. 3D Printing Prototypes for Healthcare Professionals: Creating a Reciprocating Syringe.

    Science.gov (United States)

    Rothenberg, Steven; Abdullah, Selwan; Hirsch, Jeffrey

    2017-10-01

    3D printing (additive manufacturing) has been around since 1984, but interest in the technology has increased exponentially as it has become both accessible and inexpensive. The applications of the technology in healthcare are still being explored; however, initial forays have been encouraging. It has the potential to revolutionize the process of prototyping for healthcare professionals by democratizing the process and enhancing collaboration, making it cheaper to do iterative prototyping with little or no engineering experience. This case report details the creation of a multi-lumen reciprocating syringe with 3D printing. The product has been created and tested using a variety of publicly available resources. It provides a detailed overview of the approach and the framework required to create such a medical device. However, the implications of this report are much larger than this one product, and the fundamental ideas discussed here could be used for creating customized solutions for many healthcare problems.

  20. Your Next Airplane: Just Hit Print

    Science.gov (United States)

    2013-04-01

    significantly impact the market, but if properly managed, 3-D printing can revolutionize the military through three principal benefits : cost...applications arise, many of which can be tailored to either commercial benefit or military utility. For the military to steer the dialogue over the...from custom chocolate sculptures, to firearms printed in your basement, to light-weight, fuel-efficient printed cars. University research grants

  1. 2015 4th China Academic Conference on Printing and Packaging

    CERN Document Server

    Xu, Min; Yang, Li; Ouyang, Yujie

    2016-01-01

    This book includes a selection of reviewed papers presented at the 2015, 4th China Academic Conference on Printing and Packaging, which was held on October 22-24, 2015 in Hangzhou, China. The conference was jointly organized by the China Academy of Printing Technology, Beijing Institute of Graphic Communication, and Hangzhou Dianzi University. With 3 keynote talks and 200 presented papers on graphic communications, packaging technologies and materials, the conference attracted more than 400 scientists.  These proceedings cover the recent research outcomes on color science and technology, image-processing technology, digital-media technology, printing-engineering technology, packaging-engineering technology etc. They will be of interest to university researchers, R&D engineers and graduate students in graphic communications, packaging, color science, image science, materials science, computer science, digital media and network technology fields.

  2. Making three-dimensional echocardiography more tangible: a workflow for three-dimensional printing with echocardiographic data

    Directory of Open Access Journals (Sweden)

    Azad Mashari MD

    2016-12-01

    Full Text Available Three-dimensional (3D printing is a rapidly evolving technology with several potential applications in the diagnosis and management of cardiac disease. Recently, 3D printing (i.e. rapid prototyping derived from 3D transesophageal echocardiography (TEE has become possible. Due to the multiple steps involved and the specific equipment required for each step, it might be difficult to start implementing echocardiography-derived 3D printing in a clinical setting. In this review, we provide an overview of this process, including its logistics and organization of tools and materials, 3D TEE image acquisition strategies, data export, format conversion, segmentation, and printing. Generation of patient-specific models of cardiac anatomy from echocardiographic data is a feasible, practical application of 3D printing technology.

  3. Dramatic Advance in Quality in Flexographic Printing

    Directory of Open Access Journals (Sweden)

    Jochen Richter

    2004-12-01

    Full Text Available The enormous changes in flexography printing in recent years concerning the printing quality achievable cannot generally be ascribed to a single revolutionary invention, but are the result of continuous developments to the complete system. Thus the direct drive technology in all machine types and its associated advantages in terms of printing length corrections has become established since drupa 2000. The race for ever finer raster rolls has also been completed to the benefit of improvements in bowl geometry and in ceramic surfaces. Clearly improved colour transfer behaviour has become feasible as a result. In a closely intermeshed system such as flexography printing this naturally has to have an effect on the printing colours used. Further improvements in bonding agents and pigment concentrations now allow users to print ever thinner colour layers while maintaining all of the required authenticities.Furthermore, it has become possible to reduce additional disturbing characteristics in the UV colour area, such as the unpleasant odour. While the digital imaging of printing plates has primarily been improved in terms of economic efficiency by the use of up to eight parallel laser beams, extreme improvements in the system are noticeable especially in the area of directly engraved printing moulds. Whereas many still dismissed directly engraved polymer plates at the last drupa as a laboratory system, the first installation was recently placed on the market a mere three years later. A further noteworthy innovation of recent years that has reached market maturity is thin sleeve technology, which combines the advantages of a photopolymer plate with a round imaged printing mould. There are no high sleeve costs for each printing mould, except for one-off cost for an adapter sleeve. To conclude, it can be said that although flexography printing has experienced many new features in the time between drupa 2000 and today, it still has enormous potential for

  4. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  5. Formation and Characterization of Inkjet-Printed Nanosilver Lines on Plasma-Treated Glass Substrates

    Directory of Open Access Journals (Sweden)

    Jae-Sung Kwon

    2018-02-01

    Full Text Available In this study, we investigated geometrical characteristics of the inkjet-printed lines with non-zero receding contact angle (CA on plasma-treated substrates in terms of various printing variables and analyzed the fluidic behavior and hydrodynamic instability involved in the line formation process. The printing variables included surface energy, droplet overlap ratio, printing frequency, a number of ink droplets, substrate temperature and printing procedures. For the study, a colloidal suspension containing 56 wt % silver nanoparticles in tetradecane solvent was used as a printing ink. It has electrical resistivity of 4.7 μΩ·cm. The substrates were obtained by performing a plasma enhanced chemical vapor deposition (PECVD process with C4F8 and O2 under various treatment conditions. As results of the experiments, the surface shape and pattern of the inkjet-printed Ag lines were dominantly influenced by the surface energy of the substrates, among the printing variables. Accordingly even when the receding CA was non-zero, bulging instability of the lines occurred forming separate circular patterns or regular bulges connected by ridges. It is a new finding of this study, which is completely different with the bulging instability of inkjet lines with zero receding CA specified by previous researches. The bulging instability decreased by increasing surface temperature of the substrates or employing interlacing procedure instead of continuous procedure for printing. The interlacing procedure also was advantageous to fabricate thick and narrow Ag lines with well-defined shape through overprinting on a hydrophobic substrate. These results will contribute greatly to not only the production of various printed electronics containing high-aspect-ratio structures but also the improvement of working performance of the devices.

  6. 3D-printing technologies for electrochemical applications.

    Science.gov (United States)

    Ambrosi, Adriano; Pumera, Martin

    2016-05-21

    Since its conception during the 80s, 3D-printing, also known as additive manufacturing, has been receiving unprecedented levels of attention and interest from industry and research laboratories. This is in addition to end users, who have benefited from the pervasiveness of desktop-size and relatively cheap printing machines available. 3D-printing enables almost infinite possibilities for rapid prototyping. Therefore, it has been considered for applications in numerous research fields, ranging from mechanical engineering, medicine, and materials science to chemistry. Electrochemistry is another branch of science that can certainly benefit from 3D-printing technologies, paving the way for the design and fabrication of cheaper, higher performing, and ubiquitously available electrochemical devices. Here, we aim to provide a general overview of the most commonly available 3D-printing methods along with a review of recent electrochemistry related studies adopting 3D-printing as a possible rapid prototyping fabrication tool.

  7. Variable-data Printing Serves - Niches Here, There & Everywhere

    Directory of Open Access Journals (Sweden)

    Roger Ynostroza

    2004-12-01

    Full Text Available A milestone focus on high-end digital color presses capable of variable-data imaging - a technology that was introduced ten years ago and is just now at the beginning of wider, more successful implementation in commercial printing-tends to overshadow some real achievements on other variable-data fronts. Those activities involve ink-jet and electrophotographic imaging for high-volume transactional printing, print-on-demand books and catalogs, wide-format proofing and imaging, label production, and printing of text and coding of printed packaging.The capabilities of digital production color presses intrigue commercial printers the most, especially new units referred to by manufacturers as "Series II" or "third-generation" systems. Besides having more press-like characteristics, from offset-caliber quality, image consistency, and high output rates to sturdy construction, reliability, and stock choice, the units seem to represent a way to produce printing that’s beyond the norm.Some users are producing hybrid printed products (offset printing a quantity of "shells" that are later personalized by digital presses, while others are utilizing clients’ "dynamic" databases to personalize marketing materials that drive response rates up to 15%, even 35%. Finally, digital color systems prompt the creation of high-margin Internet-based print providers offering easy-to-design and easy-toorder print materials. Printers may do well to adopt the high-value communications capability that digital imaging offers.

  8. Inkjet Printed Radio Frequency Passive Components

    KAUST Repository

    McKerricher, Garret

    2015-12-01

    Inkjet printing is a mature technique for colourful graphic arts. It excels at customized, large area, high resolution, and small volume production. With the developments in conductive, and dielectric inks, there is potential for large area inkjet electronics fabrication. Passive radio frequency devices can benefit greatly from a printing process, since the size of these devices is defined by the frequency of operation. The large size of radio frequency passives means that they either take up expensive space “on chip” or that they are fabricated on a separate lower cost substrate and somehow bonded to the chips. This has hindered cost-sensitive high volume applications such as radio frequency identification tags. Substantial work has been undertaken on inkjet-printed conductors for passive antennas on microwave substrates and even paper, yet there has been little work on the printing of the dielectric materials aimed at radio frequency passives. Both the conductor and dielectric need to be integrated to create a multilayer inkjet printing process that is capable of making quality passives such as capacitors and inductors. Three inkjet printed dielectrics are investigated in this thesis: a ceramic (alumina), a thermal-cured polymer (poly 4 vinyl phenol), and a UV-cured polymer (acrylic based). For the conductor, both a silver nanoparticle ink as well as a custom in-house formulated particle-free silver ink are explored. The focus is on passives, mainly capacitors and inductors. Compared to low frequency electronics, radio frequency components have additional sensitivity regarding skin depth of the conductor and surface roughness, as well as dielectric constant and loss tangent of the dielectric. These concerns are investigated with the aim of making the highest quality components possible and to understand the current limitations of inkjet-fabricated radio frequency devices. An inkjet-printed alumina dielectric that provides quality factors of 200 and high

  9. Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications.

    Science.gov (United States)

    Marro, Alessandro; Bandukwala, Taha; Mak, Walter

    2016-01-01

    The purpose of this article is to review recent innovations on the process and application of 3-dimensional (3D) printed objects from medical imaging data. Data for 3D printed medical models can be obtained from computed tomography, magnetic resonance imaging, and ultrasound using the Data Imaging and Communications in Medicine (DICOM) software. The data images are processed using segmentation and mesh generation tools and converted to a standard tessellation language (STL) file for printing. 3D printing technologies include stereolithography, selective laser sintering, inkjet, and fused-deposition modeling . 3D printed models have been used for preoperative planning of complex surgeries, the creation of custom prosthesis, and in the education and training of physicians. The application of medical imaging and 3D printers has been successful in providing solutions to many complex medical problems. As technology advances, its applications continue to grow in the future. Copyright © 2015 Mosby, Inc. All rights reserved.

  10. Development of a Centralized Human Resource Information System of Cavite State University

    Directory of Open Access Journals (Sweden)

    Jeffrey F. Papa

    2016-08-01

    Full Text Available This study focused in the automation and improvement of the Human Resource services. This includes managing of employees’ records, facilitating requests and processing of leave credits in accordance to the Civil Service Commission (CSC rules and regulation, tracking the employees' performance and skills, generating reports needed, and analyzing of employee information that will help in the decision making. This also includes attendance monitoring using biometrics, calculation of tardiness and absences of employees, and processing and printing of payroll. The system is developed using Visual Basic.Net, as the main programming language, SQL Server 2008 for back end database, MS Word and MS Excel for all needed reports. Two (2 units of computers that served as server and client, network devices and finger print biometric scanner completed the set-up of the developed system. The developed system consists of three (3 major application software or modules such as the Human Resource Information System, the Fingerprint Attendance System and the Payroll Alert System. The Human Resource Information System is used in the processing of employee records of the HR office. The Fingerprint Attendance System is used for getting the employee’s time-in and time-out for their attendance. The Payroll Alert System is used in notifying the accounting staff to generate the payroll on time. Test results based on efficiency in terms of CPU and memory usage, processing speed and accuracy of data, and consistency of outputs turned out favorable to the system. Forty respondents composed of faculty and administrative personnel of Cavite State University rated the system as “Excellent” with an overall mean of 4.73. It signifies that the developed system is acceptable and functions according to its preferred specifications.

  11. MO-B-BRD-01: Creation of 3D Printed Phantoms for Clinical Radiation Therapy

    International Nuclear Information System (INIS)

    Ehler, E.

    2015-01-01

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  12. MO-B-BRD-01: Creation of 3D Printed Phantoms for Clinical Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E. [University of Minnesota (United States)

    2015-06-15

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  13. Uniformity of fully gravure printed organic field-effect transistors

    International Nuclear Information System (INIS)

    Hambsch, M.; Reuter, K.; Stanel, M.; Schmidt, G.; Kempa, H.; Fuegmann, U.; Hahn, U.; Huebler, A.C.

    2010-01-01

    Fully mass-printed organic field-effect transistors were made completely by means of gravure printing. Therefore a special printing layout was developed in order to avoid register problems in print direction. Upon using this layout, contact pads for source-drain electrodes of the transistors are printed together with the gate electrodes in one and the same printing run. More than 50,000 transistors have been produced and by random tests a yield of approximately 75% has been determined. The principle suitability of the gravure printed transistors for integrated circuits has been shown by the realization of ring oscillators.

  14. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  15. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    Directory of Open Access Journals (Sweden)

    Michael P Chae

    2015-06-01

    Full Text Available Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D reconstructions, are limited by their representation on 2D workstations. 3D printing has been embraced by early adopters to produce medical imaging-guided 3D printed biomodels that facilitate various aspects of clinical practice. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. With increasing accessibility, investigators are now able to convert standard imaging data into Computer Aided Design (CAD files using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography (SLA, multijet modeling (MJM, selective laser sintering (SLS, binder jet technique (BJT, and fused deposition modeling (FDM. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without out-sourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. In this review the existing uses of 3D printing in plastic surgery practice, spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative aesthetics, are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, patient and surgical trainee education, and the development of intraoperative guidance tools and patient-specific prosthetics in everyday surgical practice.

  16. Vacuum compatibility of 3D-printed materials

    OpenAIRE

    Povilus, AP; Wurden, CJ; Vendeiro, Z; Baquero-Ruiz, M; Fajans, J

    2014-01-01

    The fabrication fidelity and vacuum properties are tested for currently available 3D-printed materials including polyamide, glass, acrylic, and sterling silver. The silver was the only material found to be suitable to ultrahigh vacuum environments due to outgassing and sublimation observed in other materials. © 2014 American Vacuum Society.

  17. Effect of hydrophobic microstructured surfaces on conductive ink printing

    International Nuclear Information System (INIS)

    Kim, Seunghwan; Kang, Hyun Wook; Lee, Kyung Heon; Sung, Hyung Jin

    2011-01-01

    Conductive ink was printed on various microstructured substrates to measure the printing quality. Poly-dimethylsiloxane (PDMS) substrates were used to test the printability of the hydrophobic surface material. Microstructured arrays of 10 µm regular PDMS cubes were prepared using the MEMS fabrication technique. The gap distance between the cubes was varied from 10 to 40 µm. The printing wettability of the microstructured surfaces was determined by measuring the contact angle of a droplet of silver conductive ink. Screen-printing methods were used in the conductive line printing experiment. Test line patterns with finely varying widths (30–250 µm) were printed repeatedly, and the conductivity of the printed lines was measured. The printability, which was defined as the ratio of the successfully printed patterns to the total number of printed patterns, was analyzed as a function of the linewidth and the gap distance of the microstructured surfaces

  18. 3D-printed devices for continuous-flow organic chemistry

    Directory of Open Access Journals (Sweden)

    Vincenza Dragone

    2013-05-01

    Full Text Available We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  19. A multimaterial electrohydrodynamic jet (E-jet) printing system

    International Nuclear Information System (INIS)

    Sutanto, E; Shigeta, K; Kim, Y K; Graf, P G; Hoelzle, D J; Barton, K L; Alleyne, A G; Ferreira, P M; Rogers, J A

    2012-01-01

    Electrohydrodynamic jet (E-jet) printing has emerged as a high-resolution alternative to other forms of direct solution-based fabrication approaches, such as ink-jet printing. This paper discusses the design, integration and operation of a unique E-jet printing platform. The uniqueness lies in the ability to utilize multiple materials in the same overall print-head, thereby enabling increased degrees of heterogeneous integration of different functionalities on a single substrate. By utilizing multiple individual print-heads, with a carrousel indexing among them, increased material flexibility is achieved. The hardware design and system operation for a relatively inexpensive system are developed and presented. Crossover interconnects and multiple fluorescent tagged proteins, demonstrating printed electronics and biological sensing applications, respectively. (paper)

  20. 3D inkjet printed radio frequency inductors and capacitors

    KAUST Repository

    Vaseem, Mohammad

    2016-12-08

    Inkjet printing has emerged as an ideal method for the fabrication of low cost and efficient electronic systems. However, most of the printed designs at present utilize 2D inkjet printing of metallic inks on conventional substrates. In order to have fully printed RF components, the substrate must also be printed. 3D printing of polymers can be an ideal mechanism for printing substrates, however typically such materials cannot handle high sintering temperatures (>150 0C) required for nanoparticles based metallic inks. In this work, an all-inkjet printed process is demonstrated that utilizes 3D inkjet printing of a UV-cured dielectric material in combination with the printing of a particle free conductive silver organo-complex (SOC) ink for realization of inductors and capacitors. The processing temperature does not exceed 80 0C and still state of the art conductivity of 1×107 S/m is achieved. Both the conductive ink and dielectric have roughness values under 500 nm. The inductor and capacitor exhibit quality factors of 8 and 20 respectively in the high MHz and GHz regime.

  1. Study of lip prints: A forensic study

    Directory of Open Access Journals (Sweden)

    Vikash Ranjan

    2014-01-01

    Full Text Available Background: Although several studies have been done on lip prints for human identification in forensic science, there is a doubt about their use in gender determination. Aims: The present study was designed to study the lip groove patterns in all the quadrants of both male and female subjects to identify the sex, based on the patterns of the grooves of the lip prints. Study Design: 300 lip prints were collected from volunteers of D. J. College of Dental Sciences and Research, Modinagar (UP. Materials and Methods: Lip prints were recorded with lip stick and transferred on to a glass slide. Statistical Analysis: Pearson chi-square test was adopted for statistical analysis and probability value (P value was calculated. Conclusion: In our study, none of the lip prints were identical, thus confirming the role of lip prints in individual identification. According to Suzuki′s classification, Type I, II, III and IV patterns were significant in gender determination.

  2. Printing in heterogeneous computer environment at DESY

    International Nuclear Information System (INIS)

    Jakubowski, Z.

    1996-01-01

    The number of registered hosts DESY reaches 3500 while the number of print queues approaches 150. The spectrum of used computing environment is very wide: from MAC's and PC's, through SUN, DEC and SGI machines to the IBM mainframe. In 1994 we used 18 tons of paper. We present a solution for providing print services in such an environment for more than 3500 registered users. The availability of the print service is a serious issue. Using centralized printing has a lot of advantages for software administration but creates single point of failure. We solved this problem partially without using expensive software and hardware. The talk provides information about the DESY central central print spooler concept. None of the systems available on the market provides ready to use reliable solution for all platforms used for DESY. We discuss concepts for installation, administration and monitoring large number of printers. We found a solution for printing both on central computing facilities likewise for support of stand-alone workstations. (author)

  3. Network printing in a heterogenous environment

    International Nuclear Information System (INIS)

    Beyer, C.; Schroth, G.

    2001-01-01

    Mail and printing are often said to be the most visible services for the user in the network. Though many people talked about the paperless bureau a few years ago it seems that the more digital data is accessible, the more it gets printed. Print management in a heterogenous network environments is typically crossing all operating systems. Each of those brings its own requirements and different printing system implementations with individual user interfaces. The scope is to give the user the advantage and features of the native interface of their operating system while making administration tasks as easy as possible by following the general ideas of a centralised network service on the server side

  4. Exposure assessment of workers in printed electronics workplace.

    Science.gov (United States)

    Lee, Ji Hyun; Sohn, Eun Kyung; Ahn, Jin Soo; Ahn, Kangho; Kim, Keun Soo; Lee, Jong Hwan; Lee, Taik Min; Yu, Il Je

    2013-07-01

    Printed electronics uses converging technologies, such as printing, fine mechanics, nanotechnology, electronics and other new technologies. Consequently, printed electronics raises additional health and safety concerns to those experienced in the traditional printing industry. This study investigated two printed electronics workplaces based on a walk-through survey and personal and area sampling. All the printed electronics operations were conducted in a cleanroom. No indication of exposure to excess silver nanoparticles or carbon nanotubes (CNTs) was found. While the organic solvents were lower than current occupational exposure limits, there was a lack of engineering controls, such as local exhaust ventilation, correct enclosure and duct connections. There was also an insufficient quantity of personal protective equipment, and some organic solvents not described in the safety data sheets (SDSs) were detected in the air samples. Plus, the cleaning work, a major emissions operation, was not conducted within a hood, and the cleaning waste was not properly disposed of. Therefore, the present exposure assessment results from two printed electronics workplaces suggest that the printed electronics industry needs to take note of the occupational safety and health risks and hazards already established by the traditional printing industry, along with new risks and hazards originating from converging technologies such as nanotechnology.

  5. µPlasma printing of hydrophobic and hydrophilic patterns to improve wetting behaviour for printed electronics

    NARCIS (Netherlands)

    Erik Niewenhuis; ir Renee Verkuijlen; Dr Jan Bernards; ir Martijn van Dongen; Lise Verbraeken

    2012-01-01

    Inkjet printing is a rapidly growing technology for depositing functional materials in the production of organic electronics. Challenges lie among others in the printing of high resolution patterns with high aspect ratio of functional materials to obtain the needed functionality like e.g.

  6. Three-Dimensional Printed Graphene Foams.

    Science.gov (United States)

    Sha, Junwei; Li, Yilun; Villegas Salvatierra, Rodrigo; Wang, Tuo; Dong, Pei; Ji, Yongsung; Lee, Seoung-Ki; Zhang, Chenhao; Zhang, Jibo; Smith, Robert H; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M

    2017-07-25

    An automated metal powder three-dimensional (3D) printing method for in situ synthesis of free-standing 3D graphene foams (GFs) was successfully modeled by manually placing a mixture of Ni and sucrose onto a platform and then using a commercial CO 2 laser to convert the Ni/sucrose mixture into 3D GFs. The sucrose acted as the solid carbon source for graphene, and the sintered Ni metal acted as the catalyst and template for graphene growth. This simple and efficient method combines powder metallurgy templating with 3D printing techniques and enables direct in situ 3D printing of GFs with no high-temperature furnace or lengthy growth process required. The 3D printed GFs show high-porosity (∼99.3%), low-density (∼0.015g cm -3 ), high-quality, and multilayered graphene features. The GFs have an electrical conductivity of ∼8.7 S cm -1 , a remarkable storage modulus of ∼11 kPa, and a high damping capacity of ∼0.06. These excellent physical properties of 3D printed GFs indicate potential applications in fields requiring rapid design and manufacturing of 3D carbon materials, for example, energy storage devices, damping materials, and sound absorption.

  7. Indirect X-ray Detectors Based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer.

    Science.gov (United States)

    Oliveira, Juliana; Correia, Vitor; Sowade, Enrico; Etxebarria, Ikerne; Rodriguez, Raul D; Mitra, Kalyan Y; Baumann, Reinhard R; Lanceros-Mendez, Senentxu

    2018-04-18

    Organic photodetectors (PDs) based on printing technologies will allow to expand the current field of PD applications toward large-area and flexible applications in areas such as medical imaging, security, and quality control, among others. Inkjet printing is a powerful digital tool for the deposition of smart and functional materials on various substrates, allowing the development of electronic devices such as PDs on various substrates. In this work, inkjet-printed PD arrays, based on the organic thin-film transistor architecture, have been developed and applied for the indirect detection of X-ray radiation using a scintillator ink as an X-ray absorber. The >90% increase of the photocurrent of the PDs under X-ray radiation, from about 53 nA without the scintillator film to about 102 nA with the scintillator located on top of the PD, proves the suitability of the developed printed device for X-ray detection applications.

  8. Inkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chips

    International Nuclear Information System (INIS)

    Walczak, Rafał; Adamski, Krzysztof

    2015-01-01

    This article reports, for the first time, the results of detailed research on the application of inkjet 3D printing for the fabrication of microfluidic structures. CAD designed test structures were printed with four different printers. Dimensional fidelity, shape conformity, and surface roughness were studied for each printout. It was found that the minimum dimension (width or depth) for a properly printed microfluidic channel was approximately 200 μm. Although the nominal resolution of the printers was one order of magnitude better, smaller structures were significantly deformed or not printed at all. It was also found that a crucial step in one-step fabrication of embedded microchannels is the removal of the support material. We also discuss the source of print error and present a way to evaluate other printers. The printouts obtained from the four different printers were compared, and the optimal printing technique and printer were used to fabricate a microfluidic structure for the spectrophotometric characterisation of beverages. UV/VIS absorbance characteristics were collected using this microfluidic structure, demonstrating that the fabricated spectrophotometric chip operated properly. Thus, a proof-of-concept for using inkjet 3D printing for the fabrication of microfluidic structures was obtained. (paper)

  9. 3D Printing of Carbon Nanotubes-Based Microsupercapacitors.

    Science.gov (United States)

    Yu, Wei; Zhou, Han; Li, Ben Q; Ding, Shujiang

    2017-02-08

    A novel 3D printing procedure is presented for fabricating carbon-nanotubes (CNTs)-based microsupercapacitors. The 3D printer uses a CNTs ink slurry with a moderate solid content and prints a stream of continuous droplets. Appropriate control of a heated base is applied to facilitate the solvent removal and adhesion between printed layers and to improve the structure integrity without structure delamination or distortion upon drying. The 3D-printed electrodes for microsupercapacitors are characterized by SEM, laser scanning confocal microscope, and step profiler. Effect of process parameters on 3D printing is also studied. The final solid-state microsupercapacitors are assembled with the printed multilayer CNTs structures and poly(vinyl alcohol)-H 3 PO 4 gel as the interdigitated microelectrodes and electrolyte. The electrochemical performance of 3D printed microsupercapacitors is also tested, showing a significant areal capacitance and excellent cycle stability.

  10. Pseudoisochromatic test plate colour representation dependence on printing technology

    International Nuclear Information System (INIS)

    Luse, K; Ozolinsh, M; Fomins, S

    2012-01-01

    The aim of the study is to determine best printing technology for creation of colour vision deficiency tests. Valid tests for protanopia and deuteranopia were created from perceived colour matching experiments from printed colour samples by colour deficient individuals. Calibrated EpsonStylus Pro 7800 printer for ink prints and Noritsu HD 3701 digital printer for photographic prints were used. Multispectral imagery (by tunable liquid crystal filters system CRI Nuance Vis 07) data analysis show that in case of ink prints, the measured pixel colour coordinate dispersion (in the CIExy colour diagram) of similar colour arrays is smaller than in case of photographic printing. The print quality in terms of colour coordinate dispersion for printing methods used is much higher than in case of commercially available colour vision deficiency tests.

  11. Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications.

    Science.gov (United States)

    Farahani, Rouhollah D; Dubé, Martine; Therriault, Daniel

    2016-07-01

    The integration of nanotechnology into three-dimensional printing (3DP) offers huge potential and opportunities for the manufacturing of 3D engineered materials exhibiting optimized properties and multifunctionality. The literature relating to different 3DP techniques used to fabricate 3D structures at the macro- and microscale made of nanocomposite materials is reviewed here. The current state-of-the-art fabrication methods, their main characteristics (e.g., resolutions, advantages, limitations), the process parameters, and materials requirements are discussed. A comprehensive review is carried out on the use of metal- and carbon-based nanomaterials incorporated into polymers or hydrogels for the manufacturing of 3D structures, mostly at the microscale, using different 3D-printing techniques. Several methods, including but not limited to micro-stereolithography, extrusion-based direct-write technologies, inkjet-printing techniques, and popular powder-bed technology, are discussed. Various examples of 3D nanocomposite macro- and microstructures manufactured using different 3D-printing technologies for a wide range of domains such as microelectromechanical systems (MEMS), lab-on-a-chip, microfluidics, engineered materials and composites, microelectronics, tissue engineering, and biosystems are reviewed. Parallel advances on materials and techniques are still required in order to employ the full potential of 3D printing of multifunctional nanocomposites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The "Isms" of Art. Introduction to the 2001-2002 Clip and Save Art Prints.

    Science.gov (United States)

    Hubbard, Guy

    2001-01-01

    Provides an introduction to the 2001-2002 Clip and Save Art Prints that will focus on ten art movements from the past 150 years. Includes information on three art movements, or "isms": Classicism, Romanticism, and Realism. Discusses the Clip and Save Art Print format and provides information on three artists. (CMK)

  13. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed antenna to date, and a fourth-order Koch Snowflake monopole, which utilises a Sierpinski gasket fractal for ink reduction, are demonstrated. It is shown that fractals prove to be a successful method of reducing fabrication costs in inkjet-printed antennas, while retaining or enhancing printed antenna performance. © 2012 The Institution of Engineering and Technology.

  14. International Standards on stability of digital prints

    International Nuclear Information System (INIS)

    Adelstein, Peter Z

    2010-01-01

    The International Standards Organization (ISO) is a worldwide recognized standardizing body which has responsibility for standards on permanence of digital prints. This paper is an update on the progress made to date by ISO in writing test methods in this area. Three technologies are involved, namely ink jet, dye diffusion thermal transfer (dye-sublimation) and electrophotography. Two types of test methods are possible, namely comparative tests and predictive tests. To date a comparative test on water fastness has been published and final balloting is underway on a comparative test on humidity fastness. Predictive tests are being finalized on thermal stability and pollution susceptibility. The test method on thermal stability is intended to predict the print life during normal aging. One of the testing concerns is that some prints do not show significant image change in practical testing times. The test method on pollution susceptibility only deals with ozone and assumes that the reciprocity law applies. This law assumes that a long time under a low pollutant concentration is equivalent to a short time under the high concentration used in the test procedure. Longer term studies include a predictive test for light stability and the preparation of a material specification. The latter requires a decision about the proper colour target to be used and what constitutes an unacceptable colour change. Moreover, a specification which gives a predictive life is very dependent upon the conditions the print encounters and will only apply to specific levels of temperature, ozone and light.

  15. Digital Printing Quality Detection and Analysis Technology Based on CCD

    Science.gov (United States)

    He, Ming; Zheng, Liping

    2017-12-01

    With the help of CCD digital printing quality detection and analysis technology, it can carry out rapid evaluation and objective detection of printing quality, and can play a certain control effect on printing quality. It can be said CDD digital printing quality testing and analysis of the rational application of technology, its digital printing and printing materials for a variety of printing equipments to improve the quality of a very positive role. In this paper, we do an in-depth study and discussion based on the CCD digital print quality testing and analysis technology.

  16. 3D printed soft parallel actuator

    Science.gov (United States)

    Zolfagharian, Ali; Kouzani, Abbas Z.; Khoo, Sui Yang; Noshadi, Amin; Kaynak, Akif

    2018-04-01

    This paper presents a 3-dimensional (3D) printed soft parallel contactless actuator for the first time. The actuator involves an electro-responsive parallel mechanism made of two segments namely active chain and passive chain both 3D printed. The active chain is attached to the ground from one end and constitutes two actuator links made of responsive hydrogel. The passive chain, on the other hand, is attached to the active chain from one end and consists of two rigid links made of polymer. The actuator links are printed using an extrusion-based 3D-Bioplotter with polyelectrolyte hydrogel as printer ink. The rigid links are also printed by a 3D fused deposition modelling (FDM) printer with acrylonitrile butadiene styrene (ABS) as print material. The kinematics model of the soft parallel actuator is derived via transformation matrices notations to simulate and determine the workspace of the actuator. The printed soft parallel actuator is then immersed into NaOH solution with specific voltage applied to it via two contactless electrodes. The experimental data is then collected and used to develop a parametric model to estimate the end-effector position and regulate kinematics model in response to specific input voltage over time. It is observed that the electroactive actuator demonstrates expected behaviour according to the simulation of its kinematics model. The use of 3D printing for the fabrication of parallel soft actuators opens a new chapter in manufacturing sophisticated soft actuators with high dexterity and mechanical robustness for biomedical applications such as cell manipulation and drug release.

  17. Ruling the Market: How Venice Dominated the Early Music Printing World

    OpenAIRE

    Elizabeth M. Poore

    2015-01-01

    This paper attempts to prove that Venice was the main geographical center of music printing and publishing from the 1300s to the late 1500s using several economic, legal, and cultural factors. The primary research method was examining secondary sources on music printing, publishing, and European and Venetian history. From the 1300s to the late 1500s, Venetian commercial trade and activity, including book publishing, reached unheard of levels. Venice held a powerful position in the European...

  18. Printing Values In Interactive ROOT

    CERN Document Server

    Perovic, Boris

    2015-01-01

    This project report summarizes the work I have been performing during the past twelve weeks as a Summer Student intern working on ROOT project in the SFT group, PH department, under the supervision of Axel Naumann and Danilo Piparo. One of the widely requested features for ROOT was improved interactive shell experience as well as improved printing of object values. Solving this issue was the goal of this project. Primarily, we have enabled printing of the collections. Secondly, we have unified the printing interface, making it much more robust and extendible. Thirdly, we have implemented printing of nested collections in a flexible and user-friendly manner. Finally, we have added an interactive mode, allowing for paginated output. At the beginning of the report, ROOT is presented with examples of where it is used and how important it is. Then, the motivation behind the project is elaborated, by presenting the previous state of the software package and its potential for improvement. Further, the process in wh...

  19. 7 CFR 58.340 - Printing and packaging.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Printing and packaging. 58.340 Section 58.340... Procedures § 58.340 Printing and packaging. Printing and packaging of consumer size containers of butter... packaging equipment should be provided. The outside cartons should be removed from bulk butter in a room...

  20. Printing Electronic Components from Copper-Infused Ink and Thermoplastic Mediums

    Science.gov (United States)

    Flowers, Patrick F.

    The demand for printable electronics has sharply increased in recent years and is projected to continue to rise. Unfortunately, electronic materials which are suitable for desired applications while being compatible with available printing techniques are still often lacking. This thesis addresses two such challenging areas. In the realm of two-dimensional ink-based printing of electronics, a major barrier to the realization of printable computers that can run programs is the lack of a solution-coatable non-volatile memory with performance metrics comparable to silicon-based devices. To address this deficiency, I developed a nonvolatile memory based on Cu-SiO2 core-shell nanowires that can be printed from solution and exhibits on-off ratios of 106, switching speeds of 50 ns, a low operating voltage of 2 V, and operates for at least 104 cycles without failure. Each of these metrics is similar to or better than Flash memory (the write speed is 20 times faster than Flash). Memory architectures based on the individual memory cells demonstrated here could enable the printing of the more complex, embedded computing devices that are expected to make up an internet of things. Recently, the exploration of three-dimensional printing techniques to fabricate electronic materials began. A suitable general-purpose conductive thermoplastic filament was not available, however. In this work I examine the current state of conductive thermoplastic filaments, including a newly-released highly conductive filament that my lab has produced which we call Electrifi. I focus on the use of dual-material fused filament fabrication (FFF) to 3D print electronic components (conductive traces, resistors, capacitors, inductors) and circuits (a fully-printed high-pass filter). The resistivity of traces printed from conductive thermoplastic filaments made with carbon-black, graphene, and copper as conductive fillers was found to be 12, 0.78, and 0.014 ohm cm, respectively, enabling the creation of

  1. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder.

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2016-11-08

    In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport.

  2. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2016-11-01

    In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport.

  3. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    Science.gov (United States)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  4. Advances in digital printing and quality considerations of digitally printed images

    Science.gov (United States)

    Waes, Walter C.

    1997-02-01

    The traditional 'graphic arts' market has changed very rapidly. It has been only ten years now since Aldus introduced its 'PageMaker' software for text and layout. The platform used was Apple-Mac, which became also the standard for many other graphic applications. The so-called high-end workstations disappeared. This was the start for what later was called: the desk top publishing revolution. At the same time, image scanning became also user-friendly and heavy duty scanners were reduced to desktop-size. Color- reproduction became a commodity product. Since then, the pre-press industry has been going through a technical nightmare, trying to keep up with the digital explosion. One after another, tasks and crafts of pre-press were being transformed by digital technologies. New technologies in this field came almost too fast for many people to adapt. The next digital revolution will be for the commercial printers. All the reasons are explained later in this document. There is now a definite need for a different business-strategy and a new positioning in the electronic media-world. Niches have to be located for new graphic arts- applications. Electronic services to-and-from originators' and executors environments became a requirement. Data can now flow on-line between the printer and the originator of the job. It is no longer the pre-press shop who is controlling this. In many cases, electronic data goes between the print-buyer or agency and the printer. High power communication-systems with accepted standard color- management are transforming the printer, and more particularly, the pre-press shop fatally. The new digital printing market, now in the beginning of its expected full expansion, has to do with growing requests coming from agencies and other print-buyers for: (1) short-run printing; (2) print-on-demand approximately in-time; (3) personalization or other forms of customization; (4) quick turnaround.

  5. 3D printing applications for transdermal drug delivery.

    Science.gov (United States)

    Economidou, Sophia N; Lamprou, Dimitrios A; Douroumis, Dennis

    2018-06-15

    The role of two and three-dimensional printing as a fabrication technology for sophisticated transdermal drug delivery systems is explored in literature. 3D printing encompasses a family of distinct technologies that employ a virtual model to produce a physical object through numerically controlled apparatuses. The applicability of several printing technologies has been researched for the direct or indirect printing of microneedle arrays or for the modification of their surface through drug-containing coatings. The findings of the respective studies are presented. The range of printable materials that are currently used or potentially can be employed for 3D printing of transdermal drug delivery (TDD) systems is also reviewed. Moreover, the expected impact and challenges of the adoption of 3D printing as a manufacturing technique for transdermal drug delivery systems, are assessed. Finally, this paper outlines the current regulatory framework associated with 3D printed transdermal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Viscoplastic Matrix Materials for Embedded 3D Printing.

    Science.gov (United States)

    Grosskopf, Abigail K; Truby, Ryan L; Kim, Hyoungsoo; Perazzo, Antonio; Lewis, Jennifer A; Stone, Howard A

    2018-03-16

    Embedded three-dimensional (EMB3D) printing is an emerging technique that enables free-form fabrication of complex architectures. In this approach, a nozzle is translated omnidirectionally within a soft matrix that surrounds and supports the patterned material. To optimize print fidelity, we have investigated the effects of matrix viscoplasticity on the EMB3D printing process. Specifically, we determine how matrix composition, print path and speed, and nozzle diameter affect the yielded region within the matrix. By characterizing the velocity and strain fields and analyzing the dimensions of the yielded regions, we determine that scaling relationships based on the Oldroyd number, Od, exist between these dimensions and the rheological properties of the matrix materials and printing parameters. Finally, we use EMB3D printing to create complex architectures within an elastomeric silicone matrix. Our methods and findings will both facilitate future characterization of viscoplastic matrices and motivate the development of new materials for EMB3D printing.

  7. Direct Desktop Printed-Circuits-on-Paper Flexible Electronics

    Science.gov (United States)

    Zheng, Yi; He, Zhizhu; Gao, Yunxia; Liu, Jing

    2013-01-01

    There currently lacks of a way to directly write out electronics, just like printing pictures on paper by an office printer. Here we show a desktop printing of flexible circuits on paper via developing liquid metal ink and related working mechanisms. Through modifying adhesion of the ink, overcoming its high surface tension by dispensing machine and designing a brush like porous pinhead for printing alloy and identifying matched substrate materials among different papers, the slightly oxidized alloy ink was demonstrated to be flexibly printed on coated paper, which could compose various functional electronics and the concept of Printed-Circuits-on-Paper was thus presented. Further, RTV silicone rubber was adopted as isolating inks and packaging material to guarantee the functional stability of the circuit, which suggests an approach for printing 3D hybrid electro-mechanical device. The present work paved the way for a low cost and easygoing method in directly printing paper electronics.

  8. 3D inkjet printed radio frequency inductors and capacitors

    KAUST Repository

    Vaseem, Mohammad; McKerricher, Garret; Shamim, Atif

    2016-01-01

    fully printed RF components, the substrate must also be printed. 3D printing of polymers can be an ideal mechanism for printing substrates, however typically such materials cannot handle high sintering temperatures (>150 0C) required for nanoparticles

  9. Quality Inspection of Printed Texts

    DEFF Research Database (Denmark)

    Pedersen, Jesper Ballisager; Nasrollahi, Kamal; Moeslund, Thomas B.

    2016-01-01

    -folded: for costumers of the printing and verification system, the overall grade used to verify if the text is of sufficient quality, while for printer's manufacturer, the detailed character/symbols grades and quality measurements are used for the improvement and optimization of the printing task. The proposed system...

  10. Inkjet printing of multifilamentary YBCO for low AC loss coated conductors

    International Nuclear Information System (INIS)

    Hopkins, S C; Joseph, D; Mitchell-Williams, T B; Glowacki, B A; Calleja, A; Vlad, V R; Vilardell, M; Ricart, S; Granados, X; Puig, T; Obradors, X; Usoskin, A; Falter, M; Bäcker, M

    2014-01-01

    Considerable progress has been made with the development of REBCO coated conductors in recent years, and high performance conductors are available commercially. For many applications, however, the cost remains prohibitive, and AC losses discourage their selection for higher frequency applications. Chemical solution deposition (CSD) methods are attractive for low-cost, scalable preparation of buffer and superconductor layers, and in many respects inkjet printing is the method of choice, permitting non-contact deposition with minimal materials wastage and excellent control of coating thickness. Highly textured coatings of YBCO and Gd-doped CeO 2 have previously been reported on buffered metal substrates. Inkjet printing also introduces the possibility of patterning - directly depositing two and three dimensional structures without subtractive processing - offering a low-cost route to coated conductors with reduced AC losses. In this contribution, the inkjet deposition of superconducting YBCO tracks is reported on industrially relevant buffered metal substrates both by direct printing and an inverse patterning approach. In the latter approach, ceria tracks were printed reported, which are a candidate both for resistive filament spacers and buffer layers. TFA-based precursor solutions have been printed on SS/ABAD-YSZ/CeO 2 and Ni-W/LZO/CeO 2 RABiTS substrates, and the resulting multifilamentary samples characterised by microscopy and scanning Hall probe measurements. The prospects for future inkjet-printed low AC loss coated conductors are discussed, including control of interfilamentary resistivity and bridging, transposed filamentary structures and stabilisation material.

  11. Security printing of covert quick response codes using upconverting nanoparticle inks

    Science.gov (United States)

    Meruga, Jeevan M.; Cross, William M.; May, P. Stanley; Luu, QuocAnh; Crawford, Grant A.; Kellar, Jon J.

    2012-10-01

    Counterfeiting costs governments and private industries billions of dollars annually due to loss of value in currency and other printed items. This research involves using lanthanide doped β-NaYF4 nanoparticles for security printing applications. Inks comprised of Yb3+/Er3+ and Yb3+/Tm3+ doped β-NaYF4 nanoparticles with oleic acid as the capping agent in toluene and methyl benzoate with poly(methyl methacrylate) (PMMA) as the binding agent were used to print quick response (QR) codes. The QR codes were made using an AutoCAD file and printed with Optomec direct-write aerosol jetting®. The printed QR codes are invisible under ambient lighting conditions, but are readable using a near-IR laser, and were successfully scanned using a smart phone. This research demonstrates that QR codes, which have been used primarily for information sharing applications, can also be used for security purposes. Higher levels of security were achieved by printing both green and blue upconverting inks, based on combinations of Er3+/Yb3+ and Tm3+/Yb3+, respectively, in a single QR code. The near-infrared (NIR)-to-visible upconversion luminescence properties of the two-ink QR codes were analyzed, including the influence of NIR excitation power density on perceived color, in term of the CIE 1931 chromaticity index. It was also shown that this security ink can be optimized for line width, thickness and stability on different substrates.

  12. Security printing of covert quick response codes using upconverting nanoparticle inks

    International Nuclear Information System (INIS)

    Meruga, Jeevan M; Cross, William M; Crawford, Grant A; Kellar, Jon J; Stanley May, P; Luu, QuocAnh

    2012-01-01

    Counterfeiting costs governments and private industries billions of dollars annually due to loss of value in currency and other printed items. This research involves using lanthanide doped β-NaYF 4 nanoparticles for security printing applications. Inks comprised of Yb 3+ /Er 3+ and Yb 3+ /Tm 3+ doped β-NaYF 4 nanoparticles with oleic acid as the capping agent in toluene and methyl benzoate with poly(methyl methacrylate) (PMMA) as the binding agent were used to print quick response (QR) codes. The QR codes were made using an AutoCAD file and printed with Optomec direct-write aerosol jetting ® . The printed QR codes are invisible under ambient lighting conditions, but are readable using a near-IR laser, and were successfully scanned using a smart phone. This research demonstrates that QR codes, which have been used primarily for information sharing applications, can also be used for security purposes. Higher levels of security were achieved by printing both green and blue upconverting inks, based on combinations of Er 3+ /Yb 3+ and Tm 3+ /Yb 3+ , respectively, in a single QR code. The near-infrared (NIR)-to-visible upconversion luminescence properties of the two-ink QR codes were analyzed, including the influence of NIR excitation power density on perceived color, in term of the CIE 1931 chromaticity index. It was also shown that this security ink can be optimized for line width, thickness and stability on different substrates. (paper)

  13. Photoreactive and Metal-Platable Copolymer Inks for High-Throughput, Room-Temperature Printing of Flexible Metal Electrodes for Thin-Film Electronics.

    Science.gov (United States)

    Yu, You; Xiao, Xiang; Zhang, Yaokang; Li, Kan; Yan, Casey; Wei, Xiaoling; Chen, Lina; Zhen, Hongyu; Zhou, Hang; Zhang, Shengdong; Zheng, Zijian

    2016-06-01

    Photoreactive and metal-platable copolymer inks are reported for the first time to allow high-throughput printing of high-performance flexible electrodes at room temperature. This new copolymer ink accommodates various types of printing technologies, such as soft lithography molding, screen printing, and inkjet printing. Electronic devices including resistors, sensors, solar cells, and thin-film transistors fabricated with these printed electrodes show excellent electrical performance and mechanical flexibility. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 3D printing application and numerical simulations in a fracture system

    Science.gov (United States)

    Yoon, H.; Martinez, M. J.

    2017-12-01

    The hydrogeological and mechanical properties in fractured and porous media are fundamental to predicting coupled multiphysics processes in the subsurface. Recent advances in experimental methods and multi-scale imaging capabilities have revolutionized our ability to quantitatively characterize geomaterials and digital counterparts are now routinely used for numerical simulations to characterize petrophysical and mechanical properties across scales. 3D printing is a very effective and creative technique that reproduce the digital images in a controlled way. For geoscience applications, 3D printing can be co-opted to print reproducible porous and fractured structures derived from CT-imaging of actual rocks and theoretical algorithms for experimental testing. In this work we used a stereolithography (SLA) method to create a single fracture network. The fracture in shale was first scanned using a microCT system and then the digital fracture network was printed into two parts and assembled. Aperture ranges from 0.3 to 1 mm. In particular, we discuss the design of single fracture network and the progress of printing practices to reproduce the fracture network system. Printed samples at different scales are used to measure the permeability and surface roughness. Various numerical simulations including (non-)reactive transport and multiphase flow cases are performed to study fluid flow characterization. We will also discuss the innovative advancement of 3D printing techniques applicable for coupled processes in the subsurface. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  15. Sunspots Resource--From Ancient Cultures to Modern Research

    Science.gov (United States)

    Craig, N.

    2000-10-01

    Sunspots is a web-based lesson that was developed by the Science Education Gateway (SEGway) program with participants from the Exploratorium, a well known science Museum in San Francisco, UC Berkeley Space Sciences Laboratory, and teachers from several California schools. This space science resource allows 8-12 grade students to explore the nature of sunspots and the history of solar physics in its effort to understand their nature. Interviews with solar physicists and archeo-astronomers, historic images, cutting-edge NASA images, movies, and research results, as well as a student-centered sunspot research activity using NASA space science data defines this lesson. The sunspot resource is aligned with the NCTM and National Science Education Standards. It emphasizes inquiry-based methods and mathematical exercises through measurement, graphic data representation, analysis of NASA data, lastly, interpreting results and drawing conclusions. These resources have been successfully classroom tested in 4 middle schools in the San Francisco Unified School District as part of the 3-week Summer School Science curricula. Lessons learned from the Summer School 1999 will be explained. This resource includes teacher-friendly lesson plans, space science background material and student worksheets. There will be Sunspots lesson CD-ROM and printed version of the relevant classroom-ready materials and a teacher resource booklet available. Sunspot resource is brought to you by, The Science Education Gateway - SEGway - Project, and the HESSI satellite and NASA's Office of Space Science Sun-Earth Connection Education Forum.

  16. 3D Printing Factors Important for the Fabrication of Polyvinylalcohol Filament-Based Tablets.

    Science.gov (United States)

    Tagami, Tatsuaki; Fukushige, Kaori; Ogawa, Emi; Hayashi, Naomi; Ozeki, Tetsuya

    2017-01-01

    Three-dimensional (3D) printers have been applied in many fields, including engineering and the medical sciences. In the pharmaceutical field, approval of the first 3D-printed tablet by the U.S. Food and Drug Administration in 2015 has attracted interest in the manufacture of tablets and drugs by 3D printing techniques as a means of delivering tailor-made drugs in the future. In current study, polyvinylalcohol (PVA)-based tablets were prepared using a fused-deposition-modeling-type 3D printer and the effect of 3D printing conditions on tablet production was investigated. Curcumin, a model drug/fluorescent marker, was loaded into PVA-filament. We found that several printing parameters, such as the rate of extruding PVA (flow rate), can affect the formability of the resulting PVA-tablets. The 3D-printing temperature is controlled by heating the print nozzle and was shown to affect the color of the tablets and their curcumin content. PVA-based infilled tablets with different densities were prepared by changing the fill density as a printing parameter. Tablets with lower fill density floated in an aqueous solution and their curcumin content tended to dissolve faster. These findings will be useful in developing drug-loaded PVA-based 3D objects and other polymer-based articles prepared using fused-deposition-modeling-type 3D printers.

  17. 3D Printing of Scaffolds for Tissue Regeneration Applications

    Science.gov (United States)

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  18. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.

    Science.gov (United States)

    Yuk, Hyunwoo; Zhao, Xuanhe

    2018-02-01

    Direct ink writing (DIW) has demonstrated great potential as a multimaterial multifunctional fabrication method in areas as diverse as electronics, structural materials, tissue engineering, and soft robotics. During DIW, viscoelastic inks are extruded out of a 3D printer's nozzle as printed fibers, which are deposited into patterns when the nozzle moves. Hence, the resolution of printed fibers is commonly limited by the nozzle's diameter, and the printed pattern is limited by the motion paths. These limits have severely hampered innovations and applications of DIW 3D printing. Here, a new strategy to exceed the limits of DIW 3D printing by harnessing deformation, instability, and fracture of viscoelastic inks is reported. It is shown that a single nozzle can print fibers with resolution much finer than the nozzle diameter by stretching the extruded ink, and print various thickened or curved patterns with straight nozzle motions by accumulating the ink. A quantitative phase diagram is constructed to rationally select parameters for the new strategy. Further, applications including structures with tunable stiffening, 3D structures with gradient and programmable swelling properties, all printed with a single nozzle are demonstrated. The current work demonstrates that the mechanics of inks plays a critical role in developing 3D printing technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 3D-printed upper limb prostheses: a review.

    Science.gov (United States)

    Ten Kate, Jelle; Smit, Gerwin; Breedveld, Paul

    2017-04-01

    This paper aims to provide an overview with quantitative information of existing 3D-printed upper limb prostheses. We will identify the benefits and drawbacks of 3D-printed devices to enable improvement of current devices based on the demands of prostheses users. A review was performed using Scopus, Web of Science and websites related to 3D-printing. Quantitative information on the mechanical and kinematic specifications and 3D-printing technology used was extracted from the papers and websites. The overview (58 devices) provides the general specifications, the mechanical and kinematic specifications of the devices and information regarding the 3D-printing technology used for hands. The overview shows prostheses for all different upper limb amputation levels with different types of control and a maximum material cost of $500. A large range of various prostheses have been 3D-printed, of which the majority are used by children. Evidence with respect to the user acceptance, functionality and durability of the 3D-printed hands is lacking. Contrary to what is often claimed, 3D-printing is not necessarily cheap, e.g., injection moulding can be cheaper. Conversely, 3D-printing provides a promising possibility for individualization, e.g., personalized socket, colour, shape and size, without the need for adjusting the production machine. Implications for rehabilitation Upper limb deficiency is a condition in which a part of the upper limb is missing as a result of a congenital limb deficiency of as a result of an amputation. A prosthetic hand can restore some of the functions of a missing limb and help the user in performing activities of daily living. Using 3D-printing technology is one of the solutions to manufacture hand prostheses. This overview provides information about the general, mechanical and kinematic specifications of all the devices and it provides the information about the 3D-printing technology used to print the hands.

  20. U.S. Mint - Bureau of Engraving and Printing (BEP) Facilities

    Data.gov (United States)

    Department of Homeland Security — United States Mint - Bureau of Engraving and Printing Facilities This dataset includes facilities of the United States Mint and facilities of the Bureau of Engraving...

  1. High-Speed Printing Process Characterization using the Lissajous Trajectory Method

    Science.gov (United States)

    Lee, Sangwon; Kim, Daekeun

    2018-04-01

    We present a novel stereolithographic three-dimensional (3D) printing process that uses Lissajous trajectories. By using Lissajous trajectories, this 3D printing process allows two laser-scanning mirrors to operate at similar high-speed frequencies simultaneously, and the printing speed can be faster than that of raster scanning used in conventional stereolithography. In this paper, we first propose the basic theoretical background for this printing process based on Lissajous trajectories. We also characterize its printing conditions, such as printing size, laser spot size, and minimum printing resolution, with respect to the operating frequencies of the scanning mirrors and the capability of the laser modulation. Finally, we demonstrate simulation results for printing basic 2D shapes by using a noble printing process algorithm.

  2. The analysis of ink jet printed eco-font efficiency

    Directory of Open Access Journals (Sweden)

    Rastko Milošević

    2016-07-01

    Full Text Available Utilization of eco-font for office printing is one of sustainable, “green” printing concepts, which besides obvious economic benefits, as a result has a certain effect on environmental sustainability as well. The fundamental problem that this practice faces is decreased quality of text printed using eco-fonts comparing to those printed with regular fonts. The aim of this research is eco-font efficiency estimation, i.e. determination of toner usage reduction level of ink jet printed documents typed with this font type, as well as estimation of the extent humans perceive differences between text printed with eco-font and the one printed by its „non-eco“ equivalent. Combining instrumental measuring method and digital image analysis, it was found that this simple principle (eco-font utilization enables substantial toner usage reduction for an ink jet printing system, while visual test showed that visual experience of text printed using eco-font is sufficient. In addition, awareness of benefits that eco-font utilization brings, change users’ attitude towards eco-font quality.

  3. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.

    Science.gov (United States)

    Hinton, Thomas J; Hudson, Andrew; Pusch, Kira; Lee, Andrew; Feinberg, Adam W

    2016-10-10

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In the FRE printing process, the Carbopol support acts as a Bingham plastic that yields and fluidizes when the syringe tip of the 3D printer moves through it, but acts as a solid for the PDMS extruded within it. This, in combination with the immiscibility of hydrophobic PDMS in the hydrophilic Carbopol, confines the PDMS prepolymer within the support for curing times up to 72 h while maintaining dimensional stability. After printing and curing, the Carbopol support gel releases the embedded PDMS prints by using phosphate buffered saline solution to reduce the Carbopol yield stress. As proof-of-concept, we used Sylgard 184 PDMS to 3D print linear and helical filaments via continuous extrusion and cylindrical and helical tubes via layer-by-layer fabrication. Importantly, we show that the 3D printed tubes were manifold and perfusable. The results demonstrate that hydrophobic polymers with low viscosity and long cure times can be 3D printed using a hydrophilic support, expanding the range of biomaterials that can be used in additive manufacturing. Further, by implementing the technology using low cost open-source hardware and software tools, the FRE printing technique can be rapidly implemented for research applications.

  4. Scalable, full-colour and controllable chromotropic plasmonic printing

    OpenAIRE

    Xue, Jiancai; Zhou, Zhang-Kai; Wei, Zhiqiang; Su, Rongbin; Lai, Juan; Li, Juntao; Li, Chao; Zhang, Tengwei; Wang, Xue-Hua

    2015-01-01

    Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber. More importantly, our approach also demonstrates ...

  5. 48 CFR 1631.205-78 - FEHBP printed material costs.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true FEHBP printed material... carrier orders printed material that is available from the Government Printing Office (GPO) under the... COST PRINCIPLES AND PROCEDURES Contracts With Commercial Organizations 1631.205-78 FEHBP printed...

  6. A Case Study in Astronomical 3D Printing: The Mysterious η Carinae

    Science.gov (United States)

    Madura, Thomas I.

    2017-05-01

    Three-dimensional (3D) printing moves beyond interactive 3D graphics and provides an excellent tool for both visual and tactile learners, since 3D printing can now easily communicate complex geometries and full color information. Some limitations of interactive 3D graphics are also alleviated by 3D printable models, including issues of limited software support, portability, accessibility, and sustainability. We describe the motivations, methods, and results of our work on using 3D printing (1) to visualize and understand the η Car Homunculus nebula and central binary system and (2) for astronomy outreach and education, specifically, with visually impaired students. One new result we present is the ability to 3D print full-color models of η Car’s colliding stellar winds. We also demonstrate how 3D printing has helped us communicate our improved understanding of the detailed structure of η Car’s Homunculus nebula and central binary colliding stellar winds, and their links to each other. Attached to this article are full-color 3D printable files of both a red-blue Homunculus model and the η Car colliding stellar winds at orbital phase 1.045. 3D printing could prove to be vital to how astronomer’s reach out and share their work with each other, the public, and new audiences.

  7. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez; Cook, Benjamin Stassen; Jabbour, Ghassan E.; Shamim, Atif

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed

  8. Application of 3D-printing technology in the treatment of humeral intercondylar fractures.

    Science.gov (United States)

    Zheng, W; Su, J; Cai, L; Lou, Y; Wang, J; Guo, X; Tang, J; Chen, H

    2018-02-01

    This study was aimed to compare conventional surgery and surgery assisted by 3D-printing technology in the treatment of humeral intercondylar fractures. In addition, we also investigated the effect of 3D-printing technology on the communication between doctors and patients. A total of 91 patients with humeral intercondylar fracture were enrolled in the study from March 2013 to August 2015. They were divided into two groups: 43 cases of 3D-printing group, 48 cases of conventional group. The individual models were used to simulate the surgical procedures and carry out the surgery according to plan. Operation duration, blood loss volume, fluoroscopy times and time to fracture union were recorded. The final functional outcomes, including the motion of the elbow, MEPS and DASH were also evaluated. Besides, we made a simple questionnaire to verify the effectiveness of the 3D-printed model for both doctors and patients. The operation duration, blood loss volume and fluoroscopy times for 3D-printing group was 76.6±7.9minutes, 231.1±18.1mL and 5.3±1.9 times, and for conventional group was 92.0±10.5minutes, 278.6±23.0mL and 8.7±2.7 times respectively. There was statistically significant difference between the conventional group and 3D-printing group (p3D-printing model. This study suggested the clinical feasibility of 3D-printing technology in treatment of humeral intercondylar fractures. Level II prospective randomized study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Substitution within the Danish printing industry

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Bøg, Carsten

    2009-01-01

    are running a substitution project. A major part of the work has been mapping the presence of chemicals which are potential candidates for substitution (e.g. PBT, CMR, vPvB, EDS) within the Danish printing industry and this work was recently finished. The mapping comprises a combination of a literature study......The implementation of the EU REACH regulation will most probably promote substitution within sectors handling a lot of different chemicals like the printing industry. With the aim of being at the cutting edge of this development the Danish EPA together with the Danish printing industry and IPU...... total 15 substances) were found in the Danish printing industry. This paper presents the results of the mapping of chemical candidates and the first results on preparing for actual substitutions....

  10. Comparative Study on Cushion Performance Between 3D Printed Kelvin Structure and 3D Printed Lattice Structure

    Science.gov (United States)

    Priyadarshini, Lakshmi

    Frequently transported packaging goods are more prone to damage due to impact, jolting or vibration in transit. Fragile goods, for example, glass, ceramics, porcelain are susceptible to mechanical stresses. Hence ancillary materials like cushions play an important role when utilized within package. In this work, an analytical model of a 3D cellular structure is established based on Kelvin model and lattice structure. The research will provide a comparative study between the 3D printed Kelvin unit structure and 3D printed lattice structure. The comparative investigation is based on parameters defining cushion performance such as cushion creep, indentation, and cushion curve analysis. The applications of 3D printing is in rapid prototyping where the study will provide information of which model delivers better form of energy absorption. 3D printed foam will be shown as a cost-effective approach as prototype. The research also investigates about the selection of material for 3D printing process. As cushion development demands flexible material, three-dimensional printing with material having elastomeric properties is required. Further, the concept of cushion design is based on Kelvin model structure and lattice structure. The analytical solution provides the cushion curve analysis with respect to the results observed when load is applied over the cushion. The results are reported on basis of attenuation and amplification curves.

  11. Ultrafast Digital Printing toward 4D Shape Changing Materials.

    Science.gov (United States)

    Huang, Limei; Jiang, Ruiqi; Wu, Jingjun; Song, Jizhou; Bai, Hao; Li, Bogeng; Zhao, Qian; Xie, Tao

    2017-02-01

    Ultrafast 4D printing (printing converts the structure into 3D. An additional dimension can be incorporated by choosing the printing precursors. The process overcomes the speed limiting steps of typical 3D (4D) printing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Printing method for organic light emitting device lighting

    Science.gov (United States)

    Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol

    2013-03-01

    Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.

  13. High-Performance Screen-Printed Thermoelectric Films on Fabrics.

    Science.gov (United States)

    Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; Ko, Dong-Su; Kim, Hyun-Sik; Kim, Sang Il; Yin, Lu; Schlossberg, Sarah M; Cui, Shuang; You, Jung-Min; Kwon, Soonshin; Zheng, Jianlin; Wang, Joseph; Chen, Renkun

    2017-08-04

    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5 Sb 1.5 Te 3 or n-type Bi 2 Te 2.7 Se 0.3 ), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.

  14. Pharmaceutical 3D printing: Design and qualification of a single step print and fill capsule.

    Science.gov (United States)

    Smith, Derrick M; Kapoor, Yash; Klinzing, Gerard R; Procopio, Adam T

    2018-06-10

    Fused deposition modeling (FDM) 3D printing (3DP) has a potential to change how we envision manufacturing in the pharmaceutical industry. A more common utilization for FDM 3DP is to build upon existing hot melt extrusion (HME) technology where the drug is dispersed in the polymer matrix. However, reliable manufacturing of drug-containing filaments remains a challenge along with the limitation of active ingredients which can sustain the processing risks involved in the HME process. To circumvent this obstacle, a single step FDM 3DP process was developed to manufacture thin-walled drug-free capsules which can be filled with dry or liquid drug product formulations. Drug release from these systems is governed by the combined dissolution of the FDM capsule 'shell' and the dosage form encapsulated in these shells. To prepare the shells, the 3D printer files (extension '.gcode') were modified by creating discrete zones, so-called 'zoning process', with individual print parameters. Capsules printed without the zoning process resulted in macroscopic print defects and holes. X-ray computed tomography, finite element analysis and mechanical testing were used to guide the zoning process and printing parameters in order to manufacture consistent and robust capsule shell geometries. Additionally, dose consistencies of drug containing liquid formulations were investigated in this work. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Advanced Bioinks for 3D Printing: A Materials Science Perspective.

    Science.gov (United States)

    Chimene, David; Lennox, Kimberly K; Kaunas, Roland R; Gaharwar, Akhilesh K

    2016-06-01

    Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the "biofabrication window". While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use.

  16. No-infill 3D Printing

    Science.gov (United States)

    Wei, Xiao-Ran; Zhang, Yu-He; Geng, Guo-Hua

    2016-09-01

    In this paper, we examined how printing the hollow objects without infill via fused deposition modeling, one of the most widely used 3D-printing technologies, by partitioning the objects to shell parts. More specifically, we linked the partition to the exact cover problem. Given an input watertight mesh shape S, we developed region growing schemes to derive a set of surfaces that had inside surfaces that were printable without support on the mesh for the candidate parts. We then employed Monte Carlo tree search over the candidate parts to obtain the optimal set cover. All possible candidate subsets of exact cover from the optimal set cover were then obtained and the bounded tree was used to search the optimal exact cover. We oriented each shell part to the optimal position to guarantee the inside surface was printed without support, while the outside surface was printed with minimum support. Our solution can be applied to a variety of models, closed-hollowed or semi-closed, with or without holes, as evidenced by experiments and performance evaluation on our proposed algorithm.

  17. Comparative analysis of print and multimedia health materials: a review of the literature.

    Science.gov (United States)

    Wilson, Elizabeth A H; Makoul, Gregory; Bojarski, Elizabeth A; Bailey, Stacy Cooper; Waite, Katherine R; Rapp, David N; Baker, David W; Wolf, Michael S

    2012-10-01

    Evaluate the evidence regarding the relative effectiveness of multimedia and print as modes of dissemination for patient education materials; examine whether development of these materials addressed health literacy. A structured literature review utilizing Medline, PsycInfo, and the Cumulative Index to the Nursing and Allied Health Literature (CINAHL), supplemented by reference mining. Of 738 studies screened, 30 effectively compared multimedia and print materials. Studies offered 56 opportunities for assessing the effect of medium on various outcomes (e.g., knowledge). In 30 instances (54%), no difference was noted between multimedia and print in terms of patient outcomes. Multimedia led to better outcomes vs. print in 21 (38%) comparisons vs. 5 (9%) instances for print. Regarding material development, 12 studies (40%) assessed readability and 5 (17%) involved patients in tool development. Multimedia appears to be a promising medium for patient education; however, the majority of studies found that print and multimedia performed equally well in practice. Few studies involved patients in material development, and less than half assessed the readability of materials. Future research should focus on comparing message-equivalent tools and assessing their effect on behavioral outcomes. Material development should include explicit attention to readability and patient input. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Promoting improved family caregiver health literacy: evaluation of caregiver communication resources.

    Science.gov (United States)

    Wittenberg, Elaine; Goldsmith, Joy; Ferrell, Betty; Ragan, Sandra L

    2017-07-01

    Family caregivers of cancer patients have a vital role in facilitating and sharing information about cancer, revealing a need to develop caregiver health literacy skills to support caregiver communication. The goal of this study was to investigate caregiver print materials and develop and assess a new caregiver communication resource titled A Communication Guide for Caregivers TM . Using a model of six domains of caregiver health literacy skills, print cancer education materials were collected and evaluated for caregiver communication support. A new caregiver communication resource was also developed and assessed by caregivers and healthcare providers. Caregivers reviewed content and assessed utility, relatability, and reading quality. Healthcare providers also assessed whether the material would be understandable and usable for cancer caregivers. Only three of the 28 print materials evaluated were written at the recommended sixth grade reading level and only five addressed all six caregiver health literacy skills. Readability scores for A Communication Guide for Caregivers TM were at the sixth grade level, and caregivers reported its contents were relatable, useful, and easy to read. Healthcare providers also rated the material as easy for patient/family members of diverse backgrounds and varying levels of literacy to understand and use. Existing print-based caregiver education materials do not address caregivers' health literacy skill needs and are aimed at a highly literate caregiving population. A Communication Guide for Caregivers TM meets health literacy standards and family caregiver and provider communication needs. The findings are relevant for healthcare professionals who provide cancer education. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Comparing image quality of print-on-demand books and photobooks from web-based vendors

    Science.gov (United States)

    Phillips, Jonathan; Bajorski, Peter; Burns, Peter; Fredericks, Erin; Rosen, Mitchell

    2010-01-01

    Because of the emergence of e-commerce and developments in print engines designed for economical output of very short runs, there are increased business opportunities and consumer options for print-on-demand books and photobooks. The current state of these printing modes allows for direct uploading of book files via the web, printing on nonoffset printers, and distributing by standard parcel or mail delivery services. The goal of this research is to assess the image quality of print-on-demand books and photobooks produced by various Web-based vendors and to identify correlations between psychophysical results and objective metrics. Six vendors were identified for one-off (single-copy) print-on-demand books, and seven vendors were identified for photobooks. Participants rank ordered overall quality of a subset of individual pages from each book, where the pages included text, photographs, or a combination of the two. Observers also reported overall quality ratings and price estimates for the bound books. Objective metrics of color gamut, color accuracy, accuracy of International Color Consortium profile usage, eye-weighted root mean square L*, and cascaded modulation transfer acutance were obtained and compared to the observer responses. We introduce some new methods for normalizing data as well as for strengthening the statistical significance of the results. Our approach includes the use of latent mixed-effect models. We found statistically significant correlation with overall image quality and some of the spatial metrics, but correlations between psychophysical results and other objective metrics were weak or nonexistent. Strong correlation was found between psychophysical results of overall quality assessment and estimated price associated with quality. The photobook set of vendors reached higher image-quality ratings than the set of print-on-demand vendors. However, the photobook set had higher image-quality variability.

  20. Resources for Developing Acquaintance Rape Prevention Programs for Men.

    Science.gov (United States)

    Earle, James P.; Nies, Charles T.

    1994-01-01

    Provides an annotated bibliography of videos and printed materials that may be used as educational tools in rape prevention programs. Focuses on sources that are aimed directly at men. Also outlines the use of consultants or lecturers as one of many resources in the construction and implementation of rape prevention programs. (KW)

  1. Emerging Applications of Bedside 3D Printing in Plastic Surgery.

    Science.gov (United States)

    Chae, Michael P; Rozen, Warren M; McMenamin, Paul G; Findlay, Michael W; Spychal, Robert T; Hunter-Smith, David J

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  2. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    Science.gov (United States)

    Chae, Michael P.; Rozen, Warren M.; McMenamin, Paul G.; Findlay, Michael W.; Spychal, Robert T.; Hunter-Smith, David J.

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  3. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    Science.gov (United States)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  4. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    International Nuclear Information System (INIS)

    De Vos, Marc; Torah, Russel; Tudor, John

    2016-01-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps. (paper)

  5. EU Design Law and 3D Printing

    DEFF Research Database (Denmark)

    Nordberg, Ana; Schovsbo, Jens Hemmingsen

    2017-01-01

    The article considers the implications for EU design law of 3D-printing. It first describes the 3D-printing technology and the e-ecosystem which is evolving around the technology and involves a number of new stakeholders who in different ways are engaged in the making and sharing of CAD-files and....../or printing. It is submitted that it is only a matter of time before 3D-printing equipment becomes ubiquitous. It is pointed out how the new technology and e-ecosystem at the same time represent threats and opportunities to design holders and to the societal interests in design and design law. EU design law...

  6. Towards microscale electrohydrodynamic three-dimensional printing

    International Nuclear Information System (INIS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-01-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics. (paper)

  7. Towards microscale electrohydrodynamic three-dimensional printing

    Science.gov (United States)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-02-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.

  8. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.

    Science.gov (United States)

    Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng

    2017-11-23

    Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.

  9. The use of three-dimensional printing technology in orthopaedic surgery.

    Science.gov (United States)

    Wong, Tak Man; Jin, Jimmy; Lau, Tak Wing; Fang, Christian; Yan, Chun Hoi; Yeung, Kelvin; To, Michael; Leung, Frankie

    2017-01-01

    Three-dimensional (3-D) printing or additive manufacturing, an advanced technology that 3-D physical models are created, has been wildly applied in medical industries, including cardiothoracic surgery, cranio-maxillo-facial surgery and orthopaedic surgery. The physical models made by 3-D printing technology give surgeons a realistic impression of complex structures, allowing surgical planning and simulation before operations. In orthopaedic surgery, this technique is mainly applied in surgical planning especially revision and reconstructive surgeries, making patient-specific instruments or implants, and bone tissue engineering. This article reviews this technology and its application in orthopaedic surgery.

  10. 75 FR 80566 - Meeting of the Regional Resource Stewardship Council

    Science.gov (United States)

    2010-12-22

    ... Planning, Water Resources, and Recreation) and the valuation and weighting of benefits stemming from such.... on Thursday, January 20 and will be called on during the public comment period. Handout materials should be limited to one printed page. Written comments are also invited and may be mailed to the...

  11. 3D printed replicas for endodontic education.

    Science.gov (United States)

    Reymus, M; Fotiadou, C; Kessler, A; Heck, K; Hickel, R; Diegritz, C

    2018-06-14

    To assess the feasibility of producing artificial teeth for endodontic training using 3D printing technology, to analyse the accuracy of the printing process, and to evaluate the teeth by students when used during training. Sound extracted human teeth were selected, digitalized by cone beam computed tomography (CBCT) and appropriate software and finally reproduced by a stereolithographic printer. The printed teeth were scanned and compared with the original ones (trueness) and to one another (precision). Undergraduate dental students in the third and fourth years performed root canal treatment on printed molars and were subsequently asked to evaluate their experience with these compared to real teeth. The workflow was feasible for manufacturing 3D printed tooth replicas. The absolute deviation after printing (trueness) ranged from 50.9μm to 104.3μm. The values for precision ranged from 43.5μm to 68.2μm. Students reported great benefits in the use of the replicated teeth for training purposes. The presented workflow is feasible for any dental educational institution who has access to a CBCT unit and a stereolithographic printer. The accuracy of the printing process is suitable for the production of tooth replicas for endodontic training. Undergraduate students favoured the availability of these replicas and the fairness they ensured in training due to standardization. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. EL device pad-printed on a curved surface

    International Nuclear Information System (INIS)

    Lee, Taik-Min; Hur, Shin; Kim, Jae-Hyun; Choi, Hyun-Cheol

    2010-01-01

    This paper is unique in that the electroluminescence (EL) display device is fabricated on a curved surface using the pad-printing method. The precision of the pad-printing process is explored to verify whether it can be used for micro patterning. The minimum pattern size and pattern distortion, which is caused by use of the pad, were tested and simulated. The minimal pattern was found to be 35 µm wide and 2.4 µm thick. Pattern distortion when pad-printing on a flat surface, caused by the deformation of the silicon pad, was less than 5 µm. Numerical analysis shows how to estimate pattern distortion when pad-printing on a curved surface. The proposed EL display device consists of five layers, namely a bottom electrode, dielectric layer, phosphor, transparent electrode and a bus electrode. The ink of each layer was reformulated with solvents and the pad-printing conditions were controlled. A PEN film was used first in order to realize the pad-printing process condition of each layer. Finally, the EL display device was printed onto a dish with a radius of curvature of 80 mm. The luminance was 180 cd m −2

  13. Freeform inkjet printing of cellular structures with bifurcations.

    Science.gov (United States)

    Christensen, Kyle; Xu, Changxue; Chai, Wenxuan; Zhang, Zhengyi; Fu, Jianzhong; Huang, Yong

    2015-05-01

    Organ printing offers a great potential for the freeform layer-by-layer fabrication of three-dimensional (3D) living organs using cellular spheroids or bioinks as building blocks. Vascularization is often identified as a main technological barrier for building 3D organs. As such, the fabrication of 3D biological vascular trees is of great importance for the overall feasibility of the envisioned organ printing approach. In this study, vascular-like cellular structures are fabricated using a liquid support-based inkjet printing approach, which utilizes a calcium chloride solution as both a cross-linking agent and support material. This solution enables the freeform printing of spanning and overhang features by providing a buoyant force. A heuristic approach is implemented to compensate for the axially-varying deformation of horizontal tubular structures to achieve a uniform diameter along their axial directions. Vascular-like structures with both horizontal and vertical bifurcations have been successfully printed from sodium alginate only as well as mouse fibroblast-based alginate bioinks. The post-printing fibroblast cell viability of printed cellular tubes was found to be above 90% even after a 24 h incubation, considering the control effect. © 2014 Wiley Periodicals, Inc.

  14. Influence of Software on the Features of Laser-printed Characters

    Directory of Open Access Journals (Sweden)

    Yuanli Han

    2017-01-01

    Full Text Available Verifying the authenticity or otherwise of printed documents is one of the most important aspects of questioned document examination and plays a vital role in the field of forensic science. In recent years, continued developments in the quality of impression combined with ever-cheaper toner printers have allowed this technology to spread. It is now used in an increasing number of homes for all types of documents, including for criminal aims. Here, the factors that influence the printed features in text files are studied in relation to the operating system and the word processing software. The Net Application report in October 2014 showed that the market shares of Windows 7 and Windows XP were 53.05% and 17.18%, respectively. The Forrester report in October 2013 showed that the market share of Microsoft Office was more than 85%, the top three word processors being Microsoft Word 2003, 2007, and 2010. In this study, Windows XP (shortened to XP, Windows 7 (shortened to Win7, Microsoft Word 2003/2007/2010, WPS Office 2013, and the PDF format are chosen as the most common operating systems and word processing software. WPS Office was developed by the Chinese company Kingsoft Co., Ltd. and is widely used in China. A particular text file was designed and edited and was printed on a laser printer. The features of the printed characters were captured using an Anyty 3R digital microscope, Printer Expert, and X-printer devices. Coincidence comparison and outline feature extraction were used to evaluate the differences. It is shown that XP and Win7 have no effect on the printed features of text files. However, the printed features do depend to a certain extent on the word-processing software, with the PDF format having the greatest influence.

  15. 3D Printing by Multiphase Silicone/Water Capillary Inks.

    Science.gov (United States)

    Roh, Sangchul; Parekh, Dishit P; Bharti, Bhuvnesh; Stoyanov, Simeon D; Velev, Orlin D

    2017-08-01

    3D printing of polymers is accomplished easily with thermoplastics as the extruded hot melt solidifies rapidly during the printing process. Printing with liquid polymer precursors is more challenging due to their longer curing times. One curable liquid polymer of specific interest is polydimethylsiloxane (PDMS). This study demonstrates a new efficient technique for 3D printing with PDMS by using a capillary suspension ink containing PDMS in the form of both precured microbeads and uncured liquid precursor, dispersed in water as continuous medium. The PDMS microbeads are held together in thixotropic granular paste by capillary attraction induced by the liquid precursor. These capillary suspensions possess high storage moduli and yield stresses that are needed for direct ink writing. They could be 3D printed and cured both in air and under water. The resulting PDMS structures are remarkably elastic, flexible, and extensible. As the ink is made of porous, biocompatible silicone that can be printed directly inside aqueous medium, it can be used in 3D printed biomedical products, or in applications such as direct printing of bioscaffolds on live tissue. This study demonstrates a number of examples using the high softness, elasticity, and resilience of these 3D printed structures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Design for low-cost gas metal arc weld-based aluminum 3-D printing

    Science.gov (United States)

    Haselhuhn, Amberlee S.

    Additive manufacturing, commonly known as 3-D printing, has the potential to change the state of manufacturing across the globe. Parts are made, or printed, layer by layer using only the materials required to form the part, resulting in much less waste than traditional manufacturing methods. Additive manufacturing has been implemented in a wide variety of industries including aerospace, medical, consumer products, and fashion, using metals, ceramics, polymers, composites, and even organic tissues. However, traditional 3-D printing technologies, particularly those used to print metals, can be prohibitively expensive for small enterprises and the average consumer. A low-cost open-source metal 3-D printer has been developed based upon gas metal arc weld (GMAW) technology. Using this technology, substrate release mechanisms have been developed, allowing the user to remove a printed metal part from a metal substrate by hand. The mechanical and microstructural properties of commercially available weld alloys were characterized and used to guide alloy development in 4000 series aluminum-silicon alloys. Wedge casting experiments were performed to screen magnesium, strontium, and titanium boride alloying additions in hypoeutectic aluminum-silicon alloys for their properties and the ease with which they could be printed. Finally, the top performing alloys, which were approximately 11.6% Si modified with strontium and titanium boride were cast, extruded, and drawn into wire. These wires were printed and the mechanical and microstructural properties were compared with those of commercially available alloys. This work resulted in an easier-to-print aluminum-silicon-strontium alloy that exhibited lower porosity, equivalent yield and tensile strengths, yet nearly twice the ductility compared to commercial alloys.

  17. Printing of polymer microcapsules for enzyme immobilization on paper substrate.

    Science.gov (United States)

    Savolainen, Anne; Zhang, Yufen; Rochefort, Dominic; Holopainen, Ulla; Erho, Tomi; Virtanen, Jouko; Smolander, Maria

    2011-06-13

    Poly(ethyleneimine) (PEI) microcapsules containing laccase from Trametes hirsuta (ThL) and Trametes versicolor (TvL) were printed onto paper substrate by three different methods: screen printing, rod coating, and flexo printing. Microcapsules were fabricated via interfacial polycondensation of PEI with the cross-linker sebacoyl chloride, incorporated into an ink, and printed or coated on the paper substrate. The same ink components were used for three printing methods, and it was found that laccase microcapsules were compatible with the ink. Enzymatic activity of microencapsulated TvL was maintained constant in polymer-based ink for at least eight weeks. Thick layers with high enzymatic activity were obtained when laccase-containing microcapsules were screen printed on paper substrate. Flexo printed bioactive paper showed very low activity, since by using this printing method the paper surface was not fully covered by enzyme microcapsules. Finally, screen printing provided a bioactive paper with high water-resistance and the highest enzyme lifetime.

  18. Computer Security: Printing confidentially

    CERN Document Server

    Stefan Lueders, Computer Security Team

    2015-01-01

    Have you ever hesitated to print a confidential document using CERN printers? Or perhaps you have rushed quickly to the printer after hitting the “print” button in order to avoid someone else getting hold of and reading your document? These times are over now with the new printing infrastructure!   Indeed, many of us regularly print out confidential documents like our salary slips, MARS forms, tendering documents and drafts of preliminary papers. The upcoming CERN data protection policy will require all of us to respect the confidentiality of such documents and, as the word “confidential” implies, access to “confidential” or sensitive documents will be tightly controlled. What can we do about the public printers located in many buildings, floors and shared spaces - accessible not only to CERN staff and users but also to visitors and guests? Some printers are located in the vicinity of restaurants, cafeterias or close to paths taken b...

  19. Grey Balance Colorimetry of the Automatically Guided Printing

    Directory of Open Access Journals (Sweden)

    Igor Zjakic

    2005-12-01

    Full Text Available Apart from visual control, it is possible to controll the ink on a print by means of auxilliary instruments - densitometer, colorimeter and spectral photometer.One of the problems in offset printing reproduction is the inconstancy of theink flow and ink consumption during the run printing. This problem appears because of the change of ink viscosity, the change of ink temperature, the change of fountain solution quantity in ink, the change of printing speed etc.This article shows the measurements of the chromatic values performed by spectral photometer on the control - signal strip from the very beginning of the run printing till 20000th print. Gray balance (CMY by means of CIE L*a*b* system has been investigated. Densitometric values of the solid area, the growth of the screen values and doubling-shear have been determined. The results of the spectrophotometric measurements of gray balance and the densitometric measurements of the solid tint have been analyzed.

  20. Three-dimensional printing and pediatric liver disease.

    Science.gov (United States)

    Alkhouri, Naim; Zein, Nizar N

    2016-10-01

    Enthusiastic physicians and medical researchers are investigating the role of three-dimensional printing in medicine. The purpose of the current review is to provide a concise summary of the role of three-dimensional printing technology as it relates to the field of pediatric hepatology and liver transplantation. Our group and others have recently demonstrated the feasibility of printing three-dimensional livers with identical anatomical and geometrical landmarks to the native liver to facilitate presurgical planning of complex liver surgeries. Medical educators are exploring the use of three-dimensional printed organs in anatomy classes and surgical residencies. Moreover, mini-livers are being developed by regenerative medicine scientist as a way to test new drugs and, eventually, whole livers will be grown in the laboratory to replace organs with end-stage disease solving the organ shortage problem. From presurgical planning to medical education to ultimately the bioprinting of whole organs for transplantation, three-dimensional printing will change medicine as we know in the next few years.