WorldWideScience

Sample records for resources delaware river

  1. Ground-water resources in the tri-state region adjacent to the Lower Delaware River

    Science.gov (United States)

    Barksdale, Henry C.; Greenman, David W.; Lang, Solomon Max; Hilton, George Stockbridge; Outlaw, Donald E.

    1958-01-01

    The purpose of this report is to appraise and evaluate the groundwater resources of a tri-state region adjacent to the lower Delaware River that is centered around Philadelphia, Pa., and Camden, N. J., and includes Wilmington, Del., and Trenton, N.J. Specifically, the region includes New Castle County, Del.; Burlington, Camden, Gloucester, Mercer, and Salem Counties in New Jersey; and Bucks, Chester, Delaware, Montgomery, and Philadelphia Counties in Pennsylvania.

  2. Sensitivity of water resources in the Delaware River basin to climate variability and change

    Science.gov (United States)

    Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.

    1994-01-01

    Because of the greenhouse effect, projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climate change; and presents the results of sensitivity analyses of how climate change might affect water resources in the Delaware River basin. Sensitivity analyses suggest that potentially serious shortfalls of certain water resources in the basin could result if some scenarios for climate change come true . The results of model simulations of the basin streamflow demonstrate the difficulty in distinguishing the effects that climate change versus natural climate variability have on streamflow and water supply . The future direction of basin changes in most water resources, furthermore, cannot be precisely determined because of uncertainty in current projections of regional temperature and precipitation . This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant . The sensitivity analyses could be useful in developing contingency plans for evaluating and responding to changes, should they occur.

  3. Climate change effects on forests, water resources, and communities of the Delaware River Basin

    Science.gov (United States)

    Will Price; Susan Beecher

    2014-01-01

    The Delaware River provides drinking water to 5 percent of the United States, or approximately 16.2 million people living in 4 states, 42 counties, and over 800 municipalities. The more than 1.5 billion gallons withdrawn or diverted daily for drinking water is delivered by more than 140 purveyors, yet constitutes less than 20 percent of the average daily withdrawals....

  4. Delaware River and Upper Bay Sediment Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The area of coverage consists of 192 square miles of benthic habitat mapped from 2005 to 2007 in the Delaware River and Upper Delaware Bay. The bottom sediment map...

  5. 78 FR 36658 - Safety Zone; Delaware River Waterfront Corp. Fireworks Display, Delaware River; Camden, NJ

    Science.gov (United States)

    2013-06-19

    ... portion of the Delaware River from operating while a fireworks event is taking place. This temporary...-AA00 Safety Zone; Delaware River Waterfront Corp. Fireworks Display, Delaware River; Camden, NJ AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary...

  6. The timber resources of Delaware

    Science.gov (United States)

    Roland H. Ferguson; Carl E. Mayer

    1974-01-01

    Under the authority of the McSweeney-McNary Forest Research Act of May 22, 1928, and subsequent amendments, the Forest Service, U.S. Department of Agriculture, conducts a series of continuing forest surveys of all states to provide up-to-date information about the forest resources of the Nation. The first forest survey of Delaware was made in 1956 by the Northeastern...

  7. User manuals for the Delaware River Basin Water Availability Tool for Environmental Resources (DRB–WATER) and associated WATER application utilities

    Science.gov (United States)

    Williamson, Tanja N.; Lant, Jeremiah G.

    2015-11-18

    The Water Availability Tool for Environmental Resources (WATER) is a decision support system (DSS) for the nontidal part of the Delaware River Basin (DRB) that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that have been parameterized using three hydrologic response units—forested, agricultural, and developed land cover. It is this integration that enables the regional hydrologic-modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model. The DSS provides a “historical” database, ideal for simulating streamflow for 2001–11, in addition to land-cover forecasts that focus on 2030 and 2060. The WATER Application Utilities are provided with the DSS and apply change factors for precipitation, temperature, and potential evapotranspiration to a 1981–2011 climatic record provided with the DSS. These change factors were derived from a suite of general circulation models (GCMs) and representative concentration pathway (RCP) emission scenarios. These change factors are based on 25-year monthly averages (normals) that are centere on 2030 and 2060. The WATER Application Utilities also can be used to apply a 2010 snapshot of water use for the DRB; a factorial approach enables scenario testing of increased or decreased water use for each simulation. Finally, the WATER Application Utilities can be used to reformat streamflow time series for input to statistical or reservoir management software. 

  8. 75 FR 33690 - Safety Zone, Lights on the River Fireworks Display, Delaware River, New Hope, PA

    Science.gov (United States)

    2010-06-15

    ... scenario with potential for loss of life and property. Basis and Purpose The New Hope Chamber of Commerce... to protect life and property operating on the navigable waterways of the Delaware River in New Hope...-AA00 Safety Zone, Lights on the River Fireworks Display, Delaware River, New Hope, PA AGENCY: Coast...

  9. 78 FR 39601 - Safety Zone, Sugar House Casino Fireworks Display, Delaware River; Philadelphia, PA

    Science.gov (United States)

    2013-07-02

    ...-AA00 Safety Zone, Sugar House Casino Fireworks Display, Delaware River; Philadelphia, PA AGENCY: Coast... the Delaware River. Sugar House Casino has contracted with Pyrotecnico Fireworks to arrange for this display. The Captain of the Port, Sector Delaware Bay, has determined that the Sugar House Casino...

  10. 33 CFR 162.40 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal).

    Science.gov (United States)

    2010-07-01

    ...., between Reedy Point, Delaware River, and Old Town Point Wharf, Elk River. (b) Speed. No vessel in the..., are required to travel at all times at a safe speed throughout the canal and its approaches so as to... Point and Welch Point. (f) Sailboats. Transiting the canal by vessels under sail is not permitted...

  11. 33 CFR 100.T05-0443 - Safety Zone; Fireworks Display, Delaware River, New Hope, PA.

    Science.gov (United States)

    2010-07-01

    ..., Delaware River, New Hope, PA. 100.T05-0443 Section 100.T05-0443 Navigation and Navigable Waters COAST GUARD... Safety Zone; Fireworks Display, Delaware River, New Hope, PA. (a) Location. The safety zone will restrict.... Bridge located in New Hope, PA, and 400 ft east of the shoreline of New Hope, PA. (b) Regulations. (1) No...

  12. Nitrogen metabolism of the eutrophic Delaware River ecosystem

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A comprehensive investigation of the nitrogen cycle in the Delaware River was carried out using 13 N tracers to measure rates for important transformations of nitrogen. Daily, depth-averaged 15 N rates for the principal inorganic nitrogen species were consistent with rates derived from longitudinal profiles of concentration in the river. The data indicated that nitrification was a rapid, irreversible sink for NH 4 + , with export of the product NO 3 - from the study area. Utilization of NO 3 - by primary producers was negligible, owing to low irradiance levels and to high NH 4 + concentrations. The oxygen sag near Philadelphia was found to result from oxygen demand in the water column, with only minor benthic influence. Reaeration provided the major oxygen input. Nitrification accounted for about 1% of the net oxygen demand near Philadelphia but as much as 25% farther downstream

  13. Settlement to Improve Water Quality in Delaware River, Philadelphia-Area Creeks

    Science.gov (United States)

    EPA and the U.S. Department of Justice have reached agreement with a major water utility in the greater Philadelphia area to significantly reduce sewage discharges to the Delaware River and local creeks.

  14. Water quality trends in the Delaware River Basin (USA) from 1980 to 2005.

    Science.gov (United States)

    Kauffman, Gerald J; Homsey, Andrew R; Belden, Andrew C; Sanchez, Jessica Rittler

    2011-06-01

    In 1940, the tidal Delaware River was "one of the most grossly polluted areas in the United States." During the 1950s, water quality was so poor along the river at Philadelphia that zero oxygen levels prevented migration of American shad leading to near extirpation of the species. Since then, water quality in the Delaware Basin has improved with implementation of the 1961 Delaware River Basin Compact and 1970s Federal Clean Water Act Amendments. At 15 gages along the Delaware River and major tributaries between 1980 and 2005, water quality for dissolved oxygen, phosphorus, nitrogen, and sediment improved at 39%, remained constant at 51%, and degraded at 10% of the stations. Since 1980, improved water-quality stations outnumbered degraded stations by a 4 to 1 margin. Water quality remains good in the nontidal river above Trenton and, while improved, remains fair to poor for phosphorus and nitrogen in the tidal estuary near Philadelphia and in the Lehigh and Schuylkill tributaries. Water quality is good in heavily forested watersheds (>50%) and poor in highly cultivated watersheds. Water quality recovery in the Delaware Basin is coincident with implementation of environmental laws enacted in the 1960s and 1970s and is congruent with return of striped bass, shad, blue crab, and bald eagle populations.

  15. Methylmercury bioaccumulation in an urban estuary: Delaware River USA.

    Science.gov (United States)

    Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia

    2017-09-01

    Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.

  16. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware

    Science.gov (United States)

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.

    2004-01-01

    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical

  17. 75 FR 12561 - Delaware River and Bay Oil Spill Advisory Committee; Meeting Cancelled

    Science.gov (United States)

    2010-03-16

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2008-0333] Delaware River and Bay Oil Spill Advisory Committee; Meeting Cancelled AGENCY: Coast Guard, DHS. ACTION: Notice of cancellation of...) is cancelled. FOR FURTHER INFORMATION CONTACT: Gerald Conrad, Liaison to the DFO of the DRBOSAC, (215...

  18. The Cost of Clean Water in the Delaware River Basin (USA

    Directory of Open Access Journals (Sweden)

    Gerald J. Kauffman

    2018-01-01

    Full Text Available The Delaware River has made a marked recovery in the half-century since the adoption of the Delaware River Basin Commission (DRBC Compact in 1961 and passage of the Federal Clean Water Act amendments during the 1970s. During the 1960s, the DRBC set a 3.5 mg/L dissolved oxygen criterion for the river based on an economic analysis that concluded that a waste load abatement program designed to meet fishable water quality goals would generate significant recreational and environmental benefits. Scientists with the Delaware Estuary Program have recently called for raising the 1960s dissolved oxygen criterion along the Delaware River from 3.5 mg/L to 5.0 mg/L to protect anadromous American shad and Atlantic sturgeon, and address the prospect of rising temperatures, sea levels, and salinity in the estuary. This research concludes, through a nitrogen marginal abatement cost (MAC analysis, that it would be cost-effective to raise dissolved oxygen levels to meet a more stringent standard by prioritizing agricultural conservation and some wastewater treatment investments in the Delaware River watershed to remove 90% of the nitrogen load by 13.6 million kg N/year (30 million lb N/year for just 35% ($160 million of the $449 million total cost. The annual least cost to reduce nitrogen loads and raise dissolved oxygen levels to meet more stringent water quality standards in the Delaware River totals $45 million for atmospheric NOX reduction, $130 million for wastewater treatment, $132 million for agriculture conservation, and $141 million for urban stormwater retrofitting. This 21st century least cost analysis estimates that an annual investment of $50 million is needed to reduce pollutant loads in the Delaware River to raise dissolved oxygen levels to 4.0 mg/L, $150 million is needed for dissolved oxygen levels to reach 4.5 mg/L, and $449 million is needed for dissolved oxygen levels to reach 5.0 mg/L.

  19. Estimated use of water in the Delaware River Basin in Delaware, New Jersey, New York, and Pennsylvania, 2010

    Science.gov (United States)

    Hutson, Susan S.; Linsey, Kristin S.; Ludlow, Russell A.; Reyes, Betzaida; Shourds, Jennifer L.

    2016-11-07

    The Delaware River Basin (DRB) was selected as a Focus Area Study in 2011 by the U.S. Geological Survey (USGS) as part of the USGS National Water Census. The National Water Census is a USGS research program that focuses on national water availability and use and then develops new water accounting tools and assesses water availability at both the regional and national scales. One of the water management needs that the DRB study addressed, and that was identified by stakeholder groups from the DRB, was to improve the integration of state water use and water-supply data and to provide the compiled water use information to basin users. This water use information was also used in the hydrologic modeling and ecological components of the study.Instream and offstream water use was calculated for 2010 for the DRB based on information received from Delaware, New Jersey, New York, and Pennsylvania. Water withdrawal, interbasin transfers, return flow, and hydroelectric power generation release data were compiled for 11 categories by hydrologic subregion, basin, subbasin, and subwatershed. Data availability varied by state. Site-specific data were used whenever possible to calculate public supply, irrigation (golf courses, nurseries, sod farms, and crops), aquaculture, self-supplied industrial, commercial, mining, thermoelectric, and hydroelectric power withdrawals. Where site-specific data were not available, primarily for crop irrigation, livestock, and domestic use, various techniques were used to estimate water withdrawals.Total water withdrawals in the Delaware River Basin were calculated to be about 7,130 million gallons per day (Mgal/d) in 2010. Calculations of withdrawals by source indicate that freshwater withdrawals were about 4,130 Mgal/d (58 percent of the total) and the remaining 3,000 Mgal/d (42 percent) were from saline water. Total surface-water withdrawals were calculated to be 6,590 Mgal/d, or 92 percent of the total; about 54 percent (3,590 Mgal/d) of surface

  20. Direct and indirect atmospheric deposition of PCBs to the Delaware River watershed.

    Science.gov (United States)

    Totten, Lisa A; Panangadan, Maya; Eisenreich, Steven J; Cavallo, Gregory J; Fikslin, Thomas J

    2006-04-01

    Atmospheric deposition can be an important source of PCBs to aquatic ecosystems. To develop the total maximum daily load (TMDL) for polychlorinated biphenyls (PCBs) for the tidal Delaware River (water-quality Zones 2-5), estimates of the loading of PCBs to the river from atmospheric deposition were generated from seven air-monitoring sites along the river. This paper presents the atmospheric PCB data from these sites, estimates direct atmospheric deposition fluxes, and assesses the importance of atmospheric deposition relative to other sources of PCBs to the river. Also, the relationship between indirect atmospheric deposition and PCB loads from minor tributaries to the Delaware River is discussed. Data from these sites revealed high atmospheric PCB concentrations in the Philadelphia/Camden urban area and lower regional background concentrations in the more remote areas. Wet, dry particle, and gaseous absorption deposition are estimated to contribute about 0.6, 1.8, and 6.5 kg year-(-1) sigmaPCBs to the River, respectively, exceeding the TMDL of 0.139 kg year(-1) by more than an order of magnitude. Penta-PCB watershed fluxes were obtained by dividing the tributary loads by the watershed area. The lowest of these watershed fluxes are less than approximately 1 ng m(-2) day(-1) for penta-PCB and probably indicates pristine watersheds in which PCB loads are dominated by atmospheric deposition. In these watersheds, the pass-through efficiency of PCBs is estimated to be on the order of 1%.

  1. Changes in freshwater mussel communities linked to legacy pollution in the Lower Delaware River

    Science.gov (United States)

    Blakeslee, Carrie J.; Silldorff, Erik L.; Galbraith, Heather S.

    2018-01-01

    Freshwater mussels are among the most-imperiled organisms worldwide, although they provide a variety of important functions in the streams and rivers they inhabit. Among Atlantic-slope rivers, the Delaware River is known for its freshwater mussel diversity and biomass; however, limited data are available on the freshwater mussel fauna in the lower, non-tidal portion of the river. This section of the Delaware River has experienced decades of water-quality degradation from both industrial and municipal sources, primarily as a function of one of its major tributaries, the Lehigh River. We completed semi-quantitative snorkel surveys in 53.5 of the 121 km of the river to document mussel community composition and the continued impacts from pollution (particularly inputs from the Lehigh River) on mussel fauna. We detected changes in mussel catch per unit effort (CPUE) below the confluence of the Lehigh River, with significant declines in the dominant species Elliptio complanata (Eastern Elliptio) as we moved downstream from its confluence—CPUE dropped from 179 to 21 mussels/h. Patterns in mussel distribution around the Lehigh confluence matched chemical signatures of Lehigh water input. Specifically, Eastern Elliptio CPUE declined more quickly moving downstream on the Pennsylvania bank, where Lehigh River water input was more concentrated compared to the New Jersey bank. A definitive causal link remains to be established between the Lehigh River and the dramatic shifts in mussel community composition, warranting continued investigation as it relates to mussel conservation and restoration in the basin.

  2. Groundwater quality in the Delaware and St. Lawrence River Basins, New York, 2010

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2012-01-01

    Water samples were collected from 10 production and domestic wells in the Delaware River Basin in New York and from 20 production and domestic wells in the St. Lawrence River Basin in New York from August through November 2010 to characterize groundwater quality in the basins. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria.

  3. Delaware River water quality Bristol to Marcus Hook, Pennsylvania, August 1949 to December 1963

    Science.gov (United States)

    Keighton, Walter B.

    1965-01-01

    During the 14-year period from August 1949 to July 1963, the U.S. Geological Survey, in cooperation with the city of Philadelphia, collected samples of river water once each month in the 43-mile reach of the Delaware River from Bristol to Marcus Hook, Pa., and daily at Trenton, 10 miles upstream from Bristol. This part of the Delaware is an estuary into which salt water is brought by tides; fresh water flows into the estuary at Trenton, NJ, and farther downstream from the Schuylkill River and other tributaries of the Delaware. In March, April, and May, when fresh-water flow is high, the average concentration of dissolved solids in the water at Bristol was 76 ppm (parts per million), and at Marcus Hook 112 PPM In August and September, streamflow is lower, and the average concentration of dissolved solids increased to 117 PPM at Bristol and 804 PPM at Marcus Hook. Major salinity invasions of the Delaware River occurred in 1949, 1953, 1954, 1957, and 1963. In each of these years the fresh-water flow into the tidal river at Trenton was low during the period from July to October. The greatest dissolved-solids concentrations in these monthly samples were 160 PPM at Bristol and 4,000 PPM at Marcus Hook. At times the dissolved-oxygen concentration of the river water has become dangerously low, especially in that reach of the river between Wharton Street and League Island. At the Benjamin Franklin Bridge, one-third of the samples of river water were less than 30 percent saturated with oxygen; however, no trend, either for better or for worse, was apparent during the 14-year period. It is useful now to summarize these monthly analyses for the period 1949-63 even though a much more detailed description of water quality in this reach of the estuary will soon become available through the use of recording instrumental conditions. This compendium of water-quality data is useful as an explicit statement of water quality during the 14-year study period and is valuable for directing

  4. Extent and frequency of floods on Delaware River in vicinity of Belvidere, New Jersey

    Science.gov (United States)

    Farlekas, George M.

    1966-01-01

    A stream overflowing its banks is a natural phenomenon. This natural phenomenon of flooding has occurred on the Delaware River in the past and will occur in the future. T' o resulting inundation of large areas can cause property damage, business losses and possible loss of life, and may result in emergency costs for protection, rescue, and salvage work. For optimum development of the river valley consistent with the flood risk, an evaluation of flood conditions is necessary. Basic data and the interpretation of the data on the regimen of the streams, particularly the magnitude of floods to be expected, the frequency of their occurrence, and the areas inundated, are essential for planning and development of flood-prone areas.This report presents information relative to the extent, depth, and frequency of floods on the Delaware River and its tributaries in the vicinity of Belvidere, N.J. Flooding on the tributaries detailed in the report pertains only to the effect of backwater from the Delaware River. Data are presented for several past floods with emphasis given to the floods of August 19, 1955 and May 24, 1942. In addition, information is given for a hypothetical flood based on the flood of August 19, 1955 modified by completed (since 1955) and planned flood-control works.By use of relations presented in this report the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Delaware River under study. Flood data and the evaluation of the data are presented so that local and regional agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U.S. Geological Survey regard this program of flood-plain inundation studies as a positive step toward flood-damage prevention. Flood-plain inundation studies, when followed by appropriate land-use regulations, are a valuable and economical supplement to physical works for flood

  5. Potential well yields from unconsolidated deposits in the lower Hudson and Delaware River basins, New York

    Science.gov (United States)

    Wolcott, Stephen W.

    1987-01-01

    A comprehensive groundwater protection plan, developed by the New York State Department of Environmental Conservation in 1985, identified the need to delineate significant aquifers within the state. A map of the unconsolidated aquifers in the lower Hudson and Delaware River basins was compiled from available data on the surficial geology and well yields. It delineates the significant unconsolidated aquifers and indicates the potential yield of wells that tap these aquifers. The potential well yield is categorized into three ranges: 100 gal/min. No yield range is given for till, but some large diameter or dug wells in till may yield up 10 gal/min. (Lantz-PTT)

  6. Examination of contaminant exposure and reproduction of ospreys (Pandion haliaetus) nesting in Delaware Bay and River in 2015.

    Science.gov (United States)

    Rattner, Barnett A; Lazarus, Rebecca S; Bean, Thomas G; McGowan, Peter C; Callahan, Carl R; Erickson, Richard A; Hale, Robert C

    2018-05-22

    A study of ospreys (Pandion haliaetus) nesting in the coastal Inland Bays of Delaware, and the Delaware Bay and Delaware River in 2015 examined spatial and temporal trends in contaminant exposure, food web transfer and reproduction. Concentrations of organochlorine pesticides and metabolites, polychlorinated biphenyls (PCBs), coplanar PCB toxic equivalents, polybrominated diphenyl ethers (PBDEs) and other flame retardants in sample eggs were generally greatest in the Delaware River. Concentrations of legacy contaminants in 2015 Delaware Bay eggs were lower than values observed in the 1970s through early 2000s. Several alternative brominated flame retardants were rarely detected, with only TBPH [bis(2-ethylhexyl)-tetrabromophthalate)] present in 5 of 27 samples at <5 ng/g wet weight. No relation was found between p,p'-DDE, total PCBs or total PBDEs in eggs with egg hatching, eggs lost from nests, nestling loss, fledging and nest success. Osprey eggshell thickness recovered to pre-DDT era values, and productivity was adequate to sustain a stable population. Prey fish contaminant concentrations were generally less than those in osprey eggs, with detection frequencies and concentrations greatest in white perch (Morone americana) from Delaware River compared to the Bay. Biomagnification factors from fish to eggs for p,p'-DDE and total PCBs were generally similar to findings from several Chesapeake Bay tributaries. Overall, findings suggest that there have been improvements in Delaware Estuary waterbird habitat compared to the second half of the 20th century. This trend is in part associated with mitigation of some anthropogenic contaminant threats. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Dynamic Management of Releases for the Delaware River Basin using NYC's Operations Support Tool

    Science.gov (United States)

    Weiss, W.; Wang, L.; Murphy, T.; Muralidhar, D.; Tarrier, B.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. Using an interim version of OST, DEP and the New York State Department of Environmental Conservation (DEC) have developed a provisional, one-year Delaware River Basin reservoir release program to succeed the existing Flexible Flow Management Program (FFMP) which expired on May 31, 2011. The FFMP grew out of the Good Faith Agreement of 1983 among the four Basin states (New York, New Jersey, Pennsylvania, and Delaware) that established modified diversions and flow targets during drought conditions. It provided a set of release schedules as a framework for managing diversions and releases from New York City's Delaware Basin reservoirs in order to support multiple objectives, including water supply, drought mitigation, flood mitigation, tailwaters fisheries, main stem habitat, recreation, and salinity repulsion. The provisional program (OST-FFMP) defines available water based on current Upper Delaware reservoir conditions and probabilistic forecasts of reservoir inflow. Releases are then set based on a set of release schedules keyed to the water availability. Additionally, OST-FFMP attempts to provide enhanced downstream flood protection by making spill mitigation releases to keep the Delaware System reservoirs at a seasonally varying conditional storage objective. The OST-FFMP approach represents a more robust way of managing downstream releases, accounting for predicted future hydrologic conditions by making more water available for release when conditions are forecasted to be wet and protecting water supply reliability when conditions are forecasted to be dry. Further, the dynamic nature of the program allows the release decision to be adjusted as hydrologic conditions change. OST simulations predict that this

  8. Preliminary targeting of geothermal resources in Delaware. Progress report, July 15, 1978-July 14, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, K.D.

    1979-07-01

    Results of temperature logging the five DOE 1000 foot test wells in Delaware indicate that the potential is good for a relatively low temperature geothermal resource (temperatures less than about 80/sup 0/C). A preliminary Bouguer gravity map was made for portions of Kent and Sussex counties in order to detect gravity anomalies possibly related to granitic plutons. The map indicates a gravity low trending northeast-southwest across Sussex County that could be indicative of other structural features within the basement rocks beneath the Coastal Plain. Other logging activities and study of the cores and drill cuttings in the DOE test holes were useful in better defining the stratigraphic framework and in determining the fresh-salt water interface in southern Delaware.

  9. Flood-inundation maps for the West Branch Delaware River, Delhi, New York, 2012

    Science.gov (United States)

    Coon, William F.; Breaker, Brian K.

    2012-01-01

    Digital flood-inundation maps for a 5-mile reach of the West Branch Delaware River through the Village and part of the Town of Delhi, New York, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of Delhi, the Delaware County Soil and Water Conservation District, and the Delaware County Planning Department. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) referenced to the USGS streamgage at West Branch Delaware River upstream from Delhi, N.Y. (station number 01421900). In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model that had been used to produce the flood insurance rate maps for the most recent flood insurance study for the Town and Village of Delhi. This hydraulic model was used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 7 ft or near bankfull to 16 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual-exceedance-probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model, which was derived from Light Detection and Ranging (LiDAR) data with a 1.2-ft (0.61-ft root mean squared error) vertical accuracy and 3.3-ft (1-meter) horizontal resolution, to delineate the area flooded at each water level. A map that was produced using this method to delineate the inundated area for the flood that occurred on August 28, 2011, agreed well with highwater marks that had been located in the field using a

  10. 78 FR 63972 - Notice of Proposed Methodology for the 2014 Delaware River and Bay Water Quality Assessment Report

    Science.gov (United States)

    2013-10-25

    ... Water Quality Assessment Report AGENCY: Delaware River Basin Commission. ACTION: Notice. SUMMARY: Notice....us , with ``Water Quality Assessment 2014'' as the subject line; via fax to 609-883-9522; via U.S. Mail to DRBC, Attn: Water Quality Assessment 2014, P.O. Box 7360, West Trenton, NJ 08628-0360; via...

  11. 76 FR 50188 - Notice of Proposed Methodology for the Delaware River and Bay Integrated List Water Quality...

    Science.gov (United States)

    2011-08-12

    ... Integrated List Water Quality Assessment AGENCY: Delaware River Basin Commission. ACTION: Notice. SUMMARY... Integrated List Water Quality Assessment is available for review and comment. DATES: Comments must be... should have the phrase ``Water Quality Assessment 2012'' in the subject line and should include the name...

  12. 33 CFR 165.553 - Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Salem and Hope... Limited Access Areas Fifth Coast Guard District § 165.553 Security Zone; Salem and Hope Creek Generation...: the waters of the Delaware River in the vicinity of the Salem and Hope Creek Generation Stations...

  13. Pharmaceuticals in water, fish and osprey nestlings in Delaware River and Bay

    Science.gov (United States)

    Bean, Thomas G.; Rattner, Barnett A.; Lazarus, Rebecca S.; Day, Daniel D.; Burket, S. Rebekah; Brooks, Bryan W.; Haddad, Samuel P.; Bowerman, William W.

    2018-01-01

    Exposure of wildlife to Active Pharmaceutical Ingredients (APIs) is likely to occur but studies of risk are limited. One exposure pathway that has received attention is trophic transfer of APIs in a water-fish-osprey food chain. Samples of water, fish plasma and osprey plasma were collected from Delaware River and Bay, and analyzed for 21 APIs. Only 2 of 21 analytes exceeded method detection limits in osprey plasma (acetaminophen and diclofenac) with plasma levels typically 2–3 orders of magnitude below human therapeutic concentrations (HTC). We built upon a screening level model used to predict osprey exposure to APIs in Chesapeake Bay and evaluated whether exposure levels could have been predicted in Delaware Bay had we just measured concentrations in water or fish. Use of surface water and BCFs did not predict API concentrations in fish well, likely due to fish movement patterns, and partitioning and bioaccumulation uncertainties associated with these ionizable chemicals. Input of highest measured API concentration in fish plasma combined with pharmacokinetic data accurately predicted that diclofenac and acetaminophen would be the APIs most likely detected in osprey plasma. For the majority of APIs modeled, levels were not predicted to exceed 1 ng/mL or method detection limits in osprey plasma. Based on the target analytes examined, there is little evidence that APIs represent a significant risk to ospreys nesting in Delaware Bay. If an API is present in fish orders of magnitude below HTC, sampling of fish-eating birds is unlikely to be necessary. However, several human pharmaceuticals accumulated in fish plasma within a recommended safety factor for HTC. It is now important to expand the scope of diet-based API exposure modeling to include alternative exposure pathways (e.g., uptake from landfills, dumps and wastewater treatment plants) and geographic locations (developing countries) where API contamination of the environment may represent greater risk.

  14. 226Ra and 228Ra in the mixing zones of the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay Estuaries

    International Nuclear Information System (INIS)

    Elsinger, R.J.; Moore, W.S.

    1984-01-01

    226 Ra and 228 Ra have non-conservative excess concentrations in the mixing zones of the Pee Dee River-Winyah Bay estuary, the Yangtze River estuary, and the Delaware Bay estuary. Laboratory experiments, using Pee Dee River sediment, indicate desorption of 226 Ra to increase with increasing salinities up to 20 per mille. In Winyah Bay desorption from river-borne sediments could contribute almost all of the increases for both isotopes. Desorption adds only a portion of the excess 228 Ra measured in the Yangtze River and adjacent Shelf waters and Delaware Bay. In the Yangtze River the mixing zone extends over a considerable portion of the Continental Shelf where 228 Ra is added to the water column by diffusion from bottom sediments, while 226 Ra concentrations decrease from dilution. Diffusion of 228 Ra from bottom sediments in Delaware Bay primarily occurs in the upper part of the bay ( 228 Ra of 0.33 dpm cm -2 year was determined for Delaware Bay. (author)

  15. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  16. Integrating Engineering into Delaware's K-5 Classrooms: A Study of Pedagogical and Curricular Resources

    Science.gov (United States)

    Grusenmeyer, Linda Huey

    2017-01-01

    This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials.…

  17. Developing and testing temperature models for regulated systems: a case study on the Upper Delaware River

    Science.gov (United States)

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-01-01

    Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are present, their releases can greatly influence downstream water temperatures. Models are important tools in understanding the influence these releases may have on the thermal regimes of downstream rivers. In this study, we developed and tested a suite of models to predict river temperature at a location downstream of two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from 2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted daily mean river temperature across the entire training dataset (RMSE = 0.58–1.311, NSE = 0.99–0.97, d = 0.98–0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA, showed short periods of under- or over-predicting observed warmer temperatures. For the training dataset, all models besides ARIMA had overestimation bias (PBIAS = −0.10 to −1.30). Validation analyses showed all models performed

  18. Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River

    Science.gov (United States)

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-11-01

    Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are present, their releases can greatly influence downstream water temperatures. Models are important tools in understanding the influence these releases may have on the thermal regimes of downstream rivers. In this study, we developed and tested a suite of models to predict river temperature at a location downstream of two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from 2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted daily mean river temperature across the entire training dataset (RMSE = 0.58-1.311, NSE = 0.99-0.97, d = 0.98-0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA, showed short periods of under- or over-predicting observed warmer temperatures. For the training dataset, all models besides ARIMA had overestimation bias (PBIAS = -0.10 to -1.30). Validation analyses showed all models performed well; the

  19. A summary of the test procedures and operational details of a Delaware River and an ocean dumping pollution monitoring experiment conducted 28 August 1975

    Science.gov (United States)

    Hypes, W. D.; Ohlhorst, C. W.

    1977-01-01

    Two remote sensor evaluation experiments are discussed. One experiment was conducted at the DuPont acid-dump site off the Delaware coast. The second was conducted at an organic waste outfall in the Delaware River. The operational objective of obtaining simultaneous sea truth sampling with remote sensors overpasses was met. Descriptions of the test sites, sensors, sensor platforms, flight lines, sea truth data collected, and operational chronology are presented.

  20. Freshwater mussel salvage and relocation at the Pond Eddy Bridge, Delaware River, New York and Pennsylvania

    Science.gov (United States)

    Galbraith, Heather S.; Blakeslee, Carrie J.; Cole, Jeffrey C.

    2018-03-01

    In a study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Transportation, freshwater mussels were salvaged and relocated from the anticipated zone of impact for the Pond Eddy Bridge construction project in New York and Pennsylvania. Five 25-meter (m) by 25-m cells along the Pennsylvania bank of the Delaware River were sampled in three generally straight-line passes by four surveyors wearing snorkel gear for a total of 180 survey minutes per cell. All mussels encountered were collected and identified to species. A subset of individuals was marked with shellfish tags, weighed, and measured prior to relocation upstream from the zone of impact. A total of 3,434 mussels, including 3,393 Elliptio complanata (eastern elliptio mussels), 39 Anodonta implicata (alewife floaters), 1 Strophitus undulatus (creeper), and 1 Pyganodon cataracta (eastern floater), were salvaged and relocated. All non-eastern elliptio species were georeferenced using a high-resolution global positioning system unit; a subset of tagged eastern elliptio was placed in transects between georeferenced points. These mussels will be monitored to assess the effects of translocation on mortality and body condition at 1 month, 1 year, and 2 years.

  1. Bedload transport over run-of-river dams, Delaware, U.S.A.

    Science.gov (United States)

    Pearson, Adam J.; Pizzuto, Jim

    2015-11-01

    We document the detailed morphology and bed sediment size distribution of a stream channel upstream and downstream of a 200-year-old run-of-river dam on the Red Clay Creek, a fifth order stream in the Piedmont of northern Delaware, and combine these data with HEC-RAS modeling and bedload transport computations. We hypothesize that coarse bed material can be carried through run-of-river impoundments before they completely fill with sediment, and we explore mechanisms to facilitate this transport. Only 25% of the accommodation space in our study site is filled with sediment, and maximum water depths are approximately equal to the dam height. All grain-size fractions present upstream of the impoundment are also present throughout the impoundment. A characteristic coarse-grained sloping ramp leads from the floor of the impoundment to the crest of the dam. A 2.3-m-deep plunge pool has been excavated below the dam, followed immediately downstream by a mid-channel bar composed of coarse bed material similar in size distribution to the bed material of the impoundment. The mid-channel bar stores 1472 m3 of sediment, exceeding the volume excavated from the plunge pool by a factor of 2.8. These field observations are typical of five other sites nearby and suggest that all bed material grain-size fractions supplied from upstream can be transported through the impoundment, up the sloping ramp, and over the top of the dam. Sediment transport computations suggest that all grain sizes are in transport upstream and within the impoundment at all discharges with return periods from 1 to 50 years. Our computations suggest that transport of coarse bed material through the impoundment is facilitated by its smooth, sandy bed. Model results suggest that the impoundment is currently aggrading at 0.26 m/year, but bed elevations may be recovering after recent scour from a series of large floods during water year 2011-2012. We propose that impoundments upstream of these run-of-river dams

  2. A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River

    Directory of Open Access Journals (Sweden)

    Ehsan Olyaie

    2017-05-01

    Full Text Available Most of the water quality models previously developed and used in dissolved oxygen (DO prediction are complex. Moreover, reliable data available to develop/calibrate new DO models is scarce. Therefore, there is a need to study and develop models that can handle easily measurable parameters of a particular site, even with short length. In recent decades, computational intelligence techniques, as effective approaches for predicting complicated and significant indicator of the state of aquatic ecosystems such as DO, have created a great change in predictions. In this study, three different AI methods comprising: (1 two types of artificial neural networks (ANN namely multi linear perceptron (MLP and radial based function (RBF; (2 an advancement of genetic programming namely linear genetic programming (LGP; and (3 a support vector machine (SVM technique were used for DO prediction in Delaware River located at Trenton, USA. For evaluating the performance of the proposed models, root mean square error (RMSE, Nash–Sutcliffe efficiency coefficient (NS, mean absolute relative error (MARE and, correlation coefficient statistics (R were used to choose the best predictive model. The comparison of estimation accuracies of various intelligence models illustrated that the SVM was able to develop the most accurate model in DO estimation in comparison to other models. Also, it was found that the LGP model performs better than the both ANNs models. For example, the determination coefficient was 0.99 for the best SVM model, while it was 0.96, 0.91 and 0.81 for the best LGP, MLP and RBF models, respectively. In general, the results indicated that an SVM model could be employed satisfactorily in DO estimation.

  3. National Dam Inspection Program. Ingham Creek (Aquetong Lake) Dam (NDI ID PA 00224, PA DER 9-49) Delaware River Basin, Ingham Creek, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1981-04-01

    Delaware River Basing Ingham Justif icaticn--- L Creek, Pennsylvania. Phase I Inspection Do DEL-AWARE RIVER BASIN Availabilit T Co~es Avail and/or D...about 1.5H:IV and an unknown upstream slope below the water surface. The dam impounds a reservoir with a normal pool surface area of 12.4 acres and a...deep. It was once used to direct water to a mill downstream of the dam and is now in poor condition. The spillway Design Flood (SDF) chosen for this

  4. Integrating Engineering into Delaware's K-5 Classrooms: A Study of Pedagogical and Curricular Resources

    Science.gov (United States)

    Grusenmeyer, Linda Huey

    This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials. Delaware was at the forefront of K-12 STEM movement, first to adopt statewide elementary curriculum materials to complement existing science units, and one of the first to adopt the new science standards--Next Generation Science Standards. What supports were available to teachers as they adapted and adopted this new curriculum? To investigate this question, I examined (1) teachers' beliefs about engineering and the engineering curriculum, and (2) the pedagogical supports available to teachers in selected science and engineering curriculum. Teachers' knowledge, goals, and beliefs regarding Delaware's adoption of new elementary engineering curriculum were surveyed using an adapted version of the Design, Engineering, and Technology Survey (Hong, Purser, & Gardella, 2011; Yaser, Baker, Carpius, Krauss, & Roberts, 2006). Also, three open ended questions sought to reveal deeper understanding of teacher knowledge and understanding of engineering; their concerns about personal and systemic resources related to the new curriculum, its logistics, and feasibility; and their beliefs about the potential positive impact presented by the engineering education initiative. Teacher concerns were analyzed using the Concerns-Based Adoption Model (Hall & Hord, 2010). Lay understandings of engineering were analyzed by contrasting naive representations of engineering with three key characteristics of engineering adapted from an earlier study (Capobianco Diefes-Dux, Mena, & Weller, 2011). Survey findings for teachers who had attended training and those who have not yet attended professional development in the new curriculum were compared with few

  5. User's manual for the upper Delaware River riverine environmental flow decision support system (REFDSS), Version 1.1.2

    Science.gov (United States)

    Talbert, Colin; Maloney, Kelly O.; Holmquist-Johnson, Chris; Hanson, Leanne

    2014-01-01

    Between 2002 and 2006, the Fort Collins Science Center (FORT) at the U.S. Geological Survey (USGS) conducted field surveys, organized workshops, and performed analysis of habitat for trout and shad in the Upper Delaware River Basin. This work culminated in the development of decision support system software (the Delaware River DSS–DRDSS, Bovee and others, 2007) that works in conjunction with the Delaware River Basin Commission’s reservoir operations model, OASIS, to facilitate comparison of the habitat and water-delivery effects of alternative operating scenarios for the Basin. This original DRDSS application was developed in Microsoft Excel and is available to all interested parties through the FORT web site (http://www.fort.usgs.gov/Products/Software/DRDSS/). Initial user feedback on the original Excel-based DSS highlighted the need for a more user-friendly and powerful interface to effectively deliver the complex data and analyses encapsulated in the DSS. In order to meet this need, the USGS FORT and Northern Appalachian Research Branch (NARB) developed an entirely new graphical user interface (GUI) application. Support for this research was through the DOI WaterSmart program (http://www.doi.gov/watersmart/html/index.php) of which the USGS component is the National Water Census (http://water.usgs.gov/watercensus/WaterSMART.html). The content and methodology of the new GUI interface emulates those of the original DSS with a few exceptions listed below. Refer to Bovee and others (2007) for the original information. Significant alterations to the original DSS include: • We moved from Excel-based data storage and processing to a more powerful database back end powered by SQLite. The most notable effect of this is that the previous maximum temporal extent of 10 years has been replaced by a dynamic extent that can now cover the entire period of record for which we have data (1928–2000). • We incorporated interactive geographic information system (GIS

  6. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon in the upper reaches of the Delaware River, northeastern USA

    Directory of Open Access Journals (Sweden)

    D. O. Rosenberry

    2016-10-01

    Full Text Available The remaining populations of the endangered dwarf wedgemussel (DWM (Alasmidonta heterodon in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers, thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling, and geophysical (electromagnetic-induction methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared may be useful in locating and protecting other currently unknown mussel populations.

  7. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Voytek, Emily B.; Lane, John W.

    2016-01-01

    The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers), thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling), and geophysical (electromagnetic-induction) methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared) may be useful in locating and protecting other currently unknown mussel populations.

  8. Shifting distributions of adult Atlantic sturgeon amidst post-industrialization and future impacts in the Delaware River: a maximum entropy approach.

    Directory of Open Access Journals (Sweden)

    Matthew W Breece

    Full Text Available Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus experienced severe declines due to habitat destruction and overfishing beginning in the late 19(th century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19(th century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960's. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species.

  9. Missouri River, Natural Resources Bibliography.

    Science.gov (United States)

    1997-07-01

    1971. Thermal study of the 366. CUNDAY TW, BROOKS KN. 1981. Calibrating Missouri River in North Dakota using infrared and verifying the SSARR model...in North and South 1612. SCHUELER RL, SULLIVAN JK. 1967. Quantifying Dakota using NOAA-5 infrared data. In: current and potential commercial fishery...use survey, 1984. South Dakota River. Journal of the Waterways Department of Game, Fish and Parks. Pierre, 101( WW2 ):119-33. SD. Interim report. South

  10. Delaware Bay, Delaware Benthic Habitats 2010 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Program of Delaware's Division of Soil and Water conservation (DNREC), the University of Delaware, Partnership for the Delaware Estuary, and the New...

  11. Delaware Bay, Delaware Benthic Habitats 2010 Biotic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Program of Delaware's Division of Soil and Water conservation (DNREC), the University of Delaware, Partnership for the Delaware Estuary, and the New...

  12. Delaware Bay, Delaware Benthic Habitats 2010 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Program of Delaware's Division of Soil and Water conservation (DNREC), the University of Delaware, Partnership for the Delaware Estuary, and the New...

  13. Delaware Bay, Delaware Benthic Habitats 2010 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Program of Delaware's Division of Soil and Water conservation (DNREC), the University of Delaware, Partnership for the Delaware Estuary, and the New...

  14. Application of ecological, geological and oceanographic ERTS-1 imagery to Delaware's coastal resources planning

    Science.gov (United States)

    Klemas, V. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Communities containing five different coastal vegetation species, developed marshlands, and fresh water impoundments have been identified in ERTS-1 images. Suspended sediment and circulation patterns in imagery from five ERTS-1 passes over Delaware Bay have been enhanced and correlated with predicted current patterns. Conclusions reached are: (1) ERTS-1 is suitable platform for observing suspended sediment patterns and water masses synoptically over large areas. (2) Suspended sediment acts as a natural tracer allowing photointerpreters to deduce gross current circulation patterns from ERTS-1 imagery. (3) Under atmospheric conditions encountered along the East Coast of the United States MSS band 5 seems to give the best representation of sediment load in upper one meter of water column. (4) In the ERTS-1 imagery the sediment patterns are delineated by three to four neighboring shades of grey. (5) Negative transparencies of the ERTS-1 images give better contrast whenever the suspended sediment tones fall within the first few steps of the grey scale. (6) Color density slicing helps delineate the suspended sediment patterns more clearly and differentiate turbidity levels.

  15. Evaluating methods to establish habitat suitability criteria: A case study in the upper Delaware River Basin, USA

    Science.gov (United States)

    Galbraith, Heather S.; Blakeslee, Carrie J.; Cole, Jeffrey C.; Talbert, Colin; Maloney, Kelly O.

    2016-01-01

    Defining habitat suitability criteria (HSC) of aquatic biota can be a key component to environmental flow science. HSC can be developed through numerous methods; however, few studies have evaluated the consistency of HSC developed by different methodologies. We directly compared HSC for depth and velocity developed by the Delphi method (expert opinion) and by two primary literature meta-analyses (literature-derived range and interquartile range) to assess whether these independent methods produce analogous criteria for multiple species (rainbow trout, brown trout, American shad, and shallow fast guild) and life stages. We further evaluated how these two independently developed HSC affect calculations of habitat availability under three alternative reservoir management scenarios in the upper Delaware River at a mesohabitat (main channel, stream margins, and flood plain), reach, and basin scale. In general, literature-derived HSC fell within the range of the Delphi HSC, with highest congruence for velocity habitat. Habitat area predicted using the Delphi HSC fell between the habitat area predicted using two literature-derived HSC, both at the basin and the site scale. Predicted habitat increased in shallow regions (stream margins and flood plain) using literature-derived HSC while Delphi-derived HSC predicted increased channel habitat. HSC generally favoured the same reservoir management scenario; however, no favoured reservoir management scenario was the most common outcome when applying the literature range HSC. The differences found in this study lend insight into how different methodologies can shape HSC and their consequences for predicted habitat and water management decisions. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  16. Total mercury and methylmercury in fish fillets, water, and bed sediments from selected streams in the Delaware River basin, New Jersery, New York, and Pennsylvania, 1998-2001

    Science.gov (United States)

    Brightbill, Robin A.; Riva-Murray, Karen; Bilger, Michael D.; Byrnes, John D.

    2004-01-01

    Within the Delaware River Basin, fish-tissue samples were analyzed for total mercury (tHg). Water and bed-sediment samples were analyzed for tHg and methylmercury (MeHg), and methylation efficiencies were calculated. This study was part of a National Mercury Pilot Program conducted by the U.S. Geological Survey (USGS). The Delaware River Basin was chosen because it is part of the USGS National Water-Quality Assessment Program that integrates physical, chemical, and biological sampling efforts to determine status and trends in surface-water and ground-water resources. Of the 35 sites in the study, 31 were sampled for fish. The species sampled at these sites include smallmouth bass (Micropterus dolomieu), the target species, and where smallmouth bass could not be collected, brown trout (Salmo trutta), chain pickerel (Esox niger), largemouth bass (Micropterus salmoides), and rock bass (Ambloplites rupestris). There were a total of 32 fish samples; 7 of these exceeded the 0.3 ?g/g (micrograms per gram) wet-weight mercury (Hg) concentration set for human health by the U.S. Environmental Protection Agency and 27 of these exceeded the U.S. Fish and Wildlife Service criteria of 0.1 ?g/g wet weight for the protection of fish-eating birds and wildlife. Basinwide analysis of Hg in fish, water, and bed sediment showed tHg concentration in fillets correlated positively with population density, urban land cover, and impervious land surface. Negative correlations included wetland land cover, septic density, elevation, and latitude. Smallmouth bass from the urban sites had a higher median concentration of tHg than fish from agricultural, low intensity-agricultural, or forested sites. Concentrations of tHg and MeHg in water were higher in samples from the more urbanized areas of the basin and were positively correlated with urbanization and negatively correlated with forested land cover. Methylation efficiency of water was negatively correlated with urbanization. Bed

  17. 78 FR 53467 - John H. Chafee Coastal Barrier Resources System; Delaware, North Carolina, South Carolina...

    Science.gov (United States)

    2013-08-29

    ... inaccuracy of the original base maps, and the manual cartographic techniques used to create the current set..., as well as historical and current aerial imagery, to determine where natural changes (e.g., eroded... Broadkill River, Doty Glade, Old Mill Creek, and Canary Creek. The name of this unit has been changed from...

  18. The influence of time on the magnetic properties of late Quaternary periglacial and alluvial surface and buried soils along the Delaware River, USA

    Directory of Open Access Journals (Sweden)

    Gary E Stinchcomb

    2014-08-01

    Full Text Available Magnetic susceptibility of soils has been used as a proxy for rainfall, but other factors can contribute to magnetic enhancement in soils. Here we explore influence of century- to millennial-scale duration of soil formation on periglacial and alluvial soil magnetic properties by assessing three terraces with surface and buried soils ranging in exposure ages from <0.01 to ~16 kyrs along the Delaware River in northeastern USA. The A and B soil horizons have higher Xlf, Ms, and S-ratios compared to parent material, and these values increase in a non-linear fashion with increasing duration of soil formation. Magnetic remanence measurements show a mixed low- and high-coercivity mineral assemblage likely consisting of goethite, hematite and maghemite that contributes to the magnetic enhancement of the soil. Room-temperature and low-temperature field-cooled and zero field-cooled remanence curves confirm the presence of goethite and magnetite and show an increase in magnetization with increasing soil age. These data suggest that as the Delaware alluvial soils weather, the concentration of secondary ferrimagnetic minerals increase in the A and B soil horizons. We then compared the time-dependent Xlf from several age-constrained buried alluvial soils with known climate data for the region during the Quaternary. Contradictory to most studies that suggest a link between increases in magnetic susceptibility and high moisture, increased magnetic enhancement of Delaware alluvial soils coincides with dry climate intervals. Early Holocene enhanced soil Xlf (9.5 – 8.5 ka corresponds with a well-documented cool-dry climate episode. This relationship is probably related to less frequent flooding during dry intervals allowing more time for low-coercive pedogenic magnetic minerals to form and accumulate, which resulted in increased Xlf. Middle Holocene enhanced Xlf (6.1 – 4.3 ka corresponds with a transitional wet/dry phase and a previously documented incision

  19. Habitat persistence for sedentary organisms in managed rivers: the case for the federally endangered dwarf wedgemussel (Alasmidonta heterodon) in the Delaware River

    Science.gov (United States)

    Maloney, Kelly O.; Lellis, William A.; Bennett, Randy M.; Waddle, Terry J.

    2012-01-01

    1. To manage the environmental flow requirements of sedentary taxa, such as mussels and aquatic insects with fixed retreats, we need a measure of habitat availability over a variety of flows (i.e. a measure of persistent habitat). Habitat suitability measures in current environmental flow assessments are measured on a ‘flow by flow’ basis and thus are not appropriate for these taxa. Here, we present a novel measure of persistent habitat suitability for the dwarf wedgemussel (Alasmidonta heterodon), listed as federally endangered in the U.S.A., in three reaches of the Delaware River. 2. We used a two-dimensional hydrodynamic model to quantify suitable habitat over a range of flows based on modelled depth, velocity, Froude number, shear velocity and shear stress at three scales (individual mussel, mussel bed and reach). Baseline potentially persistent habitat was quantified as the sum of pixels that met all thresholds identified for these variables for flows ≥40 m3 s−1, and we calculated the loss of persistently suitable habitat by sequentially summing suitable habitat estimates at lower flows. We estimated the proportion of mussel beds exposed at each flow and the amount of change in the size of the mussel bed for one reach. 3. For two reaches, mussel beds occupied areas with lower velocity, shear velocity, shear stress and Froude number than the reach average at all flows. In the third reach, this was true only at higher flows. Together, these results indicate that beds were possible refuge areas from the effects of these hydrological parameters. Two reaches showed an increase in the amount of exposed mussel beds with decreasing flow. 4. Baseline potentially persistent habitat was less than half the areal extent of potentially suitable habitat, and it decreased with decreasing flow. Actually identified beds and modelled persistent habitat showed good spatial overlap, but identified beds occupied only a portion of the total modelled persistent

  20. Management of Fishery Resources in Yangtze River Estuary

    OpenAIRE

    Li, Meiling; Huang, Shuolin

    2009-01-01

    We introduce the fish fauna composition and main commercial fishes in Yangtze River estuary. We also analyze the current situation of resources and environment in Yangtze River estuary as well as the influential factors. Finally, related countermeasures are put forward on how to protect and use the fishery resources in Yangtze River.

  1. Hydrokinetic energy resource estimates of River ERO at Lafiagi ...

    African Journals Online (AJOL)

    Hydrokinetic energy resource estimates of River ERO at Lafiagi, Kwara State, ... cost-effective renewable energy solution without requiring the construction of a ... Keywords: Hydrokinetic Power, Energy Resource, River Ero, Water Resources ... (14); Eritrea (1); Ethiopia (30); Ghana (27); Kenya (29); Lesotho (1); Libya (2) ...

  2. Water resource management model for a river basin

    OpenAIRE

    Jelisejevienė, Emilija

    2005-01-01

    The objective is to develop river basin management model that ensures integrated analysis of existing water resource problems and promotes implementation of sustainable development principles in water resources management.

  3. Time as An Important Soil-Forming Factor Influencing Modern and Ancient Magnetic Susceptibility Enhancement Along the Delaware River Valley, USA

    Science.gov (United States)

    Stinchcomb, G. E.; Peppe, D. J.; Driese, S. G.

    2011-12-01

    Magnetic susceptibility is an increasingly popular low-cost method for rapidly assessing paleoclimate and paleoenvironmental impact on buried soils. The goal of this study is to determine the primary influence(s) on soil magnetic susceptibility along floodplain, terrace and upland soils in the middle Delaware River Valley, USA, using environmental magnetic, pedologic, and stratigraphic techniques. Two-hundred thirty samples were collected from age-constrained sandy, quartz-rich, floodplain, terrace, and upland soils (Entisols, Inceptisols). A Kruskal-Wallis (K-W) and post-hoc Tukey-Kramer (T-K) (α=0.05) multiple comparisons analysis on 176 mass-specific low-field susceptibility (Xlf) assays show that A and B horizons are magnetically enhanced compared to C and E horizons (ptesting show that Xlf results, when grouped by floodplain-terrace designation (i.e., chronofunction) are significantly different (p<0.0001). The older T3 terrace and upland Xlf values (0.34±0.14 10^-6 m^3 kg^-1) are greater than the younger T2 terrace (0.18±0.06 10^-6 m^3 kg^-1) values, which are greater than modern floodplain (0.09±0.01 10^-6 m^3 kg^-1) Xlf values. These data suggest that longer intervals of soil formation enhance the Χlf value. This hypothesis is further supported when 159 Xlf values are plotted vs. age for the entire Holocene. A locally-weighted regression smoothing curve (LOESS) shows two distinct intervals of magnetic enhancement during previously established dry intervals, the early and late-middle Holocene. We hypothesize that prolonged drought during the early and middle Holocene reduced flood frequency and magnitude and the likelihood of soil burial, resulting in longer soil forming intervals and higher Xlf values. Although precipitation influences the Xlf signature, the results from this study suggest that the magnetic susceptibility values of well-drained buried floodplain soils along the Delaware River Valley are partly a function of time.

  4. The 3D Elevation Program: summary for Delaware

    Science.gov (United States)

    Carswell, William J.

    2015-01-01

    Elevation data are essential to a broad range of applications, including forest resources management, wildlife and habitat management, national security, recreation, and many others. For the State of Delaware, elevation data are critical for agriculture and precision farming, river and stream resource management, natural resources conservation, flood risk management, coastal zone management, geologic resource assessment and hazard mitigation, and other business uses. Today, high-density light detection and ranging (lidar) data are the primary sources for deriving elevation models and other datasets. Federal, State, Tribal, and local agencies work in partnership to (1) replace data that are older and of lower quality and (2) provide coverage where publicly accessible data do not exist. A joint goal of State and Federal partners is to acquire consistent, statewide publicly available coverage to support existing and emerging applications enabled by lidar data.

  5. Columbia River ESI: SOCECON (Socioeconomic Resource Points and Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector points and lines representing human-use resource data for Columbia River. In the data set, vector points represent aquaculture sites,...

  6. assessement of information resource of public libraries in rivers state

    African Journals Online (AJOL)

    Information Impact | Journal of Information and Knowledge Management

    users, awareness of resources provided by public libraries in Rivers State is low, ... decision making, and culture development of individuals and social groups. ..... programmes, current affairs, fish production, human right, business, oil spillage,.

  7. Santa Lucia River basin. Development of water resources

    International Nuclear Information System (INIS)

    1970-01-01

    The main objective of this study was to orient the development of water resources of the Santa Lucia River basin to maximum benefit in accordance with the priorities established by Government in relation to the National Development Plans

  8. Relation of water quality to land use in the drainage basins of six tributaries to the lower Delaware River, New Jersey, 2002-07

    Science.gov (United States)

    Baker, Ronald J.; Esralew, Rachel A.

    2010-01-01

    Concentrations and loads of water-quality constituents in six streams in the lower Delaware River Basin of New Jersey were determined in a multi-year study conducted by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection. Two streams receive water from relatively undeveloped basins, two from largely agricultural basins, and two from heavily urbanized basins. Each stream was monitored during eight storms and at least eight times during base flow during 2002-07. Sampling was conducted during base flow before each storm, when stage was first observed to rise, and several times during the rising limb of the hydrographs. Agricultural and urban land use has resulted in statistically significant increases in loads of nitrogen and phosphorus species relative to loads in undeveloped basins. For example, during the growing season, median storm flow concentrations of total nitrogen in the two streams in agricultural areas were 6,290 and 1,760 mg/L, compared to 988 and 823 mg/L for streams in urban areas, and 719 and 333 mg/L in undeveloped areas. Although nutrient concentrations and loads were clearly related to land useurban, agricultural, and undeveloped within the drainage basins, other basin characteristics were found to be important. Residual nutrients entrapped in lake sediments from streams that received effluent from recently removed sewage-treatment plants are hypothesized to be the cause of extremely high levels of nutrient loads to one urban stream, whereas another urban stream with similar land-use percentages (but without the legacy of sewage-treatment plants) had much lower levels of nutrients. One of the two agricultural streams studied had higher nutrient loads than the other, especially for total phosphorous and organic nitrogen. This difference appears to be related to the presence (or absence) of livestock (cattle).

  9. Analysis of flood-magnitude and flood-frequency data for streamflow-gaging stations in the Delaware and North Branch Susquehanna River Basins in Pennsylvania

    Science.gov (United States)

    Roland, Mark A.; Stuckey, Marla H.

    2007-01-01

    The Delaware and North Branch Susquehanna River Basins in Pennsylvania experienced severe flooding as a result of intense rainfall during June 2006. The height of the flood waters on the rivers and tributaries approached or exceeded the peak of record at many locations. Updated flood-magnitude and flood-frequency data for streamflow-gaging stations on tributaries in the Delaware and North Branch Susquehanna River Basins were analyzed using data through the 2006 water year to determine if there were any major differences in the flood-discharge data. Flood frequencies for return intervals of 2, 5, 10, 50, 100, and 500 years (Q2, Q5, Q10, Q50, Q100, and Q500) were determined from annual maximum series (AMS) data from continuous-record gaging stations (stations) and were compared to flood discharges obtained from previously published Flood Insurance Studies (FIS) and to flood frequencies using partial-duration series (PDS) data. A Wilcoxon signed-rank test was performed to determine any statistically significant differences between flood frequencies computed from updated AMS station data and those obtained from FIS. Percentage differences between flood frequencies computed from updated AMS station data and those obtained from FIS also were determined for the 10, 50, 100, and 500 return intervals. A Mann-Kendall trend test was performed to determine statistically significant trends in the updated AMS peak-flow data for the period of record at the 41 stations. In addition to AMS station data, PDS data were used to determine flood-frequency discharges. The AMS and PDS flood-frequency data were compared to determine any differences between the two data sets. An analysis also was performed on AMS-derived flood frequencies for four stations to evaluate the possible effects of flood-control reservoirs on peak flows. Additionally, flood frequencies for three stations were evaluated to determine possible effects of urbanization on peak flows. The results of the Wilcoxon signed

  10. Simulation of streamflow and water quality in the Red Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 square miles (mi2) in Pennsylvania and Delaware and includes the major subbasins of Red Clay Creek, White Clay Creek, Brandywine Creek, and Christina River. The Red Clay Creek is the smallest of the subbasins and drains an area of 54 mi2. Streams in the Christina River Basin are used for recreation, drinking-water supply, and to support aquatic life. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the stream. A multi-agency, waterquality management strategy included a modeling component to evaluate the effects of point and nonpointsource contributions of nutrients and suspended sediment on stream water quality. To assist in nonpointsource evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program?Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at 1 site in the Red Clay Creek subbasin and at 10 sites elsewhere in the Christina River Basin.The HSPF model for the Red Clay Creek subbasin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into nine reaches draining areas that ranged from 1.7 to 10 mi2. One of the reaches contains a regulated reservoir. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the Red Clay Creek

  11. Managing River Resources: A Case Study Of The Damodar River, India

    Science.gov (United States)

    Bhattacharyya, K.

    2008-12-01

    The Damodar River, a subsystem of the Ganga has always been a flood-prone river. Recorded flood history of the endemic flood prone river can be traced from 1730 onwards. People as well as governments through out the centuries have dealt with the caprices of this vital water resource using different strategies. At one level, the river has been controlled using structures such as embankments, weir, dams and barrage. In the post-independent period, a high powered organization known as the Damodar Valley Corporation (DVC), modeled on the Tennessee Valley Authority (TVA) came into existence on 7th July 1948. Since the completion of the reservoirs the Lower Damodar has become a 'reservoir channel' and is now identified by control structures or cultural features or man made indicators. Man-induced hydrographs below control points during post-dam period (1959-2007) show decreased monsoon discharge, and reduced peak discharge. In pre-dam period (1933-1956) return period of floods of bankfull stage of 7080 m3/s had a recurrence interval of 2 years. In post-dam period the return period for the bankfull stage has been increased to 14 years. The Damodar River peak discharge during pre-dam period for various return periods are much greater than the post-dam flows for the same return periods. Despite flood moderation by the DVC dams, floods visited the river demonstrating that the lower valley is still vulnerable to sudden floods. Contemporary riverbed consists of series of alluvial bars or islands, locally known as mana or char lands which are used as a resource base mostly by Bengali refugees. At another level, people have shown great resourcefulness in living with and adjusting to the floods and dams while living on the alluvial bars. People previously used river resources in the form of silt only but now the semi-fluid or flexible resource has been exploited into a permanent resource in the form of productive sandbars. Valuable long-term data from multiple sources has been

  12. Simulation of streamflow and water quality in the Christina River subbasin and overview of simulations in other subbasins of the Christina River Basin, Pennsylvania, Maryland, and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 square miles (mi2) in Pennsylvania and Delaware and includes the major subbasins of Brandywine Creek, Red Clay Creek, White Clay Creek, and Christina River. The Christina River subbasin (exclusive of the Brandywine, Red Clay, and White Clay Creek subbasins) drains an area of 76 mi2. Streams in the Christina River Basin are used for recreation, drinking water supply, and support of aquatic life. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the stream. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point- and nonpoint-source contributions of nutrients and suspended sediment on stream water quality. To assist in nonpoint-source evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program–Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in small subbasins predominantly covered by one land use following a nonpoint- source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at two sites in the Christina River subbasin and nine sites elsewhere in the Christina River Basin.The HSPF model for the Christina River subbasin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into nine reaches draining areas that ranged from 3.8 to 21.9 mi2. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the Christina

  13. Simulation of streamflow and water quality in the White Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 square miles (mi2) in Pennsylvania, Maryland, and Delaware. Water from the basin is used for recreation, drinking water supply, and to support aquatic life. The Christina River Basin includes the major subbasins of Brandywine Creek, White Clay Creek, and Red Clay Creek. The White Clay Creek is the second largest of the subbasins and drains an area of 108 mi2. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the streams. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point and nonpoint-source contributions of nutrients and suspended sediment on stream water quality. To assist in non point-source evaluation, four independent models, one for each of the three major subbasins and for the Christina River, were developed and calibrated using the model code Hydrological Simulation Program—Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base- flow samples were collected during 1998 at two sites in the White Clay Creek subbasin and at nine sites in the other subbasins.The HSPF model for the White Clay Creek Basin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into 17 reaches draining areas that ranged from 1.37 to 13 mi2. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the White Clay Creek Basin are agricultural, forested

  14. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  15. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    Science.gov (United States)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  16. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  17. Reference Inflow Characterization for River Resource Reference Model (RM2)

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent S [ORNL

    2011-12-01

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time

  18. Report on the Comprehensive Survey of the Water Resources of the Delaware River Basin. Volume 8. Appendix O

    Science.gov (United States)

    1960-12-01

    disposed into the sewers provided that the material is soluble. (2) Radioactive levels include the following: strontium 90 or polonium 210 , not to...prime importance is water; man can survive without food more easily than without water., What is true of the individual is true of his civili- zation...abundant fish species at each of the survey stations, ranked according to their abundance 21-27 9 Frequency of occurrence of food organisms in the

  19. Delaware's Forests 2008

    Science.gov (United States)

    Tonya W. Lister; Glenn Gladders; Charles J. Barnett; Gary J. Brand; Brett J. Butler; Susan J. Crocker; Grant M. Domke; Douglas M. Griffith; Mark A. Hatfield; Cassandra M. Kurtz; Andrew J. Lister; Randall S. Morin; W. Keith Moser; Mark D. Nelson; Charles H. Perry; Ronald J. Piva; Rachel Riemann; Christopher W. Woodall

    2012-01-01

    The fifth full inventory of Delaware's forests reports an 8 percent decrease in the area of forest land to 352,000 acres, which cover 28 percent of the State's land area and has a volume of approximately 2,352 cubic feet per acre. Twenty-one percent of the growing-stock volume is red maple, followed by sweetgum (13 percent), and loblolly pine (12 percent)....

  20. Integrated resource assessment of the Drina River Basin

    Science.gov (United States)

    Almulla, Youssef; Ramos, Eunice; Gardumi, Francesco; Howells, Mark

    2017-04-01

    The integrated assessment and management of resources: water, energy, food and environment is of fundamental importance, yet it is a very challenging task especially when it is carried out on the transboundary level. This study focuses on the Drina River Basin (DRB) which is a transboundary basin in South East Europe spreading across Bosnia and Herzegovina, Serbia and Montenegro with a total surface area of 19,982 km2. Water resources from the Drina River Basin are shared among many activities in the basin: domestic water supply, electricity generation, fishery, tourism and, to a lesser extent, irrigation, industry and mining. The region has recently experienced repeated events of floods and droughts causing significant damage to the economy, showing a high vulnerability of the area to the effects of climate change. The assessment of the Drina River Basin is carried out in the framework of the project "Water food energy ecosystems nexus in transboundary river basins" under the UNECE Water Convention. This study aims to: 1) Improve the cooperation in the operation of dams and hydropower plants in the DRB for optimized production; 2) Explore the opportunities generated by electricity trade between the DRB countries as a mechanism to enhance cooperation and as an enabler for the synchronised operation of hydropower plants; 3) Motivate the implementation of energy efficiency measures to reduce the electricity production requirement from hydro and thermal power. In order to achieve that, a multi-country electricity system model was developed for the three countries of Drina river basin using the Open Source energy MOdelling SYStem (OSeMOSYS). The model represents the whole electricity system of each country, with special cascade representation of hydropower plants along Drina river and its tributaries. The results show that, in a scenario of synchronised operation of all power plants along Drina and its tributaries, those downstream can significantly increase their

  1. Influence of eastern hemlock (Tsuga canadensis L.) on fish community structure and function in headwater streams of the Delaware River basin

    Science.gov (United States)

    Ross, R.M.; Bennett, R.M.; Snyder, C.D.; Young, J.A.; Smith, D.R.; Lemarie, D.P.

    2003-01-01

    Hemlock (Tsuga canadensis) forest of the eastern U.S. are in decline due to invasion by the exotic insect hemlock woolly adelgid (Adelges tsugae). Aquatic biodiversity in hemlock ecosystems has not been documented; thus the true impact of the infestation cannot be assessed. We compared ichthyofaunal assemblages and trophic structure of streams draining hemlock and hardwood forests by sampling first- and second-order streams draining 14 paired hemlock and hardwood stands during base flows in July 1997 at the Delaware Water Gap National Recreation Area of Pennsylvania and New Jersey. Over 1400 fish of 15 species and 7 families were collected, but hemlock and hardwood streams individually harbored only one to four species. Brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) were two to three times as prevalent in hemlock than hardwood streams. Insectivorous fishes occurred in significantly higher proportion in streams of hardwood (0.90) than hemlock (0.46) stands, while piscivores occurred more often in hemlock (0.85) than hardwood (0.54) stands. Functional (trophic) diversity of fishes in hemlock and second-order streams was numerically greater than that of hardwood and first-order streams. Species composition also differed by stream order and terrain type. Biodiversity is threatened at several levels within hemlock ecosystems at risk to the hemlock woolly adelgid in eastern U.S. forests.

  2. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    Directory of Open Access Journals (Sweden)

    P. Normatov

    2014-09-01

    Full Text Available The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  3. Long Term Resource Monitoring Program Annual Status Report, 1999: Macroinvertebrate Sampling in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Sauer, Jennifer

    2000-01-01

    In 1992, macroinvertebrate sampling was initiated in Pools 4, 8, 13, 26, and the Open River reach of the Mississippi River, and La Orange Pool of the Illinois River as part of the Long Term Resource Monitoring Program...

  4. Water resources of the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Izbicki, John A.

    2000-01-01

    By 2020, demand for water in the Blackstone River Basin is expected to be 52 million gallons per day, one-third greater than the demand of 39 million gallons per day in 1980. Most of this increase is expected to be supplied by increased withdrawals of ground water from stratified-drift aquifers in the eastern and northern parts of the basin. Increased withdrawals from stratified-drift aquifers along the Blackstone River and in the western part of the basin also are expected.The eastern and northern parts of the Blackstone River Basin contain numerous small, discontinuous aquifers which, as a group, comprise the largest ground-water resource of the study area. Fifteen aquifers, ranging in areal extent from 0.57 to 4.3 square miles, were identified. These aquifers have maximum saturated thicknesses ranging from less than 10 feet to 105 feet and maximum transmissivities ranging from less than 1,000 to more than 20,000 feet squared per day. Yields of nine study aquifers were estimated by use of digital ground-water-flow models. Yields depend on the hydraulic properties of the aquifer and the amount of streamflow available for depletion by wells. If streamflow is maintained at 98-percent duration, long-term yields from the aquifers that would be expected to be equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, and long-term yields equaled or exceeded 95 percent of the time range from 0.06 to 1.0 million gallons per day. If streamflow is maintained at 99.5-percent duration, long-term yields equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, long-term yields equaled or exceeded 95 percent of the time range from 0.04 to 1.4 million gallons per day, and longterm yields equaled or exceeded 98 percent of the time range from 0.02 to 0.39 million gallons per day. Maintaining streamflow at 98-percent duration is a more restrictive criterion than maintaining streamflow at 99.5-percent duration. The

  5. Delaware's first serial killer.

    Science.gov (United States)

    Inguito, G B; Sekula-Perlman, A; Lynch, M J; Callery, R T

    2000-11-01

    The violent murder of Shirley Ellis on November 29, 1987, marked the beginning of the strange and terrible tale of Steven Bryan Pennell's reign as the state of Delaware's first convicted serial killer. Three more bodies followed the first victim, and all had been brutally beaten and sadistically tortured. The body of a fifth woman has never been found. State and county police collaborated with the FBI to identify and hunt down their suspect, forming a task force of over 100 officers and spending about one million dollars. Through their knowledge and experience with other serial killers, the FBI was able to make an amazingly accurate psychological profile of Delaware's serial killer. After months of around-the-clock surveillance, Steven Pennell was arrested on November 29, 1988, one year to the day after the first victim was found. Pennell was found guilty in the deaths of the first two victims on November 29, 1989, and plead no contest to the murder of two others on October 30, 1991. Still maintaining his innocence, he asked for the death penalty so that he could spare his family further agony. Steven Pennell was executed by lethal injection on March 15, 1992.

  6. Delaware Bay, Delaware Sediment Distribution 2003 to 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The area of coverage consists of 38 square miles of benthic habitat mapped from 2003 to 2004 along the middle to lower Delaware Bay Coast. The bottom sediment map...

  7. An Analysis of the Charter School Facility Landscape in Delaware

    Science.gov (United States)

    Hesla, Kevin; Johnson, Jessica M.; Massett, Kendall; Ziebarth, Todd

    2018-01-01

    In the spring of 2016, the National Charter School Resource Center (NCSRC), the Colorado League of Charter Schools (the League), the Delaware Charter Schools Network (DCSN), and the National Alliance for Public Charter Schools (the Alliance) collaborated to collect data and information about charter school facilities and facilities expenditures in…

  8. National Aquatic Resource Survey Rivers and Streams Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data are from 1,000 river and stream sites across the conterminous US where consistent biological, chemical, physical and watershed data were gathered. The sites...

  9. Simulation of blue and green water resources in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2014-09-01

    Full Text Available The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool, calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program based on river discharge in the Wei River basin (WRB. Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain, one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  10. Fish resource data from the Snare River, Northwest Territories

    International Nuclear Information System (INIS)

    Jessop, E.F.; Chang-Kue, K.T.J.; MacDonald, G.

    1994-01-01

    An extensive fish sampling and tagging program was conducted on the Snare River, Northwest Territories, in order to collect baseline data on the fish populations in sections of the river altered by hydroelectric projects. Fish populations were sampled from May to July 1977 in five sections of the river that were influenced by development of hydropower at three dams currently on line; 530 tagged fish were also released. The biweekly catch composition in experimental gill nets for each study area and the catch per gill net mesh size are presented for walleye (Stizostedion vitreum), lake trout (Salvelinus namaycush), lake whitefish (Coregonus clupeaformis), lake cisco (Coregonus artedi), northern pike (Esox lucius), white sucker (Catostomus commersoni), and longnose sucker (Catostomus catostomus). Age-specific data on length, weight, age, sex, and maturity are also included. 7 refs., 12 figs., 42 tabs

  11. Fish Health Study Ashtabula River Natural Resource Damage Assessment

    Science.gov (United States)

    Blazer, V.S.; Iwanowicz, L.R.; Baumann, P.C.

    2006-01-01

    INTRODUCTION The Ashtabula River is located in northeast Ohio, flowing into Lake Erie at Ashtabula, Ohio. Tributaries include Fields Brook, Hubbard Run, Strong Brook, and Ashtabula Creek. The bottom sediments, bank soils and biota of Fields Brook have been severely contaminated by unregulated discharges of hazardous substances. Hazardous substances have migrated downstream from Fields Brook to the Ashtabula River and Harbor, contaminating bottom sediments, fish and wildlife. There are presently more than 1,000,000 cubic yards of contaminated sediment in the Ashtabula River and Harbor, much of which originated from Fields Brook. Contaminants include polychlorinated biphenyls (PCBs), chlorinated benzenes, chlorinated ethenes, hexachlorobutadiene, polyaromatic hydrocarbons (PAHs), other organic chemicals, heavy metals and low level radionuclides. A Preassessment Screen, using existing data, was completed for the Ashtabula River and Harbor on May 18, 2001. Among the findings was that the fish community at Ashtabula contained approximately 45 percent fewer species and 52 percent fewer individuals than the Ohio EPA designated reference area, Conneaut Creek. The Ashtabula River and Conneaut Creek are similar in many respects, with the exception of the presence of contamination at Ashtabula. The difference in the fish communities between the two sites is believed to be at least partially a result of the hazardous substance contamination at Ashtabula. In order to investigate this matter further, the Trustees elected to conduct a study of the status and health of the aquatic biological communities of the Ashtabula River and Conneaut Creek in 2002-2004. The following document contains brief method descriptions (more detail available in attached Appendix A) and a summary of the data used to evaluate the health status of brown bullheads (Ameiurus nebulosus) and largemouth bass (Micropterus salmoides) collected from the above sites.

  12. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    Science.gov (United States)

    Zhao, T. H.; Yin, Z.; Song, Y. Z.

    2012-11-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  13. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    International Nuclear Information System (INIS)

    Zhao, T h; Yin, Z; Song, Y Z

    2012-01-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  14. National Uranium Resource Evaluation: Iron River Quadrangle, Michigan and Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Frishman, D

    1982-09-01

    No area within the Iron River 1/sup 0/ x 2/sup 0/ Quadrangle, Michigan and Wisconsin, appears to be favorable for the existence of a minimum of 100 tons of U/sub 3/O/sub 8/ at a grade of 0.01 percent or better.

  15. Ohio River Environmental Assessment: Cultural Resources Reconnaissance, Pennsylvania,

    Science.gov (United States)

    1977-10-01

    community was formerly known as Burgunda. The name Haysville is after one John Hays, a river pilot and innkeeper of the area. St. Mary’s German Catholic...creation of a town at Beaver was authorized by legislative act on September 28, 1791. By this act 200 acres of land in the Beaver reserve tract was to be

  16. Emergy Evaluation of the Natural Value of Water Resources in Chinese Rivers

    Science.gov (United States)

    Chen, Dan; Chen, Jing; Luo, Zhaohui; Lv, Zhuwu

    2009-08-01

    Emergy theory and method were used to evaluate the economy of China and the contributions of water resources in Chinese rivers to the real wealth of the Chinese economy. The water cycle and energy conversion were reviewed, and an emergy method for evaluating the natural value of water resources in a river watershed was developed. The indices for China calculated from the emergy evaluation were close to those of developing countries. Despite a small surplus in its balance of payments, China had a net emergy loss from its trade in 2002. The efficiency of Chinese natural resource use was still not high and did not match its economic growth rate. Furthermore, the Chinese economy placed a stress on its ecological environment and natural resources. Several indices of Chinese rivers from the emergy evaluation were close to those of average global river water. The main average indices of Chinese rivers were transformity (4.17 × 104 sej/J), emergy per volume (2.05 × 1011 sej/m3), and emdollar per volume (0.06 /m3). The total value of all the rivers’ water made up 13.0% of the GDP of China in 2002, and that of water consumption accounted for 2.1%. The value of the water resources in the Haihe-luanhe River (11.39 × 104 sej/J) was the highest, followed by the Yellow River (10.27 × 104 sej/J), while the rivers in Southwest China had the lowest values (2.92 × 104 sej/J).

  17. A DYNAMIC APPROACH TO CALCULATE SHADOW PRICES OF WATER RESOURCES FOR NINE MAJOR RIVERS IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Jing HE; Xikang CHEN; Yong SHI

    2006-01-01

    China is experiencing from serious water issues. There are many differences among the Nine Major Rivers basins of China in the construction of dikes, reservoirs, floodgates, flood discharge projects, flood diversion projects, water ecological construction, water conservancy management, etc.The shadow prices of water resources for Nine Major Rivers can provide suggestions to the Chinese government. This article develops a dynamic shadow prices approach based on a multiperiod input-output optimizing model. Unlike previous approaches, the new model is based on the dynamic computable general equilibrium (DCGE) model to solve the problem of marginal long-term prices of water resources.First, definitions and algorithms of DCGE are elaborated. Second, the results of shadow prices of water resources for Nine Major Rivers in 1949-2050 in China using the National Water Conservancy input-holding-output table for Nine Major Rivers in 1999 are listed. A conclusion of this article is that the shadow prices of water resources for Nine Major Rivers are largely based on the extent of scarcity.Selling prices of water resources should be revised via the usage of parameters representing shadow prices.

  18. South Asia river flow projections and their implications for water resources

    Science.gov (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-06-01

    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a

  19. Delaware Technical & Community College's response to the critical shortage of Delaware secondary science teachers

    Science.gov (United States)

    Campbell, Nancy S.

    This executive position paper examines the critical shortage of Delaware high school science teachers and Delaware Technical & Community College's possible role in addressing this shortage. A concise analysis of economic and political implications of the science teacher shortage is presented. The following topics were researched and evaluated: the specific science teacher needs for Delaware school districts; the science teacher education program offerings at Delaware universities and colleges; the Alternative Route to Teacher Certification (ARTC); and the state of Delaware's scholarship response to the need. Recommendations for Delaware Tech's role include the development and implementation of two new Associate of Arts of Teaching programs in physics secondary science education and chemistry secondary science education.

  20. System methodology application to make water resources management plan for unstudied rivers

    Science.gov (United States)

    Dvinskikh, S. A.; Larchenko, O. V.

    2018-01-01

    Current public monitoring network is not able to involve in and to control water chemical composition of a rivers basin, and there is no coasts monitoring of water objects. As a result, the complete comprehension of rivers use and pollution is impossible. Due to this fact, a new conception of water resources management has been worked out. The conception is based on new approaches to define parameters that characterise usage potentialities and range.

  1. Water resources in the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Walker, Eugene H.; Krejmas, Bruce E.

    1983-01-01

    The Blackstone River heads in brooks 6 miles northwest of Worcester and drains about 330 square miles of central Massachusetts before crossing into Rhode Island at Woonsocket. The primary source of the Worcester water supply is reservoirs, but for the remaining 23 communities in the basin, the primary source is wells. Bedrock consists of granitic and metamorphic rocks. Till mantles the uplands and extends beneath stratified drift in the valleys. Stratified glacial drift, consisting of clay, silt, and fine sand deposited in lakes and coarse-textured sand and gravel deposited by streams, is found in lowlands and valleys. The bedrock aquifer is capable of sustaining rural domestic supplies throughout the Blackstone River basin. Bedrock wells yield an average of 10 gallons per minute, but some wells, especially those in lowlands where bedrock probably contains more fractures and receives more recharge than in the upland areas, yield as much as 100 gallons per minute. Glacial sand and gravel is the principal aquifer. It is capable of sustaining municipal supplies. Average daily pumpage from this aquifer in the Blackstone River basin was 10.4 million gallons per day in 1978. The median yield of large-diameter wells in the aquifer is 325 gallons per minute. The range of yields from these wells is 45 to 3,300 gallons per minute. The median specific capacity is about 30 gallons per minute per foot of drawdown.

  2. South Asia river-flow projections and their implications for water resources

    Science.gov (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-12-01

    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  3. Residential Energy Efficiency Potential: Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Delaware single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Archaeology in Delaware. Pupil's Guide.

    Science.gov (United States)

    Delaware State Dept. of Public Instruction, Dover.

    The archeology of Delaware, for all practical purposes meaning Indian prehistory, is the focus of this set consisting of teacher's and pupil's guides. Intended primarily for use at the fourth grade level, the material can successfully be adapted for use in grades 5 through 8. The teacher's guide is flexible and non-structured, allowing for…

  5. Natural resource management activities at the Savannah River Site. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This environmental assessment (EA) reviews the environmental consequences of ongoing natural resource management activities on the Savannah River Site (SRS). Appendix A contains the Natural Resources Management Plant (NRMP). While several SRS organizations have primary responsibilities for different elements of the plan, the United States Department of Agriculture (USDA), Forest Service, Savannah River Forest Station (SRFS) is responsible for most elements. Of the river scenarios defined in 1985, the High-Intensity Management alternative established the upper bound of environmental consequences; it represents a more intense level of resource management than that being performed under current resource management activities. This alternative established compliance mechanisms for several natural resource-related requirements and maximum practical timber harvesting. Similarly, the Low-Intensity Management alternative established the lower bound of environmental consequences and represents a less intense level of resource management than that being performed under current resource management activities. This alternative also established compliance mechanisms, but defined a passively managed natural area. The Proposed Action of this EA describes the current level of multiple-natural resource management. This EA reviews the proposed action, and the high and low intensity alternative scenarios.

  6. Water resources inventory of Connecticut Part 2: Shetucket River Basin

    Science.gov (United States)

    Thomas, Mendall P.; Bednar, Gene A.; Thomas, Chester E.; Wilson, William E.

    1967-01-01

    The Shetucket River basin has a relatively abundant supply of water of generally good quality which is derived from precipitation that has fallen on the basin. Annual precipitation has ranged from about 30 inches to 75 inches and has averaged about 45 inches over a 35-year period. Approximately 20 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the basin in the Shetucket River or as underflow through the deposits beneath. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the basins whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced streamflow and lowered groundwater levels. The mean monthly storage of water in the basin on an average is 3.5 inches higher in November than it is in June.

  7. Key issues for determining the exploitable water resources in a Mediterranean river basin.

    Science.gov (United States)

    Pedro-Monzonís, María; Ferrer, Javier; Solera, Abel; Estrela, Teodoro; Paredes-Arquiola, Javier

    2015-01-15

    One of the major difficulties in water planning is to determine the water availability in a water resource system in order to distribute water sustainably. In this paper, we analyze the key issues for determining the exploitable water resources as an indicator of water availability in a Mediterranean river basin. Historically, these territories are characterized by heavily regulated water resources and the extensive use of unconventional resources (desalination and wastewater reuse); hence, emulating the hydrological cycle is not enough. This analysis considers the Jucar River Basin as a case study. We have analyzed the different possible combinations between the streamflow time series, the length of the simulation period and the reliability criteria. As expected, the results show a wide dispersion, proving the great influence of the reliability criteria used for the quantification and localization of the exploitable water resources in the system. Therefore, it is considered risky to provide a single value to represent the water availability in the Jucar water resource system. In this sense, it is necessary that policymakers and stakeholders make a decision about the methodology used to determine the exploitable water resources in a river basin. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Delaware Bay Upper Shelf Bottom Sediments 2008-2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Program of Delaware's Division of Soil and Water conservation (DNREC), the University of Delaware, Partnership for the Delaware Estuary, and the New...

  9. 78 FR 17227 - Notice of Intent To Amend the Snake River Resource Management Plan for the Pinedale Field Office...

    Science.gov (United States)

    2013-03-20

    ...-176935] Notice of Intent To Amend the Snake River Resource Management Plan for the Pinedale Field Office... Snake River RMP and by this notice is announcing the beginning of the scoping process to solicit public... Street, Pinedale, WY 82941. Email: [email protected] with ``Snake River Amendment'' in the subject line...

  10. The Environmental Assessment and Management (TEAM) Guide: Delaware Supplement

    Science.gov (United States)

    2010-01-01

    Department of Health and Social Services - Reports to o r f rom, o r in vestigations, b y t he D elaware D epartment o f Transportation...Satyrium kingi) Rare Skipper ( Problema bulenta) Mulberry Wing (Poanes massasoit chermocki) 5-20 Natural Resources Management Mammals...Schools T2.20.1.DE. Radon Management According to Guidelines for Persons Qualified to Provide Radon Services of the Delaware Health and Social Services

  11. Estimating resource costs of compliance with EU WFD ecological status requirements at the river basin scale

    DEFF Research Database (Denmark)

    Riegels, Niels; Jensen, Roar; Benasson, Lisa

    2011-01-01

    Resource costs of meeting EU WFD ecological status requirements at the river basin scale are estimated by comparing net benefits of water use given ecological status constraints to baseline water use values. Resource costs are interpreted as opportunity costs of water use arising from water...... scarcity. An optimization approach is used to identify economically efficient ways to meet WFD requirements. The approach is implemented using a river basin simulation model coupled to an economic post-processor; the simulation model and post-processor are run from a central controller that iterates until...... an allocation is found that maximizes net benefits given WFD requirements. Water use values are estimated for urban/domestic, agricultural, industrial, livestock, and tourism water users. Ecological status is estimated using metrics that relate average monthly river flow volumes to the natural hydrologic regime...

  12. Transboundary water resources management and livelihoods: interactions in the Senegal river

    Science.gov (United States)

    Bruckmann, Laurent; Beltrando, Gérard

    2016-04-01

    In Sub-Saharan Africa, 90 % of wetlands provide ecosystem services to societies, especially for agriculture and fishing. However, tropical rivers are increasingly regulated to provide hydroelectricity and irrigated agriculture. Modifications of flows create new hydrological conditions that affect floodplains ecology and peoples' livelihoods. In the Senegal river valley, large dams were built during the 1980's to secure water resources after a decade of water scarcity in the 1970's: Manantali in the upper basin with a reservoir of 12km3 and Diama close to estuary to avoid saltwater intrusion during dry season. Senegal river water resources are known under the supervision of Senegal River Basin Development Organization (OMVS), which defines water allocation between different goals (electricity, irrigation, traditional activities). This study, based on the concept of socio-hydrology, analyses socio-ecological changes following thirty years of dam management. The work enlightens adaptation mechanisms of livelihoods from people living along the river floodplain and feedback on water ressources. The study uses a mixed method approach, combining hydrological analyses, literature review and data collection from surveys on stakeholders and key informants level in the middle Senegal valley. Our results suggest that in all the Senegal river valley, socio-ecological changes are driven by new hydrological conditions. If dam management benefit for peoples with electrification and development of an irrigated agriculture, it has also emphasized the floodplain degradation. Flooded area has decline and are more irregular, causing an erosion of floodplain supporting services (traditional activities as fishing, grazing and flood-recession agriculture). These conditions reduce peoples' livelihood possibilities and irrigation is the only regular activity. As a feedback, irrigated agriculture increases withdrawals in the river and, recently, in aquifers posing a new uncertainty on water

  13. Field manual for ground water reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1977-01-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, groundwater sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  14. Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia

    2015-01-01

    of stochastic dynamic programming, to optimize water resources management in the Ziya River basin. Natural runoff from the upper basin was estimated with a rainfall-runoff model autocalibrated using in situ measured discharge. The runoff serial correlation was described by a Markov chain and used as input...

  15. How to allocate water resources under climate change in the arid endorheic river basin, Northwest China

    Science.gov (United States)

    Zhang, A.; Feng, D.; Tian, Y.; Zheng, Y.

    2017-12-01

    Water resource is of fundamental importance to the society and ecosystem in arid endorheic river basins, and water-use conflicts between upstream and downstream are usually significant. Heihe river basin (HRB) is the second largest endorheic river basin in china, which is featured with dry climate, intensively irrigated farmlands in oases and significant surface water-groundwater interaction. The irrigation districts in the middle HRB consume a large portion of the river flow, and the low HRB, mainly Gobi Desert, has an extremely vulnerable ecological environment. The water resources management has significantly altered the hydrological processes in HRB, and is now facing multiple challenges, including decline of groundwater table in the middle HRB, insufficient environmental flow for the lower HRB. Furthermore, future climate change adds substantial uncertainty to the water system. Thus, it is imperative to have a sustainable water resources management in HRB in order to tackle the existing challenges and future uncertainty. Climate projection form a dynamical downscaled climate change scenario shows precipitation will increase at a rate of approximately 3 millimeter per ten years and temperature will increase at a rate of approximately 0.2 centigrade degree per ten years in the following 50 years in the HRB. Based on an integrated ecohydrological model, we evaluated how the climate change and agricultural development would collaboratively impact the water resources and ecological health in the middle and lower HRB, and investigated how the water management should cope with the complex impact.

  16. Field manual for stream sediment reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1976-07-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, stream sediment sample collection, water sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  17. Rivers rapid assessment protocols and insertion of society in monitoring of water resources

    Directory of Open Access Journals (Sweden)

    Guilherme Malafaia

    2008-12-01

    Full Text Available The degradation of water resources has been detected and changes both institutional and in the legislation have been demanded. The careless use of rivers has ecological changes as direct consequence, causing serious modifications in the landscape and fluvial regime, besides altering the availability of habitats and the trophic composition of the aquatic environment. Pressed by this scenario, scientists have been developing assessment methods that are efficient both for the evaluation itself and for supporting decision taking in the environmental management processes. In this perspective, the objective of this study is to present the Rapid River Assessment Protocols (RAPs and to emphasize how these protocols can promote the community participation in water resources monitoring. The RAPs can used to evaluate in an integrated form the characteristics of a river section according to the conservation or degradation condition of the fluvial environment and it is characterized by its economic viability and easy applicability. In regions with poor financial resources and serious problems of water quality, the RAPs can be used in environmental management programs. By using these protocols, the integration of the community in water resources monitoring generates data which represent the quality of fluvial ecosystems throughout time, without requesting high costs or specialized professionals. The RAPs in a simplified but not simplistic tool, which can be used in activities that aim at promoting a quick and reliable assessment of the “health” of a river.

  18. Use of Light Detection and Ranging (LiDAR) to Obtain High-Resolution Elevation Data for Sussex County, Delaware

    Science.gov (United States)

    Barlow, Roger A.; Nardi, Mark R.; Reyes, Betzaida

    2008-01-01

    Sussex County, Delaware, occupies a 938-square-mile area of low relief near sea level in the Atlantic Coastal Plain. The county is bounded on the east by the Delaware Bay and the Atlantic Ocean, including a barrier-island system, and inland bays that provide habitat for valuable living resources. Eastern Sussex County is an area of rapid population growth with a long-established beach-resort community, where land elevation is a key factor in determining areas that are appropriate for development. Of concern to State and local planners are evacuation routes inland to escape flooding from severe coastal storms, as most major transportation routes traverse areas of low elevation that are subject to inundation. The western half of the county is typically rural in character, and land use is largely agricultural with some scattered forest land cover. Western Sussex County has several low-relief river flood-prone areas, where accurate high-resolution elevation data are needed for Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Map (DFIRM) studies. This fact sheet describes the methods and techniques used to collect and process LiDAR elevation data, the generation of the digital elevation model (DEM) and the 2-foot contours, and the quality-assurance procedures and results. It indicates where to view metadata on the data sets and where to acquire bare-earth mass points, DEM data, and contour data.

  19. Impact of energy development on water resources in the Upper Colorado River Basin. Completion report

    International Nuclear Information System (INIS)

    Flug, M.; Walker, W.R.; Skogerboe, G.V.; Smith, S.W.

    1977-08-01

    The Upper Colorado River Basin contains appreciable amounts of undeveloped coal, oil shale, and uranium resources, which are important in the national energy demand system. A mathematical model, which simulates the salt and water exchange phase of potential fuel conversions, has been developed, based on a subbasin analysis identifying available mineral and water resources. Potential energy developments are evaluated with respect to the resulting impacts upon both the quantity and salinity of the waters in the Colorado River. Model solutions are generated by use of a multilevel minimum cost linear programming algorithm, minimum cost referring to the cost of developing predetermined levels of energy output. Level one in the model analysis represents an aggregation of subbasins along state boundaries and thereby optimizes energy developments over the five states of the Upper Colorado River Basin. In each of the five second level problems, energy developments over a subbasin division within the respective states are optimized. Development policies which use high salinity waters of the Upper Colorado River enable a net salinity reduction to be realized in the Colorado River at Lee Ferry, Arizona

  20. Sensitivity and tolerance of Riparian arthropod communities to altered water resources along a drying river.

    Science.gov (United States)

    McCluney, Kevin E; Sabo, John L

    2014-01-01

    Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively. In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying. Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles). However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the face of short-term drying. The long-term effects of drying

  1. Sensitivity and tolerance of Riparian arthropod communities to altered water resources along a drying river.

    Directory of Open Access Journals (Sweden)

    Kevin E McCluney

    Full Text Available Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively.In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying.Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles. However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the face of short-term drying. The long

  2. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    The Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, manages archaeological resources on the Savannah River Site (SRS). An ongoing research program provides the theoretical, methodological, and empirical basis for assessing site significance within the compliance process specified by law. The SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research, and public education activities of the SRARP during Fiscal Year 1994.

  3. Assessment of in-place oil shale resources of the Eocene Green River Formation, a foundation for calculating recoverable resources

    Science.gov (United States)

    Johnson, Ronald C.; Mercier, Tracy

    2011-01-01

    The recently completed assessment of in-place resources of the Eocene Green River Formation in the Piceance Basin, Colorado; the Uinta Basin, Utah and Colorado; and the Greater Green River Basin Wyoming, Colorado, and Utah and their accompanying ArcGIS projects will form the foundation for estimating technically-recoverable resources in those areas. Different estimates will be made for each of the various above-ground and in-situ recovery methodologies currently being developed. Information required for these estimates include but are not limited to (1) estimates of the amount of oil shale that exceeds various grades, (2) overburden calculations, (3) a better understanding of oil shale saline facies, and (4) a better understanding of the distribution of various oil shale mineral facies. Estimates for the first two are on-going, and some have been published. The present extent of the saline facies in all three basins is fairly well understood, however, their original extent prior to ground water leaching has not been studied in detail. These leached intervals, which have enhanced porosity and permeability due to vugs and fractures and contain significant ground water resources, are being studied from available core descriptions. A database of all available xray mineralogy data for the oil shale interval is being constructed to better determine the extents of the various mineral facies. Once these studies are finished, the amount of oil shale with various mineralogical and physical properties will be determined.

  4. Silver Creek Mine Treatment is Golden in Protecting Schuylkill River

    Science.gov (United States)

    The Schuylkill River spans over 130 miles from its headwaters in Schuylkill County through several counties on to New Philadelphia where it joins the Delaware River. It serves a drinking water source for 1.5 million people.

  5. Resource pulses in desert river habitats: productivity-biodiversity hotspots, or mirages?

    Science.gov (United States)

    Free, Carissa L; Baxter, Greg S; Dickman, Christopher R; Leung, Luke K P

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses.

  6. Assessment of coal geology, resources, and reserves in the Montana Powder River Basin

    Science.gov (United States)

    Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Gunderson, Jay A.

    2013-01-01

    The purpose of this report is to summarize geology, coal resources, and coal reserves in the Montana Powder River Basin assessment area in southeastern Montana. This report represents the fourth assessment area within the Powder River Basin to be evaluated in the continuing U.S. Geological Survey regional coal assessment program. There are four active coal mines in the Montana Powder River Basin assessment area: the Spring Creek and Decker Mines, both near Decker; the Rosebud Mine, near Colstrip; and the Absaloka Mine, west of Colstrip. During 2011, coal production from these four mines totaled approximately 36 million short tons. A fifth mine, the Big Sky, had significant production from 1969-2003; however, it is no longer in production and has since been reclaimed. Total coal production from all five mines in the Montana Powder River Basin assessment area from 1968 to 2011 was approximately 1.4 billion short tons. The Rosebud/Knobloch coal bed near Colstrip and the Anderson, Dietz 2, and Dietz 3 coal beds near Decker contain the largest deposits of surface minable, low-sulfur, subbituminous coal currently being mined in the assessment area. A total of 26 coal beds were identified during this assessment, 18 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Montana Powder River Basin assessment area for the 18 coal beds assessed was calculated to be 215 billion short tons. Available coal resources, which are part of the original coal resource remaining after subtracting restrictions and areas of burned coal, are about 162 billion short tons. Restrictions included railroads, Federal interstate highways, urban areas, alluvial valley floors, state parks, national forests, and mined-out areas. It was determined that 10 of the 18 coal beds had sufficient areal extent and thickness to be evaluated for recoverable surface resources ([Roland (Baker), Smith, Anderson, Dietz 2, Dietz 3, Canyon, Werner

  7. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program, fiscal year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Mark J.; Brooks, Richard D.; Sassaman, Kenneth E.; Crass, David C.; Lewis, George S.; Stephenson, D. Keith; Green, William; Anderson, David G.; Fuglseth, Ty

    1990-11-01

    The Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, is funded through a direct contract with the United States Department of Energy to provide services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of most archaeological resources is dependent upon research potential, the SRARP is guided by research objectives. An on-going research program provides the problems, methods and means of assessing site significance within the compliance process specified by law. In addition, the SRARP maintains an active program of public education to disseminate knowledge about prehistory and history, and to enhance public awareness about historic preservation. The following report summarizes the management, research and public education activities of the SRARP during Fiscal Year 1990.

  8. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program: Fiscal year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Mark J.; Brooks, Richard D.; Sassaman, Kenneth E.; Crass, David C.; Stephenson, D. Keith; Green, William; Rinehart, Charles J.; Lewis, George S.; Fuglseth, Ty; Krawczynski, Keith; Warnock, D. Mark

    1991-10-01

    A cooperative agreement with the United States Department of Energy provides the necessary funding for the Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, to render services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of archaeological resources is usually determined by research potential, the SRARP is guided by research objectives. An ongoing research program provides the theoretical, methodological and empirical basis for assessing site significance within the compliance process specified by law. In accordance with the spirit of the law, the SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research and public education activities of the SRARP during Fiscal Year 1991.

  9. Status and trends of selected resources in the Upper Mississippi River System

    Science.gov (United States)

    Johnson, Barry L.; Hagerty, Karen H.

    2010-01-01

    Like other large rivers, the Upper Mississippi River System (UMRS) serves a diversity of roles. The UMRS provides commercial and recreational fishing, floodplain agriculture, drinking water for many communities, an important bird migration pathway, a variety of recreational activities, and a navigation system that transports much of the country's agricultural exports. These multiple roles present significant management challenges. Regular assessment of the condition of the river is needed to improve management plans and evaluate their effectiveness. This report provides a summary of the recent status (mean and range of conditions) and trends (change in direction over time) for 24 indicators of the ecological condition of the Upper Mississippi and Illinois Rivers using data collected through the Long Term Resource Monitoring Program (LTRMP). The 24 indicators were grouped into seven categories: hydrology, sedimentation, water quality, land cover, aquatic vegetation, invertebrates, and fish. Most of the data used in the report were collected between about 1993 and 2004, although some older data were also used to compare to recent conditions.Historical observations and current LTRMP data clearly indicate that the UMRS has been changed by human activity in ways that have diminished the ecological health of the river. The data indicate that status and trends differ among regions, and we expect that regional responses to various ecological rehabilitation techniques will differ as well. The continuing role of the LTRMP will be to provide the data needed to assess changes in river conditions and to determine how those changes relate to management actions, natural variation, and the overall ecological integrity of the river system.

  10. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2001-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  11. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2001-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  12. Santa Lucia River basin. Development of water resources; Cuenca del Rio Santa Lucia.Desarrollo de los recursos hidricos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-07-01

    The main objective of this study was to orient the development of water resources of the Santa Lucia River basin to maximum benefit in accordance with the priorities established by Government in relation to the National Development Plans

  13. Optimally managing water resources in large river basins for an uncertain future

    Science.gov (United States)

    Edwin A. Roehl, Jr.; Conrads, Paul

    2014-01-01

    Managers of large river basins face conflicting needs for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting local economies for years. The Savannah River Basin’s coastal area contains municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent since the 1970s. There is a planned deepening of the harbor that includes flow-alteration features to minimize further migration of salinity. The effectiveness of the flow-alteration features will only be known after they are constructed. One of the challenges of basin management is the optimization of water use through ongoing development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to significantly reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the

  14. Delineation and validation of river network spatial scales for water resources and fisheries management.

    Science.gov (United States)

    Wang, Lizhu; Brenden, Travis; Cao, Yong; Seelbach, Paul

    2012-11-01

    Identifying appropriate spatial scales is critically important for assessing health, attributing data, and guiding management actions for rivers. We describe a process for identifying a three-level hierarchy of spatial scales for Michigan rivers. Additionally, we conduct a variance decomposition of fish occurrence, abundance, and assemblage metric data to evaluate how much observed variability can be explained by the three spatial scales as a gage of their utility for water resources and fisheries management. The process involved the development of geographic information system programs, statistical models, modification by experienced biologists, and simplification to meet the needs of policy makers. Altogether, 28,889 reaches, 6,198 multiple-reach segments, and 11 segment classes were identified from Michigan river networks. The segment scale explained the greatest amount of variation in fish abundance and occurrence, followed by segment class, and reach. Segment scale also explained the greatest amount of variation in 13 of the 19 analyzed fish assemblage metrics, with segment class explaining the greatest amount of variation in the other six fish metrics. Segments appear to be a useful spatial scale/unit for measuring and synthesizing information for managing rivers and streams. Additionally, segment classes provide a useful typology for summarizing the numerous segments into a few categories. Reaches are the foundation for the identification of segments and segment classes and thus are integral elements of the overall spatial scale hierarchy despite reaches not explaining significant variation in fish assemblage data.

  15. Phase II Water Rental Pilot Project: Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Stacey H.

    1994-08-01

    The Idaho Water Rental Pilot Project was implemented in 1991 as part of the Non-Treaty Storage Fish and Wildlife Agreement between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to quantify resident fish and wildlife impacts resulting from salmon flow augmentation releases made from the upper Snake River Basin. Phase I summarized existing resource information and provided management recommendations to protect and enhance resident fish and wildlife habitat resulting from storage releases for the I improvement of an adromous fish migration. Phase II includes the following: (1) a summary of recent biological, legal, and political developments within the basin as they relate to water management issues, (2) a biological appraisal of the Snake River between American Falls Reservoir and the city of Blackfoot to examine the effects of flow fluctuation on fish and wildlife habitat, and (3) a preliminary accounting of 1993--1994 flow augmentation releases out of the upper Snake, Boise, and Payette river systems. Phase III will include the development of a model in which annual flow requests and resident fish and wildlife suitability information are interfaced with habitat time series analysis to provide an estimate of resident fish and wildlife resources.

  16. Effects of Climate and Land Use Changes on Water Resources in the Taoer River

    Directory of Open Access Journals (Sweden)

    Jianwei Liu

    2017-01-01

    Full Text Available The changes of both climate and land use/cover have some impacts on water resources. In the Taoer River basin, these changes have directly influenced the land use pattern adjustment, wetland protection, connections between rivers and reservoirs, local social and economic development, and so forth. Therefore, studying the impacts of climate and land use/cover changes is of great practical significance. The Soil and Water Assessment Tool (SWAT model is employed in this study. With historical measured runoff data and remote sensing maps of annual land use classifications, we analyzed the impacts of climate change on the runoff of the Taoer River. Based on the land use/cover classifications of 1990, 2000, and 2010, we analyzed the land use/cover change over the last 30 years and the contribution coefficient of farmland, woodland, grassland, and other major land use types to the runoff. This study can provide a reference for the rational allocation of water resources and the adjustment of land use structure for decision makers.

  17. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    Science.gov (United States)

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446

  18. Optimizing Land and Water Resources for Agriculture in the Krishna River Basin, India

    Science.gov (United States)

    Jain Figueroa, A.; McLaughlin, D.

    2017-12-01

    Many estimates suggest that the world needs a 50% increase in food production to meet the demands of the 2050 global population. Cropland expansion and yield improvements are unlikely to be sufficient and could have adverse environmental impacts. This work focuses on reallocating limited land and water resources to improve efficiency and increase benefits. We accomplish this by combining optimization methods, global data sources, and hydrologic modeling to identify opportunities for increasing crop production of subsistence and/or cash crops, subject to sustainability contraints. Our approach identifies the tradeoffs between the population that can be fed with local resources, revenue from crop exports, and environmental benefit from riparian flows. We focus our case study on India's Krishna river basin, a semi-arid region with a high proportion of subsistence farmers, a diverse crop mix, and increasing stress on water resources.

  19. Conjunctive operation of river facilities for integrated water resources management in Korea

    Directory of Open Access Journals (Sweden)

    H. Kim

    2016-10-01

    Full Text Available With the increasing trend of water-related disasters such as floods and droughts resulting from climate change, the integrated management of water resources is gaining importance recently. Korea has worked towards preventing disasters caused by floods and droughts, managing water resources efficiently through the coordinated operation of river facilities such as dams, weirs, and agricultural reservoirs. This has been pursued to enable everyone to enjoy the benefits inherent to the utilization of water resources, by preserving functional rivers, improving their utility and reducing the degradation of water quality caused by floods and droughts. At the same time, coordinated activities are being conducted in multi-purpose dams, hydro-power dams, weirs, agricultural reservoirs and water use facilities (featuring a daily water intake of over 100 000 m3 day−1 with the purpose of monitoring the management of such facilities. This is being done to ensure the protection of public interest without acting as an obstacle to sound water management practices. During Flood Season, each facilities contain flood control capacity by limited operating level which determined by the Regulation Council in advance. Dam flood discharge decisions are approved through the flood forecasting and management of Flood Control Office due to minimize flood damage for both upstream and downstream. The operational plan is implemented through the council's predetermination while dry season for adequate quantity and distribution of water.

  20. Explore the impacts of river flow and quality on biodiversity for water resources management by AI techniques

    Science.gov (United States)

    Chang, Fi-John; Tsai Tsai, Wen-Ping; Chang, Li-Chiu

    2016-04-01

    Water resources development is very challenging in Taiwan due to her diverse geographic environment and climatic conditions. To pursue sustainable water resources development, rationality and integrity is essential for water resources planning. River water quality and flow regimes are closely related to each other and affect river ecosystems simultaneously. This study aims to explore the complex impacts of water quality and flow regimes on fish community in order to comprehend the situations of the eco-hydrological system in the Danshui River of northern Taiwan. To make an effective and comprehensive strategy for sustainable water resources management, this study first models fish diversity through implementing a hybrid artificial neural network (ANN) based on long-term observational heterogeneity data of water quality, stream flow and fish species in the river. Then we use stream flow to estimate the loss of dissolved oxygen based on back-propagation neural networks (BPNNs). Finally, the non-dominated sorting genetic algorithm II (NSGA-II) is established for river flow management over the Shihmen Reservoir which is the main reservoir in this study area. In addition to satisfying the water demands of human beings and ecosystems, we also consider water quality for river flow management. The ecosystem requirement takes the form of maximizing fish diversity, which can be estimated by the hybrid ANN. The human requirement is to provide a higher satisfaction degree of water supply while the water quality requirement is to reduce the loss of dissolved oxygen in the river among flow stations. The results demonstrate that the proposed methodology can offer diversified alternative strategies for reservoir operation and improve reservoir operation strategies for producing downstream flows that could better meet both human and ecosystem needs as well as maintain river water quality. Keywords: Artificial intelligence (AI), Artificial neural networks (ANNs), Non

  1. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2002-09-21

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  2. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  3. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  4. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  5. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2005-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  6. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2002-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  7. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2004-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  8. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2003-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  9. Assessing Climate Change Impacts on Water Resources in the Songhua River Basin

    Directory of Open Access Journals (Sweden)

    Fengping Li

    2016-09-01

    Full Text Available The Songhua River Basin (SRB in Northeast China is one of the areas most sensitive to global climate change because of its high-latitude location. In this study, we conducted a modeling assessment on the potential change of water resources in this region for the coming three decades using the Soil and Water Assessment Tool (SWAT. First, we calibrated and validated the model with historical streamflow records in this basin. Then, we applied the calibrated model for the period from 2020 to 2049 with the projected and downscaled climatic data under two emission scenarios (RCP 4.5 and RCP 8.5. The study results show: (1 The SWAT model performed very well for both the calibration and validation periods in the SRB; (2 The projected temperatures showed a steady, significant increase across the SRB under both scenarios, especially in two sub-basins, the Nenjiang River Basin (NRB and the Lower SRB (LSRB. With regard to precipitation, both scenarios showed a decreasing trend in the NRB and LSRB but an increasing trend in the Upper Songhua River Basin (USRB; and (3, generally, the hydrologic modeling suggested a decreasing trend of streamflow for 2020–2049. Compared to baseline conditions (1980–2009, the streamflow in the NRB and LSRB would decrease by 20.3%–37.8%, while streamflow in the USRB would experience an increase of 9.68%–17.7%. These findings provide relevant insights into future surface water resources, and such information can be helpful for resource managers and policymakers to develop effective eco-environment management plans and strategies in the face of climate change.

  10. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada.

    Science.gov (United States)

    Shrestha, Narayan Kumar; Du, Xinzhong; Wang, Junye

    2017-12-01

    Proper management of blue and green water resources is important for the sustainability of ecosystems and for the socio-economic development of river basins such as the Athabasca River Basin (ARB) in Canada. For this reason, quantifying climate change impacts on these water resources at a finer temporal and spatial scale is often necessary. In this study, we used a Soil and Water Assessment Tool (SWAT) to assess climate change impacts on fresh water resources, focusing explicitly on the impacts to both blue and green water. We used future climate data generated by the Canadian Center for Climate Modelling and Analysis Regional Climate Model (CanRCM4) with a spatial resolution of 0.22°×0.22° (~25km) for two emission scenarios (RCP 4.5 and 8.5). Results projected the climate of the ARB to be wetter by 21-34% and warmer by 2-5.4°C on an annual time scale. Consequently, the annual average blue and green water flow was projected to increase by 16-54% and 11-34%, respectively, depending on the region, future period, and emission scenario. Furthermore, the annual average green water storage at the boreal region was expected to increase by 30%, while the storage was projected to remain fairly stable or decrease in other regions, especially during the summer season. On average, the fresh water resources in the ARB are likely to increase in the future. However, evidence of temporal and spatial heterogeneity could pose many future challenges to water resource planners and managers. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Concentrations of metals in blood and feathers of nestling ospreys (Pandion haliaetus) in Chesapeake and Delaware Bays

    Science.gov (United States)

    Rattner, B.A.; Golden, N.H.; Toschik, P.C.; McGowan, P.C.; Custer, T.W.

    2008-01-01

    In 2000, 2001, and 2002, blood and feather samples were collected from 40-45-day-old nestling ospreys (Pandion haliaetus) from Chesapeake Bay and Delaware Bay and River. Concentrations of 18 metals, metalloids, and other elements were determined in these samples by inductively coupled plasma-mass spectroscopy, and Hg concentrations were measured by cold vapor atomic absorption spectroscopy. When compared to concurrent reference areas (South, West, and Rhode Rivers), mean As and Hg concentrations in blood were greater (p nestlings from the highly industrialized Elizabeth River compared to the rural reference area. When compared to the concurrent reference area, mean Al, Ba, Hg, Mn, and Pb concentrations in feathers were substantially greater (p nestlings from northern Delaware Bay and River had greater concentrations (p nestling feathers from Delaware were frequently greater than in the Chesapeake. The present findings and those of related reproductive studies suggest that concentrations of several heavy metals (e.g., Cd, Hg, Pb) in nestling blood and feathers from Chesapeake and Delaware Bays were below toxicity thresholds and do not seem to be affecting chick survival during the nestling period.

  12. A System Dynamics Model to Improve Water Resources Allocation in the Conchos River

    Science.gov (United States)

    Gastelum, J. R.; Valdes, J. B.; Stewart, S.

    2005-12-01

    The Conchos river located in Chihuahua state on a semiarid region is the most important Mexican river contributing water deliveries to USA as established by the Water treaty of 1944 signed between Mexico and USA. Historically, Mexico has delivered to UNITED STATES 550 Hm3 (445,549.5 ACF) per year of water since the treaty was established, which is 25% above the yearly water volume Mexico is required to deliver. The Conchos river has contributed with 54% of the historic Mexican water treaty deliveries to the UNITED STATES, which represents the highest percentage of the 6 Mexican rivers considered on the water treaty. However, during drought situations the basin has proven to be vulnerable, for instance, because of the severe drought of the 90's, several cities in 1992 on Chihuahua state where declared disaster areas, and from 1992 to 2001 Mexico had accumulated a water treaty deficit of 2111.6 Hm3 (1,710,586 ACF). This has conduced to economic, social, and political difficulties in both countries. Because of the cited problematic and considering the poor understanding of the relationship between water supply and demand factors on the basin, a decision support system (DSS) has been developed aimed to improve the decision making process related with the water resources allocation process. This DSS has been created using System Dynamics (SD). It is a semi-distributed model and is running on monthly time step basis. For both the short and long term, three important water resources management strategies have been evaluated: several water allocation policies from reservoirs to water users; bulk water rights transfers inside and outside Irrigation Districts; and improvement of water distribution efficiencies. The model results have provided very useful regard to gain more quantitative understanding of the different strategies being implemented. They have also indicated that the different water resources alternatives change its degree of importance according to the

  13. 78 FR 14060 - Television Broadcasting Services; Seaford, Delaware and Dover, Delaware

    Science.gov (United States)

    2013-03-04

    ...] Television Broadcasting Services; Seaford, Delaware and Dover, Delaware AGENCY: Federal Communications... waiver of the Commission's freeze on the filing of petitions for rulemaking by televisions stations... first local television service, and that Seaford will remain well-served after the reallotment because...

  14. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming

    Science.gov (United States)

    Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.

    2008-01-01

    The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic

  15. Seasonality in the Mesozooplankton Community of Delaware Bay, USA

    Science.gov (United States)

    Wickline, A.; Cohen, J.

    2016-02-01

    Zooplankton communities in temperate estuaries undergo seasonal shifts in abundance and species composition, though the physical/biological mechanisms behind these shifts vary among systems. Delaware Bay is a well-mixed estuary on the mid-Atlantic coast with predictable seasonal variation in environmental conditions and circulation. To understand factors influencing mesozooplankton community dynamics in this system, we conducted seasonal sampling at 16 stations over the estuary's salinity range in 2014-2015. Sampling paralleled the last similar investigation into Delaware Bay zooplankton, conducted in the early 1950s. Biomass, measured as dry weight and totaled for all stations, was low in late summer and high in spring and fall. Bio-volume, measured either as displacement volume or calculated from ZooScan processing to exclude detritus, also showed a similar pattern. Across seasons, the mesozooplankton community was dominated by copepods, representing over 60% of the relative abundance at each station. Acartia tonsa was the dominant calanoid species in summer and fall, with abundances up to 7,353 ind. m-3, which is similar to the 1950s. In spring, Centropages hamatus and C. typicus were dominant at densities up to 2,550 ind. m-3 throughout the estuary, which is an increase from the 1950s. Environmental data suggest the seasonal shift in dominance from neritic Centropages to estuarine Acartia could be driven by increased stratification of the estuary during periods of high river discharge in spring, creating a two-layer system with a bottom advection current fed by the coastal ocean, bringing coastal species into the estuary. As river discharge decreases, the advection current is reduced, creating a well-mixed estuary and allowing Acartia to dominante. As river discharge is ultimately determined by precipitation, which is predicted to increase during winter with climate change in this region, the phenology of mesozooplankton species dynamics could shift as well.

  16. Integrated water resources management : A case study in the Hehei river basin, China

    Science.gov (United States)

    Jia, Siqi; Deng, Xiangzheng

    2017-04-01

    The lack of water resources experienced in different parts of the world has now been recognized and analyzed by different international organizations such as WHO, the World Bank, etc. Add to this the growing urbanization and the fast socio-economic development, the water supply of many urban areas is already or will be severely threatened. Recently published documents from the UN Environmental Program confirms that severe water shortage affects 400 million people today and will affect 4 billion people by 2050. Water nowadays is getting scarce, and access to clean drinking water and water for agricultural usage is unequally distributed. The biggest opportunity and challenge for future water management is how to achieve water sustainability to reduce water consumption. Integrated Water Resources Management (IWRM) is a process which promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. We take the Heibe river basin where agriculture water there accounted for 90% of total water consumption as an example to study the impacts of IWRM on regional water resources. We calculated the elasticity of substitution values between labor and land, water by each irrigation areas to find the variable elastic value among irrigation areas, and the water-use efficiency based on NPP estimation with the C-fix model and WUE estimation with NPP and ET. The empirical analysis indicated that the moderate scale of farmland is 0.27-0.53hm2 under the condition of technical efficiency of irrigation water and production. Agricultural water use accounted for 94% of the social and economic water consumption in 2012, but water efficiency and water productivity were both at a low stage. In conclusion, land use forms at present in Heihe river basin have a detrimental impact on the availability of ecological water use. promoting water

  17. Research on the coordination framework for water resources utilization on the interests of mutual compensation in Lancang-Mekong River

    Science.gov (United States)

    Wang, Y.; Fang, D., VI; Xu, J.; Dong, Q.

    2017-12-01

    The Lancang-Mekong River is an important international river, cascaded hydropower stations development in which attracts the attention of downstream countries. In this paper, we proposed a coordination framework for water resources utilization on the interests of mutual compensation to relieve the conflict of upstream and downstream countries. Firstly, analyze the benefits and risks caused by the cascaded hydropower stations development and the evolution process of water resources use conflict between upstream and downstream countries. Secondly, evaluate the benefits and risks of flood control, water supply, navigation and power generation based on the energy theory of cascaded hydropower stations development in Lancang-Mekong River. Thirdly, multi-agent cooperation motivation and cooperation conditions between upstream and downstream countries in Lancang-Mekong River is given. Finally, the coordination framework for water resources utilization on the interests of mutual compensation in Lancang-Mekong River is presented. This coordination framework for water resources utilization can increase comprehensive benefits in Lancang-Mekong River.

  18. Environmental Assessment: Eagle Heights Housing Area Revitalization Dover Air Force Base, Delaware

    Science.gov (United States)

    2004-07-01

    tidal species. Butterflies were the only insects surveyed, and nine were found on base. Approximately 51 species of birds were recorded on base...Jones River adjacent to the northern border of the housing area, the fro-fruit (Phyla lanceolata) and the hyssop-leaf hedge- nettle (Stachys...other sites in Delaware that this species is found. The hyssop-leaf hedge- nettle thrives in moist sandy soil along the coast and shoreline and occurs

  19. DETERMINATION OF WATER RESOURCES IN RIVERS IN THE BULGARIAN BASINS OF THE LOWER DANUBE

    Directory of Open Access Journals (Sweden)

    Plamen Iliev Ninov

    2017-04-01

    Full Text Available Object of the study is surface water bodies from category “rivers” according to Water Framework Directive 2000/60/ЕС. Surface water assessment is important for number of activities such as: water management in the country, making reports to international agencies, determining the change of the resources in the light of upcoming climate changes. The determination of water resources is based on information of hydrometric stations from the monitoring network system in the National Institute of Meteorology and Hydrology — Bulgarian Academy of Sciences (NIMH-BAS in which real ongoing and available water flows that are subject of management are registered. In the study a technology for surface water bodies in the Bulgarian basins of the lower Danube is applied which has been developed in the frame of cooperative project together with the Ministry of Environment and Water. This is absolutely true for the Bulgarian section of the Danube River basin which is expressed in big number and variety of hydrological homogeneous sections. The river flow is characterized with annual and inter-annual variability determined by climatic factors and anthropogenic influences. The main obtained results of the present hydrologic studies are the usage of transferred information from gauged to ungauged watersheds and the estimation of the surface water bodies’ resources using original regression relationships based on multiannual hydrological information from the NIMH-BAS monitoring network. The relationships delineate the hydrological homogeneous areas with similar conditions of flow formation. The estimated resources have significant usefulness for all State institutions managing the water in the Danube basin and have already been introduced in the operative and management practice.

  20. Differential Rate of Deforestation in Two Adjoining Indian River Basins: Does Resource Availability Matters?

    Science.gov (United States)

    Das, P.; Behera, M. D.

    2017-12-01

    Deforestation is one of the key factors of global climate change by altering the surface albedo reduces the evapotranspiration and surface roughness leads to warming in tropical regions. River basins are always subjected to LULC changes, especially decline in forest cover to give way for agricultural expansion, urbanisation, industrialisation etc. We generated LULC maps at three decadal intervals i.e., 1985, 1995 and 2005 in two major river basins of India using Landsat data employing on-screen visual image interpretation technique. In Rain-fed, Mahanadi river basin (MRB), 30.64% forest cover in 1985 was reduced to 30.13% in 2005, wherein glacier-fed, Brahmaputra river basin (BRB) this change was 63.44% to 62.32% during 1985 to 2005. Though conversion of forest land for agricultural activities was the major LULC changes in both the basins, the rate was more than two times higher in BRB than MRB. Scrub land in few zones acted as an intermediate class for mixed forest conversion to cropland land in both the basins. Analysing the drivers, in deforestation we observed the proximity zones around habitat and socio-economic drivers contributed higher compared to topographic, edaphic and climate. Using Dyna-CLUE modelling approach, we have predicted the LULC for 2025. For validation, comparing the predicted result with actual LULC of 2005, we obtained > 97% modeling accuracy; therefore it is expected that the Dyna-CLUE model has very well predicted the LULC for the year 2025. The predicted LULC of 2025 captured the similar trend of deforestation around 0.52% in MRB and 1.18% in BRB during 2005 to 2025. Acting as early warning, and with the past 2-decadal change analysis this study is believed to help the land use planners for improved regional planning to create balanced ecosystem, especially in a changing climate. On the basis of driver analysis, we believe that availability of more forest resources in Brahmaputra River basin provided extra liberty for higher

  1. Temporal and spatial characteristics of water resources in the Yeerqiang River Basin based on remote sensing

    Science.gov (United States)

    Y Ran, Q.; Y Bai, L.; Feng, J. Z.; Yang, Y. M.; Guo, M. Q.; Li, H. L.; Zhang, Q.; Zhang, P.; Cao, D.

    2017-07-01

    Surface water resources play an important role in the economic and social developments as well as the protection of natural ecological environment in the Yeerqiang River Basin. Based upon the six stages of land use data from 1990 to 2015, the temporal and spatial variation of surface water resources in the Yerqiang River Basin have been explored and analyzed. The results show that: (1) From 1990 to 2015, the area of natural landscape initially increased and then decreased, while the area of artificial landscape increased, which caused a slight increase in the land use degree in the study area. (2) The dynamic changes of water and glacier areas are somewhat consistent over the past 25 years, with a sharp decline between 2005-2010 and a small increase in the remaining years. The dynamic changes in areas of non-glacial water were moderate, with decrease in area of 9 km2 from 1990 to 2015. The beach area decreased, and the other water sub-classes initially increased and then decreased. (3) Over the past 25 years, the proportion of unchanged water area is 73.22%, the transfer-out proportion is 19.19%, and the transfer-in proportion is 7.59%. Generally, water types transferred to grassland and unused land. Additionally, significant transfers were observed for the conversions between glaciers and woodland, conversions between canal, lake, reservoir and beach, and conversions between beach and farmland.

  2. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program. Fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, M.J.; Brooks, R.D.; Sassaman, K.E.; Crass, D.C. [and others

    1995-10-01

    The Savannah River Archaeological Research Program (SRARP) continued through FY95 with the United States Department of Energy to fulfill a threefold mission of cultural resource management, research, and public education at the Savannah River Site. Over 2,300 acres of land on the SRS came under cultural resources review in FY95. This activity entailed 30 field surveys, resulting in the recording of 86 new sites. Twenty-two existing sites within survey tract boundaries were revisited to update site file records. Research conducted by SRARP was reported in 11 papers and monographs published during FY95. SRARP staff also presented research results in 18 papers at professional meetings. Field research included several testing programs, excavations, and remote sensing at area sites, as well as data collection abroad. Seven grants were acquired by SRARP staff to support off-site research. In the area of heritage education, the SRARP expanded its activities in FY95 with a full schedule of classroom education, public outreach, and on-site tours. Volunteer excavations at the Tinker Creek site were continued with the Augusta Archaeological Society and other avocational groups, and other off-site excavations provided a variety of opportunities for field experience. Some 80 presentations, displays and tours were provided for schools, historical societies, civic groups, and environmental and historical awareness day celebrations. Additionally, SRARP staff taught four anthropology courses at area colleges.

  3. Technical knowledge and water resources management: A comparative study of river basin councils, Brazil

    Science.gov (United States)

    Lemos, Maria Carmen; Bell, Andrew R.; Engle, Nathan L.; Formiga-Johnsson, Rosa Maria; Nelson, Donald R.

    2010-06-01

    Better understanding of the factors that shape the use of technical knowledge in water management is important both to increase its relevance to decision-making and sustainable governance and to inform knowledge producers where needs lie. This is particularly critical in the context of the many stressors threatening water resources around the world. Recent scholarship focusing on innovative water management institutions emphasizes knowledge use as critical to water systems' adaptive capacity to respond to these stressors. For the past 15 years, water resources management in Brazil has undergone an encompassing reform that has created a set of participatory councils at the river basin level. Using data from a survey of 626 members of these councils across 18 river basins, this article examines the use of technical knowledge (e.g., climate and weather forecasts, reservoir streamflow models, environmental impact assessments, among others) within these councils. It finds that use of knowledge positively aligns with access, a more diverse and broader discussion agenda, and a higher sense of effectiveness. Yet, use of technical knowledge is also associated with skewed levels of power within the councils.

  4. Comparative status and assessment of Limulus polyphemus with emphasis on the New England and Delaware Bay populations

    Science.gov (United States)

    Smith, David; Millard, Michael J.; Carmichael, Ruth H.

    2009-01-01

    Increases in harvest of the American horseshoe crab (Limulus polyphemus) during the 1990s, particularly for whelk bait, coupled with decreases in species that depend on their eggs has reduced horseshoe crab abundance, threatened their ecological relationships, and dictated precautionary management of the horseshoe crab resource. Accordingly, population assessments and monitoring programs have been developed throughout much of the horseshoe crab’s range. We review and discuss implications for several recent assessments of Delaware Bay and New England populations and a meta-analysis of region-specific trends. These assessments show that the western Atlantic distribution of the horseshoe crab is comprised of regional or estuarine-specific meta-populations, which exhibit distinct population dynamics and require management as separate units. Modeling of Delaware Bay and Cape Cod populations confirmed that overharvest caused declines, but indicated that some harvest levels are sustainable and consistent with population growth. Coast-wide harvest was reduced by 70% from 1998 to 2006, with the greatest reductions within Delaware Bay states. Harvest regulations in Delaware Bay starting in the late 1990s, such as harvest quotas, seasonal closures, male-only harvest, voluntary use of bait-saving devices, and establishment of the Carl N. Shuster Jr. Horseshoe Crab Reserve, were followed by stabilization and recent evidence of increase in abundance of horseshoe crabs in the region. However, decreased harvest of the Delaware Bay population has redirected harvest to outlying populations, particularly in New York and New England. While the recent Delaware Bay assessments indicate positive population growth, increased harvest elsewhere is believed to be unsustainable. Two important considerations for future assessments include (1) managing Delaware Bay horseshoe crab populations within a multi-species context, for example, to help support migratory shorebirds and (2

  5. mizuRoute version 1: A river network routing tool for a continental domain water resources applications

    Science.gov (United States)

    Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.

  6. Natural resource risk and cost management in environmental restoration: Demonstration project at the Savannah River Site

    International Nuclear Information System (INIS)

    Bascietto, J.J.; Sharples, F.E.

    1995-01-01

    The US Department of Energy (DOE) is both a trustee for the natural resources present on its properties and the lead response agency under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As such, DOE is addressing the destruction or loss of those resources caused by releases of hazardous substances from its facilities (DOE 1991) and collecting data to be used in determining the extent of contamination at its facilities, estimating risks to human health and the environment, and selecting appropriate remedial actions. The remedial investigation/feasibility study (RI/FS) process is used to investigate sites and select remedial actions. A Natural Resource Damage Assessment (NRDA) process may be used to determine whether natural resources have also been injured by the released hazardous substances and to calculate compensatory monetary damages to be used to restore the natural resources. In FY 1994, the Savannah River Site (SRS) was chosen to serve as a demonstration site for testing the integrated NRDA framework and demonstrating how NRDA concerns might be integrated into the environmental restoration activities of an actual site that is characteristically large and complex. The demonstration project (1) provided a means to illustrate the use of complex analyses using real information on the specific natural resources of the SRS; (2) served as a vehicle for reinforcing and expanding the SRS staff's understanding of the links between the NRDA and RI/FS processes; (3) provided a forum for the discussion of strategic issues with SRS personnel; and (4) allowed the refining and elaboration of DOE guidance by benchmarking the theoretical process using real information and issues

  7. Analysis of Groundwater Resources Vulnerability from Agricultural Activities in the Large Irrigation District along the Yellow River

    OpenAIRE

    He, Bin; Oki, Taikan; Kanae, Shinjiro; Runkle, Benjamin; Liang, Xu; Zeng, Ayan; Hao, Fanghua

    2008-01-01

    Groundwater forms an important source of water supply in arid and semi-arid region. Optimum conjunctive utilization of surface and groundwater resources has become extremely important to fill the gap between water demand and supply. Hetao Irrigation District (HID) is the largest irrigation district along the Yellow River and its groundwater table is shallow. The project of Water Saving Reconstruction (WSR) has been conducted for the purpose of keeping the Yellow River free from drying up. The...

  8. Upper Mississippi River Land Use Allocation Plan. Master Plan for Public Use Development and Resource Management. Parts 1 and 2.

    Science.gov (United States)

    1983-09-01

    most common understo wood nettle , poison ivy, wild grape, Dominant overstory species in better-di BIOLOGICAL RESOURCES are American elm, silver maple...aquatic vegetation associated with er of commonness. The most backwater areas are examples of such low-capability es are woodbine, wood nettle , class...and of aquatic invertebrates. Benthic organisms, partic- River) in the river’s side chani ularly aquatic insects and freshwater mussels, are border

  9. Historical Relationships Between Research and Resource Management in the Apalachicola River Estuary.

    Science.gov (United States)

    Livingston, Robert J

    1991-11-01

    A continuous field research effort has been carried out in the Apalachicola River estuary since March 1972. The information generated from this interdisciplinary study has been directly applied to the management of the Apalachicola resource by means of close associations among local, state, and federal officials and university scientists. During the early years, scientific data were instrumental in the prevention of the impoundment of the Apalachicola River. A series of regional studies was carried out to evaluate various forms of effects due to forestry activities, pesticides, and stormwater runoff from urban areas. A review was made of fisheries problems associated with dredging, overfishing, and marine pollution. Results of such studies were directly applied to local management questions. Research that linked the river wetlands with the estuary, in terms of the input of fresh water, nutrients, and organic matter, served as the basis for the purchase of extensive bottomland tracts. Other initiatives were carried out that were designed to protect the naturally high productivity of the river estuary. Further purchases of estuarine wetlands and barrier island properties were made that formed an almost continuous buffer of publicly held lands between upland developments and critical habitats and important populations of the bay system. A regional management plan was adopted that was designed to limit local municipal development in the estuarine region. Analyses of the long-term scientific data indicated that dominant, commercially important estuarine populations are associated with river flow, local salinity characteristics, and biological (predation, competition) interactions with the salinity regime and food web structure. Such interactions are not straight forward, however; they reflect complex interactions of the freshwater influxes and biological response in the estuary that are not well understood. Species-specific responses to the principal driving factors

  10. A report on the fisheries resources of the lower Nelson River and the impacts of hydroelectric development, 1988 data

    International Nuclear Information System (INIS)

    Swanson, G.M.; Kansas, K.R.; Matkowski, S.M.

    1990-01-01

    Fisheries studies on the lower Nelson River (Manitoba) system have had the goals of gaining an understanding of the fisheries resources present, assessing current and potential impacts of hydroelectric developments, and investigating enhancement or mitigative options. In 1988, a resource inventory of McMillan and 12-Mile Creeks was conducted to increase understanding of brook trout stocks in the Limestone River system. Results indicate that both streams contain self-sustaining populations. Baseline data collection in the Conawapa Forebay of the Nelson River was initiated in 1988. Inventories of fish populations were conducted, focusing on lake sturgeon. Three long-term monitoring projects were continued in 1988, investigating the populations of spawning brook trout, larval brook trout, and anadromy in brook trout. Four major tributaries to the Nelson River were classified on the basis of physical and chemical characteristics in an attempt to understand brook trout distribution patterns. Ten sturgeon were captured in Angling Lake in 1988 and fitted with radio tags to assess the importance of the Angling Lake-Angling River system to Nelson River lake sturgeon. To investigate the feasibility of enhancing brook trout populations in the Nelson River system, baskets of eggs were planted in previously identified spawning areas in three creeks in 1988. The eggs developed and hatched only in CN Creek. The potential for rehabilitating the Kettle River brook trout population by transfer of fish from other rivers was also investigated in 1988. Radio-tagged fish remained in the Kettle River-Long Spruce system throughout the life of the tags and appear to have found suitable summer and winter habitat. 60 refs., 76 figs., 38 tabs

  11. Impact of Climate Change on Water Resources in the Guadalquivir River Basin

    Science.gov (United States)

    Yeste Donaire, P.; García-Valdecasas-Ojeda, M.; Góngora García, T. M.; Gámiz-Fortis, S. R.; Castro-Diez, Y.; Esteban-Parra, M. J.

    2017-12-01

    Climate change has lead to a decrease of precipitation and an increase of temperature in the Mediterranean Basin during the last fifty years. These changes will be more intense over the course of the 21thcentury according to global climate projections. As a consequence, water resources are expected to decrease, particularly in the Guadalquivir River Basin. This study focuses on the hydrological response of the Guadalquivir River Basin to the climate change. For this end, firstly, the implementation of the Variable Infiltration Capacity (VIC) model in the Basin was carried out. The VIC model was calibrated with a dataset of daily precipitation, temperature and streamflow for the period 1990-2000. Precipitation and temperature data were extracted from SPAIN02, a dataset that covers the Peninsular Spain at 0.11º of spatial resolution. Streamflow data were gathered for a representative subset of gauging stations in the basin. These data were provided by the Spanish Center for Public Work Experimentation and Study (CEDEX). Subsequently, the VIC model was validated for the period 2000-2005 in order to verify that the model outputs fit well with the observational data. After the validation of the VIC model for present climate, secondly, the effect of climate change on the Guadalquivir River Basin will be analyzed by developing several simulations of the streamflow for future climate. Precipitation and temperature data will be obtained in this case from future projections coming from high resolution (at 0.088º) simulations carried out with the Weather Research and Forecasting (WRF) model for the Iberian Peninsula. These last simulations will be driven under two different Representative Concentration Pathway (RCP) scenarios, RCP 4.5 and RCP 8.5 for the periods 2021-50 and 2071-2100. The first results of this work show that the VIC model outputs are in good agreement with the observed streamflow for both the calibration and validation periods. In the context of climate

  12. Mapping Water Resources, Allocation and Consumption in the Mills River Basin

    Science.gov (United States)

    Hodes, J.; Jeuland, M. A.; Barros, A. P.

    2014-12-01

    Mountain basins and the headwaters of river basins along the foothills of major mountain ranges are undergoing rapid environmental change due to urban development, land acquisition by investors, population increase, and climate change. Classical water infrastructure in these regions is primarily designed to meet human water demand associated with agriculture, tourism, and economic development. Often overlooked and ignored is the fundamental interdependence of human water demand, ecosystem water demand, water rights and allocation, and water supply. A truly sustainable system for water resources takes into account ecosystem demand along with human infrastructure and economic demand, as well as the feedbacks that exist between them. Allocation policies need to take into account basin resilience that is the amount of stress the system can handle under varying future scenarios. Changes in stress on the system can be anthropogenic in the form of population increase, land use change, economic development, or may be natural in the form of climate change and decrease in water supply due to changes in precipitation. Mapping the water rights, supply, and demands within the basin can help determine the resiliency and sustainability of the basin. Here, we present a coupled natural human system project based in the French Broad River Basin, in the Southern Appalachians. In the first phase of the project, we are developing and implementing a coupled hydro-economics modeling framework in the Mills River Basin (MRB), a tributary of the French Broad. The Mills River Basin was selected as the core basin for implementing a sustainable system of water allocation that is adaptive and reflects the interdependence of water dependent sectors. The headwaters of the Mills River are in the foothills of the Appalachians, and are currently under substantial land use land cover (LULC) change pressure for agricultural purposes. In this regard, the MRB is representative of similar headwater

  13. Sustainability of Water Resources in Arid Ecosystems: A View from Hei River Basin, China (Invited)

    Science.gov (United States)

    Zheng, C.; Cheng, G.; Xiao, H.; Ma, R.

    2009-12-01

    The northwest of China is characterized by an arid climate and fragile ecosystems. With irrigated agriculture, the region is a prolific producer of cotton, wheat, and maize with some of the highest output per acre in the country. The region is also rich in ore deposits, with the reserves of numerous minerals ranked at or near the top in the country. However, the sustainability of irrigated agriculture and economic development in the region is threaten by severe eco-environmental problems resulting from both global changes and human activities, such as desertification, salinization, groundwater depletion, and dust storms. All these problems are a direct consequence of water scarcity. As global warming accelerates and rapid economic growth continues, the water shortage crisis is expected to worsen. To improve the bleak outlook for the health of ecosystem and environment in northwest China, the Chinese government has invested heavily in ecosystem restoration and watershed management in recent years. However, the effectiveness of such measures and actions depends on scientific understanding of the complex interplays among ecological, hydrological and socioeconomic factors. This presentation is intended to provide an overview of a major new research initiative supported by the National Natural Science Foundation of China to study the integration of ecological principles, hydrological processes and socioeconomic considerations toward more sustainable exploitation of surface water and groundwater resources in the Hei River Basin in northwest China. The Hei River Basin is an inland watershed located at the center of the arid region in East Asia, stretching from Qilianshan Mountains in the south to the desert in the north bordering China’s Inner Mongolia Autonomous Region and Mongolia. The total area of Hei River Basin is approximately 130,000 km2. The research initiative builds on existing research infrastructure and ecohydrological data and seeks to reveal complex

  14. Scenario analysis for integrated water resources planning and management under uncertainty in the Zayandehrud river basin

    Science.gov (United States)

    Safavi, Hamid R.; Golmohammadi, Mohammad H.; Sandoval-Solis, Samuel

    2016-08-01

    The goal of this study is to develop and analyze three scenarios in the Zayandehrud river basin in Iran using a model already built and calibrated by Safavi et al. (2015) that has results for the baseline scenario. Results from the baseline scenario show that water demands will be supplied at the cost of depletion of surface and ground water resources, making this scenario undesirable and unsustainable. Supply Management, Demand Management, and Meta (supply and demand management) scenarios are the selected scenarios in this study. They are to be developed and declared into the Zayandehrud model to assess and evaluate the imminent status of the basin. Certain strategies will be employed for this purpose to improve and rectify the current management policies. The five performance criteria of time-based and volumetric reliability, resilience, vulnerability, and maximum deficit will be employed in the process of scenario analysis and evaluation. The results obtained from the performance criteria will be summed up into a so-called 'Water Resources Sustainability Index' to facilitate comparison among the likely trade-offs. Uncertainties arising from historical data, management policies, rainfall-runoff model, demand priorities, and performance criteria are considered in the proposed conceptual framework and modeled by appropriate approaches. Results show that the Supply Management scenario can be used to improve upon the demand supply but that it has no tangible effects on the improvement of the resources in the study region. In this regard, the Demand Management scenario is found to be more effective than the water supply one although it still remains unacceptable. Results of the Meta scenario indicate that both the supply and demand management scenarios must be applied if the water resources are to be safeguarded against degradation and depletion. In other words, the supply management scenario is necessary but not adequate; rather, it must be coupled to the demand

  15. Computation of groundwater resources and recharge in Chithar River Basin, South India.

    Science.gov (United States)

    Subramani, T; Babu, Savithri; Elango, L

    2013-01-01

    Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km(2) have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m(3)). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10% to 15%.

  16. The Alaskan mineral resource assessment program; background information to accompany folio of geologic and mineral resource maps of the Ambler River Quadrangle, Alaska

    Science.gov (United States)

    Mayfield, Charles F.; Tailleur, I.L.; Albert, N.R.; Ellersieck, Inyo; Grybeck, Donald; Hackett, S.W.

    1983-01-01

    The Ambler River quadrangle, consisting of 14,290 km2 (5,520 mi2) in northwest Alaska, was investigated by an interdisciplinary research team for the purpose of assessing the mineral resource potential of the quadrangle. This report provides background information for a folio of maps on the geology, reconnaissance geochemistry, aeromagnetics, Landsat imagery, and mineral resource evaluation of the quadrangle. A summary of the geologic history, radiometric dates, and fossil localities and a comprehensive bibliography are also included. The quadrangle contains jade reserves, now being mined, and potentially significant resources of copper, zinc, lead, and silver.

  17. Adaptation potential to climate change of the Peribonka River (Quebec, Canada) water resources system

    International Nuclear Information System (INIS)

    Minville, M.; Krau, S.; Brissette, F.; Leconte, R.

    2008-01-01

    This study investigated the influence of climatic change on the Peribonka water resources system. The impacts of climatic change on hydroelectric power reservoir operations in the region were assessed using a set of operating rules optimized for future hydrological regimes. Thirty climate change projections from 5 climate models, 2 greenhouse gas (GHG) scenarios, and 3 temporal horizons were used in the study. Climatic change projections were then downscaled using the Delta approach and coupled to a stochastic weather generator developed to account for natural variabilities in local climates. A lumped hydrological model was used to simulate future hydrological regimes. A stochastic dynamic programming technique was then used to optimize reservoir operating rules for various time series of future river flows. The operating rules were then used in conjunction with a river system simulation tool in order to determine reservoir and hydroelectric production scenarios under different climatic change regimes. Results of the study showed significant increases in hydroelectricity production for most of the climate change projections. However, nonproductive spillage was also increased. Reservoir reliability was also reduced. tabs., figs

  18. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  19. Implementing Integrated Water Resources Management in the Ebro River Basin: From Theory to Facts

    Directory of Open Access Journals (Sweden)

    Jorge Bielsa

    2014-12-01

    Full Text Available In this article, we analyze how successful the implementation of Integrated Water Resource Management (IWRM in the Ebro river catchment (in Spain has been. Our main aim is to show some gaps between theory and practice. This implies analyzing the political dimensions of governance and their change and reflecting on the interface between governance and technical knowledge about water. We highlight problems, such as the lack of institutional coordination, blind spots in technical information and path dependences. Actual water management has led to plans for further irrigation even though water availability is, and is expected to continue, shrinking due to climate change and other local factors. To overcome these mismatches, we propose further synchronization, innovative ways of public participation and knowledge sharing between institutions and researchers. As a showcase, we portray a practical real example of a desirable institutional arrangement in one sub-catchment.

  20. Uncertainty in water resources availability in the Okavango River basin as a result of climate change

    Directory of Open Access Journals (Sweden)

    D. A. Hughes

    2011-03-01

    Full Text Available This paper assesses the hydrological response to scenarios of climate change in the Okavango River catchment in Southern Africa. Climate scenarios are constructed representing different changes in global mean temperature from an ensemble of 7 climate models assessed in the IPCC AR4. The results show a substantial change in mean flow associated with a global warming of 2 °C. However, there is considerable uncertainty in the sign and magnitude of the projected changes between different climate models, implying that the ensemble mean is not an appropriate generalised indicator of impact. The uncertainty in response between different climate model patterns is considerably greater than the range due to uncertainty in hydrological model parameterisation. There is also a clear need to evaluate the physical mechanisms associated with the model projected changes in this region. The implications for water resource management policy are considered.

  1. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  2. Resource availability and diet in Harpy Eagle breeding territories on the Xingu River, Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    FH. Aguiar-Silva

    Full Text Available Abstract In the Tapajos-Xingu interfluve, one of the largest birds of prey, the Harpy Eagle, is under intense anthropogenic pressure due to historical and recent reductions in forest cover. We studied prey availability and use by Harpy Eagle on six breeding territories on the low- and mid-Xingu River, between 2013 and 2015. We evaluated food resource availability using the environmental-surveys database from two methods: terrestrial surveys (RAPELD method and fauna rescue/flushing before vegetation suppression for the Belo Monte Hydroelectric Complex construction. Harpy Eagle diet was identified by prey remains sampled around six nest trees. Eighteen species of mammals, birds and reptiles comprised the prey items. Most prey species were sloths, primates and porcupines, which have arboreal habits and are found in forested areas, but two species, hoatzin and iguana, are usually associated with riverine habitats. The proportion of prey from each species predated on the nest best studied was different from estimated availability (χ2 = 54.23; df = 16; p < 0.001, however there was a positive correlation (rs = 0.7; p < 0.01 between prey species consumed and abundance available, where the predation was more on species more abundant. Continuous monitoring of the Harpy Eagle diet at these nests could evidence changes in the assemblage of prey species available for Harpy Eagles, due to changes in the seasonal flood pulse of the Xingu River to be caused by the operation of the hydroelectric dam, and changes in habitat features by forest reduction around breeding territories. We believe that it is important to consider the protection of remnants of forested areas in the landscape matrix surrounding the breeding territories to maintain the food resource availability and allow all pairs to successfully reproduce.

  3. Potential hydrothermal resource temperatures in the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashayam Neupane; Earl D. Mattson; Cody J. Cannon; Trevor A. Atkinson; Travis L. McLing; Thomas R. Wood; Patrick F. Dobson; Mark E. Conrad

    2016-02-01

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of the Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources as evidenced by numerous hot springs scattered along the margins of the plain and several hot-water producing wells and hot springs within the plain. Despite these thermal expressions, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water and re-equilibration at lower temperature are significant challenges for the evaluation of potential resource areas in the ESRP. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to these chemical compositions of ESRP water samples. Geothermometric calculations based on principles of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for the evaluation of reservoir temperatures. RTEst geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Bennett Hills and within the Camas Prairies in the western-northwestern regions of the ESRP and its margins suggest temperatures in the range of 140-200°C. In the northeastern portions of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature =140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host

  4. Delaware Bay Database; Delaware Sea Grant College Program, 28 June 1988 (NODC Accession 8900151)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Delaware Bay database contains records of discrete quality observations, collected on 40 oceanographic cruises between May 1978 and October 1985. Each record...

  5. The Availability and Utilization of School Library Resources in Some Selected Secondary Schools (High School) in Rivers State

    Science.gov (United States)

    Owate, C. N.; Iroha, Okpa

    2013-01-01

    This study investigates the availability and utilization of school library resources by Secondary School (High School) Students. Eight Selected Secondary Schools in Rivers State, Nigeria were chosen based on their performance in external examinations and geographic locations. In carrying out the research, questionnaires were administered to both…

  6. The Natural Palette: Hudson River Artists and the Land. Teacher's Guide. Curriculum Resource: Grades 4 through 12.

    Science.gov (United States)

    Lind, Ted; Sorin, Gretchen Sullivan; Mack, Stevie; Fiore, Jennifer, Ed.

    This interdisciplinary curriculum guide resource kit focuses on 19th-century Euro-American painters of the Hudson River School. Lessons are designed to encourage student recognition of the significant impact of North American Indians, the natural environment, and the romantic period writers and philosophers artists and their work. The guide…

  7. 78 FR 56264 - Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc...

    Science.gov (United States)

    2013-09-12

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc., South Texas Oil Co., and Synova Healthcare Group, Inc... that there is a lack of current and accurate information concerning the securities of Big Bear Mining...

  8. Soil and Land Resources Information System (SLISYS-Tarim) for Sustainable Management of River Oases along the Tarim River, China

    Science.gov (United States)

    Othmanli, Hussein; Zhao, Chengyi; Stahr, Karl

    2017-04-01

    The Tarim River Basin is the largest continental basin in China. The region has extremely continental desert climate characterized by little rainfall 3000 mm/a. The climate change is affecting severely the basin causing soil salinization, water shortage, and regression in crop production. Therefore, a Soil and Land Resources Information System (SLISYS-Tarim) for the regional simulation of crop yield production in the basin was developed. The SLISYS-Tarim consists of a database and an agro-ecological simulation model EPIC (Environmental Policy Integrated Climate). The database comprises relational tables including information about soils, terrain conditions, land use, and climate. The soil data implicate information of 50 soil profiles which were dug, analyzed, described and classified in order to characterize the soils in the region. DEM data were integrated with geological maps to build a digital terrain structure. Remote sensing data of Landsat images were applied for soil mapping, and for land use and land cover classification. An additional database for climate data, land management and crop information were linked to the system, too. Construction of the SLISYS-Tarim database was accomplished by integrating and overlaying the recommended thematic maps within environment of the geographic information system (GIS) to meet the data standard of the global and national SOTER digital database. This database forms appropriate input- and output data for the crop modelling with the EPIC model at various scales in the Tarim Basin. The EPIC model was run for simulating cotton production under a constructed scenario characterizing the current management practices, soil properties and climate conditions. For the EPIC model calibration, some parameters were adjusted so that the modeled cotton yield fits to the measured yield on the filed scale. The validation of the modeling results was achieved in a later step based on remote sensing data. The simulated cotton yield varied

  9. Assessment of climate change impact on water resources in the Pungwe river basin

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lotta; Samuelsson, Patrick; Kjellstroem, Erik (Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)), e-mail: lotta.andersson@smhi.se

    2011-01-15

    The Rossby Centre Regional Climate Model (RCA3) and the hydrological model HBV were linked to assess climate change impacts on water resources in the Pungwe basin until 2050. RCA3 was capable of simulating the most important aspects of the climate for a control period at the regional scale. At the subbasin scale, additional scaling was needed. Three climate change experiments using ECHAM4-A2, B2 and CCSM3-B2 as input to RCA3 were carried out. According to the simulations annual rainfall in 2050 would be reduced by approximately 10% with increasing interannual variability of rainfall and dry season river flow and later onset of the rainy season. The ECHAM4-A2 driven experiment did also indicate a slight increase of high flows. If the results indeed reflect the future, they will worsen the already critical situation for water resources, regarding both floods and droughts. Uncertainties, however in the downscaled scenarios make it difficult to prioritize adaptation options. This calls for inclusion of more climate change experiments, in an ensemble of climate scenarios possibly by using a combination of dynamical and statistical downscaling of general circulation models, as well as extending the simulations to 2100 to further ensure robustness of the signal

  10. Development, calibration, and analysis of a hydrologic and water-quality model of the Delaware Inland Bays watershed

    Science.gov (United States)

    Gutierrez-Magness, Angelica L.; Raffensperger, Jeff P.

    2003-01-01

    Excessive nutrients and sediment are among the most significant environmental stressors in the Delaware Inland Bays (Rehoboth, Indian River, and Little Assawoman Bays). Sources of nutrients, sediment, and other contaminants within the Inland Bays watershed include point-source discharges from industries and wastewater-treatment plants, runoff and infiltration to ground water from agricultural fields and poultry operations, effluent from on-site wastewater disposal systems, and atmospheric deposition. To determine the most effective restoration methods for the Inland Bays, it is necessary to understand the relative distribution and contribution of each of the possible sources of nutrients, sediment, and other contaminants. A cooperative study involving the Delaware Department of Natural Resources and Environmental Control, the Delaware Geological Survey, and the U.S. Geological Survey was initiated in 2000 to develop a hydrologic and water-quality model of the Delaware Inland Bays watershed that can be used as a water-resources planning and management tool. The model code Hydrological Simulation Program - FORTRAN (HSPF) was used. The 719-square-kilometer watershed was divided into 45 model segments, and the model was calibrated using streamflow and water-quality data for January 1999 through April 2000 from six U.S. Geological Survey stream-gaging stations within the watershed. Calibration for some parameters was accomplished using PEST, a model-independent parameter estimator. Model parameters were adjusted systematically so that the discrepancies between the simulated values and the corresponding observations were minimized. Modeling results indicate that soil and aquifer permeability, ditching, dominant land-use class, and land-use practices affect the amount of runoff, the mechanism or flow path (surface flow, interflow, or base flow), and the loads of sediment and nutrients. In general, the edge-of-stream total suspended solids yields in the Inland Bays

  11. A Laboratory Safety Program at Delaware.

    Science.gov (United States)

    Whitmyre, George; Sandler, Stanley I.

    1986-01-01

    Describes a laboratory safety program at the University of Delaware. Includes a history of the program's development, along with standard safety training and inspections now being implemented. Outlines a two-day laboratory safety course given to all graduate students and staff in chemical engineering. (TW)

  12. Oceanographic Station, temperature profiles, and other data from CTD, XBT, and bottle casts from NOAA Ship DELAWARE II as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) from 1972-07-01 to 1972-08-13 (NODC Accession 7201299)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station,temperature profiles, and other data were collected from CTD, XBT, and bottle casts from NOAA Ship DELAWARE II from 01 July 1972 to 13 August...

  13. Oceanographic station, temperature profile, meteorological, and other data from CTD and XBT casts from NOAA Ship DELAWARE II and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1980-06-25 to 1983-08-04 (NODC Accession 8300119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profile, meteorological, and other data were collected from CTD and XBT casts from NOAA Ship DELAWARE II and other platforms from...

  14. Quantification of water resources uncertainties in the Luvuvhu sub-basin of the Limpopo river basin

    Science.gov (United States)

    Oosthuizen, N.; Hughes, D.; Kapangaziwiri, E.; Mwenge Kahinda, J.; Mvandaba, V.

    2018-06-01

    In the absence of historical observed data, models are generally used to describe the different hydrological processes and generate data and information that will inform management and policy decision making. Ideally, any hydrological model should be based on a sound conceptual understanding of the processes in the basin and be backed by quantitative information for the parameterization of the model. However, these data are often inadequate in many sub-basins, necessitating the incorporation of the uncertainty related to the estimation process. This paper reports on the impact of the uncertainty related to the parameterization of the Pitman monthly model and water use data on the estimates of the water resources of the Luvuvhu, a sub-basin of the Limpopo river basin. The study reviews existing information sources associated with the quantification of water balance components and gives an update of water resources of the sub-basin. The flows generated by the model at the outlet of the basin were between 44.03 Mm3 and 45.48 Mm3 per month when incorporating +20% uncertainty to the main physical runoff generating parameters. The total predictive uncertainty of the model increased when water use data such as small farm and large reservoirs and irrigation were included. The dam capacity data was considered at an average of 62% uncertainty mainly as a result of the large differences between the available information in the national water resources database and that digitised from satellite imagery. Water used by irrigated crops was estimated with an average of about 50% uncertainty. The mean simulated monthly flows were between 38.57 Mm3 and 54.83 Mm3 after the water use uncertainty was added. However, it is expected that the uncertainty could be reduced by using higher resolution remote sensing imagery.

  15. Analysis of Water Resources Supply and Demand and Security of Water Resources Development in Irrigation Regions of the Middle Reaches of the Heihe River Basin, Northwest China

    Institute of Scientific and Technical Information of China (English)

    JI Xi-bin; KANG Er-si; CHEN Ren-sheng; ZHAO Wen-zhi; XIAO Sheng-chun; JIN Bo-wen

    2006-01-01

    Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.

  16. Mitigating the Effects of Climate Change on the Water Resources of the Columbia River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Payne, J.T.; Wood, A.W.; Hamlet, A.F.; Palmer, R.N.; Lettenmaier, D.P. [Department of Civil Engineering, 164 Wilcox Hall, P.O. Box 352700, University of Washington, Seattle, WA 98195-2700 (United States)

    2004-07-01

    The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a 'business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995-2015) scenario and from the three BAU climate (2040-2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1-3: 2010-2039, 2040-2069, 2070-2098) in which changes in annual average temperature were +0.5, +1.3 and +2.1C, respectively, while critical winter season precipitation changes were -3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040-2060 period was +1.2C and the average winter precipitation change was -3 percent, relative to the RCM control climate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative

  17. Water resources in Central Asia - status quo and future conflicts in transboundary river catchments - the example of the Zarafshan River (Tajikistan-Uzbekistan)

    Science.gov (United States)

    Groll, Michael; Opp, Christian; Kulmatov, Rashid; Normatov, Inom; Stulina, Galina; Shermatov, Nurmakhmad

    2014-05-01

    Water is the most valuable resource in Central Asia and due to its uneven distribution and usage among the countries of the region it is also the main source of tension between upstream and downstream water users. Due to the rapidly shrinking glaciers in the Pamir, Tien-Shan and Alai mountains, the available water resources will, by 2030, be 30% lower than today while the water demand of the growing economies will increase by 30%. This will further aggravate the pressure on the water resources and increase the water deficit caused by an unsustainable water use and political agendas. These challenges can only be overcome by an integrated water resource management for the important transboundary river catchments. The basis for such an IWRM approach however needs to be a solid data base about the status quo of the water resources. To that end the research presented here provides a detailed overview of the transboundary Zarafshan River (Tajikistan-Uzbekistan), the lifeline for more than 6 mln people. The Zarafshan River is well suited for this as it is not only one of the most important rivers in Central Asia but because the public availability of hydrological and ecological data is very limited, Furthermore the catchment is characterized by the same imbalances in the Water-Energy-Food-Nexus as most river systems in that region, which makes the Zarafshan a perfect model river for Central Asia as a whole. The findings presented here are based on field measurements, existing data from the national hydrometeorological services and an extensive literature analysis and cover the status quo of the meteorological and hydrological characteristics of the Zarafshan as well as the most important water quality parameters (pH, conductivity, nitrate, phosphate, arsenic, chromate, copper, zinc, fluoride, petroleum products, phenols and the aquatic invertebrate fauna). The hydrology of the Zarafshan is characterized by a high natural discharge dynamic in the mountainous upper parts of

  18. Hydrogeologic framework, hydrology, and refined conceptual model of groundwater flow for Coastal Plain aquifers at the Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2005-12

    Science.gov (United States)

    Brayton, Michael J.; Cruz, Roberto M.; Myers, Luke; Degnan, James R.; Raffensperger, Jeff P.

    2015-01-01

    From 1966 to 2002, activities at the Standard Chlorine of Delaware chemical facility in New Castle County, Delaware resulted in the contamination of groundwater, soils, and wetland sediment. In 2005, the U.S. Geological Survey (USGS), in partnership with the U.S. Environmental Protection Agency, Region 3, and the Delaware Department of Natural Resources and Environmental Control began a multi-year investigation of the hydrogeologic framework and hydrology of the confined aquifer system. The goals of the ongoing study at the site (the Potomac Aquifer Study) are to determine the hydraulic connection between the Columbia and Potomac aquifers, determine the direction of groundwater flow in the Potomac aquifer, and identify factors affecting the fate of contaminated groundwater. This report describes progress made towards these goals based on available data collected through September 2012.

  19. Another unique river: a consideration of some of the characteristics of the trunk tributaries of the Nile River in northwestern Ethiopia in relationship to their aquatic food resources.

    Science.gov (United States)

    Kappelman, John; Tewabe, Dereje; Todd, Lawrence; Feseha, Mulugeta; Kay, Marvin; Kocurek, Gary; Nachman, Brett; Tabor, Neil; Yadeta, Meklit

    2014-12-01

    Aquatic food resources are important components of many modern human hunter-gatherer diets and yet evidence attesting to the widespread exploitation of this food type appears rather late in the archaeological record. While there are times when, for example, the capture of fish and shellfish requires sophisticated technology, there are other cases when the exact ecological attributes of an individual species and the particulars of its environment make it possible for these foods to be incorporated into the human diet with little or no tool use and only a minimal time investment. In order to better understand the full set of variables that are considered in these sorts of foraging decisions, it is necessary to detail the attributes of each particular aquatic environment. We discuss here some of the characteristics of the trunk tributaries of the Nile and Blue Rivers in the Horn of Africa. Unlike typical perennial rivers, these 'temporary' rivers flow only during a brief but intense wet season; during the much longer dry season, the rivers are reduced to a series of increasingly disconnected waterholes, and the abundant and diverse fish and mollusk populations are trapped in ever smaller evaporating pools. The local human population today utilizes a number of diverse capture methods that range from simple to complex, and vary according to the size and depth of the waterhole and the time of the year. When we view the particular characteristics of an individual river system, we find that each river is 'unique' in its individual attributes. The Horn of Africa is believed to be along the route that modern humans followed on their migration out of Africa, and it is likely that the riverine-based foraging behaviors of these populations accompanied our species on its movement into the rest of the Old World. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Potential Impacts of Climate Change on Water Resources in the Kunhar River Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Rashid Mahmood

    2016-01-01

    Full Text Available Pakistan is one of the most highly water-stressed countries in the world and its water resources are greatly vulnerable to changing climatic conditions. The present study investigates the possible impacts of climate change on the water resources of the Kunhar River basin, Pakistan, under A2 and B2 scenarios of HadCM3, a global climate model. After successful development of the hydrological modeling system (HEC-HMS for the basin, streamflow was simulated for three future periods (2011–2040, 2041–2070, and 2071–2099 and compared with the baseline period (1961–1990 to explore the changes in different flow indicators such as mean flow, low flow, median flow, high flow, flow duration curves, temporal shift in peaks, and temporal shifts in center-of-volume dates. From the results obtained, an overall increase in mean annual flow was projected in the basin under both A2 and B2 scenarios. However, while summer and autumn showed a noticeable increase in streamflow, spring and winter showed decreased streamflow. High and median flows were predicted to increase, but low flow was projected to decrease in the future under both scenarios. Flow duration curves showed that the probability of occurrence of flow is likely to be more in the future. It was also noted that peaks were predicted to shift from June to July in the future, and the center-of-volume date—the date at which half of the annual flow passes—will be delayed by about 9–17 days in the basin, under both A2 and B2 scenarios. On the whole, the Kunhar basin will face more floods and droughts in the future due to the projected increase in high flow and decrease in low flow and greater temporal and magnitudinal variations in peak flows. These results highlight how important it is to take cognizance of the impact of climate change on water resources in the basin and to formulate suitable policies for the proper utilization and management of these resources.

  1. Spatial and temporal analysis of natural resources degradation in the Likodra River watershed

    Directory of Open Access Journals (Sweden)

    Polovina Siniša

    2016-01-01

    Full Text Available Soil is an important natural resource whose proper use requires a good knowledge of all endogenous and exogenous factors that cause different types of degradation. Erosion is one of the forms of soil degradation. Erosion processes are characterized by a distinctive complexity and the factors affecting them are dynamics and change in space and time. A complex system degradation requires a multidisciplinary approach to the use of modern methods and techniques. Today, a large number of models are available for the assessment of soil loss through erosion as well as the levels of risk from erosion, today. Most of these are based on the logics of GIS thanks to its ability to sublimate heterogeneous information. In this paper, the analysis of spatial and temporal degradation of natural resources is carried out in the Likodra River watershed. The Likodra River is located in the northwestern part of the Republic of Serbia, and is positioned in the municipality of Krupanj. The main stream in the immediate vicinity of the town of Krupanj formed from four small streams that have expressed torrential character (the Bogoštica with the Kržava and the Čađavica with the Brštica. In May 2014, the urban area and rural parts of the municipality Krupanj were affected by catastrophic flash floods that resulted in the loss of human lives and enormous material damage. Soil degradation in the study area was analyzed using the Erosion Potential Method (EPM. The method is characterized by a high degree of reliability for determining the intensity of erosion, calculation of sediment yield and transport. The advantage of this method compared to other methods its lower complexity in terms of quantity of input parameters, simplicity and the possibility of application in GIS. In addition, the method has the advantage of choice, because it was developed in this area. The method is based on the analytical processing of data on factors affecting erosion. As the erosion

  2. More Water Resources but Less for Irrigation: Adaptation Strategy of the Yellow River in a Changing Environment

    Science.gov (United States)

    Tang, Q.; Yin, Y. Y.

    2015-12-01

    The Yellow River is the primary source of freshwater to the northern China. Increasing population and socio-economic development have put great pressure on water resources of the river basin. The anticipated climate and socio-economic changes may further increase water stress. Development of adaptation strategies would have significant implications for water and food security of this region. In this study, the outputs of multiple hydrological models forced with the bias-corrected climatic variables from multiple global climate models were used to assess the change in renewable water resources of the river basin in the 21st century. The outputs of multiple crop models were used to assess the change in agricultural water demand. The domestic and industrial water demands were estimated based on the future socio-economic conditions under the Shared Socio-economic Pathways (SSPs). Besides basic ecosystem needs for water which must be met, the water use in domestic and industrial sectors is considered to have a higher priority than the agricultural water use when water is insufficient. The results show that the renewable water resources of the basin would increase as global mean temperature increases while the water demand would grow much more rapidly, largely due to water demand increase in domestic and industrial sectors. In most of the sub-basins of the Yellow River basin, the available water resources can not sustain all the water use sectors starting from the next a few decades. As more water resources would be appropriated by domestic and industrial sectors, a part of irrigated area had to be converted to rainfed agriculture which led to a large reduction in food production. This study highlights the linked water and food security in a changing environment and suggests that the trade-off should be considered when developing regional adaptation strategies.

  3. Use of food resources and resource partitioning among five syntopic species of Hypostomus (Teleostei: Loricariidae in an Atlantic Forest river in southern Brazil

    Directory of Open Access Journals (Sweden)

    Vinicius Abilhoa

    Full Text Available ABSTRACT We analyzed the diet and resource partitioning among five syntopic species of Hypostomus Lacépède, 1803 in the Corumbataí River in southeastern Brazil. The gut contents of 352 individuals were assessed and 21 food items were identified and quantified under an optical microscope. The food items found in the gut contents indicate that these suckermouth loricariids are bottom-dwelling detritivorous/periphytivorous catfishes. PERMANOVA and SIMPER analyses indicated variation in the consumption of some resources, and the contribution of periphytic algae was primarily responsible for such dissimilarity. ECOSIM analyses of dietary overlap showed evidence of resource sharing among all species in the dry and rainy periods. This is most likely the result of the predominance of detritus and autochthonous items such as algae and aquatic immature insects in all gut contents. Our data suggest that trophic resources available in the Corumbataí River are explored and partitioned among Hypostomus species, all specialized in surface-grazing foraging behaviour.

  4. A combined linear optimisation methodology for water resources allocation in Alfeios River Basin (Greece) under uncertain and vague system conditions

    Science.gov (United States)

    Bekri, Eleni; Yannopoulos, Panayotis; Disse, Markus

    2013-04-01

    In the present study, a combined linear programming methodology, based on Li et al. (2010) and Bekri et al. (2012), is employed for optimizing water allocation under uncertain system conditions in the Alfeios River Basin, in Greece. The Alfeios River is a water resources system of great natural, ecological, social and economic importance for Western Greece, since it has the longest and highest flow rate watercourse in the Peloponnisos region. Moreover, the river basin was exposed in the last decades to a plethora of environmental stresses (e.g. hydrogeological alterations, intensively irrigated agriculture, surface and groundwater overexploitation and infrastructure developments), resulting in the degradation of its quantitative and qualitative characteristics. As in most Mediterranean countries, water resource management in Alfeios River Basin has been focused up to now on an essentially supply-driven approach. It is still characterized by a lack of effective operational strategies. Authority responsibility relationships are fragmented, and law enforcement and policy implementation are weak. The present regulated water allocation puzzle entails a mixture of hydropower generation, irrigation, drinking water supply and recreational activities. Under these conditions its water resources management is characterised by high uncertainty and by vague and imprecise data. The considered methodology has been developed in order to deal with uncertainties expressed as either probability distributions, or/and fuzzy boundary intervals, derived by associated α-cut levels. In this framework a set of deterministic submodels is studied through linear programming. The ad hoc water resources management and alternative management patterns in an Alfeios subbasin are analyzed and evaluated under various scenarios, using the above mentioned methodology, aiming to promote a sustainable and equitable water management. Li, Y.P., Huang, G.H. and S.L., Nie, (2010), Planning water resources

  5. Influenza Weekly Surveillance Reports - Delaware Health and Social Services

    Science.gov (United States)

    & Wellness Healthy Homes Healthy Workplaces Laboratory Restaurant Inspections Screening and Testing ; Travel Contact Us Corporations Franchise Tax Gross Receipts Tax Withholding Tax Delaware Topics Help

  6. DPH Healthy Living Information: Immunizations - Delaware Health and Social

    Science.gov (United States)

    ; Wellness Healthy Homes Healthy Workplaces Laboratory Restaurant Inspections Screening and Testing WIC ; Travel Contact Us Corporations Franchise Tax Gross Receipts Tax Withholding Tax Delaware Topics Help

  7. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat

  8. Measuring Macrobenthos Biodiversity at Oyster Aquaculture Sites in the Delaware Inland Bays

    Science.gov (United States)

    Fuoco, M. J.; Ozbay, G.

    2016-12-01

    The Delaware Inland Bays consists of three shallow coastal bays located in the southern portion of Delaware. Anthropogenic activities have led to the degradation of water quality, because the bays are surrounded by highly developed areas and have low flushing rates. This results in loss of biodiversity and abundance of organisms. Ongoing degradation of the bays has led to a dramatic decline in local oyster populations since the late 1800s. Oysters are keystone species, which provide habitats for organisms and help to improve water quality. This study aims to find if the introduction of oyster aquaculture improves local biodiversity and abundance of macrobenthos. The study was conducted in Rehoboth Bay, Indian River Bay and Little Assawoman Bay. Aquaculture gear was placed at one location in each of the bays and 24 sediment core samples were taken once a month. From these core samples all worms were fixed and stained in a 10% Formalin Rose Bengal solution and preserved in 70% Ethanol for later identification. Stable carbon and nitrogen isotope analysis of oyster tissue will also be performed to assess the health of the bay. The goals of this research are to better understand the role of oyster aquaculture in restoring the viability and health of the Delaware Inland Bays.

  9. Improving the Performance of Highly Constrained Water Resource Systems using Multiobjective Evolutionary Algorithms and RiverWare

    Science.gov (United States)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2015-12-01

    Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.

  10. Assessment of impacts of proposed coal-resource and related economic development on water resources, Yampa River basin, Colorado and Wyoming; a summary

    Science.gov (United States)

    Steele, Timothy Doak; Hillier, Donald E.

    1981-01-01

    Expanded mining and use of coal resources in the Rocky Mountain region of the western United States will have substantial impacts on water resources, environmental amenities, and social and economic conditions. The U.S. Geological Survey has completed a 3-year assessment of the Yampa River basin, Colorado and Wyoming, where increased coal-resource development has begun to affect the environment and quality of life. Economic projections of the overall effects of coal-resource development were used to estimate water use and the types and amounts of waste residuals that need to be assimilated into the environment. Based in part upon these projections, several physical-based models and other semiquantitative assessment methods were used to determine possible effects upon the basin's water resources. Depending on the magnitude of mining and use of coal resources in the basin, an estimated 0.7 to 2.7 million tons (0.6 to 2.4 million metric tons) of waste residuals may be discharged annually into the environment by coal-resource development and associated economic activities. If the assumed development of coal resources in the basin occurs, annual consumptive use of water, which was approximately 142,000 acre-feet (175 million cubic meters) during 1975, may almost double by 1990. In a related analysis of alternative cooling systems for coal-conversion facilities, four to five times as much water may be used consumptively in a wet-tower, cooling-pond recycling system as in once-through cooling. An equivalent amount of coal transported by slurry pipeline would require about one-third the water used consumptively by once-through cooling for in-basin conversion. Current conditions and a variety of possible changes in the water resources of the basin resulting from coal-resource development were assessed. Basin population may increase by as much as threefold between 1975 and 1990. Volumes of wastes requiring treatment will increase accordingly. Potential problems associated

  11. An assessment the effects of human-caused air pollution on resources within the interior Columbia River basin

    Science.gov (United States)

    Schoettle, A.W.; Tonnessen, K.; Turk, J.; Vimont, J.; Amundson, Ronald; Acheson, A.; Peterson, J.

    1999-01-01

    An assessment of existing and potential impacts to vegetation, aquatics, and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides, particulates, carbon, and ozone. Ecosystems and resources at risk are identified, including certain forests, lichens, cryptogamic crusts, high-elevation lakes and streams, arid lands, and class I areas. Current monitoring data are summarized and air pollution sources identified. The assessment also includes a summary of data gaps and suggestions for future research and monitoring related to air pollution and its effects on resources in the interior Columbia River basin.

  12. Elements for an integrated resource planning in the framework of river basins: a study for the Cuiaba River Basin; Elementos para um planejamento integrado de recursos no ambito de bacias hidrograficas: um estudo para a bacia do rio Cuiaba

    Energy Technology Data Exchange (ETDEWEB)

    Dorileo, Ivo Leandro; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico. Dept. de Energia], e-mail: ildorileo@sigmanet.com.br, e-mail: bajay@fem.unicamp.br

    2008-07-01

    A new approach in energy planning in Brazil, IRP - Integrated Resources Planning for River Basins, gathers three main determinants of development: water, electricity and piped gas. This paper argues, briefly, the need of this planning, of indicative character, integrated with the River Basin Plans, and it presents a retrospective analysis concerning water, electricity and LPG demands of the economy sectors from Cuiaba River Basin region, priority elements to aid the prospective studies and to carry out process related to the IRP. (author)

  13. Conditions and processes affecting sand resources at archeological sites in the Colorado River corridor below Glen Canyon Dam, Arizona

    Science.gov (United States)

    East, Amy E.; Collins, Brian D.; Sankey, Joel B.; Corbett, Skye C.; Fairley, Helen C.; Caster, Joshua J.

    2016-05-17

    This study examined links among fluvial, aeolian, and hillslope geomorphic processes that affect archeological sites and surrounding landscapes in the Colorado River corridor downstream from Glen Canyon Dam, Arizona. We assessed the potential for Colorado River sediment to enhance the preservation of river-corridor archeological resources through aeolian sand deposition or mitigation of gully erosion. By identifying locally prevailing wind directions, locations of modern sandbars, and likely aeolian-transport barriers, we determined that relatively few archeological sites are now ideally situated to receive aeolian sand supply from sandbars deposited by recent controlled floods. Whereas three-fourths of the 358 river-corridor archeological sites we examined include Colorado River sediment as an integral component of their geomorphic context, only 32 sites currently appear to have a high degree of connectivity (coupled interactions) between modern fluvial sandbars and sand-dominated landscapes downwind. This represents a substantial decrease from past decades, as determined by aerial-photograph analysis. Thus, we infer that recent controlled floods have had a limited, and declining, influence on archeological-site preservation.

  14. Natural Gas Resources of the Greater Green River and Wind River Basins of Wyoming (Assessing the Technology Needs of Sub-economic Resources, Phase I: Greater Green River and Wind river Basins, Fall 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, Ray; Douds, Ashley; Pratt, Skip; Rose, Kelly; Pancake, Jim; Bruner, Kathy (EG& G Services); Kuuskraa, Vello; Billingsley, Randy (Advanced Resources International)

    2003-02-28

    In 2000, NETL conducted a review of the adequacy of the resource characterization databases used in its Gas Systems Analysis Model (GSAM). This review indicated that the most striking deficiency in GSAM’s databases was the poor representation of the vast resource believed to exist in low-permeability sandstone accumulations in western U.S. basins. The model’s databases, which are built primarily around the United States Geological Survey (USGS) 1995 National Assessment (for undiscovered resources), reflected an estimate of the original-gas-inplace (OGIP) only in accumulations designated “technically-recoverable” by the USGS –roughly 3% to 4% of the total estimated OGIP of the region. As these vast remaining resources are a prime target of NETL programs, NETL immediately launched an effort to upgrade its resource characterizations. Upon review of existing data, NETL concluded that no existing data were appropriate sources for its modeling needs, and a decision was made to conduct new, detailed log-based, gas-in-place assessments.

  15. Water resources of the Pomme de Terre River Watershed, West-central Minnesota

    Science.gov (United States)

    Cotter, R.D.; Bidwell, L.E.

    1966-01-01

    The watershed is underlain by water-bearing glacial drift, cretaceous rocks, and Precambrian crystalline rocks.  It is an elongate basin 92 miles long and has a drainage area of 977 square miles.  The Pomme de Terre River flows within an outwash valley discharging into the Minnesota River at Marsh Lake.

  16. Sweden in the Delaware Valley: Everyday Life and Material Culture in New Sweden

    DEFF Research Database (Denmark)

    Naum, Magdalena; Ekengren, Fredrik; Zagal Mach Wolfe, Ulla Isabel

    2013-01-01

    In 1637 the Swedish Crown, encouraged by Dutch merchants, developed a plan to establish a colonial outpost in America to tap into profitable tobacco and beaver pelt trade. The same year the first cargo ships left Sweden and sailed westwards to claim their piece of America along the Delaware River......, their perception and interactions with the neighbouring Native American groups. It discusses the ways material culture was used, exchanged and appropriated by the colonists and the local Lenape and Susquehannock in the processes of meeting, negotiations and daily coexistence....

  17. Effect of a Recently Completed Habitat Rehabilitation and Enhancement Project on Fish Abundance in La Grange Pool of the Illinois River Using Long Term Resource Monitoring Program Data

    National Research Council Canada - National Science Library

    O'Hara, Timothy M; McClelland, Michael A; Irons, Kevin S; Cook, Thad R; Sass, Greg G

    2008-01-01

    The Long Term Resource Monitoring Program (LTRMP) fish component monitors fish communities to test for changes in abundances and species composition in six regional trend areas of the Upper Mississippi River System...

  18. Decision support system for optimally managing water resources to meet multiple objectives in the Savannah River Basin

    Science.gov (United States)

    Roehl, Edwin A.; Conrads, Paul

    2015-01-01

    Managers of large river basins face conflicting demands for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin, for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting dependent economies for years. The Savannah River estuary contains two municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor to expand ship traffic since the 1970s have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent. A planned deepening of the harbor includes flow-alteration features to minimize further migration of salinity, whose effectiveness will only be known after all construction is completed.One of the challenges of large basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge, while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of

  19. 77 FR 69490 - Delaware; Emergency and Related Determinations

    Science.gov (United States)

    2012-11-19

    ... determined that the emergency conditions in the State of Delaware resulting from Hurricane Sandy beginning on... areas of the State of Delaware have been designated as adversely affected by this declared emergency... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  20. 76 FR 60850 - Delaware; Emergency and Related Determinations

    Science.gov (United States)

    2011-09-30

    ... determined that the emergency conditions in the State of Delaware resulting from Hurricane Irene beginning on... have been designated as adversely affected by this declared emergency: The entire State of Delaware for... Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and Households in...

  1. Causes and possible solutions to water resource conflicts in the Okavango River Basin: The case of Angola, Namibia and Botswana

    Science.gov (United States)

    Mbaiwa, Joseph E.

    This paper reviews available literature concerning water resources use in the Okavango River Basin (ORB). It describes a number of common arguments regarding possibilities for the emergence of violent conflict in and among Basin states, particularly those states party to the Okavango River Basin Commission (Okacom)-Angola, Botswana and Namibia. The paper presents data concerning present and future water demands and examines a number of formal, institutional steps taken by global and regional actors to facilitate sustainable development, natural resources management and peaceful cooperation in the Basin. Contrary to trends in much of the literature, the paper suggests that there is great scope for enhanced inter-state cooperation in the Basin. It argues that to achieve sustainable utilisation of water resources and avoid violent conflict in the ORB, an integrated management plan for the entire basin needs to be developed. In addition, each basin member-state should observe international and regional conventions and treaties governing the use of water resources when designing national water development projects that require the use of water from the ORB.

  2. Natural Resource Damage Assessment in highly impacted systems: A case study of the Anacostia River oil spill

    International Nuclear Information System (INIS)

    Pinkney, A.E.; Frithsen, J.B.; Burton, W.H.; Scott, L.C.; Siciliano, J.

    1993-01-01

    An approach and case study are presented to assessing natural resource damages due to additional perturbations in highly disturbed systems. The approach involves: (1) defining chemical characteristics unique to the additional perturbation, (2) identifying specific natural resources that may be sensitive to the additional perturbation and the most appropriate sampling period for each, and (3) using existing data to characterize previous conditions. This approach was used to assess the residual effects of a January 1992 spill of 3,400 gallons of number-sign 4 fuel oil in the Anacostia River, Washington, DC. Water quality is poor due to continuing inputs from urban runoff; one upstream tributary (Hickey Run) has a fifty year history of chronic oil spills and stormwater runoff of oil and grease. The challenge was to isolate possible spill impacts from those due to chronic pollutant inputs. GC/FID fingerprinting analyses were used to characterize spill material and hydrocarbons found in the spill area and two adjacent reference areas. Fish larvae (ichthyoplankton) and benthic invertebrates were identified as biological resources most likely to demonstrate residual effects. Results indicated that there were insignificant amounts of the hydrocarbons from the spill in the water, sediments, and biota of the river, and no residual impacts on biological resources could be identified

  3. Resource implications of listing Columbia River Basin salmon stocks under the endangered species act

    International Nuclear Information System (INIS)

    Velehradsky, J.E.

    1993-01-01

    The Columbia River and Snake River dams and reservoirs provide substantial benefits in the Northwest through their operation for hydropower, flood control, irrigation, navigation, and fish and wildlife. The listing of certain Snake River salmon stocks as endangered and threatened, under provisions of the Endangered Species Act, has surfaced major public policy issues. Protection and enhancement of these salmon stocks has resulted in proposals to significantly modify the operation of the reservoir projects. Implementation of these proposals could have significant economic, environmental and social impacts in the region

  4. Hydrological assessment of freshwater resource areas in the Zambezi River Basin

    CSIR Research Space (South Africa)

    Mwenge Kahinda, Jean-Marc

    2012-10-01

    Full Text Available characterisation of the degree of regulation of the river system, followed by an assessment of high water yielding areas (water towers), groundwater recharge and base flow index. To understand the environmental patterns and processes that occur in the river... to hydrogeology, IAH Publ. 8, Verlag Heinz Heisse. Xu, Y. and Beekman, H.E. (Eds). 2003. Groundwater recharge estimation in southern Africa. UNESCO IHP Series No. 64. UNESCO Paris. Figure 1: The Zambezi River Basin and its 13 sub basins Figure 3: High water...

  5. Cultural Resources Survey, Harry S. Truman Dam and Reservoir Project, Missouri. Volume 1. Historical Resources: Chronology of Osage River History.

    Science.gov (United States)

    1983-02-01

    Osages." Wilkinson wrote, "P. Chouteau ... is desirous to be the S 37 efficient man in all affairs Indian, and therefore dreads a Rival or competitor ...been decimated by the early 1820’s was making a fast comeback so that 0 when white settlers arrived in this " virgin " land in great numbers in the late...now take holiday fishing trips on the Osage River or enjoy the waters at one the many popular mineral springs in the valley 43 They were welcomed. This

  6. Drought assessment in the Dongliao River basin: traditional approaches vs. generalized drought assessment index based on water resources systems

    Science.gov (United States)

    Weng, B. S.; Yan, D. H.; Wang, H.; Liu, J. H.; Yang, Z. Y.; Qin, T. L.; Yin, J.

    2015-08-01

    Drought is firstly a resource issue, and with its development it evolves into a disaster issue. Drought events usually occur in a determinate but a random manner. Drought has become one of the major factors to affect sustainable socioeconomic development. In this paper, we propose the generalized drought assessment index (GDAI) based on water resources systems for assessing drought events. The GDAI considers water supply and water demand using a distributed hydrological model. We demonstrate the use of the proposed index in the Dongliao River basin in northeastern China. The results simulated by the GDAI are compared to observed drought disaster records in the Dongliao River basin. In addition, the temporal distribution of drought events and the spatial distribution of drought frequency from the GDAI are compared with the traditional approaches in general (i.e., standard precipitation index, Palmer drought severity index and rate of water deficit index). Then, generalized drought times, generalized drought duration, and generalized drought severity were calculated by theory of runs. Application of said runs at various drought levels (i.e., mild drought, moderate drought, severe drought, and extreme drought) during the period 1960-2010 shows that the centers of gravity of them all distribute in the middle reaches of Dongliao River basin, and change with time. The proposed methodology may help water managers in water-stressed regions to quantify the impact of drought, and consequently, to make decisions for coping with drought.

  7. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  8. The Courts, the Legislature, and Delaware's Resegregation: A Report on School Segregation in Delaware, 1989-­2010

    Science.gov (United States)

    Niemeyer, Arielle

    2014-01-01

    Delaware's history with school desegregation is complicated and contradictory. The state both advanced and impeded the goals of "Brown v. Board of Education." After implementing desegregation plans that were ineffective by design, Delaware was ultimately placed under the first metropolitan, multi-district desegregation court order in the…

  9. Hydrography - RIVERS_OUTSTANDING_NRC_IN: Outstanding Rivers in Indiana Listed by the Natural Resource Commission (Bernardin-Lochmueller and Associates, 1:100,000, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — RIVERS_OUTSTANDING_NRC_IN represents river and stream segments on the NRC’s Outstanding Rivers list for Indiana. The source data was last updated in October 1997....

  10. Deciphering Paria and Little Colorado River flood regimes and their significance in multi-objective adaptive management strategies for Colorado River resources in Grand Canyon

    Science.gov (United States)

    Jain, S.; Topping, D. J.; Melis, T. S.

    2014-12-01

    Planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCDAMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, sandbars, recreational trout angling, endangered native fish, whitewater rafting, and other sociocultural resources of Glen Canyon National Recreation Area and Grand Canyon National Park. In this context, use of monitored and predictive information on warm-season Paria River floods (JUL-OCT, at point-to-regional scales) has been identified as lead information for a new 10-year long controlled flooding experiment (termed the High-Flow Experiment Protocol) intended to determine management options for rebuilding and maintaining sandbars below Glen Canyon Dam; an adaptive strategy that can potentially facilitate improved planning and dam operations. In this work, we focus on a key concern identified by the GCDAMP, related to the timing and volume of warm season tributary sand input from the Paria River into the Colorado River in Grand Canyon National Park. The Little Colorado River is an important secondary source of sand inputs to Grand Canyon, but its lower segment is also critical spawning habitat for the endangered humpback chub. Fish biologists have reported increased abundance of chub juveniles in this key tributary in summers following cool-season flooding (DEC-FEB), but little is known about chub spawning substrates and behavior or the role that flood frequency in this tributary may play in native fish population dynamics in Grand Canyon. Episodic and intraseasonal variations (with links to equatorial and sub-tropical Pacific sea surface temperature variability) in southwest hydroclimatology are investigated to understand the magnitude, timing and spatial scales of warm- and cool-season floods from these two important tributaries of the semi-arid Colorado Plateau. Coupled variations of floods (magnitude and timing) from these rivers are also

  11. Water resources protection today: end-of-pipe technology and cleaner production. Case study of the Czech Odra River watershed.

    Science.gov (United States)

    Chour, V

    2001-01-01

    This paper reports on integrated watershed-based protection and sustainable use of water resources to increase the effectiveness of water pollution abatement. The approach includes improvements in end-of-pipe waste-water treatment technologies and implementation of Cleaner Production (CP) principles and policies within the watershed. An example of the general effectiveness of this approach is illustrated by the Czech Odra River Cleaner Production Project where reductions in pollution were achieved with improved industrial production. The CP theme is worth considering as an important challenge for the IWA.

  12. Environment, poverty and health linkages in the Wami River basin: A search for sustainable water resource management

    Science.gov (United States)

    Madulu, Ndalahwa F.

    The Wami Rivers basin is an important area due to its diversified use which benefits a multi-diversity of stakeholders. While large scale irrigated sugar production is the main issue of concern upstream, there are other equally important socio-economic activities which include biodiversity and environmental conservation, domestic water supply, livestock water needs, and fishing. A large water supply project has just been completed downstream of the Wami River to provide water for the Chalinze township and surrounding villages. Other important undertakings include irrigated rice farming in Dakawa area, livestock keeping activities, and the establishment of the Sadani National Park (SANAPA) and the Wami-Mbiki Wildlife Management Area (WMA). The Wami River basin forms significant parts of both the Wami-Mbiki WMA and the SANAPA wildlife conservation areas. Regardless of its importance, the basin is increasingly being degraded through deforestation for agricultural expansion, timber, and more important charcoal making. The basin is also being polluted through disposal of excess molasses from the sugar industry, and use of poisonous substances and herbs in fishing. The worsening environmental condition in the basin has become a health threat to both people in the surrounding villages and wildlife. To a large extent, such changes are intensifying poverty levels among the local population. These changes are raising concerns about the long-term environmental sustainability and health implications of the current water use competition and conflicts in the basin. The purpose of this paper is to examine the main water resource use conflicts and how they affect environmental sustainability in the long-run. It also intends to establish linkages between wildlife management, pastoralism, agricultural activities and how such linkages influence poverty alleviation efforts in the basin. An attempt has been made to examine the environmental and health implications of human activities

  13. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  14. CONFLICT OF AQUATIC RESOURCES AND ITS UNDERLYING CAUSES: A CASE STUDY FROM DONAN RIVER AREA, SEGARA ANAKAN REGION, CILACAP, CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    Taufik Budhi Pramono

    2009-04-01

    Full Text Available This research aimed to know internally conflict on the use of aquatic  resources at around Donan River, Segara Anakan region Cilacap.  Using on fisheries resources was not free against potential conflict among the user or with its interest’s one related to that resources.  The lack on capability of identified conflict would be a limiting factor for the implementation on the fisheries resources management program.  The research was hold in the region of Segara Anakan, Donan River from August until October 2005.  The data collection techniques applied in this survey included questionnaire; observation; in-depth interview with leaders of fisherman organizations; and focus group discussion. Quantitative data was analyzed by descriptive statistics.  The research showed that fisherman’s community along Donan River line were not out of inside potentially conflict among inter micro-micro, intra micro-micro and intra micro-macro.  This potential conflict were appeared because of presence on the different perception belong to its authority access against Donan River and their open system on the fisheries resources management.Keywords : Conflict, Donan River, Aquatic Resources, Fisherman Community

  15. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    Directory of Open Access Journals (Sweden)

    Francisco Suárez

    2014-08-01

    Full Text Available Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeholders and water users face an intense competition for limited freshwater resources. This work develops an integrated water resource management model to investigate the water-energy nexus in reducing water stress in the Copiapó River basin, an arid, highly vulnerable basin in northern Chile. The model was utilized to characterize groundwater and surface water resources, and water demand and uses. Different management scenarios were evaluated to estimate future resource availability, and compared in terms of energy requirements and costs for desalinating seawater to eliminate the corresponding water deficit. Results show a basin facing a very complex future unless measures are adopted. When a 30% uniform reduction of water consumption is achieved, 70 GWh over the next 30 years are required to provide the energy needed to increase the available water through seawater desalination. In arid basins, this energy could be supplied by solar energy, thus addressing water shortage problems through integrated water resource management combined with new technologies of water production driven by renewable energy sources.

  16. Water resources of the Yadkin-Pee Dee River Basin, North Carolina

    Science.gov (United States)

    Fish, Robert Eugene; LeGrand, H.E.; Billingsley, G.A.

    1957-01-01

    Sufficient water is available in the basin of the Yadkin and Pee Dee Rivers to meet present requirements and those for many years to come if water use increases at about the present rate. Data presented in this report show that the average annual streamflow from approximately 82 percent of the basin area during the 25-year period, 1929-53, was about 6,200 mgd, representing essentially the total available water supply. Comparison of the available water supply to the estimated withdrawal use (excluding water power) of both surface and ground water of 600 mgd indicates the relative utilization of the water resources of the basin at present. If proper pollution controls are observed and practiced so that water in the various streams may be reused several times, the potential water available is even greater than indicated by the above comparison. Preliminary studies indicate that the quantity of water now being withdrawn from ground-water reservoirs in the basin is only a fraction of the total that may be obtained from this source. Twenty-eight of the 64 municipalities having public water-supply systems use surface water; however, as the largest cities in the area use surface supplies, about 85 percent of the water used for public supplies is from surface sources. Of the 20 complete-record stream-gaging stations now in operation in this area 7 have been in operation for 24 years or longer. Periodic measurements of the rate of flow have been made at 31 additional sites on streams scattered widely over the basin. All available streamflow data including those for 1953 are summarized in either graphic or tabular form, or both. Because of the critically low flows occurring during the drought of 1954, several illustrations include data for 1954 and the early months of 1955 for comparison with the minima of previous years. Adequate water for domestic use is available from wells throughout the basin. The consolidated rocks of the Piedmont furnish water for small industries and

  17. Water Accounting Plus for Water Resources Reporting and River Basin Planning

    NARCIS (Netherlands)

    Karimi, P.

    2014-01-01

    This thesis introduces Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. WA+ is a simple, yet comprehensive and understandable water accounting framework that provides a

  18. Timber resource statistics for the Copper River inventory unit, Alaska, 1968.

    Science.gov (United States)

    Karl M. Hegg

    1975-01-01

    This first intensive forest inventory of Alaska's Copper River Valley found a commercial forest area of 287,800 acres with 303.8 million cubic feet of growing stock. Additionally, a noncommercial stratum was examined that had substantial standing volume but did not meet the growth criteria for commercial forest land. This stratum contained 152,800 acres with a...

  19. The non-fisheries biological resources of the Hanford reach of the Columbia River

    International Nuclear Information System (INIS)

    Rickard, W.H.; Hanson, W.C.; Fitzner, R.E.

    1982-01-01

    The Hanford Reach is the only undammed segment of the Columbia River in the United States upstream from Bonneville Dam. The non-agricultural and non-recreational land-use policies imposed by the Department of Energy have permitted the Hanford Site to function as a refugium for wildlife for 35 years. The protection offered by the Hanford Site has been especially important for the Bald Eagle (Haliaeetus leurocephalus), mule deer (Odocileus hemionus), coyote (Canis latrans), and resident Great Basin Canada Goose (Branta canadensis moffitti). Island habitats are especially important for nesting geese and for mule deer fawning. Coyotes are important predators upon nesting geese and mule deer fawns. Salmon carcasses are an important winter food for Bald Eagles. Riparian plant communities along the Columbia River have been changing in response to changing water level fluctuations largely regulated by power generation schedules at upstream hydroelectric dams. There are no studies presently established to record the response of Columbia River shoreline plant communities to these kinds of fluctuating water levels. The existing information is summarized on birds and mammals closely allied with the Hanford Reach of the Columbia River. High trophic level wild animals are discussed as indicators of chemical contamination of food chains

  20. Concerning human well-being and ecosystems sustainability on water resources management for Qishan River

    Science.gov (United States)

    Wang, C. Y.; Ho, C. C.; Chang, L. C.

    2016-12-01

    There are no large hydraulic structures in Qishan River cause the less human interference than other major river in Taiwan. However, the aquatic habitats still suffer disturbance from the discharge changes greatly between wet and drought season, and Jiaxian Weir and Yuemei Weir draw surplus water from Qishan River to Nanhua Reservoir and Agongdian Reservoir respectively. The weir operation rule doesn't clear define how much environmental flow should be preserved for maintaining downstream ecological environment. Hence, the study proposes a process for evaluating environmental flow under considering impact on human well-being and ecosystems sustainability. Empirical formula, hydrological, hydraulic and habitat methodologies were used to propose the environmental flow alternatives. Next, water allocation model and Habitat model were used to analysis the impact of environment flow alternatives on human well-being and ecosystems sustainability. The results show the suggested environmental flow in Qishan River is estimated by MAF10%. The environmental flow is between 8.03 10.83 cms during wet season and is between 1.07 1.44cms during wet season. The simulation results also provide the evidence from diverse aspect to help different authorities realized what they get and lose. The information can advance to reach a consensus during negotiations with different authorities and help decision maker make decisions.

  1. Tamarix transpiration along a semiarid river has negligible impact on water resources

    Science.gov (United States)

    McDonald, Alyson K.; Wilcox, Bradford P.; Moore, Georgianne W.; Hart, Charles R.; Sheng, Zhuping; Owens, M. Keith

    2015-07-01

    The proliferation of saltcedar (Tamarix spp.) along regulated rivers in the western United States has transformed riparian plant communities. It is commonly assumed that transpiration by these alien plants has led to large losses of water that would otherwise contribute to streamflow. Control of saltcedar, therefore, has been considered a viable strategy for conserving water and increasing streamflow in these regions. In an effort to better understand the linkage between transpiration by saltcedar and streamflow, we monitored transpiration, stream stage, and groundwater elevations within a saltcedar stand along the Pecos River during June 2004. Transpiration, as determined by sap flow measurements, exhibited a strong diel pattern; stream stage did not. Diel fluctuations in groundwater levels were observed, but only in one well, which was located in the center of the saltcedar stand. In that well, the correlation between maximal transpiration and minimal groundwater elevation was weak (R2 = 0.16). No effects of transpiration were detected in other wells within the saltcedar stand, nor in the stream stage. The primary reason, we believe, is that the saltcedar stand along this reach of the Pecos River has relatively low sapwood area and a limited spatial extent resulting in very low transpiration compared with the stream discharge. Our results are important because they provide a mechanistic explanation for the lack of increase in streamflow following large-scale control of invasive trees along semiarid rivers.

  2. QMRAcatch - faecal microbial quality of water resources in a river-floodplain area affected by urban sources and recreational visitors

    Science.gov (United States)

    Derx, Julia; Schijven, Jack; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas H.; Blaschke, Alfred Paul

    2016-04-01

    QMRAcatch, a tool to simulate microbial water quality including infection risk assessment, was previously developed and successfully tested at a Danube river site (Schijven et al. 2015). In the tool concentrations of target faecal microorganisms and viruses (TMVs) are computed at a point of interest (PI) along the main river and the floodplain river at daily intervals for a one year period. Even though faecal microbial pathogen concentrations in water resources are usually below the sample limit of detection, this does not ensure, that the water quality complies with a certain required health based target. The aim of this study was therefore to improve the predictability of relevant human pathogenic viruses, i.e. enterovirus and norovirus, in the studied river/floodplain area. This was done by following an innovative calibration strategy based on human-associated microbial source tracking (MST) marker data which were determined following the HF183 TaqMan assay (Green et al. 2011). The MST marker is strongly associated with human faeces and communal sewage, occurring there in numbers by several magnitudes higher than for human enteric pathogens (Mayer et al 2015). The calibrated tool was then evaluated with measured enterovirus concentrations at the PI and in the floodplain river. In the simulation tool the discharges of 5 wastewater treatment plants (WWTPs) were considered with point discharges along a 200 km reach of the Danube river. The MST marker and target virus concentrations at the PI at a certain day were computed based on the concentrations of the previous day, plus the wastewater concentrations times the WWTP discharge divided by the river discharge. A ratio of the river width was also considered, over which the MST marker and virus particles have fully mixed with river water. In the tool, the excrements from recreational visitors frequenting the floodplain area every day were assumed to be homogeneously distributed in the area. A binomial distributed

  3. Water resources data, Idaho, 2002; Volume 2. Upper Columbia River basin and Snake River basin below King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.

    2003-01-01

    Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  4. Superficial Water Resource at Tempisque River Watershed, Costa Rica: Availability and Requirement Perspective

    OpenAIRE

    Guzmán-Arias, Isabel

    2014-01-01

    This paper describes the status of water resources availability and demand in the upper and middle Tempisque watershed projected up to 2030 and the proposed actions to start a planning process. The resource availability scenarios incorporate the modifications inwater flows due to land use and cli­mate changes; these combined effects increases the problems of water shortages during the dry season. The resource demand scenarios include projections provided by the major users in the watershed, o...

  5. Superficial Water Resource at Tempisque River Watershed, Costa Rica: Availability and Requirement Perspective

    OpenAIRE

    Isabel Guzmán-Arias

    2014-01-01

    This paper describes the status of water resources availability and demand in the upper and middle Tempisque watershed projected up to 2030 and the proposed actions to start a planning process. The resource availability scenarios incorporate the modifications inwater flows due to land use and cli­mate changes; these combined effects increases the problems of water shortages during the dry season. The resource demand scenarios include projections provided by the major users in the watershe...

  6. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins

    Science.gov (United States)

    Li, Xin; Cheng, Guodong; Ge, Yingchun; Li, Hongyi; Han, Feng; Hu, Xiaoli; Tian, Wei; Tian, Yong; Pan, Xiaoduo; Nian, Yanyun; Zhang, Yanlin; Ran, Youhua; Zheng, Yi; Gao, Bing; Yang, Dawen; Zheng, Chunmiao; Wang, Xusheng; Liu, Shaomin; Cai, Ximing

    2018-01-01

    Endorheic basins around the world are suffering from water and ecosystem crisis. To pursue sustainable development, quantifying the hydrological cycle is fundamentally important. However, knowledge gaps exist in how climate change and human activities influence the hydrological cycle in endorheic basins. We used an integrated ecohydrological model, in combination with systematic observations, to analyze the hydrological cycle in the Heihe River Basin, a typical endorheic basin in arid region of China. The water budget was closed for different landscapes, river channel sections, and irrigation districts of the basin from 2001 to 2012. The results showed that climate warming, which has led to greater precipitation, snowmelt, glacier melt, and runoff, is a favorable factor in alleviating water scarcity. Human activities, including ecological water diversion, cropland expansion, and groundwater overexploitation, have both positive and negative effects. The natural oasis ecosystem has been restored considerably, but the overuse of water in midstream and the use of environmental flow for agriculture in downstream have exacerbated the water stress, resulting in unfavorable changes in surface-ground water interactions and raising concerns regarding how to fairly allocate water resources. Our results suggest that the water resource management in the region should be adjusted to adapt to a changing hydrological cycle, cropland area must be reduced, and the abstraction of groundwater must be controlled. To foster long-term benefits, water conflicts should be handled from a broad socioeconomic perspective. The findings can provide useful information on endorheic basins to policy makers and stakeholders around the world.

  7. Delaware River Dredging Disposal Study, Stage 1 Reconnaissance Report.

    Science.gov (United States)

    1979-06-01

    Ep1iAiu rupILcoa (Kurtz 1860) C x FamilIy Ca Iyp tra oi dae C rmep-idu. Ia fon- nic -tal (Linne 1758) S Crepiduloa convexad Say 1822 SF x x Crepidula...Penn’s home. This reconstruction, based on Penn’s correspondence, was constructed in 1939. Nat. Reg. PB 01 Andalusia (Nicholas Biddle Estate) Pa32...earlier structure. Nicholas Biddle politician and financier of the Revolution designed the classical motif and lived here. NHL. PB 28 St. Elizabeth’s

  8. Significance of direct and indirect impacts of climate change on groundwater resources in the Olifants River basin: A review

    Science.gov (United States)

    Nkhonjera, German K.; Dinka, Megersa O.

    2017-11-01

    This paper considers the extent and usefulness of reviewing existing literature on the significance of direct and indirect impacts of climate change on groundwater resources with emphasis on examples from the Olifants River basin. Here, the existing literature were extensively reviewed, with discussions centred mainly on the impacts of climate change on groundwater resources and challenges in modelling climate change impacts on groundwater resources. Since in the hydrological cycle, the hydrological components such as evaporation, temperature, precipitation, and groundwater, are the major drivers of the present and future climate, a detailed discussion is done on the impact of climate change on these hydrological components to determine to what extent the hydrological cycle has already been affected as a result of climate change. The uncertainties, constraints and limitations in climate change research have also been reviewed. In addition to the research gaps discussed here, the emphasis on the need of extensive climate change research on the continent, especially as climate change impacts on groundwater, is discussed. Overall, the importance of conducting further research in climate change, understanding the significance of the impact of climate change on water resources such as groundwater, and taking actions to effectively meet the adaptation needs of the people, emerge as an important theme in this review.

  9. THE UTILIZATION OF THE WATER RESOURCES OF NISTRU RIVER WITHIN THE REPUBLIC OF MOLDOVA

    Directory of Open Access Journals (Sweden)

    V. MOCREAC

    2016-03-01

    Full Text Available On the basis of the studies regarding the water funds, the regimes and characteristics of the flow of river Nistru, those internal larger and smaller ones, taking into consideration what basins exist and the ones with perspective can demonstrate the hydroenergetic potential values of the Republic of Moldova currently and for an extended period of time.The basic variant of the scheme of arrangement on Nistru r. on the basis of the requirements of today’s impact on the environment, the ecological flows, hydroenergetic equipments chosen for the parameters of sufficient operation, and the hydrotechnical unit must have an appearance of a complex utilization. The assurances of the flows and head of the hydro-electric plants with operation in cascade on rivers is caused by the strength of given data and the hydrologic calculations after interstate normatives applied now.

  10. NOAA Ship Delaware II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Delaware II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  11. Delaware Anatomy: With Linguistic, Social, and Medical Aspects

    Science.gov (United States)

    Miller, Jay

    1977-01-01

    Presents the comprehensive partonomy of anatomy in Unami Lenape or Delaware as provided by a modern Unami specialist. The primary referent is the human body, but some comparative terms referring to animals and plants are also provided. (CHK)

  12. Superficial Water Resource at Tempisque River Watershed, Costa Rica: Availability and Requirement Perspective

    Directory of Open Access Journals (Sweden)

    Isabel Guzmán-Arias

    2014-03-01

    Full Text Available This paper describes the status of water resources availability and demand in the upper and middle Tempisque watershed projected up to 2030 and the proposed actions to start a planning process. The resource availability scenarios incorporate the modifications inwater flows due to land use and cli­mate changes; these combined effects increases the problems of water shortages during the dry season. The resource demand scenarios include projections provided by the major users in the watershed, of which very few can envision growth expectations in terms of water consumption. The proposed resource planning process integrates the analysis conducted in this thesis and tries to identify the basic steps to be followed for the pro­per management of the resource in the future.

  13. Catchment2Coast: making the link between coastal resource variability and river inputs

    CSIR Research Space (South Africa)

    Monteiro, P

    2003-07-01

    Full Text Available groundwater quantity (flow) and quality (nutrients) on mangrove habitat. The development phase will include a literature review on current understanding of groundwater contribu- tions to tropical estuarine and mangrove ecosystems. The model will use...–estuarine hydrodynamics and physical processes in Maputo Bay A validated hydrodynamic modelling system with two-way nesting of the estu- ary, mangrove, bay and coastal system at Maputo will not only facilitate an investi- gation of the influence of river flow...

  14. Inventory and Evaluation of Engineering Cultural Resources: Montgomery to Gadsden, Alabama Coosa River, Alabama,

    Science.gov (United States)

    1981-03-01

    to retain some of its aesthetic quality. Important bridges were also being constructed outside of France. The Westminister Bridge (1738-50) was built... Legislative Session. It was eventually to connect the waters of Mobile Bay with the Coosa River at Wetumpka, and eventually with the Tennessee. The project...Bridge Act of 1927 were important legislative aids. The state act resulted in the construction of fifteen major bridges, including the attractive

  15. Endangered Species and Irrigated Agriculture, Water Resource Competition in Western River Systems

    OpenAIRE

    United States Department of Agriculture, Economic Research Service

    1995-01-01

    This report characterizes several aspects of water allocation tradeoffs between fish species listed under the Federal Endangered Species Act and agriculture in the American West. The geographic intersection between endangered/threatened (E/T) fish and agricultural production reliant on surface water for irrigation is identified. Three findings are: (1) 235 counties, representing 22 percent of the West's counties, contain irrigated production that relies on water from rivers with E/T fish, ...

  16. Habitat and hydrology: assessing biological resources of the Suwannee River Estuarine System

    Science.gov (United States)

    Raabe, Ellen A.; Edwards, Randy E.; McIvor, Carole C.; Grubbs, Jack W.; Dennis, George D.

    2007-01-01

    The U.S. Geological Survey conducted a pilot integrated-science study during 2002 and 2003 to map, describe, and evaluate benthic and emergent habitats in the Suwannee River Estuary on the Gulf Coast of Florida. Categories of aquatic, emergent, and terrestrial habitats were determined from hyperspectral imagery and integrated with hydrologic data to identify estuarine fish habitats. Maps of intertidal and benthic habitat were derived from 12-band, 4-m resolution hyperspectral imagery acquired in September 2002. Hydrologic data were collected from tidal creeks during the winter of 2002-03 and the summer-fall of 2003. Fish were sampled from tidal creeks during March 2003 using rivulet nets, throw traps, and seine nets. Habitat characteristics, hydrologic data, and fish assemblages were compared for tidal creeks north and south of the Suwannee River. Tidal creeks north of the river had more shoreline edge and shallow habitat than creeks to the south. Tidal creeks south of the river were generally of lower salinity (fresher) and supported more freshwater marsh and submerged aquatic vegetation. The southern creeks tended to be deeper but less sinuous than the northern creeks. Water quality and inundation were evaluated with hydrologic monitoring in the creeks. In-situ gauges, recording pressure and temperature, documented a net discharge of brackish to saline groundwater into the tidal creeks with pronounced flow during low tide. Groundwater flow into the creeks was most prominent north of the river. Combined fish-sampling results showed an overall greater abundance of organisms and greater species richness in the southern creeks, nominally attributed a greater range in water quality. Fish samples were dominated by juvenile spot, grass shrimp, bay anchovy, and silverside. The short time frame for hydrologic monitoring and the one-time fish-sampling effort were insufficient for forming definitive conclusions. However, the combination of hyperspectral imagery and

  17. Designing virtual science labs for the Islamic Academy of Delaware

    Science.gov (United States)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  18. Application and utility of a low-cost unmanned aerial system to manage and conserve aquatic resources in four Texas rivers

    Science.gov (United States)

    Birdsong, Timothy W.; Bean, Megan; Grabowski, Timothy B.; Hardy, Thomas B.; Heard, Thomas; Holdstock, Derrick; Kollaus, Kristy; Magnelia, Stephan J.; Tolman, Kristina

    2015-01-01

    Low-cost unmanned aerial systems (UAS) have recently gained increasing attention in natural resources management due to their versatility and demonstrated utility in collection of high-resolution, temporally-specific geospatial data. This study applied low-cost UAS to support the geospatial data needs of aquatic resources management projects in four Texas rivers. Specifically, a UAS was used to (1) map invasive salt cedar (multiple species in the genus Tamarix) that have degraded instream habitat conditions in the Pease River, (2) map instream meso-habitats and structural habitat features (e.g., boulders, woody debris) in the South Llano River as a baseline prior to watershed-scale habitat improvements, (3) map enduring pools in the Blanco River during drought conditions to guide smallmouth bass removal efforts, and (4) quantify river use by anglers in the Guadalupe River. These four case studies represent an initial step toward assessing the full range of UAS applications in aquatic resources management, including their ability to offer potential cost savings, time efficiencies, and higher quality data over traditional survey methods.

  19. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  20. Water resources in the Big Lost River Basin, south-central Idaho

    Science.gov (United States)

    Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.

    1970-01-01

    The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the

  1. Impact modelling of water resources development and climate scenarios on Zambezi River discharge

    Directory of Open Access Journals (Sweden)

    Harald Kling

    2014-07-01

    New hydrological insights for the region: Comparisons between historical and future scenarios show that the biggest changes have already occurred. Construction of Kariba and CahoraBassa dams in the mid 1900s altered the seasonality and flow duration curves. Future irrigation development will cause decreases of a similar magnitude to those caused by current reservoir evaporation losses. The discharge is highly sensitive to small precipitation changes and the two climate models used give different signs for future precipitation change, suggestive of large uncertainty. The river basin model and database are available as anopen-online Decision Support System to facilitate impact assessments of additional climate or development scenarios.

  2. Use of aerial videography to evaluate the effects of Flaming Gorge Dam operations on natural resources of the Green River

    International Nuclear Information System (INIS)

    Snider, M.A.; Hayse, J.W.; Hlohowskyj, I.; LaGory, K.E.; Greaney, M.M.; Kuiper, J.A.; Van Lonkhuyzen, R.A.

    1993-01-01

    Peaking hydropower operations can profoundly alter natural stream flow and thereby affect the natural resources dependent on these flows. In this paper, we describe how aerial videography was used to collect environmental data and evaluate impacts of hydropower operations at Flaming Gorge Dam on natural resources of the Green River. An airborne multispectral video/radiometer remote sensing system was used to collect resource data under four different flow conditions from seven sites (each about one mile in length) located downstream from the dam. Releases from Flaming Gorge Dam during data collection ranged from approximately 800 to 4,000 cubic feet/sec (cfs), spanning most of the normal operating range for this facility. For each site a series of contiguous, non-overlapping images was prepared from the videotapes and used to quantify surface water area, backwater habitats, and areas of riparian vegetation under varying flow conditions. From this information, relationships between flow and habitat parameters were developed and used in conjunction with hydrologic modeling and ecological information to evaluate impacts of various modes of operation

  3. Implementation of a framework for multi-species, multi-objective adaptive management in Delaware Bay

    Science.gov (United States)

    McGowan, Conor P.; Smith, David R.; Nichols, James D.; Lyons, James E.; Sweka, John A.; Kalasz, Kevin; Niles, Lawrence J.; Wong, Richard; Brust, Jeffrey; Davis, Michelle C.; Spear, Braddock

    2015-01-01

    Decision analytic approaches have been widely recommended as well suited to solving disputed and ecologically complex natural resource management problems with multiple objectives and high uncertainty. However, the difference between theory and practice is substantial, as there are very few actual resource management programs that represent formal applications of decision analysis. We applied the process of structured decision making to Atlantic horseshoe crab harvest decisions in the Delaware Bay region to develop a multispecies adaptive management (AM) plan, which is currently being implemented. Horseshoe crab harvest has been a controversial management issue since the late 1990s. A largely unregulated horseshoe crab harvest caused a decline in crab spawning abundance. That decline coincided with a major decline in migratory shorebird populations that consume horseshoe crab eggs on the sandy beaches of Delaware Bay during spring migration. Our approach incorporated multiple stakeholders, including fishery and shorebird conservation advocates, to account for diverse management objectives and varied opinions on ecosystem function. Through consensus building, we devised an objective statement and quantitative objective function to evaluate alternative crab harvest policies. We developed a set of competing ecological models accounting for the leading hypotheses on the interaction between shorebirds and horseshoe crabs. The models were initially weighted based on stakeholder confidence in these hypotheses, but weights will be adjusted based on monitoring and Bayesian model weight updating. These models were used together to predict the effects of management actions on the crab and shorebird populations. Finally, we used a dynamic optimization routine to identify the state dependent optimal harvest policy for horseshoe crabs, given the possible actions, the stated objectives and our competing hypotheses about system function. The AM plan was reviewed, accepted and

  4. Delaware Estuary situation reports. Emergency response: How do emergency management officials address disasters in the Delaware Estuary

    International Nuclear Information System (INIS)

    Sylves, R.T.

    1991-01-01

    From hurricanes and other natural threats to oil spills and other manmade emergencies, the Delaware Estuary has experienced a variety of disasters over the years. The toll that these events take on the estuary and those who live on its shores depends largely upon the degree of emergency preparedness, speed of response, and effectiveness of recovery operations. In Emergency Response: How Do Emergency Management Officials Address Disasters in the Delaware Estuary, the latest addition to its Delaware Estuary Situation Report series, the University of Delaware Sea Grant College Program defines emergency management; examines the roles that the Coast Guard, Army Corps of Engineers, and Environmental Protection Agency play in an emergency; and reviews how each of these federal agencies operated during an actual disaster--the 1985 Grand Eagle oil spill. The report was written by Dr. Richard T. Sylves, a professor of political science at the University of Delaware. Sylves has been studying emergency management for the past 15 years, with special emphasis on oil spill preparedness and response in the Mid-Atlantic Region. The Delaware Estuary Situation Report is 12 pages long and contains maps and photographs, as well as a detailed account of response and recovery operations undertaken during the Grand Eagle oil spill. A comparison of the 1985 Grand Eagle spill and the 1989 Presidente Rivera spill also is included

  5. Ground-water resources of the Sevier River basin between Yuba Dam and Leamington Canyon, Utah

    Science.gov (United States)

    Bjorklund, Louis Jay; Robinson, Gerald B.

    1968-01-01

    The area investigated is a segment of the Sevier River basin, Utah, comprising about 900 square miles and including a 19-mile reach of the Sevier River between Yuba Dam and Leamington Canyon. The larger valleys in the area are southern Juab, Round, and Scipio Valleys. The smaller valleys are Mills, Little, Dog, and Tinctic Wash Valleys.The geology of parts of Scipio, Little, and Mills Valleys and parts of the surrounding highlands was mapped and studied to explain the occurrence of numerous sinkholes in the thre valleys and to show their relation to the large springs in Mills Valley. The sinkholes, which are formed in the alluvium, are alined along faults, which penetrate both the alluvium and the underlying bedrock, and they have been formed by collapse of solution cavities in the underlying bedrock. The bedrock is mostly sandy limestone beds of the upper part of the North Horn Formation and of the Flagstaff Limestone. The numerous faults traversing Scipio Valley in a north-northeasterly direction trend directly toward Molter and Blue Springs in Mills Valley. One fault, which can be traced directly between the springs, probably is the principal channelway for the ground water moving from Scipio and Little Valleys to the springs.

  6. Analysis of the Water Resources on Baseflow River Basin in Jeju Island, Korea

    Science.gov (United States)

    Yang, S.-K.; Jung, W.-Y.; Kang, M.-S.

    2012-04-01

    Jeju Island is a volcanic island located at the southernmost of Korea, and is the heaviest raining area in Korea, but due to its hydrological / geological characteristics different from those of inland areas, most streams are of the dry form, and it relies on groundwater for water resources. As for some streams, however, springwater is discharged at a point near the downstream of the final discharge to maintain the flow of the stream; this has been developed as the source for water supply since the past, but the studies on detail observations and analysis are yet inadequate. This study utilizes the ADCP (Acoustic Doppler Current Profiler) hydrometer to regularly observe the flow amount of base run-off stream, and the water resources of base discharge basin of Jeju Island were analyzed using the SWAT (Soil & Water Assessment Tool) model. The detail water resource analysis study using modeling and site observation with high precision for Jeju Island water resources is expected to become the foundation for efficient usage and security of water resources against future climate changes.

  7. Application of Water Evaluation and Planning Model for Integrated Water Resources Management: Case Study of Langat River Basin, Malaysia

    Science.gov (United States)

    Leong, W. K.; Lai, S. H.

    2017-06-01

    Due to the effects of climate change and the increasing demand on water, sustainable development in term of water resources management has become a major challenge. In this context, the application of simulation models is useful to duel with the uncertainty and complexity of water system by providing stakeholders with the best solution. This paper outlines an integrated management planning network is developed based on Water Evaluation and Planning (WEAP) to evaluate current and future water management system of Langat River Basin, Malaysia under various scenarios. The WEAP model is known as an integrated decision support system investigate major stresses on demand and supply in terms of water availability in catchment scale. In fact, WEAP is applicable to simulate complex systems including various sectors within a single catchment or transboundary river system. To construct the model, by taking account of the Langat catchment and the corresponding demand points, we defined the hydrological model into 10 sub-hydrological catchments and 17 demand points included the export of treated water to the major cities outside the catchment. The model is calibrated and verified by several quantitative statistics (coefficient of determination, R2; Nash-Sutcliffe efficiency, NSE and Percent bias, PBIAS). The trend of supply and demand in the catchment is evaluated under three scenarios to 2050, 1: Population growth rate, 2: Demand side management (DSM) and 3: Combination of DSM and reduce non-revenue water (NRW). Results show that by reducing NRW and proper DSM, unmet demand able to reduce significantly.

  8. Patterns of food resource use by two congeneric species of piranhas (Serrasalmus) on the Upper Paraná River floodplain.

    Science.gov (United States)

    Agostinho, C S; Hahn, N S; Marques, E E

    2003-05-01

    Serrasalmus marginatus invaded the Upper Paraná River after construction of the Itaipu Dam in November 1982. This was followed by a reduction in abundance of the native species S. spilopleura. Analysis of the pattern of food resource use revealed that both species employ the same feeding strategy, eating mainly fish (whole fish or muscle fragments) and fins bitten off their prey. The diurnal activity period and the feeding rhythm were better-defined in S. marginatus. For young individuals of both species, food was taken in a significantly discontinuous manner (F = 2.83; p < 0.05 and F = 13.25; p < 0.05), with a peak at 4 p.m. Ontogenetic differences in diet, the strong feeding overlap of larger individuals of S. marginatus and smaller individuals of S. spilopleura, and the aggressiveness of S. marginatus in establishing feeding territories may have contributed to the success of the invading species.

  9. Patterns of food resource use by two congeneric species of piranhas (Serrasalmus on the upper Paraná river floodplain

    Directory of Open Access Journals (Sweden)

    C. S. Agostinho

    Full Text Available Serrasalmus marginatus invaded the Upper Paraná River after construction of the Itaipu Dam in November 1982. This was followed by a reduction in abundance of the native species S. spilopleura. Analysis of the pattern of food resource use revealed that both species employ the same feeding strategy, eating mainly fish (whole fish or muscle fragments and fins bitten off their prey. The diurnal activity period and the feeding rhythm were better-defined in S. marginatus. For young individuals of both species, food was taken in a significantly discontinuous manner (F = 2.83; p < 0.05 and F = 13.25; p < 0.05, with a peak at 4 p.m. Ontogenetic differences in diet, the strong feeding overlap of larger individuals of S. marginatus and smaller individuals of S. spilopleura, and the aggressiveness of S. marginatus in establishing feeding territories may have contributed to the success of the invading species.

  10. Patterns of food resource use by two congeneric species of piranhas (Serrasalmus on the upper Paraná river floodplain

    Directory of Open Access Journals (Sweden)

    Agostinho C. S.

    2003-01-01

    Full Text Available Serrasalmus marginatus invaded the Upper Paraná River after construction of the Itaipu Dam in November 1982. This was followed by a reduction in abundance of the native species S. spilopleura. Analysis of the pattern of food resource use revealed that both species employ the same feeding strategy, eating mainly fish (whole fish or muscle fragments and fins bitten off their prey. The diurnal activity period and the feeding rhythm were better-defined in S. marginatus. For young individuals of both species, food was taken in a significantly discontinuous manner (F = 2.83; p < 0.05 and F = 13.25; p < 0.05, with a peak at 4 p.m. Ontogenetic differences in diet, the strong feeding overlap of larger individuals of S. marginatus and smaller individuals of S. spilopleura, and the aggressiveness of S. marginatus in establishing feeding territories may have contributed to the success of the invading species.

  11. Savannah River Laboratory semiannual report, April-September 1979. Hydrogeochemical and stream sediment reconnaissance: National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    1979-10-01

    This report summarizes the accomplishments, status, and program of the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. SRL has accepted responsibility for Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of 1,500,000 square miles in 30 eastern and 7 far-western states. The report is a progress report covering the period April 1979 through September 1979. SRL efforts in the following areas are discussed: reconnaissance and detailed studies in geological programs; management, analysis, and interpretation of analytical and field data; reporting of HSSR results; sample preparation methods; and neutron activation analysis and other analytical techniques. Appendix A to the report summarizes the SRL-NURE production of the April 1979-September 1979 period and the program plans for the first half of FY-1980. Page-scale maps are included that show the status of completed sampling, analysis, and data reports placed on open file

  12. Evaluation of water resources monitoring networks: study applied to surface waters in the Macaé River Basin

    Directory of Open Access Journals (Sweden)

    Carolina Cloris Lopes Benassuly

    2012-04-01

    Full Text Available Knowledge of hydrological phenomena is required in water resources monitoring, in order to structure the water management, focusing on ensuring its multiple uses while allowing that resource´s control and conservation. The effectiveness of monitoring depends on adequate information systems design and proper operation conditions. Data acquisition, treatment and analysis are vital for establishing management strategies, thus monitoring systems and networks shall be conceived according to their main objectives, and be optimized in terms of location of data stations. The generated data shall also model hydrological behavior of the studied basin, so that data interpolation can be applied to the whole basin. The present work aimed to join concepts and methods that guide the structuring of hydrologic monitoring networks of surface waters. For evaluating historical series characteristics as well as work stations redundancy, the entropy method was used. The Macaé River Basin’s importance is related to the public and industrial uses of water in the region that is responsible for more than 80% of Brazilian oil and gas production, what justifies the relevance of the research made. This study concluded that despite of its relatively short extension, the Macaé River Basin should have higher monitoring network density, in order to provide more reliable management data. It also depicted the high relevancy of stations located in its upper course.

  13. Water resources inventory of Connecticut Part 10: Lower Connecticut River basin

    Science.gov (United States)

    Weiss, Lawrence A.; Bingham, James W.; Thomas, Mendall P.

    1982-01-01

    The lower Connecticut River basin study area in south-central Connecticut includes 639 square miles and is drained principally by the Connecticut River and by seven smaller streams that flow directly to Long Island Sound between the West River on the west and the Connecticut River on the east. The population in 1979 was estimated to be 210,380. Much of the industrial development and population centers are in the Mattabesset River basin in the northwestern part, and the largest water use is also in the Mattabesset River basin. Precipitation averages 47 inches per year and provides an abundant supply of water. About 20 inches returns to the atmosphere as evapotranspiration, and the remainder either flows directly to streams or percolates to the water table, eventually discharging to Long Island Sound. Small quantities of water are exported from the basin by the New Haven and Meridan Water Departments, and small quantities are imported by the New Britain Water Department and Metropolitan Direct Commission. Precipitation during 1931-60 resulted in an average annual runoff of 302 billion gallons. In inflow from the Connecticut River is added to the average annual runoff, the 4,370 billion gallon s per year is potentially available for water ue. The domestic, institutional, commercial, and industrial (other than cooling water) water use for 1970 was 7 billion gallons, which is only 3 percent of the total water used, whereas 97 percent of the total is cooling water for power plants. Approximately 60 percent of the 7 billion gallons is treated before being discharged back to the streams. The total amount of fresh water used during 1970 was estimated to be 256,000 million gallons (Mgal), of which 247,000 Mgal was used for cooling water at stream electric-generating plants. The quantity for domestic, commercial, industrial, and agricultural used was 9,000 Mgal, which was approximately 120 gallons a day per person. Public water systems providing 70 percent of these

  14. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Delaware. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Delaware.

  15. Integrated Water Resources Management: contrasting principles, policy, and practice, Awash River Basin, Ethiopia

    NARCIS (Netherlands)

    Mersha, A.; Fraiture, de C.M.S.; Mehari, Alem; Masih, I.; Alamirew, T.

    2016-01-01

    Integrated Water Resources Management (IWRM) has been a dominant paradigm for water sector reform worldwide over the past two decades. Ethiopia, among early adopters, has developed a water policy, legislations, and strategy per IWRM core principles. However, considerable constraints are still in its

  16. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix D: Cultural Resources.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This study attempts to identify and analyze the impacts of the System Operating Strategy (SOS) alternatives on cultural resources. The impacts include effects on Native American traditional cultural values, properties and practices. They also include effects on archeological or historic properties meeting the criteria of the National Register of Historic Places. In addition to responding to the requirements of the National Environmental Policy Act (NEPA), this analysis addresses the requirements of the National Historic Preservation Act (NHPA), the Archeological Resources Protection Act (ARPA), the Native American Graves Protection and Repatriation Act (NAGPRA), the Native American Religious Freedom Act (NARFA), and other relevant legislation. To meet their legally mandated cultural resources requirements, the SOR agencies will develop agreements and Implementation Plans with the appropriate State Historic Preservation Officers (SHPOs), Tribes, and the Advisory Council on Historic Preservation (ACHP) detailing the measures necessary to best manage the resource. The planning and implementation activities will be staged over a number of years in consultation with affected Tribes.

  17. Water Resource Planning Under Future Climate and Socioeconomic Uncertainty in the Cauvery River Basin in Karnataka, India

    Science.gov (United States)

    Bhave, Ajay Gajanan; Conway, Declan; Dessai, Suraje; Stainforth, David A.

    2018-02-01

    Decision-Making Under Uncertainty (DMUU) approaches have been less utilized in developing countries than developed countries for water resources contexts. High climate vulnerability and rapid socioeconomic change often characterize developing country contexts, making DMUU approaches relevant. We develop an iterative multi-method DMUU approach, including scenario generation, coproduction with stakeholders and water resources modeling. We apply this approach to explore the robustness of adaptation options and pathways against future climate and socioeconomic uncertainties in the Cauvery River Basin in Karnataka, India. A water resources model is calibrated and validated satisfactorily using observed streamflow. Plausible future changes in Indian Summer Monsoon (ISM) precipitation and water demand are used to drive simulations of water resources from 2021 to 2055. Two stakeholder-identified decision-critical metrics are examined: a basin-wide metric comprising legal instream flow requirements for the downstream state of Tamil Nadu, and a local metric comprising water supply reliability to Bangalore city. In model simulations, the ability to satisfy these performance metrics without adaptation is reduced under almost all scenarios. Implementing adaptation options can partially offset the negative impacts of change. Sequencing of options according to stakeholder priorities into Adaptation Pathways affects metric satisfaction. Early focus on agricultural demand management improves the robustness of pathways but trade-offs emerge between intrabasin and basin-wide water availability. We demonstrate that the fine balance between water availability and demand is vulnerable to future changes and uncertainty. Despite current and long-term planning challenges, stakeholders in developing countries may engage meaningfully in coproduction approaches for adaptation decision-making under deep uncertainty.

  18. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    Science.gov (United States)

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources. Copyright © 2016 Elsevier B.V. All

  19. An integrated model of water resources optimization allocation based on projection pursuit model - Grey wolf optimization method in a transboundary river basin

    Science.gov (United States)

    Yu, Sen; Lu, Hongwei

    2018-04-01

    Under the effects of global change, water crisis ranks as the top global risk in the future decade, and water conflict in transboundary river basins as well as the geostrategic competition led by it is most concerned. This study presents an innovative integrated PPMGWO model of water resources optimization allocation in a transboundary river basin, which is integrated through the projection pursuit model (PPM) and Grey wolf optimization (GWO) method. This study uses the Songhua River basin and 25 control units as examples, adopting the PPMGWO model proposed in this study to allocate the water quantity. Using water consumption in all control units in the Songhua River basin in 2015 as reference to compare with optimization allocation results of firefly algorithm (FA) and Particle Swarm Optimization (PSO) algorithms as well as the PPMGWO model, results indicate that the average difference between corresponding allocation results and reference values are 0.195 bil m3, 0.151 bil m3, and 0.085 bil m3, respectively. Obviously, the average difference of the PPMGWO model is the lowest and its optimization allocation result is closer to reality, which further confirms the reasonability, feasibility, and accuracy of the PPMGWO model. And then the PPMGWO model is adopted to simulate allocation of available water quantity in Songhua River basin in 2018, 2020, and 2030. The simulation results show water quantity which could be allocated in all controls demonstrates an overall increasing trend with reasonable and equal exploitation and utilization of water resources in the Songhua River basin in future. In addition, this study has a certain reference value and application meaning to comprehensive management and water resources allocation in other transboundary river basins.

  20. Scientific information in support of water resource management of the Big River area, Rhode Island

    Science.gov (United States)

    Armstrong, David S.; Masterson, John P.; Robinson, Keith W.; Crawley, Kathleen M.

    2015-01-01

    The Rhode Island Water Resources Board (RIWRB) is concerned that the demand for water may exceed the available public water supply in central and southern Rhode Island. Although water is often assumed to be plentiful in Rhode Island because of abundant rainfall, an adequate supply of water is not always available everywhere in the state during dry periods. Concerns that water demand may exceed supply are greatest during the summer, when lower water levels and increased drought potential combine with seasonal increases in peak water demand (Rhode Island Water Resources Board, 2012). High summer water demands are due to increases in outdoor water use, such as lawn watering and agricultural irrigation, and to increased summer population in coastal areas. Water-supply concerns are particularly acute in central and southern Rhode Island, where groundwater is the primary source of drinking water.

  1. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  2. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    CSIR Research Space (South Africa)

    Oosthuizen, Nadia

    2017-07-01

    Full Text Available frica Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin Nadia Oosthuizen1,2, Denis A. Hughes2, Evison Kapangaziwiri1, Jean-Marc Mwenge Kahinda1, and Vuyelwa Mvandaba1,2 1...

  3. Assessment of undiscovered oil and gas resources in the Uteland Butte Member of the Eocene Green River Formation, Uinta Basin, Utah

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.; Charpentier, Ronald R.; Klett, Timothy R.; Leathers, Heidi M.; Schenk, Christopher J.; Tennyson, Marilyn E.

    2015-09-03

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered resources of 214 million barrels of oil, 329 billion cubic feet of associated/dissolved natural gas, and 14 million barrels of natural gas liquids in the informal Uteland Butte member of the Green River Formation, Uinta Basin, Utah.

  4. Utilization of Information and Communication Technology (ICT) Resources and Job Effectiveness among Library Staff in the University of Calabar and Cross River University of Technology, Nigeria

    Science.gov (United States)

    Ntui, Aniebiet Inyang; Inyang, Comfort Linus

    2015-01-01

    This study investigated utilization of Information and Communication Technology (ICT) resources and job effectiveness among library staff in the University of Calabar and Cross River University of Technology, Nigeria. To achieve the purpose of this study, four hypotheses were formulated to guide the study. Ex-post facto research design was adopted…

  5. 40 CFR 81.55 - Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Pennsylvania-Upper Delaware... Designation of Air Quality Control Regions § 81.55 Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control Region. The Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control...

  6. Identifying potential effects of climate change on the development of water resources in Pinios River Basin, Central Greece

    Science.gov (United States)

    Arampatzis, G.; Panagopoulos, A.; Pisinaras, V.; Tziritis, E.; Wendland, F.

    2018-05-01

    The aim of the present study is to assess the future spatial and temporal distribution of precipitation and temperature, and relate the corresponding change to water resources' quantitative status in Pinios River Basin (PRB), Thessaly, Greece. For this purpose, data from four Regional Climate Models (RCMs) for the periods 2021-2100 driven by several General Circulation Models (GCMs) were collected and bias-correction was performed based on linear scaling method. The bias-correction was made based on monthly precipitation and temperature data collected for the period 1981-2000 from 57 meteorological stations in total. The results indicate a general trend according to which precipitation is decreasing whilst temperature is increasing to an extent that varies depending on each particular RCM-GCM output. On the average, annual precipitation change for the period 2021-2100 was about - 80 mm, ranging between - 149 and + 35 mm, while the corresponding change for temperature was 2.81 °C, ranging between 1.48 and 3.72 °C. The investigation of potential impacts to the water resources demonstrates that water availability is expected to be significantly decreased in the already water-stressed PRB. The water stresses identified are related to the potential decreasing trend in groundwater recharge and the increasing trend in irrigation demand, which constitutes the major water consumer in PRB.

  7. Land use effects on quality and quantity aspects of water resources in headwater areas of the Jaguari River Basin

    Science.gov (United States)

    Figueiredo, R. D. O.; Camargo, P. B. D.; Piccolo, M. C.; Zuccari, M. L.; Ferracini, V. L.; Cruz, P. P. N. D.; Green, T. R.; Costa, C. F. G. D.; Reis, L. D. C.

    2015-12-01

    In the context of the recent drought conditions in southeastern Brazil, EMBRAPA (Brazilian Agricultural Research Corporation) in partnership with two Brazilian universities (USP/CENA and UNIFAL) planned a research project, called BaCaJa, to understand the hydrobiogeochemistry processes that occur in small catchments (management of water resources in this region. Sampling stations were established on rivers and streams ranging from one to five order channels as well as selected small catchments to conduct studies on overland flow, soil solution, soil quality, aquatic biota and pesticide dynamic. The research team is huge and their goals are specific, diverse and complementary, being summed up as: characterize land use, topography and soils; evaluate erosive potential in agriculture areas; measure soil carbon and nitrogen contents; characterize hydrogeochemistry fluxes; apply hydrological modeling and simulate different land use and management scenarios; monitor possible pesticides contamination; and survey macro invertebrates as indicators of water quality. Based on a synthesis of the results, the project team intends to point out the environmental impacts and contribute recommendations of management for the focused region to conserve water resources in terms of quality and quantity.

  8. Geology and coal resources of the Hanging Woman Creek Study Area, Big Horn and Powder River Counties, Montana

    Science.gov (United States)

    Culbertson, William Craven; Hatch, Joseph R.; Affolter, Ronald H.

    1978-01-01

    In an area of 7,200 acres (29 sq km) In the Hanging Woman Creek study area, the Anderson coal bed contains potentially surface minable resources of 378 million short tons (343 million metric tons) of subbituminous C coal that ranges in thickness from 26 to 33 feet (7.9-10.1 m) at depths of less than 200 feet (60 m). Additional potentially surface minable resources of 55 million short tons (50 million metric tons) are contained in the 9-12 foot (2.7-3.7 m) thick Dietz coal bed which lies 50-100 feet (15-30 m) below the Anderson. Analyses of coal from 5 core holes indicates that the Anderson bed contains 0.4 percent sulfur, 5 percent ash, and has a heating value of 8,540 Btu/lb (4,750 Kcal/kg). The trace element content of the coal is generally similar to other coals in the Powder River Basin. The two coal beds are in the Fort Union Formation of Paleocene age which consists of sandstone, siltstone, shale, coal beds, and locally impure limestone. A northeast-trending normal fault through the middle of the area, downthrown on the southeast side, has displaced the generally flat lying strata as much as 300 feet (91 m). Most of the minable coal lies northwest of this fault.

  9. Skylab/EREP application to ecological, geological, and oceanographic investigations of Delaware Bay

    Science.gov (United States)

    Klemas, V.; Bartlett, D. S.; Philpot, W. D.; Rogers, R. H.; Reed, L. E.

    1978-01-01

    Skylab/EREP S190A and S190B film products were optically enhanced and visually interpreted to extract data suitable for; (1) mapping coastal land use; (2) inventorying wetlands vegetation; (3) monitoring tidal conditions; (4) observing suspended sediment patterns; (5) charting surface currents; (6) locating coastal fronts and water mass boundaries; (7) monitoring industrial and municipal waste dumps in the ocean; (8) determining the size and flow direction of river, bay and man-made discharge plumes; and (9) observing ship traffic. Film products were visually analyzed to identify and map ten land-use and vegetation categories at a scale of 1:125,000. Digital tapes from the multispectral scanner were used to prepare thematic maps of land use. Classification accuracies obtained by comparison of derived thematic maps of land-use with USGS-CARETS land-use maps in southern Delaware ranged from 44 percent to 100 percent.

  10. Projecting water resources changes in potential large-scale agricultural investment areas of the Kafue River Basin in Zambia

    Science.gov (United States)

    Kim, Y.; Trainor, A. M.; Baker, T. J.

    2017-12-01

    Climate change impacts regional water availability through the spatial and temporal redistribution of available water resources. This study focuses on understanding possible response of water resources to climate change in regions where potentials for large-scale agricultural investments are planned in the upper and middle Kafue River Basin in Zambia. We used historical and projected precipitation and temperature to assess changes in water yield, using the Soil and Water Assessment Tool (SWAT) hydrological model. Some of the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model outputs for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios project a temperature warming range from 1.8 - 5.7 °C over the region from 2020 to 2095. Precipitation projection patterns vary monthly but tend toward drier dry seasons with a slight increase in precipitation during the rainy season as compared to the historical time series. The best five calibrated parameter sets generated for the historical record (1965 - 2005) were applied for two future periods, 2020 - 2060 and 2055 - 2095, to project water yield change. Simulations projected that the 90th percentile water yield would be exceeded across most of the study area by up to 800% under the medium-low (RCP4.5) CO2 emission scenario, whereas the high (RCP8.5) CO2 emission scenario resulted in a more spatially varied pattern mixed with increasing (up to 500%) and decreasing (up to -54%) trends. The 10th percentile water yield indicated spatially varied pattern across the basin, increasing by as much as 500% though decreasing in some areas by 66%, with the greatest decreases during the dry season under RCP8.5. Overall, available water resources in the study area are projected to trend toward increased floods (i.e. water yields far exceeding 90th percentile) as well as increasing drought (i.e. water yield far below 10th percentile) vulnerability. Because surface water is a primary source for agriculture

  11. Integrated Groundwater Resources Management Using the DPSIR Approach in a GIS Environment Context: A Case Study from the Gallikos River Basin, North Greece

    Directory of Open Access Journals (Sweden)

    Christos Mattas

    2014-04-01

    Full Text Available The Gallikos River basin is located in the northern part of Greece, and the coastal section is part of a deltaic system. The basin has been influenced by anthropogenic activities during the last decades, leading to continuous water resource degradation. The holistic approach of the Driver-Pressure-State-Impact-Response (DPSIR framework was applied in order to investigate the main causes and origins of pressures and to optimize the measures for sustainable management of water resources. The major driving forces that affect the Gallikos River basin are urbanization, intensive agriculture, industry and the regional development strategy. The main pressures on water resources are the overexploitation of aquifers, water quality degradation, and decrease of river discharge. Recommended responses were based on the Water Framework Directive (WFD 2000/60/EC, and sum up to rationalization of water resources, land use management and appropriate utilization of waste, especially so effluent. The application of the DPSIR analysis in this paper links the socioeconomic drivers to the water resource pressures, the responses based on the WFD and the national legislation and is as a useful tool for land-use planning and decision making in the area of water protection.

  12. Research on the water resources regulation ability model of dams in the Huai He River Basin considering ecological and management factors

    Science.gov (United States)

    Shui, Y.; Liu, H. C.; Li, L. H.; Yu, G. G.; Liu, J.

    2016-08-01

    Research that assesses the scheduling ability of dams gamers a great deal of attention due to the global water resource crisis. These studies can provide useful and practical suggestions for scheduling the water resources of dams to solve problems, such as addressing ecological water needs and so on. Recent studies have primarily evaluated the schedule ability of dams according to their quantifiable attributes, such as water quantity, flow velocity, etc. However, the ecological and management status can directly determine the possibility and efficiency of a dam's water resource scheduling. This paper presents an evaluation model to assess the scheduling capacity of dams that takes into consideration ecological and management factors. In the experiment stage, this paper takes the Sha Ying river of the Huai He River Basin as an example to evaluate the scheduling ability of its dams. The results indicate that the proposed evaluation model can provide more precise and practical suggestions.

  13. A model of late quaternary landscape development in the Delaware Valley, New Jersey and Pennsylvania

    Science.gov (United States)

    Ridge, J.C.; Evenson, E.B.; Sevon, W.D.

    1992-01-01

    In the Delaware Valley of New Jersey and eastern Pennsylvania the late Quaternary history of colluviation, fluvial adjustment, and soil formation is based on the ages of pre-Wisconsinan soils and glacial deposits which are indicated by feld relationships and inferred from mid-latitude climate changes indicated by marine oxygen-isotope records. The area is divided into four terranes characterized by sandstone, gneiss, slate and carbonate rocks. Since the last pre-Wisconsinan glaciation (> 130 ka, inferred to be late Illinoian), each terrane responded differently to chemical and mechanical weathering. During the Sangamon interglacial stage (??? 130-75 ka) in situ weathering is inferred to have occurred at rates greater than transportation of material which resulted in the formation of deep, highly weathered soil and saprolite, and dissolution of carbonate rocks. Cold climatic conditions during the Wisconsinan, on the other hand, induced erosion of the landscape at rates faster than soil development. Upland erosion during the Wisconsinan removed pre-Wisconsinan soil and glacial sediment and bedrock to produce muddy to blocky colluvium, gre??zes lite??es, and alluvial fans on footslopes. Fluvial gravel and overlying colluvium in the Delaware Valley, both buried by late Wisconsinan outwash, are inferred to represent episodes of early and middle Wisconsinan (??? 75-25 ka) upland erosion and river aggradiation followed by river degradation and colluvium deposition. Early-middle Wisconsinan colluvium is more voluminous than later colluvium despite colder, possibly permafrost conditions during the late Wisconsinan ??? 25-10 ka). Extensive colluviation during the early and middle Wisconsinan resulted from a longer (50 kyr), generally cold interval of erosion with a greater availability of easily eroded pre-Wisconsinan surficial materials on uplands than during the late Wisconsinan. After recession of late Wisconsinan ice from its terminal position, soil formation and

  14. AGRO-ECOSYSTEMS AND SUSTAINABLE DEVELOPMENT OF WATER RESOURCES IN ARGES RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Tatiana Diaconu

    2010-01-01

    Full Text Available Lotic ecosystems, part of the Natural Capital, is one of the key factors functioning of socio - economic development andtheir support. An important role in their sustainable development, is the retention and recycling of nutrients, especiallyN, P and their compounds. The nutrients in lotic and lentic ecosystems are either due to natural biochemical processesor by human impact of pollution or broadcast process and characterize the ecological status of water bodies and thuscan determine the quality of services provided. A special importance have agro-ecosystems, particularly multifunctionallivestock farms. Pathways by which pollutants (especially nutrients and pesticides, and other pollutants to reach bodiesof water are different (surface drainage, percolation, etc..To ensure sustainable development of water resources is necessary for agricultural development to take place in termsof minimizing waste streams and not affect the production and support of NC.

  15. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  16. Land Use/Cover Change in the Middle Reaches of the Heihe River Basin over 2000-2011 and Its Implications for Sustainable Water Resource Management

    Science.gov (United States)

    Hu, Xiaoli; Lu, Ling; Li, Xin; Wang, Jianhua; Guo, Ming

    2015-01-01

    The Heihe River Basin (HRB) is a typical arid inland river basin in northwestern China. From the 1960s to the 1990s, the downstream flow in the HRB declined as a result of large, artificial changes in the distribution of water and land and a lack of effective water resource management. Consequently, the ecosystems of the lower reaches of the basin substantially deteriorated. To restore these degraded ecosystems, the Ecological Water Diversion Project (EWDP) was initiated by the Chinese government in 2000. The project led to agricultural and ecological changes in the middle reaches of the basin. In this study, we present three datasets of land use/cover in the middle reaches of the HRB derived from Landsat TM/ETM+ images in 2000, 2007 and 2011. We used these data to investigate changes in land use/cover between 2000 and 2011 and the implications for sustainable water resource management. The results show that the most significant land use/cover change in the middle reaches of the HRB was the continuous expansion of farmland for economic interests. From 2000 to 2011, the farmland area increased by 12.01%. The farmland expansion increased the water resource stress; thus, groundwater was over-extracted and the ecosystem was degraded in particular areas. Both consequences are negative and potentially threaten the sustainability of the middle reaches of the HRB and the entire river basin. Local governments should therefore improve the management of water resources, particularly groundwater management, and should strictly control farmland reclamation. Then, water resources could be ecologically and socioeconomically sustained, and the balance between upstream and downstream water demands could be ensured. The results of this study can also serve as a reference for the sustainable management of water resources in other arid inland river basins. PMID:26115484

  17. Study of heavy metal concentration (As, Ba, Cd, Hg, Pb, Crin water resources and river of Borujerd city in 2008-2009

    Directory of Open Access Journals (Sweden)

    bahram kamarehei

    2010-02-01

    Full Text Available with industrial and economic growth and different material production that humans gained from natural resources for their comfort and walfare, inwardly introduced toxic material and heavy metal entered environment that there created serious problems for themselves and environment. This study accomplished to determine heavy metal concentration (As, Ba, Cd, Hg, Pb, Crin water resources and river of Borujerd city in 2008-2009. Materials and Methods: This descriptive cross-sectional study was conducted to determine heavy metal concentration (As, Ba, Cd, Hg, Pb, Cr in water resources and river of Borujerd city. 54 samples of water were taken from 18 drinking water wells, and also in two times 8 samples of Borujerd river were taken from before and after the city. Then samples carried into the lab and were concentrated ten times using expressed methods and standard methods. Then heavy metal concentration determined by AAP (WFX 130 and results analyzed by SPSS and EXCEL software. Results: Heavy metal concentration average (As, Ba, Cd, Hg, Pb, Cr in drinking water wells were 0. 0, 0. 3222, 0. 0014, 0. 0002, 0. 0077 mg/l respectively. and heavy metal concentration in river water after the city has been increased than before the city. Conclusion: Results indicated that heavy metal concentration average in Borujerd drinking water wells were lower than standard amounts and drinking water wells didn’t pollute with heavy metal. But heavy metal concentration in river water after the city has been increased than the before of it because city waste water enters the city river.

  18. Water resources inventory of Connecticut Part 3: lower Thames and southeastern coastal river basins

    Science.gov (United States)

    Thomas, Chester E.; Cervione, Michael A.; Grossman, I.G.

    1968-01-01

    The lower Thames and southeastern coastal river basins have a relatively abundant supply of water of generally good quality which is derived from streams entering the area and precipitation that has fallen on the area. Annual precipitation has ranged from about 32 inches to 65 inches and has averaged about 48 inches over a 30-year period. Approximately 22 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the report area through estuaries and coastal streams or as underflow through the deposits beneath. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the report area, whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced stream-flow and lowered ground-water levels. The mean monthly storage of water on an average is about 3.8 inches higher in November than it is in June. The amount of water that flows through and out of the report area represents the total amount of water potentially available for use by man. For the 30-year period 1931 through 1960, the annual runoff from the report area has averaged nearly 26 inches (200 billion gallons), from the entire Thames River basin above Norwich about 24 inches (530 billion gallons), and from the Pawcatuck River basin about 26 inches (130 billion gallons). A total average annual runoff of 860 billion gallons is therefore available. Although runoff indicates the total amount of water potentially available, it is usually not economically feasible for man to use all of it. On the other hand, with increased development, it is possible that some water will be reused several times. The water available may be tapped as it flows through the area or is

  19. Water resources inventory of Connecticut Part 6: Upper Housatonic River basin

    Science.gov (United States)

    Cervione, Michael A.; Mazzaferro, David L.; Melvin, Robert T.

    1972-01-01

    The upper Housatonic River basin report area has an abundant supply of water of generally good quality, which is derived from precipitation on the area and streams entering the area. Annual precipitation has averaged about 46 inches over a 30-year period. Of this, approximately 22 inches of water is returned to the atmosphere each year by evaporation and transpiration; the remainder flows overland to streams or percolates downward to the water table and ultimately flows out of the report area in the Housatonic River or in smaller streams tributary to the Hudson River. During the autumn and winter precipitation normally is sufficient to cause a substantial increase in the amount of water stored in surface reservoirs and in aquifers, whereas in the summer, losses through evaporation and transpiration result in sharply reduced streamflow and lowered ground-water levels. Mean monthly storage of water in November is 2.8 inches more than it is in June. The amount of water that flows into, through, and out of the report area represents the total amount potentially available for use ignoring reuse. For the 30-year period 1931 through 1960, the annual runoff from precipitation has averaged 24 inches (294 billion gallons). During the same period, inflows from Massachusetts and New York have averaged 220 and 64 billion gallons per year, respectively. A total average annual runoff of 578 billion gallons is therefore available. Although runoff indicates the total amount of water potentially available, it is rarely feasible to use all of it. On the other hand, with increased development, some water may be reused several times. The water availability may be tapped as it flows through the area or is temporarily stored in streams, lakes, and aquifers. The amounts that can be developed differ from place to place and time to time, depending on the amount of precipitation, on the size of drainage area, on the thickness, transmissivity, and areal extent of aquifers, and on the

  20. A Probabilistic Assessment of Threats to Surface Water Resources in Watersheds of the Lower Colorado River Basin

    Science.gov (United States)

    Murphy, K. W.; Ellis, A. W.

    2012-12-01

    The Salt and Verde River watersheds in the Lower Colorado River Basin are a very important surface water resource in the Southwest United States. Their runoff is captured by a downstream reservoir system serving approximately 40% of the water demand and providing hydroelectric power to the Phoenix, Arizona area. Concerns have been expressed over the risks associated with their highly variable climate dependencies under the realization that the short, historical stream flow record was but one of many possible temporal and volumetric outcome sequences. A characterization of the possible range of flow deficits arising from natural variability beyond those evident in the instrumental record can facilitate sustainability planning as well as adaptation to future climate change scenarios. Methods were developed for this study to generate very long seasonal time series of net reservoir inflows by Monte Carlo simulations of the Salt and Verde watersheds which can be analyzed for detailed probabilistic insights. Other efforts to generate stochastic flow representations for impact assessments have been limited by normality distribution assumptions, inability to represent the covariance of flow contributions from multiple watersheds, complexities of different seasonal origins of precipitation and runoff dependencies, and constraints from spectral properties of the observational record. These difficulties were overcome in this study through stationarity assessments and development of joint probability distributions with highly skewed discrete density functions characteristic of the different watershed-season behaviors derived from a 123 year record. As well, methods of introducing season-to-season correlations owing to antecedent precipitation runoff efficiency enhancements have been incorporated. Representative 10,000 year time series have been stochastically generated which reflect a full range of temporal variability in flow volume distributions. Extreme value statistical

  1. Water resources data, Idaho, 2002; Volume 1. Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.

    2003-01-01

    Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  2. Water use efficiency and integrated water resource management for river basin

    Science.gov (United States)

    Deng, Xiangzheng; Singh, R. B.; Liu, Junguo; Güneralp, Burak

    Water use efficiency and management have attracted increasing attention as water has become scare to challenge the world's sustainable development. Water use efficiency is correlated to the land use and cover changes (LUCC), population distribution, industrial structure, economic development, climate changes, and environmental governance. These factors significantly alter water productivity for water balance through the changes in natural environment and socio-economic system (Wang et al., 2015b). Consequently, dynamics of water inefficiency lower the social welfare of water allocation (Wang et al., 2015b), and induce water management alternation interactively and financially (Wang et al., 2015a). This triggers on actual water price changes through both natural resource and socioeconomic system (Zhou et al., 2015). Therefore, it is very important to figure out a mechanism of water allocation in the course of LUCC (Jin et al., 2015) at a global perspective (Zhao et al., 2015), climate and economic changes of ecosystem service at various spatial and temporal scales (Li et al., 2015).

  3. Crayfish impact desert river ecosystem function and litter-dwelling invertebrate communities through association with novel detrital resources.

    Directory of Open Access Journals (Sweden)

    Eric K Moody

    Full Text Available Shifts in plant species distributions due to global change are increasing the availability of novel resources in a variety of ecosystems worldwide. In semiarid riparian areas, hydric pioneer tree species are being replaced by drought-tolerant plant species as water availability decreases. Additionally, introduced omnivorous crayfish, which feed upon primary producers, allochthonous detritus, and benthic invertebrates, can impact communities at multiple levels through both direct and indirect effects mediated by drought-tolerant plants. We tested the impact of both virile crayfish (Orconectes virilis and litter type on benthic invertebrates and the effect of crayfish on detrital resources across a gradient of riparian vegetation drought-tolerance using field cages with leaf litter bags in the San Pedro River in Southeastern Arizona. Virile crayfish increased breakdown rate of novel drought-tolerant saltcedar (Tamarix ramosissima, but did not impact breakdown of drought-tolerant seepwillow (Baccharis salicifolia or hydric Fremont cottonwood (Populus fremontii and Gooding's willow (Salix goodingii. Effects on invertebrate diversity were observed at the litter bag scale, but no effects were found at the cage scale. Crayfish decreased alpha diversity of colonizing macroinvertebrates, but did not affect beta diversity. In contrast, the drought-tolerant litter treatment decreased beta diversity relative to hydric litter. As drought-tolerant species become more abundant in riparian zones, their litter will become a larger component of the organic matter budget of desert streams which may serve to homogenize the litter-dwelling community and support elevated populations of virile crayfish. Through impacts at multiple trophic levels, crayfish have a significant effect on desert stream ecosystems.

  4. Digital Learning Compass: Distance Education State Almanac 2017. Delaware

    Science.gov (United States)

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Delaware. The sample for this analysis is comprised of all active, degree-granting…

  5. 76 FR 64959 - Delaware; Major Disaster and Related Determinations

    Science.gov (United States)

    2011-10-19

    ... resulting from Hurricane Irene during the period of August 25-31, 2011, is of sufficient severity and... State of Delaware have been designated as adversely affected by this major disaster: Kent and Sussex... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  6. Web-Based Water Accounting Scenario Platform to Address Uncertainties in Water Resources Management in the Mekong : A Case Study in Ca River Basin, Vietnam

    Science.gov (United States)

    Apirumanekul, C.; Purkey, D. R.; Pudashine, J.; Seifollahi-Aghmiuni, S.; Wang, D.; Ate, P.; Meechaiya, C.

    2017-12-01

    Rapid economic development in the Mekong Region is placing pressure on environmental resources. Uncertain changes in land-use, increasing urbanization, infrastructure development, migration patterns and climate risks s combined with scarce water resources are increasing water demand in various sectors. More appropriate policies, strategies and planning for sustainable water resource management are urgently needed. Over the last five years, Vietnam has experienced more frequent and intense droughts affecting agricultural and domestic water use during the dry season. The Ca River Basin is the third largest river basin in Vietnam with 35% of its area located in Lao PDR. The delta landscape comprises natural vegetation, forest, paddy fields, farming and urban areas. The Ca River Basin is experiencing ongoing water scarcity that impacts on crop production, farming livelihoods and household water consumption. Water scarcity is exacerbated by uncertainties in policy changes (e.g. changes in land-use, crop types), basin development (e.g. reservoir construction, urban expansion), and climate change (e.g. changes in rainfall patterns and onset of monsoon). The Water Evaluation And Planning (WEAP) model, with inputs from satellite-based information and institutional data, is used to estimate water supply, water use and water allocation in various sectors (e.g. household, crops, irrigation and flood control) under a wide range of plausible future scenarios in the Ca River Basin. Web-Based Water Allocation Scenario Platform is an online implementation of WEAP model structured in terms of a gaming experience. The online game, as an educational tool, helps key agencies relevant to water resources management understand and explore the complexity of integrated system of river basin under a wide range of scenarios. Performance of the different water resources strategies in Ca River Basin (e.g. change of dam operation to address needs in various sectors, construction of dams, changes

  7. Application of sediment characteristics and transport conditions to resource management in selected main-stem reaches of the Upper Colorado River, Colorado and Utah, 1965-2007

    Science.gov (United States)

    Williams, Cory A.; Schaffrath, Keelin R.; Elliott, John G.; Richards, Rodney J.

    2013-01-01

    The Colorado River Basin provides habitat for 14 native fish, including 4 endangered species protected under the Federal Endangered Species Act of 1973. These endangered fish species once thrived in the Colorado River system, but water-resource development, including the building of numerous diversion dams and several large reservoirs, and the introduction of non-native fish, resulted in large reductions in the numbers and range of the four species through loss of habitat and stream function. Understanding how stream conditions and habitat change in response to alterations in streamflow is important for water administrators and wildlife managers and can be determined from an understanding of sediment transport. Characterization of the processes that are controlling sediment transport is an important first step in identifying flow regimes needed for restored channel morphology and the sustained recovery of endangered fishes within these river systems. The U.S. Geological Survey, in cooperation with the Upper Colorado River Endangered Fish Recovery Program, Bureau of Reclamation, U.S. Fish and Wildlife Service, Argonne National Laboratory, Western Area Power Administration, and Wyoming State Engineer’s Office, began a study in 2004 to characterize sediment transport at selected locations on the Colorado, Gunnison, and Green Rivers to begin addressing gaps in existing datasets and conceptual models of the river systems. This report identifies and characterizes the relation between streamflow (magnitude and timing) and sediment transport and presents the findings through discussions of (1) suspended-sediment transport, (2) incipient motion of streambed material, and (3) a case study of sediment-transport conditions for a reach of the Green River identified as a razorback sucker spawning habitat (See report for full abstract).

  8. Food resources and trophic relationships of brown, rainbow trout and european grayling in different habitats of Shypit river of the Transcarpathian region

    Directory of Open Access Journals (Sweden)

    S. Kruzhylina

    2016-12-01

    Full Text Available Purpose. To study food resources, feeding conditions and trophic relationships of the brown trout (Salmo trutta morpha fario, rainbow trout (Oncorhynchus mykiss, and European grayling (Thymallus thymallus in a Transcarpatioan river. Methodology. The material on the food resources and feeding of the brown trout, rainbow trout, and European grayling was collected in summer period of 2012 on the Shypit river. The study was performed on two different sites of the river: the first one was located on the middle pre-mountain reach of the river (upstream of the Hydroelectric power plant, the second one – on the mountain reach of the river (near tourist base on typical biotopes: I – with boulders and riffles with fast current; II – with medium size stones and low riffles with moderate current; III – with small stones, sand and slow current. The material was collected and processed according to standard and unified hydrological, ichthyological, and trophological methods. Findings. We studied the level of macrozoobenthos development and obtained data on feeding and trophic relationships among brown trout, rainbow trout, and European grayling on different biotopes on pre-mountain and mountain reaches of the Shypit river. The number of “soft” macrozoobenthos on different biotopes varied from 972 to 2576 ind./m2 with biomasses from 6.3 to 121.8 g/m2. Total diet overlap index (DOI between brown trout and rainbow trout on the biotope with boulders and fast current in the pre-mountain reach was 32.4% by number and 20.3% by biomass, while that on the mountain reach was 49.6% and 52.9%, respectively. On the biotope with medium size stones and moderate current, the diet overlap index between rainbow trout and European grayling in the pre-mountain reach was 19.0% by number and 27.9% by biomass. Originality. First study of the diet and tropic relationships of the brown trout, rainbow trout, and еuropean grayling on different reached of the Shypit river

  9. Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia

    Science.gov (United States)

    Tan, Mou Leong; Ibrahim, Ab Latif; Yusop, Zulkifli; Chua, Vivien P.; Chan, Ngai Weng

    2017-06-01

    This study aims to evaluate the potential impacts of climate change on water resources of the Kelantan River Basin in north-eastern Peninsular Malaysia using the Soil and Water Assessment Tool (SWAT) model. Thirty-six downscaled climate projections from five General Circulation Models (GCMs) under the three Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 scenarios for the periods of 2015-2044 and 2045-2074 were incorporated into the calibrated SWAT model. Differences of these scenarios were calculated by comparing to the 1975-2004 baseline period. Overall, the SWAT model performed well in monthly streamflow simulation, with the Nash-Sutcliffe efficiency values of 0.75 and 0.63 for calibration and validation, respectively. Based on the ensemble of five GCMs, the annual rainfall and maximum temperature are projected to increase by 1.2-8.7% and 0.6-2.1 °C, respectively. This corresponds to the increases in the annual streamflow (14.6-27.2%), evapotranspiration (0.3-2.7%), surface runoff (46.8-90.2%) and water yield (14.2-26.5%) components. The study shows an increase of monthly rainfall during the wet season, and decrease during the dry season. Therefore, the monthly streamflow and surface runoff are likely to increase significantly in November, December and January. In addition, slight decreases in the monthly water yield are found between June and October (1.9-8.9%) during the 2015-2044 period. These findings could act as a scientific reference to develop better climate adaptation strategies.

  10. Pawcatuck River and Narragansett Bay Drainage Basins Water and Related Land Resources Study. Big River Reservoir Project. Volume II. Appendix A-G.

    Science.gov (United States)

    1981-07-01

    actuarial rate are determined and flood plain zoning is enacted. A flood hazard analysis of the Pocasset River in Johnston has been completed by the Soil...RELATED LAND ESOURCES STUDY TPANOWMSON MAIN CNlmlONCOOT CUMV ENA ________ _____ AW B- ANONO o EOF " asmS TAPA MTIONN. COS6 PLATE NO 6-16 " : Ei 2 wm (L ca 0

  11. The effect of Delaware law on firm value: Evidence from poison pill adoptions

    Directory of Open Access Journals (Sweden)

    Terry L. Campbell II

    2010-07-01

    Full Text Available As the leading location for firm incorporations and corporate law, Delaware occupies a unique place in corporate governance and control. In this paper, we provide fresh evidence on whether Delaware’s dominance arises from its takeover laws being in the best interest of shareholders versus managers by investigating the role of the state in which a firm is incorporated on the firm’s adoption of a poison pill. Our results indicate that announcements of adoptions of poison pills by Delaware firms are associated with returns not significantly different from those for non-Delaware firms. Moreover, Delaware firms that adopt poison pills are no more likely to receive a takeover bid, be successfully acquired, or receive better merger terms than non-Delaware firms. Overall, it appears that Delaware law, with regards to takeovers, promotes an environment consistent with a “race to the middle” philosophy, neutral to management and shareholders.

  12. 77 FR 60089 - Approval and Promulgation of Air Quality Implementation Plans; Delaware, New Jersey, and...

    Science.gov (United States)

    2012-10-02

    ... Producers Council, et al. v. EPA, 559 F.3d 512 (DC Cir. 2009). As a result of this challenge, the U.S. Court... 2010 value status \\3\\ Delaware New Castle........ 10-003-1003 * 31.6 23.2 24.3 26 Max quarter. Delaware New Castle........ 10-003-1007 28.1 * 20.6 27.5 25 Max quarter. Delaware New Castle........ 10-003...

  13. [Simulation for balanced effect of soil and water resources on cultivated land in Naoli River Basin, Northeast China under the RCPs climate scene].

    Science.gov (United States)

    Zhou, Hao; Lei, Guo Ping; Yang, Xue Xin; Zhao, Yu Hui; Zhang, Ji Xin

    2018-04-01

    Under the scenarios of climate change, balancing the land and water resources is one of the key problems needed to be solved in land development. To reveal the water dynamics of the cultivated land in Naoli River Basin, we simulated the future scenarios by using the future land use simulation model based on Landsat Satellite images, the DEM data and the meteorological data. Results showed that the growth rate of cultivated land gradually decreased. It showed different changing characteristics in different time periods, which led to different balancing effect between land and water resources. In 1990, the water dynamics of the cultivated land resources was in good state, At the same time, the adjustment of crops structure caused the paddy fields increased dramatically. During 2002 to 2014, the cultivated land that in moderate and serious moisture shortage state increased slightly, the water deficit was deteriorating to a certain degree, and maintained sound development of water profit and loss situation gradually. By comparing the simulation accuracy with different spatial resolutions and time scales, we selected 200 m as the spatial resolution of the simulation, and simulated the land use status in 2038. The simulation results showed that the cultivated land's water profit and loss degree in the river basin showed significant polarization characteristic, in that the water profit and loss degree of the cultivated land would be further intensified, the area with the higher grades of moisture profit and loss degree would distribute more centralized, and partially high evaluated grades for the moisture shortage would expand. It is needed to develop the cultivated land irrigation schemes and adjust the cultivated land in Naoli River Basin to balance soil and water resources.

  14. Rural food insecurity and poverty mappings and their linkage with water resources in the Limpopo River Basin

    Science.gov (United States)

    Magombeyi, M. S.; Taigbenu, A. E.; Barron, J.

    2016-04-01

    The mappings of poverty and food insecurity were carried out for the rural districts of the four riparian countries (Botswana, Mozambique, South Africa and Zimbabwe) of the Limpopo river basin using the results of national surveys that were conducted between 2003 and 2013. The analysis shows lower range of food insecure persons (0-40%) than poverty stricken persons (0-95%) that is attributable to enhanced government and non-government food safety networks in the basin countries, the dynamic and transitory nature of food insecurity which depends on the timings of the surveys in relation to harvests, markets and food prices, and the limited dimension of food insecurity in relation to poverty which tends to be a more structural and pervasive socio-economic condition. The usefulness of this study in influencing policies and strategies targeted at alleviating poverty and improving rural livelihoods lies with using food insecurity mappings to address short-term socio-economic conditions and poverty mappings to address more structural and long-term deprivations. Using the poverty line of 1.25/day per person (2008-2013) in the basin, Zimbabwe had the highest percentage of 68.7% of its rural population classified as poor, followed by Mozambique with 68.2%, South Africa with 56.1% and Botswana with 20%. While average poverty reduction of 6.4% was observed between 2003 and 2009 in Botswana, its population growth of 20.1% indicated no real poverty reduction. Similar observations are made about Mozambique and Zimbabwe where population growth outstripped poverty reductions. In contrast, both average poverty levels and population increased by 4.3% and 11%, respectively, in South Africa from 2007 to 2010. While areas of high food insecurity and poverty consistently coincide with low water availability, it does not indicate a simple cause-effect relationship between water, poverty and food insecurity. With limited water resources, rural folks in the basin require stronger

  15. Derivation of Delaware Bay tidal parameters from space shuttle photography

    International Nuclear Information System (INIS)

    Zheng, Quanan; Yan, Xiaohai; Klemas, V.

    1993-01-01

    The tide-related parameters of the Delaware Bay are derived from space shuttle time-series photographs. The water areas in the bay are measured from interpretation maps of the photographs with a CALCOMP 9100 digitizer and ERDAS Image Processing System. The corresponding tidal levels are calculated using the exposure time annotated on the photographs. From these data, an approximate function relating the water area to the tidal level at a reference point is determined. Based on the function, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, and for the tidal zone are inferred. With MHW and MLW areas and the mean tidal range, the authors calculate the tidal influx of the Delaware Bay, which is 2.76 x 1O 9 m 3 . Furthermore, the velocity of flood tide at the bay mouth is determined using the tidal flux and an integral of the velocity distribution function at the cross section between Cape Henlopen and Cape May. The result is 132 cm/s, which compares well with the data on tidal current charts

  16. Exploring Marine Science through the University of Delaware's TIDE camp

    Science.gov (United States)

    Veron, D. E.; Newton, F. A.; Veron, F.; Trembanis, A. C.; Miller, D. C.

    2012-12-01

    For the past five years, the University of Delaware has offered a two-week, residential, summer camp to rising sophomores, juniors, and seniors who are interested in marine science. The camp, named TIDE (Taking an Interest in Delaware's Estuary) camp, is designed to introduce students to the breadth of marine science while providing them with a college experience. Campers participate in a variety of academic activities which include classroom, laboratory, and field experiences, as well as numerous social activities. Two unique features of this small, focused camp is the large number of university faculty that are involved, and the ability of students to participate in ongoing research projects. At various times students have participated in fish and dolphin counts, AUV deployment, wind-wave tank experiments, coastal water and beach studies, and ROV activities. In addition, each year campers have participated in a local service project. Through communication with former TIDE participants, it is clear that this two-week, formative experience plays a large role in students choice of major when entering college.2012 Tide Camp - Salt marsh in southern Delaware 2012 Tide Camp - Field trip on a small boat

  17. H11022: NOS Hydrographic Survey , Delaware River and Bay, Delaware and New Jersey, 2001-11-19

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  18. 33 CFR 207.100 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware...

    Science.gov (United States)

    2010-07-01

    ... enter or pass through any part of the waterway will be contingent on the vessel's having adequate... facilities are of limited capacity, and permission to occupy them for periods exceeding 24 hours must be...

  19. H11070: NOS Hydrographic Survey , Delaware River and Bay, Delaware and New Jersey, 2001-11-18

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  20. National Dam Safety Program. Roxbury Dam (Inventory Number 788) Delaware River Basin, Delaware County, New York. Phase I Inspection Report,

    Science.gov (United States)

    1980-05-21

    service spillway was analyzed as a sharp - crested weir with:.a discharge coefficient (c) of 3.1. The auxiliary spillway channel was analyzed as a broad ...upstream portion of this channel is a concrete structure which forms a 27.4 foot long rectangular weir . There is a 5 foot vertical drop beyond the crest ...I on 1.5 Crest Width (ft) 12 g. Service Spillway Type: Concrete channel-rectangular weir . Five foot vertical drop beyond crest . Masonry and laid up

  1. Water resource protection in Australia: Links between land use and river health with a focus on stubble farming systems

    Science.gov (United States)

    Bowmer, Kathleen H.

    2011-06-01

    SummaryStubble farming (conservation farming, minimum tillage, zero tillage) has increased in Australia over several decades with claims of improved productivity, landscape stability and environmental benefit including ecosystem services downstream, yet recent audits show a dramatic and general decline in river health. This review explores explanations for this apparent anomaly. Many confounding factors complicate interactions between land use and river condition and may disguise or over-ride the potential benefits of adoption of stubble systems or other improvements in agricultural land use practice. These factors include climate change and variability; land use changes including an increase in bushfires, growth of farm dams and afforestation; lag times between land use change and expression of benefits in river systems; use of inappropriate scale that disguises local benefit; variations in the extent of ecosystem resilience; impacts of river regulation; and impacts of introduced species. Additionally, the value of river condition and utility is complicated by different local or regional perceptions and by contrasting rural and urban outlooks. The use of indicators, risk frameworks and biophysical modelling may help elucidate the complex relationships between land use and downstream ecosystem impact. The strengthening of local, regional and catchment scale approaches is advocated. This includes the re-integration of land management and governance with water management and planning. It is encouraging that farmers are themselves developing systems to optimise trade-offs between on-farm activities and ecosystem service benefits. This approach needs to be supported and extended.

  2. Mechanisms of Resilience in Common-pool Resource Management Systems: an Agent-based Model of Water Use in a River Basin

    Directory of Open Access Journals (Sweden)

    Maja Schlüter

    2007-12-01

    Full Text Available The concept of resilience is widely promoted as a promising notion to guide new approaches to ecosystem and resource management that try to enhance a system's capacity to cope with change. A variety of mechanisms of resilience specific for different systems have been proposed. In the context of resource management those include but are not limited to the diversity of response options and flexibility of the social system to adaptively respond to changes on an adequate scale. However, implementation of resilience-based management in specific real-world systems has often proven difficult because of a limited understanding of suitable interventions and their impact on the resilience of the coupled social-ecological system. We propose an agent-based modeling approach to explore system characteristics and mechanisms of resilience in a complex resource management system, based on a case study of water use in the Amudarya River, which is a semiarid river basin. Water resources in its delta are used to sustain irrigated agriculture as well as aquatic ecosystems that provide fish and other ecosystem services. The three subsystems of the social-ecological system, i.e., the social system, the irrigation system, and an aquatic ecosystem, are linked by resource flows and the allocation decision making of actors on different levels. Simulation experiments are carried out to compare the resilience of different institutional settings of water management to changes in the variability and uncertainty of water availability. The aim is to investigate the influence of (1 the organizational structure of water management, (2 information on water availability, and (3 the diversity of water uses on the resilience of the system to short and long-term water scarcity. In this paper, the model concept and first simulation results are presented. As a first illustration of the approach the performances of a centralized and a decentralized regime are compared under different

  3. Water-quality and algal conditions in the North Umpqua River basin, Oregon, 1992-95, and indications for resource management

    Science.gov (United States)

    Anderson, Chauncey W.; Carpenter, Kurt D.

    1998-01-01

    This report describes the results of a synoptic water-quality and algal investigation during July 1995 at 36 stream sites in a 1,350 square-mile area of the North Umpqua River Basin, Oregon. The study area includes a headwaters hydroelectric project area, a Wild and Scenic reach in the main stem immediately downstream, and the watersheds of several major tributaries. Additional data from previous investigations are reviewed, and impacts on water quality in the Wild and Scenic reach from resource management, including forestry and reservoir operations, are inferred where sufficient data exist.

  4. Response of River Discharge to Changing Climate Over the Past Millennium in the Upper Mackenzie Basin: Implications for Water Resource Management

    Science.gov (United States)

    Wolfe, B. B.; Hall, R. I.; Edwards, T. W.; Jarvis, S. R.; Sinnatamby, R. N.; Yi, Y.; Johnston, J. W.

    2009-05-01

    Runoff generated from high elevations is the primary source of freshwater for western North America, yet this critical resource is managed on the basis of short instrumental records that encompass an insufficient range of climatic conditions. Like other streams that drain this part of the continent and flow across the northern Great Plains, where seasonal and extended intervals of water deficit are a natural element of the landscape, the Peace and Athabasca rivers provide water that is crucial for societal needs. Climate variability and rapidly increasing industrial development are, however, raising concerns over the future availability of water resources for continued economic growth in these watersheds and to maintain the integrity of aquatic ecosystems, including the Peace-Athabasca Delta (PAD). This is particularly acute for the Athabasca River because the Alberta oil sands industry remains dependent on its water for bitumen extraction. Here we report the effects of climate change over the past 1000 years on river discharge in the upper Mackenzie River system based on paleoenvironmental information from the PAD and Lake Athabasca. The delta landscape responds to hydroclimatic changes with marked variability, capturing systematic changes in ice-jam flood frequency and perched basin water balance. Lake Athabasca level appears to directly monitor overall water availability with the highest levels occurring in concert with maximum glacier extent during the Little Ice Age, and the lowest during the 11th century prior to medieval glacier expansion. Recent climate-driven hydrological change appears to be on a trajectory to even lower levels as high-elevation snow and glacier meltwater contributions both continue to decline. The temporal perspective offered by these paleohydrological reconstructions indicates that climatic changes over the past millennium have led to characteristic responses in the quantity and seasonality of streamflow generated from the hydrographic

  5. A Literature Review of Archaeological, Historical, and Paleontological Resources of the Sheyenne River Basin in North Dakota

    Science.gov (United States)

    1977-01-01

    description of the Red River valley area was derived from Shay (1967: 231-237) and Scoby et. al. (1973). The Red River valley per se is flat except where...it is inter- rupted by the Sheyenne delta escarpment and the glacial Lake Agassiz shorelines ( Scoby et. al. 1973: 16). Surface drainage in the area is...very poor with runoff tending to collect in low lying areas ( Scoby et. al. 1973: 23). Prior to inten- sive drainage the area may have possessed many

  6. Methods and tools to simulate the effect of economic instruments in complex water resources systems. Application to the Jucar river basin.

    Science.gov (United States)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel

    2014-05-01

    The main challenge of the BLUEPRINT to safeguard Europe's water resources (EC, 2012) is to guarantee that enough good quality water is available for people's needs, the economy and the environment. In this sense, economic policy instruments such as water pricing policies and water markets can be applied to enhance efficient use of water. This paper presents a method based on hydro-economic tools to assess the effect of economic instruments on water resource systems. Hydro-economic models allow integrated analysis of water supply, demand and infrastructure operation at the river basin scale, by simultaneously combining engineering, hydrologic and economic aspects of water resources management. The method made use of the simulation and optimization hydroeconomic tools SIMGAMS and OPTIGAMS. The simulation tool SIMGAMS allocates water resources among the users according to priorities and operating rules, and evaluate economic scarcity costs of the system by using economic demand functions. The model's objective function is designed so that the system aims to meet the operational targets (ranked according to priorities) at each month while following the system operating rules. The optimization tool OPTIGAMS allocates water resources based on an economic efficiency criterion: maximize net benefits, or alternatively, minimizing the total water scarcity and operating cost of water use. SIMGAS allows to simulate incentive water pricing policies based on marginal resource opportunity costs (MROC; Pulido-Velazquez et al., 2013). Storage-dependent step pricing functions are derived from the time series of MROC values at a certain reservoir in the system. These water pricing policies are defined based on water availability in the system (scarcity pricing), so that when water storage is high, the MROC is low, while low storage (drought periods) will be associated to high MROC and therefore, high prices. We also illustrate the use of OPTIGAMS to simulate the effect of ideal water

  7. 76 FR 59087 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Adhesives and Sealants Rule

    Science.gov (United States)

    2011-09-23

    ... Promulgation of Air Quality Implementation Plans; Delaware; Adhesives and Sealants Rule AGENCY: Environmental... manufacture, sale, use, or application of adhesives, sealants, primers, and solvents. This action is being... consists of Delaware's regulation for reducing VOCs from commercially-used adhesive and sealant products by...

  8. 77 FR 65518 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Prevention of...

    Science.gov (United States)

    2012-10-29

    ... email. The www.regulations.gov Web site is an ``anonymous access'' system, which means EPA will not know... proposed revision to the Delaware SIP. The revision is to 7 DE Admin. Code 1125--Requirements for... DE Admin. Code 1125. Final approval of Delaware's October 12, 2011 SIP revision will put in place the...

  9. 75 FR 12168 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Control of Nitrogen...

    Science.gov (United States)

    2010-03-15

    ... Promulgation of Air Quality Implementation Plans; Delaware; Control of Nitrogen Oxide Emissions From Industrial... the State of Delaware. The revision adds a new section, Section 2--Control of Nitrogen Oxide Emissions.../SIP Regulation No. 42-- Specific Emission Control Requirements for controlling nitrogen oxide (NO X...

  10. 77 FR 58953 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Control Technique...

    Science.gov (United States)

    2012-09-25

    ... Environmental Control (DNREC). The revisions amend Delaware's regulation for the Control of Volatile Organic... approval of the Delaware SIP revision that amends Regulation No. 1124, Control of Volatile Organic..., specifies standards and exemptions, and specifies control devices, test methods, compliance certification...

  11. Positive Behavior Support in Delaware Schools: Developing Perspectives on Implementation and Outcomes. Executive Summary

    Science.gov (United States)

    Ackerman, Cheryl M.; Cooksy, Leslie J.; Murphy, Aideen; Rubright, Jonathan; Bear, George; Fifield, Steve

    2010-01-01

    In Spring 2010, the Delaware Education Research and Development Center conducted an evaluation of Delaware's PBS project, an initiative focused on developing a school-wide system of strategies to reduce behavior problems and foster a positive school climate. The study focused on facilitators and barriers to PBS implementation, and also included…

  12. Limnological Monitoring on the Upper Mississippi River System, 1993-1996: Long Term Resource Monitoring Program Havana Field Station

    National Research Council Canada - National Science Library

    Soballe, David

    2002-01-01

    .... The flood in spring 1995 receded sooner than in 1993. However, the 137 m (450.66 feet) peak on May 31, 1995, was the third highest river elevation recorded at Havana, Illinois. Low dissolved oxygen levels in the main channel were also notable in 1993-1996 with concentrations at or below 5 mg/L observed each year.

  13. An assessment of the effects of human-caused air pollution on resources within the interior Columbia River basin.

    Science.gov (United States)

    Anna W. Schoettle; Kathy Tonnessen; John Turk; John Vimont; Robert Amundson; Ann Acheson; Janice Peterson

    1999-01-01

    An assessment of existing and potential impacts to vegetation, aquatics, and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides,...

  14. Construction area expansion in relation to economic-demographic development and land resource in the Pearl River Delta of China

    NARCIS (Netherlands)

    Liu, Zhijia; Huang, Heqing; Werners, Saskia E.; Yan, Dan

    2016-01-01

    Since 1979, the Pearl River Delta (PRD) of China has experienced rapid socioeconomic development along with a fast expansion of construction area. Affected by both natural and human factors, a complex interdependency is found among the regional changes in construction area, GDP and population. A

  15. Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource management

    Directory of Open Access Journals (Sweden)

    L. M. Mango

    2011-07-01

    Full Text Available Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 % accompanied by increases in temperature (2.5–3.5 °C. Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 % and high (+25 % extremes of projected precipitation changes, but under median projections (+7 % there is little impact on annual water yields or mean discharge. Modest increases in precipitation

  16. Water Resources Status and Availability Assessment in Current and Future Climate Change Scenarios for Beas River Basin of North Western Himalaya

    Science.gov (United States)

    Aggarwal, S. P.; Thakur, P. K.; Garg, V.; Nikam, B. R.; Chouksey, A.; Dhote, P.; Bhattacharya, T.

    2016-10-01

    The water resources status and availability of any river basin is of primary importance for overall and sustainable development of any river basin. This study has been done in Beas river basin which is located in North Western Himalaya for assessing the status of water resources in present and future climate change scenarios. In this study hydrological modelling approach has been used for quantifying the water balance components of Beas river basin upto Pandoh. The variable infiltration capacity (VIC) model has been used in energy balance mode for Beas river basin at 1km grid scale. The VIC model has been run with snow elevation zones files to simulate the snow module of VIC. The model was run with National Centre for Environmental Prediction (NCEP) forcing data (Tmax, Tmin, Rainfall and wind speed at 0.5degree resolution) from 1 Jan. 1999 to 31 Dec 2006 for calibration purpose. The additional component of glacier melt was added into overall river runoff using semi-empirical approach utilizing air temperature and glacier type and extent data. The ground water component is computed from overall recharge of ground water by water balance approach. The overall water balance approach is validated with river discharge data provided by Bhakra Beas Management Board (BBMB) from 1994-2014. VIC routing module was used to assess pixel wise flow availability at daily, monthly and annual time scales. The mean monthly flow at Pandoh during study period varied from 19 - 1581 m3/s from VIC and 50 to 1556 m3/sec from observation data, with minimum water flow occurring in month of January and maximum flow in month of August with annual R2 of 0.68. The future climate change data is taken from CORDEX database. The climate model of NOAA-GFDL-ESM2M for IPCC RCP scenario 4.5 and 8.5 were used for South Asia at 0.44 deg. grid from year 2006 to 2100. The climate forcing data for VIC model was prepared using daily maximum and minimum near surface air temperature, daily precipitation and

  17. WATER RESOURCES STATUS AND AVAILABILITY ASSESSMENT IN CURRENT AND FUTURE CLIMATE CHANGE SCENARIOS FOR BEAS RIVER BASIN OF NORTH WESTERN HIMALAYA

    Directory of Open Access Journals (Sweden)

    S. P. Aggarwal

    2016-10-01

    Full Text Available The water resources status and availability of any river basin is of primary importance for overall and sustainable development of any river basin. This study has been done in Beas river basin which is located in North Western Himalaya for assessing the status of water resources in present and future climate change scenarios. In this study hydrological modelling approach has been used for quantifying the water balance components of Beas river basin upto Pandoh. The variable infiltration capacity (VIC model has been used in energy balance mode for Beas river basin at 1km grid scale. The VIC model has been run with snow elevation zones files to simulate the snow module of VIC. The model was run with National Centre for Environmental Prediction (NCEP forcing data (Tmax, Tmin, Rainfall and wind speed at 0.5degree resolution from 1 Jan. 1999 to 31 Dec 2006 for calibration purpose. The additional component of glacier melt was added into overall river runoff using semi-empirical approach utilizing air temperature and glacier type and extent data. The ground water component is computed from overall recharge of ground water by water balance approach. The overall water balance approach is validated with river discharge data provided by Bhakra Beas Management Board (BBMB from 1994-2014. VIC routing module was used to assess pixel wise flow availability at daily, monthly and annual time scales. The mean monthly flow at Pandoh during study period varied from 19 - 1581 m3/s from VIC and 50 to 1556 m3/sec from observation data, with minimum water flow occurring in month of January and maximum flow in month of August with annual R2 of 0.68. The future climate change data is taken from CORDEX database. The climate model of NOAA-GFDL-ESM2M for IPCC RCP scenario 4.5 and 8.5 were used for South Asia at 0.44 deg. grid from year 2006 to 2100. The climate forcing data for VIC model was prepared using daily maximum and minimum near surface air temperature, daily

  18. Levels of Organisation in agent-based modelling for renewable resources management. Agricultural water management collective rules enforcement in the French Drome River Valley Case Study

    International Nuclear Information System (INIS)

    Abrami, G.

    2004-11-01

    Levels of Organisation in agent-based modelling for renewable resources management. Agricultural water management collective rules enforcement in the French Dr me River Valley Case Study. In the context of Agent-Based Modelling for participative renewable resources management, this thesis is concerned with representing multiple tangled levels of organisation of a system. The Agent-Group-Role (AGR) formalism is borrowed from computer science research. It has been conceptually specified to handle levels of organisation, and behaviours within levels of organisation. A design methodology dedicated to AGR modelling has been developed, together with an implementation of the formalism over a multi-agent platform. AGR models of agricultural water management in the French Dr me River Valley have been built and tested. This experiment demonstrates the AGR formalism ability to (1) clarify usually implicit hypothesis on action modes, scales or viewpoints (2) facilitate the definition of scenarios with various collective rules, and various rules in enforcement behaviours (3) generate bricks for generic irrigated catchment models. (author)

  19. El Niño-Southern Oscillation and water resources in the headwaters region of the Yellow River: links and potential for forecasting

    Directory of Open Access Journals (Sweden)

    A. Lü

    2011-04-01

    Full Text Available This research explores the rainfall-El Niño-Southern Oscillation (ENSO and runoff-ENSO relationships and examines the potential for water resource forecasting using these relationships. The Southern Oscillation Index (SOI, Niño1.2, Niño3, Niño4, and Niño3.4 were selected as ENSO indicators for cross-correlation analyses of precipitation and runoff. There was a significant correlation (95% confidence level between precipitation and ENSO indicators during three periods: January, March, and from September to November. In addition, monthly streamflow and monthly ENSO indictors were significantly correlated during three periods: from January to March, June, and from October to December (OND, with lag periods between one and twelve months. Because ENSO events can be accurately predicted one to two years in advance using physical modeling of the coupled ocean-atmosphere system, the lead time for forecasting runoff using ENSO indicators in the Headwaters Region of the Yellow River could extend from one to 36 months. Therefore, ENSO may have potential as a powerful forecasting tool for water resources in the headwater regions of Yellow River.

  20. Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware

    International Nuclear Information System (INIS)

    Schumacher, Kelsea A.; Schumacher, Thomas; Agbemabiese, Lawrence

    2014-01-01

    Highlights: • We modeled the obsolescence of cathode ray tube devices in the State of Delaware. • 411,654 CRT units or ∼16,500 metric tons have been recycled in Delaware since 2002. • The peak of the CRT obsolescence in Delaware passed by 2012. • The Delaware average CRT recycling rate between 2002 and 13 was approximately 27.5%. • CRTs will continue to infiltrate the system likely until 2033. - Abstract: The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream. However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware’s e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033

  1. Delaware's Wellness Program: Motivating Employees Improves Health and Saves Money.

    Science.gov (United States)

    Davis, Jennifer J J

    2008-09-01

    Every year, employers around the country evaluate their company benefits package in the hopes of finding a solution to the ever-rising cost of health insurance premiums. For many business executives, the only logical choice is to pass along those costs to the employee. As an employer, our goal in Delaware has always been to come up with innovative solutions to drive down the cost of health insurance premiums while encouraging our employees to take responsibility for their own health and wellness by living a healthy and active lifestyle, and provide them with the necessary tools. The DelaWELL program (N = 68,000) was launched in 2007, after being tested in initial (N = 100) and expanded (N = 1500) pilot programs from 2004 to 2006 in which 3 similar groups were compared before and after the pilot. Employee health risk assessment, education, and incentives provided employees the necessary tools we had assumed would help them make healthier lifestyle choices. In the first pilot, fewer emergency department visits and lower blood pressure levels resulted in direct savings of more than $62,000. In the expanded pilot, in all 3 groups blood pressure was significantly reduced (P employees participating in DelaWELL had a combined weight loss of 5162 lb. Decision makers in the State of Delaware have come up with an innovative solution to controlling costs while offering employees an attractive benefits package. The savings from its employee benefit program have allowed the state to pass along the savings to employees by maintaining employee-paid health insurance contributions at the same level for the past 3 years. DelaWELL has already confirmed our motto, "Although it may seem an unusual business investment to pay for healthcare before the need arises, in Delaware we concluded that this makes perfect sense." This promising approach to improving health and reducing healthcare costs could potentially be applied to other employer groups.

  2. Characteristics of Wind Generated Waves in the Delaware Estuary

    Science.gov (United States)

    Chen, J. L.; Ralston, D. K.; Geyer, W. R.; Chant, R. J.; Sommerfield, C. K.

    2016-02-01

    Coastal marshes provide important services for human uses such as fishery industry, recreation, ports and marine operations. Bombay Hook Wildlife Refuge, located along the western shore of the Delaware Estuary, has experienced substantial loss of salt marsh in recent decades. To evaluate the importance of different mechanisms which cause observed shoreline retreat, wave gauges were deployed along the dredged navigation channel and shoreline in the Delaware Estuary. A coupled wave and circulation modeling system (SWAN/ROMS) based on the most recent bathymetry (last updated 2013) is validated with waves observed during both calm and energetic conditions in November 2015. Simulation results based on different model parameterizations of whitecapping, bottom friction and the wind input source are compared. The tendency of observed wave steepness is more similar to a revised whitecapping source term [Westhuysen, 2007] than the default in SWAN model. Both model results and field data show that the generation/dissipation of waves in the Delaware estuary is determined by the local wind speed and channel depth. Whitecapping-induced energy dissipation is dominant in the channel, while dissipation due to bottom friction and depth-induced breaking become important on lateral shoals. To characterize the effects of wind fetch on waves in estuaries more generally, simulations with an idealized domain and varying wind conditions are compared and the results are expressed in terms of non-dimensional parameters. The simulations based on a 10m-depth uniform idealized channel show that the dissipation of waves is mainly controlled by whitecapping in all wind conditions. Under strong wind conditions (wind speed >10m/s) the effect of bottom friction becomes important so the simulated wave heights are no longer linearly correlated with wind speed.

  3. Delaware's Wellness Program: Motivating Employees Improves Health and Saves Money

    Science.gov (United States)

    Davis, Jennifer “J. J.”

    2008-01-01

    Background Every year, employers around the country evaluate their company benefits package in the hopes of finding a solution to the ever-rising cost of health insurance premiums. For many business executives, the only logical choice is to pass along those costs to the employee. Objectives As an employer, our goal in Delaware has always been to come up with innovative solutions to drive down the cost of health insurance premiums while encouraging our employees to take responsibility for their own health and wellness by living a healthy and active lifestyle, and provide them with the necessary tools. Methods The DelaWELL program (N = 68,000) was launched in 2007, after being tested in initial (N = 100) and expanded (N = 1500) pilot programs from 2004 to 2006 in which 3 similar groups were compared before and after the pilot. Employee health risk assessment, education, and incentives provided employees the necessary tools we had assumed would help them make healthier lifestyle choices. Results In the first pilot, fewer emergency department visits and lower blood pressure levels resulted in direct savings of more than $62,000. In the expanded pilot, in all 3 groups blood pressure was significantly reduced (P employees participating in DelaWELL had a combined weight loss of 5162 lb. Conclusions Decision makers in the State of Delaware have come up with an innovative solution to controlling costs while offering employees an attractive benefits package. The savings from its employee benefit program have allowed the state to pass along the savings to employees by maintaining employee-paid health insurance contributions at the same level for the past 3 years. DelaWELL has already confirmed our motto, “Although it may seem an unusual business investment to pay for healthcare before the need arises, in Delaware we concluded that this makes perfect sense.” This promising approach to improving health and reducing healthcare costs could potentially be applied to other

  4. Literature Search and Analysis for Cultural Resources in Areas 1 through 5 of the Rock River, Illinois

    Science.gov (United States)

    1982-03-01

    el Mundo Centroamericano de Su Tiempo (Vu Centenario de Gonzalo Fernandez de Oviedo). San Jose, Costa Rica: Editorial Texto Ltda.), pp. 149- 156...elsewhere. For example, in Tennessee the Stanley-type cluster , an evolutionary variant of the bifurcated-base tradition, marks a diagnostic Middle...Mississippian groups functioned as middlemen for trade along the Rock River. The cluster of Upper Mississip- pian sites in the Sterling area may have

  5. Application of the hydrologic model AÇUMOD based on GIS for water resources management of Pirapama River, Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Richarde Marques da Silva

    2007-08-01

    Full Text Available This study presents the application of the distributed hydrological model based on GIS – AÇUMOD to estimate the water discharges and potentialities of Pirapama river sub-basins, to be used by the Pirapama River Basin Committee (COBH-Pirapama. The model application included several steps, such as: precipitation data selection, basin discretization into cells, and model parameter calibration using try-and-error technique. The model was calibrated and validated with monthly precipitation data for the period 1987–2001. It was noted that the following parameters were the most important ones during the calibration process: infiltration function, soil minimum water capacity to generate runoff, and soil mean water storage capacity, which directly affect the computed runoff volume. The difference between observed and computed runoff during the calibration and validation processes were respectively -12.65% and 18.87%. The results of the simulated discharges by AÇUMOD, compared to observed ones, showed that the model satisfactorily represents the water basin behavior and, therefore, it can be considered a promising tool for rain-runoff simulation, permanence curve estimation, and discharge regionalization or prediction for Pirapama river basin as well as to other basins in the northeastern Brazil costal area.

  6. Big River Reservoir Project - Pawcatuck River and Narragansett bay Drainage Basins - Water and related Land Resources Study Volume IV. Attachment I.

    Science.gov (United States)

    1981-07-01

    knowledge , as a result of our field studies, none of these sites will be impacted by any of the alternative plans. There are numerous sites in the watershed...NENYIAC REPORT A report by the New England-New York Inter--Agency Committee (NENYIAC) was completed in Mar:h 1955. It contained an inventory of resources...could be ived b.- hikers,. horceback riders, and -:oss -_ountry skiers . The height nf land in this location could offer scenic views of the west of

  7. Projected impacts of climate change on hydrology, water resource use and adaptation needs for the Chu and Talas cross-border rivers basin, Central Asia

    Science.gov (United States)

    Shamil Iliasov, Shamil; Dolgikh, Svetlana; Lipponen, Annukka; Novikov, Viktor

    2014-05-01

    The observed long-term trends, variability and projections of future climate and hydrology of the Chu and Talas transboundary rivers basin were analysed using a common approach for Kazakhstan and Kyrgyzstan parts of the basin. Historical, current and forecasted demands and main uses of water in the basin were elaborated by the joint effort of both countries. Such cooperative approach combining scientific data, water practitioners' outlook with decision making needs allowed the first time to produce a comprehensive assessment of climate change impacts on water resources in the Chu-Talas transboundary rivers basin, identify future needs and develop the initial set of adaptation measures and recommendations. This work was carried out under the project "Promoting Cooperation to Adapt to Climate Change in the Chu and Talas Transboundary Basin", supported by the United Nations Economic Commission for Europe (UNECE) and the United Nations Development Programme (UNDP). Climate change projections, including air temperatures and rainfall in the 21st century were determined with a spatial resolution 0.5 degrees based on the integration of 15 climate change model outputs (derived from IPCC's 4th Assessment Report, and partially 5th Assessment Report) combined with locally-designed hydrology and glacier models. A significant increase in surface air temperatures by 3-6°C may be expected in the basin area, especially in summer and autumn. This change is likely to be accompanied by rainfall increase during the cold season and a decrease in the warm half of the year. As a result, a deterioration of moisture conditions during the summer-autumn period is possible. Furthermore, milder winters and hotter summers can be expected. Mountains will likely receive more liquid precipitation, than snow, while the area and volume of glaciers may significantly reduce. Projected changes in climate and glaciers have implications for river hydrology and different sectors of the economy dependent

  8. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: SOCECON (Socioeconomic Resource Points and Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for marinas, boat ramps, locks and dams, water intake sites, archaeological sites, U.S. Coast Guard stations,...

  9. The impact of the 2002 Delaware smoking ordinance on heart attack and asthma.

    Science.gov (United States)

    Moraros, John; Bird, Yelena; Chen, Shande; Buckingham, Robert; Meltzer, Richard S; Prapasiri, Surasri; Solis, Luis H

    2010-12-01

    In the United States, smoking is the leading cause of death - having a mortality rate of approximately 435,000 people in 2000-accounting for 8.1% of all US deaths recorded that year. Consequently, we analyzed the Delaware Hospital Discharge Database, and identified state and non-state residents discharged with AMI or asthma for the years 1999 to 2004. Statistical data analysis compared the incidence of AMI or asthma for each group before (1999-2002) and after (2003-2004) the amendment. As a result, we found that pre-ordinance and post-ordinance quarterly rates of AMI for Delaware residents were 451 (se = 21) and 430 (se = 21) respectively, representing a 4.7% reduction. Over the same time period, there was negligible change in the incidence of AMI for non-Delaware residents. After adjusting for population growth, the Risk Ratio (RR) for asthma in Delaware residents post-ordinance was 0.95 (95% CI, 0.90 to 0.999), which represented a significant reduction (P = 0.046). By comparison, non-Delaware residents had an increased RR for asthma post-ordinance of 1.62 (95% CI, 1.46 to 1.86; P asthma in Delaware residents when compared to non-Delaware residents.

  10. The Impact of the 2002 Delaware Smoking Ordinance on Heart Attack and Asthma

    Directory of Open Access Journals (Sweden)

    Luis H. Solis

    2010-12-01

    Full Text Available In the United States, smoking is the leading cause of death - having a mortality rate of approximately 435,000 people in 2000—accounting for 8.1% of all US deaths recorded that year. Consequently, we analyzed the Delaware Hospital Discharge Database, and identified state and non-state residents discharged with AMI or asthma for the years 1999 to 2004. Statistical data analysis compared the incidence of AMI or asthma for each group before (1999–2002 and after (2003–2004 the amendment. As a result, we found that pre-ordinance and post-ordinance quarterly rates of AMI for Delaware residents were 451 (se = 21 and 430 (se = 21 respectively, representing a 4.7% reduction. Over the same time period, there was negligible change in the incidence of AMI for non-Delaware residents. After adjusting for population growth, the Risk Ratio (RR for asthma in Delaware residents post-ordinance was 0.95 (95% CI, 0.90 to 0.999, which represented a significant reduction (P = 0.046. By comparison, non-Delaware residents had an increased RR for asthma post-ordinance of 1.62 (95% CI, 1.46 to 1.86; P < 0.0001.The results suggest that Delaware’s comprehensive non-smoking ordinance effectively was associated with a statistically significant decrease in the incidence of AMI and asthma in Delaware residents when compared to non-Delaware residents.

  11. Unsustainability of water resources in the Upper Laja River Basin, Mexico: Social-hydrology interactions in a regional overexploited aquifer with increasing concentrations of fluoride, arsenic and sodium

    Science.gov (United States)

    Ortega, A.

    2013-05-01

    The Upper Laja River Basin, also known as the Independence Basin (IB), with an area of 7,000 km2 and a population near to 500,000 inhabitants is part of the regional Lerma-Chapala Basin in Central Mexico. Groundwater is the main source for drinking water supply, agriculture and industrial uses. Total groundwater extraction is in the order of 1,000 million of m3/a, through near to 3,000 wells in the basin, from which about 85% is for agriculture production, mainly for exportation. Historical hydrologic information in the basin showed the existence of numerous streams, rivers and lakes within the catchments in addition to thousands of springs in the discharge area. At present there is not permanent runoff in the main river and most of the springs and associated ecosystems have disappeared. Water table in the aquifer is between 100 and 200 m depth with decreasing rates between 2 m/a and 10 m/a, while 60 years ago water tables was near ground surface. Dissolved concentration of arsenic and fluoride in groundwater is increasing with time, causing severe health effects in rural villages and more recently in the main urban centers. Increasing concentration of sodium is affecting soil productivity and plant grow, where several hectares of land are been abandoned. There are several pieces of evidence that show the unsustainability of water resources in the IB creating complex social-hydrology interactions: Human actions are impairing the long-term renewability of freshwater stocks and flows. Basic water requirement are not been guaranteed to all inhabitants to maintain human health, neither to restore nor to maintain the remaining ecosystems. Water quality does not meet certain minimum standards in most of the basin. Water-planning and decision making are not democratic, the COTAS, a representation of water users is controlled by farmers with political power; therefore, limiting the participation of other parties and fostering direct participation of affected interests

  12. WATER QUALITY ANALYSIS OF AGRICULTURALLY IMPACTED TIDAL BLACKBIRD CREEK, DELAWARE

    Directory of Open Access Journals (Sweden)

    Matthew Stone

    2016-11-01

    Full Text Available Blackbird Creek, Delaware is a small watershed in northern Delaware that has a significant proportion of land designated for agricultural land use. The Blackbird Creek water monitoring program was initiated in 2012 to assess the condition of the watershed’s habitats using multiple measures of water quality. Habitats were identified based on percent adjacent agricultural land use. Study sites varying from five to fourteen were sampled biweekly during April and November, 2012-2015. Data were analyzed using principal component analysis and generalized linear modeling. Results from these first four years of data documented no significant differences in water quality parameters (dissolved oxygen, pH, temperature, salinity, inorganic nitrate, nitrite, ammonia, orthophosphate, alkalinity, and turbidity between the two habitats, although both orthophosphate and turbidity were elevated beyond EPA-recommended values. There were statistically significant differences for all of the parameters between agriculture seasons. The lack of notable differences between habitats suggests that, while the watershed is generally impacted by agricultural land use practices, there appears to be no impact on the surface water chemistry. Because there were no differences between habitats, it was concluded that seasonal differences were likely due to basic seasonal variation and were not a function of agricultural land use practices.

  13. The National Map - Delaware Pilot Project

    Science.gov (United States)

    ,

    2001-01-01

    Governments depend on a common set of geographic base information as a tool for economic and community development, land and natural resource management, and health and safety services. Emergency management and defense operations rely on this information. Private industry, nongovernmental organizations, and individual citizens use the same geographic data. Geographic information underpins an increasingly large part of the Nation's economy. Available geographic data often have the following problems: * They do not align with each other because layers are frequently created or revised separately, * They do not match across administrative boundaries because each producing organization uses different methods and standards, and * They are not up to date because of the complexity and cost of revision. The U.S. Geological Survey (USGS) is developing The National Map to be a seamless, continuously maintained, and nationally consistent set of online, public domain, geographic base information to address these issues. The National Map will serve as a foundation for integrating, sharing, and using other data easily and consistently. In collaboration with other government agencies, the private sector, academia, and volunteer groups, the USGS will coordinate, integrate, and, where needed, produce and maintain base geographic data. The National Map will include digital orthorectified imagery; elevation data; vector data for hydrography, transportation, boundary, and structure features; geographic names; and land cover information. The data will be the source of revised paper topographic maps. Many technical and institutional issues must be resolved as The National Map is implemented. To begin the refinement of this new paradigm, pilot projects are being designed to identify and investigate these issues. The pilots are the foundation upon which future partnerships for data sharing and maintenance will be built.

  14. Multi–Model Ensemble Approaches to Assessment of Effects of Local Climate Change on Water Resources of the Hotan River Basin in Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Min Luo

    2017-08-01

    Full Text Available The effects of global climate change threaten the availability of water resources worldwide and modify their tempo-spatial pattern. Properly quantifying the possible effects of climate change on water resources under different hydrological models is a great challenge in ungauged alpine regions. By using remote sensing data to support established models, this study aimed to reveal the effects of climate change using two models of hydrological processes including total water resources, peak flows, evapotranspiration, snowmelt and snow accumulation in the ungauged Hotan River Basin under future representative concentration pathway (RCP scenarios. The results revealed that stream flow was much more sensitive to temperature variation than precipitation change and increased by 0.9–10.0% according to MIKE SHE or 6.5–10.5% according to SWAT. Increased evapotranspiration was similar for both models with a range of 7.6–31.3%. The snow-covered area shrank from 32.5% to 11.9% between the elevations of 4200–6400 m, respectively, and snow accumulation increased when the elevation exceeded 6400 m above sea level (asl. The results also suggested that the fully distributed and semi-distributed structures of these two models strongly influenced the responses to climate change. The study proposes a practical approach to assess the climate change effect in ungauged regions.

  15. StreamNet; Northwest Aquatic Resource Information Network - Status of Salmon and Steelhead in the Columbia River Basin, 1995 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Duane A.; Beamesderfer, Raymond C. [Oregon Dept. of Fish and Wildlife, Enterprise, OR (United States); Woodard, Bob [Washington Dept. of Fish and Wildlife, Olympia, WA (United States)

    1996-04-01

    Information on fish populations, fisheries, and fish habitat is crucial to the success of ongoing program to protect, recover, enhance, and manage fish resources in the Columbia River Basin. However, pertinent data are often difficult to locate because it is scattered among many agencies and is often unpublished. The goal of this annual report is to bring many diverse data types and sources into a single comprehensive report on the status of anadromous fish runs in the Columbia River Basin and the environmental conditions that may affect that status. Brief summaries are provided to identify the type and scope of available information. This synopsis is intended to complement other more detailed reports to which readers are referred for comprehensive treatment of specific subjects. This first report focuses mainly on anadromous salmon and steelhead (primarily through 1994) but the authors intend to expand the scope of future issues to include resident species. This is the first of what the authors intend to be an annual report. They welcome constructive suggestions for improvements. This report is a product of the StreamNet (formerly Coordinated Information System and Northwest Environmental Data Base) project which is a part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The project is called for in the Fish and Wildlife Program of the Northwest Power Planning Council. The project`s objective is to promote exchange and dissemination of information in a standardized electronic format throughout the basin. This project is administered by the Pacific States Marine Fisheries Commission with active participation by tribal, state, and federal fish and wildlife agencies.

  16. Characterization of water quality for streams in the southern Yampa River basin, northwestern Colorado. Water Resources Investigation

    International Nuclear Information System (INIS)

    Parker, R.S.

    1991-01-01

    Historically, the Yampa River basin in northwestern Colorado has been an area of coal-mining development. Coal mining generally has been developed in the southern part of the basin and at lower elevations. The purpose of the report is to characterize the stream water quality by summarizing selected major dissolved constituents for the streams that drain the southern part of the Yampa River basin. Characterization is done initially by providing a statistical summary of the constituents for individual water-quality sites in the study area. These statistical summaries can be used to help assess water-quality within specified stream reaches. Water-quality data are available for sites on most perennial streams in the study area, and these data provide the best information about the immediate stream reach. Water-quality data from all sites are combined into regions, and linear-regression equations between dissolved constituents and specific conductance are calculated. Such equations provide an estimate of the water-quality relations within these regions. The equations also indicate an increase in error as individual sites are combined

  17. An Assessment of Regional Water Resources and Agricultural Sustainability in the Mississippi River Alluvial Aquifer System of Mississippi and Arkansas Under Current and Future Climate

    Science.gov (United States)

    Rigby, J.; Reba, M.

    2011-12-01

    The Lower Mississippi River Alluvial Plain is a highly productive agricultural region for rice, soy beans, and cotton that depends heavily on irrigation. Development of the Mississippi River Alluvial Aquifer (MRAA), one of the more prolific agricultural aquifers in the country, has traditionally been the primary source for irrigation in the region yielding over 1,100 Mgal/day to irrigation wells. Increasingly, the realities of changing climate and rapidly declining water tables have highlighted the necessity for new water management practices. Tail-water recovery and reuse is a rapidly expanding practice due in part to the efforts and cost-sharing of the NRCS, but regional studies of the potential for such practices to alleviate groundwater mining under current and future climate are lacking. While regional studies of aquifer geology have long been available, including assessments of regional groundwater flow, much about the aquifer is still not well understood including controls on recharge rates, a crucial component of water management design. We review the trends in regional availability of surface and groundwater resources, their current status, and the effects of recent changes in management practices on groundwater decline in Mississippi and Arkansas. Global and regional climate projections are used to assess scenarios of sustainable aquifer use under current land use and management along with the potential for more widely practiced surface water capture and reuse to alleviate groundwater decline. Finally, we highlight crucial knowledge gaps and challenges associated with the development of water management practices for sustainable agricultural use in the region.

  18. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-07-01

    Full Text Available During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and water temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 90% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analysed from the relationship between the Normalized Difference Vegetation Index (NDVI and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana and poplar (Populus simonii, bushes (salix – Salix psammophila, and agricultural crops (maize – Zea mays, depend largely on groundwater as the source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying the water demand for socio-economical development and to prevent desertification and ecological impacts on streams, more water-use-efficient crops such as sorghum, barley or millet should be promoted to reduce the consumptive water use. Willow trees should be used as wind-breaks in croplands and along roads, and drought-resistant and less water-use intensive plants (for instance native bushes should be used to vegetate sand dunes.

  19. Sustainable River Basin Management under the European Water Framework Directive: an Effective Protection of Drinking-Water Resources

    NARCIS (Netherlands)

    van Rijswick, H.F.M.W.|info:eu-repo/dai/nl/099909189; Wuijts, Susanne

    2016-01-01

    In the Netherlands drinking water is produced both from surface water and groundwater. Due to the shortage of space, resources are often found in combination with other activities, such as those pertaining to industry or agriculture, in the same neighbourhood. These combinations impose strong

  20. Detailed geochemical study of the Dan River-Danville Triassic Basin, North Carolina and Virginia. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Thayer, P.A.; Cook, J.R.

    1982-08-01

    This abbreviated data report presents results of surface geochemical reconnaissance in the Dan River-Danville Triassic Basin of north-central North Carolina and south-central Virginia. Unweathered rock samples were collected at 380 sites within the basin at a nominal sampling density of one site per square mile. Field measurements and observations are reported for each site; analytical data and field measurements are presented in tables and maps. A detailed four-channel spectrometric survey was conducted, and the results are presented as a series of symbol plot maps for eU, eTh, and eU/eTh. Data from rock sample sites (on microfiche in pocket) include rock type and color and elemental analyses for U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Na, Sc, Sm, Ti, V, and Yb. Elemental uranium in 362 sedimentary rock samples from the Dan River-Danville Basin ranges from a low of 0.1 to a maximum of 13.3 parts per million (ppM). The log mean uranium concentration for these same samples is 0.37 ppM, and the log standard deviation is 0.24 ppM. Elemental uranium in 10 diabase dike samples from within the basin is in the range 0.1 to 0.7 ppM. The log mean uranium concentration for diabase samples is -.65 ppM, and the log standard deviation is 0.27. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the NURE program

  1. "Climate change impact on water resources - a challenge for IWRM". BRAHMATWINN - Twinning European and South Asian River Basins to enhance capacity and implement adaptive management approaches

    Science.gov (United States)

    Bartosch, A.; Pechstädt, J.; Müller Schmied, H.; Flügel, W.-A.

    2009-04-01

    BRAHMATWINN addresses climate change impact of the hydrology of two macro-scale river basins having headwaters in alpine mountain massifs. The project will elaborate on the consequential vulnerability of present IWRM and river basin management that have been persistent in these basins during the past decades and will develop tested approaches and technologies for adaptive IWRM and resilience. The overall objective of BRAHMATWINN is to enhance and improve capacity to carry out a harmonized integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs in respect to impacts from likely climate change, and to transfer professional IWRM expertise, approaches and tools based on case studies carried out in twinning European and Asian river basins, the Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB). Sustainable IWRM in river basins of such kind face common problems: (i) floods e.g. during spring melt or heavy storms and droughts during summer; (ii) competing water demands for agriculture, hydropower, rural, urban and industrial development, and the environment; (iii) pollution from point as well as diffuse sources; and (iv) socio-economic and legal issues related to water allocation. Besides those common topics both basins also differ in other issues requiring the adaptation of the IWRM tools; these are for example climate conditions, the density of monitoring network, political framework and trans-boundary conflicts. An IWRM has to consider all water-related issues like the securing of water supply for the population in sufficient quantity and quality, the protection of the ecological function of water bodies and it has to consider the probability of natural hazards like floods and droughts. Furthermore the resource water should be threatened in a way that the needs of future generations can be satisfied. Sustainable development is one of the

  2. Delaware State Briefing Book on low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Delaware State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Delaware. The profile is the result of a survey of NRC licensees in Delaware. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Delaware

  3. Weatherization Builds on Delaware's Innovative Past: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Delaware demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  4. 76 FR 79537 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Adhesives and Sealants Rule

    Science.gov (United States)

    2011-12-22

    ... Promulgation of Air Quality Implementation Plans; Delaware; Adhesives and Sealants Rule AGENCY: Environmental..., sale, use, or application of adhesives, sealants, primers, and solvents. EPA is approving this SIP... miscellaneous industrial adhesives control techniques guideline (CTG) category in accordance with the...

  5. 78 FR 13496 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Prevention of...

    Science.gov (United States)

    2013-02-28

    ... are listed in the www.regulations.gov Web site. Although listed in the electronic docket, some... modifies Delaware's PSD program at 7 DE Admin. Code 1125 to establish appropriate emission thresholds for...

  6. National Status and Trends: Bioeffects Assessment Program, Delaware Bay Summary Database (1997)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study was based on the sediment quality triad (SQT) approach. A stratified probabilistic sampling design was utilized to characterize the Delaware Bay system in...

  7. Social Vulnerability Index (SoVI) for Delaware based on 2000 Census Block Groups

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data depicts the social vulnerability of Delaware census block groups to environmental hazards. Data were culled primarily from the 2000 Decennial Census.

  8. Trip attraction rates of shopping centers in Northern New Castle County, Delaware.

    Science.gov (United States)

    2004-07-01

    This report presents the trip attraction rates of the shopping centers in Northern New : Castle County in Delaware. The study aims to provide an alternative to ITE Trip : Generation Manual (1997) for computing the trip attraction of shopping centers ...

  9. NOAA orthorectified Digital Elevation Model (DEM) image tiles, Bombay Hook, Delaware, 2011 (NODC Accession 0112173)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Bombay Hook Project covers 177 square kilometers of the Bombay Hook National Wildlife Refuge and surrounding areas in Kent County, Delaware. The Dewberry...

  10. Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  11. Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume II. Annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

    1979-09-01

    This volume is a partially annotated bibliography of reference materials pertaining to the seven KGRA's. The bibliography is divided into sections by program element as follows: terrestrial ecology, aquatic ecology, heritage resources, socioeconomics and demography, geology, geothermal, soils, hydrology and water quality, seismicity, and subsidence. Cross-referencing is available for those references which are applicable to specific KGRA's. (MHR)

  12. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary

    OpenAIRE

    Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L

    2014-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell 3H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware c...

  13. Novel coronavirus and astrovirus in Delaware Bay shorebirds.

    Directory of Open Access Journals (Sweden)

    Kirsi S Honkavuori

    Full Text Available Wild birds are an important but to some extent under-studied reservoir for emerging pathogens. We used unbiased sequencing methods for virus discovery in shorebird samples from the Delaware Bay, USA; an important feeding ground for thousands of migratory birds.Analysis of shorebird fecal samples indicated the presence of a novel astrovirus and coronavirus. A sanderling sample yielded sequences with distant homology to avian nephritis virus 1, an astrovirus associated with acute nephritis in poultry. A ruddy turnstone sample yielded sequences with homology to deltacoronaviruses.Our findings highlight shorebirds as a virus reservoir and the need to closely monitor wild bird populations for the emergence of novel virus variants.

  14. Surface Currents and Winds at the Delaware Bay Mouth

    Energy Technology Data Exchange (ETDEWEB)

    Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

    2011-04-06

    Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

  15. Epidemiological investigation of a youth suicide cluster: Delaware 2012.

    Science.gov (United States)

    Fowler, Katherine A; Crosby, Alexander E; Parks, Sharyn E; Ivey, Asha Z; Silverman, Paul R

    2013-01-01

    In the first quarter of 2012, eight youth (aged 13-21 years) were known to have died by suicide in Kent and Sussex counties, Delaware, twice the typical median yearly number. State and local officials invited the Centers for Disease Control and Prevention to assist with an epidemiological investigation of fatal and nonfatal youth suicidal behaviors in the first quarter of 2012, to examine risk factors, and to recommend prevention strategies. Data were obtained from the Delaware Office of the Medical Examiner, law enforcement, emergency departments, and inpatient records. Key informants from youth-serving organizations in the community were interviewed to better understand local context and perceptions of youth suicide. Eleven fatal and 116 nonfatal suicide attempts were identified for the first quarter of 2012 in Kent and Sussex counties. The median age was higher for the fatalities (18 years) than the nonfatal attempts (16 years). More males died by suicide, and more females nonfatally attempted suicide. Fatal methods were either hanging or firearm, while nonfatal methods were diverse, led by overdose/poisoning and cutting. All decedents had two or more precipitating circumstances. Seventeen of 116 nonfatal cases reported that a peer/friend recently died by or attempted suicide. Local barriers to youth services and suicide prevention were identified. Several features were similar to previous clusters: Occurrence among vulnerable youth, rural or suburban setting, and precipitating negative life events. Distribution by sex and method were consistent with national trends for both fatalities and nonfatalities. References to the decedents in the context of nonfatal attempts support the concept of 'point clusters' (social contiguity to other suicidal youth as a risk factor for vulnerable youth) as a framework for understanding clustering of youth suicidal behavior. Recommended prevention strategies included: Training to identify at-risk youth and guide them to services

  16. [Fishery resource protection by artificial propagation in hydroelectric development: Lixianjiang River drainage in Yunnan as an example].

    Science.gov (United States)

    Yang, Yong-Hong; Yang, Jun-Xing; Pan, Xiao-Fu; Zhou, Wei; Yang, Mei-Lin

    2011-04-01

    Hydroelectric developments can result in a number of negative environmental consequences. Conservation aquaculture is a branch of science derived from conservation and population recovery studies on endangered fishes. Here we discuss the impacts on fishes caused by hydropower projects in Lixianjiang, and evaluate effects and problems on the propagation of Parazacco spilurus, Hemibagrus pluriradiatus, Neolissochilus benasi and Semilabeo obscurus. A successful propagation project includes foraging ecology in fields, pond cultivation, juvenile fish raising, prevention and curing on fish disease, genetic management, artificial releasing and population monitoring. Artificial propagation is the practicable act on genetic intercommunication, preventing population deterioration for fishes in upper and lower reaches of the dam. For long-term planning, fish stocks are not suitable for many kind of fishes, but can prevent fishes from going extinct in the wild. Basic data collection on fish ecology, parent fish hunting, prevention on fish disease are the most important factors on artificial propagation. Strengthening the genetic management of stock population for keeping a higher genetic diversity can increase the success of stock enhancement. The works on Lixianjiang provide a new model for river fish protection. To make sure the complicated project works well, project plans, commission contracts, base line monitoring and techniques on artificial reproduction must be considered early. Last, fishery conservation should be considered alongside location development.

  17. Climate related projections on future water resources and human adaptation in the Great Ruaha River Basin in Tanzania

    DEFF Research Database (Denmark)

    Liwenga, Emma; Pauline, Noah; Tumbo, Madaka

    - Temperatures will likely increase by 1-2 degrees by the middle of the century and 3-4 degrees by the end of the century. - A likely overall increase in precipitation and larger seasonal variation might lead to water related stress during a prolonged dry season and flood risks during the wet...... season. - The overall climate related effect on water resources is a status quo. - Increased rainy season rainfall offers opportunities for rain fed agriculture and water storage for hydro-power and irrigation. - Local governments are already effectively dealing with these climate related impacts...

  18. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    Directory of Open Access Journals (Sweden)

    N. Oosthuizen

    2018-05-01

    Full Text Available The demand for water resources is rapidly growing, placing more strain on access to water and its management. In order to appropriately manage water resources, there is a need to accurately quantify available water resources. Unfortunately, the data required for such assessment are frequently far from sufficient in terms of availability and quality, especially in southern Africa. In this study, the uncertainty related to the estimation of water resources of two sub-basins of the Limpopo River Basin – the Mogalakwena in South Africa and the Shashe shared between Botswana and Zimbabwe – is assessed. Input data (and model parameters are significant sources of uncertainty that should be quantified. In southern Africa water use data are among the most unreliable sources of model input data because available databases generally consist of only licensed information and actual use is generally unknown. The study assesses how these uncertainties impact the estimation of surface water resources of the sub-basins. Data on farm reservoirs and irrigated areas from various sources were collected and used to run the model. Many farm dams and large irrigation areas are located in the upper parts of the Mogalakwena sub-basin. Results indicate that water use uncertainty is small. Nevertheless, the medium to low flows are clearly impacted. The simulated mean monthly flows at the outlet of the Mogalakwena sub-basin were between 22.62 and 24.68 Mm3 per month when incorporating only the uncertainty related to the main physical runoff generating parameters. The range of total predictive uncertainty of the model increased to between 22.15 and 24.99 Mm3 when water use data such as small farm and large reservoirs and irrigation were included. For the Shashe sub-basin incorporating only uncertainty related to the main runoff parameters resulted in mean monthly flows between 11.66 and 14.54 Mm3. The range of predictive uncertainty changed to between 11.66 and 17

  19. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  20. Uranium hydrogeochemical and stream-sediment reconnaissance of the Charley River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Charley River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  1. Uranium hydrogeochemical and stream sediment reconnaissance of the Kateel River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Kateel River NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  2. Uranium hydrogeochemical and stream-sediment reconnaissance of the Black River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Black River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  3. Uranium hydrogeochemical and stream-sediment reconnaissance of the Kantishna River NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Kantishna River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  4. Assessing climate-change risks to cultural and natural resources in the Yakima River Basin, Washington, USA

    Science.gov (United States)

    Hatten, James R.; Waste, Stephen M.; Maule, Alec G.

    2014-01-01

    We provide an overview of an interdisciplinary special issue that examines the influence of climate change on people and fish in the Yakima River Basin, USA. Jenni et al. (2013) addresses stakeholder-relevant climate change issues, such as water availability and uncertainty, with decision analysis tools. Montag et al. (2014) explores Yakama Tribal cultural values and well-being and their incorporation into the decision-making process. Graves and Maule (2012) simulates effects of climate change on stream temperatures under baseline conditions (1981–2005) and two future climate scenarios (increased air temperature of 1 °C and 2 °C). Hardiman and Mesa (2013) looks at the effects of increased stream temperatures on juvenile steelhead growth with a bioenergetics model. Finally, Hatten et al. (2013) examines how changes in stream flow will affect salmonids with a rule-based fish habitat model. Our simulations indicate that future summer will be a very challenging season for salmonids when low flows and high water temperatures can restrict movement, inhibit or alter growth, and decrease habitat. While some of our simulations indicate salmonids may benefit from warmer water temperatures and increased winter flows, the majority of simulations produced less habitat. The floodplain and tributary habitats we sampled are representative of the larger landscape, so it is likely that climate change will reduce salmonid habitat potential throughout particular areas of the basin. Management strategies are needed to minimize potential salmonid habitat bottlenecks that may result from climate change, such as keeping streams cool through riparian protection, stream restoration, and the reduction of water diversions. An investment in decision analysis and support technologies can help managers understand tradeoffs under different climate scenarios and possibly improve water and fish conservation over the next century.

  5. Current Assessment and Future Outlook for Water Resources Considering Climate Change and a Population Burst: A Case Study of Ciliwung River, Jakarta City, Indonesia

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar

    2017-06-01

    Full Text Available Modeling insecurity under future climate change and socio-economic development is indispensable for adaptive planning and sustainable management of water resources. This case study strives to assess the water quality and quantity status for both the present and the near future in the Ciliwung River basin inside the Jakarta Province under different scenarios using population growth with planned additional wastewater management infrastructure by 2030 as mentioned in the local master plan, and comparing the above conditions with the addition of the effects of climate change. Biochemical oxygen demand (BOD, chemical oxygen demand (COD and nitrate (NO3, the three important indicators of aquatic ecosystem health, were simulated to assess river pollution. Simulation results suggest that water quality in year 2030 will further deteriorate compared to the base year 2000 due to population growth and climate change, even considering the planned wastewater management infrastructure. The magnitude of impact from population growth is far greater than that from climate change. Simulated values of NO3, BOD and COD ranged from 6.07 to 13.34 mg/L, 7.65 to 11.41 mg/L, and 20.16 to 51.01 mg/L, respectively. Almost all of the water quality parameters exceeded the safe limit suitable for a healthy aquatic system, especially for the year 2030. The situation of water quality is worse for the downstream sampling location because of the cumulative effect of transport of untreated pollutants coming from upstream, as well as local dumping. This result will be useful for local policy makers and stakeholders involved in the water sector to formulate strategic and adaptive policies and plan for the future. One of the potential policy interventions is to implement a national integrated sewerage and septage management program on a priority basis, considering various factors like population density and growth, and global changes for both short- and long-term measures.

  6. Statistical evaluation of rainfall time series in concurrence with agriculture and water resources of Ken River basin, Central India (1901-2010)

    Science.gov (United States)

    Meshram, Sarita Gajbhiye; Singh, Sudhir Kumar; Meshram, Chandrashekhar; Deo, Ravinesh C.; Ambade, Balram

    2017-12-01

    Trend analysis of long-term rainfall records can be used to facilitate better agriculture water management decision and climate risk studies. The main objective of this study was to identify the existing trends in the long-term rainfall time series over the period 1901-2010 utilizing 12 hydrological stations located at the Ken River basin (KRB) in Madhya Pradesh, India. To investigate the different trends, the rainfall time series data were divided into annual and seasonal (i.e., pre-monsoon, monsoon, post-monsoon, and winter season) sub-sets, and a statistical analysis of data using the non-parametric Mann-Kendall (MK) test and the Sen's slope approach was applied to identify the nature of the existing trends in rainfall series for the Ken River basin. The obtained results were further interpolated with the aid of the Quantum Geographic Information System (GIS) approach employing the inverse distance weighted approach. The results showed that the monsoon and the winter season exhibited a negative trend in rainfall changes over the period of study, and this was true for all stations, although the changes during the pre- and the post-monsoon seasons were less significant. The outcomes of this research study also suggest significant decreases in the seasonal and annual trends of rainfall amounts in the study period. These findings showing a clear signature of climate change impacts on KRB region potentially have implications in terms of climate risk management strategies to be developed during major growing and harvesting seasons and also to aid in the appropriate water resource management strategies that must be implemented in decision-making process.

  7. A framework for identifying water management typologies for agent based modeling of water resources and its application in the Boise River Basin, USA.

    Science.gov (United States)

    Kaiser, K. E.; Flores, A. N.; Hillis, V.; Moroney, J.; Schneider, J.

    2017-12-01

    Modeling the management of water resources necessitates incorporation of complex social and hydrologic dynamics. Simulation of these socio-ecological systems requires characterization of the decision-making process of relevant actors, the mechanisms through which they exert control on the biophysical system, their ability to react and adapt to regional environmental conditions, and the plausible behaviors in response to changes in those conditions. Agent based models (ABMs) are a useful tool in simulating these complex adaptive systems because they can dynamically couple hydrological models and the behavior of decision making actors. ABMs can provide a flexible, integrated framework that can represent multi-scale interactions, and the heterogeneity of information networks and sources. However, the variability in behavior of water management actors across systems makes characterizing agent behaviors and relationships challenging. Agent typologies, or agent functional types (AFTs), group together individuals and/or agencies with similar functional roles, management objectives, and decision-making strategies. AFTs have been used to represent archetypal land managers in the agricultural and forestry sectors in large-scale socio-economic system models. A similar typology of water actors could simplify the representation of water management across river basins, and increase transferability and scaling of resulting ABMs. Here, we present a framework for identifying and classifying major water actors and show how we will link an ABM of water management to a regional hydrologic model in a western river basin. The Boise River Basin in southwest Idaho is an interesting setting to apply our AFT framework because of the diverse stakeholders and associated management objectives which include managing urban growth pressures and water supply in the face of climate change. Precipitation in the upper basin supplies 90% of the surface water used in the basin, thus managers of the

  8. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environment Impact Statement. Appendix N: Cultural Resources. Appendix O: Public Outreach Program. Appendix P: Air Quality

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  9. Comparison of Lumped and Distributed Hydrologic Models Used for Planning and Water Resources Management at the Combeima River Basin, Colombia.

    Science.gov (United States)

    Salgado, F., II; Vélez, J.

    2014-12-01

    The catchment area is considered as the planning unit of natural resources where multiple factors as biotic, abiotic and human interact in a web of relationships making this unit a complex system. It is also considered by several authors as the most suitable unit for studying the water movement in nature and a tool for the understanding of natural processes. This research implements several hydrological models commonly used in water resources management and planning. It is the case of Témez, abcd, T, P, ARMA (1,1), and the lumped conceptual model TETIS. This latest model has been implemented in its distributed version for comparison purposes and it has been the basis for obtaining information, either through the reconstruction of natural flow series, filling missing data, forecasting or simulation. Hydrological models make use of lumped data of precipitation and potential evapotranspiration, as well as the following parameters for each one of the models which are related to soil properties as capillary storage capacity; the hydraulic saturated conductivity of the upper and lower layers of the soil, and residence times in the flow surface, subsurface layers and base flow. The calibration and the validation process of the models were performed making adjustments to the parameters listed above, taking into account the consistency in the efficiency indexes and the adjustment between the observed and simulated flows using the flow duration curve. The Nash index gave good results for the TETIS model and acceptable values were obtained to the other models. The calibration of the distributed model was complex and its results were similar to those obtained with the aggregated model. This comparison allows planners to use the hydrological multimodel techniques to reduce the uncertainty associated with planning processes in developing countries. Moreover, taking into account the information limitations required to implement a hydrological models, this application can be a

  10. Water resources data for California, water year 1976; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1977-01-01

    Water-resources data for the 1976 water year for California consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; records of water levels in selected observation wells; and selected chemical analyses of ground water. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Lee R. Peterson, district chief; Winchell Smith, assistant district chief for hydrologic data; and Leonard N. Jorgensen, chief of the basic-data section. These data, a contribution to the National Water Data System, were collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  11. Water resources data for California, water year 1975; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1977-01-01

    Water-resources data for the 1975 water year for California consist of records of streamflow and contents of reservoirs at gaging stations, partial-record stations, and miscellaneous sites; records of water quality including the physical, chemical, and biological characteristics of surface and ground water; and records of water levels in selected observation wells. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Lee R. Peterson, district chief; Winchell Smith, assistant district chief for hydrologic data; and Leonard N. Jorgensen, chief of the basic data section. These data represent that part of the National Water Data System collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  12. Water resources data for California, water year 1977; Volume 1: Colorado River Basin, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1978-01-01

    Water-resources data for the 1977 water year for California consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; records of water levels in selected observation wells; and selected chemical analyses of ground water. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Winchell Smith, Assistant District Chief for Hydrologic Data and Leonard N. Jorgensen, Chief of the Basic-Data Section. These data, a contribution to the National Water Data System, were collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  13. Climate Change and water resources: Scenarios of low-flow conditions in the Upper Danube River Basin

    International Nuclear Information System (INIS)

    Mauser, W; Marke, T; Stoeber, S

    2008-01-01

    Global Climate Change will have regional impacts on the water resources and will force water resources managers and farmers to adapt. Both low-flow and its duration are critical hydrological parameters, which strongly influence the state of aquatic ecosystems as well as power production, reservoir management and industry. Impacts of future climate change is analysed using scenarios for the change of meteorological drivers and regional hydrological simulation models. The project GLOWA-Danube (www.glowa-danube.de) develops integrative modelling techniques combining process knowledge from both natural and social sciences to examine the sustainability of regional water systems as well as water management alternatives in the Upper Danube watershed (A = 77000 km 2 ). Special emphasis is given to changes in low-flow condition. DANUBIA describes the regional water cycle both physical and spatially distributed. It consists of a collection of tightly coupled models, which strictly preserve energy and matter and are not calibrated to maximise their overall predictive abilities. The paper demonstrates that DANUBIA can reproduce the daily discharge for the time period from 1971-2003 with a Nash-Suttcliffe coefficient of 0.84 (gauge Achleiten). Based on a statistical climate simulator 12 realisations of the IPCC A1B climate scenario were used to investigate impacts of climate change during the simulation period of 2011-2060. The change in discharge and frequency of occurrences of low-flow in the watershed for the scenario ensemble were analysed for the outlet gauge. The analysis shows that strong changes were simulated in the frequency of occurrences of low-flow conditions. The changing climate gradually reduces a 50-years NM7Q discharge of today to less than half of its discharge in the year 2060. These results clearly indicate that the expected climate change will strongly alter the low-flow conditions in the Upper Danube watershed.

  14. Evaluating the impact of hydrological uncertainty in assessing the impact of climate change on water resources of the Ebro River Basin (Spain)

    Science.gov (United States)

    Zambrano-Bigiarini, Mauricio; Bellin, Alberto; Majone, Bruno; Bovolo, C. Isabella; Blenkinsop, Stephen; Fowler, Hayley J.

    2010-05-01

    Quantification of the impacts of climate change on water resources depends on the emission scenario, climate model, downscaling technique and impact model used to drive the impact study. Uncertainties in projections of climate models and those involved in the quantification of its hydrological response limit the understanding of future impacts and complicate the assessment of mitigation policies. This work analyses the effects of climate change on water resources of the Ebro River Basin (NE Spain), considering the combined effect of uncertainty characterizing both the driving Regional Climate Model (RCM) and hydrological parameterization. In addition, we considered the relative importance of these two contributions. Hydrological simulations in a few test catchments within the basin were performed by using the SWAT model, a widely used hydrological model often applied to large-scale watersheds. After a preliminary sensitivity analysis with Latin Hypercube One-factor-At-a-Time (LH-OAT), the Generalized Likelihood Uncertainty Estimation (GLUE) methodology was used for selecting hydrological parameter sets that best reproduced the observed streamflow during the control period from 1961 to 1991, in terms of percentage of measured data bracketed by the 95% prediction uncertainty (95PPU), and the ratio between the average thickness of the 95PPU band and the standard deviation of the measured data. Following validation, the same parameter sets were used to simulate the effects of climate change on future streamflows. A simple bias-correction methodology was used for downscaling daily time series of precipitation and mean temperature from an ensemble of 6 RCM time-slice experiments. These were obtained from the PRUDENCE project for a control period (1961-1990) and for a future time period (2071-2100) using the medium-high SRES A2 emissions scenario. The bias-corrected future RCM scenarios were then used to drive the hydrological simulations during the future period

  15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: RVRMILES (River Mile Marker Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for river miles along the Hudson River. Vector lines in this data set represent river mile markers. This data set...

  16. Prevalence of Perkinsus marinus (dermo), Haplosporidium nelsoni (MSX), and QPX in bivalves of Delaware's inland bays and quantitative, high-throughput diagnosis of dermo by QPCR.

    Science.gov (United States)

    Ulrich, Paul N; Ewart, John W; Marsh, Adam G

    2007-01-01

    Restoration of oyster reef habitat in the Inland Bays of Delaware was accompanied by an effort to detect and determine relative abundance of the bivalve pathogens Perkinsus marinus, Haplosporidium nelsoni, and QPX. Both the oyster Crassostrea virginica and the clam Mercenaria mercenaria were sampled from the bays. In addition, oysters were deployed at eight sites around the bays as sentinels for the three parasites. Perkinsus marinus prevalence was measured with a real-time, quantitative polymerase chain reaction (PCR) methodology that enabled high-throughput detection of as few as 31 copies of the ribosomal non-transcribed spacer region in 500 ng oyster DNA. The other pathogens were assayed using PCR with species-specific primers. Perkinsus marinus was identified in Indian River Bay at moderate prevalence ( approximately 40%) in both an artificial reef and a wild oyster population whereas sentinel oysters were PCR-negative after 3-months exposure during summer and early fall. Haplosporidium nelsoni was restricted to one oyster deployed in Little Assawoman Bay. QPX and P. marinus were not detected among wild clams. While oysters in these bays have historically been under the greatest threat by MSX, it is apparent that P. marinus currently poses a greater threat to recovery of oyster aquaculture in Delaware's Inland Bays.

  17. A Collaborative Study of Disproportionate Chemical Risks in Seven Delaware Communities

    Science.gov (United States)

    Dryden, O.; Goldman, G. T.; White, R.; Moore, D.; Roberts, M.; Thomas, J.; Johnson, C.

    2017-12-01

    Studies have found that, compared to national averages, a significantly greater percentage of Blacks (African-Americans), Latinos (Hispanics), and people at or near poverty levels tend to live near industrial facilities that use large quantities of toxic chemicals and present a risk of major chemical disasters with potentially severe consequences for nearby communities. The Union of Concerned Scientists, the Environmental Justice Health Alliance for Chemical Policy Reform, and Delaware Concerned Residents for Environmental Justice collaborated on a study to examine the potential for cumulative impacts from health and safety risks for seven Delaware communities with a percentage of people of color and/or poverty levels greater than the Delaware average located along an industrial corridor in the northern portion of Delaware's New Castle County. These risks include close proximity to major industrial sources, as well as facilities that use large quantities of toxic, flammable or explosive chemicals and pose a high risk of a major chemical release or catastrophic incident. Additionally, proximity to contaminated waste sites was assessed, as well as the risk of cancer and potential for respiratory disease impacts from exposure to toxic air pollution. We found that people in these seven communities face a substantial cumulative health risk from exposure to toxic air pollution, proximity to polluting industrial facilities and hazardous chemical facilities, as well as contaminated waste sites. These health risks are substantially greater when compared to a wealthier and predominantly White Delaware community and for Delaware as a whole. Significant and expedited improvements in regulatory and public policy are needed at the national, state, and municipal levels to address the health and well-being of at-risk communities in Delaware and elsewhere.

  18. Water resources data for California, water year 1979; Volume 1: Colorado River basin, Southern Great Basin from Mexican Border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1981-01-01

    Water-resources data for the 1979 water year for California consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; records of water levels in selected observation wells; and selected chemical analyses of ground water. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. These data, a contribution to the National Water Data System, were collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  19. Water resources data for California, water year 1978; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1979-01-01

    Water-resources data for the 1978 water year for California consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; records of water levels in selected observation wells; and selected chemical analyses of ground water. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. These data, a contribution to the National water Data System, were collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  20. Water Resources Data for California, water year 1981: Vol. 1. Colorado River basin, Southern Great basin from Mexican Border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1982-01-01

    Water-resources data for the 1981 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 169 gaging stations; stage and contents for 19 lakes and reservoirs; water quality for 42 streams and 21 wells; water levels for 169 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  1. Water resources data for California, water year 1980; Volume 1, Colorado River basin, Southern Great Basin from Mexican border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1981-01-01

    Volume 1 of water resources data for the 1980 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lake and reservoirs; and water levels in wells. This report contains discharge records for 174 gaging stations; stage and contents for 18 lakes and reservoirs; water quality for 51 stations; water levels for 165 observation wells. Also included are 9 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  2. Basal Resources in Backwaters of the Colorado River Below Glen Canyon Dam-Effects of Discharge Regimes and Comparison with Mainstem Depositional Environments

    Science.gov (United States)

    Behn, Katherine E.; Kennedy, Theodore A.; Hall, Robert O.

    2010-01-01

    Eight species of fish were native to the Colorado River before the closure of Glen Canyon Dam, but only four of these native species are currently present. A variety of factors are responsible for the loss of native fish species and the limited distribution and abundance of those that remain. These factors include cold and constant water temperatures, predation and competition with nonnative fish species, and food limitation. Backwaters are areas of stagnant flow in a return-current channel and are thought to be critical rearing habitat for juvenile native fish. Backwaters can be warmer than the main channel and may support higher rates of food production. Glen Canyon Dam is a peaking hydropower facility and, as a result, has subdaily variation in discharge because of changes in demand for power. Stable daily discharges may improve the quality of nearshore rearing habitats such as backwaters by increasing warming, stabilizing the substrate, and increasing food production. To evaluate whether backwaters have greater available food resources than main-channel habitats, and how resource availability in backwaters is affected by stable flow regimes, we quantified water-column and benthic food resources in backwaters seasonally for 1 year using both standing (organic matter concentration/density; chlorophyll a concentration/density; zooplankton concentration; benthic invertebrate density and biomass) and process measurements (chamber estimates of ecosystem metabolism). We compared backwater resource measurements with comparable data from main-channel habitats, and compared backwater data collected during stable discharge with data collected when there was subdaily variation in discharge. Rates of primary production in backwaters (mean gross primary production of 1.7 g O2/m2/d) and the main channel (mean gross primary production of 2.0 g O2/m2/d) were similar. Benthic organic matter standing stock (presented as ash-free dry mass-AFDM) was seven times higher in backwaters

  3. Water resources data, Idaho, 2004; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  4. Water resources data, Idaho, 2003; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2004-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  5. Establishing Proficiency Levels for the Delaware Student Testing Program in Science and Social Studies, Grades 4 & 6. Report and Recommendations to the Delaware State Board of Education.

    Science.gov (United States)

    Delaware State Dept. of Education, Dover. Assessment and Accountability Branch.

    This document contains the results of a standard setting conducted in January 2002 on the Delaware Student Testing Program (DSTP) Science and Social Studies tests at grades 4 and 6. Each standard setting process entailed convening four groups, one for each grade level and content area, and each group met for 2 days. At the standard setting judges…

  6. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    Science.gov (United States)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  7. Impacts on Agriculture and forestry: The Impacts of climate change on Water resources in the Upper Tana River Basin in Kenya

    International Nuclear Information System (INIS)

    Mutua, F.M.

    1998-01-01

    The drainage system in Kenya is determined and influenced by the Great Rift Valley, running approximately from north to south. From the flanks of Rift Valley, surface water flows westwards towards Lake Victoria, and eastwards to the Indian Ocean, with the Rift Valley itself having an internal drainage system. The drainage system in Kenya is divided into five basins primarily on account of the topography and drainage of the country's major perennial rivers. The national annual water volume potential is estimated at 20,000 million m 3 , consisting of surface and groundwater with a projected annual water demand of 3,874 and 5, 817 million m 3 , respectively for the years 2000 and 2010. this implies that the demand by the year 2010 will be less than 30% of the total water resources potential. The quality and quantity of the groundwater in Kenya is extremely variable in both space and time. The latter is influenced by the geological formation in which the aquifer occurs.The major problem with ground water exploration is salinity and fluoride levels. The fluoride concentration generally exceeds the WHO drinking water guides of 1.5 mg/l in many areas. This is one of the major factors limiting groundwater utilisation in Kenya for drinking. The current trend is, however, that of extensively using the ground water for irrigation/livestock and industrial purposes

  8. From Management to Negotiation: Technical and Institutional Innovations for Integrated Water Resource Management in the Upper Comoé River Basin, Burkina Faso

    Science.gov (United States)

    Roncoli, Carla; Kirshen, Paul; Etkin, Derek; Sanon, Moussa; Somé, Léopold; Dembélé, Youssouf; Sanfo, Bienvenue J.; Zoungrana, Jacqueline; Hoogenboom, Gerrit

    2009-10-01

    This study focuses on the potential role of technical and institutional innovations for improving water management in a multi-user context in Burkina Faso. We focus on a system centered on three reservoirs that capture the waters of the Upper Comoé River Basin and servicing a diversity of users, including a sugar manufacturing company, a urban water supply utility, a farmer cooperative, and other downstream users. Due to variable and declining rainfall and expanding users’ needs, drastic fluctuations in water supply and demand occur during each dry season. A decision support tool was developed through participatory research to enable users to assess the impact of alternative release and diversion schedules on deficits faced by each user. The tool is meant to be applied in the context of consultative planning by a local user committee that has been created by a new national integrated water management policy. We contend that both solid science and good governance are instrumental in realizing efficient and equitable water management and adaptation to climate variability and change. But, while modeling tools and negotiation platforms may assist users in managing climate risk, they also introduce additional uncertainties into the deliberative process. It is therefore imperative to understand how these technological and institutional innovations frame water use issues and decisions to ensure that such framing is consistent with the goals of integrated water resource management.

  9. Water Resources

    International Nuclear Information System (INIS)

    Abira, M.A.

    1997-01-01

    Water is essential for life and ecological sustenance; its availability is essential component of national welfare and productivity.The country's socio-economic activities are largely dependent on the natural endowment of water resources. Kenya's water resources comprises of surface waters (rivers, lakes and wetlands) and ground water. Surface water forms 86% of total water resources while the rest is ground water Geological, topographical and climatic factors influence the natural availability and distribution of water with the rainfall distribution having the major influence. Water resources in Kenya are continuously under threat of depletion and quality degradation owing to rising population, industrialization, changing land use and settlement activities as well as natural changes. However, the anticipated climate change is likely to exacerbate the situation resulting in increased conflict over water use rights in particular, and, natural resource utilisation in general. The impacts of climate change on the water resources would lead to other impacts on environmental and socio-economic systems

  10. Creating an Early Warning System: Predictors of Dropout in Delaware. REL Mid-Atlantic Technical Assistance Brief. REL MA 1.2.75-10

    Science.gov (United States)

    Uekawa, Kazuaki; Merola, Stacey; Fernandez, Felix; Porowski, Allan

    2010-01-01

    This Technical Brief presents an historical analysis of key indicators of dropout for Delaware students in grades 9-12. Cut points for key risk indicators of high school dropout for the State of Delaware are provided. Using data provided by the Delaware Department of Education (DDOE), relationships between student dropout and several student…

  11. Using tritium to document the mean transit time and sources of water contributing to a chain-of-ponds river system: Implications for resource protection

    International Nuclear Information System (INIS)

    Cartwright, I.; Morgenstern, U.

    2016-01-01

    Documenting the interaction between groundwater and rivers is fundamental to understanding hydrological systems. While many studies have examined the location and magnitude of groundwater inflows to rivers, much less is known about the transit times of water in catchments and from where in the aquifer the groundwater originates. Resolving those questions is vital for protecting riverine ecosystems, assessing the impact of contamination, and understanding the potential consequences of groundwater pumping. This study uses tritium ("3H) to evaluate the mean transit times of water contributing to Deep Creek (southeast Australia), which is a chain-of-ponds river system. "3H activities of river water vary between 1.47 and 2.91 TU with lower "3H activities recorded during cease-to-flow periods when the river comprises isolated groundwater-fed pools. Regional groundwater 1–2.5 km away from Deep Creek at depths of 7.5–46.5 m has "3H activities of between 100 years. Alternatively the variation in "3H activities can be explained by mixing of a young near-river water component with up to 50% older groundwater. The results of this study reinforce the need to protect shallow near-river groundwater from contamination in order to safeguard riverine ecosystems and also illustrate the potential pitfalls in using regional bores to characterise the geochemistry of near-river groundwater. - Highlights: • We measured tritium in river water and groundwater from a groundwater-fed river. • Transit times of the river water are years to decades. • Transit times of regional groundwater are decades to centuries. • Regional groundwater is only a minor component of the river water. • Results have implications for protection of the river and its ecosystems.

  12. Water quality in the surficial aquifer near agricultural areas in the Delaware Coastal Plain, 2014

    Science.gov (United States)

    Fleming, Brandon J.; Mensch, Laura L.; Denver, Judith M.; Cruz, Roberto M.; Nardi, Mark R.

    2017-07-27

    The U.S. Geological Survey, in cooperation with the Delaware Department of Agriculture, developed a network of wells to monitor groundwater quality in the surficial aquifer of the Delaware Coastal Plain. Well-drained soils, a flat landscape, and accessible water in the Delaware Coastal Plain make for a productive agricultural setting. As such, agriculture is one of the largest industries in the State of Delaware. This setting enables the transport of chemicals from agriculture and other land uses to shallow groundwater. Efforts to mitigate nutrient transport to groundwater by the implementation of agricultural best management practices (BMPs) have been ongoing for several decades. To measure the effectiveness of BMPs on a regional scale, a network of 48 wells was designed to measure shallow groundwater quality (particularly nitrate) over time near agricultural land in the Delaware Coastal Plain. Water characteristics, major ions, nutrients, and dissolved gases were measured in groundwater samples collected from network wells during fall 2014. Wells were organized into three groups based on their geochemical similarity and these groups were used to describe nitrate and chloride concentrations and factors that affect the variability among the groups. The results from this study are intended to establish waterquality conditions in 2014 to enable comparison of future conditions and evaluate the effectiveness of agricultural BMPs on a regional scale.

  13. Examination of the potential impacts of dust and pollution aerosol acting as cloud nucleating aerosol on water resources in the Colorado River Basin

    Science.gov (United States)

    Jha, Vandana

    In this study we examine the cumulative effect of dust acting as cloud nucleating aerosol (cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN)) along with anthropogenic aerosol pollution acting primarily as CCN, over the entire Colorado Rocky Mountains from the months of October to April in the year 2004-2005; the snow year. This ˜6.5 months analysis provides a range of snowfall totals and variability in dust and anthropogenic aerosol pollution. The specific objectives of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains using the Regional Atmospheric Modeling System (RAMS). In general, dust enhances precipitation primarily by acting as IN, while aerosol pollution reduces water resources in the CRB via the so-called "spill-over" effect, by enhancing cloud droplet concentrations and reducing riming rates. Dust is more episodic and aerosol pollution is more pervasive throughout the winter season. Combined response to dust and aerosol pollution is a net reduction of water resources in the CRB. The question is by how much are those water resources affected? Our best estimate is that total winter-season precipitation loss for for the CRB the 2004-2005 winter season due to the combined influence of aerosol pollution and dust is 5,380,00 acre-feet of water. Sensitivity studies for different cases have also been run for the specific cases in 2004-2005 winter season to analyze the impact of changing dust and aerosol ratios on precipitation in the Colorado River Basin. The dust is varied from 3 to 10 times in the experiments and the response is found to be non monotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN affects are dominant. For a relatively dry system high concentrations of dust can result in over-seeding the clouds and reductions in precipitation

  14. Atmospheric nitrogen inputs to the Delaware Inland Bays: the role of ammonia

    International Nuclear Information System (INIS)

    Scudlark, Joseph R.; Jennings, Jennifer A.; Roadman, Megan J.; Savidge, Karen B.; Ullman, William J.

    2005-01-01

    + wet deposition within the Inland Bays watershed. In a pilot study, precipitation composition at the Lewes NADP-AIRMoN site (DE 02) was compared with that at a satellite site established at Riverdale on the Indian River Estuary, approximately 21 km southwest. While the volume-weighted mean precipitation NO 3 - concentrations did not differ significantly between sites, the NH 4 + concentration observed at Riverdale (26.3 μmoles L -1 ) was 73% greater than at Lewes (15.2 μmoles L -1 ). More recently, a NADP site was established at Trap Pond, DE (DE 99), which was intentionally located within the region of intense poultry production. A comparison of the initial two years (6/2001-5/2003) of precipitation chemistry data from Trap Pond with other nearby NADP-AIRMoN sites (Lewes and Smith Island) reveals fairly homogeneous NO 3 - wet deposition, but significant spatial differences (∼60%) in the NH 4 + wet flux. Overall, these results suggest that local emissions and below-cloud scavenging provide a significant contribution to regional atmospheric N deposition. - Local emissions from poultry production appear to significantly contribute to wet and dry atmospheric NH x loading to the Delaware Inland Bays

  15. 76 FR 4716 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Off Delaware, Notice of...

    Science.gov (United States)

    2011-01-26

    ... No. BOEM-2010-0075] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Off... commercial wind development on the OCS off Delaware and requests submission of indications of competitive... received two nominations of proposed lease areas: One from Bluewater Wind Delaware LLC (Bluewater) and...

  16. 75 FR 21653 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Delaware-Request...

    Science.gov (United States)

    2010-04-26

    ... Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Delaware--Request for Interest (RFI... proposal. In June 2008, Bluewater Wind Delaware LLC announced that it signed a 25-year power purchase agreement with Delmarva Power to sell up to 200 megawatts (MW) of power to the utility from an offshore wind...

  17. Monitoring coastal water properties and current circulation with ERTS-1. [Delaware Bay

    Science.gov (United States)

    Klemas, V.; Otley, M.; Wethe, C.; Rogers, R.

    1974-01-01

    Imagery and digital tapes from nine successful ERTS-1 passes over Delaware Bay during different portions of the tidal cycle have been analyzed with special emphasis on turbidity, current circulation, waste disposal plumes and convergent boundaries between different water masses. ERTS-1 image radiance correlated well with Secchi depth and suspended sediment concentration. Circulation patterns observed by ERTS-1 during different parts of the tidal cycle, agreed well with predicted and measured currents throughout Delaware Bay. Convergent shear boundaries between different water masses were observed from ERTS-1. In several ERTS-1 frames, waste disposal plumes have been detected 36 miles off Delaware's Atlantic coast. The ERTS-1 results are being used to extend and verify hydrodynamic models of the bay, developed for predicting oil slick movement and estimating sediment transport.

  18. Participatory Modeling Processes to Build Community Knowledge Using Shared Model and Data Resources and in a Transboundary Pacific Northwest Watershed (Nooksack River Basin, Washington, USA)

    Science.gov (United States)

    Bandaragoda, C.; Dumas, M.

    2014-12-01

    As with many western US watersheds, the Nooksack River Basin faces strong pressures associated with climate variability and change, rapid population growth, and deep-rooted water law. This transboundary basin includes contributing areas in British Columbia, Canada, and has a long history of joint data collection, model development, and facilitated communication between governmental (federal, tribal, state, local), environmental, timber, agricultural, and recreational user groups. However, each entity in the watershed responds to unique data coordination, information sharing, and adaptive management regimes and thresholds, further increasing the complexity of watershed management. Over the past four years, participatory methods were used to compile and review scientific data and models, including fish habitat (endangered salmonid species), channel hydraulics, climate data, agricultural, municipal and industrial water use, and integrated watershed scale distributed hydrologic models from over 15 years of projects (from jointly funded to independent shared work by individual companies, agencies, and universities). A specific outcome of the work includes participatory design of a collective problem statement used for guidance on future investment of shared resources and development of a data-generation process where modeling results are communicated in a three-tiers for 1) public/decision-making, 2) technical, and 3) research audiences. We establish features for successful participation using tools that are iteratively developed, tested for usability through incremental knowledge building, and designed to provide rigor in modeling. A general outcome of the work is ongoing support by tribal, state, and local governments, as well as the agricultural community, to continue the generation of shared watershed data using models in a dynamic legal and regulatory setting, where two federally recognized tribes have requested federal court resolution of federal treaty rights

  19. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Enos, David George [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  20. Health assessment for E. I. Dupont Newport Plant Landfill, Newport, Delaware, Region 3. CERCLIS No. DED980555122. Preliminary report

    International Nuclear Information System (INIS)

    1988-01-01

    The E.I. Dupont Newport Plant Landfill, a seven acre site located adjacent to the Dupont Pigment Plant in Newport, Delaware, was used to bury paint pigments (heavy metals and chlorinated solvents) and radioactive materials from 1902 to 1975. The site was closed in 1975, the surface covered, graded and vegetated, and groundwater monitoring wells installed on- and off-site. Heavy metals (cadmium, barium, lead, zinc), and chlorinated solvents (trichloroethylene, tetrachloroethylene) have been measured in groundwater on-site. Radiation levels appear to be close to background. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via groundwater. More information is needed concerning levels of contamination in private wells and the Christina River, the direction of groundwater flow, the size and extent of the groundwater contamination plume, the location of the private wells and the public water supply wells, and the composition of the population down gradient of the site

  1. Achievement of Abraham Maslow's Needs Hierarchy Theory among Teachers: Implications for Human Resource Management in the Secondary School System in Rivers State

    Science.gov (United States)

    Adiele, E.E.; Abraham, Nath. M.

    2013-01-01

    The study investigated the achievement of Abraham Maslow's need hierarchy theory among secondary school teachers in Rivers State. A 25-item questionnaire was designed, validated and administered on a sample of 500 teachers drawn from 245 secondary schools in Rivers State. The result revealed that secondary school teachers indicated insignificant…

  2. Studies on retranslocation of accumulated assimilates in 'Delaware' grapevines, (1)

    International Nuclear Information System (INIS)

    Yang, Yau-Shiang; Hori, Yutaka

    1979-01-01

    Potted Delaware grapevines were supplied with 14 CO 2 in summer or autumn, and the accumulation and retranslocation of 14 C-assimilates were investigated. At pruning time, 14 C-assimilates were distributed to the roots at higher ratio than to the trunks and canes, and this trend was more marked in the autumn feeding than the summer feeding. The respiratory consumption and retranslocation of 14 C during the growth period of new shoots were evaluated as the percentage of 14 C found in the vines just after pruning. The percentage of the respiratory consumption of 14 C was evidently higher in the autumn feeding. The retranslocation began with the bud burst, and reached maximum at the 6- to 8-leaf stages in the vines fed 14 CO 2 in autumn and at the 10-leaf stage in those fed in summer. The retranslocation in both groups ceased by the flowering stage. Such course of the retranslocation with time was recognized in radioautographs of the new shoots. The maximum percentage of the translocation to the newly developed shoots was 5.1 - 5.2 and 15.3 - 10.7 in the vines fed 14 CO 2 in summer and autumn, respectively. It was peculiar to the new shoots that nearly half of their ethanol-soluble 14 C was found in amino acids unlike the one-sided distribution to soluble carbohydrates in the trunks and roots. It was assumed that amino acids were retranslocated to the new shoots after they had been synthesized in the roots. (Kaihara, S.)

  3. Assessment and Mmanagement of North American horseshoe crab populations, with emphasis on a multispecies framework for Delaware Bay, U.S.A. populations: Chapter 24

    Science.gov (United States)

    Millard, Michael J.; Sweka, John A.; McGowan, Conor P.; Smith, David R.

    2015-01-01

    The horseshoe crab fishery on the US Atlantic coast represents a compelling fishery management story for many reasons, including ecological complexity, health and human safety ramifications, and socio-economic conflicts. Knowledge of stock status and assessment and monitoring capabilities for the species have increased greatly in the last 15 years and permitted managers to make more informed harvest recommendations. Incorporating the bioenergetics needs of migratory shorebirds, which feed on horseshoe crab eggs, into the management framework for horseshoe crabs was identified as a goal, particularly in the Delaware Bay region where the birds and horseshoe crabs exhibit an important ecological interaction. In response, significant effort was invested in studying the population dynamics, migration ecology, and the ecologic relationship of a key migratory shorebird, the Red Knot, to horseshoe crabs. A suite of models was developed that linked Red Knot populations to horseshoe crab populations through a mass gain function where female spawning crab abundance determined what proportion of the migrating Red Knot population reached a critical body mass threshold. These models were incorporated in an adaptive management framework wherein optimal harvest decisions for horseshoe crab are recommended based on several resource-based and value-based variables and thresholds. The current adaptive framework represents a true multispecies management effort where additional data over time are employed to improve the predictive models and reduce parametric uncertainty. The possibility of increasing phenologic asynchrony between the two taxa in response to climate change presents a potential challenge to their ecologic interaction in Delaware Bay.

  4. Ohio Water Resources Council

    Science.gov (United States)

    Ohio.gov State Agencies | Online Services Twitter YouTube EPA IMAGE Ohio Water Resources Committee Ohio enjoys abundant water resources. Few states enjoy as many streams, rivers, lakes and wetlands as Ohio. Numerous agencies and organizations are involved in protecting Ohio's valuable water resources

  5. 78 FR 11097 - Artificial Island Anchorage No. 2 Partial Closure, Delaware River; Salem, NJ

    Science.gov (United States)

    2013-02-15

    ...-4851, email [email protected] . If you have questions on viewing or submitting material to the... Port is establishing this safety zone to ensure the safety of life and property of all mariners and...'' W and extending to the southern boundary according to NOAA chart 12311. Vessels will not be...

  6. 76 FR 11961 - Safety Zone, Dredging Operations; Delaware River, Marcus Hook, PA

    Science.gov (United States)

    2011-03-04

    ... term ``small entities'' comprises small businesses, not-for-profit organizations that are independently... effect for only a limited period. Vessel traffic will be diverted through the lower end of Anchorage 7 to...

  7. F00490: NOS Hydrographic Survey , Delaware River, New Jersey, 2003-05-31

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  8. 77 FR 47334 - Safety Zone; Red Bull Flugtag, Delaware River; Camden, NJ

    Science.gov (United States)

    2012-08-08

    ... comments by mail and would like to know that they reached the Facility, please enclose a stamped, self... proceed at the minimum speed necessary to maintain a safe course that minimizes wake near the event area...

  9. Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin

    Science.gov (United States)

    Bing Xu; Yude Pan; Alain F. Plante; Arthur Johnson; Jason Cole; Richard Birdsey

    2016-01-01

    Quantifying forest biomass carbon (C) stock change is important for understanding forest dynamics and their feedbacks with climate change. Forests in the northeastern U.S. have been a net carbon sink in recent decades, but C accumulation in some northern hardwood forests has been halted due to the impact of emerging stresses such as invasive pests, land use change and...

  10. F00594: NOS Hydrographic Survey , Delaware River, New Jersey and Pennsylvania, 2010-07-26

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  11. H12152: NOS Hydrographic Survey , Delaware River, Pennsylvania and New Jersey, 2009-12-08

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  12. 77 FR 60896 - Drawbridge Operation Regulation; Delaware River, Between Burlington, NJ and Bristol, PA

    Science.gov (United States)

    2012-10-05

    ... temporary deviation. The bridge will not be able to open in an emergency during lift cable tension... the operating lift cables. DATES: This deviation is effective from 7 a.m. on October 30, 2012 to 3 p.m... 33 CFR 117.5 and 117.716(b) to facilitate the adjustment of the operational lift cables. The...

  13. Delaware School Climate Survey--Student: Its Factor Structure, Concurrent Validity, and Reliability

    Science.gov (United States)

    Bear, George G.; Gaskins, Clare; Blank, Jessica; Chen, Fang Fang

    2011-01-01

    The Delaware School Climate Survey-Student (DSCS-S) was developed to provide schools with a brief and psychometrically sound student survey for assessing school climate, particularly the dimensions of social support and structure. Confirmatory factor analyses, conducted on a sample of 11,780 students in 85 schools, showed that a bifactor model…

  14. Species Richness and Phenology of Cerambycid Beetles in Urban Forest Fragments of Northern Delaware

    Science.gov (United States)

    K. Handley; J. Hough-Goldstein; L.M. Hanks; J.G. Millar; V. D' amico

    2015-01-01

    Cerambycid beetles are abundant and diverse in forests, but much about their host relationships and adult behavior remains unknown. Generic blends of synthetic pheromones were used as lures in traps, to assess the species richness, and phenology of cerambycids in forest fragments in northern Delaware. More than 15,000 cerambycid beetles of 69 species were trapped over...

  15. Case-control study of tobacco smoke exposure and breast cancer risk in Delaware

    Directory of Open Access Journals (Sweden)

    Hathcock H Leroy

    2008-06-01

    Full Text Available Abstract Background Tobacco smoke exposure may be associated with increased breast cancer risk, although the evidence supporting the association is inconclusive. We conducted a case-control study in Delaware, incorporating detailed exposure assessment for active and secondhand smoke at home and in the workplace. Methods Primary invasive breast cancer cases diagnosed among female Delaware residents, ages 40–79, in 2000–2002 were identified through the Delaware cancer registry (n = 287. Delaware drivers license and Health Care Finance Administration records were used to select age frequency-matched controls for women Results A statistically significant increased risk of breast cancer was observed for ever having smoked cigarettes (odds ratio = 1.43, 95% confidence interval = 1.03–1.99. However, there was no evidence of a dose-response relationship between breast cancer risk and total years smoked, cigarettes per day, or pack-years. Neither residential nor workplace secondhand smoke exposure was associated with breast cancer. Recalculations of active smoking risks using a purely unexposed reference group of women who were not exposed to active or secondhand smoking did not indicate increased risks of breast cancer. Conclusion These findings do not support an association between smoking and breast cancer.

  16. Dover AFB Catchment Area TRICARE Marketing Plan, 436th Medical Group, Dover AFB, Delaware,

    Science.gov (United States)

    1997-06-01

    cosmetic changes (Nadiu, Kleimenhagen, and Pillari 1992). Berkowitz classifies the debate in terms of eras. During the production era, the function was to...facilities in Smyrna and Fenton , Delaware. KGH has aggressive marketing and community education programs which include classes on: cardiopulmonary

  17. The Politics of Race and Educational Disparities in Delaware's Public Schools

    Science.gov (United States)

    Davis, Theodore J., Jr.

    2017-01-01

    Delaware has long played a pivotal role in the nation's struggle to end school segregation and promote educational equality. This article discusses racial disparities in educational achievement and outcomes by examining the state's political history and the politics of race in public education. This article explores educational disparities from a…

  18. 75 FR 31711 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Control of Nitrogen...

    Science.gov (United States)

    2010-06-04

    ... Promulgation of Air Quality Implementation Plans; Delaware; Control of Nitrogen Oxide Emissions From Industrial... controlling nitrogen oxide (NOx) emissions from industrial boilers. This action is being taken under the Clean...--Control of Nitrogen Oxide Emissions from Industrial Boilers and Process Heaters at Petroleum Refineries in...

  19. 75 FR 32858 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Control of Nitrogen...

    Science.gov (United States)

    2010-06-10

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R03-OAR-2010-0039; FRL-9158-3] Approval and Promulgation of Air Quality Implementation Plans; Delaware; Control of Nitrogen Oxide Emissions From Industrial Boilers and Process Heaters at Petroleum Refineries Correction In rule document 2010-13377 beginning on...

  20. 36 CFR 7.71 - Delaware Water Gap National Recreation Area.

    Science.gov (United States)

    2010-07-01

    ... THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.71 Delaware Water Gap National... route begins at the Smithfield Beach parking area and is in two loops. Loop One is a small trail... number of axles and wheels on a vehicle, regardless of load or weight, as follows: (i) Two-axle car, van...

  1. 76 FR 2853 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Infrastructure State...

    Science.gov (United States)

    2011-01-18

    ... Environmental Control, 89 Kings Highway, P.O. Box 1401, Dover, Delaware 19903. FOR FURTHER INFORMATION CONTACT...) and (2) for the 2006 24-Hour Fine Particle (PM 2.5 ) NAAQS'' (hereafter the 2009 Guidance). EPA... Under Sections 110(a)(1) and (2) for the 2006 24-Hour Fine Particle (PM 2.5 ) NAAQS'' was not issued...

  2. 75 FR 64673 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Limiting Emissions of...

    Science.gov (United States)

    2010-10-20

    ... From Consumer Products AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA... revision amends existing Section 2.0--Consumer Products to Delaware's Regulation 1141 (formerly SIP... hours at the Air Protection Division, U.S. Environmental Protection Agency, Region III, 1650 Arch Street...

  3. TOXICITY TRENDS DURING AN OIL SPILL BIOREMEDIATION EXPERIMENT ON A SANDY SHORELINE IN DELAWARE, USA

    Science.gov (United States)

    A 13-week, refereed, inter-agency toxicity testing program involving five bioassay methods was used to document the effectiveness of shoreline bioremediation to accelerate toxicity reduction of an oiled sandy shoreline at Fowler Beach, Delaware, USA. The study was part of an inte...

  4. Focus on CSIR research in water resources: conservation planning for river and estuarine biodiversity in the Fish to Tsitsikamma water management area

    CSIR Research Space (South Africa)

    Roux, D

    2007-08-01

    Full Text Available for river and estuarine biodiversity in the Fish- to-Tsitsikamma water management area Project Aims To put in practice and refine, through a pilot study in the Eastern Cape Province, the policy and planning tools developed for systematic conservation... engagement in developing the technical approach to river prioritization and selection, as well as the reviewing of results to facilitate buy-in and ownership of the product. Project Description The Fish to Tsitsikamma Water Management Area is one...

  5. 78 FR 28005 - System Energy Resources, Inc.; Grand Gulf Nuclear Station; Order Approving Direct and Indirect...

    Science.gov (United States)

    2013-05-13

    ... direct transfer of Grand Gulf ESP Site, to a new limited liability company, System Energy Resource, LLC..., LLC, a Delaware limited liability company, will be created, which will be the direct parent company of... Operations, Inc. (EOI), requested on behalf of itself, SERI, and their parent companies (together, the...

  6. Linking the watershed to the schoolshed: teaching sustainable development in K-12 with the Chester RIver Watershed Observatory

    Science.gov (United States)

    Trembanis, A. C.; Levin, D.; Seidel, J.

    2012-12-01

    (developed by Levin) engage students in the building and testing of buoys to monitor the environment. Additional hands on science activities include the Levin developed ROVs-in-a-bucket project that Trembanis has incorporated into the University of Delaware high school summer science camp TIDE (Teaching an Interest in Delaware's Estuary) http://www.ceoe.udel.edu/tide/ in which 12-15 high school students annually participate in groups working to design, build, and operate a simple remotely operated vehicle in a series of real work simulation activities such as responding to an oil spill. The new CRW network will be the focus for formal and informal learning partnerships between schools in the watershed. Professional development opportunities for Chester River watershed teachers focus on the use of sensors, utilization of GIS in the classroom, and other resources that become available as shared teaching resources. Federal, state, regional, and local users in government, private industry, and educational venues from grades k-16 will be able to observe the trends and learn together the most prudent ways to sustain and conserve natural resources.

  7. Identification and evaluation of scientific uncertainties related to fish and aquatic resources in the Colorado River, Grand Canyon - summary and interpretation of an expert-elicitation questionnaire

    Science.gov (United States)

    Kennedy, Theodore A.

    2013-01-01

    Identifying areas of scientific uncertainty is a critical step in the adaptive management process (Walters, 1986; Runge, Converse, and Lyons, 2011). To identify key areas of scientific uncertainty regarding biologic resources of importance to the Glen Canyon Dam Adaptive Management Program, the Grand Canyon Monitoring and Research Center (GCMRC) convened Knowledge Assessment Workshops in May and July 2005. One of the products of these workshops was a set of strategic science questions that highlighted key areas of scientific uncertainty. These questions were intended to frame and guide the research and monitoring activities conducted by the GCMRC in subsequent years. Questions were developed collaboratively by scientists and managers. The questions were not all of equal importance or merit—some questions were large scale and others were small scale. Nevertheless, these questions were adopted and have guided the research and monitoring efforts conducted by the GCMRC since 2005. A new round of Knowledge Assessment Workshops was convened by the GCMRC in June and October 2011 and January 2012 to determine whether the research and monitoring activities conducted since 2005 had successfully answered some of the strategic science questions. Oral presentations by scientists highlighting research findings were a centerpiece of all three of the 2011–12 workshops. Each presenter was also asked to provide an answer to the strategic science questions that were specific to the presenter’s research area. One limitation of this approach is that these answers represented the views of the handful of scientists who developed the presentations, and, as such, they did not incorporate other perspectives. Thus, the answers provided by presenters at the Knowledge Assessment Workshops may not have accurately captured the sentiments of the broader group of scientists involved in research and monitoring of the Colorado River in Glen and Grand Canyons. Yet a fundamental ingredient of

  8. Modern sedimentary environments in a large tidal estuary, Delaware Bay

    Science.gov (United States)

    Knebel, H.J.

    1989-01-01

    Data from an extensive grid of sidescan-sonar records reveal the distribution of sedimentary environments in the large, tidally dominated Delaware Bay estuary. Bathymetric features of the estuary include large tidal channels under the relatively deep (> 10 m water depth) central part of the bay, linear sand shoals (2-8 m relief) that parallel the sides of the tidal channels, and broad, low-relief plains that form the shallow bay margins. The two sedimentary environments that were identified are characterized by either (1) bedload transport and/or erosion or (2) sediment reworking and/or deposition. Sand waves and sand ribbons, composed of medium to coarse sands, define sites of active bedload transport within the tidal channels and in gaps between the linear shoals. The sand waves have spacings that vary from 1 to 70 m, amplitudes of 2 m or less, and crestlines that are usually straight. The orientations of the sand waves and ribbons indicate that bottom sediment movement may be toward either the northwest or southeast along the trends of the tidal channels, although sand-wave asymmetry indicates that the net bottom transport is directed northwestward toward the head of the bay. Gravelly, coarse-grained sediments, which appear as strongly reflective patterns on the sonographs, are also present along the axes and flanks of the tidal channels. These coarse sediments are lag deposits that have developed primarily where older strata were eroded at the bay floor. Conversely, fine sands that compose the linear shoals and muddy sands that cover the shallow bay margins appear mainly on the sonographs either as smooth featureless beds that have uniform light to moderate shading or as mosaics of light and dark patches produced by variations in grain size. These acoustic and textural characteristics are the result of sediment deposition and reworking. Data from this study (1) support the hypothesis that bed configurations under deep tidal flows are functions of current

  9. A snapshot of tobacco-related messages relayed in pediatric offices in Delaware.

    Science.gov (United States)

    Feinson, Judith; Raughley, Erin; Chang, Christine D; Chidekel, Aaron

    2003-10-01

    Much research exists demonstrating that pediatricians should counsel patients and families about tobacco. However, few data are available about tobacco-related messages relayed in pediatric offices. Since an anti-tobacco office environment can be a strong component of an active tobacco prevention program, we evaluated pediatric offices in Delaware to characterize tobacco-related messages. A convenience sample of 32 of 63 (51%) pediatric offices in Delaware was directly evaluated for the presence of tobacco-related messages. Fifty-five of 63 (87%) pediatric practices in Delaware were contacted by telephone to inquire about the presence of a tobacco coordinator. The 32 practices represented 71 physicians, were located in all three counties throughout the state, and were urban and non-urban in setting. The same investigator evaluated practices in a single site visit. All were located in smoke-free buildings. At one office, people were seen smoking outside; however, the presence of discarded cigarettes was much more common. Thirteen practices (41%) employed smokers, most of whom smoked outside during work hours. Twenty-one of 28 practices (75%) had waiting room magazines containing tobacco advertisements. Fifteen practices (47%) offered anti-tobacco literature while six practices (19%) displayed visual media, none exclusively addressing tobacco. Nine practices (28%) use chart flags to identify smokers. None of 55 pediatric practices in Delaware contacted by telephone identified an office tobacco prevention coordinator. Our data indicate that, in Delaware, the pediatric offices we visited overall convey a limited message about tobacco and could strengthen tobacco prevention strategies. Research measuring the impact of office-based anti-tobacco messages is needed. If these messages are effective in preventing tobacco use, practitioners can supplement active counseling with indirect interventions that require minimal maintenance once established and that place no

  10. Composition and temporal patterns of larval fish communities in Chesapeake and Delaware Bays

    Directory of Open Access Journals (Sweden)

    Filipe Ribeiro

    2015-11-01

    Full Text Available Comparing larval fish assemblages in different estuaries provides insights about the coastal distribution of larval populations, larval transport, and adult spawning locations (Ribeiro et al. 2015. We simultaneously compared the larval fish assemblages entering two Middle Atlantic Bight (MAB estuaries (Delaware Bay and Chesapeake Bay, USA through weekly sampling from 2007 to 2009. In total, 43 taxa (32 families and 36 taxa (24 families were collected in Delaware and Chesapeake Bays, respectively. Mean taxonomic diversity, mean richness, and evenness were generally lower in Delaware Bay. Communities of both bays were dominated by Anchoa spp., Gobiosoma spp., Micropogonias undulatus, and Brevoortia tyrannus; Paralichthys spp. was more abundant in Delaware Bay and Microgobius thalassinus was more abundant in Chesapeake Bay. Inter-annual variation in the larval fish communities was low at both sites, with a relatively consistent composition across years, but strong seasonal (intra-annual variation in species composition occurred in both bays. Two groups were identified in Chesapeake Bay: a ‘winter’ group dominated by shelf-spawned species (e.g. M. undulatus and a ‘summer’ group comprising obligate estuarine species and coastal species (e.g. Gobiosoma spp. and Cynoscion regalis, respectively. In Delaware Bay, 4 groups were identified: a ‘summer’ group of mainly obligate estuarine fishes (e.g. Menidia sp. being replaced by a ‘fall’ group (e.g. Ctenogobius boleosoma and Gobionellus oceanicus; ‘winter’ and ‘spring’ groups were dominated by shelf-spawned (e.g. M. undulatus and Paralichthys spp. and obligate estuarine species (e.g. Leiostomus xanthurus and Pseudopleuronectes americanus, respectively. This study demonstrates that inexpensive and simultaneous sampling in different estuaries provides important insights into the variability in community structure of fish assemblages at large spatial scales.

  11. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Standard Chlorine of Delaware Superfund Site in Delaware City, Delaware. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Standard Chlorine of Delaware site in Delaware City, Delaware, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  12. 18 CFR 401.0 - Introduction.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Introduction. 401.0 Section 401.0 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE § 401.0 Introduction. (a) The Delaware River Basin Compact...

  13. NOAA Office for Coastal Management RoxAnn Acoustic Sensor Benthic Habitat Data, Rehoboth Bay, Delaware, 2000 (NODC Accession 0089461)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the spring of 1999, the Delaware Coastal Programs (DCP) identified the spatial extent of macroalgae in the shallow portions of Rehoboth Bay utilizing...

  14. RoxAnn Acoustic Sensor Data Points - Rehoboth Bay, Delaware Algae Mapping with Single Beam Acoustics: June 12 - 16, 2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the spring of 1999, the Delaware Coastal Programs(DCP) identified the spatial extent of macroalgae in the shallow portions of Rehoboth Bay utilizing...

  15. Biological, chemical, and physical data collected in Delaware Bay from 2 Sep 1997 to 8 Oct 1997 (NODC Accession 0118720)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study was based on the sediment quality triad (SQT) approach. A stratified probabilistic sampling design was utilized to characterize the Delaware Bay system in...

  16. Environmental Sensitivity Index (ESI) Atlas: Delaware, New Jersey, Pennsylvania, maps and geographic information systems data (NODC Accession 0014793)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Delaware, New Jersey, and Pennsylvania from 1969 to 2000(May 2002 v.3). ESI data...

  17. The University of Delaware Carlson International Polar Year Events: Collaborative and Educational Outreach

    Science.gov (United States)

    Nelson, F. E.; Bryant, T.; Wellington, P.; Dooley, J.; Bird, M.

    2008-12-01

    Delaware is a small state with, by virtue of its coastal location, a large stake in climatic change in the polar regions. The University of Delaware has maintained a strong presence in cold-regions research since the mid-1940s, when William Samuel Carlson, a highly accomplished Arctic explorer, military strategist, and earth scientist, was named 20th President (1946-50) of the University. Carlson played a leading role in two of the University of Michigan's Greenland expeditions in the late 1920s and early 1930s. As Director of the Arctic, Desert, and Tropic Branch of the US Army Air Forces Tactical Center during World War II, Colonel Carlson played a role in developing several air transportation routes through the Arctic that helped to facilitate the Allied victory in Europe. Carlson authored many scientific and popular publications concerned with the Arctic, including the books Greenland Lies North (1940) and Lifelines Through the Arctic (1962). Although the University of Delaware has maintained a vigorous and continuous program of polar research since Carlson's tenure, the faculty, staff, and students involved are diffused throughout the University's colleges and departments, without an institutional focal point. Consequently, although many of these individuals are well known in their respective fields, the institution has not until recently been perceived widely as a center of polar-oriented research. The goals of the Carlson International Polar Year Events are to: (a) develop a sense of community among UD's diffuse polar-oriented researchers and educators; (b) create a distinctive and highly visible role for UD in the milieu of IPY activities; (c) promote interest in and knowledge about the polar regions in the State of Delaware, at all educational levels; (d) forge a close relationship between UD and the American Geographical Society, a national organization involved closely with previous International Polar Years; and (e) create a new basis for development

  18. Residence time, chemical and isotopic analysis of nitrate in the groundwater and surface water of a small agricultural watershed in the Coastal Plain, Bucks Branch, Sussex County, Delaware

    Science.gov (United States)

    Clune, John W.; Denver, Judith M.

    2012-01-01

    Nitrate is a common contaminant in groundwater and surface water throughout the Nation, and water-resource managers need more detailed small-scale watershed research to guide conservation efforts aimed at improving water quality. Concentrations of nitrate in Bucks Branch are among the highest in the state of Delaware and a scientific investigation was performed to provide water-quality information to assist with the management of agriculture and water resources. A combination of major-ion chemistry, nitrogen isotopic composition and age-dating techniques was used to estimate the residence time and provide a chemical and isotopic analysis of nitrate in the groundwater in the surficial aquifer of the Bucks Branch watershed in Sussex County, Delaware. The land use was more than 90 percent agricultural and most nitrogen inputs were from manure and fertilizer. The apparent median age of sampled groundwater is 18 years and the estimated residence time of groundwater contributing to the streamflow for the entire Bucks Branch watershed at the outlet is approximately 19 years. Concentrations of nitrate exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter (as nitrogen) in 60 percent of groundwater samples and 42 percent of surface-water samples. The overall geochemistry in the Bucks Branch watershed indicates that agriculture is the predominant source of nitrate contamination and the observed patterns in major-ion chemistry are similar to those observed in other studies on the Mid-Atlantic Coastal Plain. The pattern of enrichment in nitrogen and oxygen isotopes (δ15N and δ18O) of nitrate in groundwater and surface water indicates there is some loss of nitrate through denitrification, but this process is not sufficient to remove all of the nitrate from groundwater discharging to streams, and concentrations of nitrate in streams remain elevated.

  19. National Dam Safety Program. Lake Como Dam (DE 00028), Delaware River Basin, Mill Creek, Kent County, Delaware. Phase I Inspection Report.

    Science.gov (United States)

    1980-11-01

    STATEMENT (of the abstract antarod in Block 20, It different frm Report) III. SUPPLEMENTARY NOTES Copies are obtainable from National Technical...should employ a professional engineer experienced in operation and maintanance of darns to develop written operating procedures and a periodic...100 YEAR FLOOD WOULD CAUSE A DAM TO bE OVERTOPPED THEREFORE THE OWNER SHOULD ENGAGE A QUALIFIED PkOFEbSIONAL CONSULTANT USING MORE PERCISE METHODS

  20. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  1. Development of Land Segmentation, Stream-Reach Network, and Watersheds in Support of Hydrological Simulation Program-Fortran (HSPF) Modeling, Chesapeake Bay Watershed, and Adjacent Parts of Maryland, Delaware, and Virginia

    Science.gov (United States)

    Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.

    2006-01-01

    The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each

  2. Investing in river health.

    Science.gov (United States)

    Bennett, J

    2002-01-01

    Rivers provide society with numerous returns. These relate to both the passive and extractive uses of the resources embodied in river environments. Some returns are manifest in the form of financial gains whilst others are non-monetary. For instance, rivers are a source of monetary income for those who harvest their fish. The water flowing in rivers is extracted for drinking and to water crops and livestock that in turn yield monetary profits. However, rivers are also the source of non-monetary values arising from biological diversity. People who use them for recreation (picnicking, swimming, boating) also receive non-monetary returns. The use of rivers to yield these returns has had negative consequences. With extraction for financial return has come diminished water quantity and quality. The result has been a diminished capacity of rivers to yield (non-extractive) environmental returns and to continue to provide extractive values. A river is like any other asset. With use, the value of an asset depreciates because its productivity declines. In order to maintain the productive capacity of their assets, managers put aside from their profits depreciation reserves that can be invested in the repair or replacement of those assets. Society now faces a situation in which its river assets have depreciated in terms of their capacity to provide monetary and non-monetary returns. An investment in river "repair" is required. But, investment means that society gives up something now in order to achieve some benefit in the future. Society thus has to grapple wih the choice between investing in river health and other investments--such as in hospitals, schools, defence etc. - as well as between investing in river health and current consumption--such as on clothes, food, cars etc. A commonly used aid for investment decision making in the public sector is benefit cost analysis. However, its usefulness in tackling the river investment problem is restricted because it requires all

  3. Regional well-log correlation in the New Mexico portion of the Delaware Basin

    International Nuclear Information System (INIS)

    Borns, D.J.; Shaffer, S.E.

    1985-09-01

    Although well logs provide the most complete record of stratigraphy and structure in the northern Delaware Basin, regional interpretations of these logs generate problems of ambiguous lithologic signatures and on-hole anomalies. Interpretation must therefore be based on log-to-log correlation rather than on inferences from single logs. In this report, logs from 276 wells were used to make stratigraphic picks of Ochoan horizons (the Rustler, Salado, and Castile Formations) in the New Mexico portion of the Delaware Basin. Current log correlation suggests that: (1) the Castile is characterized by lateral thickening and thinning; (2) some Castile thinnings are of Permian age; (3) irregular topography in the Guadalupian Bell Canyon Formation may produce apparent structures in the overlying Ochoan units; and (4) extensive dissolution of the Salado is not apparent in the area of the Waste Isolation Pilot Project (WIPP) site. 13 refs., 37 figs

  4. Successful implementation of controlled aerobic bioremediation technology at hydrocarbon contaminated sites in the state of Delaware

    International Nuclear Information System (INIS)

    Harmon, C.D.; Hiller, A.V.; Carberry, J.B.

    1994-01-01

    WIK Associates, Inc. of New Castle, Delaware, has been working over the last two years to improve and advance a cost effective method of treating hydrocarbon contaminated soils. The first section of this paper describes treatment methods and associated benefits such as increased control over environmental parameters. The second part of this paper describes work performed in attempting to predict degradation rates for varying types of hydrocarbon contamination under varying conditions. This research is based on data gathered in performing on-site bioremediation as described. A third section included in this paper describes the unique perspective of a State regulator responsible for overseeing remediation efforts evolving from leaking underground storage tanks. This section describes regulatory issues and procedures in Delaware and how the Department handles the submission and implementation of corrective action work plans, through project closure with thorough documentation of the remediation

  5. Hindcasting of Storm Surges, Currents, and Waves at Lower Delaware Bay during Hurricane Isabel

    Science.gov (United States)

    Salehi, M.

    2017-12-01

    Hurricanes are a major threat to coastal communities and infrastructures including nuclear power plants located in low-lying coastal zones. In response, their sensitive elements should be protected by smart design to withstand against drastic impact of such natural phenomena. Accurate and reliable estimate of hurricane attributes is the first step to that effort. Numerical models have extensively grown over the past few years and are effective tools in modeling large scale natural events such as hurricane. The impact of low probability hurricanes on the lower Delaware Bay is investigated using dynamically coupled meteorological, hydrodynamic, and wave components of Delft3D software. Efforts are made to significantly reduce the computational overburden of performing such analysis for the industry, yet keeping the same level of accuracy at the area of study (AOS). The model is comprised of overall and nested domains. The overall model domain includes portion of Atlantic Ocean, Delaware, and Chesapeake bays. The nested model domain includes Delaware Bay, its floodplain, and portion of the continental shelf. This study is portion of a larger modeling effort to study the impact of low probability hurricanes on sensitive infrastructures located at the coastal zones prone to hurricane activity. The AOS is located on the east bank of Delaware Bay almost 16 miles upstream of its mouth. Model generated wind speed, significant wave height, water surface elevation, and current are calibrated for hurricane Isabel (2003). The model calibration results agreed reasonably well with field observations. Furthermore, sensitivity of surge and wave responses to various hurricane parameters was tested. In line with findings from other researchers, accuracy of wind field played a major role in hindcasting the hurricane attributes.

  6. Shallow ground water in the Powder River Bbasin, northeastern Wyoming: Description of selected publications, 1950-91, and indications for further study. Water Resources Investigation

    International Nuclear Information System (INIS)

    Lindner-Lunsford, J.B.; Wilson, J.F.

    1992-01-01

    The report describes the conclusions and contributions to knowledge of shallow ground water in publications resulting from previous ground-water investigations in the Powder River Basin and describes indications for further study. For the report, shallow ground water is defined as water in geologic formations overlying the Upper Cretaceous Pierre Shale and equivalents. The 76 publications described were produced from 1950-91 by the U.S. Geological Survey, other government agencies, and academic and private organizations, including mining companies and engineering consultants. Only those parts of the publications that are relevant to thee quantity or quality of shallow ground water in the Powder River Basin are described. Mine plans for coal and uranium mines (many of which contain detailed, local hydrologic information) and publications containing pertinent geologic information, but no hydrologic information, are not included

  7. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary

    Science.gov (United States)

    Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L

    2014-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell 3H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect 3H-leucine incorporation in light–dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance. PMID:24824666

  8. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary.

    Science.gov (United States)

    Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L

    2014-11-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell (3)H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect (3)H-leucine incorporation in light-dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance.

  9. Water Pollution abatement programme, The Czech republic Pollution abatement analysis and strengthening of water resources management, Odra River Catchment, phase II

    OpenAIRE

    Dagestad, K.; Ratnaweera, H.; Ibrekk, H.O.; Hansen, J.H.; Tridlica, L.; Brezina, P.; Skacel, A.

    1995-01-01

    Odra river is extremely polluted by organic matter, nitrates, ammonia, phosphorus, bacteria, particles, heavy metals and other micro pollutants from municipalities, industries and agriculture. The poor water quality severely affects the ecology and represents a risk to human health. The water has a very limited value of use. This report presents an abatement programme with both technical and accompanying measures. In order to identify the major polluters several multi criteria analysis have b...

  10. The impact of two fluoropolymer manufacturing facilities on downstream contamination of a river and drinking water resources with per- and polyfluoroalkyl substances.

    Science.gov (United States)

    Bach, Cristina; Dauchy, Xavier; Boiteux, Virginie; Colin, Adeline; Hemard, Jessica; Sagres, Véronique; Rosin, Christophe; Munoz, Jean-François

    2017-02-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota, and humans. Drinking water is a route of exposure for populations consuming water contaminated by PFAS discharges. This research study reports environmental measurement concentrations, mass flows, and the fate of dozens of PFASs in a river receiving effluents from two fluoropolymer manufacturing facilities. In addition to quantified levels of PFASs using LC- and GC-MS analytical methods, the total amount of unidentified PFASs and precursors was assessed using two complementary analytical methods, absorbable organic fluorine (AOF) determination and oxidative conversion of perfluoroalkyl carboxylic acid (PFCA) precursors. Several dozen samples were collected in the river (water and sediment) during four sampling campaigns. In addition, samples were collected in two well fields and from the outlet of the drinking water treatment plants after chlorination. We estimated that 4295 kg PFHxA, 1487 kg 6:2FTSA, 965 kg PFNA, 307 kg PFUnDA, and 14 kg PFOA were discharged in the river by the two facilities in 2013. High concentrations (up to 176 ng/g dw) of odd long-chain PFASs (PFUnDA and PFTrDA) were found in sediment samples. PFASs were detected in all 15 wells, with concentrations varying based on the location of the well in the field. Additionally, the presence of previously discharged PFASs was still measurable. Significant discrepancies between PFAS concentration profiles in the wells and in the river suggest an accumulation and transformation of PFCA precursors in the aquifer. Chlorination had no removal efficiency and no unidentified PFASs were detected in the treated water with either complementary analytical method. Although the total PFAS concentrations were high in the treated water, ranging from 86 to 169 ng/L, they did not exceed the currently available guideline values.

  11. Cultural Resource Inventory of Lands in and Adjacent to the City of Rochester, Minnesota Flood Control Project on the South Fork Zumbro River,

    Science.gov (United States)

    1981-09-14

    the area directly east of present- day Rochester contained fire-maintained oak openings and barrens . This area consisted of oak groves or single trees...Archaeological Survey of Lands Adjacent to the Pine River Reservoir; University of Minnesota and St. Paul District Corps of Engineers; Archaeological Field...Archaeological Field Services, Inc.; Principal Investigator. 1980 An Archaeological Reconnaissance Survey of the Harrison Hills Project, Plymouth , Hennepin

  12. Geohydrology and potential effects of coal mining in 12 coal-lease areas, Powder River structural basin, northeastern Wyoming. Water Resources Investigation

    International Nuclear Information System (INIS)

    Fogg, J.L.; Martin, M.W.; Daddow, P.B.

    1991-01-01

    The purpose of the report is to describe the geohydrology of 12 coal-lease areas in the Powder River structural basin in relation to the mining proposed for each area. The description of the geohydrology of each of the lease areas focuses on the shallow ground-water system and includes identification of recharge and discharge areas, directions of ground-water movement, and potential effects of mining. The shallow ground-water system in the Powder River structural basin is not well defined because of the discontinuous nature of the aquifers in the basin. Understanding the ground-water hydrology of these 12 coal-lease areas will improve understanding of the shallow ground-water system in the basin. The first part of the report is a description of the general geohydrology of the Wyoming part of the Powder River structural basin. The second part of the report is a general discussion of the effects of coal mining on ground-water hydrology. The third part of the report contains site-specific discussions of the ground-water hydrology and potential effects of mining for each of the 12 coal-lease areas

  13. Australian uranium resources

    International Nuclear Information System (INIS)

    Battey, G.C.; Miezitis, Y.; McKay, A.D.

    1987-01-01

    Australia's uranium resources amount to 29% of the WOCA countries (world outside centrally-planned-economies areas) low-cost Reasonably Assured Resources and 28% of the WOCA countries low-cost Estimated Additional Resources. As at 1 January 1986, the Bureau of Mineral Resources estimated Australia's uranium resources as: (1) Cost range to US$80/kg U -Reasonably Assured Resources, 465 000 t U; Estimated Additional Resources, 256 000 t U; (2) Cost range US$80-130/kg U -Reasonably Assured Resources, 56 000 t U; Estimated Additional Resources, 127 000 t U. Most resources are contained in Proterozoic unconformity-related deposits in the Alligator Rivers uranium field in the Northern Territory (Jabiluka, Ranger, Koongarra, Nabarlek deposits) and the Proterozoic stratabound deposit at Olympic Dam on the Stuart Shelf in South Australia

  14. Energy from rivers and oceans

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role energy from rivers and oceans may have in the energy future of the US. The topics discussed in the chapter include historical aspects of using energy from rivers and oceans, hydropower assessment including resources, technology and costs, and environmental and regulatory issues, ocean thermal energy conversion including technology and costs and environmental issues, tidal power, and wave power

  15. Riparian Habitat - San Joaquin River

    Data.gov (United States)

    California Natural Resource Agency — The immediate focus of this study is to identify, describe and map the extent and diversity of riparian habitats found along the main stem of the San Joaquin River,...

  16. Occurrence and Distribution of Mercury in the SurficialAquifer, Long Neck Peninsula, Sussex County, Delaware, 2003-04

    Science.gov (United States)

    Koterba, Michael T.; Andres, A. Scott; Vrabel, Joseph; Crilley, Dianna M.; Szabo, Zoltan; DeWild, John F.; Aiken, George R.; Reyes-Padro, Betzaida

    2006-01-01

    In January 2001, mercury (Hg) was detected (500 nanograms per liter, ng/L, or greater) in the distribution system of the Long Neck Water Company (LNWC), Pot Nets, Delaware. By April 2001, two LNWC production wells had been taken off-line because discharge concentrations of total mercury (HgT) either had exceeded or approached the Federal limit of 2,000 ng/L. From October 2003 through January 2005, the U.S. Geological Survey, Delaware Geological Survey, and Delaware Department of Natural Resources and Environmental Control conducted a cooperative study to (a) determine if the Hg contamination was widespread, (b) identify possible forms of Hg in ground water, and (c) examine Hg occurrence in relation to (geo)chemical conditions and characteristics of ground water and sediment in the surficial aquifer on the Long Neck Peninsula, Sussex County, Delaware. An initial water-quality survey conducted with samples from 22 production wells revealed that concentrations of HgT in ground water in the surficial aquifer ranged from 0.11 to 1,820 ng/L. Shallow ground water (less than 120 feet below land surface) throughout most of the peninsula, including that which contained elevated concentrations of HgT (exceeding 100 ng/L), appeared to be affected by human activities. All samples contained volatile organic compounds (VOCs) and elevated nitrate-nitrogen (NO3-N, exceeding 0.4 milligrams per liter, mg/L). Most (16 of 22) samples had elevated specific conductance (SC, in excess of 100 microsiemens per centimeter at 25 degrees Celsius). Elevated concentrations of HgT, however, only occurred in five production wells in the Pot Nets Bayside and Lakeside communities. The vertical distribution of HgT in shallow ground water (less than 80 feet below land surface) was determined with samples collected at 5 to 6 vertical-nest short-screened (2 - 5-foot length) monitoring wells installed near Bayside and Lakeside production wells with the highest HgT concentrations (exceeding 1,000 ng

  17. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, October 1 - December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, S.P.

    1997-01-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and recovery technology identification and analysis.

  18. Decision support for the management of water resources at Sub-middle of the São Francisco river basin in Brazil using integrated hydro-economic modeling and scenarios for land use changes

    Science.gov (United States)

    Moraes, M. G. A.; Souza da Silva, G.

    2016-12-01

    Hydro-economic models can measure the economic effects of different operating rules, environmental restrictions, ecosystems services, technical constraints and institutional constraints. Furthermore, water allocation can be improved by considering economical criteria's. Likewise, climate and land use change can be analyzed to provide resilience. We developed and applied a hydro-economic optimization model to determine the optimal water allocation of main users in the Lower-middle São Francisco River Basin in Northeast (NE) Brazil. The model uses demand curves for the irrigation projects, small farmers and human supply, rather than fixed requirements for water resources. This study analyzed various constraints and operating alternatives for the installed hydropower dams in economic terms. A seven-year period (2000-2006) with water scarcity in the past has been selected to analyze the water availability and the associated optimal economic water allocation. The used constraints are technical, socioeconomic and environmental. The economically impacts of scenarios like prioritizing human consumption, impacts of the implementation of the São Francisco river transposition, human supply without high distribution losses, environmental hydrographs, forced reservoir level control, forced reduced reservoir capacity, alteration of lower flow restriction were analyzed. The results in this period show that scarcity costs related ecosystem service and environmental constraints are significant, and have major impacts (increase of scarcity cost) for consumptive users like irrigation projects. In addition, institutional constraints such as prioritizing human supply, minimum release limits downstream of the reservoirs and the implementation of the transposition project impact the costs and benefits of the two main economic sectors (irrigation and power generation) in the region of the Lower-middle of the São Francisco river basin. Scarcity costs for irrigation users generally

  19. Decision Support System for Evaluation of Gunnison River Flow Regimes With Respect To Resources of the Black Canyon of the Gunnison National Park

    Science.gov (United States)

    Auble, Gregor T.; Wondzell, Mark; Talbert, Colin

    2009-01-01

    This report describes and documents a decision support system for the Gunnison River in Black Canyon of the Gunnison National Park. It is a macro-embedded EXCEL program that calculates and displays indicators representing valued characteristics or processes in the Black Canyon based on daily flows of the Gunnison River. The program is designed to easily accept input from downloaded stream gage records or output from the RIVERWARE reservoir operations model being used for the upstream Aspinall Unit. The decision support system is structured to compare as many as eight alternative flow regimes, where each alternative is represented by a daily sequence of at least 20 calendar years of streamflow. Indicators include selected flow statistics, riparian plant community distribution, clearing of box elder by inundation and scour, several measures of sediment mobilization, trout fry habitat, and federal reserved water rights. Calculation of variables representing National Park Service federal reserved water rights requires additional secondary input files pertaining to forecast and actual basin inflows and storage levels in Blue Mesa reservoir. Example input files representing a range of situations including historical, reconstructed natural, and simulated alternative reservoir operations are provided with the software.

  20. Studies of the terrestrial environment and ambient air quality in the vicinity of the Eldorado Resources Ltd. Refinery at Blind River, Ontario 1981-1987

    Energy Technology Data Exchange (ETDEWEB)

    Spires, A.C.; Negusanti, J.J.; Bazinet, D.J.

    1989-08-01

    In 1981, a program was initiated to obtain background data on soils and vegetation in the vicinity of the Eldorado uranium trioxide plant in Blind River, Ontario prior to operational startup in 1983. Soil and vegetation samples have been collected annually for chemical analyses at 7 plot sites between 1981 and 1987. All samples were anlayzed for U, Cu, Ni, Pb, Zn, Co, Fe, S, Ca, Mg, and K. Of these elements, only uranium showed an increase in concentration in foliage samples collected in close proximity to the refinery following startup. Uranium accumulation occurred in red and white pine needles up to a level of 100 [mu]g/g. Uranium levels found in all soil and wild edible samples were considered normal. The increase of uranium content observed over time in the collected vegetation samples shows deposition from the refinery is being retained in annual vegetation and accumulated in conifers. Since uranium levels are low in soil, the levels in vegetation result from deposition and not uptake. A high-volume air sampling program was also initiated in 1982 in Blind River. Air sampler filters were weighed to determine total suspended particulate and were subjected to radiological analysis. Particulate levels were found to be low and no increase in particulate or radiological parameter levels was observed since the startup of the refinery. 9 refs., 4 figs., 17 tabs.

  1. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data

    Science.gov (United States)

    Rai, Praveen Kumar; Chandel, Rajeev Singh; Mishra, Varun Narayan; Singh, Prafull

    2018-03-01

    Satellite based remote sensing technology has proven to be an effectual tool in analysis of drainage networks, study of surface morphological features and their correlation with groundwater management prospect at basin level. The present study highlights the effectiveness and advantage of remote sensing and GIS-based analysis for quantitative and qualitative assessment of flood plain region of lower Kosi river basin based on morphometric analysis. In this study, ASTER DEM is used to extract the vital hydrological parameters of lower Kosi river basin in ARC GIS software. Morphometric parameters, e.g., stream order, stream length, bifurcation ratio, drainage density, drainage frequency, drainage texture, form factor, circularity ratio, elongation ratio, etc., have been calculated for the Kosi basin and their hydrological inferences were discussed. Most of the morphometric parameters such as bifurcation ratio, drainage density, drainage frequency, drainage texture concluded that basin has good prospect for water management program for various purposes and also generated data base that can provide scientific information for site selection of water-harvesting structures and flood management activities in the basin. Land use land cover (LULC) of the basin were also prepared from Landsat data of 2005, 2010 and 2015 to assess the change in dynamic of the basin and these layers are very noteworthy for further watershed prioritization.

  2. Hydrological Impacts of Land Use changes on Water Resources Management and Socio-economic Development of Upper Ewaso Ng'iro River Basin in Kenya

    NARCIS (Netherlands)

    Ngigi, S.N.

    2006-01-01

    Population pressure and depletion of natural resources are forcing land use changes that are intended to improve agricultural productivity. Farmers from high potential highlands are migrating into semi-arid lowlands in search of land and livelihoods. The semi-arid areas were primarily used for

  3. Application of dynamic programming for the analysis of complex water resources systems : a case study on the Mahaweli River basin development in Sri Lanka

    NARCIS (Netherlands)

    Kularathna, M.D.U.P.

    1992-01-01

    The technique of Stochastic Dynamic Programming (SDP) is ideally suited for operation policy analyses of water resources systems. However SDP has a major drawback which is appropriately termed as its "curse of dimensionality".

    Aggregation/Disaggregation techniques based on SDP and

  4. Charles River

    Science.gov (United States)

    Information on the efforts of the US EPA, the Commonwealth of Massachusetts, the municipalities within the Charles River Watershed and nongovernmental organizations to improve the water quality of the Charles River.

  5. Projected future runoff of the Breede River under climate change ...

    African Journals Online (AJOL)

    The Breede River is the largest river in the Western Cape Province of South Africa, and as such, is a key resource for a variety of activities within the region. It is this significance of the river that prompted a study into the impact of climate change on future runoff in the river and hence, the potential impacts a projected change ...

  6. Characterizing surf zone injuries from the five most populated beaches on the Atlantic-fronting Delaware coast: Delaware surf zone injury demographics.

    Science.gov (United States)

    Doelp, Matthew B; Puleo, Jack A; Cowan, Paul; Arford-Granholm, Michelle

    2017-12-24

    Beaches are a popular destination for recreation activities. Surf zone injuries (SZI) can occur resulting from a variety of in-water activities. Little is known regarding the sustained injury types, or demographics of injured persons and activities leading to injuries. This study examines the distribution of SZI types, activities and populations occurring on Delaware Beaches as recorded by a local level III trauma center (Department of Emergency Medicine at Beebe Healthcare in Lewes, Delaware). There were 2021 injuries over the eight study years (2010-2017). The relative demographics of the injured population are similar despite fluctuating injury totals (mean [SD], 253.1 [104.4]). Non-locals (n=1757) were 6.7 times more likely to be injured as their local (n=264) counterparts (RR, 2.62; 95% CI, 2.08-3.31). Males (n=1258) were 1.7 times more likely to be injured than their female (n=763) counterparts (RR, 1.29; 95% CI, 1.21-1.37). Serious injuries, defined as patients requiring admission to a trauma service, represented 9.1% (n=184) of injuries. Fatal SZI (n=6) were categorized as serious injuries. Wading (50.1%) was found to be the dominant activity associated with injury followed by body surfing (18.4%), and body boarding (13.3%). To the authors' knowledge, this study is one of the first to investigate long-term trends in SZI data, injury activity, and demographics. Better understanding of the characteristics of injuries will allow for improved awareness techniques, targeted at populations with higher injury rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The influence of data characteristics on detecting wetland/stream surface-water connections in the Delmarva Peninsula, Maryland and Delaware

    Science.gov (United States)

    Vanderhoof, Melanie; Distler, Hayley; Lang, Megan W.; Alexander, Laurie C.

    2018-01-01

    The dependence of downstream waters on upstream ecosystems necessitates an improved understanding of watershed-scale hydrological interactions including connections between wetlands and streams. An evaluation of such connections is challenging when, (1) accurate and complete datasets of wetland and stream locations are often not available and (2) natural variability in surface-water extent influences the frequency and duration of wetland/stream connectivity. The Upper Choptank River watershed on the Delmarva Peninsula in eastern Maryland and Delaware is dominated by a high density of small, forested wetlands. In this analysis, wetland/stream surface water connections were quantified using multiple wetland and stream datasets, including headwater streams and depressions mapped from a lidar-derived digital elevation model. Surface-water extent was mapped across the watershed for spring 2015 using Landsat-8, Radarsat-2 and Worldview-3 imagery. The frequency of wetland/stream connections increased as a more complete and accurate stream dataset was used and surface-water extent was included, in particular when the spatial resolution of the imagery was finer (i.e., watershed contributing direct surface water runoff to streamflow. This finding suggests that our interpretation of the frequency and duration of wetland/stream connections will be influenced not only by the spatial and temporal characteristics of wetlands, streams and potential flowpaths, but also by the completeness, accuracy and resolution of input datasets.

  8. Infection of the Gulf Coast Tick, Amblyomma Maculatum (Acari: Ixodidae), with Rickettsia Parkeri: First Report from the State of Delaware

    Science.gov (United States)

    2013-03-31

    0279276E-D761-4A27-BFF7-7329E05E0F66 Infection of the Gulf Coast tick, Amblyomma maculatum (Acari: Ixodidae), with Rickettsia parkeri: first report from...Spring, MD 20910-1230, U.S.A. Abstract The molecular detection of Rickettsia parkeri in a Gulf Coast tick, Amblyomma maculatum, collected in Delaware...near Smyrna, Delaware. All specimens were tested for the presence of Rickettsia with a genus-specific quantitative real-time polymerase chain

  9. Estimation of potential runoff-contributing areas in the Kansas-Lower Republican River Basin, Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    1999-01-01

    Digital soils and topographic data were used to estimate and compare potential runoff-contributing areas for 19 selected subbasins representing soil, slope, and runoff variability within the Kansas-Lower Republican (KLR) River Basin. Potential runoff-contributing areas were estimated separately and collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented high, moderate, and low potential runoff. For infiltration-excess overland flow, various rainfall intensities and soil permeabilities were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that the subbasins with relatively high potential runoff are located in the central part of the KLR River Basin. These subbasins are Black Vermillion River, Clarks Creek, Delaware River upstream from Muscotah, Grasshopper Creek, Mill Creek (Wabaunsee County), Soldier Creek, Vermillion Creek (Pottawatomie County), and Wildcat Creek. The subbasins with relatively low potential runoff are located in the western one-third of the KLR River Basin, with one exception, and are Buffalo Creek, Little Blue River upstream from Barnes, Mill Creek (Washington County), Republican River between Concordia and Clay Center, Republican River upstream from Concordia, Wakarusa River downstream from Clinton Lake (exception), and White Rock Creek. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the KLR River Basin.

  10. Flood of May 23, 2004, in the Turkey and Maquoketa River basins, northeast Iowa

    Science.gov (United States)

    Eash, David A.

    2006-01-01

    Severe flooding occurred on May 23, 2004, in the Turkey River Basin in Clayton County and in the Maquoketa River Basin in Delaware County following intense thunderstorms over northeast Iowa. Rain gages at Postville and Waucoma, Iowa, recorded 72-hour rainfall of 6.32 and 6.55 inches, respectively, on May 23. Unofficial rainfall totals of 8 to 10 inches were reported in the Turkey River Basin. The peak discharge on May 23 at the Turkey River at Garber streamflow-gaging station was 66,700 cubic feet per second (recurrence interval greater than 500 years) and is the largest flood on record in the Turkey River Basin. The timing of flood crests on the Turkey and Volga Rivers, and local tributaries, coincided to produce a record flood on the lower part of the Turkey River. Three large floods have occurred at the Turkey River at Garber gaging station in a 13-year period. Peak discharges of the floods of June 1991 and May 1999 were 49,900 cubic feet per second (recurrence interval about 150 years) and 53,900 cubic feet per second (recurrence interval about 220 years), respectively. The peak discharge on May 23 at the Maquoketa River at Manchester gaging station was 26,000 cubic feet per second (recurrence interval about 100 years) and is the largest known flood in the upper part of the Maquoketa River Basin.

  11. Fish tissue contamination in the mid-continental great rivers of the United States

    Science.gov (United States)

    The great rivers of the central United States (Upper Mississippi, Missouri and Ohio rivers) are significant economic and cultural resources, but their ecological condition is not well quantified. The Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP...

  12. Water Resources Data for California, Water Year 1988. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Polinoski, K.G.; Hoffman, E.B.; Smith, G.B.; Bowers, J.C.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 17 lakes and reservoirs; and water quality for 24 streams. Also included are 10 crest-stage partial-record stations, 5 miscellaneous measurement sites, and 16 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  13. Water Resources Data for California, Water Year 1987. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.

    1988-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 16 lakes and reservoirs; and water quality for 16 streams. Also included are 10 crest-stage partial-record stations, 3 miscellaneous measurement sites, and 10 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  14. Water Resources Data for California, Water Year 1985. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.

    1987-01-01

    Water resources data for the 1985 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 150 gaging stations; stage and contents for 17 lakes and reservoirs; water quality for 23 streams. Also included are 10 crest-stage partial-record stations, three miscellaneous measurement sites, and one waterquality partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  15. Water Resources Data for California, Water Year 1986. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.

    1988-01-01

    Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 144 gaging stations; stage and contents for 15 lakes and reservoirs; watet quality for 21 streams. Also included are crest-stage partial-record stations, 3 miscellaneous measurement sites, and 5 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  16. Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware

    Science.gov (United States)

    1980-07-01

    A solar energy system located at the Wilmington Swim School, New Castle, Delaware is described. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution serving the heat loads in the following order: space heat - new addition, domestic water - entire facility, and pool heating - entire facility. On a cost basis for 2920 hours of operation, the heat reclaimed would cost $969.66 annually if provided by gas at 3.79 per million Btu's. At 5.5 centers per kwh, heat recovery costs of $481.80 percent a net savings of $487.86 annually.

  17. An Inventory and Evaluation of Architectural and Engineering Resources of the Big South Fork National River and Recreation Area, Tennessee and Kentucky.

    Science.gov (United States)

    1982-02-25

    coordinated multidisciplinary study of both the architectural and engineering resources of the National Area. Both research b1 orientation and...South Fork just north of Rugby , and traveled through the site where Jamestown, Tennessee, now stands. A third trail, the Chickamauga Path, left the...Thomas Hughes (1881), the founder of the English colony of Rugby , Tennessee, described his neighbors in the Big South Fork area as mostly poor men

  18. Using Science Skills to Understand Ecophysiology and Manage Resources

    Science.gov (United States)

    Bubenheim, David

    2015-01-01

    Presentation will be for a general audience and focus on plant science and ecosystem science in NASA. Examples from the projects involving the presenter will be used to illustrate. Specifically, the California Sacramento-San Joaquin River Delta project. This collaboration supports the goals of the Delta Plan in developing science-based, adaptive-management strategies. The mission is to improve reliability of water supply and restore a healthy Delta ecosystem while enhancing agriculture and recreation. NASA can contribute gap-filling science understanding of overall functions in the Delta ecosystem and assess and help develop management plans for specific issues. Airborne and satellite remote-sensing, ecosystem modeling, and biological studies provide underlying data needed by Delta stakeholders to assess and address water, ecosystem restoration, and environmental and economic impacts of potential actions in the Delta. The California Sacramento-San Joaquin River Delta, the hub for California's water supply, supports important ecosystem services for fisheries, supplies drinking water for millions, and distributes water from Northern California to agriculture and urban communities to the south; millions of people and businesses depend on Delta water. Decades of competing demands for Delta resources and year-to-year variability in precipitation has resulted in diminished overall health of the Delta. Declines in fish populations, threatened ecosystems, endangered species, invasive plants and animals, cuts in agricultural exports, and increased water conservation is the result. NASA and the USDA, building on previous collaborations, aide local Delta stakeholders in assessing and developing an invasive weed management approach. Aquatic, terrestrial, and riparian invasive weeds threaten aquatic and terrestrial ecosystem restoration efforts. Aquatic weeds are currently detrimental economically, environmentally, and sociologically in the Delta. They negatively impact the

  19. Water Resources Data--California, Water Year 2002, Volume 1, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Rockwell, G.L.; Pope, G.L.; Agajanian, J.; Caldwell, L.A.

    2003-01-01

    Water-resources data for the 2002 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 188 gaging stations and 10 crest-stage partial-record stations, stage and contents for 19 lakes and reservoirs, gage-height records for 2 stations, water quality for 39 streamflow-gaging stations and 11 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  20. Water Resources Data -- California, Water Year 2003, Volume 1, Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    Pope, G.L.; Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.

    2004-01-01

    Water-resources data for the 2003 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 193 gaging stations and 11 crest-stage partial-record stations, stage and contents for 22 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 12 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.