WorldWideScience

Sample records for resource utilization technology

  1. Resourceful utilization technology for natural gas

    Matsumura, Y.

    1994-01-01

    This paper is a description of new applications that will contribute in increasing the demand for natural gas. First, technical issues to turn natural gas into a more resourceful fuel (efficient transportation and storage, integrated utilization of energies, uses as non-fuel), and also pitch-based high performance carbon materials and utilization techniques in the field of energy (isotropic carbon fiber, activated carbon fiber, spherical carbon micro-beads, high modulus carbon fiber). (TEC)

  2. Space Resource Utilization: Technologies and Potential Synergism with Terrestrial Mining

    Sanders, Gerald B.

    2015-01-01

    Space Resources and Their Uses: The idea of using resources in space to support human exploration and settlement or for economic development and profit beyond the surface of Earth has been proposed and discussed for decades. Work on developing a method to extract oxygen from lunar regolith started even before humans set foot on the Moon for the first time. The use of space resources, commonly referred to as In Situ Resource Utilization (ISRU), involves the processes and operations to harness and utilize resources in space (both natural and discarded) to create products for subsequent use. Potential space resources include water, solar wind implanted volatiles (hydrogen, helium, carbon, nitrogen, etc.), vast quantities of metals and minerals in extraterrestrial soils, atmospheric constituents, unlimited solar energy, regions of permanent light and darkness, the vacuum and zero-gravity of space itself, trash and waste from human crew activities, and discarded hardware that has completed its primary purpose. ISRU covers a wide variety of concepts, technical disciplines, technologies, and processes. When considering all aspects of ISRU, there are 5 main areas that are relevant to human space exploration and the commercialization of space: 1. Resource Characterization and Mapping, 2. In Situ Consumables Production, 3. Civil Engineering and Construction, 4. In Situ Energy Production and Storage, and 5. In Situ Manufacturing.

  3. Addressing professional resource challenges facing modern utilities with technological solutions

    Goldie, T. [Hydro One Networks Inc., Toronto, ON (Canada); Hodder, S. [GE Digital Energy, Toronto, ON (Canada)

    2008-07-01

    The challenges facing electric utilities regarding a shortage of highly qualified labour to maintain, refurbish and expand electrical infrastructure can be attributed to a wave of retirements in skilled employees, a shortage of entry-level workers and a rapidly increasing workload caused by investment in electricity infrastructure. Two solutions were presented for finding and sustaining an adequate personnel base. The first involved developing local talent, both entry-level and mid-career staff to ensure that work continuity and workplace safety are maintained. The second involved the implementation of technological solutions to help optimize the use of existing and future labour resources. This paper presented the human resource programs developed by Hydro One, the largest electrical transmission and distribution utility in the province of Ontario. Their initiatives include raising the profile of the utility work environment through strategic partnerships with educational institutions and developing in house offerings to supplement existing academic programs. This paper also presented a technical solution to address the resources challenges specifically associated with power system protection and control. The solution targets professional and skilled trades involved in the design, installation and maintenance of automated substations and protection and control systems. It is based on the premise that resource optimization can be achieved by reducing inconsistent design and construction practices and replacing these designs with highly standardized materials with digital communications using IEC 61850. This new technology should attract young professionals to the power engineering field while still maintaining a high comfort level with the established professional workforce. 5 refs., 4 figs.

  4. Utilization of bio-resources through nuclear technology

    Tamikazu Kume

    2002-01-01

    Nuclear technology such as gamma-ray, eb and ion beams is widely use for the utilization of bio-resources. Irradiation using gamma ray from 60 Co and electron beam is commercially used for the sterilization and modification of materials. Polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin were easily degraded by irradiation and induced various kinds of biological activities, i.e. anti-bacterial activity, elicitor activity, plant growth promotion, suppression of environmental stress on plants. Some carbohydrate derivatives, carboxymethylcellulose (CMC), carboxymethyl-starch and carboxymethyl-chitin/chitosan, can be crosslinked under certain radiation condition and produced the biodegradable hydrogel for medical and agricultural uses. Ion beams have also been applied for mutation breeding for medical and agricultural use. Ion beams have also been applied for mutation breeding and the production of positron-emitting isotopes such as 11 C, 13 N, etc. It was succeeded to induce several kinds of flower-color and flower-form mutants in chrysanthemum and carnation by ion beams that have never produced by gamma-ray. The positron emitting tracer imaging system (PETIS) has been developed to obtain a dynamic image of plant transport in situ. (Author)

  5. Minimal support technology and in situ resource utilization for risk management of planetary spaceflight missions

    Murphy, K. L.; Rygalov, V. Ye.; Johnson, S. B.

    2009-04-01

    All artificial systems and components in space degrade at higher rates than on Earth, depending in part on environmental conditions, design approach, assembly technologies, and the materials used. This degradation involves not only the hardware and software systems but the humans that interact with those systems. All technological functions and systems can be expressed through functional dependence: [Function]˜[ERU]∗[RUIS]∗[ISR]/[DR];where [ERU]efficiency (rate) of environmental resource utilization[RUIS]resource utilization infrastructure[ISR]in situ resources[DR]degradation rateThe limited resources of spaceflight and open space for autonomous missions require a high reliability (maximum possible, approaching 100%) for system functioning and operation, and must minimize the rate of any system degradation. To date, only a continuous human presence with a system in the spaceflight environment can absolutely mitigate those degradations. This mitigation is based on environmental amelioration for both the technology systems, as repair of data and spare parts, and the humans, as exercise and psychological support. Such maintenance now requires huge infrastructures, including research and development complexes and management agencies, which currently cannot move beyond the Earth. When considering what is required to move manned spaceflight from near Earth stations to remote locations such as Mars, what are the minimal technologies and infrastructures necessary for autonomous restoration of a degrading system in space? In all of the known system factors of a mission to Mars that reduce the mass load, increase the reliability, and reduce the mission’s overall risk, the current common denominator is the use of undeveloped or untested technologies. None of the technologies required to significantly reduce the risk for critical systems are currently available at acceptable readiness levels. Long term interplanetary missions require that space programs produce a craft

  6. Utilities must leverage existing resources and upgrade technology to avoid future blackouts

    Masiello, R.

    2004-01-01

    The blackout of August 14, 2003 is used as the incentive to examine transmission grid reliability, expose its deficiencies in terms of technology, standards and processes used to manage reliability, and to make recommendations for leveraging existing resources and upgrading both the technology and procedures to avoid similar breakdowns in the future. It is recommended that in the area of monitoring transmission grid reliability utilities should borrow a page from the Enterprise Risk Management Practices of the financial industry by adopting a system which looks beyond the first 'credible' contingency (the current system) and examine many more 'incredible' contingencies, and underlying events that can trigger multiple contingencies, and plan for them in their operations. Utility companies are also urged to upgrade their energy management systems (EMS) technology to be able to deal with the kinds of severely depressed voltages and overloaded circuits that many grids experience today. Investment in new capabilities in control rooms, more and better communications will be essential. EMS algorithms and models must be upgraded to operate under a broader spectrum of grid conditions and to simulate the once-in-a-lifetime outage scenarios that most operators believe could never strike their utility. Expert opinion strongly suggests that as part of this process of upgrading, contingency analysis should shift from the 'N-1' model of the present to a stochastic model that considers a wider range of possible events in a probabilistic framework

  7. Utilities must leverage existing resources and upgrade technology to avoid future blackouts

    Masiello, R. [KEMA Inc. Burlington, MA (United States)

    2004-06-01

    The blackout of August 14, 2003 is used as the incentive to examine transmission grid reliability, expose its deficiencies in terms of technology, standards and processes used to manage reliability, and to make recommendations for leveraging existing resources and upgrading both the technology and procedures to avoid similar breakdowns in the future. It is recommended that in the area of monitoring transmission grid reliability utilities should borrow a page from the Enterprise Risk Management Practices of the financial industry by adopting a system which looks beyond the first 'credible' contingency (the current system) and examine many more 'incredible' contingencies, and underlying events that can trigger multiple contingencies, and plan for them in their operations. Utility companies are also urged to upgrade their energy management systems (EMS) technology to be able to deal with the kinds of severely depressed voltages and overloaded circuits that many grids experience today. Investment in new capabilities in control rooms, more and better communications will be essential. EMS algorithms and models must be upgraded to operate under a broader spectrum of grid conditions and to simulate the once-in-a-lifetime outage scenarios that most operators believe could never strike their utility. Expert opinion strongly suggests that as part of this process of upgrading, contingency analysis should shift from the 'N-1' model of the present to a stochastic model that considers a wider range of possible events in a probabilistic framework.

  8. NASA In-Situ Resource Utilization (ISRU) Technology and Development Project Overview

    Sanders, Gerald B.; Lason, William E.; Sacksteder, Kurt R.; Mclemore, Carole; Johnson, Kenneth

    2008-01-01

    Since the Vision for Space Exploration (VSE) was released in 2004, NASA, in conjunction with international space agencies, industry, and academia, has continued to define and refine plans for sustained and affordable robotic and human exploration of the Moon and beyond. With the goal of establishing a lunar Outpost on the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, a change in how space exploration is performed is required. One area that opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to live off the land is In-Situ Resource Utilization (ISRU). ISRU, which involves the extraction and processing of space resources into useful products, can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. However, ISRU is an unproven capability for human lunar exploration and can not be put in the critical path of lunar Outpost success until it has been proven. Therefore, ISRU development and deployment needs to take incremental steps toward the desired end state. To ensure ISRU capabilities are available for pre-Outpost and Outpost deployment by 2020, and mission and architecture planners are confident that ISRU can meet initial and long term mission requirements, the ISRU Project is developing technologies and systems in three critical areas: (1) Regolith Excavation, Handling and Material Transportation; (2) Oxygen Extraction from Regolith; and (3) Volatile Extraction and Resource Prospecting, and in four development stages: (I) Demonstrate feasibility; (II) Evolve system w/ improved technologies; (III) Develop one or more systems to TRL 6 before start of flight development; and (IV) Flight development for

  9. New Technologies for Reliable, Low-Cost In Situ Resource Utilization

    Ramohalli, Kumar

    1998-01-01

    New technologies can dramatically alter overall mission feasibility, architecture, window-of-opportunity, and science return. In the specific context of planetary exploration/development, several new technologies have been recently developed. It is significant that every one of these new technologies won a NASA NTR award in 1997-1998. In the area of low-cost space access and planetary transportation, hybrids are discussed. Whether we carry all of the fuel and oxidizer from Earth, or we make some or all of it in situ, mass advantages are shown through calculations. The hybrisol concept, where a solid fuel is cast over a state-of-the-art solid propellant, is introduced as a further advance in these ideas,. Thus, the motor operates as a controllable, high Isp rocket initially, and transitions to a high-thrust rocket after ascent, at which time the empty oxidizer tank is jettisoned. Again, calculations show significant advantages. In the area of efficient energy use for various mechanical actuations and robotic movements, muscle wires are introduced. Not only do we present detailed systems-level schemes, but we also present results from a hardware mechanism that has seen more than 18,000 cycles of operation. Recognizing that power is the real issue in planetary exploration/ development, the concept of LORPEX is introduced as a means of converting low-level energy accumulation into sudden bursts of power that can give factors of millions (in power magnification) in the process; this robot employs a low-power In Situ Resource Utilization (ISRU) unit to accumulate ISRU-generated fuel and oxidizer to be consumed at a rapid rate, chemically in an engine. Drilling, hopping, jumping, and ascent, or even return to Earth, are possible. Again, the hardware has been built and initial systems checkout demonstrated. Long-duration exploration and long-distance travel are made possible through aerobots, as is well known for planets with an atmosphere. However, power has again been a

  10. Utilization of Information and Communication Technology (ICT) Resources and Job Effectiveness among Library Staff in the University of Calabar and Cross River University of Technology, Nigeria

    Ntui, Aniebiet Inyang; Inyang, Comfort Linus

    2015-01-01

    This study investigated utilization of Information and Communication Technology (ICT) resources and job effectiveness among library staff in the University of Calabar and Cross River University of Technology, Nigeria. To achieve the purpose of this study, four hypotheses were formulated to guide the study. Ex-post facto research design was adopted…

  11. Geothermal Resource Utilization

    Lienau, Paul J.

    1998-01-03

    Man has utilized the natural heat of the earth for centuries. Worldwide direct use of geothermal currently amounts to about 7,000 MWt, as compared to 1,500 MWe, now being used for the generation of electricity. Since the early 1970s, dwindling domestic reservoirs of oil and gas, continued price escalation of oil on the world market and environmental concerns associated with coal and nuclear energy have created a growing interest in the use of geothermal energy in the United States. The Department of Energy goals for hydrothermal resources utilization in the United States, expressed in barrels of oil equivalent, is 50 to 90 million bbl/yr by 1985 and 350 to 900 million bbl/yr by the year 2000. This relatively clean and highly versatile resource is now being used in a multitude of diverse applications (e.g., space heating and cooling, vegetable dehydration, agriculture, aquaculture, light manufacturing), and other applications requiring a reliable and economic source of heat.

  12. Key Technology Research on the Efficient Exploitation and Comprehensive Utilization of Resources in the Deep Jinchuan Nickel Deposit

    Zhiqiang Yang

    2017-08-01

    Full Text Available To understand the resource features and geology in the deep Jinchuan nickel deposit, difficult geological conditions were systematically analyzed, including high stress, fragmentized ore rock, prevalent deformation, difficult tunnel support, complicated rock mechanics, and low mining recovery. An integrated technology package was built for safe, efficient, and continuous mining in a deep, massive, and complex nickel and cobalt mine. This was done by the invention of a large-area continuous mining method with honeycomb drives; the establishment of ground control theory and a technology package for high-stress and fragmented ore rock; and the development of a new type of backfilling cement material, along with a deep backfilling technology that comprises the pipeline transport of high-density slurry with coarse aggregates. In this way, good solutions to existing problems were found to permit the efficient exploitation and comprehensive utilization of the resources in the deep Jinchuan nickel mine. In addition, a technological demonstration in an underground mine was performed using the cemented undercut-and-fill mining method for stressful, fragmented, and rheological rock.

  13. Resource utilization during software development

    Zelkowitz, Marvin V.

    1988-01-01

    This paper discusses resource utilization over the life cycle of software development and discusses the role that the current 'waterfall' model plays in the actual software life cycle. Software production in the NASA environment was analyzed to measure these differences. The data from 13 different projects were collected by the Software Engineering Laboratory at NASA Goddard Space Flight Center and analyzed for similarities and differences. The results indicate that the waterfall model is not very realistic in practice, and that as technology introduces further perturbations to this model with concepts like executable specifications, rapid prototyping, and wide-spectrum languages, we need to modify our model of this process.

  14. Electrochemically Modulated Gas/Liquid Separation Technology for In Situ Resource Utilization Process Streams, Phase I

    National Aeronautics and Space Administration — In this phase I program MicroCell Technologies, LLC (MCT) proposes to demonstrate the feasibility of an electrochemically modulated phase separator for in situ...

  15. Human Resource Development and New Technology in the Automobile Industry: A Case Study of Ford Motor Company's Dearborn Engine Plant. The Development and Utilization of Human Resources in the Context of Technological Change and Industrial Restructuring.

    Chen, Kan; And Others

    This report centers around a plant-level study of the development and utilization of human resources in the context of technological change and industrial restructuring in the crankshaft production area of Ford Motor Company's Dearborn Engine Plant (DEP). The introductory chapter describes how the study was conducted, provides an introduction to…

  16. Resources, Technology, and Strategy

    Resources, Technology and Strategy brings together contributors from Europe, North America and Asia to consider the strategic relationship between technology and other resources, such as production capabilities, marketing prowess, finance and organisational culture. Throughout the book...

  17. Mars Oxygen In-Situ Resource Utilization Experiment

    National Aeronautics and Space Administration — The Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) will be the first in-situ resource utilization (ISRU) technology demonstration on Mars. Competitively...

  18. In-Situ Resource Utilization for Space Exploration: Resource Processing, Mission-Enabling Technologies, and Lessons for Sustainability on Earth and Beyond

    Hepp, A. F.; Palaszewski, B. A.; Landis, G. A.; Jaworske, D. A.; Colozza, A. J.; Kulis, M. J.; Heller, R. S.

    2015-01-01

    As humanity begins to reach out into the solar system, it has become apparent that supporting a human or robotic presence in transit andor on station requires significant expendable resources including consumables (to support people), fuel, and convenient reliable power. Transporting all necessary expendables is inefficient, inconvenient, costly, and, in the final analysis, a complicating factor for mission planners and a significant source of potential failure modes. Over the past twenty-five years, beginning with the Space Exploration Initiative, researchers at the NASA Glenn Research Center (GRC), academic collaborators, and industrial partners have analyzed, researched, and developed successful solutions for the challenges posed by surviving and even thriving in the resource limited environment(s) presented by near-Earth space and non-terrestrial surface operations. In this retrospective paper, we highlight the efforts of the co-authors in resource simulation and utilization, materials processing and consumable(s) production, power systems and analysis, fuel storage and handling, propulsion systems, and mission operations. As we move forward in our quest to explore space using a resource-optimized approach, it is worthwhile to consider lessons learned relative to efficient utilization of the (comparatively) abundant natural resources and improving the sustainability (and environment) for life on Earth. We reconsider Lunar (and briefly Martian) resource utilization for potential colonization, and discuss next steps moving away from Earth.

  19. Resource and utilization of Estonian hydropower

    Raesaar, P.

    2005-01-01

    An overview of the Estonian hydropower resources and their utilization at present as well as prospective for the future are presented in this paper. A short overview of advantages of small hydropower stations and related issues is given. Some technological aspects are treated briefly. (authors)

  20. Resources in Technology 7.

    International Technology Education Association, Reston, VA.

    This volume of Resources in Technology contains the following eight instructional modules: (1) "Processing Technology"; (2) "Water--A Magic Resource"; (3) "Hazardous Waste Disposal--The NIMBY (Not in My Backyard) Syndrome"; (4) "Processing Fibers and Fabrics"; (5) "Robotics--An Emerging…

  1. Information Technology Resources Assessment

    1993-04-01

    The Information Technology Resources Assessment (ITRA) is being published as a companion document to the Department of Energy (DOE) FY 1994--FY 1998 Information Resources Management Long-Range Plan. This document represents a collaborative effort between the Office of Information Resources Management and the Office of Energy Research that was undertaken to achieve, in part, the Technology Strategic Objective of IRM Vision 21. An integral part of this objective, technology forecasting provides an understanding of the information technology horizon and presents a perspective and focus on technologies of particular interest to DOE program activities. Specifically, this document provides site planners with an overview of the status and use of new information technology for their planning consideration.

  2. Clean energy utilization technology

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  3. Information technology resources assessment

    Loken, S.C. [ed.

    1993-01-01

    The emphasis in Information Technology (IT) development has shifted from technology management to information management, and the tools of information management are increasingly at the disposal of end-users, people who deal with information. Moreover, the interactive capabilities of technologies such as hypertext, scientific visualization, virtual reality, video conferencing, and even database management systems have placed in the hands of users a significant amount of discretion over how these resources will be used. The emergence of high-performance networks, as well as network operating systems, improved interoperability, and platform independence of applications will eliminate technical barriers to the use of data, increase the power and range of resources that can be used cooperatively, and open up a wealth of possibilities for new applications. The very scope of these prospects for the immediate future is a problem for the IT planner or administrator. Technology procurement and implementation, integration of new technologies into the existing infrastructure, cost recovery and usage of networks and networked resources, training issues, and security concerns such as data protection and access to experiments are just some of the issues that need to be considered in the emerging IT environment. As managers we must use technology to improve competitiveness. When procuring new systems, we must take advantage of scalable resources. New resources such as distributed file systems can improve access to and efficiency of existing operating systems. In addition, we must assess opportunities to improve information worker productivity and information management through tedmologies such as distributed computational visualization and teleseminar applications.

  4. Gas utilization technologies

    Biljetina, R.

    1994-01-01

    One of the constant challenges facing the research community is the identification of technology needs 5 to 15 years from now. A look back into history indicates that the forces driving natural gas research have changed from decade to decade. In the 1970s research was driven by concerns for adequate supply; in the 1980s research was aimed at creating new markets for natural gas. What then are the driving forces for the 1990s? Recent reports from the natural gas industry have helped define a new direction driven primarily by market demand for natural gas. A study prepared by the Interstate Natural Gas Association of America Foundation entitled ''Survey of Natural Research, Development, and Demonstration RD ampersand D Priorities'' indicated that in the 1990s the highest research priority should be for natural gas utilization and that technology development efforts should not only address efficiency and cost, but environmental and regulatory issues as well. This study and others, such as the report by the American Gas Association (A.G.A.) entitled ''Strategic Vision for Natural Gas Through the Year 2000,'' clearly identify the market sectors driving today's technology development needs. The biggest driver is the power generation market followed by the industrial, transportation, appliance, and gas cooling markets. This is best illustrated by the GRI 1994 Baseline Projection on market growth in various sectors between the year 1992 and 2010. This paper highlights some of the recent technology developments in each one of these sectors

  5. Advanced clean coal utilization technologies

    Moritomi, Hiroshi [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  6. Information technology resources assessment

    Stevens, D.F. [ed.

    1992-01-01

    This year`s Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  7. Information technology resources assessment

    Stevens, D.F. (ed.)

    1992-01-01

    This year's Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  8. Exploitation and Utilization of Oilfield Geothermal Resources in China

    Shejiao Wang; Jiahong Yan; Feng Li; Junwen Hu; Kewen Li

    2016-01-01

    Geothermal energy is a clean, green renewable resource, which can be utilized for power generation, heating, cooling, and could effectively replace oil, gas, and coal. In recent years, oil companies have put more efforts into exploiting and utilizing geothermal energy with advanced technologies for heat-tracing oil gathering and transportation, central heating, etc., which has not only reduced resource waste, but also improved large-scale and industrial resource utilization levels, and has ac...

  9. A case study review of technical and technology issues for transition of a utility load management program to provide system reliability resources in restructured electricity markets

    Weller, G.H.

    2001-07-15

    Utility load management programs--including direct load control and interruptible load programs--were employed by utilities in the past as system reliability resources. With electricity industry restructuring, the context for these programs has changed; the market that was once controlled by vertically integrated utilities has become competitive, raising the question: can existing load management programs be modified so that they can effectively participate in competitive energy markets? In the short run, modified and/or improved operation of load management programs may be the most effective form of demand-side response available to the electricity system today. However, in light of recent technological advances in metering, communication, and load control, utility load management programs must be carefully reviewed in order to determine appropriate investments to support this transition. This report investigates the feasibility of and options for modifying an existing utility load management system so that it might provide reliability services (i.e. ancillary services) in the competitive markets that have resulted from electricity industry restructuring. The report is a case study of Southern California Edison's (SCE) load management programs. SCE was chosen because it operates one of the largest load management programs in the country and it operates them within a competitive wholesale electricity market. The report describes a wide range of existing and soon-to-be-available communication, control, and metering technologies that could be used to facilitate the evolution of SCE's load management programs and systems to provision of reliability services. The fundamental finding of this report is that, with modifications, SCE's load management infrastructure could be transitioned to provide critical ancillary services in competitive electricity markets, employing currently or soon-to-be available load control technologies.

  10. Thorium resources and energy utilization (14)

    Unesaki, Hironobu

    2014-01-01

    After the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, thorium reactor has been attracting attention from the viewpoint of safety. Regarding thorium as the resources for nuclear energy, this paper explains its estimated reserves in the whole world and each country, its features such as the situation of utilization, and the reason why it attracts attention now. The following three items are taken up here as the typical issues among the latest topics on thorium: (1) utilization of thorium as a tension easing measure against environmental effects involved in nuclear energy utilization, (2) thorium-based reactor as the next generation type reactor with improved safety, and (3) thorium utilization as the improvement policy of nuclear proliferation resistance. The outline, validity, and problems of these items are explained. Thorium reactor has been adopted as a research theme since the 1950s up to now mainly in the U.S. However, it is not enough in the aspect of technological development and also insufficient in the verification of reliability based on technological demonstration, compared with uranium-fueled light-water reactor. This paper explains these situations, and discusses the points for thorium utilization and future prospects. (A.O.)

  11. Geology in coal resource utilization

    Peters, D.C.

    1991-01-01

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base

  12. News technology utilization fossil fuel

    Blišanová Monika

    2004-09-01

    Full Text Available Fossil fuel – “alternative energy“ is coal, petroleum, natural gas. Petroleum and natural gas are scarce resources, but they are delimited. Reserves petroleum will be depleted after 39 years and reserves natural gas after 60 years.World reserves coal are good for another 240 years. Coal is the most abundant fossil fuel. It is the least expensive energy source for generating electricity. Many environmental problems associated with use of coal:in coal production, mining creates environmental problems.On Slovakia representative coal only important internal fuel – power of source and coal is produced in 5 locality. Nowadays, oneself invest to new technology on utilization coal. Perspective solution onself shows UCG, IGCC.

  13. Development of technologies for utilizing geothermal energy

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  14. Exploitation and Utilization of Oilfield Geothermal Resources in China

    Shejiao Wang

    2016-09-01

    Full Text Available Geothermal energy is a clean, green renewable resource, which can be utilized for power generation, heating, cooling, and could effectively replace oil, gas, and coal. In recent years, oil companies have put more efforts into exploiting and utilizing geothermal energy with advanced technologies for heat-tracing oil gathering and transportation, central heating, etc., which has not only reduced resource waste, but also improved large-scale and industrial resource utilization levels, and has achieved remarkable economic and social benefits. Based on the analysis of oilfield geothermal energy development status, resource potential, and exploitation and utilization modes, the advantages and disadvantages of harnessing oilfield geothermal resource have been discussed. Oilfield geothermal energy exploitation and utilization have advantages in resources, technical personnel, technology, and a large number of abandoned wells that could be reconstructed and utilized. Due to the high heat demand in oilfields, geothermal energy exploitation and utilization can effectively replace oil, gas, coal, and other fossil fuels, and has bright prospects. The key factors limiting oilfield geothermal energy exploitation and utilization are also pointed out in this paper, including immature technologies, lack of overall planning, lack of standards in resource assessment, and economic assessment, lack of incentive policies, etc.

  15. Preliminary assessment of the health and environmental effects of coal utilization in the midwest. Volume I. Energy scenarios, technology characterizations, air and water resource impacts, and health effects

    None

    1977-01-01

    An initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin is presented. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for the period 1975 to 2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. Included are: (1) a characterization of the energy demand and siting scenarios, coal related technologies, and coal resources, and (2) the related impacts on air quality, water availability, water quality, and human health.

  16. Skylab medical technology utilization

    Stonesifer, J. C.

    1974-01-01

    To perform the extensive medical experimentation on man in a long-term, zero-g environment, new medical measuring and monitoring equipment had to be developed, new techniques in training and operations were required, and new methods of collecting and analyzing the great amounts of medical data were developed. Examples of technology transfers to the public sector resulted from the development of new equipment, methods, techniques, and data. This paper describes several of the examples that stemmed directly from Skylab technology.

  17. Optimal utilization of energy resources

    Hudson, E. A.

    1977-10-15

    General principles that should guide the extraction of New Zealand's energy resources are presented. These principles are based on the objective of promoting the general economic and social benefit obtained from the use of the extracted fuel. For a single resource, the central question to be answered is, simply, what quantity of energy should be extracted in each year of the resource's lifetime. For the energy system as a whole the additional question must be answered of what mix of fuels should be used in any year. The analysis of optimal management of a single energy resource is specifically discussed. The general principles for optimal resource extraction are derived, and then applied to the examination of the characteristics of the optimal time paths of energy quantity and price; to the appraisal of the efficiency, in resource management, of various market structures; to the evaluation of various energy pricing policies; and to the examination of circumstances in which market organization is inefficient and the guidelines for corrective government policy in such cases.

  18. Optimal utilization of energy resources

    Hudson, E.A.

    1977-10-15

    General principles that should guide the extraction of New Zealand's energy resources are presented. These principles are based on the objective of promoting the general economic and social benefit obtained from the use of the extracted fuel. For a single resource, the central question to be answered is, simply, what quantity of energy should be extracted in each year of the resource's lifetime. For the energy system as a whole the additional question must be answered of what mix of fuels should be used in any year. The analysis of optimal management of a single energy resource is specifically discussed. The general principles for optimal resource extraction are derived, and then applied to the examination of the characteristics of the optimal time paths of energy quantity and price; to the appraisal of the efficiency, in resource management, of various market structures; to the evaluation of various energy pricing policies; and to the examination of circumstances in which market organization is inefficient and the guidelines for corrective government policy in such cases.

  19. Forest biological diversity interactions with resource utilization

    S.T. Mok

    1992-01-01

    The most important forest resources of the Asia-Pacific region are the highly diverse rain forests. Utilization of the resource is a natural and inevitable consequence of the region's socio-economic development. The sustainable management and development of forest resources in the region can be achieved by implementing conservational forestry, which is based on...

  20. Maximizing Resource Utilization in Video Streaming Systems

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  1. Perspectives and utilization technologies of chicory ( Cichorium ...

    Exploring and developing multiple utility technologies of plant resources is an alternative way for improving the efficiency of land used for food and fuel production. Chicory (Cichorium intybus L.) has a nutritional quality comparable to lucerne as it contains similar proportions of protein, lipid, minerals and other nutrients.

  2. Utility deregulation and AMR technology

    Moore, G.

    1991-01-01

    This article reviews the effects of deregulation on other utilities and services and examines how the electric utilities can avoid the worst of these effects and capitalize of the best aspects of competition in achieving marketing excellence. The article presents deregulation as a customer service and underscores the need for utilities to learn to compete aggressively and intelligently and provide additional services available through technology such as automated meter reading

  3. Treatment of Solar Generation in Electric Utility Resource Planning

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  4. Implementation digital technologies in nuclear utilities

    Wiegand, C.; Maselli, A.J.

    2012-01-01

    The introduction of digital technologies into the nuclear industry has assisted in many ways and made many of the Life Extensions and Uprates a possibility. But with this introduction of digital technologies comes some potentially challenging issues which need to be addressed for ultimate project success. This presentation discusses what a nuclear utility should consider and establish when implementing digital technologies in their plant. Digital technologies have been employed in many safety critical industries such as Aerospace, Pharmaceutical, Oil and Gas, and Chemical. However, nuclear industry implementation of digital technologies has been slow and in many ways tenuous. There are even documented operating experience events in which plant trips/SCRAMs occurred during a digital system implementation. This presentation aims to prevent those issues drawing upon the lessons learned over the past 5 years. Considerations include general challenges to overcome when implementing Digital Technologies, how to justify and execute projects, evaluation of resource knowledge, and the new challenges of Cyber Security. (author)

  5. Implementation digital technologies in nuclear utilities

    Wiegand, C.; Maselli, A.J., E-mail: Tony.Maselli@Invensys.com [Invensys Operations Management, London (United Kingdom)

    2012-07-01

    The introduction of digital technologies into the nuclear industry has assisted in many ways and made many of the Life Extensions and Uprates a possibility. But with this introduction of digital technologies comes some potentially challenging issues which need to be addressed for ultimate project success. This presentation discusses what a nuclear utility should consider and establish when implementing digital technologies in their plant. Digital technologies have been employed in many safety critical industries such as Aerospace, Pharmaceutical, Oil and Gas, and Chemical. However, nuclear industry implementation of digital technologies has been slow and in many ways tenuous. There are even documented operating experience events in which plant trips/SCRAMs occurred during a digital system implementation. This presentation aims to prevent those issues drawing upon the lessons learned over the past 5 years. Considerations include general challenges to overcome when implementing Digital Technologies, how to justify and execute projects, evaluation of resource knowledge, and the new challenges of Cyber Security. (author)

  6. Resources in Technology 6.

    International Technology Education Association, Reston, VA.

    This document--intended to help technology education teachers plan their classroom curriculum for secondary school and college students--contains units on creativity, artificial intelligence, biotechnology, polymeric materials, manufacturing in space, metallic materials, intermodal transportation, and food production. The sociocultural impact of…

  7. Utilization of Community Institutional and Organizational Resources ...

    The study investigated the influence of the utilization of community institutional and community organizational resources on the implementation of adult basic literacy and functional literacy programmes in Cross River State. Two hypotheses were formulated and tested. The survey research design was adopted for the study.

  8. Developing technologies and resources

    Walker, R.S. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Our success as a nuclear nation rests on interdependent pillars involving industry, governments, regulators, and academia. In a context of coherent public policy, we must achieve: 5 Nuclear Industry Priorities: Ensure refurbishments are completed to cost and schedule; Achieve Canadian supply chain success in international nuclear business; Support a strong Canadian nuclear science, technology and innovation agenda; Enhance the supply of skilled workers; Develop a coordinated and integrated strategy for the long term management of all radioactive waste materials; Refine communication strategies informed by insights from social sciences. Canada's nuclear sector has the opportunity to adapt to the opportunities presented by having a national laboratory in Canada.

  9. Developing technologies and resources

    Walker, R.S.

    2015-01-01

    Our success as a nuclear nation rests on interdependent pillars involving industry, governments, regulators, and academia. In a context of coherent public policy, we must achieve: 5 Nuclear Industry Priorities: Ensure refurbishments are completed to cost and schedule; Achieve Canadian supply chain success in international nuclear business; Support a strong Canadian nuclear science, technology and innovation agenda; Enhance the supply of skilled workers; Develop a coordinated and integrated strategy for the long term management of all radioactive waste materials; Refine communication strategies informed by insights from social sciences. Canada's nuclear sector has the opportunity to adapt to the opportunities presented by having a national laboratory in Canada.

  10. THE INCREASING PRODUCTIVITY AND VALUE ADDED FOR CRAFTSMEN GEM STONE IN SANGIRAN SRAGEN THROUGH ACCESS TECHNOLOGY, MANAGEMENT, AND UTILIZATION OF RESOURCES POWER BASED LOCAL WISDOM

    Rahmawati; Soenarto; Sri Murni; Agung Nur Probohudono

    2016-01-01

    Small and Medium Enterprises (SMEs) could get great opportunities of ACFTA implementation. Formulation of the problem in this research are: How to design the industrial models of gemstones and fossils souvenirs align with the market taste? How to improve the utilization of the technology used in the low skills and business management of gemstones and fossils souvenirs industry? How to optimize the role of support institutions which are research, education, and banking i...

  11. Utilization technology on slurried ash

    Kanbe, Yoshio; Yasuda, Minoru; Furuki, Yasuhiko [The Coal Mining Research Centre, Japan, Tokyo, Japan; Electric Power Development Co., Ltd., Tokyo (Japan))

    1987-08-01

    Three research results of the utilization technology on slurried ash were reported. As for the utilization as the fly ash quick setting (FQS) backfill grout for tail void in shield works of tunneling, grout blending was simplified, the blended solution of cement, clay, additives and water was stabilized, and a favorable workability and long term durability were obtained. As for the utilization as the material of a SMW (soil mixing wall) method for continuous walls in long shaft digging, a fly ash-gypsum-cement (FGC) stabilizer showed an excellent workability and remarkably high water-tightness as compared with conventional cement bentonite. As for the utilization as the material of an injection method of overlay mats in foundation works of light weight structures on the sea bed mud foundation, since a FGC concrete weight in water was remarkably light as 0.7t/m{sup 3}, no both large mold form strength and vibration compacting were required. 10 figs., 8 tabs.

  12. Appraisal of the Availability and Utilization of New Technological ...

    FIRST LADY

    Items 31 - 36 ... instrument was a 36-item questionnaire developed by the researchers. The ... Nigeria utilize new technological resources in science curriculum delivery. ... science instructions makes learning of science concepts clearer to.

  13. Energy conversion and utilization technologies

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  14. Geothermal energy utilization and technology

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  15. Optimizing Resource Utilization in Grid Batch Systems

    Gellrich, Andreas

    2012-01-01

    On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.

  16. FY 1998 report on the results of the development of the utilization technology of biological resources such as bioconsortia. Development of the petroleum substituting fuel production technology using biology; 1998 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu

    NONE

    1999-03-01

    For the purpose of establishing the analysis technology and industrial utilization technology required for the establishment of the utilization technology of consortia's high functions which are already used in the fermentation technology field over the limit of the conventional bio-technology using functions of single biological species, study was made. As a part of the study, the establishment was aimed at of the high-grade utilization technology of seaweed/algae using the degradation/conversion functions of the consortium base and the useful substance production technology by interaction of the consortium base of organism and flora/fauna. Studies for the establishment of the technology were made in the following two fields: technology to use unused resources such as lignocellulose and technology to produce petroleum substituting useful resources. As to the technology to use unused resources, the establishment was proceeded with of the technology to degrade/convert the seaweed-origin acidic polysaccharide into the useful substance using the consortium system. In FY 1998, in search of the excellent microorganism consortia which can degrade/solubilize carageenan, samples were picked up from the underwater of the Republic of Palau and incubated in the flat culture medium. Thirty-eight kinds of the degraded bacterium group were acquired. Using the degraded bacterium group, {kappa}-carrageenan was degraded and analyzed of the products. (NEDO)

  17. FY 1998 report on the results of the development of the utilization technology of biological resources such as bioconsortia. Development of the petroleum substituting fuel production technology using biology; 1998 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu

    NONE

    1999-03-01

    For the purpose of establishing the analysis technology and industrial utilization technology required for the establishment of the utilization technology of consortia's high functions which are already used in the fermentation technology field over the limit of the conventional bio-technology using functions of single biological species, study was made. As a part of the study, the establishment was aimed at of the high-grade utilization technology of seaweed/algae using the degradation/conversion functions of the consortium base and the useful substance production technology by interaction of the consortium base of organism and flora/fauna. Studies for the establishment of the technology were made in the following two fields: technology to use unused resources such as lignocellulose and technology to produce petroleum substituting useful resources. As to the technology to use unused resources, the establishment was proceeded with of the technology to degrade/convert the seaweed-origin acidic polysaccharide into the useful substance using the consortium system. In FY 1998, in search of the excellent microorganism consortia which can degrade/solubilize carageenan, samples were picked up from the underwater of the Republic of Palau and incubated in the flat culture medium. Thirty-eight kinds of the degraded bacterium group were acquired. Using the degraded bacterium group, {kappa}-carrageenan was degraded and analyzed of the products. (NEDO)

  18. International research cooperation project. Assessment report on the R and D of the comprehensive development/utilization technology of energy of gas hydrate resource; Gas hydrate shigen no energy sogo kaihatsu riyo gijutsu no kenkyu kaihatsu hyoka hokokusho

    NONE

    2000-03-01

    As to 'the R and D of the comprehensive development/utilization technology of gas hydrate resource,' assessment was conducted and reported from an aspect of the third party. This R and D is a timely project being aimed at establishing the basic technology on gas hydrate from both aspects of fundamental research and practical research. In the development of gas hydrate resource in the tundra zone, the development of measuring methods for thermal conductivity and dielectric constants advanced the establishment of a guide for exploration and possibilities of assessment of the resource amount. In the development/production, it can be said that the knowledge/information collected by exchanging methane in gas hydrate with CO2 means no needs for new supply of heat and also contributes to the isolation of CO2. As to the utilization technology, the results were rated very high also internationally of tackling the quantitative evaluation method at molecular levels of the gas included in hydrate using Raman spectroscopy to establish the industrial gas separation method using the low-temperature environment in the tundra zone. (NEDO)

  19. FY 1998 result report. Research/development on the energy overall development/utilization technology of gas hydrate resource; 1998 nendo seika hokokusho. Gas haidoreto shigen no energy sogo kaihatsu riyo gijutsu no kenkyu kaihatsu

    NONE

    1999-03-01

    This study is aimed at studying for survey of gas hydrate (GH) deposit required for GH resource development and gathering of it, and further at studying for industrial utilization technology development of GH which is different in formation condition depending on kind of gas with which it reacts. The results of FY 1998 are as follows. In the study of the situation of existence of gas hydrate in the tundra, the sedimentary environment of the tundra where natural gas hydrate exists was simulated in laboratory to measure thermal conductivity of the sediments including GH. In this fiscal year, design/fabrication/calibration were conducted of the GH synthesizer and thermal analyzer. In the study of GH gathering technology in the tundra, a technology is discussed for recovering gas from GH layer and at the same time substituting CO2 hydrate for GH by blowing CO2 into the geologic layer. In FY 1998, formation/dissociation behaviors were first studied of methane/CO2 mixture hydrate. For the overall energy development of GH resource and promotion of R and D of the utilization technology, studies were made on physical properties of GH and development of the usage. (NEDO)

  20. Database of Information technology resources

    Barzda, Erlandas

    2005-01-01

    The subject of this master work is the internet information resource database. This work also handles the problems of old information systems which do not meet the new contemporary requirements. The aim is to create internet information system, based on object-oriented technologies and tailored to computer users’ needs. The internet information database system helps computers administrators to get the all needed information about computers network elements and easy to register all changes int...

  1. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

  2. Forest resources and utilization in Canada to the year 2000

    Manning, G H; Grinnell, H R

    1971-01-01

    This report presents estimates of the relation between the demand for Canada's forest products and the supply of timber available to meet this demand. The future of the Canadian forest products economy is forecast at 5-year intervals from 1975 to 2000, and the demand for individual products and product groups, both domestic and export, is shown. These estimates are then used to derive estimates of roundwood demand for the projection periods. The report then describes the timber resource of Canada, quantitatively and qualitatively, and discusses the factors that influence the growth and mortality of this resource. Factors which might change, and therefore affect the utilization of this forest resource, are also discussed. It is concluded that at the national level of data aggregation, no physical shortage of wood fiber is indicated, although on the bases of region, species, and timber quality, imbalances can exist. One important limiting factor to the supply situation is the inaccessibility of much of Canada's timber. Accessibility is increasing, and utilization is improving through harvesting technology, but the major opportunity for improvement seems to lie in the area of manufacturing technology. If the large hardwood surplus already within allocated forest areas were used in manufacturing, a considerable part of the projected demand could be met without opening up new forest areas. With respect to forest development, serious problems have been observed stemming from inadequate resource data and planning. These problems will have to be remedied if economic supplies are to be available in the future. 37 refs., 16 figs., 54 tabs.

  3. FY 1999 report on the results of the project on the industrial science technology R and D. Development of utilization technology of biological resources such as bioconsortium system (Development of the bioconsortium system utilization/production technology); 1999 nendo sangyo gijutsu kenkyu kaihatsu jigyo. Fukugou seibutsukei tou seibutsu shigen riyo gijutsu kaihatsu (Fukugou seibutsukei riyo seisan gijutsu no kaihatsu) seika hokokusho

    NONE

    2000-03-01

    For the purpose of developing the functional substance production technology, petroleum degrading/cleaning technology and high-grade utilization technology of the unused petroleum fraction, study was conducted of the culture control technology in substance production and substance decomposition by bioconsortia, and the FY 1999 results were reported. As to the functional material production technology, study was made of the separation/culture technology, functional substance production technology using bioconsortia (control substance searching method in the ocean microbial consortia system, isolation of control substance/structure determination/separation of production bacteria, elucidation of the inter-species communication substance function, heightening of function of the production microbial consortia), etc. Concerning the effective degrading/cleaning technology of petroleum compounds, study was made of the molecular genetic analysis technology, histochemical analysis technology, analysis technology of the solvent resistance mechanism, bioconsortia analysis system technology, global environmental purification technology such as the effective decomposition of environmental pollutants, etc. Relating to the high-grade utilization technology of the unused petroleum fraction, study was made of the chemical analysis of the photolysis crude oil, selection of the decomposition microbial consortia, etc. (NEDO)

  4. Utilization of electronic information resources by academic staff at ...

    The study investigated the utilization of Electronic Information resources by the academic staff of Makerere University in Uganda. It examined the academic staff awareness of the resources available, the types of resources provided by the Makerere University Library, the factors affecting resource utilization. The study was ...

  5. Resource utilization and outcomes of intoxicated drivers.

    Cherry, Robert A; Nichols, Pamela A; Snavely, Theresa M; Camera, Lindsay J; Mauger, David T

    2010-08-05

    The high risk behavior of intoxicated drivers, impaired reaction time, lack of seat belt use, and increased incidence of head injury raises questions of whether pre-hospital use of alcohol leads to a higher injury severity score and worse clinical outcomes. We therefore compared intoxicated and non-intoxicated drivers of motor vehicle crashes with respect to outcome measurements and also describe the resources utilized to achieve those outcomes at our Level 1 trauma center. Retrospective descriptive study (Jan 2002-June 2007) of our trauma registry and financial database comparing intoxicated drivers with blood alcohol levels (BAC) > 80 mg/dl (ETOH > 80) with drivers who had a BAC of 0 mg/dl (ETOH = 0). Drivers without a BAC drawn or who had levels ranging from 1 mg/dL to 80 mg/dL were excluded. Data was collected on demographic information (age, gender, injury severity score or ISS), outcome variables (mortality, complications, ICU and hospital LOS, ventilator days) and resource utilization (ED LOS, insurance, charges, costs, payments). p 80; stratified chi square. Out of 1732 drivers, the combined study group (n = 987) of 623 ETOH = 0 and 364 ETOH > 80 had a mean age of 38.8 +/- 17.9, ISS of 18.0 +/- 12.1, and 69.8%% male. There was no difference in ISS (p = 0.67) or complications (p = 0.38). There was a trend towards decreased mortality (p = 0.06). The ETOH = 0 group had more patients with a prolonged ICU LOS (>/= 5 days), ventilator days (>/= 8 days), and hospital LOS (> 14 days) when compared to the ETOH > 80 group (p 80 group tended to be self pay (4.9% vs. 0.7%, p pay, less likely to have charges > $50K, and less likely to pay >/= 90% of the charges. Further research using multivariable analysis is needed to determine if these apparent outcomes differences are driven by acute intoxication, and the tendency for endotracheal intubation and ICU admission, rather than injury severity.

  6. Technology utilization and American competitiveness

    Penaranda, Frank; Arnold, Ray; Fetterolf, Fred

    1992-01-01

    This session of discussions reports on two sides of the technology transfer issue. The speakers are representatives of the aluminum industry (Alcoa Aluminum) and the National Aeronautics and Space Administration, Office of Commercial Programs. They discuss what technology transfer means, what NASA does for industry, and how information is disseminated.

  7. Utilizing Information Technology to Facilitate Rapid Acquisition

    2006-06-01

    PAGES 109 14. SUBJECT TERMS Rapid Acquisition, eCommerce , eProcurement, Information Technology, Contracting, Global Information Network...Agency. 5 eCommerce and eProcurement, and possess an adequate knowledge of information technology. D. RESEARCH QUESTIONS 1. Primary Research... eCommerce , Information Technology, and eProcurement knowledge, and government and private industry reports utilizing numerous library and Internet

  8. Report on achievements in fiscal 1999. Development of technology to utilize biological resources such as composite organism systems (development of technology to utilize and produce composite organism systems); 1999 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Fukugo seibutsukei riyo seisan gijutsu no kaihatsu

    NONE

    2000-03-01

    It is intended to achieve the following objectives in terms of the technologies to utilize such functions as material production and material decomposition by using composite organism systems: develop a technology to handle the composite organism systems; establish a composite microorganism cultivation control technology, and a composite microorganism system function strengthening technology; develop a technology to separate and cultivate organism groups constituting them, and develop industrial utilization technologies. The fiscal 1999 has discussed developing the elementary technologies for the technology to utilize functions of the composite organism systems on the following research items: 1. a functional material production technology; and 2. comprehensive investigations and researches. In Item 1, development was made on a technology to detect, separate and cultivate microorganisms in soil as the histochemical analytical technology. Development was made on an in situ detection, separation and function analyzing technology for particular composite microorganisms as the function analyzing technology. In the separation and cultivation technology, development was made on a technology to detect, separate and cultivate difficult-to-cultivate microorganisms. In the functional material production technology, development was made on a technology to utilize microbial consortia producing environmentally harmonizing oil-water separating polymers, and a method to execute artificially the gene exchange in the microbial consortia. (NEDO)

  9. Planetary Volatiles Extractor for In Situ Resource Utilization, Phase II

    National Aeronautics and Space Administration — In Situ Resource Utilization (ISRU) or ?living off the land relies on exploiting local resources and in turn reducing burden of transporting supplies. NASA has...

  10. Colonoscopy resource availability and colonoscopy utilization in Ontario, Canada

    Colleen Webber

    2017-04-01

    The availability of colonoscopy resources improved in Ontario between 2007 and 2013. However, the geographic variation in resource availability and findings that higher colonoscopy resource availability is associated with higher colonoscopy utilization suggest that certain areas of the province may be under-resourced. These areas may be appropriate targets for efforts to improve colonoscopy capacity in Ontario.

  11. Technology and resources use by university teachers

    Gueudet , Ghislaine

    2014-01-01

    International audience; In this paper we introduce the study of the use of resources by mathematics teachers at university. The available resources evolve, in particular concerning Open Educational Resources offered on the Internet. Studying the consequences of these evolutions for the teaching and learning practices requires to introduce a comprehensive concept of resource. A resource for the teacher is defined here as anything likely to resource the teacher's practice: technologies, but als...

  12. university students` perception and utilization of technology

    2018-02-01

    Feb 1, 2018 ... university students` perceptions and utilization of technology for learning at Haramaya University in. Ethiopia (as a ... teaching and learning in classroom can greatly enhance the ..... benefits that it should be deliver. Looking at ...

  13. An operational utility assessment [electronic resource]: measuring the effectiveness of the Joint Concept Technology Demonstration (JCTD), Joint Forces Protection Advance Security System (JFPASS)

    McGovern, Mark; Mayor, Jeffrey D.; Symmes, Joseph

    2008-01-01

    MBA Professional Report Planning modern military operations requires an accurate intelligence assessment of potential threats, combined with a detailed assessment of the physical theater of operations. This information can then be combined with equipment and manpower resources to set up a logistically supportable operation that mitigates as much of the enemy threat as possible. Given such a daunting challenge, military planners often turn to intelligent software agents to support their...

  14. Environmental impacts of biomass energy resource production and utilization

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  15. [Research on resources chemistry of Chinese medicinal materials and resources recycling utilization ways and goals and tasks].

    Duan, Jin-ao; Su, Shu-lan; Guo, Sheng; Jiang, Shu; Liu, Pei; Yan, Hui; Qian, Da-wei; Zhu, Hua-xu; Tang, Yu-ping; Wu, Qi-nan

    2015-09-01

    The objects of research on the resources chemistry of Chinese medicinal materials (RCCMM) are promotion of efficient production, rational utilization and improving quality of CMM and natural products. The development of TCM cause depends on the efficient utilization and sustainable development of CMM, hinges on the technologies and methods for using and discovering medicinal biological resources, stand or fall on the extension of industy chains, detailed utilizaion of resource chemical components by multi-way, multi-level. All of these may help to the recycling utilization and sound development of RCMM. In this article, five respects were discussed to the RCCMM researches and resources recycling utilization ways and goals and tasks. First, based on the principle of resource scarcity, discovering or replacing CMM resources, protecting the rare or endangered species or resources. Second, based on the multifunctionality of CMM, realizing the value-added and value compensation, and promoting the utilization efficiency through systermatic and detailed exploitation and utilization. Third, based on the resource conservation and environment-friendly, reducing raw material consumption, lowering cost, promoting recycling utilization and elevating utilization efficiency. Fourth, based on the stratege of turning harm into good, using the invasive alien biological resources by multi-ways and enriching the medicial resources. Fifth, based on the method of structure modification of chemical components, exploring and enhancing the utility value of resouces chemical substances. These data should provide references and attention for improving the utilization efficiency, promoting the development of recycling economy, and changing the mode of economic growth of agriculture and industry of CMM fundamentally.

  16. A strategy for investment in space resource utilization

    Mendell, Wendell W.

    1992-01-01

    Considerations governing a strategy for investment in the utilization of space resources are discussed. It is suggested on the basis of an examination of current trends in terms of historical processes which operate on new frontiers that the limited markets and unfamiliar technologies associated with space commercialization today may change dramatically in 20 years when lunar resources are accessible. It is argued that the uncertainty of such projections discourages investment at a useful scale unless a strategy for technology development can be implemented which provides tangible and marketable benefits in the intermediate term. At present, technologies can be identified which will be required (and therefore valuable) at the time of lunar settlement, and whose development can be planned to yield marketable intermediate products on earth. It is concluded that the formation of precompetitive collaborative research consortia in the industrial sector could reduce technical and economic risk in the early stages and could promote a favorable political environment for the future growth of space activities.

  17. Resource management in utility and cloud computing

    Zhao, Han

    2013-01-01

    This SpringerBrief reviews the existing market-oriented strategies for economically managing resource allocation in distributed systems. It describes three new schemes that address cost-efficiency, user incentives, and allocation fairness with regard to different scheduling contexts. The first scheme, taking the Amazon EC2? market as a case of study, investigates the optimal resource rental planning models based on linear integer programming and stochastic optimization techniques. This model is useful to explore the interaction between the cloud infrastructure provider and the cloud resource c

  18. Development of coal energy utilization technologies

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  19. Recent trend in coal utilization technology. Coal utilization workshop

    Kim, Chon Ho; Son, Ja Ek; Lee, In Chul; Jin, Kyung Tae; Kim, Seong Soo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The 11th Korea-U.S.A. joint workshop on coal utilization technology was held in somerset, Pennsylvania, U.S.A. from october 2 to 3, 1995. In the opening ceremony, Dr.C. Low-el Miller, associate deputy assistant secretary of office of clean coal technology, U.S.DOE, gave congratulatory remarks and Dr. Young Mok Son, president of KIER, made a keynote address. In this workshop, 30 papers were presented in the fields of emission control technology, advanced power generation systems, and advanced coal cleaning and liquid fuels. Especially, from the Korean side, not only KIER but also other private research institutes and major engineering companies including KEPCO, Daewoo Institute of Construction Technology, Jindo Engineering and Construction Co. Daewoo Institute for Advanced Engineering and universities participated in this workshop, reflecting their great interests. Attendants actively discussed about various coal utilization technologies and exchanged scientific and technical information on the state-of-art clean coal technologies under development. (author)

  20. Utilizing the NASA Data-enhanced Investigations for Climate Change Education Resource for Elementary Pre-service Teachers in a Technology Integration Education Course.

    Howard, E. M.; Moore, T.; Hale, S. R.; Hayden, L. B.; Johnson, D.

    2014-12-01

    The preservice teachers enrolled in the EDUC 203 Introduction to Computer Instructional Technology course, primarily for elementary-level had created climate change educational lessons based upon their use of the NASA Data-enhanced Investigations for Climate Change Education (DICCE). NASA climate education datasets and tools were introduced to faculty of Minority Serving Institutions through a grant from the NASA Innovations in Climate Education program. These lessons were developed to study various ocean processes involving phytoplankton's chlorophyll production over time for specific geographic areas using the Giovanni NASA software tool. The pre-service teachers had designed the climate change content that will assist K-4 learners to identify and predict phytoplankton sources attributed to sea surface temperatures, nutrient levels, sunlight, and atmospheric carbon dioxide associated with annual chlorophyll production. From the EDUC 203 course content, the preservice teachers applied the three phases of the technology integration planning (TIP) model in developing their lessons. The Zunal website (http://www.zunal.com) served as a hypermedia tool for online instructional delivery in presenting the climate change content, the NASA climate datasets, and the visualization tools used for the production of elementary learning units. A rubric was developed to assess students' development of their webquests to meet the overall learning objectives and specific climate education objectives. Accompanying each webquest is a rubric with a defined table of criteria, for a teacher to assess students completing each of the required tasks for each lesson. Two primary challenges of technology integration for elementary pre-service teachers were 1) motivating pre-service teachers to be interested in climate education and 2) aligning elementary learning objectives with the Next Generation science standards of climate education that are non-existent in the Common Core State

  1. SHARING RESOURCES THROUGH COLLABORATION USING TECHNOLOGY

    In response to changing social and economic conditions, instant communication, emerging technology, and decreasing resources for libraries, there is a need for librarians to use collaborative methods, strategies, and technologies to solve common problems or produce common produ...

  2. Mars 2024/2026 Pathfinder Mission: Mars Architectures, Systems, & Technologies for Exploration and Resources

    National Aeronautics and Space Administration — Integrate In Situ Resource Utilization (ISRU) sub-systems and examine advanced capabilities and technologies to verify Mars 2024 Forward architecture precursor...

  3. Developing an Actuarial Track Utilizing Existing Resources

    Rodgers, Kathy V.; Sarol, Yalçin

    2014-01-01

    Students earning a degree in mathematics often seek information on how to apply their mathematical knowledge. One option is to follow a curriculum with an actuarial emphasis designed to prepare students as an applied mathematician in the actuarial field. By developing only two new courses and utilizing existing courses for Validation by…

  4. Energy Resource Planning. Optimal utilization of energy resources

    Miclescu, T.; Domschke, W.; Bazacliu, G.; Dumbrava, V.

    1996-01-01

    For a thermal power plants system, the primary energy resources cost constitutes a significant percentage of the total system operational cost. Therefore a small percentage saving in primary energy resource allocation cost for a long term, often turns out to be a significant monetary value. In recent years, with a rapidly changing fuel supply situation, including the impact of energy policies changing, this area has become extremely sensitive. Natural gas availability has been restricted in many areas, coal production and transportation cost have risen while productivity has decreased, oil imports have increased and refinery capacity failed to meet demand. The paper presents a mathematical model and a practical procedure to solve the primary energy resource allocation. The objectives is to minimise the total energy cost over the planning period subject to constraints with regards to primary energy resource, transportation and energy consumption. Various aspects of the proposed approach are discussed, and its application to a power system is illustrated.(author) 2 figs., 1 tab., 3 refs

  5. Smart City: Utilization of IT resources to encounter natural disaster

    Hartama, D.; Mawengkang, Herman; Zarlis, M.; Sembiring, R. W.

    2017-09-01

    This study proposes a framework for the utilization of IT resources in the face of natural disasters with the concept of Smart City in urban areas, which often face the earthquake, particularly in the city of North Sumatra and Aceh. Smart City is a city that integrates social development, capital, civic participation, and transportation with the use of information technology to support the preservation of natural resources and improved quality of life. Changes in the climate and environment have an impact on the occurrence of natural disasters, which tend to increase in recent decades, thus providing socio-economic impacts for the community. This study suggests a new approach that combines the Geographic Information System (GIS) and Mobile IT-based Android in the form of Geospatial information to encounter disaster. Resources and IT Infrastructure in implementing the Smart Mobility with Mobile service can make urban areas as a Smart City. This study describes the urban growth using the Smart City concept and considers how a GIS and Mobile Systems can increase Disaster Management, which consists of Preparedness, mitigation, response, and recovery for recovery from natural disasters.

  6. Determinants of resource needs and utilization among refugees over time.

    Wright, A Michelle; Aldhalimi, Abir; Lumley, Mark A; Jamil, Hikmet; Pole, Nnamdi; Arnetz, Judith E; Arnetz, Bengt B

    2016-04-01

    This study examined refugees' resource needs and utilization over time, investigated the relationships between pre-displacement/socio-demographic variables and resource needs and utilization, and explored the role of resource needs and utilization on psychiatric symptom trajectories. Iraqi refugees to the United States (N = 298) were assessed upon arrival and at 1-year intervals for 2 years for socio-demographic variables and pre-displacement trauma experiences, their need for and utilization of 14 different resources, and PTSD and depressive symptoms. Although refugees reported reduction of some needs over time (e.g., need for cash assistance declined from 99 to 71 %), other needs remained high (e.g., 99 % of refugees reported a need for health care at the 2-year interview). Generally, the lowest needs were reported after 2 years, and the highest utilization occurred during the first year post-arrival. Pre-displacement trauma exposure predicted high health care needs but not high health care utilization. Both high need for and use of health care predicted increasing PTSD and depressive symptoms. Specifically, increased use of psychological care across the three measurement waves predicted more PTSD and depression symptoms at the 2-year interview. Differences emerged between need for and actual use of resources, especially for highly trauma-exposed refugees. Resettlement agencies and assistance programs should consider the complex relationships between resource needs, resource utilization, and mental health during the early resettlement period.

  7. FY 1998 industrial technology R and D project. Report on the results of the development of utilization technology of biological resource such bioconsortia system (Development of production technology of biological use petroleum substituting fuels); 1998 nendo sangyo gijutsu kenkyu kaihatsu jigyo. Fukugo seibutsukeinado seibutsu shigen riyo gijutsu kaihatsu (seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu)

    NONE

    1996-03-01

    Technology development was conducted for production of useful substances using the bioconsortia system. In FY 1998, the development of element technology was studied. As to the utilization technology of gut symbiotic microorganisms such as termite and longhorn beetle, clone types of gut microorganism complex system were analyzed to find out the diversification. In the decay of wood, co-culture of two species of mold fungus was increased in efficiency than single culture. More than 90% was classified/identified of the mold fungi accumulated (in wood piece)/separated for the utilization of plant symbiotic microorganisms. For the production of petroleum substituting useful resource, conditions were established of callus induction from immature embryos of tropical oil crops, especially oil palm, and of regeneration of a lot of small plants from the callus. To establish the Agrobacterium-mediated transformation system of oil palm, the binary vector harboring the reporter gene and selectable marker gene was constructed. Using the vector, oil palm tissues are inoculated and infected with agrobacteria. To heighten the function of palm oil, 10 particular clones were selected from the complementary DNA library obtained from oil palm fruit tissues. The genetic study of germs was also made. (NEDO)

  8. Water Electrolysis for In-Situ Resource Utilization (ISRU)

    Lee, Kristopher A.

    2016-01-01

    Sending humans to Mars for any significant amount of time will require capabilities and technologies that enable Earth independence. To move towards this independence, the resources found on Mars must be utilized to produce the items needed to sustain humans away from Earth. To accomplish this task, NASA is studying In Situ Resource Utilization (ISRU) systems and techniques to make use of the atmospheric carbon dioxide and the water found on Mars. Among other things, these substances can be harvested and processed to make oxygen and methane. Oxygen is essential, not only for sustaining the lives of the crew on Mars, but also as the oxidizer for an oxygen-methane propulsion system that could be utilized on a Mars ascent vehicle. Given the presence of water on Mars, the electrolysis of water is a common technique to produce the desired oxygen. Towards this goal, NASA designed and developed a Proton Exchange Membrane (PEM) water electrolysis system, which was originally slated to produce oxygen for propulsion and fuel cell use in the Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project. As part of the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) project, this same electrolysis system, originally targeted at enabling in situ propulsion and power, operated in a life-support scenario. During HESTIA testing at Johnson Space Center, the electrolysis system supplied oxygen to a chamber simulating a habitat housing four crewmembers. Inside the chamber, oxygen was removed from the atmosphere to simulate consumption by the crew, and the electrolysis system's oxygen was added to replenish it. The electrolysis system operated nominally throughout the duration of the HESTIA test campaign, and the oxygen levels in the life support chamber were maintained at the desired levels.

  9. Achievement report for fiscal 1997 on the development of technologies for utilizing biological resources such as complex biosystems. Development of complex biosystem analyzing technology; 1997 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Fukugo seibutsukei kaiseki gijutsu no kaihatsu

    NONE

    1998-03-01

    The aim is to utilize the sophisticated functions of complex biosystems. In the research and development of technologies for effectively utilizing unexploited resources and substances such as seeweeds and algae, seaweeds are added to seawater to turn into a microbial suspension after the passage of two weeks, the suspension is next scattered on a carageenan culture medium, and then carageenan decomposing microbes are obtained. In the research and development of technologies for utilizing microbe/fauna-flora complex systems, technologies for exploring and analyzing microbes are studied. For this purpose, 48 kinds of sponges and 300 kinds of bacteria symbiotic with the sponges are sampled in Malaysia. Out of them, 15 exhibit enzyme inhibition and Artemia salina lethality activities. In the development of technologies for analyzing the functions of microbes engaged in the production of useful resources and substances for animals and plants, 150 kinds of micro-algae are subjected to screening using protease and chitinase inhibiting activities as the indexes, and it is found that an extract of Isochrysis galbana displays an intense inhibitory activity. The alga is cultured in quantities, the active component is isolated from 20g of dried alga, and its constitution is determined. (NEDO)

  10. Development of technologies for solar energy utilization

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  11. Awarensss and utilization of information technology among ...

    The paper examines the awareness and utilization of Information Technologies among Agricultural scientists in Nigeria. Data were collected from 170 respondents with the aid of structured questionnaire and analysed using frequency, percentage, mean and Ordinary Least Square multiple regression. This study found that ...

  12. Utilization of cocoyam production technologies among women ...

    The study analysed utilization of improved cocoyam production technologies among women in Abia State, Nigeria. A multistage random sampling technique was used to select sixty (60) women. Data for the study were collected using a structured questionnaire and analysed with descriptive statistics and inferential statistics ...

  13. Emerging technologies for knowledge resource management

    Pandian, M

    2007-01-01

    Emerging Technologies for Knowledge Resource Management examines various factors that contribute to an enabled environment for optimum utilisation of information resources. These include the digital form of information resources, which are inherently sharable, consortia as a concept to bring people and materials together and unified portals as technology to bring together disparate and heterogeneous resources for sharing and access. The book provides a step-by-step guideline for system analysis and requirements analysis. The book also provides reviews of existing portal models for sharing reso

  14. Environmental impacts of biomass energy resource production and utilization

    Easterly, J L; Dunn, S M [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO{sub 2}, and reduced emissions of SO{sub 2}, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO{sub 2} and SO{sub 2}, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO{sub 2}, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general

  15. Population Issues. Resources in Technology.

    Technology Teacher, 1991

    1991-01-01

    Presents information about the problems caused by increasing population. Discusses the environmental impact and the ways that technology can be used to solve problems of overpopulation. Includes possible student outcomes and a student quiz. (JOW)

  16. Internet - a resource for nuclear utilities

    Slone, B.J. III; Richardson, C.E.

    1993-01-01

    Internet is the name of the largest computer network in the world. It is actually a collection of many networks all running the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite, connected through gateways and sharing common names and address spaces. Its purpose is to facilitate sharing of resources at participating organizations, which include government agencies, educational institutions, and private corporations. The Internet roots begin with the creation of the Advanced Research Projects Agency (ARPA) within the U.S. Department of Defense (DOD) in 1958. In 1969, the DOD formed a computer network for ARPA and gave it the name ARPANET. It was designed to help government scientists communicate and share information by allowing remote computer log-in and program execution, but it quickly became a tool for sharing information through file transfer, electronic mail, and interest-group mailing lists. In 1970, ARPA became the Defense Advanced Research Projects Agency (DARPA) and ARPANET became DARPANET. By 1980, the DARPANET had grown in size, and other connecting networks were being developed. To support system growth and performance, it was recognized that a new communication protocol was required. In 1983, DARPANET split into DARPANET and MILNET (Military Network), and the Internet was formed when the Defense Communications Agency, which managed both networks, mandated the use of TCP/IP for connected hosts. In 1986, the National Science Foundation (NSF) joined Internet. The NSF created NSFNET to link several national supercomputer centers to support scholarly research. It now comprises 17 networks, connecting to 23 midlevel wide-area networks across the continent. In turn, the midlevel networks link computers in more than 1000 university, government, and commercial research organizations throughout the world

  17. Iceland's Central Highlands: Nature conservation, ecotourism, and energy resource utilization

    Bjorn Gunnarsson; Maria-Victoria Gunnarsson

    2002-01-01

    Iceland’s natural resources include an abundance of geothermal energy and hydropower, of which only 10 to 15 percent is currently being utilized. These are clean, renewable sources of energy. The cost to convert these resources to electricity is relatively low, making them attractive and highly marketable for industrial development, particularly for heavy industry....

  18. Awareness and utilization of open access resources in Asom Bur ...

    This study examined the extent of awareness and utilization of open access resources in University of Mkar library (Asom Bur Learning Resource Centre). One hundred (100) undergraduate students out of a total of about One thousand and fifty (1,050) were randomly selected. Descriptive survey design was employed and ...

  19. The sustainable utilization of human resources in global product development

    Hansen, Zaza Nadja Lee; Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2010-01-01

    This empirical paper investigates the challenges global product development faces in regard to a sustainable utilization of resources through case studies and interviews in six Danish multinational corporations. Findings revealed 3 key challenges, which relates to increased rework in product...... development and production, overlapping work and a lack of utilization of knowledge and information at the supplier or subsidiary. The authors suggest the use of strategic simulation in order to gain greater transparency in the global network and thus utilize resources better. Strategic simulation...

  20. Technology adoption in nonrenewable resource management

    Cunha-e-Sa, Maria A.; Balcao Reis, Ana; Roseta-Palma, Catarina

    2009-01-01

    Technological change has played an important role in models of nonrenewable resource management, since its presence mitigates the depletion effect on extraction costs over time. We formalize the problem of a competitive nonrenewable resource extracting firm faced with the possibility of technology adoption. Based on a quadratic extraction cost function, our results show that the expected net benefits from adoption increase both with the size of the resource stock and with prices. A boundary that separates the region where expected net benefits are positive from the one where they are negative is derived. (author)

  1. FY 2001 report on the results of the development of the hydrothermal utilization power plant, etc. Development of collecting technology for deep geothermal resources (Development of production technology for deep geothermal resources); 1992 - 2001 nessui riyo hatsuden plant tou kaihatsu sokatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu - Shinbu chinetsu shigen seisan gijutsu no kaihatsu (2001 nendo seika hokokusho bessatsu shiryo)

    NONE

    2002-03-01

    For making effective/economical collection of deep geothermal resources, development was made from FY 1991 to FY 2001 of the 'drilling technology for deep geothermal resources' and 'production technology for deep geothermal resources,' and the results were summarized. As to the development of logging technology, the PTSD logging system was developed which can measure temperature/pressure/flow velocity/fluid density in geothermal well under the environment of temperature of 400 degrees C. Concerning the development of monitoring technology, development was made of the PT monitoring system that can make the long-term continuous measuring of temperature/pressure in deep geothermal observation well under the environment of temperature of 400 degrees C and of the C monitoring system that samples geothermal fluids at regular intervals to grasp changes in chemical component. Relating to the development of high temperature tracer monitoring technology, the following were conducted: extraction of high temperature tracer agent that can be used in geothermal reservoirs under the environment of temperature of 300 degrees C, development of simulator, and establishment of how to put tracer agent into the reservoir and how to analyze tracer agent. Further, the R and D were made of scale monitoring technology and scale prevention/removal technology. (NEDO)

  2. Human resource management and technological challenges

    Davim, J

    2014-01-01

    This book focuses on the challenges and changes that new technologies bring to human resources (HR) of modern organizations. It examines the technological implications of the last changes taking place and how they affect the management and motivation of human resources belonging to these organizations. It looks for ways to understand and perceive how organizational HR, individually and as a team, conceptualize, invent, adapt, define and use organizational technology, as well as how they are constrained by features of it. The book provides discussion and the exchange of information on principles, strategies, models, techniques, methodologies and applications of human resources management and technological challenges and changes in the field of industry, commerce and services.

  3. Development of beam utilization/application technology

    Choi, B H; Kim, Y K; Song, T Y [and others

    1999-05-01

    High power proton accelerator is considered as one of national fundamental research facilities and a key to advanced nuclear technology development, having been widely used in an un detachable relationship with nuclear research in advanced countries. The high power proton accelerator will be installed in several phases as an up front facility of the nuclear waste transmutation system. It is expected that a common understanding and a general agreement over proper utilization of the accelerator should be deduced and that a user program for beam utilization and application should be firmly established in time for the completion of each phase of the accelerator. This high power proton accelerator will consist of several component accelerators and, from up front, accelerators such as injector, RFQ, CCDTL, etc. will be installed in sequence and deliver respectively at each stage beams of 3MeV, 20MeV, 100Mev, etc. to be variously utilized forindustries, defence industry, medical treatment, environmental protection and basic science research. In order for the accelerator to be fully utilized as a national fundamental research facility beyond nuclear field, it is necessary to formulate a proceeding plan of the user program for the accelerator and to cultivate industrial utilization/application studies of proton beams accelerated by injector or RFQ of the accelerator. (author). 38 refs., 84 tabs., 39 figs.

  4. Development of beam utilization/application technology

    Choi, B. H.; Kim, Y.K.; Song, T.Y.

    1999-05-01

    High power proton accelerator is considered as one of national fundamental research facilities and a key to advanced nuclear technology development, having been widely used in an un detachable relationship with nuclear research in advanced countries. The high power proton accelerator will be installed in several phases as an up front facility of the nuclear waste transmutation system. It is expected that a common understanding and a general agreement over proper utilization of the accelerator should be deduced and that a user program for beam utilization and application should be firmly established in time for the completion of each phase of the accelerator. This high power proton accelerator will consist of several component accelerators and, from up front, accelerators such as injector, RFQ, CCDTL, etc. will be installed in sequence and deliver respectively at each stage beams of 3MeV, 20MeV, 100Mev, etc. to be variously utilized for industries, defence industry, medical treatment, environmental protection and basic science research. In order for the accelerator to be fully utilized as a national fundamental research facility beyond nuclear field, it is necessary to formulate a proceeding plan of the user program for the accelerator and to cultivate industrial utilization/application studies of proton beams accelerated by injector or RFQ of the accelerator. (author). 38 refs., 84 tabs., 39 figs

  5. FY 1998 report on the results of the development of utilization technology of biological resources such as bioconsortia. Development of the bioconsortia system utilization/production technology; 1998 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Fukugo seibutsukei riyo seisan gijutsu no kaihatsu

    NONE

    1999-03-01

    For the purpose of developing the industrial utilization technology, analysis was made of functions and interactions of the specified functional biological groups, and at the same time the developmental study was made of the technology to isolate/culture the constitutive biological groups. The FY 1998 results were summed up. As to the technology to detect microorganisms in soil, the SFDA method was improved and the new dyeing method was developed. And, there almost was hope for the development. Concerning the functional analysis technology, the functional substances peculiarly manifested only in the complex system in the ocean environment are searched. Several kinds of compounds were found out, and at the same time the test to confirm the biological activity is under way. Relating to the isolation/culture technology, study was made on rotten fruit, and the existence in the sample of the microorganisms which are difficult in isolation/culture was newly confirmed. In regard to the culture of the microorganisms which are difficult in isolation/culture, availability of the replica method was found out. As to the technology to produce functional substances, studies were made on the following: utilization technology of the environmental harmony type oil/water separation polymer producing microbial consortia, method to artificially make gene exchanges in the microbial consortia, etc. (NEDO)

  6. Improving ATLAS computing resource utilization with HammerCloud

    Schovancova, Jaroslava; The ATLAS collaboration

    2018-01-01

    HammerCloud is a framework to commission, test, and benchmark ATLAS computing resources and components of various distributed systems with realistic full-chain experiment workflows. HammerCloud contributes to ATLAS Distributed Computing (ADC) Operations and automation efforts, providing the automated resource exclusion and recovery tools, that help re-focus operational manpower to areas which have yet to be automated, and improve utilization of available computing resources. We present recent evolution of the auto-exclusion/recovery tools: faster inclusion of new resources in testing machinery, machine learning algorithms for anomaly detection, categorized resources as master vs. slave for the purpose of blacklisting, and a tool for auto-exclusion/recovery of resources triggered by Event Service job failures that is being extended to other workflows besides the Event Service. We describe how HammerCloud helped commissioning various concepts and components of distributed systems: simplified configuration of qu...

  7. Spinoff 2002: Fortieth Anniversary Technology Utilization Program

    2002-01-01

    Since its inception 40 years ago, NASA's Technology Transfer Program has led the way for our nation to benefit from cutting-edge aerospace technologies. In addition to contributing to U.S. economic growth, these technologies are improving the quality of life on Earth while finding new ways to protect and preserve it. NASA's research and development efforts have advanced areas in medicine, communications, manufacturing, computer technology, and homeland security. These breakthroughs, translated into commercial products, are enhancing the lives of Americans everywhere. When a congressional mandate led NASA to develop the Scientific and Technical Information (STI) Program, the Agency began a wide dissemination of its research and development results. In doing so, NASA recognized that many of its technologies were transferable to industry for the development of commercial products. As a result, the Technology Utilization Program was born in 1962. The successful program went through several changes over the years, as its philosophy, mission, and goals adapted into the Technology Transfer Program we know today. The program strives to make the latest technologies available to industry as soon as they are developed. Each year, NASA's Spinoff publication showcases new products and services resulting from commercial partnerships between NASA and private industry. In the 2002 issue, the NASA field centers reflect upon the growth that has made these innovations available to the public. The Research and Development section examines past achievements, current successes, and future goals for each of the ten NASA centers. The Commercial Benefits section proudly highlights 51 new spinoff products, including a heart pump for patients needing a heart transplant, as well as an air purifier that destroys anthrax spores. The Technology Transfer and Outreach section describes the outreach achievements and educational successes made possible through the NASA Commercial Technology Network

  8. PHYSICAL RESOURCES OF INFORMATION PROCESSES AND TECHNOLOGIES

    Mikhail O. Kolbanev

    2014-11-01

    Full Text Available Subject of study. The paper describes basic information technologies for automating of information processes of data storage, distribution and processing in terms of required physical resources. It is shown that the study of these processes with such traditional objectives of modern computer science, as the ability to transfer knowledge, degree of automation, information security, coding, reliability, and others, is not enough. The reasons are: on the one hand, the increase in the volume and intensity of information exchange in the subject of human activity and, on the other hand, drawing near to the limit of information systems efficiency based on semiconductor technologies. Creation of such technologies, which not only provide support for information interaction, but also consume a rational amount of physical resources, has become an actual problem of modern engineering development. Thus, basic information technologies for storage, distribution and processing of information to support the interaction between people are the object of study, and physical temporal, spatial and energy resources required for implementation of these technologies are the subject of study. Approaches. An attempt is made to enlarge the possibilities of traditional cybernetics methodology, which replaces the consideration of material information component by states search for information objects. It is done by taking explicitly into account the amount of physical resources required for changes in the states of information media. Purpose of study. The paper deals with working out of a common approach to the comparison and subsequent selection of basic information technologies for storage, distribution and processing of data, taking into account not only the requirements for the quality of information exchange in particular subject area and the degree of technology application, but also the amounts of consumed physical resources. Main findings. Classification of resources

  9. Utilization of saline water and land: Reclaiming lost resources

    Naqvi, Mujtaba

    2001-01-01

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  10. Current NASA Plans for Mars In Situ Resource Utilization

    Sanders, Gerald

    2018-01-01

    The presentation is to provide relevant information to the NASA funded Center for the Utilization of Biological Engineering in Space (CUBES) Institute. The presentation cover the following: 1) What is In Situ Resource Utilization (ISRU), 2) What are the resources of interest at the Moon and Mars, 3) ISRU-related mission requirements and ISRU economics, 4) Challenges and Risk for ISRU, 5) Concept of Operation for Mars ISRU Systems, 6) Current State of the Art (SOA) in ISRU, and 7) Current ISRU development and mission status.

  11. Advanced Water Purification System for In Situ Resource Utilization Project

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  12. FY 1999 report on the results of the project on the industrial science technology R and D. Development of utilization technology of biological resources such as bioconsortium system (Development of the petroleum substituting fuel production technology using living organisms); 1999 nendo sangyo gijutsu kenkyu kaihatsu jigyo. Fukugou seibutsukei tou seibutsu shigen riyo gijutsu kaihatsu (Seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu) seika hokokusho

    NONE

    2000-03-01

    For the purpose of developing the technology for producing and degrading useful substances using bioconsortia, study was made of the handling technology of bioconsortia, the basic element technology, etc., and the FY 1999 results were reported. In the study of the high-grade utilization technology of lignocellulose/the components, an sample was obtained in which the effect of the bacteria culture supernatant treatment was recognized in the biobleaching by co-treatment of the bacteria culture filtrate - MnP. As to the search for control factor of lignin degrading enzyme and the utilization technology, it was found out that bisphenol A was efficiently degraded by a combination of laccase and mediator production bacteria. Concerning the utilization technology of plant symbiotic bacteria, classification/identification have been finished of approximately 60% of the stored bacteria. In the study of the production technology of the petroleum substituting useful resource, a system was constructed in which immature embryos were used for callus induction and regeneration of plantlets, and plants were regenerated at high frequency via the formation of adventitious embryos. By this, the culture cell with high propagation ability was obtained. (NEDO)

  13. Assessment of Global Wind Energy Resource Utilization Potential

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  14. Utilizing Internet Technologies in Observatory Control Systems

    Cording, Dean

    2002-12-01

    The 'Internet boom' of the past few years has spurred the development of a number of technologies to provide services such as secure communications, reliable messaging, information publishing and application distribution for commercial applications. Over the same period, a new generation of computer languages have also developed to provide object oriented design and development, improved reliability, and cross platform compatibility. Whilst the business models of the 'dot.com' era proved to be largely unviable, the technologies that they were based upon have survived and have matured to the point were they can now be utilized to build secure, robust and complete observatory control control systems. This paper will describe how Electro Optic Systems has utilized these technologies in the development of its third generation Robotic Observatory Control System (ROCS). ROCS provides an extremely flexible configuration capability within a control system structure to provide truly autonomous robotic observatory operation including observation scheduling. ROCS was built using Internet technologies such as Java, Java Messaging Service (JMS), Lightweight Directory Access Protocol (LDAP), Secure Sockets Layer (SSL), eXtendible Markup Language (XML), Hypertext Transport Protocol (HTTP) and Java WebStart. ROCS was designed to be capable of controlling all aspects of an observatory and be able to be reconfigured to handle changing equipment configurations or user requirements without the need for an expert computer programmer. ROCS consists of many small components, each designed to perform a specific task, with the configuration of the system specified using a simple meta language. The use of small components facilitates testing and makes it possible to prove that the system is correct.

  15. Geothermal resource utilization: paper and cane sugar industries. Final report

    Hornburg, C.D.; Morin, O.J.

    1975-03-01

    This study was made as a specific contribution to an overall report by the United States in the area of industrial utilization of geothermal resources. This is part of an overall study in non-electrical uses of geothermal resources for a sub-committee of the North Atlantic Treaty Organization. This study was restricted to the geopressured zone along the Northern Gulf of Mexico Coast. Also, it was limited to utilizing the thermal energy of this ''geoenergy'' resource for process use in the Pulp and Paper Industry and Cane Sugar Industry. For the selected industries and resource area, this report sets forth energy requirements; identifies specific plant and sites; includes diagrams of main processes used; describes process and equipment modifications required; describes energy recovery systems; sets forth waste disposal schemes and problems; and establishes the economics involved. The scope of work included considerable data collection, analysis and documentation. Detailed technical work was done concerning existing processes and modifications to effectively utilize geothermal energy. A brief survey was made of other industries to determine which of these has a high potential for utilizing geothermal energy.

  16. Availability and Utilization of Information Resources and Service by ...

    The paper recommends improvement in library budgetary allocation, more community sensitization on library services, urgent completion of the library complex at the main campus and commissioning of the e-library project. Key Words: Availability, utilization, information, resources, sources, academic, staff, university.

  17. Utilization of digitized information resources by academic staff of ...

    This paper reported on the utilization of the digitized information resources amongst the academic staff of Waziri Umaru federal polytechnic Birnin Kebbi and Federal College of Education Technical Gusau. The paper gave an overview of digitization and its initiatives in academic libraries in Nigeria. The paper tried to ...

  18. LiDAR utility for natural resource managers

    Andrew Thomas Hudak; Jeffrey Scott Evans; Alistair Mattthew Stuart. Smith

    2009-01-01

    Applications of LiDAR remote sensing are exploding, while moving from the research to the operational realm. Increasingly, natural resource managers are recognizing the tremendous utility of LiDAR-derived information to make improved decisions. This review provides a cross-section of studies, many recent, that demonstrate the relevance of LiDAR across a suite of...

  19. Effect of vertical integration on the utilization of hardwood resources

    Jan Wiedenbeck

    2002-01-01

    The effectiveness of vertical integration in promoting the efficient utilization of the hardwood resource in the eastern United States was assessed during a series of interviews with vertically integrated hardwood manufacturers in the Appalachian region. Data from 19 companies that responded to the 1996 phone survey indicate that: 1) vertically integrated hardwood...

  20. Maize Genetic Resources Collections – Utilizing a Treasure Trove

    The maize genetic resource collection managed by the USDA-ARS's National Plant Germplasm System is heavily utilized by researchers and educators. A collection of landraces, inbred lines from public and private sector sources, synthetics and key populations, it serves both as a living snapshot of th...

  1. FY 1999 report on the results of the project on the industrial science technology R and D. Development of utilization technology of biological resources such as bioconsortium system (Development of the petroleum substituting fuel production technology using living organisms); 1999 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo. Fukugou seibutsukei tou seibutsu shigen riyo gijutsu kaihatsu (Seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu) seika hokokusho

    NONE

    2000-03-01

    For the purpose of establishing the high-grade utilization technology of unused seaweed/algae and production technology of useful substances using high-grade functions of bioconsortia, study was conducted, and the FY 1999 results were reported. In the analysis of the ocean environment adaptation mechanism, the R and D were made of a selection method of the marine microbial consortia using korormicin. In the study of the high-grade utilization technology of unused resources/substances such as marine-producing algae, several tens of the carrageenase producing microbial consortia were acquired from the surface of seaweed, and some carrageenase producing bacteria and non-producing bacteria were acquired by isolating as pure strains. In the study of the petroleum substituting useful resource production technology, developed was a monitoring system of the environmental stress using marine-product invertebrate/micro-algae symbiotic system. In the study of the high-grade utilization of large useful algae, elucidation of the related genes, fabrication of variants and analysis of genes were carried out for the bacterium BUP-7 which indicates activity of growth acceleration/shape formation of seaweed. (NEDO)

  2. Direct Heat Utilization of Geothermal Resources Worldwide 2005

    Lund, John W.

    2000-01-01

    Direct utilization of geothermal energy consists of various forms for heating and cooling instead of converting the energy for electric power generation. The geothermal resources that can be utilized are in the lower temperature range that are more wide-spread than the higher temperature resources used for electricity generation. The major areas of direct utilization are: heating of swimming pools and for balneology; space heating and cooling including district heating; agriculture applications (greenhouse heating and crop drying); aquaculture applications; industrial processing; and geothermal heat pumps. Direct utilization projects are reported in 72 countries with an installed capacity of 28,268 MWt and annual energy use of 273,372 TJ (75,943 GWh) reported in 2005. The equivalent annual savings in fuel oil amounts to 170 million barrels (25.4 million tonnes) and 24 million tonnes in carbon emissions to the atmosphere. Recent trends are to combined geothermal heat and power projects in order to maximize the use of the resource and improve the economics of the project. With the recent increases in fossil fuel prices, it is estimated that direct utilizations will more than double in the next 10 years.

  3. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  4. Ruminant production systems in developing countries: Resource utilization

    Devendra, C.

    1989-01-01

    Ruminant production systems are discussed with specific reference to the resource utilization required to support them. Particular focus is placed on the main production resources (animals and feeds) and their underutilization. The ruminant animals include buffaloes, cattle, goats, sheep and camels. With the exception of cattle and sheep, their numbers in developing countries account for between 94 and 100% of total world population. Their biological attributes, including inherent characteristics, feeding behaviour and metabolism, are summarized. The extent and availability of feed resources are considered; resources include permanent pastures, crop residues, agroindustrial by-products and non-conventional feeds. The prevailing ruminant production systems are classified into three main categories: extensive systems, systems incorporating arable cropping (roadside, communal and arable grazing systems; tethering and cut-and-carry feeding), and systems integrated with tree cropping. Their genesis and endurance with patterns of crop production and farming systems are discussed. Integrated systems, involving animals and tree crops, are potentially important. Prevailing ruminant production systems are unlikely to change in the foreseeable future, unless there are major shifts in resource use and the proposed new systems are demonstrably superior. Factors likely to influence future ruminant production systems are market requirements, available feed resources and growth in human populations. Two associated strategies for improvement are proposed: increased priority to buffaloes, goats, sheep and camels, consistent with their potential contribution to meat, milk and fibre supplies and draught power; and more complete utilization of the available feed ingredients and increased feed supplies

  5. Technology innovation, human resources and dysfunctional integration

    Madsen, Arne Stjernholm; Ulhøi, John Parm

    2005-01-01

    (Internet technology), which transcends the traditional business of the company in question. It illustrates what goes wrong when innovative human resources do not succeed in becoming integrated into the rest of the host organization and therefore may become trapped by their own passion in a position as self...

  6. Application of Educational Technology Resource and Systems ...

    This paper examined the application of educational technology resource systems approach in teaching English Language highlighting some inadequacies observed in educational system in Nigeria. Language is the most unique gift to man from God for language differentiates man from animals. This forms the basis to ...

  7. Development of hot water utilizing power plants in fiscal 1999. Development of technology to collect geothermal resources in great depths (Development of technology to produce geothermal resources in great depths); 1999 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen seisan gijutsu no kaihatsu

    NONE

    2000-03-01

    With an objective to develop geothermal resources, research and development has been performed on the production technologies for the deep-seated geothermal resources, such as pressure, temperature, flow speed and density (PTSD) logging technologies. This paper summarizes the achievements in fiscal 1999. In the actual well test on the developed D-probe, it was verified that the probe operates normally under high temperature environment (342 degrees C) which exceeds the measurement limit of conductive cables (315 degrees C). In developing the PTC monitoring technology, the downhole sampler was improved, and a test was performed in the actual hole in the Hijiori area in Yamagata Prefecture. As a result, collection of hot water of about 900 mL has become possible. In developing the high-temperature tracer monitoring technology, simulation was performed keeping in mind charging the tracer into the Hijiori geothermal area, whereas specifications for charging and collecting the tracer were determined. In developing the scale monitoring technology, experiments were carried out on the fluid systems under deep geothermal conditions by using scale forming devices, by which it was indicated that silica is the important scale constituent. (NEDO)

  8. FY 1998 report on the results of the development of utilization technology of biological resources such as bioconsortia. Development of the bioconsortia system utilization/production technology; 1998 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Fukugo seibutsukei riyo seisan gijutsu no kaihatsu

    NONE

    1999-03-01

    For the purpose of establishing the technology to use high grade functions of the bioconsortia system, the R and D were conducted, and the FY 1998 results were summed up. As to the study of functional material producing technology, screening of the 2400 strains owned by Marine Biotechnology Institute was conducted using reporter strain, and about 400 strains of homoserine lactone producing bacteria which are interbiological information convey substances were obtained. Concerning the effective decomposing/purifying technology of petroleum products, study of petroleum decomposition analysis technology was finished in the development of culture/control technology of petroleum decomposition microbial consortia constitutive bacteria. Relating to the analysis of the petroleum decomposition microbial consortia, changes in the bacteria population at the site of the heavy oil pollution accident on the Sea of Japan were investigated for the past one year by the PCR/DGGE method. It was found out that levels of the oil pollution in ocean could be assessed by measuring the concentration of Alcanivorax. As to the technology for highly utilizing unused petroleum fractions, conducted were the chemical analysis of photolytic crude oil, selection of the decomposition microbial consortia, etc. (NEDO)

  9. Innovative technology summary report: Light duty utility arm

    1998-01-01

    The Light-Duty Utility Arm (LDUA) System is a mobile, multi-axis positioning system capable of deploying tools and sensors (end effecters) inside radioactive waste tanks for tank wall inspection, waste characterization, and waste retrieval. The LDUA robotic manipulator enters a tank through existing openings (risers) in the tank dome of the underground tanks. Using various end effecters, the LDUA System is a versatile system for high-level waste tank remediation. The LDUA System provides a means to deploy tools, while increasing the technology resources available to the U.S. Department of Energy (DOE). Ongoing end effecter development will provide additional capabilities to remediate the waste tanks

  10. Load Forecasting in Electric Utility Integrated Resource Planning

    Carvallo, Juan Pablo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Larsen, Peter H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sanstad, Alan H [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-19

    Integrated resource planning (IRP) is a process used by many vertically-integrated U.S. electric utilities to determine least-cost/risk supply and demand-side resources that meet government policy objectives and future obligations to customers and, in many cases, shareholders. Forecasts of energy and peak demand are a critical component of the IRP process. There have been few, if any, quantitative studies of IRP long-run (planning horizons of two decades) load forecast performance and its relationship to resource planning and actual procurement decisions. In this paper, we evaluate load forecasting methods, assumptions, and outcomes for 12 Western U.S. utilities by examining and comparing plans filed in the early 2000s against recent plans, up to year 2014. We find a convergence in the methods and data sources used. We also find that forecasts in more recent IRPs generally took account of new information, but that there continued to be a systematic over-estimation of load growth rates during the period studied. We compare planned and procured resource expansion against customer load and year-to-year load growth rates, but do not find a direct relationship. Load sensitivities performed in resource plans do not appear to be related to later procurement strategies even in the presence of large forecast errors. These findings suggest that resource procurement decisions may be driven by other factors than customer load growth. Our results have important implications for the integrated resource planning process, namely that load forecast accuracy may not be as important for resource procurement as is generally believed, that load forecast sensitivities could be used to improve the procurement process, and that management of load uncertainty should be prioritized over more complex forecasting techniques.

  11. Analysis of Low-Temperature Utilization of Geothermal Resources

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  12. Solar energy utilizing technology for future cities

    Mori, Kei

    1987-11-20

    This report proposes solar energy utilizing technologies for future cities, centering on a system that uses Fresnel lenses and optical fiber cables. This system selects out beams in the visible range and the energy can be sent to end terminals constantly as long as sunlight is available. Optical energy is concentrated 4,000-fold. The system can provide long-distance projection of parallel rays. It will be helpful for efficient utilization of light in cities and can increase the degree of freedom in carrying out urban development. The total efficiency for the introduction into optical fiber can be up to 40 percent. With no heating coil incorporated, there is no danger of fire. The standard size of a light condenser is 2 m in dome diameter and 2.5 m in height. Auxiliary artificial light is used for backup purposes when it is cloudy. Heat pumps operating on solar thermal energy are employed to maintain air conditioning for 24 hours a day in order to ensure the establishment of an environment where residential areas exist in the neighborhood of office areas. Seven automatic solar light collection and transfer systems are currently in practical use at the Arc Hills building. The combination of Fresnel lens and optical fiber is more than six times as high in efficiency as a reflecting mirror. (5 figs, 3 tabs, 8 photos, 6 refs)

  13. The development and utilization of biomass energy resources in China

    Dai, Lin [Energy Research Institute of the State Planning Commission, Beijing (China)

    1995-12-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author) 4 refs, 2 figs, 4 tabs

  14. The development and utilization of biomass energy resources in China

    Lin Dai

    1995-01-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author)

  15. Technology assessment of geothermal energy resource development

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  16. Uranium resource technology, Seminar 3, 1980

    Morse, J.G.

    1980-01-01

    This conference proceedings contains 20 papers and 1 panel discussion on uranium mining and ore treatment, taking into account the environmental issues surrounding uranium supply. Topics discussed include: the US uranium resource base, the technology and economics of uranium recovery from phosphate resources, trends in preleash materials handling of sandstone uranium ores, groundwater restoration after in-situ uranium leaching, mitigation of the environmental impacts of open pit and underground uranium mining, remedial actions at inactive uranium mill tailings sites, environmental laws governing in-situ solution mining of uranium, and the economics of in-situ solution mining. 16 papers are indexed separately

  17. Utilizing Technology to Encourage Healthy Lifestyles

    Cynthia Shuster

    2013-06-01

    Full Text Available In our fast paced world, using technology allows us to connect with people and assist them in developing healthier lifestyles within their time limits due to families, work, and other responsibilities. The goal of our project was the development of online, technology-based, nutrition, health, and fitness education challenges using social media as a means of helping consumers develop healthy lifestyle changes. Participants completed preassessments and postassessments to determine overall program impact and to self-report perceptions of knowledge gained and practice/behavior change. Results from the challenges indicated participants gained knowledge on nutrition, health and fitness topics while making strides towards lifestyle changes and adoption of healthy habits. Results revealed healthier eating habits were developed and physical activity was increased with many participants losing weight. Ease of participating was the most reported reason for participating in the challenges. To determine “best practice,” varying lengths of time for the challenges from four, seven, and thirteen weeks allowed the educators to derive implications for future programming, including branding, length of the challenge, frequency, and participant behavior change. To remain relevant and reach a greater diversity of populations, educators need to continue to explore and utilize various social media tools.

  18. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  19. Safety and resource utilization of anterior cervical discectomy and fusion

    Yu-Tung Feng; Shiuh-Lin Hwang; Chih-Lung Lin; I-Chen Lee; King-Teh Lee

    2012-01-01

    Degenerative cervical spondylosis (DCS) is part of the aging process and is the most common reason for degenerative changes with the spinal column. Anterior cervical discectomy and fusion (ACDF) is a major option for operative management of DCS in our institution. This retrospective study investigated the frequency of postoperative complications and resource utilization in 145 patients who underwent ACDF procedures from January 2009 to December 2011. Patients with degenerative changes that in...

  20. Predictors of resource utilization in transsphenoidal surgery for Cushing disease.

    Little, Andrew S; Chapple, Kristina

    2013-08-01

    The short-term cost associated with subspecialized surgical care is an increasingly important metric and economic concern. This study sought to determine factors associated with hospital charges in patients undergoing transsphenoidal surgery for Cushing disease in an effort to identify the drivers of resource utilization. The authors analyzed the Nationwide Inpatient Sample (NIS) hospital discharge database from 2007 to 2009 to determine factors that influenced hospital charges in patients who had undergone transsphenoidal surgery for Cushing disease. The NIS discharge database approximates a 20% sample of all inpatient admissions to nonfederal US hospitals. A multistep regression model was developed that adjusted for patient demographics, acuity measures, comorbidities, hospital characteristics, and complications. In 116 hospitals, 454 transsphenoidal operations were performed. The mean hospital charge was $48,272 ± $32,060. A multivariate regression model suggested that the primary driver of resource utilization was length of stay (LOS), followed by surgeon volume, hospital characteristics, and postoperative complications. A 1% increase in LOS increased hospital charges by 0.60%. Patient charges were 13% lower when performed by high-volume surgeons compared with low-volume surgeons and 22% lower in large hospitals compared with small hospitals. Hospital charges were 12% lower in cases with no postoperative neurological complications. The proposed model accounted for 46% of hospital charge variance. This analysis of hospital charges in transsphenoidal surgery for Cushing disease suggested that LOS, hospital characteristics, surgeon volume, and postoperative complications are important predictors of resource utilization. These findings may suggest opportunities for improvement.

  1. Achievement report for fiscal 2000 on New Sunshine Project aiding program. Development of hot water utilizing power generation plant (Development of deep seated geothermal resource collection technologies - development of deep seated geothermal resource production technologies); 2000 nendo nessui riyo hatsuden plant to kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu (Shinbu chinetsu shigen seisan gijutu no kaihatsu)

    NONE

    2001-03-01

    Items of information about deep seated geothermal resource production technologies were collected, and tests and studies were performed using actual wells. This paper summarizes the achievements in fiscal 2000. In developing the PTDS logging technology, it was verified in the actual well tests that the measured density of a D probe is consistent with the theoretical density, and the accuracy is satisfactory. The extended time measurement at fixed points on temperatures of fluids in the wells, pressures, flow rates, and fluid densities has identified chronological change of the characteristics of the fluids in the wells, including the enthalpy, proving them to be effective in well control. In developing the PTC monitoring technology, a fluid extracting machine for the downhole fluid sampler was fabricated, which has collected hot water successfully in the actual well twice out of seven attempts. In developing the high temperature tracer monitoring technology, experiments were performed using vapor phase and liquid phase tracers, whereas re-discharge of all the tracer materials was identified. In developing the scale preventing and removing technology, a silica recovering device capable of treating hot water at 0.6 ton per hour as maximum was fabricated, and the site tests were performed by using cation-based coagulant. (NEDO)

  2. Information technology resource management in radiation oncology.

    Siochi, R Alfredo; Balter, Peter; Bloch, Charles D; Bushe, Harry S; Mayo, Charles S; Curran, Bruce H; Feng, Wenzheng; Kagadis, George C; Kirby, Thomas H; Stern, Robin L

    2009-09-02

    The ever-increasing data demands in a radiation oncology (RO) clinic require medical physicists to have a clearer understanding of the information technology (IT) resource management issues. Clear lines of collaboration and communication among administrators, medical physicists, IT staff, equipment service engineers and vendors need to be established. In order to develop a better understanding of the clinical needs and responsibilities of these various groups, an overview of the role of IT in RO is provided. This is followed by a list of IT related tasks and a resource map. The skill set and knowledge required to implement these tasks are described for the various RO professionals. Finally, various models for assessing one's IT resource needs are described. The exposition of ideas in this white paper is intended to be broad, in order to raise the level of awareness of the RO community; the details behind these concepts will not be given here and are best left to future task group reports.

  3. Advanced Water Purification System for In Situ Resource Utilization

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  4. Achievement report for fiscal 1997 on the development of technologies for utilizing biological resources such as complex biosystems. Development of technologies for producing substitute fuel for petroleum by utilizing organisms; 1997 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu

    NONE

    1998-03-01

    Technologies of producing useful substances using the substance decomposing/producing functions of complex biosystems and methods of their handling are developed. In the utilization of microbes in the digestive tracts of termites and longicorns, it is made clear that several kinds of termites cleave the {beta}-O-4 ether linkage. In relation to technologies for wood decomposing complex microbial system construction and complex vector system development, a screening system is constructed in which strains that exhibit complex actions are combined. Concerning the advanced utilization of tropical oil plants, conditions are determined for inducing callus out of oil palm tissues. Out of oil palm sarcocarp tissues, mRNA (messenger ribonucleic acid) is isolated for the construction of a cDNA (complementary deoxyribonucleic acid) library. For the purpose of isolating a powerful promoter, a partial base sequence is determined for ubiquitin that frequently expresses itself in cells. A pathogenic bacterium ailing the oil palm is sampled for identification, and it is inferred that the bacterium is a kind of Ganoderma boninense. (NEDO)

  5. The In-Situ Resource Utilization Project Under the New Exploration Enterprise

    Larson, William E.; Sanders, Gerald B.

    2010-01-01

    The In Situ Resource Utilization Project under the Exploration Technology Development Program has been investing in technologies to produce Oxygen from the regolith of the moon for the last few years. Much of this work was demonstrated in a lunar analog field demonstration in February of 2010. This paper will provide an overview of the key technologies demonstrated at the field demonstration will be discussed a long with the changes expected in the ISRU project as a result of the new vision for Space Exploration proposed by the President and enacted by the Congress in the NASA Authorization Act of2010.

  6. Monitoring Resource Utilization in a Health Care Coordination Program.

    Popejoy, Lori L; Jaddoo, Julie; Sherman, Jan; Howk, Christopher; Nguyen, Raymond; Parker, Jerry C

    2015-01-01

    This initial article describes the development of a health care coordination intervention and documentation system designed using the Agency for Healthcare Research and Quality (AHRQ) Care Coordination Atlas framework for Centers for Medicare & Medicaid-funded innovation project, Leveraging Information Technology to Guide High-Tech, High-Touch Care (LIGHT). The study occurred at an academic medical center that serves 114 counties. Twenty-five registered nurse care managers (NCMs) were hired to work with 137 providers in 10 family community and internal medicine clinics. Patients were allocated into one of the four tiers on the basis of their chronic medical conditions and health care utilization. Using a documentation system on the basis of the AHRQ domains developed for this study, time and touch data were calculated for 8,593 Medicare, Medicaid, or dual-eligible patients. We discovered through the touch and time analysis that the majority of health care coordination activity occurred in the AHRQ domains of communication, assess needs and goals, and facilitate transitions, accounting for 79% of the NCM time and 61% of the touches. As expected, increasing tier levels resulted in increased use of NCM resources. Tier 3 accounted for roughly 16% of the patients and received 159 minutes/member (33% of total minutes), and Tier 4 accounted for 4% of patients and received 316 minutes/member (17% of all minutes). In contrast Tier 2, which did not require routine touches per protocol, had 5,507 patients (64%), and those patients received 5,246 hours of health care coordination, or 57 minutes/member, and took 48% of NCM time. 1. The AHRQ Care Coordination Atlas offered a systematic way to build a documentation system that allowed for the extraction of data that was used to calculate the amount of time and the number of touches that NCMs delivered per member. 2. Using a framework to systematically guide the work of health care coordination helped NCMs to think strategically

  7. Risk Decision Making Model for Reservoir Floodwater resources Utilization

    Huang, X.

    2017-12-01

    Floodwater resources utilization(FRU) can alleviate the shortage of water resources, but there are risks. In order to safely and efficiently utilize the floodwater resources, it is necessary to study the risk of reservoir FRU. In this paper, the risk rate of exceeding the design flood water level and the risk rate of exceeding safety discharge are estimated. Based on the principle of the minimum risk and the maximum benefit of FRU, a multi-objective risk decision making model for FRU is constructed. Probability theory and mathematical statistics method is selected to calculate the risk rate; C-D production function method and emergy analysis method is selected to calculate the risk benefit; the risk loss is related to flood inundation area and unit area loss; the multi-objective decision making problem of the model is solved by the constraint method. Taking the Shilianghe reservoir in Jiangsu Province as an example, the optimal equilibrium solution of FRU of the Shilianghe reservoir is found by using the risk decision making model, and the validity and applicability of the model are verified.

  8. Plant genotypic diversity reduces the rate of consumer resource utilization.

    McArt, Scott H; Thaler, Jennifer S

    2013-07-07

    While plant species diversity can reduce herbivore densities and herbivory, little is known regarding how plant genotypic diversity alters resource utilization by herbivores. Here, we show that an invasive folivore--the Japanese beetle (Popillia japonica)--increases 28 per cent in abundance, but consumes 24 per cent less foliage in genotypic polycultures compared with monocultures of the common evening primrose (Oenothera biennis). We found strong complementarity for reduced herbivore damage among plant genotypes growing in polycultures and a weak dominance effect of particularly resistant genotypes. Sequential feeding by P. japonica on different genotypes from polycultures resulted in reduced consumption compared with feeding on different plants of the same genotype from monocultures. Thus, diet mixing among plant genotypes reduced herbivore consumption efficiency. Despite positive complementarity driving an increase in fruit production in polycultures, we observed a trade-off between complementarity for increased plant productivity and resistance to herbivory, suggesting costs in the complementary use of resources by plant genotypes may manifest across trophic levels. These results elucidate mechanisms for how plant genotypic diversity simultaneously alters resource utilization by both producers and consumers, and show that population genotypic diversity can increase the resistance of a native plant to an invasive herbivore.

  9. Utilization Of Information And Communication Technology (ICT) For ...

    Utilization Of Information And Communication Technology (ICT) For Information Service Delivery In University Libraries In Adamawa State. ... inability to provide alternative power supply are major constraints to effective utilization of the ICT.

  10. Research and utilization of renewable energy resources in Bangladesh

    Kaiser, M.S.; Aditya, S.K.; Mazumder, R.K.

    2005-01-01

    Bangladesh is an energy deficit and low-economy country with high population density. Per-capita energy consumption is one of the lowest in the world. The only dependable indigenous gas, which is the major primary energy source in the country, is used mainly for the production of electricity and fertilizer. If it is burnt at an annual 10% growth rate of consumption, may not last more than 15-20 years. Around 30% of the people of the country have connections to the national grid line. In the villages, where 80% of the population live, the situation is worse. Even if it is possible to take the electric grid line to all villages of the country, which will be an extremely difficult and expensive work to do, the majority of the village houses will not be able to have electric connections due to poverty. No nuclear power station exists in the country and the possibility of setting up any in the near future is limited due to non-availability of funds. Hydroelectric resources are also low because of the flat terrain of the country. The fuel import bill also occupies a significant portion of the total amount of export earnings. Conventional resources in Bangladesh are utterly inadequate for supplying the energy needs to bring in a significant improvement in our economy. On the other hand when our gas reserves will be exhausted it will be difficult for us even to maintain the energy supply for the development of our country unless we find alternate sources of energy. Solar energy availability in Bangladesh is high around 5KWH/day per meter square or 2.6 10/sup 11/ MWH/year on the total surface area of the country. This is equivalent to the output of about 30GW capacity utility plant for 100 years assuming 10% efficiency of the solar devices. Large-scale production of electricity from new, renewable energy sources is a great challenge. Wind power is difficult to exploit economically in regions with wind speeds bellow 5 m/s yearly average. Solar thermal power plants come

  11. Safety and resource utilization of anterior cervical discectomy and fusion.

    Feng, Yu-Tung; Hwang, Shiuh-Lin; Lin, Chih-Lung; Lee, I-Chen; Lee, King-Teh

    2012-09-01

    Degenerative cervical spondylosis (DCS) is part of the aging process and is the most common reason for degenerative changes with the spinal column. Anterior cervical discectomy and fusion (ACDF) is a major option for operative management of DCS in our institution. This retrospective study investigated the frequency of postoperative complications and resource utilization in 145 patients who underwent ACDF procedures from January 2009 to December 2011. Patients with degenerative changes that involved cervical intervertebral levels C1-C2, spinal injury of traumatic origin, spinal tumors, or previous cervical fusion were excluded. Patients were then further classified into two groups: (1) level 1 or 2 disease (Group M) and (2) level 3 or 4 disease (Group S). Measures of mortality, complications after surgery as well as immediate reoperation for any reason were evaluated. Operation time, length of hospital stay, and hospitalization cost were defined as resource utilization. Ninety seven patients met the inclusion criteria and were further reviewed to characterize the sample better. There were no hematomas, airway complications or deaths, except in one patient who developed postoperative hemorrhage that required immediate surgical intervention, and resolved without any neurological deficit or casualty. Resource utilization indicated that the average operation time for Group S was significantly higher than for Group M (4.31±1.25 vs. 2.88±0.90 hours, p<0.0001). There were no significant differences in length of hospital stay and hospitalization cost between the two groups (p=0.265 and p=0.649). Our results indicate that neurosurgical intervention is safe for patients with DSC. Postoperative complication rates associated with these procedures are low. When surgery is considered appropriate for patients with multilevel diseases, these data suggest that ACDF is a safe surgical option. Copyright © 2012. Published by Elsevier B.V.

  12. Safety and resource utilization of anterior cervical discectomy and fusion

    Yu-Tung Feng

    2012-09-01

    Full Text Available Degenerative cervical spondylosis (DCS is part of the aging process and is the most common reason for degenerative changes with the spinal column. Anterior cervical discectomy and fusion (ACDF is a major option for operative management of DCS in our institution. This retrospective study investigated the frequency of postoperative complications and resource utilization in 145 patients who underwent ACDF procedures from January 2009 to December 2011. Patients with degenerative changes that involved cervical intervertebral levels C1–C2, spinal injury of traumatic origin, spinal tumors, or previous cervical fusion were excluded. Patients were then further classified into two groups: (1 level 1 or 2 disease (Group M and (2 level 3 or 4 disease (Group S. Measures of mortality, complications after surgery as well as immediate reoperation for any reason were evaluated. Operation time, length of hospital stay, and hospitalization cost were defined as resource utilization. Ninety seven patients met the inclusion criteria and were further reviewed to characterize the sample better. There were no hematomas, airway complications or deaths, except in one patient who developed postoperative hemorrhage that required immediate surgical intervention, and resolved without any neurological deficit or casualty. Resource utilization indicated that the average operation time for Group S was significantly higher than for Group M (4.31±1.25 vs. 2.88±0.90 hours, p<0.0001. There were no significant differences in length of hospital stay and hospitalization cost between the two groups (p=0.265 and p=0.649. Our results indicate that neurosurgical intervention is safe for patients with DSC. Postoperative complication rates associated with these procedures are low. When surgery is considered appropriate for patients with multilevel diseases, these data suggest that ACDF is a safe surgical option.

  13. Utilization of bio-resources by low energy electron beam

    Kume, Tamikazu

    2003-01-01

    Utilization of bio-resources by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan and sodium alginate were easily degraded by irradiation and induced various kinds of biological activities, i.g. anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. It was demonstrated that the liquid sample irradiation system using low energy EB was effective for the preparation of degraded polysaccharides. Methylcellulose (MC) can be crosslinked under certain radiation condition as same as carboxymethylcellulose (CMC) and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  14. Electric utility resource expansion planning using environmental externalities

    Mitchell, D.

    1992-01-01

    This paper describes the recent experience of San Diego Gas ampersand Electric Company using environmental externalities in the expansion planning of its electrical system. This is the first time that this method of planning has been used in the electric utility industry in California. The paper reviews the conceptual development of the monetary values for environmental externalities and shows how the application of these values modifies the resource selection process. This paper should be of interest to professionals involved in policy issues relating to the use of environmental externalities as a means to improve the environment. The experience gained through this analyses should also benefit electric utility personnel involved in planning, and regulators interested in planning

  15. Use of Hawaii Analog Sites for Lunar Science and In-Situ Resource Utilization

    Sanders, G. B.; Larson, W. E.; Picard, M.; Hamilton, J. C.

    2011-01-01

    In-Situ Resource Utilization (ISRU) and lunar science share similar objectives with respect to analyzing and characterizing the physical, mineral, and volatile materials and resources at sites of robotic and human exploration. To help mature and stress instruments, technologies, and hardware and to evaluate operations and procedures, space agencies have utilized demonstrations at analog sites on Earth before use in future missions. The US National Aeronautics and Space Administration (NASA), the Canadian Space Agency (CSA), and the German Space Agency (DLR) have utilized an analog site on the slope of Mauna Kea on the Big Island of Hawaii to test ISRU and lunar science hardware and operations in two previously held analog field tests. NASA and CSA are currently planning on a 3rd analog field test to be held in June, 2012 in Hawaii that will expand upon the successes from the previous two field tests.

  16. Global health resource utilization associated with pacemaker complications.

    Waweru, Catherine; Steenrod, Anna; Wolff, Claudia; Eggington, Simon; Wright, David Jay; Wyrwich, Kathleen W

    2017-07-01

    To estimate health resource utilization (HRU) associated with the management of pacemaker complications in various healthcare systems. Electrophysiologists (EPs) from four geographical regions (Western Europe, Australia, Japan, and North America) were invited to participate. Survey questions focused on HRU in the management of three chronic pacemaker complications (i.e. pacemaker infections requiring extraction, lead fractures/insulation breaches requiring replacement, and upper extremity deep venous thrombosis [DVT]). Panelists completed a maximum of two web-based surveys (iterative rounds). Mean, median values, and interquartile ranges were calculated and used to establish consensus. Overall, 32 and 29 panelists participated in the first and second rounds of the Delphi panel, respectively. Consensus was reached on treatment and HRU associated with a typical pacemaker implantation and complications. HRU was similar across regions, except for Japan, where panelists reported the longest duration of hospital stay in all scenarios. Infections were the most resource-intensive complications and were characterized by intravenous antibiotics days of 9.6?13.5 days and 21.3?29.2 days for pocket and lead infections respectively; laboratory and diagnostic tests, and system extraction and replacement procedures. DVT, on the other hand, was the least resource intensive complication. The results of the panel represent the views of the respondents who participated and may not be generalizable outside of this panel. The surveys were limited in scope and, therefore, did not include questions on management of acute complications (e.g. hematoma, pneumothorax). The Delphi technique provided a reliable and efficient approach to estimating resource utilization associated with chronic pacemaker complications. Estimates from the Delphi panel can be used to generate costs of pacemaker complications in various regions.

  17. NEO Targets for Biological In Situ Resource Utilization

    Grace, J. M.; Ernst, S. M.; Navarrete, J. U.; Gentry, D.

    2014-12-01

    We are investigating a mission architecture concept for low-cost pre-processing of materials on long synodic period asteroids using bioengineered microbes delivered by small spacecraft. Space exploration opportunities, particularly those requiring a human presence, are sharply constrained by the high cost of launching resources such as fuel, construction materials, oxygen, water, and foodstuffs. Near-Earth asteroids (NEAs) have been proposed for supporting a human space presence. However, the combination of high initial investment requirements, delayed potential return, and uncertainty in resource payoff currently prevents their effective utilization.Biomining is the process in which microorganisms perform useful material reduction, sequestration or separation. It is commonly used in terrestrial copper extraction. Compared to physical and chemical methods of extraction it is slow, but very low cost, thus rendering economical even very poor ores. These advantages are potentially extensible to asteroid in situ resource utilization (ISRU).One of the first limiting factors for the use of biology in these environments is temperature. A survey of NEA data was conducted to identify those NEAs whose projected interior temperatures remained within both potential (-5 - 100 ºC) and preferred (15 - 45 ºC) ranges for the minimum projected time per synodic period without exceeding 100 ºC at any point. Approximately 2800 of the 11000 NEAs (25%) are predicted to remain within the potential range for at least 90 days, and 120 (1%) in the preferred range.A second major factor is water availability and stability. We have evaluated a design for a small-spacecraft-based injector which forces low-temperature fluid into the NEA interior, creating potentially habitable microniches. The fluid contains microbes genetically engineered to accelerate the degradation rates of a desired fraction of the native resources, allowing for more efficient material extraction upon a subsequent

  18. Wellhead to wire utilization of remote gas resources

    Harris, R.A.; Hines, T.L.

    1998-01-01

    Utilization of remote gas resources in developing countries continues to offer challenges and opportunities to producers and contractors. The Aguaytia Gas and Power Project is an example where perseverance and creativity resulted in successful utilization of natural gas resources in the Ucayali Region of Central Peru, a country which previously had no natural gas infrastructure. The resource for the project was first discovered by Mobil in 1961, and remained undeveloped for over thirty years due to lack of infrastructure and markets. Maple Gas won a competitively bid contract to develop the Aguaytia gas reserves in March of 1993. The challenges facing Maple Gas were to develop downstream markets for the gas, execute contracts with Perupetro S.A. and other Peruvian government entities, raise financing for the project, and solicit and execute engineering procurement and construction (EPC) contracts for the execution of the project. The key to development of the downstream markets was the decision to generate electric power and transmit the power over the Andes to the main electrical grid along the coast of Peru. Supplemental revenue could be generated by gas sales to a small regional power plant and extraction of LPG and natural gasoline for consumption in the Peruvian market. Three separate lump sum contracts were awarded to Asea Brown Boveri (ABB) companies for the gas project, power project and transmission project. Each project presented its unique challenges, but the commonalities were the accelerated schedule, high rainfall in a prolonged wet season and severe logistics due to lack of infrastructure in the remote region. This presentation focuses on how the gas plant contractor, ABB Randall, working in harmony with the developer, Maple Gas, tackled the challenges to monetize a remote gas resource

  19. Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration

    Sanders, Gerald B.

    2013-01-01

    A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU

  20. World Energy Resources and New Technologies

    Szmyd, Janusz S.

    2016-01-01

    The development of civilisation is linked inextricably with growing demand for electricity. Thus, the still-rapid increase in the level of utilisation of natural resources, including fossil fuels, leaves it more and more urgent that conventional energy technologies and the potential of the renewable energy sources be made subject to re-evaluation. It is estimated that last 200 years have seen use made of more than 50% of the available natural resources. Equally, if economic forecasts prove accurate, for at least several more decades, oil, natural gas and coal will go on being the basic primary energy sources. The alternative solution represented by nuclear energy remains a cause of considerable public concern, while the potential for use to be made of renewable energy sources is seen to be very much dependent on local environmental conditions. For this reason, it is necessary to emphasise the impact of research that focuses on the further sharpening-up of energy efficiency, as well as actions aimed at increasing society's awareness of the relevant issues. The history of recent centuries has shown that rapid economic and social transformation followed on from the industrial and technological revolutions, which is to say revolutions made possible by the development of power-supply technologies. While the 19th century was "the age of steam" or of coal, and the 20th century the era of oil and gas, the question now concerns the name that will at some point come to be associated with the 21st century. In this paper, the subjects of discussion are primary energy consumption and energy resources, though three international projects on the global scale are also presented, i.e. ITER, Hydrates and DESERTEC. These projects demonstrate new scientific and technical possibilities, though it is unlikely that commercialisation would prove feasible before 2050. Research should thus be focused on raising energy efficiency. The development of high-efficiency technologies that

  1. Resource Allocation of Agricultural Science and Technology R&D

    Li, Xian-song; Bai, Li; Zhang, Li-ming

    2011-01-01

    The status quo of resource allocation of agricultural science and technology R&D (research and development)both at home and abroad,including the amount and function of agricultural science and technology research funds, human resources in the resources of agricultural science and technology R&D , the efficiency of resource allocation of agricultural science and technology R&D, the management system of agricultural scientific innovation and the operation status of scientific funds, is analyz...

  2. Environmental impact of coal utilization (from raw material to waste resources): Proceedings

    Sahu, K.C.

    1991-10-01

    The proceedings contains 27 papers presented at the conference on environmental impact of coal utilization from raw material to waste resources which was held at the Indian Institute of Technology, Bombay, during 14-15 January 1991. The conference was held as a follow-up of the research project to study the impact of coal utilization. The project was undertaken jointly by the Indian Institute of Technology, Bombay and the University of Western Ontario, Canada. The project was funded by the International Development Research Centre, Ottawa (Canada). The principle themes of the conference were : occurrence of trace elements in coal, fate of trace elements during combustion of coal, characterisation of fly ash and its properties and utilization, and environmental impact of ash disposal. (M.G.B.)

  3. FY 2001 report on the results of the development of the hydrothermal utilization power plant, etc. Development of collecting technology for deep geothermal resources (Development of drilling technology for deep geothermal resources); 1992 - 2001 nessui riyo hatsuden plant tou kaihatsu sokatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu - Shinbu chinetsu shigen kussaku gijutsu no kaihatsu (2001 nendo seika hokokusho bessatsu shiryo)

    NONE

    2002-03-01

    For the purpose of developing deep geothermal resources, development of 'drilling technology of deep geothermal resources' was made from FY 1991 to FY 2001, and the results were summarized. As to the development of bits, the bit that can be used for 30 hours or more at a temperature of 250 degrees C was developed, and the demonstrative test was made in FY 1997. Relating to the development of the high temperature use drilling mud, the mud that can be used at a temperature of 350 degrees C was developed, and the test using the actual well was conducted in FY 1997. Concerning the development of the high temperature use cement slurry, the cement slurry with specific gravity of 1.35 or below that can be used under the environment of a temperature of 350 degrees C was developed, and the hanging test of the specimen was made in the actual well in FY 1998. About the development of the high temperature use downhole motor, a prototype of 1/12 scale was fabricated in FY 1998, and the performance test at high temperature was conducted. As to the development of the high temperature use high strength cement slurry, a cement slurry with specific gravity of 1.50 or below and compressive strength of 19.61 MPa that is used under the environment of a temperature of 300 degrees C was developed, and the test on the long-term compressive strength was made in FY 2001. (NEDO)

  4. Distributed Energy Resources Interconnection Systems: Technology Review and Research Needs

    Friedman, N. R.

    2002-09-01

    Interconnecting distributed energy resources (DER) to the electric utility grid (or Area Electric Power System, Area EPS) involves system engineering, safety, and reliability considerations. This report documents US DOE Distribution and Interconnection R&D (formerly Distributed Power Program) activities, furthering the development and safe and reliable integration of DER interconnected with our nation's electric power systems. The key to that is system integration and technology development of the interconnection devices that perform the functions necessary to maintain the safety, power quality, and reliability of the EPS when DER are connected to it.

  5. Technology assessment of solar energy utilization

    Jaeger, F.

    1985-11-01

    The general objectives and methods of Technology Assessment (TA) are outlined. Typical analysis steps of a TA for solar energy are reviewed: description of the technology and its further development; identification of impact areas; analysis of boundary conditions and definition of scenarios; market penetration of solar technologies; projection of consequences in areas of impact; and assessment of impacts and identification of options for action.

  6. Architecture academic by information technologies utilization ...

    This research aims at studying teaching modern architecture with information technology approach. Today, information technology is used to transmit knowledge in many universities of the world. Information technology tools are potentially capable of providing engineering students with a broad continuum of curriculum in ...

  7. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 1: Thematic papers

    1995-12-01

    The present publication consists of papers, each with a separate abstract, from fourteen countries giving broad perspectives on the development and utilisation of biomass energy resources. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues

  8. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 1: Thematic papers

    NONE

    1995-12-01

    The present publication consists of papers, each with a separate abstract, from fourteen countries giving broad perspectives on the development and utilisation of biomass energy resources. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues Refs, figs, tabs

  9. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 2: Country case studies

    1995-12-01

    The present publication presents the results of three UNIDO-sponsored case studies, each with a separate abstract, concerned with perspectives of development and utilisation of biomass energy resources in Brazil, Philippines and Romania. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues

  10. Resource utilization for observation-status stays at children's hospitals.

    Fieldston, Evan S; Shah, Samir S; Hall, Matthew; Hain, Paul D; Alpern, Elizabeth R; Del Beccaro, Mark A; Harding, John; Macy, Michelle L

    2013-06-01

    Observation status, in contrast to inpatient status, is a billing designation for hospital payment. Observation-status stays are presumed to be shorter and less resource-intensive, but utilization for pediatric observation-status stays has not been studied. The goal of this study was to describe resource utilization characteristics for patients in observation and inpatient status in a national cohort of hospitalized children in the Pediatric Health Information System. This study was a retrospective cohort from 2010 of observation- and inpatient-status stays of ≤2 days; all children were admitted from the emergency department. Costs were analyzed and described. Comparison between costs adjusting for age, severity, and length of stay were conducted by using random-effect mixed models to account for clustering of patients within hospitals. Observation status was assigned to 67 230 (33.3%) discharges, but its use varied across hospitals (2%-45%). Observation-status stays had total median costs of $2559, including room costs and $678 excluding room costs. Twenty-five diagnoses accounted for 74% of stays in observation status, 4 of which were used for detailed analyses: asthma (n = 6352), viral gastroenteritis (n = 4043), bronchiolitis (n = 3537), and seizure (n = 3289). On average, after risk adjustment, observation-status stays cost $260 less than inpatient-status stays for these select 4 diagnoses. Large overlaps in costs were demonstrated for both types of stay. Variability in use of observation status with large overlap in costs and potential lower reimbursement compared with inpatient status calls into question the utility of segmenting patients according to billing status and highlights a financial risk for institutions with a high volume of pediatric patients in observation status.

  11. A study of computer graphics technology in application of communication resource management

    Li, Jing; Zhou, Liang; Yang, Fei

    2017-08-01

    With the development of computer technology, computer graphics technology has been widely used. Especially, the success of object-oriented technology and multimedia technology promotes the development of graphics technology in the computer software system. Therefore, the computer graphics theory and application technology have become an important topic in the field of computer, while the computer graphics technology becomes more and more extensive in various fields of application. In recent years, with the development of social economy, especially the rapid development of information technology, the traditional way of communication resource management cannot effectively meet the needs of resource management. In this case, the current communication resource management is still using the original management tools and management methods, resource management equipment management and maintenance, which brought a lot of problems. It is very difficult for non-professionals to understand the equipment and the situation in communication resource management. Resource utilization is relatively low, and managers cannot quickly and accurately understand the resource conditions. Aimed at the above problems, this paper proposes to introduce computer graphics technology into the communication resource management. The introduction of computer graphics not only makes communication resource management more vivid, but also reduces the cost of resource management and improves work efficiency.

  12. Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars

    Moses, Robert W.; Bushnell, Dennis M.

    2016-01-01

    The currently known resources on Mars are massive, including extensive quantities of water and carbon dioxide and therefore carbon, hydrogen and oxygen for life support, fuels and plastics and much else. The regolith is replete with all manner of minerals. In Situ Resource Utilization (ISRU) applicable frontier technologies include robotics, machine intelligence, nanotechnology, synthetic biology, 3-D printing/additive manufacturing and autonomy. These technologies combined with the vast natural resources should enable serious, pre- and post-human arrival ISRU to greatly increase reliability and safety and reduce cost for human colonization of Mars. Various system-level transportation concepts employing Mars produced fuel would enable Mars resources to evolve into a primary center of trade for the inner solar system for eventually nearly everything required for space faring and colonization. Mars resources and their exploitation via extensive ISRU are the key to a viable, safe and affordable, human presence beyond Earth. The purpose of this paper is four-fold: 1) to highlight the latest discoveries of water, minerals, and other materials on Mars that reshape our thinking about the value and capabilities of Mars ISRU; 2) to summarize the previous literature on Mars ISRU processes, equipment, and approaches; 3) to point to frontier ISRU technologies and approaches that can lead to safe and affordable human missions to Mars; and 4) to suggest an implementation strategy whereby the ISRU elements are phased into the mission campaign over time to enable a sustainable and increasing human presence on Mars.

  13. Utilization of Microcapsule Technology in Foods.

    Zhang, Chuanxiang; Li, Xiaolong; Liu, You-Nian; Zhang, Fengqin

    2015-12-01

    Microencapsulation technology has greatly accelerated the development of food industry and has a bright future for further applications. In this review paper, we introduce the current researches, latest advances and trends of core materials, wall materials, microencapsulation technology, as well as the encapsulation of food additives, bioactive substance, esculent oils, probiotics and other substances, and their application in food industry.

  14. Perception of medical students for utility of mobile technology use in medical education

    Sushama Subhash Thakre; Subhash Bapurao Thakre

    2015-01-01

    Introduction: Mobile technology is changing the way we live, and it is beginning to change the way we learn. Current literature reviews have shown that research on mobile technology in medical education primarily focused on efficacy, of mobile devices as an educational tool and resource, infrastructure to support m-learning, benefits, challenges, and appropriate use. Objectives: To assess the perception of medical student for the utility of mobile technology in their learning experience and t...

  15. Balancing Cost and Risk: The Treatment of Renewable Energy inWestern Utility Resource Plans

    Wiser, Ryan; Bolinger, Mark

    2005-09-01

    , which is based on a longer report from Berkeley Lab, examines how twelve western utilities - Avista, Idaho Power, NorthWestern Energy (NorthWestern or NWE), Portland General Electric (PGE), Puget Sound Energy (PSE), PacifiCorp, Public Service Company of Colorado (PSCo), Nevada Power, Sierra Pacific, Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E) - treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. In reviewing these plans, our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to suggest possible improvements to methods used to evaluate renewable energy as a resource option. This article begins with a discussion of the planned renewable energy additions called for by the twelve utilities in our sample, followed by an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  16. Development of hot water utilizing power plants in fiscal 1999. Development of technology to collect geothermal resources in great depths/Development of technology to excavate geothermal resources in great depths (Designing whole development); 1999 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen kussaku gijutsu no kaihatsu (zentai kaihatsu sekkei)

    NONE

    2000-03-01

    Technological development has been made on excavation of geothermal wells, which are dense, hard, and high in temperature and pressure, in developing geothermal resources in great depths. This paper summarizes the achievements in fiscal 1999. This fiscal year has performed the excavation test using an actual well to verify the reliability in practical use of the developed heat-resistant and durable bit. The test was executed by using a bit with a diameter of 8-1/2 inches in a ground bet having a maximum temperature of 300 degrees C in the Yamakawa geothermal field. As a result, good site evaluation was obtained that the wear and tear after lift-up showed no problems, and sufficient performance was verified in the drilling rate and durability. In addition, the low specific gravity cement for high temperature use that has been newly developed was given a cement mixing test to identify its workability at site and hardening properties, at a test well with a temperature of about 40 degrees C in the Okiri geothermal field. The actual well test was performed in a large-scale lost water occurred in a return well during an excavation by Nittestu-Kagoshima Geothermal Company. Effects were recognized in measures to prevent water loss. (NEDO)

  17. utilization of sweetpotato based confection technology

    oma

    by farmers in the production of sweet potato were organic and inorganic fertilizer while the technologies ..... fertilizer essentially due to scarcity and high cost, and the small percentage of farmers that .... (CIP), Lima, peru, Database (on-line).

  18. utilization of sweetpotato based confection technology

    oma

    Department of Home Economics/Hotel Management and Tourism ... This paper examines the role of logistics and information technology in tourists systems in .... Peisley T (2000) ―Cruising in Crisis‖ Travel and Tourism Analyst, 2, 1-39.

  19. A strategy for investment in space resource utilization

    Mendell, Wendell W.

    During the first quarter of the next Century, space transportation systems will be capable of routine flights of humans and cargo to the Moon. The general acceptance of permanent human presence in space, as exemplified by at least two manned stations in LEO at that time, will lead to one or more staffed outposts on the Moon. Whether such outposts evolve into sustained, growing settlements will depend, in part, on whether the economic context attracts substantial private investment. A planetary surface provides a material and gravitational environment distinct from that of an orbiting space station and thus provides a setting familiar to non-aerospace sectors of terrestrial industry. Examination of current trends in terms of historical processes which operate on new frontiers suggests that the limited markets and unfamiliar technologies associated with space commercialization today may change dramatically in 20 years when lunar resources are accessible. However, the uncertainty and vagueness of such projections discourages investment at a useful scale unless a strategy for technology development can be implemented which provides tangible and marketable benefits in the intermediate term. At the present time technologies can be identified (a) that will be required (and therefore valuable) at the time of lunar settlement and (b) whose development can be planned to yield marketable intermediate products on Earth. Formation of pre-competitive, collaborative research consortia in the industrial sector could reduce technical and economic risk in the early stages and could promote a favorable political environment for the future growth of space activities.

  20. Dynamic Evaluation of Water Quality Improvement Based on Effective Utilization of Stockbreeding Biomass Resource

    Jingjing Yan

    2014-11-01

    Full Text Available The stockbreeding industry is growing rapidly in rural regions of China, carrying a high risk to the water environment due to the emission of huge amounts of pollutants in terms of COD, T-N and T-P to rivers. On the other hand, as a typical biomass resource, stockbreeding waste can be used as a clean energy source by biomass utilization technologies. In this paper, we constructed a dynamic linear optimization model to simulate the synthetic water environment management policies which includes both the water environment system and social-economic situational changes over 10 years. Based on the simulation, the model can precisely estimate trends of water quality, production of stockbreeding biomass energy and economic development under certain restrictions of the water environment. We examined seven towns of Shunyi district of Beijing as the target area to analyse synthetic water environment management policies by computer simulation based on the effective utilization of stockbreeding biomass resources to improve water quality and realize sustainable development. The purpose of our research is to establish an effective utilization method of biomass resources incorporating water environment preservation, resource reutilization and economic development, and finally realize the sustainable development of the society.

  1. Availability and utilization of information communication technology ...

    The use of ICT in learning is critical in development of any society. Today's learning has emphasized its importance as basis for 21st century knowledge acquisition. This study investigated the availability and utilization of ICT facilities in Madonna University, Nigeria with particular reference to the Okija campus. It employed ...

  2. Resource potential of bamboo, challenges and future directions towards sustainable management and utilization in Ethiopia

    Getachew Desalegn

    2014-08-01

    Full Text Available Aim of study: Bamboo, the fastest growing and high yielding perennial plant of the world has more than 1500 species and 1500 versatile socio-economic uses and ecological services. Ethiopia has two indigenous bamboo species namely Yushania alpina and Oxytenantheria abyssinica, covering about one million ha with a wide distribution. The objective of this paper is to highlight the potential of bamboo resources, challenges including biodeterioration damage, opportunities and future research directions towards its sustainable management and rational utilization.Area of study: Bamboo resources of EthiopiaMaterial and Methods: Reconnaissance survey was done to some parts of the bamboo growing potential areas in Ethiopia besides the literature review. Main results: The bamboo resource, despite its socio-economic and environmental benefits, currently, in most areas has been under high pressure due to land use changes, bamboo mass- flowering, poor processing with low value addition, and damage by biodeteriorating agents (termites, beetles and fungi. The preservative tests on Ethiopian bamboos revealed low natural durability and highlighted the paramount importance of appropriate protection measures such as Tanalith and vehicles used motor oil to increase durability, service life and rational utilization of bamboo-based products and structures as potential alternative construction and furniture material.Research highlights: Therefore, integrated research and development interventions involving different propagation and managements techniques, harvesting season, processing, value addition including proper seasoning and preservation technologies and marketing are recommended to fill the information and technological gaps on sustainable management and rational utilization of this fast growing and multipurpose bamboo resources in Ethiopia.Key words: Bamboo; challenges; management; socio-economic and environmental significance; utilization.

  3. Concepts of Operations for Asteroid Rendezvous Missions Focused on Resources Utilization

    Mueller, Robert P.; Sibille, Laurent; Sanders, Gerald B.; Jones, Christopher A.

    2014-01-01

    Several asteroids are the targets of international robotic space missions currently manifested or in the planning stage. This global interest reflects a need to study these celestial bodies for the scientific information they provide about our solar system, and to better understand how to mitigate the collision threats some of them pose to Earth. Another important objective of these missions is providing assessments of the potential resources that asteroids could provide to future space architectures. In this paper, we examine a series of possible mission operations focused on advancing both our knowledge of the types of asteroids suited for different forms of resource extraction, and the capabilities required to extract those resources for mission enhancing and enabling uses such as radiation protection, propulsion, life support, shelter and manufacturing. An evolutionary development and demonstration approach is recommended within the framework of a larger campaign that prepares for the first landings of humans on Mars. As is the case for terrestrial mining, the development and demonstration approach progresses from resource prospecting (understanding the resource, and mapping the 'ore body'), mining/extraction feasibility and product assessment, pilot operations, to full in-situ resource utilization (ISRU). Opportunities to gather specific knowledge for ISRU via resource prospecting during science missions to asteroids are also examined to maximize the pace of development of needed ISRU capabilities and technologies for deep space missions.

  4. Federated and Cloud Enabled Resources for Data Management and Utilization

    Rankin, R.; Gordon, M.; Potter, R. G.; Satchwill, B.

    2011-12-01

    The emergence of cloud computing over the past three years has led to a paradigm shift in how data can be managed, processed and made accessible. Building on the federated data management system offered through the Canadian Space Science Data Portal (www.cssdp.ca), we demonstrate how heterogeneous and geographically distributed data sets and modeling tools have been integrated to form a virtual data center and computational modeling platform that has services for data processing and visualization embedded within it. We also discuss positive and negative experiences in utilizing Eucalyptus and OpenStack cloud applications, and job scheduling facilitated by Condor and Star Cluster. We summarize our findings by demonstrating use of these technologies in the Cloud Enabled Space Weather Data Assimilation and Modeling Platform CESWP (www.ceswp.ca), which is funded through Canarie's (canarie.ca) Network Enabled Platforms program in Canada.

  5. Factors shaping effective utilization of health information technology in urban safety-net clinics.

    George, Sheba; Garth, Belinda; Fish, Allison; Baker, Richard

    2013-09-01

    Urban safety-net clinics are considered prime targets for the adoption of health information technology innovations; however, little is known about their utilization in such safety-net settings. Current scholarship provides limited guidance on the implementation of health information technology into safety-net settings as it typically assumes that adopting institutions have sufficient basic resources. This study addresses this gap by exploring the unique challenges urban resource-poor safety-net clinics must consider when adopting and utilizing health information technology. In-depth interviews (N = 15) were used with key stakeholders (clinic chief executive officers, medical directors, nursing directors, chief financial officers, and information technology directors) from staff at four clinics to explore (a) nonhealth information technology-related clinic needs, (b) how health information technology may provide solutions, and (c) perceptions of and experiences with health information technology. Participants identified several challenges, some of which appear amenable to health information technology solutions. Also identified were requirements for effective utilization of health information technology including physical infrastructural improvements, funding for equipment/training, creation of user groups to share health information technology knowledge/experiences, and specially tailored electronic billing guidelines. We found that despite the potential benefit that can be derived from health information technologies, the unplanned and uninformed introduction of these tools into these settings might actually create more problems than are solved. From these data, we were able to identify a set of factors that should be considered when integrating health information technology into the existing workflows of low-resourced urban safety-net clinics in order to maximize their utilization and enhance the quality of health care in such settings.

  6. Scoping study of integrated resource planning needs in the public utility sector

    Garrick, C J; Garrick, J M; Rue, D R [NEOS Corp., Lakewood, CO (United States)

    1993-06-01

    Integrated resource planning (IRP) is an approach to utility resource planning that integrates the evaluation of supply- and demand-site options for providing energy services at the least cost. Many utilities practice IRP; however, most studies about IRP focus on investor-owned utilities (IOUs). This scoping study investigates the IRP activities and needs of public utilities (not-for-profit utilities, including federal, state, municipal, and cooperative utilities). This study (1) profiles IRP-related characteristics of the public utility sector, (2) articulates the needs of public utilities in understanding and implementing IRP, and (3) identifies strategies to advance IRP principles in public utility planning.

  7. Performance evaluation soil samples utilizing encapsulation technology

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  8. Distributed utility technology cost, performance, and environmental characteristics

    Wan, Y; Adelman, S

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

  9. Advanced fuel system technology for utilizing broadened property aircraft fuels

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  10. Human resource development for nuclear generation - from the perspective of a utility company

    Kahar, Wan Shakirah Wan Abdul; Mostafa, Nor Azlan; Salim, Mohd Faiz

    2017-01-01

    Malaysia is currently in the planning phase of its nuclear power program, with the first unit targeted to be operational in 2030. Training of nuclear power plant (NPP) staffs are usually long and rigorous due to the complexity and safety aspects of nuclear power. As the sole electricity utility in the country, it is therefore essential that Tenaga Nasional Berhad (TNB) prepares early in developing its human resource and nuclear expertise as a potential NPP owner-operator. A utility also has to be prudent in managing its work force efficiently and effectively, while ensuring that adequate preparations are being made to acquire the necessary nuclear knowledge with sufficient training lead time. There are several approaches to training that can be taken by a utility company with no experience in nuclear power. These include conducting feasibility studies and benchmarking exercises, preparing long term human resource development, increasing the exposure on nuclear power technology to both the top management and general staff, and employing the assistance of relevant agencies locally and abroad. This paper discusses the activities done and steps taken by TNB in its human resource development for Malaysia's nuclear power program.

  11. NASA technology utilization program: The small business market

    Vannoy, J. K.; Garcia-Otero, F.; Johnson, F. D.; Staskin, E.

    1980-01-01

    Technology transfer programs were studied to determine how they might be more useful to the small business community. The status, needs, and technology use patterns of small firms are reported. Small business problems and failures are considered. Innovation, capitalization, R and D, and market share problems are discussed. Pocket, captive, and new markets are summarized. Small manufacturers and technology acquisition are discussed, covering external and internal sources, and NASA technology. Small business and the technology utilization program are discussed, covering publications and industrial applications centers. Observations and recommendations include small business market development and contracting, and NASA management technology.

  12. Utilization of Spent Resources in Support of Eco-Economic Decoupling in Central Java

    Nuril Fikri Aulia

    2015-09-01

    Full Text Available Implementation of the development is often cause adverse environmental impacts. Adverse effects are environmental degradation and decreasing availability of resources. To overcome this, it is necessary that the development can still continue, the environment is not damaged, and the availability of resources is maintained. One effort is through eco - economic decoupling activities with the use of spent resources. The aim of study to determine the potential of spent resources in Central Java, knows the problems in the utilization of spent resources in Central Java, and to determine the impact of the utilization of spent resources in Central Java by a qualitative descriptive method. The results show that in the study have the potential of eco-economic decoupling indicated by the availability of spent resources and had done utilization of spent resources. However, this potential has not been optimally developed, because there are still some problems in its utilization. Problems in the use of spent resources are the lack of knowledge about eco-economic decoupling and spent resources among stakeholder, there is no specific policy on eco - economic decoupling, the lack of Local Government 's role in the utilization of spent resource, and the lack of synergy programs and activities in supporting the utilization of spent resources. Utilization of spent resources have positive impact to reduce pressure on the environment and natural resources, create a new job, and increase incomes for society.

  13. Plastic solid waste utilization technologies: A Review

    Awasthi, Arun Kumar; Shivashankar, Murugesh; Majumder, Suman

    2017-11-01

    Plastics are used in more number of applications in worldwide and it becomes essential part of our daily life. In Indian cities and villages people use the plastics in buying vegetable as a carry bag, drinking water bottle, use of plastic furniture in home, plastics objects uses in kitchen, plastic drums in packing and storage of the different chemicals for industrial use, use plastic utensils in home and many more uses. After usage of plastics it will become part of waste garbage and create pollution due to presence of toxic chemicals and it will be spread diseases and give birth to uncontrolled issues in social society. In current scenario consumption of plastic waste increasing day by day and it is very difficult to manage the plastic waste. There are limited methodologies available for reutilization of plastic waste again. Such examples are recycling, landfill, incineration, gasification and hydrogenation. In this paper we will review the existing methodologies of utilization of plastic waste in current scenario

  14. Pedagogical Utilization and Assessment of the Statistic Online Computational Resource in Introductory Probability and Statistics Courses.

    Dinov, Ivo D; Sanchez, Juana; Christou, Nicolas

    2008-01-01

    Technology-based instruction represents a new recent pedagogical paradigm that is rooted in the realization that new generations are much more comfortable with, and excited about, new technologies. The rapid technological advancement over the past decade has fueled an enormous demand for the integration of modern networking, informational and computational tools with classical pedagogical instruments. Consequently, teaching with technology typically involves utilizing a variety of IT and multimedia resources for online learning, course management, electronic course materials, and novel tools of communication, engagement, experimental, critical thinking and assessment.The NSF-funded Statistics Online Computational Resource (SOCR) provides a number of interactive tools for enhancing instruction in various undergraduate and graduate courses in probability and statistics. These resources include online instructional materials, statistical calculators, interactive graphical user interfaces, computational and simulation applets, tools for data analysis and visualization. The tools provided as part of SOCR include conceptual simulations and statistical computing interfaces, which are designed to bridge between the introductory and the more advanced computational and applied probability and statistics courses. In this manuscript, we describe our designs for utilizing SOCR technology in instruction in a recent study. In addition, present the results of the effectiveness of using SOCR tools at two different course intensity levels on three outcome measures: exam scores, student satisfaction and choice of technology to complete assignments. Learning styles assessment was completed at baseline. We have used three very different designs for three different undergraduate classes. Each course included a treatment group, using the SOCR resources, and a control group, using classical instruction techniques. Our findings include marginal effects of the SOCR treatment per individual

  15. Modeling Resource Utilization of a Large Data Acquisition System

    AUTHOR|(SzGeCERN)756497; The ATLAS collaboration; Garcia Garcia, Pedro Javier; Vandelli, Wainer; Froening, Holger

    2017-01-01

    The ATLAS 'Phase-II' upgrade, scheduled to start in 2024, will significantly change the requirements under which the data-acquisition system operates. The input data rate, currently fixed around 150 GB/s, is anticipated to reach 5 TB/s. In order to deal with the challenging conditions, and exploit the capabilities of newer technologies, a number of architectural changes are under consideration. Of particular interest is a new component, known as the Storage Handler, which will provide a large buffer area decoupling real-time data taking from event filtering. Dynamic operational models of the upgraded system can be used to identify the required resources and to select optimal techniques. In order to achieve a robust and dependable model, the current data-acquisition architecture has been used as a test case. This makes it possible to verify and calibrate the model against real operation data. Such a model can then be evolved toward the future ATLAS Phase-II architecture. In this paper we introduce the current ...

  16. Modelling Resource Utilization of a Large Data Acquisition System

    Santos, Alejandro; The ATLAS collaboration

    2017-01-01

    The ATLAS 'Phase-II' upgrade, scheduled to start in 2024, will significantly change the requirements under which the data-acquisition system operates. The input data rate, currently fixed around 150 GB/s, is anticipated to reach 5 TB/s. In order to deal with the challenging conditions, and exploit the capabilities of newer technologies, a number of architectural changes are under consideration. Of particular interest is a new component, known as the Storage Handler, which will provide a large buffer area decoupling real-time data taking from event filtering. Dynamic operational models of the upgraded system can be used to identify the required resources and to select optimal techniques. In order to achieve a robust and dependable model, the current data-acquisition architecture has been used as a test case. This makes it possible to verify and calibrate the model against real operation data. Such a model can then be evolved toward the future ATLAS Phase-II architecture. In this paper we introduce the current ...

  17. Bibliography: injection technology applicable to geothermal utilization

    Darnell, A.J.; Eichelberger, R.L.

    1982-03-19

    This bibliography cites 500 documents that may be helpful in planning, analysis, research, and development of the various aspects of injection technology in geothermal applications. These documents include results from government research; development, demonstration, and commercialization programs; selected references from the literature; symposia; references from various technical societies and installations; reference books; reviews; and other selected material. The cited references are from (1) subject searching, using indexing, storage, and retrieval information data base of the Department of Energy's Technical Information Center's on-line retrieval system, RECON; (2) searches of references from the RECON data base, of work by authors known to be active in the field of geothermal energy research and development; (3) subject and author searches by the computerized data storage and retrieval system of Chemical Abstracts, American Chemical Society, Washington, DC; and (4) selected references from texts and reviews on this subject. Each citation includes title, author, author affiliation, date of publication, and source. The citations are listed in chronological order (most recent first) in each of the subject categories for which this search was made. The RECON accession number is also given.

  18. In-Situ Resource Utilization for further exploration of the Moon

    Thakore, B.; Pohajsky, S.

    In-Situ Resource Utilization ISRU is the concept of living off the land Initially proposed in the mid 20th Century many experts have suggested that ISRU is an important enabler for the expansion of humanity beyond the confines of limited resources on Earth However even today ISRU remains a relatively underdeveloped and under--demonstrated in current exploration roadmaps This paper summarizes the proposals of an interdisciplinary study carried out by 27 students from 17 different countries at the International Space University The study reviewed the past and present ISRU techniques and related robotic technologies in the context of complementing the Moon and Mars exploration scenarios of the major space faring countries The economic viability and benefits of ISRU are examined together with the regulatory ethical and cultural aspects of space resource utilisation The renewed opportunities for moon exploration have rekindled interest in ISRU as an enabling technology It is important to assess both the tangible and intangible benefits of this technology in order to evaluate the technical and economic feasibility of adopting it in support of human exploration of the Moon Mars and beyond

  19. Technology transfer by multinational firms: the resource cost of transferring technological know-how

    Teece, D J

    1977-06-01

    The essence of modern economic growth is the increase in the stock of useful knowledge and the extension of its application. Since the origins of technical and social innovations have never been confined to the borders of any one nation, the economic growth of all countries depends to some degree on the successful application of a transnational stock of knowledge. Nevertheless, economists have been remarkably slow in addressing themselves to the economics of international technology transfer. This paper addresses itself to this need. The starting-point is Arrow's suggestion (Am. Econ. Review, 52: 29-35 (May 1969)) that the cost of communication, or information transfer, is a fundamental factor influencing the world-wide diffusion of technology. The purpose of the paper is to examine the level and determinants of the costs involved in transferring technology. The value of the resources that have to be utilized to accomplish the successful transfer of a given manufacturing technology is used as a measure of the cost of transfer. The resource cost concept is therefore designed to reflect the ease or difficulty of transferring technological know-how from manufacturing plants in one country to manufacturing plants in another. 32 references.

  20. Energy - Resources, technologies and power issues

    Mazzucchi, Nicolas

    2017-01-01

    For a better understanding of complex relationships between States, enterprises and international bodies, the author proposes a detailed analysis of power issues which structure the energy sector at the world level. He first considers the energy policy of a country as a result of an arbitration between three main concerns (access to energy, energy security, and struggle against climate change) which are differently addressed depending on consumption and production profiles of the country, and on its geographic and political characteristics. The author then proposes a synthetic overview of this landscape by analysing the history of exploitation of different energy sources (oil, coal, gas, uranium) and by proposing a regional analysis of resources. In the next part, he addresses various aspects of energy transports (bottlenecks of sea transport, trans-national grids, geopolitical restructuring of pipelines in front of the development of new LNG terminals). Then, for different regions, he describes the various modes of energy consumption, and challenges related to the transformation of this consumption due to the emergence of renewable energies. He analyses and discusses international mechanisms which underlie energy markets, and power issues which govern them. He shows that nuclear and renewable energies in fact strengthen the dependence on strategic materials and on technological companies. A chapter proposes an analysis of relationships between three prevailing actors in the elaboration of energy policies (enterprises, State and civil society) with their reciprocal influences, moments of collaboration, and information exchange or withholding. The last chapter addresses the study of power rivalries in the elaboration of policies for the struggle against climate change, and proposes a critical review of international organisations which square them

  1. improvisation and utilization of resources in the teaching

    resources are inevitable in enhancing the teaching and learning of science and mathematics generally ... poor performance and low achievement in science and mathematics. Therefore these ..... Learning Resources for Primary science.

  2. Hospital admission planning to optimize major resources utilization under uncertainty

    Dellaert, N.P.; Jeunet, J.

    2010-01-01

    Admission policies for elective inpatient services mainly result in the management of a single resource: the operating theatre as it is commonly considered as the most critical and expensive resource in a hospital. However, other bottleneck resources may lead to surgery cancellations, such as bed

  3. Impact on healthcare resource utilization of multiple sclerosis in Spain.

    Sicras-Mainar, Antoni; Ruíz-Beato, Elena; Navarro-Artieda, Ruth; Maurino, Jorge

    2017-12-29

    Multiple sclerosis (MS) is a chronic disease with a high socioeconomic impact. The aim of this study was to assess healthcare resources utilization and costs in a sample of patients with MS. A retrospective, cohort study was conducted using electronic medical records from 19 primary care centres in Asturias and Catalonia, Spain. Adult patients diagnosed with MS were distributed into two groups according to the Expanded Disability Status Scale (EDSS) score: 0-3.5 (no-moderate disability) and 4-9.5 (severe disability). Healthcare (direct cost) and non-healthcare costs (work productivity losses) were analysed. An analysis of covariance (ANCOVA) was used for correction, p < 0.05. A multiple regression model was performed to obtain the variables associated with costs. A total of 222 patients were analyzed; mean (SD) age: 45.5 (12.5) years, 64.4% female, and 62.2% presented a diagnosis of relapsing-remitting MS. Median EDSS score was 2.5, with 68.5% of the patients with no to moderate disability. The mean annual cost per MS patient was €25,103. For no-moderate and severe disability, the ANCOVA-adjusted mean annual cost was €23,157 and €29,242, respectively (p = 0.013). Direct costs and MS disease-modifying therapy accounted for 39.4% and 31.7% of the total costs, respectively. The total costs were associated with number of relapses (β = 0.135, p = 0.001), time since diagnosis (β = 0.281, p = 0.023), and age (β = 0.198, p = 0.037). Multiple sclerosis imposes a substantial economic burden on the Spanish National Health System, patients and society as a whole. Costs significantly correlated with disease progression.

  4. FY 1998 report on the results of the development of the utilization technology of biological resources such as bioconsortia. Development of the consortium based analysis technology; 1998 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Fukugo seibutsukei kaiseki gijutsu no kaihatsu

    NONE

    1999-03-01

    For the purpose of establishing the analysis technology and industrial utilization technology required for the establishment of the utilization technology of consortia's high functions which are already used in the fermentation technology field over the limit of the conventional bio-technology using functions of single biological species, study was made to look for the consortium based analysis technology by which the consortium base can be analyzed as it is using the molecular biological method. Studies were made in the following four fields: 1) new identification technology of eucaryote using II DNA topoisomerase genes (PCR amplification method of II DNA topoisomerase genes); 2) method to detect new recognition peptide activated microorganism (adjustment of cortical antigen); 3) technology to elucidate detection/response mechanism of the specific environment and adaptation/resistance mechanism of the specific environment; 4) incubation method inside 3D matrices. In 3), studies were made of the analysis of inhibition mechanism of korormicin and separation of solvent-resistant oil degradable bacteria. In 4), for the settlement and dynamic analysis of microorganism consortium by studying incubation conditions, conducted was the molecular system analysis of bacteria and eumycetes inhabiting in sponge. (NEDO)

  5. Wind as a utility-grade supply resource: A planning framework for the Pacific Northwest

    Johnson, M.S.; Litchfield, J.

    1993-12-01

    Many areas throughout the United States possess favorable wind resources that, as yet, remain undeveloped. This paper provides valuable information on the type of information developers can provide, utility interpretation of the information in regard to electric energy and capacity attributes, and wind resource characteristics of interest to utilities. The paper also reviews key utility planning contexts within which prospective wind resources may be evaluated

  6. Progress report Waste Resources Utilization Program period ending March 31, 1976

    1976-06-01

    This report describes the work on the Waste Resources Utilization Program for the quarter ending March 31, 1976. The purpose of this program is to develop technologies to utilize a 137 Cs γ source to modify sewage sludge for safe application as a fertilizer or an animal feed supplement. Results are reported from studies in microbiology, virology, and physical-chemical studies. Determinations were made of inactivation rates for Salmonella species, coliforms, and fecal strep in sewage sludge when radiation and thermoradiation were applied while bubbling oxygen through the sludge. Virology studies were continued investigating virucidal characteristics of anaerobically digested sludge. Another area of study was the dewatering of sewage sludge to reduce the drying time of the sewage sludge in the drying beds. A centrifuge was also installed to dewater treated sludge to approximately 30 percent solids

  7. Resource sharing in libraries concepts, products, technologies, and trends

    Breeding, Marshall

    2014-01-01

    Supplementing your local collection through resource sharing is a smart way to ensure your library has the resources to satisfy the needs of your users. Marshall Breeding's new Library Technology Report explores technologies and strategies for sharing resources, helping you streamline workflows and improve resource-sharing services by covering key strategies like interlibrary loan, consortial borrowing, document delivery, and shared collections. You'll also learn about such trends and services as:OCLC WorldCat Resource Sharing, and other systems that facilitate cooperative, reciprocal lendingS

  8. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  9. Hospital admission planning to optimize major resources utilization under uncertainty

    Dellaert, N.P.; Jeunet, J.

    2010-01-01

    Admission policies for elective inpatient services mainly result in the management of a single resource: the operating theatre as it is commonly considered as the most critical and expensive resource in a hospital. However, other bottleneck resources may lead to surgery cancellations, such as bed capacity and nursing staff in Intensive Care (IC) units and bed occupancy in wards or medium care (MC) services. Our incentive is therefore to determine a master schedule of a given number of patient...

  10. A Technical Mode for Sharing and Utilizing Open Educational Resources in Chinese Universities

    Juan Yang

    2011-09-01

    Full Text Available Open educational resources just supply potentials to help equalize the access to worldwide knowledge and education, but themselves alone do not cause effective learning or education. How to make effective use of the resources is still a big challenge. In this study, a technical mode is proposed to collect the open educational resources from different sources on the Internet into a campus-network-based resource management system. The system facilitates free and easy access to the resources for instructors and students in universities and integrates the resources into learning and teaching. The technical issues regarding the design the resource management system are examined, including the structure and functions of the system, metadata standard compatibility and scalability, metadata file format, and resource utilization assessment. Furthermore, the resource collecting, storage and utilization modes are also discussed so as to lay a technical basis for extensive and efficient sharing and utilization of the OER in Chinese universities.

  11. Success probability orientated optimization model for resource allocation of the technological innovation multi-project system

    Weixu Dai; Weiwei Wu; Bo Yu; Yunhao Zhu

    2016-01-01

    A success probability orientated optimization model for resource al ocation of the technological innovation multi-project system is studied. Based on the definition of the technological in-novation multi-project system, the leveling optimization of cost and success probability is set as the objective of resource al ocation. The cost function and the probability function of the optimization model are constructed. Then the objective function of the model is constructed and the solving process is explained. The model is applied to the resource al ocation of an enterprise’s technological innovation multi-project system. The results show that the pro-posed model is more effective in rational resource al ocation, and is more applicable in maximizing the utility of the technological innovation multi-project system.

  12. GIS Technology: Resource and Habitability Assessment Tool

    National Aeronautics and Space Administration — We are applying Geographic Information Systems (GIS) to new orbital data sets for lunar resource assessment and the identification of past habitable environments on...

  13. NASA technology utilization applications. [transfer of medical sciences

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  14. Efficient Resource Utilization in Shared-Everything Environments

    S. Manegold (Stefan); J.K. Obermaier

    1998-01-01

    textabstractEfficient resource usage is a key to achieve better performance in parallel database systems. Up to now, most research has focussed on balancing the load on several resources of the same type, i.e. balancing either CPU load or I/O load. In this paper, we present floating probe, a

  15. Efficient resource utilization in shared-everything environments

    S. Manegold (Stefan); J.K. Obermaier

    1997-01-01

    textabstractEfficient resource usage is a key to achieve better performance in parallel database systems. Up to now, most research has focussed on balancing the load on several resources of the same type, i.e. balancing either CPU load or I/O load. In this paper, we present emph{floating probe, a

  16. Accessing And Utilizing Hinagoa Resources On The Internet By The ...

    This paper presents simple descriptive steps required in accessing full -text articles from the HINAGOA resources on the Internet. The primary aim is to enable NIFOR scientists search and obtain desired information from the HINAGOA resources much more precis ely and efficiently. The three portals that make up HINAGOA, ...

  17. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 2: Country case studies

    NONE

    1995-12-01

    The present publication presents the results of three UNIDO-sponsored case studies, each with a separate abstract, concerned with perspectives of development and utilisation of biomass energy resources in Brazil, Philippines and Romania. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues Refs, figs, tabs

  18. A widely adaptable habitat construction system utilizing space resources

    Wykes, Harry B.

    1993-01-01

    This study suggests that the cost of providing accommodations for various manned activities in space may be reduced by the extensive use of resources that are commonly found throughout the solar system. Several concepts are proposed for converting these resources into simple products with many uses. Concrete is already being considered as a possible moonbase material. Manufacturing equipment should be as small and simple as possible, which leads to the idea of molding it into miniature modules that can be produced and assembled in large numbers to create any conceivable shape. Automated equipment could build up complex structures by laying down layer after layer in a process resembling stereolithography. These tiny concrete blocks handle compression loads and provide a barrier to harmful radiation. They are joined by a web of tension members that could be made of wire or fiber-reinforced plastic. The finished structure becomes air-tight with the addition of a flexible liner. Wire can be made from the iron modules found in lunar soil. In addition to its structural role, a relatively simple apparatus can bend and weld it into countless products like chairs and shelving that would otherwise need to be supplied from Earth. Wire woven into a loose blanket could be an effective micrometeoroid shield, tiny wire compression beams could be assembled into larger beams which in turn form larger beams to create very large space-frame structures. A technology developed with lunar materials could be applied to the moons of Mars or the asteroids. To illustrate its usefulness several designs for free-flying habitats are presented. They begin with a minimal self-contained living unit called the Cubicle. It may be multiplied into clusters called Condos. These are shown in a rotating tether configuration that provides a substitute for gravity. The miniature block proposal is compared with an alternate design based on larger triangular components and a tetrahedral geometry. The

  19. The Utilization of Urine Processing for the Advancement of Life Support Technologies

    Grossi-Soyster, Elysse; Hogan, John; Flynn, Michael

    2014-01-01

    The success of long-duration missions will depend on resource recovery and the self-sustainability of life support technologies. Current technologies used on the International Space Station (ISS) utilize chemical and mechanical processes, such as filtration, to recover potable water from urine produced by crewmembers. Such technologies have significantly reduced the need for water resupply through closed-loop resource recovery and recycling. Harvesting the important components of urine requires selectivity, whether through the use of membranes or other physical barriers, or by chemical or biological processes. Given the chemical composition of urine, the downstream benefits of urine processing for resource recovery will be critical for many aspects of life support, such as food production and the synthesis of biofuels. This paper discusses the beneficial components of urine and their potential applications, and the challenges associated with using urine for nutrient recycling for space application.

  20. Design principles for global commons: Natural resources and emerging technologies

    Paul C. Stern

    2011-09-01

    Full Text Available Ostrom’s design principles for managing common pool resources were developed largely by examining local commons involving natural resources. This paper enumerates several key characteristics that distinguish such commons from more complex commons involving global resources and the risks of emerging technologies. It considers the degree to which the design principles transfer to those commons and concludes that although they have considerable external validity, the list needs some modification and elaboration to apply to global resources and risk commons. A list of design principles is offered for global resource commons and the risks of emerging technologies. Applying Ostrom’s approach to global resources and emerging technologies can improve understanding and expand the solution set for these problems from international treaties, top-down national regulation, and interventions in market pricing systems to include non-governmental institutions that embody principles of self-governance.

  1. Technological Innovation and Strategic Human Resource Management: Developing a Theory.

    Gattiker, Urs E.

    Technological innovation affects the structure and content of jobs. Research indicates that there is a need for a theory of technological innovation and strategic human resource management considering several factors, such as an employee's beliefs about the effect of technological innovations on the quality of work life and work content.…

  2. Multiple Intimate Partner Violence Experiences: Knowledge, Access, Utilization and Barriers to Utilization of Resources by Women of the African Diaspora.

    Sabri, Bushra; Huerta, Julia; Alexander, Kamila A; St Vil, Noelle M; Campbell, Jacquelyn C; Callwood, Gloria B

    2015-11-01

    This study examined knowledge, access, utilization, and barriers to use of resources among Black women exposed to multiple types of intimate partner violence in Baltimore, Maryland and the U.S. Virgin Islands (USVI). We analyzed quantitative survey data collected by 163 women recruited from primary care, prenatal or family planning clinics in Baltimore and the USVI. In addition we analyzed qualitative data from in-depth interviews with 11 women. Quantitative data were analyzed using descriptive statistics and qualitative data were analyzed using thematic analysis. A substantial proportion of Black women with multiple types of violence experiences lacked knowledge of, did not have access to, and did not use resources. Barriers to resource use were identified at the individual, relationship, and community levels. There is need for programs to develop awareness, promote access and utilization of resources, and eliminate barriers to resource use among abused Black women.

  3. Renewable energy resources and technologies practice in Bangladesh

    Rofiqul Islam, M.; Rafiqul Alam Beg, M. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Rabiul Islam, M. [Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh)

    2008-02-15

    Bangladesh has very limited nonrenewable energy resources of its own. She is facing energy crisis and serious desertification problem in rural areas. These issues could be removed if renewable energy is used as a primary source of energy in rural areas. It is essential for scientists and researchers to find out the renewable energy resources and effective technologies. Bangladesh is endowed with vast renewable energy resources such as biomass and solar insolation. Besides, hydro and wind power can be considered as potential renewable energy resources. Harnessing these resources appears to be a promising solution for improving the quality of life of rural villagers. The government and many non-governmental organizations (NGOs) have tried to comprehend and have strived to address the problem of energy. This paper reviews the renewable energy resources and renewable energy technologies (RETs) practicing in Bangladesh in terms of its implementation, research and development activities. The development and trial of systems are mostly funded so far by donor agencies in collaboration with government and NGOs. Biomass energy sources are traditionally used for domestic cooking and in small rural industries. Approximately 60% of total energy demand of the country is supplied by indigenous biomass based fuels. Activities on the development and promotion of biomass technologies have been going on for one decade. Some national and international funds have been available for biogas technology, improved biomass cookers and production of biomass briquettes. At the time, around 25,000 biogas plants exist all over the country in rural areas and educational institutes, etc. More than 0.20 million improve stoves have been installed to save biomass fuel. Over 900 briquetting machines have been operating in the country on commercial basis. The annual solar radiation availability in Bangladesh is as high as 1700 kWh/m{sup 2}. Research and demonstration activities carried out for one

  4. Environment, energy, and world food resources. New challenges to research and technology policy

    Stever, H G [National Science Foundation, Washington, D.C. (USA)

    1976-07-01

    If one tried to decide upon one single urgent task, a challenge for the natural sciences and technology alike, one probably would have to name the following: promotion of sound and appropriate economic growth by means of more effective and efficient utilization of resources; i.e., energy and natural resources of all kinds (whether these may be renewable or not), the process to be carried out by means that show as much concern for the environment as possible.

  5. Gender Division and Utilization of Natural Resources: A Case Study ...

    It farther focuses on gendered decision-making and negotiation over the ... Roles of men and women in natural resources use, management and ... Special attention should be paid on treating male and female on rational and equal basis.

  6. Strategic rigidity and foresight for technology adoption among electric utilities

    Shah, Arsalan Nisar; Palacios, Miguel; Ruiz, Felipe

    2013-01-01

    The variation in the adoption of a technology as a major source of competitive advantage has been attributed to the wide-ranging strategic foresight and the integrative capability of a firm. These possible areas of competitive advantage can exist in the periphery of the firm's strategic vision and can get easily blurred as a result of rigidness and can permeate in the decision-making process of the firm. This article explores how electric utility firms with a renewable energy portfolio can become strategically rigid in terms of adoption of newer technologies. The reluctance or delay in the adoption of new technology can be characterized as strategic rigidness, brought upon as a result of a firm's core competence or core capability in the other, more conventional technology arrangement. This paper explores the implications of such rigidness on the performance of a firm and consequently on the energy eco-system. The paper substantiates the results by emphasizing the case of Iberdrola S.A., an incumbent firm as a wind energy developer and its adoption decision behavior. We illustrate that the very routines that create competitive advantage for firms in the electric utility industry are vulnerable as they might also develop as sources of competitive disadvantage, when firms confront environmental change and uncertainty. - Highlights: • Present a firm-level perspective on technology adoption behavior among electric utilities. • Firms with mature technology can become rigid towards newer technologies. • Case study analysis of a major electric utility firm. • Implications of ‘technology rigidness’ on the energy eco-system

  7. Managing Technology Resourcefully: Part I--Technology and Instruction

    Weeks, Richard

    2009-01-01

    The transformative powers of digital technology to improve student learning and the resulting effect of that technology to make the business of education more cost-effective are two of the more exciting dynamics in schooling today. Before the current school year ends, new products and upgrades will be available to replace much of the technology.…

  8. Using Forecasting to Predict Long-Term Resource Utilization for Web Services

    Yoas, Daniel W.

    2013-01-01

    Researchers have spent years understanding resource utilization to improve scheduling, load balancing, and system management through short-term prediction of resource utilization. Early research focused primarily on single operating systems; later, interest shifted to distributed systems and, finally, into web services. In each case researchers…

  9. On utilization bounds for a periodic resource under rate monotonic scheduling

    Renssen, van A.M.; Geuns, S.J.; Hausmans, J.P.H.M.; Poncin, W.; Bril, R.J.

    2009-01-01

    This paper revisits utilization bounds for a periodic resource under the rate monotonic (RM) scheduling algorithm. We show that the existing utilization bound, as presented in [8, 9], is optimistic. We subsequently show that by viewing the unavailability of the periodic resource as a deferrable

  10. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    2010-04-01

    ... conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources... INTERPRETATIONS Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and conservation of natural resources—natural gas. (a)(1) The national interests in the development and utilization...

  11. Resource Guide to Effective Utility Management and Lean

    Water and wastewater utilities are critical to the environmental, economic, and social well being of our nation’s communities, as they work to ensure that the public continues to enjoy the benefits of clean and safe water.

  12. Human Resources or Information Technology: What is More Important for Companies in the Digital Era?

    Turulja Lejla

    2016-03-01

    Full Text Available Background: Companies can improve their business performance, increase revenues and reduce costs by enhancing their information technology (IT capability. On the other side, there is an increasing importance of human resource management (HRM practices related to IT utilization, which are important for the business performance of a company in the rapidly changing knowledge-based economy.

  13. Needs, resources and climate change: Clean and efficient conversion technologies

    Ghoniem, Ahmed F.

    2011-02-01

    Energy "powers" our life, and energy consumption correlates strongly with our standards of living. The developed world has become accustomed to cheap and plentiful supplies. Recently, more of the developing world populations are striving for the same, and taking steps towards securing their future energy needs. Competition over limited supplies of conventional fossil fuel resources is intensifying, and more challenging environmental problems are springing up, especially related to carbon dioxide (CO 2) emissions. There is strong evidence that atmospheric CO 2 concentration is well correlated with the average global temperature. Moreover, model predictions indicate that the century-old observed trend of rising temperatures could accelerate as carbon dioxide concentration continues to rise. Given the potential danger of such a scenario, it is suggested that steps be taken to curb energy-related CO 2 emissions through a number of technological solutions, which are to be implemented in a timely fashion. These solutions include a substantial improvement in energy conversion and utilization efficiencies, carbon capture and sequestration, and expanding the use of nuclear energy and renewable sources. Some of these technologies already exist, but are not deployed at sufficiently large scale. Others are under development, and some are at or near the conceptual state. © 2010 Elsevier Ltd. All rights reserved.

  14. Improvement of effective utilization technology of wood-based resources and development of their new application fields. Mokushitsukei shigen no yuko riyo gijutsu no kojo to shin prime yoto kaihatsu

    Kamiya, F.; Haishi, T.; Sueyoshi, S.; Sotozaki, M.; Kato, A.; Hayashi, Y.; Ito, Y.; Hirabayashi, Y.; Togawa, E.; Obino, T. (Forestry and Forest Products Research Institute, Ibaraki (Japan))

    1991-09-01

    On advanced work and use techniques for wood, the aseismic property of plywood-nailed bearing walls was analyzed by seismic response experiments on an excitor resulting in the sufficient aseismic property beyond usual design specification, and the load deformation model was proposed based on experimental results. The evaluation method of heat insulation for wood houses was also developed, and the simple estimation method of room temperature change and the index for evaluating heat insulation for every structure were proposed. On advanced modification and use techniques for constituents of wooden resources, the chemical structure of saponin in woods was studied together with the relation between the chemical structure and biological activity of unknown saponins synthesized from triterpene. The pervaporation property of organic composite films composed of chitinous substances and cellulose derivatives from natural polymers was also studied to develop pervaporation films effective in separating water from ethyl alcohol. 11 figs., 3 tabs.

  15. Endogenous technological change with leisure-dependent utility.

    Hek, de P.A.

    1999-01-01

    This paper investigates the effect of introducing leisure-dependent utility into two models of endogenous technological change. Due to the flexibility in the labour supply the dynamics of the models change significantly. It is shown that if agents attach enough value to leisure in comparison to

  16. Utilization of sweetpotato based confection technology: A panacea ...

    Utilization of sweet potato-based confectionary was used as a step to reducing food crisis among women farmers in Imo state because of the health benefits, environmental friendliness and ability to make a home food secured with little investments. This is because such technology will help serve as an avenue to reduce ...

  17. Information and communication technology resources access and ...

    Journal Home > Vol 14, No 1 (2017) > ... The ability to undertake effective legal research is one of the skills required of a lawyer but ... The use of Information and communication technology by Nigerian lawyers deals with ... for Researchers · for Journals · for Authors · for Policy Makers · about Open Access · Journal Quality.

  18. In-Situ Resource Utilization: Water Extraction from Regolith

    National Aeronautics and Space Administration — Several technologies are being evaluated to extract water from a variety of water-bearing extraterrestrial soils, including near-surface granular and hard hydrated...

  19. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  20. Utilization of Web-Based Information Resources for Researchers in ...

    All the postgraduate students and lectures of three universities in the state who are registered library users formed the population of the study. Two research ... The implication of the findings implies that university libraries that provide such resources effectively will help to promote academic scholarship and research.

  1. Improvisation and utilization of resources in the teaching and ...

    This paper examined the importance of improvisation in the teaching and learning of science and mathematics in the senior secondary schools in Cross River State of N Nigeria. Human and material resources are inevitable in enhancing the teaching and learning of science and mathematics generally and practically at this ...

  2. June, 2015 Utilization of Reference Resources and Services

    Department of Library and Information Science, MAUTECH, Yola ... reference resources and services mostly for their course work and research works. ... business settings; reference services provided ..... Table 5: Strategies to be adopted to overcome the problems of provision and .... American Library Association, p.782.

  3. Geothermal Energy: Resource and Utilization. A Teaching Module.

    Nguyen, Van Thanh

    The search for new energy resources as alternatives to fossil fuels have generated new interest in the heat of the earth itself. New geothermal areas with a variety of characteristics are being explored, as are new ways of extracting work from naturally heated steam and hot water. Some of this effort is discussed in this three-part module. Five…

  4. Factors Influencing Post-Adoptive Enterprise Resource Planning (ERP) Utilization

    McGinnis, Thomas C.

    2011-01-01

    Organizations expend a great deal of time, effort and money on the implementation of enterprise resource planning (ERP) systems. They are considered the price of entry for large organizations to do business. Yet the success rate of ERP systems is poor. IS literature suggests that one possible reason for this is the underutilization of these…

  5. Achieving resource sustainability and enhancing economic development through biomass utilization

    Jerrold E. Winandy

    2005-01-01

    As the problems associated with sustaining and enhancing the world's forest and agricultural resources compete with the needs of a rapidly increasing and affluent population, the management of our land becomes a much more complex and important issue. One of the most important environmental features of wood and other woody-like fibers is that they are renewable and...

  6. Utilization of vast Nigeria's bamboo resources for economic growth ...

    Bamboo is recognized as an industrial raw material globally and has tremendous potentials for the economic development of the nations. This paper reviewed the potentials of the abundant Nigeria's bamboo resources used for house construction, household items, biofuel, charcoal, pulp and paper, irrigation and drainage ...

  7. West Texas geothermal resource assessment. Part II. Preliminary utilization assessment of the Trans-Pecos geothermal resource. Final report

    Gilliland, M.W.; Fenner, L.B.

    1980-01-01

    The utilization potential of geothermal resources in Trans-Pecos, Texas was assessed. The potential for both direct use and electric power generation were examined. As with the resource assessment work, the focus was on the Hueco Tanks area in northeastern El Paso County and the Presidio Bolson area in Presidio County. Suitable users of the Hueco Tanks and Presidio Bolson resource areas were identified by matching postulated temperature characteristics of the geothermal resource to the need characteristics of existing users in each resource area. The amount of geothermal energy required and the amount of fossil fuel that geothermal energy would replace were calculated for each of the users identified as suitable. Current data indicate that temperatures in the Hueco Tanks resource area are not high enough for electric power generation, but in at least part of the Presidio Bolson resource area, they may be high enough for electric power generation.

  8. Report on achievements in fiscal 1973 in studies of technologies to develop and utilize resources and preserve national land. Study on hot water systems in geothermal areas; 1973 nendo chinetsu chiiki no nessuikei ni kansuru kenkyu seika chukan hokokusho

    NONE

    1977-03-01

    It is important for geothermal energy to develop and utilize it in a rational manner. To achieve the objective, hot water systems must be studied comprehensively and elucidated from the standpoint of the systems as a whole. The present study, standing on this viewpoint, is intended to elucidate hot water systems and establish a survey method thereon. Fiscal 1973 has selected four areas (northern Hachimantai, southern Hachimantai, Onikubi and Kuju areas) as the model study fields, and used as the main field the Onikubi area, which clearly shows the structural catchment basin. Studies were performed in this area on hydraulic hot flow rates, isotopic geology, and reservoirs. In the hydraulic hot flow rate study, the amount of rainfall, amount of flowing water, and amount of hot spring water flow-out were observed continually. In the isotopic geology study, hydrogen in hot spring water and underground water, and composition of oxygen isotope were analyzed. Estimation was made from the result thereof on water balance, heat balance, and underground residence time. In the study of reservoirs, measurements were performed inside the wells, and estimation was made on locations and sizes of the reservoirs by surveying distribution of transformed minerals and cracks. (NEDO)

  9. Bringing Technology to the Resource Manager ... and Not the Reverse

    Daniel L. Schmoldt

    1992-01-01

    Many natural resource managers envision their jobs as pressed between the resources that they have a mandate to manage and the technological aides that are essential tools to conduct those management activities. On the one hand, managers are straining to understand an extremely complex array of natural systems and the management pressures placed on those systems. Then...

  10. Critical Uses of College Resources. Part I: Personnel Utilization System.

    Vlahos, Mantha

    A Personnel Utilization System has been designed at Broward Community College, which combines payroll, personnel, course, and function information in order to determine the actual duties performed by personnel for the amount of remuneration received. Objectives of the system are (1) to define the tasks being performed by faculty, staff, and…

  11. Utilizing Distributed Resources in Smart Grids - A Coordination Approach

    Juelsgaard, Morten

    2014-01-01

    as well as its limitations. Enforcing coordination through temporal shifts of consumption and production requires the problems we consider to be solved across some predefined time-horizon. Utilizing flexibility of consumers through coordination, is known as demand management, and considers how consumers...

  12. Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China

    Hailiang Ma

    2016-11-01

    Full Text Available While urbanization brings economic and social benefits, it also causes water pollution and other environmental ecological problems. This paper provides a theoretical framework to quantitatively analyze the dynamic relationship between water resource utilization and the process of urbanization. Using data from Jiangsu province, we first construct indices to evaluate urbanization and water resource utilization. We then adopt an entropy model to examine the correlation between urbanization and water resource utilization. In addition, we introduce a dynamic coupling model to analyze and predict the coupling degree between urbanization and water resource utilization. Our analyses show that pairing with rising urbanization during 2002–2014, the overall index of water resource utilization in Jiangsu province has experienced a “decline -rise-decline” trend. Specifically, after the index of water resource utilization reached its lowest point in 2004, it gradually began to rise. Water resource utilization reached its highest value in 2010. The coupling degree between urbanization and water resource utilization was relatively low in 2002 and 2003 varying between −90° and 0°. It has been rising since then. Out-of-sample forecasts indicate that the coupling degree will reach its highest value of 74.799° in 2016, then will start to gradually decline. Jiangsu province was chosen as our studied area because it is one of the selected pilot provinces for China’s economic reform and social development. The analysis of the relationship between provincial water resource utilization and urbanization is essential to the understanding of the dynamic relationship between these two systems. It also serves as an important input for developing national policies for sustainable urbanization and water resource management.

  13. Biotechnology for Conservation and Utilization of Agricultural Plant Genetic Resources in Nepal

    Bal Krishna Joshi

    2017-05-01

    Full Text Available Agricultural biodiversity is the basis of human life and food security. Nepal with 577 cultivated species possesses huge diversity at varietal as well as landrace levels. In most agricultural crops the rapid genetic erosion due to several reasons is a common phenomenon. Thus, considering the importance of agricultural biodiversity declared by Convention on Biological Diversity for sustainable food production, National Agriculture Genetic Resources Center (NAGRC has been established for conservation and sustainable utilization of agricultural biodiversity. This paper thus delineates the application of biotechnological tools adopted by NAGRC for effective and efficient conservation and use of agricultural plant genetic resources (APGRs. Among the adopted technologies, tissue bank using shoot tip culture of vegetatively propagating and recalcitrant crops eg potato, sugarcane, banana, sweet potato, etc are in function. Under the molecular marker technology, currently random amplified polymorphic DNA (RAPD and simple sequence repeat (SSR markers have been used for developing DNA profiles, identifying duplicates in the collections, assessing genetic diversity and screening accessions against economic traits. DNA bank has also been created for storing DNA of indigenous crops and these DNA can be accessed for research and study. Genotypic database has been developed for chayote, finger millet, wheat and maize for identification and selection of the accessions.

  14. Technology advancement: a factor in increasing resource use

    Wilburn, David R.; Goonan, Thomas G.; Bleiwas, Donald I.

    2001-01-01

    The specter of mineral resource scarcity has been repeatedly raised as a concern because ever-growing populations with seemingly insatiable appetites for minerals place claims against a finite resource endowment. This report analyzes how technology has helped to ease resource constraints, and uses case studies of aluminum, copper, potash, and sulfur minerals to identify the effects of technology on resource supply. In spite of heightened demand for and increased loss of resources to environmental policy and urbanization, mineral producers historically have been able to continually expand production and lower costs. Specific production increases for the years 1900-98 were: aluminum (3,250 percent), copper (2,465 percent), potash (3,770 percent), and sulfur (6,000 percent). For the same period, constant-dollar (1998) prices decreased: aluminum (90 percent), copper (75 percent), potash (94 percent), and sulfur (89 percent). The application of technology has made available mineral deposits that were previously overlooked or considered non-viable. Using technology, producers can meet the demand for stronger, energy-efficient, more environmentally safe products with less physical material. Technologies have been developed to increase the amount of materials recycled and remanufactured. Technology development can occur in breakthroughs, but most often advances incrementally. Technological development is driven by the profit motive.

  15. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 2

    Negus-deWys, J. (ed.)

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  16. Benefits and performance of ATLAS approaches to utilizing opportunistic resources

    Filip\\v{c}i\\v{c}, Andrej; The ATLAS collaboration

    2016-01-01

    ATLAS has been extensively exploring possibilities of using computing resources extending beyond conventional grid sites in the WLCG fabric to deliver as many computing cycles as possible and thereby enhance the significance of the Monte-Carlo samples to deliver better physics results. The difficulties of using such opportunistic resources come from architectural differences such as unavailability of grid services, the absence of network connectivity on worker nodes or inability to use standard authorization protocols. Nevertheless, ATLAS has been extremely successful in running production payloads on a variety of sites, thanks largely to the job execution workflow design in which the job assignment, input data provisioning and execution steps are clearly separated and can be offloaded to custom services. To transparently include the opportunistic sites in the ATLAS central production system, several models with supporting services have been developed to mimic the functionality of a full WLCG site. Some are e...

  17. Management and utilization of forest resources in Papua New Guinea

    P.B.L. Srivastava

    1992-01-01

    Papua New Guinea, with an area of about 46.7 million ha and population of 3.7 million, is blessed with a large natural forest resource. Over 80 percent of the land is covered with forests of various types, ranging from swamp and lowland rain forests in coastal plains to alpine vegetation and moss forests in the highlands, most of which are owned by the people. About 15...

  18. [Application of synthetic biology to sustainable utilization of Chinese materia medica resources].

    Huang, Lu-Qi; Gao, Wei; Zhou, Yong-Jin

    2014-01-01

    Bioactive natural products are the material bases of Chinese materia medica resources. With successful applications of synthetic biology strategies to the researches and productions of taxol, artemisinin and tanshinone, etc, the potential ability of synthetic biology in the sustainable utilization of Chinese materia medica resources has been attracted by many researchers. This paper reviews the development of synthetic biology, the opportunities of sustainable utilization of Chinese materia medica resources, and the progress of synthetic biology applied to the researches of bioactive natural products. Furthermore, this paper also analyzes how to apply synthetic biology to sustainable utilization of Chinese materia medica resources and what the crucial factors are. Production of bioactive natural products with synthetic biology strategies will become a significant approach for the sustainable utilization of Chinese materia medica resources.

  19. Radiation application for the utilization of microbial resources

    Lee, Young Keun; Kim, Jae Sung; Lee, Sang Jae

    2007-07-01

    Domestic microbes which had the antifungal, pesticide residue degradable, and heavy metal adsorbent activities were isolated individually. Mutants of their improved functions were induced by radiation. And finally microbial formulae of biocontroller were manufactured and respected to be industrialized promisingly. The effectiveness of the developed microbial formulae were confirmed in pepper, radish, and Chinese cabbage by field experiments for 5 kinds of fungal diseases. This technology is respected to be transferred to the agricultural companies. And a novel venture company could be established by the involved researchers using this technology. As a result, the productivity in environmentally-friendly farm could be improved gradually in the near future

  20. Radiation application for the utilization of microbial resources

    Lee, Young Keun; Kim, Jae Sung; Lee, Sang Jae [and others

    2007-07-15

    Domestic microbes which had the antifungal, pesticide residue degradable, and heavy metal adsorbent activities were isolated individually. Mutants of their improved functions were induced by radiation. And finally microbial formulae of biocontroller were manufactured and respected to be industrialized promisingly. The effectiveness of the developed microbial formulae were confirmed in pepper, radish, and Chinese cabbage by field experiments for 5 kinds of fungal diseases. This technology is respected to be transferred to the agricultural companies. And a novel venture company could be established by the involved researchers using this technology. As a result, the productivity in environmentally-friendly farm could be improved gradually in the near future.

  1. Implementating Information Technology in E-Human Resource Management

    Cristina-Dana Popescu (Mitu

    2016-01-01

    More and more organizations have been replacing face-to-face human resource managementactivities with electronic human resource management, which is considered as one of the keyfactors that every organization needs to focus. Considering that human resource management isone of the necessary needs of today’s business, the goal of this article is to establish the importanceof human resource management (HRM, to examine recent research in e-HRM in order to evaluatethe cumulated evidence on the relationship between HRM and e-HRM and to outline the impact ofe-HRM on human resource. Many specialists underlined the fact that human resource requiresmore attention and careful management than any other resource of an organization. This paperalso deals with the influence of Internet and information technology on work and human resourcemanagement.

  2. Managing carbon regulatory risk in utility resource planning: Current practices in the Western United States

    Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

    2008-01-01

    Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. As such, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by 15 electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demand-side resource options for meeting customer load. Even without federal climate regulation in the US, the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of US electric utilities, this work holds implications for all electric utilities and energy policymakers who are seeking to minimize the compliance costs associated with future carbon regulations

  3. Resource recycling as new field for innovative technologies

    Kamenik L.L.

    2017-01-01

    Full Text Available This study substantiates the necessity of transition from the natural resource model of socioeconomic development towards an industrially reproducible type of raw material, which is particularly relevant in the context of the global resource crisis. The key role of innovative technologies in the solution to this problem is questioned. Theoretical and methodological principles of the modern economy functioning are examined based on the resource factor. A new concept of “resource recycling”, which reflects industrial resource recovery, is introduced. An innovative model of a resource base for economic reproduction is provided, the necessity of transition from the existing linear economic model towards a closed resource cycle model is shown, and three resource cycle models are examined in terms of their objectives, forms, and content. The major problems in the implementation of the innovative model and ways of solving them are defined, which makes it possible to reduce the risk of a resource provision crisis. The conclusion that resource recycling serves as a new sphere of innovative technologies is substantiated. The historical analogy method and the evolutionary systems approach are used.

  4. 2015 Utilization of Electronic Information Resources in Ramat

    The study is guided by five Objectives and five research questions. Literatures on ... registered students in Ramat Library, University of Maiduguri, Nigeria. A sample of 170 ... text collections, digital collections of data sets. He further ... The developments of new technologies ..... this result proves that the management of.

  5. The transfer of technologies for biomass energy utilization

    Schneiders, H H [German Agency for Technical Cooperation (GTZ), Eschborn (Germany)

    1995-12-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  6. The transfer of technologies for biomass energy utilization

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  7. Gas-Fired Distributed Energy Resource Technology Characterizations

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  8. Factors Relevant to Utility Integration of Intermittent Renewable Technologies

    Wan, Y.; Parsons, B.

    1993-08-24

    This study assesses factors that utilities must address when they integrate intermittent renewable technologies into their power-supply systems; it also reviews the literature in this area and has a bibliography containing more than 350 listings. Three topics are covered: (1) interface (hardware and design-related interconnection), (2) operability/stability, and (3) planning. This study finds that several commonly held perceptions regarding integration of intermittent renewable energy technologies are not valid. Among fmdings of the study are the following: (1) hardware and system design advances have eliminated most concerns about interface, (2) cost penalties have not occurred at low to moderate penetration levels (and high levels am feasible); and (3) intermittent renewable energy technologies can have capacity values. Obstacles still interfering with intermittent renewable technologies are also indentified.

  9. Factors relevant to utility integration of intermittent renewable technologies

    Wan, Yih-huei; Parsons, B.K.

    1993-08-01

    This study assesses factors that utilities must address when they integrate intermittent renewable technologies into their power-supply systems; it also reviews the literature in this area and has a bibliography containing more than 350 listings. Three topics are covered: (1) interface (hardware and design-related interconnection), (2) operability/stability, and (3) planning. This study finds that several commonly held perceptions regarding integration of intermittent renewable energy technologies are not valid. Among findings of the study are the following: (1) hardware and system design advances have eliminated most concerns about interface; (2) cost penalties have not occurred at low to moderate penetration levels (and high levels are feasible); and (3) intermittent renewable energy technologies can have capacity values. Obstacles still interfering with intermittent renewable technologies are also identified.

  10. Utilizing technological innovations to enhance psychotherapy supervision, training, and outcomes.

    Barnett, Jeffrey E

    2011-06-01

    Recent technological advances in the use of the Internet and video technologies has greatly impacted the provision of psychotherapy and other clinical services as well as how the training of psychotherapists may be conducted. When utilized appropriately these technologies may provide greater access to needed services to include treatment, consultation, supervision, and training. Specific ethical challenges and pitfalls are discussed and recommendations are made for the ethical use of these technologies. Additionally, innovative practices from the seven articles in the special section that follows are highlighted and reviewed. These articles present a number of innovations that can take psychotherapy training, research, supervision, and treatment forward toward increased effectiveness. Recommendations for integrating these innovations into ongoing practices are provided and for additional research to build on the important work of the authors in this special section are provided.

  11. Assessing global resource utilization efficiency in the industrial sector.

    Rosen, Marc A

    2013-09-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Energy and resource utilization of deinking sludge pyrolysis

    Lou, Rui; Wu, Shubin; Lv, Gaojin; Yang, Qing

    2012-01-01

    The thermochemical conversion technique was applied in deinking sludge from the pulp and papermaking industrial to indagate the utilization of sludge biomass to energy, and the pyrolysis characteristics and pyrolytic products of deinking sludge were studied with thermogravimetric analysis (TGA) and pyrolysis coupled with gas chromatograph–mass spectrometer (Py-GC/MS). The static tubular furnace as an applied industrial research was used to study deinking sludge pyrolysis. The solid, gas and liquid of products was characterized by electron probe microanalysis (EPMA), gas chromatograph (GC) and gas chromatograph–mass (GC/MS), respectively. The results revealed that the weight-loss process of deinking sludge was a non-isothermal reaction and composed of four stages, i.e. dewater stage, volatile releasing stage, carbon burnout stage and some calcium carbonate decomposition. Pyrolytic products from deinking sludge in the static tubular furnace were comprised of the gaseous (29.78%), condensed liquid (bio-oil, 24.41%) and solid residues (45.81%). The volatiles from deinking sludge pyrolyzing were almost aromatic hydrocarbons, i.e. styrene, toluene and benzene and few acids and the solid was calcium carbonate (CaCO 3 ) that can be reused as paper filler. Deinking sludge was converted into high-grade fuel and chemicals by means of thermochemical conversion techniques, hence, pyrolysis of paper deinking sludge had a promising development on the comprehensive utilization.

  13. How do dynamic capabilities transform external technologies into firms’ renewed technological resources? – A mediation model

    Li-Ying, Jason; Wang, Yuandi; Ning, Lutao

    2016-01-01

    microfoundations of dynamic technological capabilities, mediate the relationship between external technology breadth and firms’ technological innovation performance, based on the resource-based view and dynamic capability view. Using a sample of listed Chinese licensee firms, we find that firms must broadly......How externally acquired resources may become valuable, rare, hard-to-imitate, and non-substitute resource bundles through the development of dynamic capabilities? This study proposes and tests a mediation model of how firms’ internal technological diversification and R&D, as two distinctive...... explore external technologies to ignite the dynamism in internal technological diversity and in-house R&D, which play their crucial roles differently to transform and reconfigure firms’ technological resources....

  14. How integrated resource planning for US electric utilities affects shareholder interests

    Hadley, S.; Hirst, E.

    1995-01-01

    Integrated resource planning (IRP) seeks to identify the mix of resources that can best meet the future energy-service needs of customers. These resources include new sources, types, and owners of power plants plus demand-side management (DSM) programs. However, little explicit attention is given to utility shareholders in the typical resource-planning proceeding. Because of the complexity of state regulatory practices and tax policies, it seems unlikely that different resources that provide comparable services to customers will yield comparable returns to shareholders. This study examines a typical US investor-owned utility's financial operations and performance using a spreadsheet model we developed for this project. The model simulates an electric utility's financial operations, and produces an annual income statement, balance sheet, and cash-flow statement. We calculated the net present value of realized (cash) return on equity as the primary factor used to represent shareholder interests. We examined shareholder returns for these resources as functions of public utility commission regulation, taxes, and the utility's operating environment. Given the increasingly competitive nature of electricity markets, we examined shareholder returns for these resources in an environment where the utility competes with other suppliers solely on the basis of electricity price. (author)

  15. Development of Beam Utilization Technologies and Support for Users

    Kim, Kyeryung; Jung, Myunghwan; Noh, Yongoh; Lee, Sooyeon; Kim, Hyukwook; Kil, Jaekeun; Lee, Nayoung; Ra, Sekin; Lee, Miejeen; Kim, Sora

    2013-02-01

    The Final goals are to achieve the 2nd goals of the Proton Engineering Frontier Project, development of proton beam utilization technologies, to incubate the potential users, and to develop fundamental technologies. Based on these achievements, we are going to enhance the accelerator utilization and maximize contribution to the local society after accelerator construction completion. For the these goals, we were operating user program reflecting the results of 3rd step planning. We support 38 small projects during 2 years. As results of activation of beam utilization, we acquired 768 users at the end of 2012. We survey proton beam technology proposals, individuals and institutions participation letter of intent through the research of 'Planning of a support program for both basic research by using accelerator and manpower cultivation'. And inaugurated KOPUA (Korea Proton Accelerator User Association) on March 28, 2012 with 152 members. We secured experimental conditions at TR23 and TR103 and reflected in the target room design and operation scenarios via investigate the requirements. Through these requirements, we make a remote sample transfer system, beam regulating system, hot cell and sample transport container. Moreover, we develop proton beam technologies such as in-vivo proton beam irradiation system, comparison of the biological effects for pulse beam and continuous beam, basic experiments for the metal nanopaticle synthesis, research for radioactivatied samples and devices, conceptual design and calculation for neutron source target and calculation of the isotope production yield. Proton accelerator can be utilized in a variety of field, including NT, BT, IT, ST, ET, Nuclear, medical, and some of the user facilities required were constructed through this project, Experience for the construction and operation of these facilities can be reflected to the construction of the rest 8 target room of proton accelerator center

  16. Improvement and utilization of irradiation capsule technology in HANARO

    Choo, Kee-Nam; Cho, Man-Soon; Kim, Bong-Goo; Lee, Cheol-Yong; Yang, Sung-Woo; Shin, Yoon-Taek; Park, Seng-Jae; Jung, Hoan-Sung

    2012-01-01

    Several improvements of irradiation capsule technology regarding irradiation test parameters, such as temperature and neutron flux/fluence, and regarding instrumentation have progressed at HANARO since the last KAERI-JAERI joint seminar held in 2008. The standard HANARO capsule technology that was developed for use in a commercial power plant temperature of about 300degC was improved to apply to a temperature range of 100-1000degC for the irradiation test of materials of new research reactors and future nuclear systems. Low-flux and long-term irradiation technologies have been developed at HANARO. As a beginning step of the localization of capsule instrumentation technology, the irradiation performance of a domestically produced thermocouple and LVDT will be examined at HANARO. The accuracy of an evaluation of neutron fluence and precise welding technology are also being examined at HANARO. Based on these accumulated capsule technologies, a HANARO irradiation capsule system is being actively utilized for the national R and D programme on commercial nuclear reactors and nuclear fuel cycle technology in Korea. HANARO has recently started the irradiation support of R and D relevant to future nuclear systems including SMART, VHTR, and SFR, and HANARO is preparing new support relevant to new research and Fusion reactors. (author)

  17. Technological Literacy and Human Cloning. Resources in Technology.

    Baird, Steven L.

    2002-01-01

    Discusses how technology educators can deal with advances in human genetics, specifically, cloning. Includes a definition and history of cloning, discusses its benefits, and looks at social concerns and arguments for and against human cloning. Includes classroom activities and websites. (Contains 10 references.) (JOW)

  18. User Utility Oriented Queuing Model for Resource Allocation in Cloud Environment

    Zhe Zhang

    2015-01-01

    Full Text Available Resource allocation is one of the most important research topics in servers. In the cloud environment, there are massive hardware resources of different kinds, and many kinds of services are usually run on virtual machines of the cloud server. In addition, cloud environment is commercialized, and economical factor should also be considered. In order to deal with commercialization and virtualization of cloud environment, we proposed a user utility oriented queuing model for task scheduling. Firstly, we modeled task scheduling in cloud environment as an M/M/1 queuing system. Secondly, we classified the utility into time utility and cost utility and built a linear programming model to maximize total utility for both of them. Finally, we proposed a utility oriented algorithm to maximize the total utility. Massive experiments validate the effectiveness of our proposed model.

  19. FY 1998 report on the project for development of hot water utilizing power generating plants and others, supported by New Sunshine Project. Development of extraction technologies and development of production technologies for the deep-seated geothermal resources; 1998 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen seisan gijutsu no kaihatsu

    NONE

    1999-03-01

    Described herein are the FY 1998 results of the activities for development of extraction and production technologies for the deep-seated geothermal resources, which are expected to contribute to increased geothermal power generation capacity. The program for the PTSD logging technology connects the S probe to PT probe, to simultaneously measure temperature, pressure and volumetric flow, producing the data of good quality even in a high temperature environment over 327 degrees C. Thus, possibility of the commercial system is confirmed. The D probe also produces a density calibration curve showing very good linearity, and operates normally in a high temperature environment of 406 degrees C. The program for the PTC monitoring technology conducts the field tests at Larderello, Italy, to confirm the sampler functions in a high temperature environment. The program for the tracer monitoring technology extracts promising tracers stable at high temperature from those for the liquid, vapor and liquid/vapor mixed phases. Silica is observed to be massively dissolved at 400 to 1,000mg/kg in the fluid under deep geothermal conditions. Scale precipitation rate is minimal for the first 21 days, but increases linearly with time thereafter. The experiments are also conducted for formation and prevention of the Fe-Si-based scales during the flushing period. (NEDO)

  20. Multi-state time-varying reliability evaluation of smart grid with flexible demand resources utilizing Lz transform

    Jia, Heping; Jin, Wende; Ding, Yi; Song, Yonghua; Yu, Dezhao

    2017-01-01

    With the expanding proportion of renewable energy generation and development of smart grid technologies, flexible demand resources (FDRs) have been utilized as an approach to accommodating renewable energies. However, multiple uncertainties of FDRs may influence reliable and secure operation of smart grid. Multi-state reliability models for a single FDR and aggregating FDRs have been proposed in this paper with regard to responsive abilities for FDRs and random failures for both FDR devices and information system. The proposed reliability evaluation technique is based on Lz transform method which can formulate time-varying reliability indices. A modified IEEE-RTS has been utilized as an illustration of the proposed technique.

  1. Waste resources utilization program. Interim report, June 30, 1976

    1976-07-01

    This is an interim report on the effects of the combined use of heat and ionizing radiation (thermoradiation) as a treatment for ridding sewage sludge of pathogenic organisms as well as its effect on the physical-chemical properties. This activity couples two major environmental problems, disposition of human and of nuclear waste, in an attempt to provide a framework in which both will become useful resources. This combined treatment might be chosen to inactivate both heat labile (but possibly radiation resistant) and radiation labile (but possibly heat resistant) organisms. The cost-effective analyses of such a treatment are being examined. Sludge treated with thermoradiation offers considerable potential for use as a fertilizer in agriculture or a soil conditioner for land reclamation free of the potential health hazards associated with conventional methods of land disposal. Treated sludge may also provide a low-cost substitute for high-nutritional components in ruminant diets

  2. Monitoring of computing resource utilization of the ATLAS experiment

    Rousseau, David; Vukotic, Ilija; Schaffer, RD; Dimitrov, Gancho; Aidel, Osman; Albrand, Solveig

    2012-01-01

    Due to the good performance of the LHC accelerator, the ATLAS experiment has seen higher than anticipated levels for both the event rate and the average number of interactions per bunch crossing. In order to respond to these changing requirements, the current and future usage of CPU, memory and disk resources has to be monitored, understood and acted upon. This requires data collection at a fairly fine level of granularity: the performance of each object written and each algorithm run, as well as a dozen per-job variables, are gathered for the different processing steps of Monte Carlo generation and simulation and the reconstruction of both data and Monte Carlo. We present a system to collect and visualize the data from both the online Tier-0 system and distributed grid production jobs. Around 40 GB of performance data are expected from up to 200k jobs per day, thus making performance optimization of the underlying Oracle database of utmost importance.

  3. Outline of multipurpose utilization of geothermal resources in China

    Huang, S.Y.; Wang, J.Y.; Wang, J.; Huang, G.S.

    1980-09-01

    China is rich in geothermal resources. The lower temperature limit of geothermal waters in China is defined as 25/sup 0/C. The thermal waters are categorized into three groups: low (25/sup 0/ to 60/sup 0/C), medium (60/sup 0/ to 100/sup 0/C) and high (> 100/sup 0/C) temperature thermal water. Xizang (Tibet), Taiwan and Yunnan are the most promising regions for the development of high temperature geothermal energy. Medium-low temperature water is more efficient for direct use. Since 1977, six experimental geothermal power stations have been set up throughout the country. In Beijing (Peking), Tianjin and other places thermal water has been used for space heating, industrial processing, agriculture, horticulture, and therapeutic sanatoriums, etc.

  4. Utilization of market research in managing hospital pharmacy resources.

    Hernandez, L; McNamara, E J

    1984-10-01

    A market research survey of staff physicians and nurses was completed to obtain information on customer preference to be used in making planning and development decisions about the allocation of the pharmacy department's resources. Survey questionnaires were mailed to representative samples of each professional group and included the optimum mix of open-ended and closed-ended questions that would result in the highest response rate. The survey responses identified differences in wants and needs between the nurses and physicians that demonstrate the value of market research. Data obtained from the survey are being used by a staff advisory committee and management to develop departmental goals and objectives that will reduce costs and increase profit margins under the ever-increasing restrictions of prospective reimbursement.

  5. Assessing global resource utilization efficiency in the industrial sector

    Rosen, Marc A.

    2013-01-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. - Highlights: ► The global industrial sector and its industries are assessed by using energy and exergy methods. ► Global industrial sector efficiencies are evaluated as 51% based on energy and 30% based on exergy. ► Exergy analysis shows global industrial energy to be less efficient than does energy analysis. ► A misleadingly low margin for efficiency improvement is indicated by energy analysis. ► A significant and rational margin for efficiency improvement exists from an exergy perspective

  6. Surgical resource utilization in urban terrorist bombing: a computer simulation.

    Hirshberg, A; Stein, M; Walden, R

    1999-09-01

    The objective of this study was to analyze the utilization of surgical staff and facilities during an urban terrorist bombing incident. A discrete-event computer model of the emergency room and related hospital facilities was constructed and implemented, based on cumulated data from 12 urban terrorist bombing incidents in Israel. The simulation predicts that the admitting capacity of the hospital depends primarily on the number of available surgeons and defines an optimal staff profile for surgeons, residents, and trauma nurses. The major bottlenecks in the flow of critical casualties are the shock rooms and the computed tomographic scanner but not the operating rooms. The simulation also defines the number of reinforcement staff needed to treat noncritical casualties and shows that radiology is the major obstacle to the flow of these patients. Computer simulation is an important new tool for the optimization of surgical service elements for a multiple-casualty situation.

  7. Utilization of information technology in eastern North Carolina physician practices: determining the existence of a digital divide.

    Rosenthal, David A; Layman, Elizabeth J

    2008-02-13

    The United States Department of Health and Human Services (DHHS) has emphasized the importance of utilizing health information technologies, thus making the availability of electronic resources critical for physicians across the country. However, few empirical assessments exist regarding the current status of computerization and utilization of electronic resources in physician offices and physicians' perceptions of the advantages and disadvantages of computerization. Through a survey of physicians' utilization and perceptions of health information technology, this study found that a "digital divide" existed for eastern North Carolina physicians in smaller physician practices. The physicians in smaller practices were less likely to utilize or be interested in utilizing electronic health records, word processing applications, and the Internet.

  8. Daily Migraine Prevention and Its Influence on Resource Utilization in the Military Health System

    2006-08-01

    Connection Between Prevention and Resource Use .....................17 Synthesis of Literature Review...Utilization ..................................26 Treatment Evaluation with Observational Designs .........................31 Synthesis of Conceptual...amitriptyline atenolol cyproheptadine methysergide carbamazepine divalproex fluoxetine bupropion clomipramine propranolol gabapentin diltiazem

  9. Miniature Gas Chromatograph Mass Spectrometer for In-Situ Resource Utilization, Phase I

    National Aeronautics and Space Administration — In situ resource utilization (ISRU) is essential for several of NASA's future flagship missions. Currently envisioned ISRU plants include production of oxygen from...

  10. Geographic information system in marine biology: Way for sustainable utilization of living resources

    Chavan, V.S.; Sreepada, R.A.

    Sustainable utilization of aquatic living resources needs accurate assessment. This stress the need for use of Geographic Information System (GIS). In the recent past interest has been generated for use of GIS in various areas of biological...

  11. The Impact of Relaxation and Hypnosis on Medical Resources Utilization in Pediatric Asthma

    Barber, Nancy

    2003-01-01

    .... The estimated economic impact of asthma in the United States exceeds $6.2 billion. Behavioral interventions have been shown to improve the management of pediatric asthma, as well as reduce the utilization of medical resources...

  12. An Efficient Heat Exchanger for In Situ Resource Utilization, Phase I

    National Aeronautics and Space Administration — In situ resource utilization (ISRU) is essential for several of NASA's future flagship missions. Currently envisioned ISRU plants include production of oxygen from...

  13. Coupling renewables via hydrogen into utilities: Temporal and spatial issues, and technology opportunities

    Iannucci, J.J.; Horgan, S.A.; Eyer, J.M. [Distributed Utility Associates, San Ramon, CA (United States)] [and others

    1996-10-01

    This paper discusses the technical potential for hydrogen used as an energy storage medium to couple time-dependent renewable energy into time-dependent electric utility loads. This analysis will provide estimates of regional and national opportunities for hydrogen production, storage and conversion, based on current and near-term leading renewable energy and hydrogen production and storage technologies. Appropriate renewable technologies, wind, photovoltaics and solar thermal, are matched to their most viable regional resources. The renewables are assumed to produce electricity which will be instantaneously used by the local utility to meet its loads; any excess electricity will be used to produce hydrogen electrolytically and stored for later use. Results are derived based on a range of assumptions of renewable power plant capacity and fraction of regional electric load to be met (e.g., the amount of hydrogen storage required to meet the Northwest region`s top 10% of electric load). For each renewable technology national and regional totals will be developed for maximum hydrogen production per year and ranges of hydrogen storage capacity needed in each year (hydroelectric case excluded). The sensitivity of the answers to the fraction of peak load to be served and the land area dedicated for renewable resources are investigated. These analyses can serve as a starting point for projecting the market opportunity for hydrogen storage and distribution technologies. Sensitivities will be performed for hydrogen production, conversion. and storage efficiencies representing current and near-term hydrogen technologies.

  14. Optimal exploitation of a renewable resource with stochastic nonconvex technology: An analysis of extinction and survival

    Mitra, Tapan; Roy, Santanu

    1992-11-01

    This paper analyzes the possibilities of extinction and survival of a renewable resource whose technology of reproduction is both stochastic and nonconvex. In particular, the production function is subject to random shocks over time and is allowed to be nonconcave, though it eventually exhibits bounded growth. The existence of a minimum biomass below which the resource can only decrease, is allowed for. Society harvests a part of the current stock every time period over an infinite horizon so as to maximize the expected discounted sum of one period social utilities from the harvested resource. The social utility function is strictly concave. The stochastic process of optimal stocks generated by the optimal stationary policy is analyzed. The nonconvexity in the optimization problem implies that the optimal policy functions are not 'well behaved'. The behaviour of the probability of extinction (and the expected time to extinction), as a function of initial stock, is characterized for various possible configurations of the optimal policy and the technology. Sufficient conditions on the utility and production functions and the rate of impatience, are specified in order to ensure survival of the resource with probability one from some stock level (the minimum safe standard of conservation). Sufficient conditions for almost sure extinction and almost sure survival from all stock levels are also specified. These conditions are related to the corresponding conditions derived in models with deterministic and/or convex technology. 4 figs., 29 refs

  15. Optimal exploitation of a renewable resource with stochastic nonconvex technology: An analysis of extinction and survival

    Mitra, Tapan [Department of Economics, Cornell University, Ithaca, NY (United States); Roy, Santanu [Econometric Institute, Erasmus University, Rotterdam (Netherlands)

    1992-11-01

    This paper analyzes the possibilities of extinction and survival of a renewable resource whose technology of reproduction is both stochastic and nonconvex. In particular, the production function is subject to random shocks over time and is allowed to be nonconcave, though it eventually exhibits bounded growth. The existence of a minimum biomass below which the resource can only decrease, is allowed for. Society harvests a part of the current stock every time period over an infinite horizon so as to maximize the expected discounted sum of one period social utilities from the harvested resource. The social utility function is strictly concave. The stochastic process of optimal stocks generated by the optimal stationary policy is analyzed. The nonconvexity in the optimization problem implies that the optimal policy functions are not `well behaved`. The behaviour of the probability of extinction (and the expected time to extinction), as a function of initial stock, is characterized for various possible configurations of the optimal policy and the technology. Sufficient conditions on the utility and production functions and the rate of impatience, are specified in order to ensure survival of the resource with probability one from some stock level (the minimum safe standard of conservation). Sufficient conditions for almost sure extinction and almost sure survival from all stock levels are also specified. These conditions are related to the corresponding conditions derived in models with deterministic and/or convex technology. 4 figs., 29 refs.

  16. Geothermal energy resources of the USSR and their utilization

    Groebner, W

    1961-01-01

    In the Soviet Union, the areas with the highest geothermal gradient are found in the region of Kamchatka, in the Kuriles, and in western Turkmenia. Test drilling in Kamchatka has produced hot water at a temperature of 200/sup 0/C from a depth of 100-300 m. If a pressure of 300-400 kPa is maintained, the wells can bring the fluids to the surface as a two-phase mixture of steam and hot water. In 1961, plans were being made for the construction of a 12 MW power plant and several greenhouses. Other heat sources were being developed to heat the city of Petropavlovsk. In the northern Cauacasus, hot water is encountered only at depths greater than about 2.5 km, but the quantity available is sufficient to provide the heating needs of several major cities. In the Republic of Daghestan, test drilling has revealed hot water sources which are pressurized to 1.6 MPa, and which produce at a rate of 100 m/sup 3//h. Enormous geothermal energy resources are located in artesian reservoirs beneath western Siberia, over an extent of 3 million km/sup 2/.

  17. Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization

    Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.

    2016-06-01

    Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.

  18. Information resources: How they are utilized by Louisiana

    Gardner, S. [Louisiana Department of Environmental Quality, Baton Rouge (United States)

    1990-12-31

    Louisiana, now in a developmental stage of policy and planning, has completed a project aimed at reducing hazardous releases of air toxics in thee state. The state is also conducting a Comparative Risk Project and is using risk assessment practices to develop its waste quality standards. In developing an air toxic list, Louisiana incorporated four major criteria into the ranking: emission levels, human health effects, potential population exposure, and persistence or accumulation in the environment. For the human health effects criterion, data for each substance was gathered from numerous sources, although the Integrated Risk Information System (IRIS) database was used as a primary source for toxicological information. Following guidelines established by the Environmental Protection Agency (EPA), the Office of Water Resources, Water Pollution Control Division, has developed numerical criteria for human health protection based on risk assessment procedures in the 1989 Water Quality Standards Revision. Currently over 30 toxic substances have risk-based criteria for th protection of human health in the standards. Numerical criteria were calculated for carcinogenic substances having an EPA Classification of A, B1, B2, or C. Cancer class designations along with cancer potency slopes and reference doses were extracted from the IRIS database, with the exception of those chemicals that had not been assessed in IRIS as of December 1, 1988. The parameters necessary for calculating human health criteria for the missing chemicals were taken from 1980, 1984, and 1985 ambient water quality criteria documents: data on bioconcentration factors were included. Currently, Louisiana is working on a Comparative Risk Project, a ranking of the environmental issues in the state relative to potential risk to the public, which is the basis for a widespread 1991 public outreach effort.

  19. A study on the utilization of serial resources in selected tertiary ...

    A study on the utilization of serial resources in selected tertiary institutions in Ogun State. ... Lagos Journal of Library and Information Science ... Serial resources are publications either in printed form or electronic format issued in successive parts usually having numerical or chronological designations and intended to be ...

  20. Ethnic Resources Utilization of Korean Immigrant Entrepreneurs in the Chicago Minority Area.

    Kim, Kwang Chung; Hurh, Won Moo

    1985-01-01

    Korean entrepreneurs rely heavily on their ethnic resources for both business formation and operation. While such resource utilization facilitates immigrants' business entry and gives them competitive advantage in the general marketplace, the same mechanism poses the problems of entra-ethnic business competition and precarious position as a…

  1. Method of configuring a cell of a wireless communication system for improved resource utilization

    2013-01-01

    At least one base station of a wireless network adjusts its access area so as to drive at least one measure of utilization of a resource or resources of that cell toward, but not to exceed, a specified maximum level. The adjustment is dynamic in that it responds in real time to traffic fluctuations.

  2. Aortic anatomic severity grade correlates with resource utilization.

    Rasheed, Khurram; Cullen, John P; Seaman, Matthew J; Messing, Susan; Ellis, Jennifer L; Glocker, Roan J; Doyle, Adam J; Stoner, Michael C

    2016-03-01

    total cost and need for adjunctive procedures during EVAR. Preoperative assessment with ASG scores can delineate patients at greater risk for increased resource use. Patient comorbid factors are associated with anatomic complexity defined according to ASG. A critical examination of the relationship between anatomic complexity and finances is required within the context of aggressive endovascular treatment strategies and shifts toward value-based reimbursement. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  3. Toshiba's activity concerning technology succession and human resource development

    Ogura, Kenji; Hoshide, Akehiko

    2008-01-01

    Recently, from the viewpoint of the reduction of carbon-dioxide emission that cause global warming and the energy security, the importance of nuclear power generation is recognized again as an effective approach for solving the problems, and many nuclear power plants are planed to be constructed worldwide. On the other hand, the experienced engineers will face the time of the retirement in the near future and technology succession and human resource development has become important problems. In this paper, Toshiba's Nuclear Energy Systems and Services Division's activity concerning technology succession and human resource development will be introduced. (author)

  4. Evaluation on equality and efficiency of health resources allocation and health services utilization in China.

    Sun, Jian; Luo, Hongye

    2017-07-14

    China is faced with a daunting challenge to equality and efficiency in health resources allocation and health services utilization in the context of rapid economic growth. This study sought to evaluate the equality and efficiency of health resources allocation and health services utilization in China. Demographic, economic, and geographic area data was sourced from China Statistical Yearbook 2012-2016. Data related to health resources and health services was obtained from China Health Statistics Yearbook 2012-2016. Furthermore, we evaluated the equality of health resources allocation based on Gini coefficient. Concentration index was used to measure the equality in utilization of health services. Data envelopment analysis (DEA) was employed to assess the efficiency of health resources allocation. From 2011 to 2015, the Gini coefficients for health resources by population ranged between 0.0644 and 0.1879, while the Gini coefficients for the resources by geographic area ranged from 0.6136 to 0.6568. Meanwhile, the concentration index values for health services utilization ranged from -0.0392 to 0.2110. Moreover, in 2015, 10 provinces (32.26%) were relatively efficient in terms of health resources allocation, while 7 provinces (22.58%) and 14 provinces (45.16%) were weakly efficient and inefficient, respectively. There exist distinct regional disparities in the distribution of health resources in China, which are mainly reflected in the geographic distribution of health resources. Furthermore, the people living in the eastern developed areas are more likely to use outpatient care, while the people living in western underdeveloped areas are more likely to use inpatient care. Moreover, the efficiency of health resources allocation in 21 provinces (67.74%) of China was low and needs to be improved. Thus, the government should pay more attention to the equality based on geographic area, guide patients to choose medical treatment rationally, and optimize the resource

  5. Technology developments for Japanese BWR MOX fuel utilization

    Oguma, M.; Mochida, T.; Nomata, T.; Asahi, K.

    1997-01-01

    The Long-Term Program for Research, Development and Utilization of Nuclear Energy established by the Atomic Energy Commission of Japan asserts that Japan will promote systematic utilization of MOX fuel in LWRs. Based on this Japanese nuclear energy policy, we have been pushing development of MOX fuel technology aimed at future full scale utilization of this fuel in BWRs. In this paper, the main R and D topics are described from three subject areas, MOX core and fuel design, MOX fuel irradiation behaviour, and MOX fuel fabrication technology. For the first area, we explain the compatibility of MOX fuel with UO 2 core, the feasibility of the full MOX core, and the adaptability of MOX design methods based on a mock-up criticality experiment. In the second, we outline the Tsuruga MOX irradiation program and the DOMO program, and suggest that MOX fuel behaviour is comparable to ordinary BWR UO 2 fuel behaviour. In the third, we examine the development of a fully automated MOX bundle assembling apparatus and its features. (author). 14 refs, 11 figs, 3 tabs

  6. PCARRD's strategies for technology transfer: The agriculture and resources regional technology information system and the regional applied communication program

    Stuart, T.H.; Mamon, C.R.

    1990-05-01

    This paper describes the Agriculture and Resources Regional Technology Information System (ARRTIS) and the Regional Applied Communication Outreach Program (RAC) of PCARRD. The ARRTIS and the RACO are the strategies in communicating scientific and technology-based information. The ARRTIS is an information system that provides an information base on the status of technologies at various levels of maturity (generation, adaptation, verification, piloting, dissemination and utilization) and offers technology alternatives based on environmental requirements, costs and returns analysis or feasibility of the technologies. This information base provides the repository of technology information from which the Applied Communication Program draws its information for packaging into various formats, using various strategies/media to cater to various users in the regions most especially the farmers. Meanwhile, as PCARRD executes its mission of developing the national research system, it incorporates a development support communication program through the RACO. The RACO is essentially a working component of a regional research center/consortium in each region coordinated by the Applied Communication Division of PCARRD. It aims at reaching farmers and their families, extensionists, administrators, policy makers and entrepreneurs with research information and technology which use a variety of appropriate communication channels, modern communication technology and strategies so that they may actively participate in research diffusion and utilization. (author). 7 refs

  7. Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud

    Qazi Zia Ullah

    2017-01-01

    Full Text Available Infrastructure as a Service (IaaS cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers’ data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA is applied; otherwise Autoregressive Neural Network (AR-NN is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers.

  8. Utility advanced turbine systems (ATS) technology readiness testing

    NONE

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  9. Consideration of environmental externality costs in electric utility resource selections and regulation

    Ottinger, R.L.

    1990-01-01

    A surprising number of state electric utility regulatory commissions (half) have started to require consideration of environmental externality costs in utility planning and resource selection. The principal rationale for doing so is that electric utility operations impose very real and large damages to human health and the environment which are not taken into account by traditional utility least cost planning, resource selection procedures, or by government pollution regulation. These failures effectively value the residual environmental costs to society of utility operations at zero. The likely future prospect for more stringent governmental pollution regulation renders imprudent the selection of resources without taking environmental externality costs into consideration. Most regulatory commissions requiring environmental externality consideration have left it to the utilities to compute the societal costs, although a few have either set those costs themselves or used a proxy adder to polluting resource costs (or bonus for non-polluting resources). These commissions have used control or pollution mitigation costs, rather than societal damage costs, in their regulatory computations. This paper recommends that damage costs be used where adequate studies exist to permit quantification, discusses the methodologies for their measurement, and describes the means that have been and might be used for their incorporation

  10. Solar System Exploration Augmented by Lunar and Outer Planet Resource Utilization: Historical Perspectives and Future Possibilities

    Palaszewski, Bryan

    2014-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen (H2) can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and H2 (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional

  11. Report on the research and development achievements in fiscal 1999 on the international research cooperation project for comprehensive development and utilization technologies for gas hydrate resources; 1999 nendo gas hydrate shigen no energy sogo kaihatsu riyo gijutsu no kenkyu kaihatsu seika hokokusho

    NONE

    2000-03-01

    This paper reports the achievements in fiscal 1999 on development of gas hydrate resources. As a result of synthesizing gas hydrates in deposit systems, identifying stability zones in compositions, and studying thermal conductivity and dielectric constant of the deposits, the estimation accuracy has been enhanced steadily in estimating hydrate existing areas in actual frost areas. In the collecting technologies, a proposal was presented for a system by which carbon dioxide is introduced into ground beds at the same time as recovering gases, and gas hydrates are displaced with carbon dioxide hydrates. The displacement phenomenon was verified experimentally by controlling temperatures and pressures. Even below the freezing point, the production rate of the carbon dioxide hydrates is fast if it is above minus 4 degrees C. Salt diffusion behavior important in control of the production and decomposition, and action mechanisms of production and suppression agents were made clear microscopically. Experimental and theoretical discussions were given on dynamics of the production and decomposition. The cage occupation rate of methane hydrates was quantitatively measured successfully by using the Raman spectroscopy. Hydrates of gas mixture were utilized to have verified the possibility of separating the gas mixture constituents. (NEDO)

  12. FY 2000 report on the project on the researcher dispatch type international joint research survey. Survey of the internationalization of research on the effective utilization technology for energy resources; 2000 nendo kenkyusha hakengata kokusai kyodo kenkyu chosa jigyo hokokusho. Energy shigen yukoriyo gijutsu kenkyu kokusaika chosa

    NONE

    2001-03-01

    As to themes of the research survey which contribute to upgrading/diversification of the effective utilization of energy resources and are important in increasing cooperative relations with overseas countries, survey research was conducted by dispatching investigators. Relating to long-life Si solar cells, research survey was made on the reduction in deterioration of solar cell. Concerning the hydrogen carbonless energy system, the economical efficiency of a natural energy/hydrogen combined system was studied for all areas of Aomori prefecture. About the development of the multiple chamber type artificial pancreas for patients with serious diabetes, study using model dogs was investigated. As to the processing of PVC waste, the mechano-chemical method was discussed in the U.S. The paper further surveyed the following: PDE application to the aerospace field, joint developmental study of the reuse type space transport system by Japan and Russia, treatment/recycling of the electric/electronic equipment waste including toxic substances, technology of the manufacture of nano-particles and evaluation of optical characteristics of nano-structures, etc. (NEDO)

  13. Global orbit feedback utilizing analog and digital technologies

    Singh, O.; Tang, Y.; Ramamoorthy, S.; Krinsky, S.; Yu, L.H.

    1997-01-01

    At the NSLS, an analog global orbit feedback system is used in regular operations, and a digital global orbit feedback system is available in machine physics studies on the X-Ray Ring. Here, the authors discuss the relative merits of utilizing analog and digital technology in orbit feedback. Results of experiments are reported characterizing the performance of the analog and digital systems when operated individually or together. They give their thoughts on plans for future development of the orbit feedback systems at the NSLS

  14. Utilizing Technology in Manual Material Handling and Safe Lifting.

    Snyder, Mick

    2016-02-01

    There is great potential to decrease injuries with the use of these new technologies, especially musculoskeletal disorders and repetitive task-related injuries. Initial costs can be considerable for some of these units, but they are much cheaper than a back surgery. As with all technology, the first designs cost a small fortune, but as we are seeing even now, the pricing is decreasing and the quality is increasing for these devices. In 30 years, we might all have flying cars like "Back to the Future II" predicted we would in 2015 or be able to figure out a tricorder like on "Star Trek"! For more information on exoskeletons, exoskeletonreport.com is a great resource.

  15. Utilization of Educational Innovations and Technology in Research and Extension Functions of State Universities

    Rosalinda M. Comia

    2017-11-01

    Full Text Available The study focused on the extent of utilization of the educational innovations and technology in research and extension functions of SUs. The descriptive design, triangulation method, and purposive sampling were applied in this study. The findings revealed that majority of the respondents are married adults and master’s degree graduates with education as their area of specialization. They are permanent in status and have considerable years in the University serving as research or extension officer. Research of SUs have common research thrusts in terms of environment and natural resources management but differ in their own respective agenda; similarly the SUs share common extension thrusts and concerns but differ in their programs, activities and projects related to community services. Commonly encountered problems concern inadequate funds and inability to access the available technology. Officers utilized educational innovations on research and extension to a moderate extent but software and hardware were utilized to a great extent; likewise internet-based communication was utilized to a great extent for research but used moderately for extension. This implies that compared to research, most of the extension functions do not require the use of internet-based communication. From the results of the study, it was recommended that review of the existing allocation of funds for technology development may be done to improve the existing hardware, software and communication facilities.

  16. Utilization of microbes: modern developments in biological technology

    Praeve, P

    1977-01-01

    Until recently microbiology had found use only in the foodstuffs sector and in the production of antibiotics; however, the production of biomass should be regarded as the key development of the new science of biotechnology. The biomass consists of fatty and protein-rich microorganisms that can be used for example, in animal feeds. The microorganisms grow not only on cellulose waste and other biological substrates but also, for example, on petroleum and methanol. Their energy demand is comparatively low. It is being realized more and more that inflexible technologies pose problems for our civilization and that biotechnology, which utilizes the cyclic metabolic pathways of microorganisms and often recycles waste materials, shows great promise for the future. Equipment used in the single-cell protein technology is briefly described.

  17. A Delphi study assessing the utility of quality improvement tools and resources in Australian primary care.

    Upham, Susan J; Janamian, Tina; Crossland, Lisa; Jackson, Claire L

    2016-04-18

    To determine the relevance and utility of online tools and resources to support organisational performance development in primary care and to complement the Primary Care Practice Improvement Tool (PC-PIT). A purposively recruited Expert Advisory Panel of 12 end users used a modified Delphi technique to evaluate 53 tools and resources identified through a previously conducted systematic review. The panel comprised six practice managers and six general practitioners who had participated in the PC-PIT pilot study in 2013-2014. Tools and resources were reviewed in three rounds using a standard pre-tested assessment form. Recommendations, scores and reasons for recommending or rejecting each tool or resource were analysed to determine the final suite of tools and resources. The evaluation was conducted from November 2014 to August 2015. Recommended tools and resources scored highly (mean score, 16/20) in Rounds 1 and 2 of review (n = 25). These tools and resources were perceived to be easily used, useful to the practice and supportive of the PC-PIT. Rejected resources scored considerably lower (mean score, 5/20) and were noted to have limitations such as having no value to the practice and poor utility (n = 6). A final review (Round 3) of 28 resources resulted in a suite of 21 to support the elements of the PC-PIT. This suite of tools and resources offers one approach to supporting the quality improvement initiatives currently in development in primary care reform.

  18. New Technology and Human Resource Development in the Automobile Industry.

    Organisation for Economic Cooperation and Development, Paris (France). Centre for Educational Research and Innovation.

    This document contains five case studies of plants within large enterprises in the automobile industry (Ford, Toyota, Volkswagen, Renault, and Volvo), plus reports of each company's views on human resource development, new technology, and changes in work organization and skill formation. The document is composed of five narrative sections,…

  19. Technology for the Struggling Reader: Free and Easily Accessible Resources

    Berkeley, Sheri; Lindstrom, Jennifer H.

    2011-01-01

    A fundamental problem for many struggling readers, their parents, and their teachers is that there are few benchmarks to guide decision making about assistive technological supports when the nature of a disability is cognitive (e.g., specific learning disability, SLD) rather than physical. However, resources such as the National Center on…

  20. The development of machine technology processing for earth resource survey

    Landgrebe, D. A.

    1970-01-01

    The following technologies are considered for automatic processing of earth resources data: (1) registration of multispectral and multitemporal images, (2) digital image display systems, (3) data system parameter effects on satellite remote sensing systems, and (4) data compression techniques based on spectral redundancy. The importance of proper spectral band and compression algorithm selections is pointed out.

  1. Mars in-situ resource utilization to produce methane propellant using a ceramic microchannel reactor

    National Aeronautics and Space Administration — NASA Technology Area 7 identifies one of the challenges of exploration and human activities in space is the scarcity of readily usable resources. This scarcity is...

  2. FY 1997 R/D project of industrial and scientific technologies contracted with NEDO. Report on technology development of utilization of biological resources such as bioconsortia (development of analytical techniques of bioconsortia); 1997 nendo sangyo gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu (fukugo seibutsukei kaiseki gijutsu no kaihatsu) seika hokokusho

    NONE

    1998-03-01

    Bioconsortia are microbial composites composing of more than two kinds of microorganisms with special functions. To utilize their advanced functions, some techniques have been developed for analyzing their functions and interactions, and for identification, separation and incubation of the constituent microbial groups. In FY 1997, an investigation was made on technology trends, domestic researchers, and research topics related to bioconsortia. To manage and promote the progress of research at the National Institute of Bioscience and Human-Technology where the centralized management of this project is conducted, meetings are held once a month to examine the progress at the institute, in which reports are made and discussions are held on how each research item is progressing. In addition, meetings of the committee to promote research are held every other month to consider and examine measures required for promoting the research. Re-entrustment of research has been made on two subjects, i.e., `Studies on biological significance of symbiotic microorganisms` by Prof. Ishikawa of the University of Tokyo, and `Study on the relationship between the biosynthesis of useful terpenic materials of plant origin and the differentiation of plant tissues, and their effective production by plant cell cultures` by Prof. Inoue of Gifu Pharmaceutical University. 27 refs., 13 figs., 1 tab.

  3. Linking community resources in diabetes care: a role for technology?

    Tung, Elizabeth L; Peek, Monica E

    2015-07-01

    Designing and implementing effective lifestyle modification strategies remains one of the great challenges in diabetes care. Historically, programs have focused on individual behavior change with little or no attempt to integrate change within the broader social framework or community context. However, these contextual factors have been shown to be associated with poor diabetes outcomes, particularly in low-income minority populations. Recent evidence suggests that one way to address these disparities is to match patient needs to existing community resources. Not only does this position patients to more quickly adapt behavior in a practical way, but this also refers patients back to their local communities where a support mechanism is in place to sustain healthy behavior. Technology offers a new and promising platform for connecting patients to meaningful resources (also referred to as "assets"). This paper summarizes several noteworthy innovations that use technology as a practical bridge between healthcare and community-based resources that promote diabetes self-care.

  4. A Utility-Based Downlink Radio Resource Allocation for Multiservice Cellular DS-CDMA Networks

    Mahdi Shabany

    2007-03-01

    Full Text Available A novel framework is proposed to model downlink resource allocation problem in multiservice direct-sequence code division multiple-access (DS-CDMA cellular networks. This framework is based on a defined utility function, which leads to utilizing the network resources in a more efficient way. This utility function quantifies the degree of utilization of resources. As a matter of fact, using the defined utility function, users' channel fluctuations and their delay constraints along with the load conditions of all BSs are all taken into consideration. Unlike previous works, we solve the problem with the general objective of maximizing the total network utility instead of maximizing the achieved utility of each base station (BS. It is shown that this problem is equivalent to finding the optimum BS assignment throughout the network, which is mapped to a multidimensional multiple-choice knapsack problem (MMKP. Since MMKP is NP-hard, a polynomial-time suboptimal algorithm is then proposed to develop an efficient base-station assignment. Simulation results indicate a significant performance improvement in terms of achieved utility and packet drop ratio.

  5. Impact of solifenacin on resource utilization, work productivity and health utility in overactive bladder patients switching from tolterodine ER.

    Zinner, Norman; Noe, Les; Rasouliyan, Lawrence; Marshall, Thomas; Seifeldin, Raafat

    2008-06-01

    Assess changes in resource utilization, work and activity impairment, and health utility among OAB patients continuing to have urgency symptoms with tolterodine ER 4 mg and willing to try solifenacin 5/10 mg. This was an open-label, non-comparative, flexible-dosing, multicenter, 12-week study assessing the efficacy and safety of solifenacin 5/10 mg/day. Patients receiving tolterodine ER 4 mg/day for >/=4 weeks but continuing to experience residual urgency symptoms (>/=3 urgency episodes/24 h) were enrolled into the study. After a 14-day washout, patients began treatment with solifenacin 5 mg/day with dosing adjustments allowed at Weeks 4 and 8. Outcomes were assessed using the Work Productivity and Activity Impairment Questionnaire - Specific Health Problem (WPAI-SHP), Health Utilities Index (HUI), and a resource utilization questionnaire administered at Pre-Washout and Week 12. Patients (n=440) reported significantly fewer physician office visits (pwork time missed (p=0.0017), less impairment while working (pwork impairment (pwork productivity, activity participation, and reduced medical care use in OAB patients who continued to have urgency symptoms with tolterodine ER 4 mg/day and wished to switch to solifenacin 5/10 mg. This was an open-label, non-comparative study; therefore, further research is needed to confirm these results.

  6. A LINEAR PROGRAMMING METHOD TO ENHANCE RESOURCE UTILIZATION CASE OF ETHIOPIAN APPAREL SECTOR

    Gezahegn Tesfaye

    2016-06-01

    Full Text Available The Ethiopian industrial development strategy is characterized by export-led and labor intensive industrialization. The country is emerging as the most important investment destination in its apparel sector. Thought this sector is expected to generate more income from the export market, its export earnings remain trivial mainly due to the inefficient organizational resource utilization. One of the competent techniques that help companies to efficiently improve the use of their resources to increase their profit is linear programming. In apparel manufacturing firms, efficient use of materials such as fabrics and sewing threads and processing time at different stages of production as well as minimization of labor and materials cost are necessary to enhance their profitability. Cutting, sewing, and finishing operations deserve more attention for apparel process optimization. However, the issue of proper resource allocation remains an unsolved problem within the Ethiopian apparel industry. The aim of this research is to devise efficient resource utilization mechanism for Ethiopian apparel sector to improve their resource utilization and profitability, taking one of the garment factories engaged in the export market as a case study. Five types of products the company is currently producing, the amount of resources employed to produce each unit of the products, and the value of profit per unit from the sale of each products have been collected from the case company. The monthly availability of resources utilized and the monthly production volume of the five products have also been collected from the company. The data gathered was mathematically modeled using a linear programming technique, and solved using MS-Excel solver. The findings of the study depicts that all of the organizational resources are severely underutilized. This research proved that the resource utilization of the case company can be improved from 46.41% of the current resource

  7. Maximizing Technological Resources in Plastic Surgery Resident Education.

    Khansa, Ibrahim; Janis, Jeffrey E

    2015-11-01

    Modern plastic surgery resident education demands the acquisition of an ever-increasing fund of knowledge and familiarity with more surgical techniques than ever before. This all must take place within the context and boundaries of Accreditation Council for Graduate Medical Education-mandated restrictions on work hours as well as balance of education and service. Technological resources have been developed and can be used to complement the skills that residents acquire while performing their day-to-day activities such as taking care of patients, reading textbooks and journal articles, and assisting or performing surgical procedures. Those complementary resources provide the benefits of portability and accessibility, and can thus be conveniently incorporated into the hectic daily life of a resident. This article presents a summary of the most commonly used currently available advanced technologies in plastic surgery resident education, and suggestions for integration of those technologies into a curriculum.

  8. Hawai‘i Distributed Energy Resource Technologies for Energy Security

    None, None

    2012-09-30

    HNEI has conducted research to address a number of issues important to move Hawai‘i to greater use of intermittent renewable and distributed energy resource (DER) technologies in order to facilitate greater use of Hawai‘i's indigenous renewable energy resources. Efforts have been concentrated on the Islands of Hawai‘i, Maui, and O‘ahu, focusing in three areas of endeavor: 1) Energy Modeling and Scenario Analysis (previously called Energy Road mapping); 2) Research, Development, and Validation of Renewable DER and Microgrid Technologies; and 3) Analysis and Policy. These efforts focused on analysis of the island energy systems and development of specific candidate technologies for future insertion into an integrated energy system, which would lead to a more robust transmission and distribution system in the state of Hawai‘i and eventually elsewhere in the nation.

  9. Assessment of material and technical resources of crop production technologies

    V. M. Beylis

    2017-01-01

    Full Text Available The author explains the general principles of influence of the material and technical resources (MTR on performance and efficiency of the main technological operations in crop production. Various technologies from the point of view of MTR expenses were estimated. The general tendencies in development of crop production technologies were revealed. The distribution of costs of materials and equipment to perform a variety of agricultural activities was determined. Cost indicators should be a guide in the search of innovative technological processes and working elements of agricultural machins. The greatest values of expenses of work, fuel, metal, and also, money where found. The concepts allowing to provide costs production reduction were formulated. To achieve the maximum productivity with the minimum expenses, the perspective calculations shoul be based on «progressive» agrotechnologies. When determining progressive agrotechnology it is necessary on reasonable grounds to approach indicators of crop productivity in various agrozones and regions of the country. For an assessment of efficiency of MTR by crop production and ensuring decrease in resource intensity of agricultural products by search and use of essentially new technologies for energy saving when performing agricultural operations, an integrated percentage indicator of comparison of progressive technologies with the applied ones was developed. MTR at application of new progressive crop production technologies by integrated percentage index were estimated. This indicator can be used for definition of efficiency of MTR. Application of the offered technique will promote an effective assessment of MTR, decrease in resource intensity by search and developments of essentially new technologies of performance of operations in crop production.

  10. Utilization characteristics and importance of woody biomass resources on the rural-urban fringe in botswana.

    Nkambwe, Musisi; Sekhwela, Mogodisheng B M

    2006-02-01

    This article examines the utilization characteristics and importance of woody biomass resources in the rural-urban fringe zones of Botswana. In the literature for Africa, attention has been given to the availability and utilization of biomass in either urban or rural environments, but the rural-urban fringe has been neglected. Within southern Africa, this neglect is not justified; the rural-urban fringe, not getting the full benefits available in urban environments in Botswana, has developed problems in woody biomass availability and utilization that require close attention. In this article, socioeconomic data on the importance of woody biomass in the Batlokwa Tribal Territory, on the rural-urban fringe of Gaborone, Botswana, were collected together with ecologic data that reveal the utilization characteristics and potential for regrowth of woody biomass. The analysis of these results show that local woody biomass is very important in the daily lives of communities in the rural-urban fringe zones and that there is a high level of harvesting. However, there is no effort in planning land use in the tribal territory to either conserve this resource or provide alternatives to its utilization. The future of woody biomass resources in Botswana's rural-urban fringe is uncertain. The investigators recommend that a comprehensive policy for the development of the rural-urban fringe consider the importance of this resource. The neglect of this resource will have far-reaching implications on the livelihoods of residents as well as the environment in this zone.

  11. Analysis of Utilization of Fecal Resources in Large-scale Livestock and Poultry Breeding in China

    XUAN Meng

    2018-02-01

    Full Text Available The purpose of this paper is to develop a systematic investigation for the serious problems of livestock and poultry breeding in China and the technical demand of promoting the utilization of manure. Based on the status quo of large-scale livestock and poultry farming in typical areas in China, the work had been done beared on statistics and analysis of the modes and proportions of utilization of manure resources. Such a statistical method had been applied to the country -identified large -scale farm, which the total amount of pollutants reduction was in accordance with the "12th Five-Year Plan" standards. The results showed that there were some differences in the modes of resource utilization due to livestock and poultry manure at different scales and types:(1 Hogs, dairy cattle and beef cattle in total accounted for more than 75% of the agricultural manure storage;(2 Laying hens and broiler chickens accounted for about 65% of the total production of the organic manure produced by fecal production. It is demonstrated that the major modes of resource utilization of dung and urine were related to the natural characteristics, agricultural production methods, farming scale and economic development level in the area. It was concluded that the unreasonable planning, lacking of cleansing during breeding, false selection of manure utilizing modes were the major problems in China忆s large-scale livestock and poultry fecal resources utilization.

  12. Information Technology Management: Hurricane Katrina Disaster Recovery Efforts Related to Army Information Technology Resources

    Jolliffe, Richard B; Burton, Bruce A; Wicecarver, Jacqueline L; Kince, Therese M; Ryan, Susan R; Price, Matthew J; Cleveland, Karma J; N. Pugh, Jacqueline; Milner, Jillisa H; Johnson, Meredith H

    2006-01-01

    ... of Louisiana, Mississippi, Alabama, and Florida with Category 3 winds and torrential rain. This audit report is the first in a planned series of audits on the effects of Hurricane Katrina on DoD information technology resources...

  13. Use of Drying Technologies for Resource Recovery from Solid Wastes and Brines

    Wignarajah, Kanapathipillai; Alba, Ric; Fisher, John W.; Hogan, John A.; Polonsky, Alex

    2010-01-01

    Long term storage of unprocessed biological wastes and human wastes can present major health issues and a loss of potential resources. Space vehicles and planetary habitats are typically resource-scarce or resource-limited environments for long-term human habitation. To-date, most of the resources will need to be supplied from Earth, but this may not be possible for long duration human exploration. Based on present knowledge, there is only very limited in-situ resources on planetary habitats. Hence, the opportunity to "live off the land" in a planetary habitat is limited. However, if we assume that wastes generated by human explorers are viewed as resources, there is great potential to utilize and recycle them, thereby reducing the requirements for supply Earth and enabling the "live off the land" exploration scenario. Technologies used for the recovery of resources from wastes should be reliable, safe, easy to operate, fail-proof, modular, automated and preferably multifunctional in being capable of handling mixed solid and liquid wastes. For a lunar habitat, energy does not appear to be the major driving factor amongst the technologies studied. Instead, reliability appears to be more important[1] . This paper reports studies to date on drying technologies to remove water from solid wastes and brines. Experimental performance data obtained for recovery water from wastes and brine are presented. Simplicity of operation of hardware and energy efficiency are discussed. Some improvements and modifications to hardware were performed. Hopefully, this information will assist in future efforts in the "downselection" of technologies for recovery of water and resources from solid wastes and brines.

  14. Intelligent products for enhancing the utilization of tracking technology in transportation

    Meyer, Gerben G.; Buijs, Paul; Szirbik, Nick B.; Wortmann, J.C.

    2014-01-01

    Purpose – Many transportation companies struggle to effectively utilize the information provided by tracking technology for performing operational control. The research as presented in this paper aims to identify the problems underlying the inability to utilize tracking technology within this

  15. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  16. Advancing Partner Notification Through Electronic Communication Technology: A Review of Acceptability and Utilization Research.

    Pellowski, Jennifer; Mathews, Catherine; Kalichman, Moira O; Dewing, Sarah; Lurie, Mark N; Kalichman, Seth C

    2016-06-01

    A cornerstone of sexually transmitted infection (STI) prevention is the identification, tracing, and notification of sex partners of index patients. Although partner notification reduces disease burden and prevents new infections as well as reinfections, studies show that only a limited number of partners are ever notified. Electronic communication technologies, namely, the Internet, text messaging, and phone calls (i.e., e-notification), have the potential to expand partner services. We conducted a systematic review of studies that have investigated the acceptability and utility of e-notification. We identified 23 studies that met the following criteria: (a) 9 studies presented data on the acceptability of technology-based communications for contacting sex partner(s), and (b) 14 studies reported on the utilization of communication technologies for partner notification. Studies found high levels of interest in and acceptability of e-notification; however, there was little evidence for actual use of e-notification. Taken together, results suggest that electronic communications could have their greatest impact in notifying less committed partners who would otherwise be uninformed of their STI exposure. In addition, all studies to date have been conducted in resource-rich countries, although the low cost of e-notification may have its greatest impact in resource-constrained settings. Research is needed to determine the best practices for exploiting the opportunities afforded by electronic communications for expanding STI partner services.

  17. Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies

    Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States); Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Tanana, Heather [Univ. of Utah, Salt Lake City, UT (United States); Kline, Michelle [Univ. of Utah, Salt Lake City, UT (United States)

    2011-01-01

    Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil equivalent and our nation’s richest oil sands resources. If economically feasible and environmentally responsible means of tapping these resources can be developed, these resources could provide a safe and stable domestic energy source for decades to come. In Utah, oil shale and oil sands resources underlay a patchwork of federal, state, private, and tribal lands that are subject to different regulatory schemes and conflicting management objectives. Evaluating the development potential of Utah’s oil shale and oil sands resources requires an understanding of jurisdictional issues and the challenges they present to deployment and efficient utilization of emerging technologies. The jurisdictional patchwork and divergent management requirements inhibit efficient, economic, and environmentally sustainable development. This report examines these barriers to resource development, methods of obtaining access to landlocked resources, and options for consolidating resource ownership. This report also examines recent legislative efforts to wrest control of western public lands from the federal government. If successful, these efforts could dramatically reshape resource control and access, though these efforts appear to fall far short of their stated goals. The unintended consequences of adversarial approaches to obtaining resource access may outweigh their benefits, hardening positions and increasing tensions to the detriment of overall coordination between resource managers. Federal land exchanges represent a more efficient and mutually beneficial means of consolidating management control and improving management efficiency. Independent of exchange proposals, resource managers must improve coordination, moving beyond mere consultation with neighboring landowners and sister agencies to coordinating actions with them.

  18. Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense

    Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Drake, B. G.; Friedensen, V. P.

    2012-12-01

    Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at a NEA with total mission duration limits of 180 days or less. Hence, these missions would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while simultaneously conducting detailed investigations of these primitive objects with instruments and equipment that exceed the mass and power capabilities delivered by robotic spacecraft. All of these activities will be vital for refinement of resource characterization/identification and development of extraction/utilization technologies to be used on airless bodies under low- or micro-gravity conditions. In addition, gaining enhanced understanding of a NEA's geotechnical properties and its gross internal structure will assist the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific, resource utilization, and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted sample return mission to a NEA using NASA's proposed human exploration systems a compelling endeavor.

  19. Resource allocation on computational grids using a utility model and the knapsack problem

    Van der ster, Daniel C; Parra-Hernandez, Rafael; Sobie, Randall J

    2009-01-01

    This work introduces a utility model (UM) for resource allocation on computational grids and formulates the allocation problem as a variant of the 0–1 multichoice multidimensional knapsack problem. The notion of task-option utility is introduced, and it is used to effect allocation policies. We present a variety of allocation policies, which are expressed as functions of metrics that are both intrinsic and external to the task and resources. An external user-defined credit-value metric is shown to allow users to intervene in the allocation of urgent or low priority tasks. The strategies are evaluated in simulation against random workloads as well as those drawn from real systems. We measure the sensitivity of the UM-derived schedules to variations in the allocation policies and their corresponding utility functions. The UM allocation strategy is shown to optimally allocate resources congruent with the chosen policies.

  20. Preface: Terrestrial Fieldwork to Support in situ Resource Utilization (ISRU) and Robotic Resource Prospecting for Future Activities in Space

    Sanders, Gerald B.

    2015-05-01

    Finding, extracting, and using resources at the site of robotic and human exploration activities holds the promise of enabling sustainable and affordable exploration of the Moon, Mars, and asteroids, and eventually allow humans to expand their economy and habitation beyond the surface of the Earth. Commonly referred to as in situ Resource Utilization (ISRU), mineral and volatile resources found in space can be converted into oxygen, water, metals, fuels, and manufacturing and construction materials (such as plastics and concrete) for transportation, power, life support, habitation construction, and part/logistics manufacturing applications. For every kilogram of payload landed on the surface of the Moon or Mars, 7.5-11 kg of payload (mostly propellant) needs to be launched into low Earth orbit. Therefore, besides promising long-term self-sufficiency and infrastructure growth, ISRU can provide significant reductions in launch costs and the number of launches required. Key to being able to use space resources is knowing where they are located, how much is there, and how the resources are distributed. While ISRU holds great promise, it has also never been demonstrated in an actual space mission. Therefore, operations and hardware associated with each ISRU prospecting, excavation, transportation, and processing step must be examined, tested, and finally integrated to enable the end goal of using space resources in future human space missions.

  1. Measures for increased nutrition and utilization of non-conventional food resources during disasters in Africa.

    Nur, I M

    1999-01-01

    The basic causes of the poor performance of the food and agricultural sector in the different parts of Africa are external, internal, and natural. The general recession in the Continent limits the capacity of the respective countries to import food to supplement inadequate domestic production and supplies. There are a number of nutritious food resources, both cultivated and gathered in the different ecological zones of Africa, whose production and consumption can be increased to ensure adequate food security and a nutritious diet, especially during disasters. These food resources could include: cereals, legumes, fruits, vegetables, fish, and insects. These food resources already are available over wide geographical areas in Africa and are utilized or utilized to a limited extent. Therefore, strategies to increase food supply, eradicate hunger and malnutrition, and keep people alive in times of disasters should have as a priority, the cultivation and consumption of non-conventional food resources in the respective communities and countries.

  2. [Effects of fish on field resource utilization and rice growth in rice-fish coculture].

    Zhang, Jian; Hu, Liang Liang; Ren, Wei Zheng; Guo, Liang; Wu, Min Fang; Tang, Jian Jun; Chen, Xin

    2017-01-01

    Rice field can provide habitat for fish and other aquatic animals. Rice-fish coculture can increase rice yield and simultaneously reduce the use of chemicals through reducing rice pest occurrence and nutrient complementary use. However, how fish uses food sources (e.g. phytoplankton, weeds, duckweed, macro-algal and snail) from rice field, and whether the nutrients releasing from those food sources due to fish transforming can improve rice growth are still unknown. Here, we conducted two field experiments to address these questions. One was to investigate the pattern of fish activity in the field using the method of video recording. The other was to examine the utilization of field resources by fish using stable isotope technology. Rice growth and rice yield were also exa-mined. Results showed that fish tended to be more active and significantly expanded the activity range in the rice-fish coculture compared to fish monoculture (fish not living together with rice plants). The contributions of 3 potential aquatic organisms (duckweed, phytoplankton and snail) to fish dietary were 22.7%, 34.8% and 30.0% respectively under rice-fish coculture without feed. Under the treatment with feed, however, the contributions of these 3 aquatic organisms to the fish die-tary were 8.9%, 5.9% and 1.6% respectively. The feed contribution was 71.0%. Rice-fish coculture significantly increased the nitrogen concentration in rice leaves, prolonged tillering stage by 10-12 days and increased rice spike rate and yield. The results suggested that raising fish in paddy field may transform the nutrients contained in field resources to bioavailable for rice plants through fish feeding activity, which can improve rice growth and rice yield.

  3. Why environmental and resource economists should care about non-expected utility models

    Shaw, W. Douglass; Woodward, Richard T. [Department of Agricultural Economics, Texas A and M University (United States)

    2008-01-15

    Experimental and theoretical analysis has shown that the conventional expected utility (EU) and subjective expected utility (SEU) models, which are linear in probabilities, have serious limitations in certain situations. We argue here that these limitations are often highly relevant to the work that environmental and natural resource economists do. We discuss some of the experimental evidence and alternatives to the SEU. We consider the theory used, the problems studied, and the methods employed by resource economists. Finally, we highlight some recent work that has begun to use some of the alternatives to the EU and SEU frameworks and discuss areas where much future work is needed. (author)

  4. Strategies to advance vaccine technologies for resource-poor settings.

    Kristensen, Debra; Chen, Dexiang

    2013-04-18

    New vaccine platform and delivery technologies that can have significant positive impacts on the effectiveness, acceptability, and safety of immunizations in developing countries are increasingly available. Although donor support for vaccine technology development is strong, the uptake of proven technologies by the vaccine industry and demand for them by purchasers continues to lag. This article explains the challenges and opportunities associated with accelerating the availability of innovative and beneficial vaccine technologies to meet critical needs in resource-poor settings over the next decade. Progress will require increased dialog between the public and private sectors around vaccine product attributes; establishment of specifications for vaccines that mirror programmatic needs; stronger encouragement of vaccine developers to consider novel technologies early in the product development process; broader facilitation of research and access to technologies through the formation of centers of excellence; the basing of vaccine purchase decisions on immunization systems costs rather than price per dose alone; possible subsidization of early technology adoption costs for vaccine producers that take on the risks of new technologies of importance to the public sector; and the provision of data to purchasers, better enabling them to make informed decisions that take into account the value of specific product attributes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. [Home health resource utilization measures using a case-mix adjustor model].

    You, Sun-Ju; Chang, Hyun-Sook

    2005-08-01

    The purpose of this study was to measure home health resource utilization using a Case-Mix Adjustor Model developed in the U.S. The subjects of this study were 484 patients who had received home health care more than 4 visits during a 60-day episode at 31 home health care institutions. Data on the 484 patients had to be merged onto a 60-day payment segment. Based on the results, the researcher classified home health resource groups (HHRG). The subjects were classified into 34 HHRGs in Korea. Home health resource utilization according to clinical severity was in order of Minimum (C0) service utilization moderate), and the lowest 97,000 won in group C2F3S1, so the former was 5.82 times higher than the latter. Resource utilization in home health care has become an issue of concern due to rising costs for home health care. The results suggest the need for more analytical attention on the utilization and expenditures for home care using a Case-Mix Adjustor Model.

  6. The utilization of natural resources under the conditions of intersectoral intergration

    Dankevych, Ye.; Данкевич, Є. М.

    2013-01-01

    The paper studies and analyses the present-day state of the utilization of natural resources by agricultural commodity producers. Some changes of the natural components under the conditions of the increased anthropological load on landscape have been revealed. The author investigates the basic production factors which essentially influence the agrolandscape. It has been established that the increase in the technical level stipulates the human interference with natural complexes, land resource...

  7. Hardware Implementation of LMS-Based Adaptive Noise Cancellation Core with Low Resource Utilization

    Omid Sharifi Tehrani

    2011-10-01

    Full Text Available A hardware implementation of adaptive noise cancellation (ANC core is proposed. Adaptive filters are widely used in different applications such as adaptive noise cancellation, prediction, equalization, inverse modeling and system identification. FIR adaptive filters are mostly used because of their low computation costs and their linear phase. Least mean squared algorithm (LMS is used to train FIR adaptive filter weights. Advances in semiconductor technology especially in digital signal processors (DSP and field programmable gate arrays (FPGA with hundreds of mega hertz in speed, will allow digital designers to embed essential digital signal processing units in small chips. But designing a synthesizable core on an FPGA is not always as simple as DSP chips due to complexity and limitations of FPGAs. In this paper we design anLMS-based FIR adaptive filter for adaptive noise cancellation based on VHDL97 hardware description language (HDL and Xilinx SPARTAN3E (XC3S500E which utilizes low resources and is high performance and FPGA-brand independent so can be implemented on different FPGA brands (Xilinx, ALTERA, ACTEL. Simulations are done in MODELSIM and MATLAB and implementation is done with Xilinx ISE. Finally, result are compared with other papers for better judgment.

  8. Human resources management in the water utilities of Hermosillo and Mexicali

    Edmundo Loera Burnes; Alejandro Salazar Adams

    2017-01-01

    This paper studies how the Human Resources Management Systems (HRMS) influence the performance of water utilities in Mexico. The differentiated performance of the water utilities of the cities of Hermosillo and Mexicali were compared to their HRMS characteristics through the analysis of four categories: 1) Hiring policies, 2) Development and training, 3) Salaries, benefits and incentives, and 4) Sanct...

  9. Approach to improve construction management utilizing information technology

    Lee, Woo Bang; Moon, Jin Yeong

    2003-01-01

    Korea Hydro and Nuclear Power (KHNP) has been managed Nuclear Power Plant (NPP) construction projects including basic project planning, design, procurement, construction and start-up for nearly 30 years, and taken the leading role in the self-reliance program for constructing NPP. To maintain its leading position of construction technology and export it to other countries, it is more likely required to build the strong and competitive business management system to improve internal business efficiency and transparency, and also to respond to the change of external business circumstances such as electricity market opening. KHNP is implementing Enterprise Resource Planning (ERP) System as a business innovation tool to improve business efficiency, which changes the way of performing work from organizational system to process-oriented system in order to optimize the company resources to achieve above goals. This change should be made based on the results of performing Business Process Re-engineering (BPR) to maximize overall business efficiency. For the construction project management area, the establishment of Integrated Construction Information Sharing System based on Information Technology (IT) is the most important part. It makes possible to build collaboration system with 'Win-Win strategy' between the project owner and all related entities and to contribute to secure transparency and cut the project cost down. We would like to introduce our NPP Construction Project Management System, Infrastructure for Information System, Information Sharing System among construction related entities and Implementation Practices in this paper and also include the suggestions on our customary practice and subject that should be improved

  10. Utilization of microbial lebensraum. Modern developments in biologic technologies

    Praeve, P [Farbwerke Hoechst A.G., Frankfurt am Main (Germany, F.R.)

    1977-04-01

    Microbiology was in former times nearly exclusively used in the region of food and for the production of antibiotics. Biomass production must be seen as a key development among the new biotechnologies. Biomass consists of high-fat and protein-rich microorganisms, which can serve as animal feed. These microorganisms not only grow on cellulose wastes and other biological basic substrates but also on mineral oil and methanol. The energy consumption is relatively low. The increasing knowledge of the problems of one-way-technologies for our time makes todays biotechnology seem to be a very promising development. Biotechnology utilizes the cyclic metabolic way of the microorganisms and can in many cases lead back waste products to natural circulation.

  11. The directory of US coal and technology export resources

    1990-10-01

    The purpose of The Directory remains focused on offering a consolidated resource to potential buyers of US coal, coal technology, and expertise. This is consistent with the US policy on coal and coal technology trade, which continues to emphasize export market strategy implementation. Within this context, DOE will continue to support the teaming'' approach to marketing; i.e., vertically integrated large project teams to include multiple industry sectors, such as coal producers, engineering and construction firms, equipment manufacturers, financing and service organizations.

  12. Coal resources - issues and technological outlook for the future

    Ando, K.

    2000-01-01

    In presenting the need to consider resources, utilisation and environment as interrelated rather than separate aspects, Dr Ando puts the case for increased cooperation and mutual trust between the coal producer, Australia, and the coal consumer, Japan, to ensure not only the growth of the industry but also a rational and long term response to the greenhouse challenge. On the use side the top priority is considered to be the improvement in combustion efficiency by promoting further development of clean coal technology. To achieve these goals, parties on both sides must build programs of international cooperation that encompass the transfer of such technology

  13. Surveillance and analysis of nuclear R and D manpower for efficient utilization of KAERI's nuclear R and D resources

    Kim, Hyun Jun; Yang, M. H.; Song, K. D.; Chung, W. S.; Yun, S. W.; Won, B. C.; Yoon, H. M.

    1999-11-01

    This study aimed at securing row data on KAERI's manpower resources, which be useful to establish the short and long term R and D policy of KAERI. To coincide with the objectives, this study covered following scopes; (1) identification of status and issues of manpower in science and technology fields, (2) identification of status and issues of KAERI's manpower management policy, (3) gathering row data on KAERI's manpower through surveillance and analysis, and analyzing staff's perception on KAERI's manpower utilization policy, (4) suggestion of short and long term policy direction of manpower management of KAERI. (author)

  14. Development of Technological Profiles for Transfer of Energy- and Resource Saving Technologies

    Lysenko, V.S.

    2015-01-01

    Full Text Available The article deals with the methodological foundations for the development of technological profiles for «System of Transfer of Energy- and Resource Saving Technologies». It is determined that a compliance with the methodology and standards of the European network «Relay Centers» (Innovation Relay Centers — IRC network, since 2008 — EEN, the Russian Technology Transfer Network RTTN and Uk rainian Technology Transfer Network UTTN is the main pri nciple of the development process of technological requests and offers.

  15. Report on the achievements in fiscal 1999. Technology to use gas hydrate as a resource (Research and development for exploration, research and development on drilling technologies, investigative research on an environment influence evaluation method, and investigative research on a utilization system); 1999 nendo gas hydrate shigenka gijutsu sendo kenkyu kaihatsu seika hokokusho. Tansa nado ni kansuru kenkyu kaihatsu, kussaku gijutsu nado ni kansuru kenkyu kaihatsu, kankyo eikyo hyokaho no chosa kenkyu, riyo system ni kansuru chosa kenkyu

    NONE

    2000-03-01

    The contents of the research and development performed in the current fiscal year are as follows: (1) research and development for exploration, (2) research and development on drilling technologies, (3) investigative research on an environment influence evaluation method, and (4) investigative research on a utilization system. In Item (1), element analysis data are used to study a method to estimate production environment of hydrate ore beds by using an inorganic ion analyzer and a trace amount element analyzer, the crust thermal flow measuring method is used to discuss a method to analyze the hydrate stability zones together with the data of sea area exploration records, and conceptual design is made on a resource potential evaluation system. In Item (2), experiments and analytical discussions are performed on decomposition control of the gas hydrate solid-liquid interface according to such conditions for the drilling fluid as temperatures and flow rates. Elucidation is given on the initial process of bubble generation for behavior of decomposed gas bubbles. Observation and elucidation are made on two-phase flow behavior of non-Newtonian fluid. In Item (3), conceptual design is carried out on a system to detect elements of shape change in each bed due to fluid movement in a gas hydrate bed and an upper bed. In Item (4), discussions are given on the optimizing conditions for generation and dissociation of gas hydrates. Investigation is made also on a possibility of the transportation and storage system. (NEDO)

  16. Teaching with technology: free Web resources for teaching and learning.

    Wink, Diane M; Smith-Stoner, Marilyn

    2011-01-01

    In this bimonthly series, the department editor examines how nurse educators can use Internet and Web-based computer technologies such as search, communication, collaborative writing tools; social networking, and social bookmarking sites; virtual worlds; and Web-based teaching and learning programs. In this article, the department editor and her coauthor describe free Web-based resources that can be used to support teaching and learning.

  17. The Battle for New Resources: Minor minerals in green technologies

    David S. ABRAHAM

    2012-01-01

    Emerging green technologies are the most significant and realistic path to reducing global dependence on polluting fossil fuels while simultaneously decreasing the reliance of many countries on oil-rich regimes to meet their energy needs. However, as nations begin to rely on green energy products, they are trading one set of resource dependencies for another. Wind and sun produce energy, but rare minerals like neodymium and tellurium are essential in applications to harness that power. To the...

  18. Photovoltaic technology for sustainability: An investigation of the distributed utility concept as a policy framework

    Letendre, Steven Emery

    The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables

  19. Utilização de recurso tecnológico como agente facilitador do trabalho de enfermagem Utilización de recursos tecnológicos como agentes facilitadores del trabajo de enfermería The utilization of technological resources as a facilitator agent for nursing work

    Cristiane Bellini

    1996-07-01

    Full Text Available Atualmente recursos tecnológicos vêm sendo empregados no sentido de facilitar a execução de diversas atividades laborais, entre eles encontra-se o elevador de pacientes impossibilitados, cujo uso viso evitar o desgaste físico ao trabalhador de enfermagem. Os objetivos deste estudo foram averiguar o motivo da não utilização de tal recurso disponível em uma clínica de neurologia e elaborar um roteiro de orientação e treinamento para sua utilização. Os resultados apontam como motivo da não utilização; o desconhecimento do manuseio adequado, a falta de orientação e o treinamento dos trabalhadores de enfermagem. É apresentado o roteiro para treinamento incluindo o procedimento técnico.Actualmente son usados recursos tecnológicos para facilitar la ejecución de diferentes actividades laborales, entre los cuales se encuentra el ascensor de pacientes imposibilitados, que evita el desgaste físico excesivo del trabajador de enfermería. Los objetivos de este trabajo fueron averiguar el motivo de la utilización de este recurso disponible en una clínica de neurología y elaborar una guía de orientación y entrenamiento para su uso. Los resultados indicaran que el motivo de la no utilización del ascensor es la falta de entrenamiento de los trabajadores de enfermería. En anexo se presenta la guía de entrenamiento.Nowadays technological resources are being employed to facilitate several work activities. This includes patient's elevator which is essential for their moving for their moving and transportation without causing excessive physical stress for the nursing group. The objectives of this study were to investigate the reason for the lack of use of this type of orientation and training. The results showed us that cause for non utilization of this resource was the lack of training of the nursing team. The guidelines for teaching and training are presented.

  20. Human resources management in the water utilities of Hermosillo and Mexicali

    Edmundo Loera Burnes

    2017-05-01

    Full Text Available

    This paper studies how the Human Resources Management Systems (HRMS influence the performance of water utilities in Mexico. The differentiated performance of the water utilities of the cities of Hermosillo and Mexicali were compared to their HRMS characteristics through the analysis of four categories: 1 Hiring policies, 2 Development and training, 3 Salaries, benefits and incentives, and 4 Sanctions systems. The main differences between these utilities are on categories 2 and 3, where Mexicali shows greater levels. The study provides a vision of water utilities from the point of view of HRMG, which has not been taken into account in previous research. Although Mexicali provides its workers with better training and incentives, it is observed that the influence of local governments and the excessive power of unions have led to weak HRMS that affect the performance of water utilities.

  1. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    situ resource utilization on the Moon and Mars. In parallel, there may be commercial applications here on earth, such as new green technologies for metals extraction and for treatment of hazardous waste, e.g., fixing heavy metals.

  2. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Baresi, Larry

    1989-03-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  3. Utilizing information technologies for lifelong monitoring in diabetes patients.

    Capozzi, Davide; Lanzola, Giordano

    2011-01-01

    Information and communication technologies have long been acknowledged to support information sharing along the whole chain of care, from the clinic to the homes of patients and their relatives. Thus they are increasingly being considered for improving the delivery of health care services also in light of clinical and technological achievements that propose new treatments requiring a tighter interaction among patients and physicians. The multiagent paradigm has been utilized within an architecture for delivering telemedicine services to chronic outpatients at their domiciles and enforcing cooperation among patients, caregivers, and different members of the health care staff. The architecture sees each communication device such as a palmtop, smart phone, or personal digital assistant as a separate agent upon which different services are deployed, including telemetry, reminders, notifications, and alarms. Decoupling services from agents account for a highly configurable environment applicable to almost any context that can be customized as needed. The architecture has been used for designing and implementing a prototypical software infrastructure, called LifePhone, that runs on several communication devices. A basic set of services has been devised with which we were able to configure two different applications that address long-term and short-term monitoring scenarios for diabetes patients. The long-term scenario encompasses telemetry and reminder services for patients undergoing peritoneal dialysis, which is a treatment for chronic renal failure, a diabetes complication. The short-term scenario incorporates telemetry and remote alarms and is applicable for training patients to use an artificial pancreas. Our experiments proved that an infrastructure such as LifePhone can be used successfully for bridging the interaction gap that exists among all the components of a health care delivery process, improving the quality of service and possibly reducing the overall

  4. Decision making for multiple utilization of water resources in New Zealand

    Memon, Pyar Ali

    1989-09-01

    The Clutha is the largest river in New Zealand. The last two decades have witnessed major conflicts centered on the utilization of the water resources of the upper Clutha river. These conflicts have by no means been finally resolved. The focus of this article is on institutional arrangements for water resource management on the Clutha, with particular reference to the decision-making processes that have culminated in the building of the high dam. It critically evaluates recent experiences and comments on future prospects for resolving resource use conflicts rationally through planning for multiple utilization in a climate of market led policies of the present government. The study demonstrates the inevitable conflicts that can arise within a public bureaucracy that combines dual responsibilities for policy making and operational functions. Hitherto, central government has been able to manipulate the water resource allocation process to its advantage because of a lack of clear separation between its two roles as a policy maker and developer. The conflicts that have manifested themselves during the last two decades over the Clutha should be seen as part of a wider public debate during the last two decades concerning resource utilization in New Zealand. The Clutha controversy was preceded by comparable concerns over the rising of the level of Lake Manapouri during the 1960s and has been followed by the debate over the “think big” resource development projects during the 1980s. The election of the fourth Labour government in 1983 has heralded a political and economic policy shift in New Zealand towards minimizing the role of public intervention in resource allocation and major structural reforms in the relative roles of central and regional government in resource management. The significance of these changes pose important implications for the future management of the Clutha.

  5. High School Administrative Staffing in Washington State: Principal Perspectives on Resource Needs and Utilization

    Steach, John C.

    2011-01-01

    This mixed methods study explored how high school principals prioritize their work and utilize available human resources to adjust to inadequate administrative staffing. Analysis of staffing levels across the state of Washington and specifically inside two eastern Washington districts framed interview questions for central office administration…

  6. A Multicase Study: Exploring Human Resource Information System Implementation and Utilization in Multinational Corporations in Kenya

    Nzyoka Yongo, Cyd W.

    2016-01-01

    Implementation and utilization of human resource information system (HRIS) though a very desirable prospect for many organizations, still remains a daunting task for many. This has been daunting because of prohibitive costs, security risks, top management resistance, employee attitudes, and so forth. Trends globally show that, organizations that…

  7. Resource utilization implications of treatment were able to be assessed from appropriately reported clinical trial data

    Poole-Wilson, Philip A.; Kirwan, Bridget-Anne; Voko, Zoltan; de Brouwer, Sophie; Dunselman, Peter H. J. M.; van Dalen, Frederik J.; Lubsen, Jacobus

    Background and Objective: Published clinical trial data rarely allow assessment of the health care resource utilization implications of treatment. We give an example of how these can be assessed given appropriate tabulation of data. Methods: Data from a trial comparing long-acting nifedipine

  8. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

    Limberger, J.|info:eu-repo/dai/nl/371572037; Boxem, T.; Pluymaekers, Maarten; Bruhn, David; Manzella, Adelle; Calcagno, Philippe; Beekman, F.|info:eu-repo/dai/nl/123556856; Cloetingh, S.|info:eu-repo/dai/nl/069161836; van Wees, J.-D.

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  9. Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization

    Limberger, J.; Boxem, T.; Pluymaekers, M.; Bruhn, D.; Manzella, A.; Calcagno, P.; Beekman, F.; Cloetingh, S.; Wees, J.D. van

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  10. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

    Limberger, Jon; Boxem, Thijs; Pluymaekers, Maarten; Bruhn, D.F.; Manzella, Adele; Calcagno, Philippe; Beekman, Fred; Cloetingh, S.A.P.L.; van Wees, Jan Diederik

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  11. The Resource Utilization of Women Who Use Violence in Intimate Relationships

    Swan, Suzanne C.; Sullivan, Tami P.

    2009-01-01

    Studies have found high rates of help seeking among domestic violence victims. However, little research has investigated the help-seeking patterns of women who use violence (many of whom are also abused). Understanding the resources utilized by women who are violent toward their partners may aid in designing interventions that will reduce the…

  12. UTILIZATION OF SECONDARY COMBUSTIBLE POWER RESOURCES FOR PRODUCTION OF MUNICIPAL AND HOUSEHOLD FUEL

    N. I. Berezovsky

    2005-01-01

    Full Text Available The paper shows an advantage to utilize secondary power resources (lignin, wastes of fine coal with its dressing, sawdust in mixture with local types of fuel (peat in order to fulfill power supply purpose, namely: obtaining hot water in boilers of small capacity and obtaining household fuel.

  13. Resource Utilization Associated with Extracardiac Co-morbid Conditions Following Congenital Heart Surgery in Infancy.

    Tuomela, Krista E; Gordon, John B; Cassidy, Laura D; Johaningsmeir, Sarah; Ghanayem, Nancy S

    2017-06-01

    Congenital heart disease (CHD) is often associated with chronic extracardiac co-morbid conditions (ECC). The presence of ECC has been associated with greater resource utilization during the operative period; however, the impact beyond hospital discharge has not been described. This study sought to understand the scope of chronic ECC in infants with CHD as well as to describe the impact of ECC on resource utilization after discharge from the index cardiac procedure. IRB approved this retrospective study of infants Whitney Rank Sum Test with p < 0.05 considered significant. ECC occurred in 55% (481/876) of infants. Median STAT score was higher in the group with ECC (3 vs. 2, p < 0.001). Resource utilization after discharge from the index procedure as defined by median hospital charges (78 vs. 10 K, p < 0.001 and unplanned hospital days 4 vs. 0, p < 0.001) was higher in those with ECC, and increased with the greater number of ECC, even after accounting for surgical complexity. STAT score and the presence of multiple ECC were associated with higher resource utilization following the index cardiac surgical procedure. These data may be helpful in deciding which children might benefit from a cardiac complex care program that partners families and providers to improve health and decrease healthcare costs.

  14. Connecting congregations: technology resources influence parish nurse practice.

    Zerull, Lisa M; Near, Kelly K; Ragon, Bart; Farrell, Sarah P

    2009-01-01

    This descriptive pilot study evaluated the influence of health resource information education and the use of Web-based communication technology on the professional practice of the parish nurse in the congregational setting. Five parish nurse participants from varied denominations in rural and nonrural Virginia received a laptop computer, printer, video projector, and webcam along with high-speed Internet access in each congregational setting. The nurses attended two group education sessions that incorporated computer applications and training in accessing and using quality health information resources and communication applications such as a group "chat" software and webcam to communicate with others through high-speed Internet access. Qualitative analysis from semistructured interviews of nurses confirmed that participants found the project to be beneficial in terms of awareness, education, and applicability of technology use in parish nurse practice. Quantitative data from preproject and postproject surveys found significant differences in nurses' abilities and confidence with technology use and application. Findings showed that the knowledge and experience gained from this study enhanced parish nurse practice and confidence in using technology for communication, health education, and counseling.

  15. Issue of fossil fuel resources and coal technology strategy for the 21st century - toward the globalization

    Ando, K. [Japan Coal Energy Center, Tokyo (Japan)

    2001-03-01

    The President of the Japan Coal Energy Centre gives an outlook on coal demand worldwide and particularly in Asia as a whole and Japan, and outlines the present day environmental concerns concerning coal. World reserves of coal, petroleum, natural gas and uranium are compared. The huge resources of coal may not be realized due to difficulty of development in both technical and economic terms. The 'triangle strategy' to resolve problems of supply and the environment is outlined - this considers the relationship between resources (supply) and utilization (demand); between resources and environment; and between utilization and environment. Technical tasks to tackle to exploit coal are listed. These include: advance in technology for resource exploration; improvement in refining and storing low-grade coal; establishing a highly efficient mining system; promoting of clean coal technology; recovery of coalbed methane; and CO{sub 2} fixation. 6 figs., 1 tab.

  16. Check valve diagnostics utilizing acoustic and magnetic technologies

    Agostinelli, A.

    1991-01-01

    The potential hazards associated with check valve failures make it necessary to detect check valve problems before they cause significant damage. In the nuclear industry, check valve failures are known to have resulted in damaging water hammer conditions, overpressurization of low pressure systems, steam binding of auxiliary feedwater pumps, and other serious component damage in power plant environments. Similar problems exist in fossil power and various process industries, but the resources dedicated to valve maintenance issues are greatly reduced. However, the trend toward plant life extension, predictive maintenance, and maximum operating efficiency will raise the general awareness of check valve maintenance in commercial (non-nuclear) applications. Although this paper includes specific references to the nuclear industry, the check valve problem conditions and diagnostic techniques apply across all power and process plant environments. The ability to accurately diagnose check valve conditions using non-intrusive, predictive maintenance testing methods allows for a more cost-efficient, productive maintenance program. One particular diagnostic system, called Quickcheck trademark, assists utilities in addressing these concerns. This article presents actual field test data and analysis that demonstrate the power of check valve diagnostics. Prior to presenting the field data, a brief overview of the system is overviewed

  17. Microvascular reconstruction and tracheotomy are significant determinants of resource utilization in head and neck surgery.

    Cohen, J; Stock, M; Chan, B; Meininger, M; Wax, M; Andersen, P; Everts, E

    2000-08-01

    Successful "critical pathway" design and implementation are dependent on appropriate patient stratification according to those factors that are primary determinants of resource utilization. To test the validity of our previously reported critical pathway design and to determine whether tracheotomy and microvascular reconstruction (MR) are primary determinants of resource utilization. Cost-effectiveness analysis. Tertiary referral academic institution. Retrospective analysis of data from 133 head and neck surgery cases in which the treatment regimen was based on critical pathways over a 26-month period. Length of stay and total patient charges were used as indices of resource utilization. One-way analysis of variance and t tests were used for statistical analysis of significance. Ninety patients (67.7%) underwent MR; 43 (32. 3%) did not. Seventy-five patients (56.4%) underwent tracheotomy; 58 (43.6%) did not. Four patient groups were constructed in decreasing order of complexity as follows: group 1, patients who underwent both tracheotomy and MR (n = 58); group 2, patients who underwent MR alone (n = 32); group 3, patients who underwent tracheotomy alone (n = 17); and group 4, patients who did not undergo either procedure (n = 26). Both tracheotomy and MR were found to be independent determinants of resource utilization and were additive when both were present. The length of stay varied from 8.4 days (in patients who underwent both procedures) to 6.7 days (in patients who did not undergo either procedure), with intermediate values in cases in which only 1 procedure was performed. The total charges varied in a similar manner from a high of $33,371 to a low of $19,994. Subanalysis with respect to intensive care unit, ward, and operating room charges showed a similar stratification. Tracheotomy and MR are both significant determinants of charges and length of stay in head and neck surgery cases and must be considered in the design of strategies to promote efficient

  18. Fundamentals of converging mining technologies in integrated development of mineral resources of lithosphere

    Trubetskoy, KN; Galchenko, YuP; Eremenko, VA

    2018-03-01

    The paper sets forth a theoretical framework for the strategy of the radically new stage in development of geotechnologies under conditions of rapidly aggravating environmental crisis of the contemporary technocratic civilization that utilizes the substance extracted from the lithosphere as the source of energy and materials. The authors of the paper see the opportunity to overcome the conflict between the techno- and bio-spheres in the area of mineral raw materials by means of changing the technological paradigm of integrated mineral development by implementing nature-like technologies oriented to the ideas and methods of converging resources of natural biota as the object of the environmental protection and geotechnologies as the major source of ecological hazards induced in the course of development of mineral resources of lithosphere.

  19. Evaluating healthcare resource utilization and outcomes for surgical hip dislocation and hip arthroscopy for femoroacetabular impingement.

    de Sa, Darren; Horner, Nolan S; MacDonald, Austin; Simunovic, Nicole; Slobogean, Gerard; Philippon, Marc J; Belzile, Etienne L; Karlsson, Jon; Ayeni, Olufemi R

    2016-12-01

    Surgical hip dislocation (SHD) and hip arthroscopy are surgical methods used to correct deformity associated with femoroacetabular impingement (FAI). Though both of these approaches appear to benefit patients, no studies exist comparing healthcare resource utilization of the two surgical approaches. This systematic review examines the literature and the records of two surgeons to evaluate the resource utilization associated with treating symptomatic FAI via these two methods. EMBASE, MEDLINE and PubMed were searched for relevant articles. The articles were systematically screened, and data was abstracted in duplicate. To further supplement resource utilization data, a retrospective chart review of two surgeon's patient data (one using SHD and another using an arthroscopic approach) was completed. Experts in pharmacy, physiotherapy, radiology, anaesthesia, physiatry and the local hospital finance department were also consulted. There were 52 studies included with a total of 460 patients (535 hips) and 3886 patients (4147 hips) who underwent SHD and arthroscopic surgery for FAI, respectively. Regardless of approach, most patients treated for symptomatic FAI improved across various outcomes measures with low complication rates. Surgical time across all approaches was similar, averaging 118 ± 2 min. On a per patient basis, hip arthroscopy ($10,976) uses approximately 41 % of the resources of SHD ($24,379). There were no significant differences in outcomes for FAI treated with SHD or arthroscopy. However, with regard to healthcare resource utilization based on the OHIP healthcare system, hip arthroscopy uses substantially less resources than SHD within the first post-operative year. Systematic Review of Level IV Studies, Level IV.

  20. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  1. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects

    Puyol, Daniel; Batstone, Damien J.; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O.

    2017-01-01

    Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept. PMID:28111567

  2. Injury surveillance in low-resource settings using Geospatial and Social Web technologies

    Schuurman Nadine

    2010-05-01

    Full Text Available Abstract Background Extensive public health gains have benefited high-income countries in recent decades, however, citizens of low and middle-income countries (LMIC have largely not enjoyed the same advancements. This is in part due to the fact that public health data - the foundation for public health advances - are rarely collected in many LMIC. Injury data are particularly scarce in many low-resource settings, despite the huge associated burden of morbidity and mortality. Advances in freely-accessible and easy-to-use information and communication (ICT technology may provide the impetus for increased public health data collection in settings with limited financial and personnel resources. Methods and Results A pilot study was conducted at a hospital in Cape Town, South Africa to assess the utility and feasibility of using free (non-licensed, and easy-to-use Social Web and GeoWeb tools for injury surveillance in low-resource settings. Data entry, geocoding, data exploration, and data visualization were successfully conducted using these technologies, including Google Spreadsheet, Mapalist, BatchGeocode, and Google Earth. Conclusion This study examined the potential for Social Web and GeoWeb technologies to contribute to public health data collection and analysis in low-resource settings through an injury surveillance pilot study conducted in Cape Town, South Africa. The success of this study illustrates the great potential for these technologies to be leveraged for public health surveillance in resource-constrained environments, given their ease-of-use and low-cost, and the sharing and collaboration capabilities they afford. The possibilities and potential limitations of these technologies are discussed in relation to the study, and to the field of public health in general.

  3. Development and Utilization of Technology on Indian Mango Fruit Processing

    Rosenda A. Bronce

    2015-11-01

    Full Text Available This project aimed to develop and utilize technology on Indian mango fruit processing. Chemical properties of matured unripe and ripe Indian mangoes were determined in terms of total sugar, reducing sugar, starch, titratable acidity and pH. Fermentation parameters investigated in the study were amount of sugar added (20 and 25% fermentation medium, acidity of fermentation medium (addition of 1.33 and 1.66 grams of citric acid for ripe and dilution of water for unripe, degree of ripening of Indian mango fruits (ripe and unripe and ageing period (3 and 4 months. Sixteen treatments were done in triplicates and a composite sample was taken from each treatment for sensory evaluation. Results of the preference test were subjected to statistical analysis. The physicochemical properties of Indian mango wine produced using best fermentation parameters were determined. Appropriate packaging material was selected and packaging design was developed for Indian mango wine. Project cooperators were selected and the technology was transferred through training and production runs. Results of preference test showed that the wine with best sensory properties was prepared using matured unripe Indian mango diluted with water and added with 25% sugar. According to the panel of sensory experts, the taste of Indian mango wine was strong with proper blending of sweetness and sourness, its mouth feel was smooth and good balance, aroma was hot pungent and its color and appearance was clear and light yellow. Its titratable acidity was 0.622%, pH was 5, alcohol content was 11% and brix was 5°.

  4. Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)

    Cavallo, Alfred

    2007-01-01

    World wind energy resources are substantial, and in many areas, such as the US and northern Europe, could in theory supply all of the electricity demand. However, the remote or challenging location (i.e. offshore) and especially the intermittent character of the wind resources present formidable barriers to utilization on the scale required by a modern industrial economy. All of these technical challenges can be overcome. Long distance transmission is well understood, while offshore wind technology is being developed rapidly. Intermittent wind power can be transformed to a controllable power source with hybrid wind/compressed air energy storage (CAES) systems. The cost of electricity from such hybrid systems (including transmission) is affordable, and comparable to what users in some modern industrial economies already pay for electricity. This approach to intermittent energy integration has many advantages compared to the current strategy of forcing utilities to cope with supply uncertainty and transmission costs. Above all, it places intermittent wind on an equal technical footing with every other generation technology, including nuclear power, its most important long-term competitor

  5. Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues

    Liu, H [Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Jiang, G M [Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093 (China); Agronomy Department, Shandong Agricultural University, Tai' an 271018, Shandong Province (China); Zhuang, H Y [National Bio-Energy CO., LTD, No. 26B, Financial Street, Xicheng District, Beijing 100032 (China); Shandong Academy of Sciences, No. 19, Keyuan Road, Ji' nan 250014, Shandong Province (China); Wang, K J [Agronomy Department, Shandong Agricultural University, Tai' an 271018, Shandong Province (China)

    2008-06-15

    As the largest developing country in the world, China is urgently in short of energy and natural resources. However, biological resources such as crop residues are burnt in the field, which cause serious environmental pollution. Still it is not clear how much storage and potential of these huge crop residues are in China. This paper firstly reported the distribution, utilization structure and potential of crop biomass and provided the tangible information of crop residues in rural China through careful collecting and recalculating data. From 1995 to 2005, China produces some 630 million tons of crop residues per year, 50% of which comes from east and central south of China. The amount of crop residues is 1.3 times of the total yield of crops, 2 times of the total fodder of grassland, which covers 41% of China's territory. Crop residues of corn, wheat and rice amounted to 239, 137 and 116 million tons, respectively, accounting for nearly 80% of the total crop residues. Unfortunately, the utilizing structure is seriously improper for such abundant biomass resources. Although 23% of the crop residues are used for forage, 4% for industry materials and 0.5% for biogas, the large parts are used with lower efficiency or wasted, with 37% being directly combusted by farmers, 15% lost during collection and the rest 20.5% discarded or directly burnt in the field. Reasonable adjustment of the utilizing pattern and popularization of the recycling agriculture are essential out-ways for residues, with the development of the forage industry being the breakthrough point. We suggested that utilizing the abandoned 20.5% of the total residues for forage and combining agriculture and stock raising can greatly improve the farm system and cut down fertilizer pollution. Through the development of forage industries, the use efficiency of crop residues could be largely enhanced. Commercializing and popularizing technologies of biomass gasification and liquefaction might be substitute

  6. CO2 Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain.

    Pan, Shu-Yuan; Chung, Tai-Chun; Ho, Chang-Ching; Hou, Chin-Jen; Chen, Yi-Hung; Chiang, Pen-Chi

    2017-12-08

    Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO 2 ) emission and alkaline solid waste generation. In fact, most CO 2 capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO 2 using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO 2 was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO 2 reduction potential using iron and steel slags was estimated to be ~138 million tons per year.

  7. Managing information technology human resources in health care.

    Mahesh, Sathiadev; Crow, Stephen M

    2012-01-01

    The health care sector has seen a major increase in the use of information technology (IT). The increasing permeation of IT into the enterprise has resulted in many non-IT employees acquiring IT-related skills and becoming an essential part of the IT-enabled enterprise. Health care IT employees work in a continually changing environment dealing with new specializations that are often unfamiliar to other personnel. The widespread use of outsourcing and offshoring in IT has introduced a third layer of complexity in the traditional hierarchy and its approach to managing human resources. This article studies 3 major issues in managing these human resources in an IT-enabled health care enterprise and recommends solutions to the problem.

  8. Wave energy resource assessment and review of the technologies

    Wan Nik, W.B.: Sulaiman, O.O. [Maritime Technology Department, Universiti Malaysia Terengganu, 21030, Kuala Terengganu (Malaysia); Rosliza, R. [TATI University College, Teluk Kalong, 24000 Kemaman, Terengganu, (Malaysia); Prawoto, Y. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor (Malaysia); Muzathik, A.M. [Institute of Technology, University of Moratuwa (Sri Lanka)

    2011-07-01

    Increase in human population has increased the demand for more energy. Technical improvement in transport and electrical appliances gives a lot of facilities to our life nowadays. Still we need to generate or convert this energy. Energy generation based on conventional technologies is always accompanied by environmental pollution. It gives overheating and greenhouse effects that later result in biosphere degradation. Nowadays sea wave energy is being increasingly regarded in many countries as a major and promising resource. It is renewable and environmentally friendly. In this paper wave parameters related to wave energy is analyzed. Then the paper describes the development of many different types of wave-energy converters. Several topics are addressed; the characterization of the wave energy resource, range of devices and how such devices can be organized into classes.

  9. Promoting Early Brain and Child Development: Perceived Barriers and the Utilization of Resources to Address Them.

    Garner, Andrew S; Storfer-Isser, Amy; Szilagyi, Moira; Stein, Ruth E K; Green, Cori M; Kerker, Bonnie D; O'Connor, Karen G; Hoagwood, Kimberly E; McCue Horwitz, Sarah

    Efforts to promote early brain and child development (EBCD) include initiatives to support healthy parent-child relationships, tools to identify family social-emotional risk factors, and referrals to community programs to address family risk factors. We sought to examine if pediatricians perceive barriers to implementing these activities, and if they utilize resources to address those barriers. Data were analyzed from 304 nontrainee pediatricians who practice general pediatrics and completed a 2013 American Academy of Pediatrics Periodic Survey. Sample weights were used to decrease nonresponse bias. Bivariate comparisons and multivariable regression analyses were conducted. At least half of the pediatricians agreed that barriers to promoting EBCD include: a lack of tools to promote healthy parent-child relationships, a lack of tools to assess the family environment for social-emotional risk factors, and a lack of local resources to address family risks. Endorsing a lack of tools to assess the family environment as a barrier was associated with using fewer screening tools and community resources. Endorsing a lack of local resources as a barrier was associated with using fewer community resources and fewer initiatives to promote parent-child relationships. Interest in pediatric mental health was associated with using more initiatives to promote healthy parent-child relationships, screening tools, and community resources. Although the majority of pediatricians perceive barriers to promoting EBCD, few are routinely using available resources to address these barriers. Addressing pediatricians' perceived barriers and encouraging interest in pediatric mental health may increase resource utilization and enhance efforts to promote EBCD. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  10. Process technology of luwak coffee through bioreactor utilization

    Hadipernata, M.; Nugraha, S.

    2018-01-01

    Indonesia has an advantage in producing exotic coffee that is Luwak coffee. Luwak coffee is produced from the fermentation process in digestion of civet. Luwak coffee production is still limited due to the difficulty level in the use of civet animals as the only medium of Luwak coffee making. The research was conducted by developing technology of luwak coffee production through bioreactor utilization and addition the bacteria isolate from gastric of civet. The process conditions in the bioreactor which include temperature, pH, and bacteria isolate of civet are adjusted to the process that occurs in civet digestion, including peristaltic movement on the stomach and small intestine of the civet will be replaced by the use of propellers that rotate on the bioreactor. The result of research showed that proximat analysis data of artificial/bioreactor luwak coffee did not significant different with original luwak coffee. However, the original luwak coffee has higher content of caffeine compared to bioreactor luwak coffee. Based on the cuping test the bioreactor luwak coffee has a value of 84.375, while the original luwak coffee is 84.875. As the result, bioreactor luwak coffee has excellent taste that similiar with original luwak coffee taste.

  11. Monitoring based maintenance utilizing actual stress sensory technology

    Sumitro, Sunaryo; Kurokawa, Shoji; Shimano, Keiji; Wang, Ming L.

    2005-06-01

    In recent years, many infrastructures have been deteriorating. In order to maintain sustainability of those infrastructures which have significant influence on social lifelines, economical and rational maintenance management should be carried out to evaluate the life cycle cost (LCC). The development of structural health monitoring systems, such as deriving evaluation techniques for the field structural condition of existing structures and identification techniques for the significant engineering properties of new structures, can be considered as the first step in resolving the above problem. New innovative evaluation methods need to be devised to identify the deterioration of infrastructures, e.g. steel tendons, cables in cable-stayed bridges and strands embedded in pre- or post-tensioned concrete structures. One of the possible solutions that show 'AtoE' characteristics, i.e., (a)ccuracy, (b)enefit, (c)ompendiousness, (d)urability and (e)ase of operation, elasto-magnetic (EM) actual stress sensory technology utilizing the sensitivity of incremental magnetic permeability to stress change, has been developed. Numerous verification tests on various steel materials have been conducted. By comparing with load cell, strain gage and other sensory technology measurement results, the actual stresses of steel tendons in a pre-stressed concrete structure at the following stages have been thoroughly investigated: (i) pre-stress change due to set-loss (anchorage slippage) at the tendon fixation stage; (ii) pre-stress change due to the tendon relaxation stage; (iii) concrete creep and shrinkage at the long term pre-stressing stage; (iv) pre-stress change in the cyclic fatigue loading stage; and (v) pre-stress change due to the re-pre-stress setting stage. As the result of this testing, it is confirmed that EM sensory technology enables one to measure actual stress in steel wire, strands and steel bars precisely without destroying the polyethylene covering sheath and enables

  12. 1st International Ocean Technology Congress on EEZ Resources : Technology Assessment

    Champ, Michael

    1990-01-01

    Today western nations consume annually only a small percentage of their resources from the sea, despite the proclamation of Exclusive Economic Zones (EEZ) by many. In contrast, most Pacific Basin Countries obtain more than a quarter of their annual needs from the ocean. Determination of greater rewards from the development of marine resources is markedly inhibited by the limited technical abilities available to locate and assess them. Knowledge of Exclusive Economic Zone resources is schematic and generalised, and a detailed understanding of the geology and processes relating to the economic use of the seafloor is both fragmentary and very basic. Technology for mapping the mineral resources of continental shelves and ocean areas, except in active offshore hydrocarbon provinces, has been largely developed in pursuit of scientific objectives and competence to rapidly appraise economic potential is limited. Similarly, the capability to characterise and evaluate the other resources of the seas is rudimentary. The...

  13. Resource utilization after introduction of a standardized clinical assessment and management plan.

    Friedman, Kevin G; Rathod, Rahul H; Farias, Michael; Graham, Dionne; Powell, Andrew J; Fulton, David R; Newburger, Jane W; Colan, Steven D; Jenkins, Kathy J; Lock, James E

    2010-01-01

    A Standardized Clinical Assessment and Management Plan (SCAMP) is a novel quality improvement initiative that standardizes the assessment and management of all patients who carry a predefined diagnosis. Based on periodic review of systemically collected data the SCAMP is designed to be modified to improve its own algorithm. One of the objectives of a SCAMP is to identify and reduce resource utilization and patient care costs. We retrospectively reviewed resource utilization in the first 93 arterial switch operation (ASO) SCAMP patients and 186 age-matched control ASO patients. We compared diagnostic and laboratory testing obtained at the initial SCAMP clinic visit and control patient visits. To evaluate the effect of the SCAMP over time, the number of clinic visits per patient year and echocardiograms per patient year in historical control ASO patients were compared to the projected rates for ASO SCAMP participants. Cardiac magnetic resonance imaging (MRI), stress echocardiogram, and lipid profile utilization were higher in the initial SCAMP clinic visit group than in age-matched control patients. Total echocardiogram and lung scan usage were similar. Chest X-ray and exercise stress testing were obtained less in SCAMP patients. ASO SCAMP patients are projected to have 0.5 clinic visits and 0.5 echocardiograms per year. Historical control patients had more clinic visits (1.2 vs. 0.5 visits/patient year, P<.01) and a higher echocardiogram rate (0.92 vs. 0.5 echocardiograms/patient year, P<.01) Implementation of a SCAMP may initially lead to increased resource utilization, but over time resource utilization is projected to decrease.

  14. Diffusion of novel healthcare technologies to resource poor settings.

    Malkin, Robert; von Oldenburg Beer, Kim

    2013-09-01

    A new product has completed clinical trials in a distant, resource poor hospital using a few dozen prototypes. The data looks great. The novel medical device solves a widely felt problem. The next goal is to integrate the device into the country's healthcare system and spread the device to other countries. But how? In order to be widely used, the device must be manufactured and distributed. One option is to license the intellectual property (IP) to an interested third party, if one can be found. However, it is possible to manage the manufacturing and distribution without licensing. There are at least two common means for manufacturing a novel medical device targeted to resource poor settings: (a) formal (contract) manufacturing and (b) informal (local) manufacturing. There are three primary routes to diffusion of novel medical devices in the developing world: (1) local distributors (2) direct international sales and (3) international donations. Perhaps surprisingly, the least effective mechanism is direct importation through donation. The most successful mechanism, the method used by nearly all working medical devices in resource-poor settings, is the use of contract manufacturing and a local distributor. This article is written for the biomedical innovator and entrepreneur who wishes to make a novel healthcare technology or product available and accessible to healthcare providers and patients in the developing world. There are very few documented cases and little formal research in this area. To this end, this article describes and explores the manufacturing and distribution options in order to provide insights into when and how each can be applied to scale up a novel technology to make a difference in a resource poor setting.

  15. Technologies for the exploration of highly mineralized geothermal resources

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2017-09-01

    The prospects of the integrated processing of the high-parameter geothermal resources of the East Ciscaucasia of artesian basin (ECAB) with the conversion of their heat energy into electric energy at a binary geoPP and the subsequent extraction of solved chemical compounds from thermal waters are evaluated. The most promising areas for the exploration such resources are overviewed. The integrated exploration of hightemperature hydrogeothermal brines is a new trend in geothermal power engineering, which can make it possible to significantly increase the production volume of hydrogeothermal resources and develop the geothermal field at a higher level with the realization of the energy-efficient advanced technologies. The large-scale exploration of brines can solve the regional problems of energy supply and import substitution and fulfill the need of Russia in food and technical salt and rare elements. The necessity of the primary integrated exploration of the oil-field highly mineralized brines of the South Sukhokumskii group of gas-oil wells of Northern Dagestan was shown in view of the exacerbated environmental problems. Currently, the oil-field brines with the radioactive background exceeding the allowable levels are discharged at disposal fields. The technological solutions for their deactivation and integrated exploration are proposed. The realization of the proposed technological solutions provides 300 t of lithium carbonate, 1650 t of caustic magnesite powder, 27300 t of chemically precipitated chalk, 116100 t of food salt, and up to 1.4 mln m3 of desalinated water from oil-field brines yearly. Desalinated water at the output of a geotechnological complex can be used for different economic needs, which is important for the arid North Caucasus region, where the fresh water deficiency is acute, especially in its plain part within the ECAB.

  16. 48 CFR 3004.470 - Security requirements for access to unclassified facilities, Information Technology resources...

    2010-10-01

    ... access to unclassified facilities, Information Technology resources, and sensitive information. 3004.470... Technology resources, and sensitive information. ... ACQUISITION REGULATION (HSAR) GENERAL ADMINISTRATIVE MATTERS Safeguarding Classified and Sensitive Information...

  17. Case studies for utilizing groundwater-source and low-enthalpy geothermal resources in Korea

    Kim, K.-H.; Shin, J.; Lee, K.-K.; Lee, T. J.

    2012-04-01

    As one of the top 10 oil-consuming countries in the world, Korea recently has had a great interest in extending the ways to utilize renewable energy. In this regard, geothermal energy resource is attracting more concerns from both of the government and the research field. Korea has neither active volcanic sites nor areas with abnormally higher heat flow. In spite of these natural conditions, many efforts have been exerted to utilize geothermal energy. Here, we introduce two case studies of using groundwater-source geothermal energy with relatively low-enthalpy: One is a riverbank filtration facility, which has been using some of its riverbank filtrate water for the indoor air-conditioning. The other is the first EGS plant planning site, where a few fault-related artesian wells reaching 70C were discovered lately. Numerical simulations to predict the temperature evolution of the two sites, which is dominated by several hydrogeologic factors, were carried out and compared. Simulation of temperature profile of riverbank filtrate water using HydroGeoSphere shows that the primary factor in determining filtrate water temperature is the pumping rate. It also shows that maintaining the facility operation with present pumping rate for the next 30 years will not cause any significant change of water temperature. However, following the new plan of the facility to install additional 37 wells with 6 times higher pumping rate than the current rate might cause about 2C decrease in filtrate water temperature in 10 years after the extension. Simulation for the temperature evolution in a faulted geothermal reservoir in EGS planning site under the supposed injection-extraction operating conditions were carried out using TOUGH2. A MINC model including a hydraulic discontinuity, which reflected the analysis from several geophysical explorations, was generated. Temperature distribution calculated from the simulation shows a rise of relatively hot geothermal water along the fault plane

  18. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China

    Yanli, Yang; Peidong, Zhang; Yonghong, Zheng; Lisheng, Wang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of science, Qingdao 266101 (China); Wenlong, Zhang; Yongsheng, Tian [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of science, Qingdao 266101 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2010-12-15

    As the largest agricultural country, China has abundant biomass resources, but the distribution is scattered and difficult to collect. It is essential to estimate the biomass resource and its potential for bioenergy utilization in China. In this study, the amount of main biomass resources for possible energy use and their energy utilization potential in China are analyzed based on statistical data. The results showed that the biomass resource for possible energy use amounted to 8.87 x 10{sup 8} tce in 2007 of which the crops straw is 1.42 x 10{sup 8} tce, the forest biomass is 2.85 x 10{sup 8} tce, the poultry and livestock manure is 4.40 x 10{sup 7} tce, the municipal solid waste is 1.35 x 10{sup 6} tce, and the organic waste water is 6.46 x 10{sup 6} tce. Through the information by thematic map, it is indicated that, except arctic-alpine areas and deserts, the biomass resource for possible energy use was presented a relatively average distribution in China, but large gap was existed in different regions in the concentration of biomass resources, with the characteristics of East dense and West sparse. It is indicated that the energy transformation efficiency of biomass compressing and shaping, biomass anaerobic fermentation and biomass gasification for heating have higher conversion efficiency. If all of the biomass resources for possible energy use are utilized by these three forms respectively, 7.66 x 10{sup 12} t of biomass briquettes fuel, 1.98 x 10{sup 12} m{sup 3} of low calorific value gas and 3.84 x 10{sup 11} m{sup 3} of biogas could be produced, 3.65 x 10{sup 8} t to 4.90 x 10{sup 8} t of coal consumption could be substituted, and 6.12 x 10{sup 8} t to 7.53 x 10{sup 8} t of CO{sub 2} emissions could be reduced. With the enormous energy utilization potential of biomass resources and the prominent benefit of energy saving and emission reduction, it proves an effective way to adjust the energy consumption structure, to alleviate the energy crisis, to ensure

  19. Cyanobacteria to Link Closed Ecological Systems and In-Situ Resources Utilization Processes

    Brown, Igor

    Introduction: A major goal for the Vision of Space Exploration is to extend human presence across the solar sys-tem. With current technology, however, all required consumables for these missions (propellant, air, food, water) as well as habitable volume and shielding to support human explorers will need to be brought from Earth. In-situ pro-duction of consumables (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human ex-ploration and colonization of the solar system, especially by reducing the logistical overhead such as recurring launch mass. The production of oxygen from lunar materials is generally recognized as the highest priority process for lunar ISRU, for both human metabolic and fuel oxidation needs. The most challenging technology developments for future lunar settlements may lie in the extraction of elements (O, Fe, Mn, Ti, Si, etc) from local rocks and soils for life support, industrial feedstock and the production of propellants. With few exceptions (e.g., Johannson, 1992), nearly all technology development to date has employed an ap-proach based on inorganic chemistry (e.g. Allen et al., 1996). None of these technologies include concepts for inte-grating the ISRU system with a bioregenerative life support system and a food production systems. Bioregenerative life support efforts have recently been added to the Constellation ISRU development program (Sanders et al, 2007). Methods and Concerns: The European Micro-Ecological Life Support System Alternative (MELiSSA) is an ad-vanced concept for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). However the MELiSSA system is a net consumer of ISRU products without a net return to in-situ technologies, e.g.. to extract elements as a result of complete closure of MELiSSA. On the other hand, the physical-chemical processes for ISRU are typically massive (relative to the rate of oxygen

  20. From Lunar Regolith to Fabricated Parts: Technology Developments and the Utilization of Moon Dirt

    McLemore, C. A.; Fikes, J. C.; McCarley, K. S.; Good, J. E.; Gilley, S. D.; Kennedy, J. P.

    2008-01-01

    The U.S. Space Exploration Policy has as a cornerstone the establishment of an outpost on the moon. This lunar outpost wil1 eventually provide the necessary planning, technology development, testbed, and training for manned missions in the future beyond the Moon. As part of the overall activity, the National Aeronautics and Space Administration (NASA) is investigating how the in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. Marshall Space Flight Center (MSFC), along with other NASA centers, is supporting this endeavor by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. An infrastructure capable of fabrication and nondestructive evaluation will be needed to support habitat structure development and maintenance, tools and mechanical parts fabrication, as well as repair and replacement of space-mission hardware such as life-support items, vehicle components, and crew systems, This infrastructure will utilize the technologies being developed under the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the technologies being developed under the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the Space Exploration Initiative by reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the need and plan for understanding the properties of the lunar regolith to determine the applicability of using this material in a fabrication process. This effort includes the development of high fidelity simulants that will be used in fabrication processes on the ground to

  1. 14 CFR 1274.937 - Security requirements for unclassified information technology resources.

    2010-01-01

    ... information technology resources. 1274.937 Section 1274.937 Aeronautics and Space NATIONAL AERONAUTICS AND... Conditions § 1274.937 Security requirements for unclassified information technology resources. Security Requirements for Unclassified Information Technology Resources July 2002 (a) The Recipient shall be responsible...

  2. Resource utilization in surgery after the revision of surgical fee schedule in Japan.

    Nakata, Yoshinori; Yoshimura, Tatsuya; Watanabe, Yuichi; Otake, Hiroshi; Oiso, Giichiro; Sawa, Tomohiro

    2015-01-01

    The purpose of this paper is to examine whether the current surgical reimbursement system in Japan reflects resource utilization after the revision of fee schedule in 2014. The authors collected data from all the surgical procedures performed at Teikyo University Hospital from April 1 through September 30, 2014. The authors defined the decision-making unit as a surgeon with the highest academic rank in the surgery. Inputs were defined as the number of medical doctors who assisted surgery, and the time of operation from skin incision to closure. An output was defined as the surgical fee. The authors calculated surgeons' efficiency scores using data envelopment analysis. The efficiency scores of each surgical specialty were significantly different (p=0.000). This result demonstrates that the Japanese surgical reimbursement scales still fail to reflect resource utilization despite the revision of surgical fee schedule.

  3. Music Genre as a Predictor of Resource Utilization at Outdoor Music Concerts.

    Westrol, Michael S; Koneru, Susmith; McIntyre, Norah; Caruso, Andrew T; Arshad, Faizan H; Merlin, Mark A

    2017-06-01

    The aim of this study was to examine the various modern music genres and their effect on the utilization of medical resources with analysis and adjustment for potential confounders. A retrospective review of patient logs from an open-air, contemporary amphitheater over a period of 10 years was performed. Variables recorded by the medical personnel for each concert included the attendance, description of the weather, and a patient log in which nature and outcome were recorded. The primary outcomes were associations of genres with the medical usage rate (MUR). Secondary outcomes investigated were the association of confounders and the influences on the level of care provided, the transport rate, and the nature of medical complaint. A total of 2,399,864 concert attendees, of which 4,546 patients presented to venue Emergency Medical Services (EMS) during 403 concerts with an average of 11.4 patients (annual range 7.1-17.4) each concert. Of potential confounders, only the heat index ≥90°F (32.2°C) and whether the event was a festival were significant (P=.027 and .001, respectively). After adjustment, the genres with significantly increased MUR in decreasing order were: alternative rock, hip-hop/rap, modern rock, heavy metal/hard rock, and country music (Pmusic (P=.033). Alternative rock, hip-hop/rap, modern rock, heavy metal/hard rock, and country music concerts had higher levels of medical resource utilization. High heat indices and music festivals also increase the MUR. This information can assist event planners with preparation and resource utilization. Future research should focus on prospective validation of the regression equation. Westrol MS , Koneru S , McIntyre N , Caruso AT , Arshad FH , Merlin MA . Music genre as a predictor of resource utilization at outdoor music concerts. Prehosp Disaster Med. 2017;32(3):289-296.

  4. [Application of digital earth technology in research of traditional Chinese medicine resources].

    Liu, Jinxin; Liu, Xinxin; Gao, Lu; Wei, Yingqin; Meng, Fanyun; Wang, Yongyan

    2011-02-01

    This paper describes the digital earth technology and its core technology-"3S" integration technology. The advance and promotion of the "3S" technology provide more favorable means and technical support for Chinese medicine resources survey, evaluation and appropriate zoning. Grid is a mature and popular technology that can connect all kinds of information resources. The author sums up the application of digital earth technology in the research of traditional Chinese medicine resources in recent years, and proposes the new method and technical route of investigation in traditional Chinese medicine resources, traditional Chinese medicine zoning and suitability assessment by combining the digital earth technology and grid.

  5. An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources

    Sulaiman, F.; Abdullah, N.; Gerhauser, H.; Shariff, A.

    2011-01-01

    Malaysia has an abundance of energy resources, both renewable and non-renewable. The largest non-renewable energy resource found in Malaysia is oil, and second, is natural gas, primarily liquefied natural gas. The production and consumption of oil, gas and coal in Malaysia are given in this paper. The energy demand and supply by source are also shown in relation to the country's fuel diversification policy. In order to reduce the overall dependence on a single source of energy, efforts were undertaken to encourage the utilization of renewable resources. Forest residue and oil palm biomass are found to be potentially of highest energy value and considered as the main renewable energy option for Malaysia. Palm oil and related products represent the second largest export of Malaysia. The total oil palm planted area in Malaysia has increased significantly in recent years. This paper gives a detailed representation of oil palm planted and produced together with its yield from the year 1976 onwards. The large amounts of available forest and palm oil residues resulting from the harvest can be utilized for energy generation and other by-products in a manner that also addresses environmental concerns related to current waste disposal methods. -- Highlights: →Palm oil and related products represent the second largest export of Malaysia. →Malaysia has an abundance of energy resources, both renewable and non-renewable. →Forest and oil palm residues are the main renewable energy option for Malaysia. →Efforts were undertaken to encourage the utilization of renewable resources.

  6. DIAMOND: A model of incremental decision making for resource acquisition by electric utilities

    Gettings, M.; Hirst, E.; Yourstone, E.

    1991-02-01

    Uncertainty is a major issue facing electric utilities in planning and decision making. Substantial uncertainties exist concerning future load growth; the lifetimes and performances of existing power plants; the construction times, costs, and performances of new resources being brought online; and the regulatory and economic environment in which utilities operate. This report describes a utility planning model that focuses on frequent and incremental decisions. The key features of this model are its explicit treatment of uncertainty, frequent user interaction with the model, and the ability to change prior decisions. The primary strength of this model is its representation of the planning and decision-making environment that utility planners and executives face. Users interact with the model after every year or two of simulation, which provides an opportunity to modify past decisions as well as to make new decisions. For example, construction of a power plant can be started one year, and if circumstances change, the plant can be accelerated, mothballed, canceled, or continued as originally planned. Similarly, the marketing and financial incentives for demand-side management programs can be changed from year to year, reflecting the short lead time and small unit size of these resources. This frequent user interaction with the model, an operational game, should build greater understanding and insights among utility planners about the risks associated with different types of resources. The model is called DIAMOND, Decision Impact Assessment Model. In consists of four submodels: FUTURES, FORECAST, SIMULATION, and DECISION. It runs on any IBM-compatible PC and requires no special software or hardware. 19 refs., 13 figs., 15 tabs.

  7. Optimal Computing Resource Management Based on Utility Maximization in Mobile Crowdsourcing

    Haoyu Meng

    2017-01-01

    Full Text Available Mobile crowdsourcing, as an emerging service paradigm, enables the computing resource requestor (CRR to outsource computation tasks to each computing resource provider (CRP. Considering the importance of pricing as an essential incentive to coordinate the real-time interaction among the CRR and CRPs, in this paper, we propose an optimal real-time pricing strategy for computing resource management in mobile crowdsourcing. Firstly, we analytically model the CRR and CRPs behaviors in form of carefully selected utility and cost functions, based on concepts from microeconomics. Secondly, we propose a distributed algorithm through the exchange of control messages, which contain the information of computing resource demand/supply and real-time prices. We show that there exist real-time prices that can align individual optimality with systematic optimality. Finally, we also take account of the interaction among CRPs and formulate the computing resource management as a game with Nash equilibrium achievable via best response. Simulation results demonstrate that the proposed distributed algorithm can potentially benefit both the CRR and CRPs. The coordinator in mobile crowdsourcing can thus use the optimal real-time pricing strategy to manage computing resources towards the benefit of the overall system.

  8. Resource utilization in children with tuberous sclerosis complex and associated seizures: a retrospective chart review study.

    Lennert, Barb; Farrelly, Eileen; Sacco, Patricia; Pira, Geraldine; Frost, Michael

    2013-04-01

    Seizures are a hallmark manifestation of tuberous sclerosis complex, yet data characterizing resource utilization are lacking. This retrospective chart review was performed to assess the economic burden of tuberous sclerosis complex with neurologic manifestations. Demographic and resource utilization data were collected for 95 patients for up to 5 years after tuberous sclerosis complex diagnosis. Mean age at diagnosis was 3.1 years, with complex partial and infantile spasms as the most common seizure types. In the first 5 years post-diagnosis, 83.2% required hospitalization, 30.5% underwent surgery, and the majority of patients (90.5%) underwent ≥3 testing procedures. In 79 patients with a full 5 years of data, hospitalizations, intensive care unit stays, diagnostic testing, and rehabilitation services decreased over the 5-year period. Resource utilization is cost-intensive in children with tuberous sclerosis complex and associated seizures during the first few years following diagnosis. Improving seizure control and reducing health care costs in this population remain unmet needs.

  9. Educational Technology: A Review of the Integration, Resources, and Effectiveness of Technology in K-12 Classrooms

    Adolph Delgado

    2015-09-01

    Full Text Available There is no questioning that the way people live, interact, communicate, and conduct business is undergoing a profound, rapid change. This change is often referred to as the “digital revolution,” which is the advancement of technology from analog, electronic and mechanical tools to the digital tools available today. Moreover, technology has begun to change education, affecting how students acquire the skill sets needed to prepare for college and a career and how educators integrate digital technological instructional strategies to teach. Numerous studies have been published discussing the barriers of integrating technology, the estimated amount of investment that is needed in order to fully support educational technology, and, of course, the effectiveness of technology in the classroom. As such, this article presents a critical review of the transitions that technology integration has made over the years; the amount of resources and funding that has been allocated to immerse school with technology; and the conflicting results presented on effectiveness of using is technology in education. Through synthesis of selected themes, we found a plethora of technological instructional strategies being used to integrate technology into K-12 classrooms. Also, though there have been large investments made to integrate technology into K-12 classrooms to equip students with the skills needed to prepare for college and a career, the practical use of this investment has not been impressive. Lastly, several meta-analyses showed promising results of effectiveness of technology in the classroom. However, several inherent methodological and study design issues dampen the amount of variance that technology accounts for.

  10. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration

    Palaszewski, Bryan

    2015-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  11. Sustainable Utilization of Traditional Chinese Medicine Resources: Systematic Evaluation on Different Production Modes

    Xiwen Li

    2015-01-01

    Full Text Available The usage amount of medicinal plant rapidly increased along with the development of traditional Chinese medicine industry. The higher market demand and the shortage of wild herbal resources enforce us to carry out large-scale introduction and cultivation. Herbal cultivation can ease current contradiction between medicinal resources supply and demand while they bring new problems such as pesticide residues and plant disease and pests. Researchers have recently placed high hopes on the application of natural fostering, a new method incorporated herbal production and diversity protecting practically, which can solve the problems brought by artificial cultivation. However no modes can solve all problems existing in current herbal production. This study evaluated different production modes including cultivation, natural fostering, and wild collection to guide the traditional Chinese medicine production for sustainable utilization of herbal resources.

  12. Waste resources utilization program. Progress report, period ending 30 June 1975

    1975-08-01

    Initial progress on the Waste Resources Utilization Program, a joint effort sponsored by ERDA and EPA under the terms of Interagency Agreement E(29-2)-3536/EPA-IAG-D5-0675 is reported. This program has as its objective the use of 134 Cs/ 137 Cs (a potential nuclear reactor ''waste resource'') as a gamma radiation source, coupled with modest heating, to treat sewage sludge (another ''waste resource'') to rid it of pathogenic organisms so that it may be safely used as a fertilizer or a feed supplement for ruminant animals. The potential exists for using at least 50 percent of the by-product cesium from future reactor fuel-rod reprocessing in this one application alone. Activities dealing with research on many aspects of the problem such as pathogen reduction, physical and chemical effects, cost benefit analysis, safety and security, and systems engineering are reported. (U.S.)

  13. Evaluation model of wind energy resources and utilization efficiency of wind farm

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  14. Market study for direct utilization of geothermal resources by selected sectors of economy

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

  15. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations

    Palaszewski, Bryan

    2016-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  16. Mortality-related resource utilization in the inpatient care of hypoplastic left heart syndrome.

    Danford, David A; Karels, Quentin; Kulkarni, Aparna; Hussain, Aysha; Xiao, Yunbin; Kutty, Shelby

    2015-10-22

    Quantifying resource utilization in the inpatient care of congenital heart diease is clinically relevant. Our purpose is to measure the investment of inpatient care resources to achieve survival in hypoplastic left heart syndrome (HLHS), and to determine how much of that investment occurs in hospitalizations that have a fatal outcome, the mortality-related resource utilization fraction (MRRUF). A collaborative administrative database, the Pediatric Health Information System (PHIS) containing data for 43 children's hospitals, was queried by primary diagnosis for HLHS admissions of patients ≤21 years old during 2004-2013. Institution, patient age, inpatient deaths, billed charges (BC) and length of stay (LOS) were recorded. In all, 11,122 HLHS admissions were identified which account for total LOS of 277,027 inpatient-days and $3,928,794,660 in BC. There were 1145 inpatient deaths (10.3%). LOS was greater among inpatient deaths than among patients discharged alive (median 17 vs. 12, p providers and consumers that current practices often result in major resource expenditure for inpatient care of HLHS that does not result in survival to hospital dismissal. They highlight the need for data-driven critical review of standard practices to identify patterns of care associated with success, and to modify approaches objectively.

  17. Technologies for the Comprehensive Exploitation of the Geothermal Resources of the North Caucasus Region

    Alkhasov, A. B.

    2018-03-01

    Technology for the integrated development of low-temperature geothermal resources using the thermal and water potentials for various purposes is proposed. The heat of the thermal waters is utilized in a low-temperature district heating system and for heating the water in a hot water supply system. The water cooled in heat exchangers enters a chemical treatment system where it is conditioned into potable water quality and then forwarded to the household and potable water supply system. Efficient technologies for removal of arsenic and organic contaminants from the water have been developed. For the uninterrupted supply of the consumers with power, the technologies that use two and more types of renewable energy sources (RESs) have the best prospects. Technology for processing organic waste using the geothermal energy has been proposed. According to this technology, the geothermal water is divided into two flows, one of which is delivered to a biomass conversion system and the other is directed to a geothermal steam-gas power plant (GSGP). The wastewater arrives at the pump station from which it is pumped back into the bed. Upon drying, the biogas from the conversion system is delivered into the combustion chamber of a gas-turbine plant (GTP). The heat of the turbine exhaust gases is used in the GSGP to evaporate and reheat the low-boiling working medium. The working medium is heated in the GSGP to the evaporation temperature using the heat of the thermal water. High-temperature geothermal brines are the most promising for the comprehensive processing. According to the proposed technology, the heat energy of the brines is utilized to generate the electric power at a binary geothermal power station; the electric power is then used to extract the dissolved chemical components from the rest of the brine. The comprehensive utilization of high-temperature brines of the East-Precaucasian Artesian Basin will allow to completely satisfy the demand of Russia for lithium

  18. The utilization of oncology web-based resources in Spanish-speaking Internet users.

    Simone, Charles B; Hampshire, Margaret K; Vachani, Carolyn; Metz, James M

    2012-12-01

    There currently are few web-based resources written in Spanish providing oncology-specific information. This study examines utilization of Spanish-language oncology web-based resources and evaluates oncology-related Internet browsing practices of Spanish-speaking patients. OncoLink (http://www.oncolink.org) is the oldest and among the largest Internet-based cancer information resources. In September 2005, OncoLink pioneered OncoLink en español (OEE) (http://es.oncolink.org), a Spanish translation of OncoLink. Internet utilization data on these sites for 2006 to 2007 were compared. Visits to OncoLink rose from 4,440,843 in 2006 to 5,125,952 in 2007. OEE had 204,578 unique visitors and 240,442 visits in 2006, and 351,228 visitors and 412,153 visits in 2007. Although there was no time predilection for viewing OncoLink, less relative browsing on OEE was conducted during weekends and early morning hours. Although OncoLink readers searched for information on the most common cancers in the United States, OEE readers most often search for gastric, vaginal, osteosarcoma, leukemia, penile, cervical, and testicular malignancies. Average visit duration on OEE was shorter, and fewer readers surveyed OEE more than 15 minutes (4.5% vs. 14.9%, P users of web-based oncology resources are increasingly using the Internet to supplement their cancer knowledge. Limited available resources written in Spanish contribute to disparities in information access and disease outcomes. Spanish-speaking oncology readers differ from English-speaking readers in day and time of Internet browsing, visit duration, Internet search patterns, and types of cancers searched. By acknowledging these differences, content of web-based oncology resources can be developed to best target the needs of Spanish-speaking viewers.

  19. The Utilization of Education Technology in Higher Education

    Brooks, Angela

    2017-01-01

    With the rise of technology, many educational organizations are scrambling to find ways to incorporate technology into effective learning strategies. Although there is a significant need to equip curriculum with active learning technology objectives, the challenges that are sometimes overlooked lies within faculty perceived barriers and how they…

  20. Utilization of Information and Communication Technologies in Mathematics Learning

    Saadati, Farzaneh; Tarmizi, Rohani Ahmad; Ayub, Ahmad Fauzi Mohd

    2014-01-01

    Attention to integrate technology in teaching and learning has provided a major transformation in the landscape of education. Therefore, many innovations in teaching and learning have been technology-driven. The study attempted to examine what is engineering students' perception regarding the use of Information and Communication Technologies (ICT)…

  1. Industrial Arts Test Development, Book III. Resource Items for Graphics Technology, Power Technology, Production Technology.

    New York State Education Dept., Albany.

    This booklet is designed to assist teachers in developing examinations for classroom use. It is a collection of 955 objective test questions, mostly multiple choice, for industrial arts students in the three areas of graphics technology, power technology, and production technology. Scoring keys are provided. There are no copyright restrictions,…

  2. Sustainable and resource-conserving utilization of global land areas and biomass; Globale Landflaechen und Biomasse nachhaltig und ressourcenschonend nutzen

    Jering, Almut; Klatt, Anne; Seven, Jan; Ehlers, Knut; Guenther, Jens; Ostermeier, Andreas; Moench, Lars

    2012-10-15

    The contribution under consideration reports on the state of the art of biomass based land use as well as on existing and future global development trends. An ecologically compatible and socially equitable utilization of resources as well as priorities in the production and utilization of biomass are described in order to achieve their goals. Approaches to action, measures and policy recommendations are presented with respect to the development of a globally sustainable, resource-conserving utilization of land.

  3. Pain, health related quality of life and healthcare resource utilization in Spain.

    Langley, Paul; Pérez Hernández, Concepción; Margarit Ferri, César; Ruiz Hidalgo, Domingo; Lubián López, Manuel

    2011-01-01

    The aim of this paper is to consider the relationship between the experience of pain, health related quality of life (HRQoL) and healthcare resource utilization in Spain. The analysis contrasts the contribution of pain severity and frequency of pain reported against respondents reporting no pain in the previous month. Data are from the 2010 National Health and Wellness Survey (NHWS) for Spain. Single equation generalized linear regression models are used to evaluate the association of pain with the physical and mental component scores of the SF-12 questionnaire as well as health utilities generated from the SF-6D. In addition, the role of pain is assessed in its association with self-reported healthcare provider visits, emergency room visits and hospitalizations in the previous 6 months. The results indicate that the experience of pain, notably severe and frequent pain, is substantial and is significantly associated with the SF-12 physical component scores, health utilities and all aspects of healthcare resource utilization, which far outweighs the role of demographic and socioeconomic variables, health risk factors (in particular body mass index) and the presence of comorbidities. In the case of severe daily pain, the marginal contribution of the SF-12 physical component score is a deficit of -17.86 compared to those reporting no pain (population average score 46.49), while persons who are morbidly obese report a deficit of only -6.63 compared to those who are normal weight. The corresponding association with health utilities is equally dramatic with a severe daily pain deficit of -0.186 compared to those reporting no pain (average population utility 0.71). The impact of pain on healthcare resource utilization is marked. Severe daily pain increases traditional provider visits by 208.8%, emergency room visits by 373.0% and hospitalizations by 348.5%. As an internet-based survey there is the possibility of bias towards those with internet access, although telephone

  4. Associations between hours worked, symptoms and health resource utilization among full-time male Japanese workers.

    Sato, Keiko; Yamazaki, Shin; Hayashino, Yasuaki; Takegami, Misa; Tokuda, Yasuharu; Takahashi, Osamu; Shimbo, Takuro; Hinohara, Shigeaki; Fukui, Tsuguya; Fukuhara, Shunichi

    2011-01-01

    To investigate the association between hours worked, symptoms experienced, and health resource utilization. Data were collected from a nationally representative sample of households in Japan. We studied full-time male workers aged 18-65 yr who worked 100 h or more per month. First, we examined the association between hours worked and symptoms experienced. Second, we examined the association between hours worked and the type of health resource utilized, such as physician visits, over-the-counter (OTC) medication use, dietary supplement use, and complementary and alternative medicine (CAM) provider visits. We used a multivariable negative binominal model in each analysis. Of the 762 male workers, 598 reported experiencing symptoms at least once a month. We categorized participants based on the number of hours worked per month (h/mo): 100-200 h/mo, 201-250 h/mo, and over 250 h/mo. Compared with those working 201-250 h/mo, those working 100-200 h/mo had more frequent physician visits (rate ratio:1.67, 95% CI: 1.17 to 2.38) and those working over 250 h/mo had significantly lower rates of CAM provider visits and tended to use dietary supplements for symptoms. Participants who worked 201-250 h/mo used OTC medication most frequently. No significant association was observed between the number of hours worked and number of symptoms experienced. The more hours worked by full-time male workers, the more likely they were to use health resources that had a lower time requirement. Greater attention should be paid to patterns of health resource utilization among workers and their consequent influence on long-term health status.

  5. The Contribution of Wildlife to Sustainable Natural Resource Utilization in Namibia: A Review

    Diana L. van Schalkwyk

    2010-11-01

    Full Text Available Namibia is the driest country in sub-Saharan Africa, but well known for its richness in species and sustainable natural resource utilization. The Namibian farming sector consists mainly of extensive farming systems. Cattle production contributes 54% of the livestock sector’s production output, followed by sheep and goats (25%, hides and skins (9%, and other forms of agricultural production (12%. Namibia’s freehold farmers have obtained ownership rights over land and livestock since the early 1900s; commercial rights over wildlife and plants were given to freehold farmers in 1967 and to communal farmers in 1996. Natural resource-based production systems then overtook agricultural production systems and exceeded it by a factor of at least two. The shift from practicing conservation to sustainable utilization of natural resources contributed to the rapid growth of wildlife utilization. The wildlife industry in Namibia is currently the only animal production system that is expanding. There are in total at least two million head of different wildlife species. The broader impact of the utilization of wildlife on the economy is estimated to be around N$ 1.3 billion. Tourism, live sales and trophy hunting, cannot sustain further growth. Wildlife farming could offer better opportunities for ensuring long-term sustainability. As the game meat trade in Namibia is not formalized, harvesting wildlife to satisfy the demand for game meat in export markets is still in its infancy. Sustainable harvesting of wildlife for meat production, however, has the potential to increase earnings to the beneficiaries in the wildlife sector.

  6. Electrostatic Precipitation of Dust in the Martian Atmosphere: Implications for the Utilization of Resources During Future Manned Exploration Missions

    Calle, Carlos I.; Clements, Judson S.; Thompson, Samuel M.; Cox, Nathan D.; Hogue, Michael D.; Johansen, Michael R.; Williams, Blakeley S.

    2011-01-01

    Future human missions to Mars will require the utilization of local resources for oxygen, fuel. and water. The In Situ Resource Utilization (ISRU) project is an active research endeavor at NASA to develop technologies that can enable cost effective ways to live off the land. The extraction of oxygen from the Martian atmosphere. composed primarily of carbon dioxide, is one of the most important goals of the Mars ISRU project. The main obstacle is the relatively large amount of dust present in the Martian atmosphere. This dust must be efficiently removed from atmospheric gas intakes for ISRU processing chambers. A common technique to achieve this removal on earth is by electrostatic precipitation, where large electrostatic fields are established in a localized region to precipitate and collect previously charged dust particles. This technique is difficult to adapt to the Martian environment, with an atmospheric pressure of about one-hundredth of the terrestrial atmosphere. At these low pressures. the corona discharges required to implant an electrostatic charge to the particles to be collected is extremely difficult to sustain and the corona easily becomes biopolar. which is unsuitable for particle charging. In this paper, we report on our successful efforts to establish a stable corona under Martian simulated conditions. We also present results on dust collecting efficiencies with an electrostatic precipitator prototype that could be effectively used on a future mission to the red planet

  7. Resource utilization in home health care: results of a prospective study.

    Trisolini, M G; Thomas, C P; Cashman, S B; Payne, S M

    1994-01-01

    Resource utilization in home health care has become an issue of concern due to rising costs and recent initiatives to develop prospective payment systems for home health care. A number of issues remain unresolved for the development of prospective reimbursement in this sector, including the types of variables to be included as payment variables and appropriate measures of resource use. This study supplements previous work on home health case-mix by analyzing the factors affecting one aspect of resource use for skilled nursing visits--visit length--and explores the usefulness of several specially collected variables which are not routinely available in administrative records. A data collection instrument was developed with a focus group of skilled nurses, identifying a range of variables hypothesized to affect visit length. Five categories of variables were studied using multiple regression analysis: provider-related; patient's socio-economic status; patient's clinical status; patient's support services; and visit-specific. The final regression model identifies 9 variables which significantly affect visit time. Five of the 9 are visit-specific variables, a significant finding since these are not routinely collected. Case-mix systems which include visit time as a measure of resource use will need to investigate visit-specific variables, as this study indicates they could have the largest influence on visit time. Two other types of resources used in home health care, supplies and security drivers, were also investigated in less detail.

  8. Applied reproductive technologies and genetic resource banking for amphibian conservation.

    Kouba, Andrew J; Vance, Carrie K

    2009-01-01

    As amphibian populations continue to decline, both government and non-government organisations are establishing captive assurance colonies to secure populations deemed at risk of extinction if left in the wild. For the most part, little is known about the nutritional ecology, reproductive biology or husbandry needs of the animals placed into captive breeding programs. Because of this lack of knowledge, conservation biologists are currently facing the difficult task of maintaining and reproducing these species. Academic and zoo scientists are beginning to examine different technologies for maintaining the genetic diversity of founder populations brought out of the wild before the animals become extinct from rapidly spreading epizootic diseases. One such technology is genetic resource banking and applied reproductive technologies for species that are difficult to reproduce reliably in captivity. Significant advances have been made in the last decade for amphibian assisted reproduction including the use of exogenous hormones for induction of spermiation and ovulation, in vitro fertilisation, short-term cold storage of gametes and long-term cryopreservation of spermatozoa. These scientific breakthroughs for a select few species will no doubt serve as models for future assisted breeding protocols and the increasing number of amphibians requiring conservation intervention. However, the development of specialised assisted breeding protocols that can be applied to many different families of amphibians will likely require species-specific modifications considering their wide range of reproductive modes. The purpose of this review is to summarise the current state of knowledge in the area of assisted reproduction technologies and gene banking for the conservation of amphibians.

  9. Resource planning for gas utilities: Using a model to analyze pivotal issues

    Busch, J.F.; Comnes, G.A.

    1995-11-01

    With the advent of wellhead price decontrols that began in the late 1970s and the development of open access pipelines in the 1980s and 90s, gas local distribution companies (LDCs) now have increased responsibility for their gas supplies and face an increasingly complex array of supply and capacity choices. Heretofore this responsibility had been share with the interstate pipelines that provide bundled firm gas supplies. Moreover, gas supply an deliverability (capacity) options have multiplied as the pipeline network becomes increasing interconnected and as new storage projects are developed. There is now a fully-functioning financial market for commodity price hedging instruments and, on interstate Pipelines, secondary market (called capacity release) now exists. As a result of these changes in the natural gas industry, interest in resource planning and computer modeling tools for LDCs is increasing. Although in some ways the planning time horizon has become shorter for the gas LDC, the responsibility conferred to the LDC and complexity of the planning problem has increased. We examine current gas resource planning issues in the wake of the Federal Energy Regulatory Commission`s (FERC) Order 636. Our goal is twofold: (1) to illustrate the types of resource planning methods and models used in the industry and (2) to illustrate some of the key tradeoffs among types of resources, reliability, and system costs. To assist us, we utilize a commercially-available dispatch and resource planning model and examine four types of resource planning problems: the evaluation of new storage resources, the evaluation of buyback contracts, the computation of avoided costs, and the optimal tradeoff between reliability and system costs. To make the illustration of methods meaningful yet tractable, we developed a prototype LDC and used it for the majority of our analysis.

  10. Educational Scholarship and Technology: Resources for a Changing Undergraduate Medical Education Curriculum.

    Kyle, Brandon N; Corral, Irma; John, Nadyah Janine; Shelton, P G

    2017-06-01

    Returning to the original emphasis of higher education, universities have increasingly recognized the value and scholarship of teaching, and medical schools have been part of this educational scholarship movement. At the same time, the preferred learning styles of a new generation of medical students and advancements in technology have driven a need to incorporate technology into psychiatry undergraduate medical education (UGME). Educators need to understand how to find, access, and utilize such educational technology. This article provides a brief historical context for the return to education as scholarship, along with a discussion of some of the advantages to this approach, as well as several recent examples. Next, the educational needs of the current generation of medical students, particularly their preference to have technology incorporated into their education, will be discussed. Following this, we briefly review the educational scholarship of two newer approaches to psychiatry UGME that incorporate technology. We also offer the reader some resources for accessing up-to-date educational scholarship for psychiatry UGME, many of which take advantage of technology themselves. We conclude by discussing the need for promotion of educational scholarship.

  11. International Comparison of Water Resources Utilization Efficiency in the Silk Road Economic Belt

    Yan, Long; Ma, Jing; Deng, Wei; Wang, Yong

    2018-03-01

    In order to get knowledge of the standard of water utilization of the Silk Road Economic Belt from international point of view, the paper analyzes the annual variation of water resources utilization in the Silk Road Economic Belt, and compares with other typical countries. The study shows that Water resources utilization efficiency has been greatly improved in recent 20 years and the water consumption per USD 10000 of GDP has been declined 87.97%. the improvement of industrial water consumption efficiency is the key driving factors for substantial decrease in water consumption.The comparison of water utilization and human development shows that the higher HDI the country is, the more efficient water utilization the country has. water consumption per USD 10000 of GDP in country with HDI>0.9 is 194m³, being 8.5% of that in country with HDI from 0.5 to 0.6. On the premise of maintaining the stable economic and social development of the Silk Road Economic Belt, the realization of the control target of total water consumption must depend on the strict control over the disorderly expansion of irrigated area, the change in the mode of economic growth, the implementation of the development strategy for new industrialization and urbanization, vigorous development of the processing industry with low water consumption as well as the high-tech and high value-added industry. Only in this way, the control target of total water consumption can be realized in the process of completing the industrialization task.

  12. Estimation of resource savings due to fly ash utilization in road construction

    Kumar, Subodh; Patil, C.B. [Centre for Energy Studies, Indian Institute of Technology, New Delhi 110016 (India)

    2006-08-15

    A methodology for estimation of natural resource savings due to fly ash utilization in road construction in India is presented. Analytical expressions for the savings of various resources namely soil, stone aggregate, stone chips, sand and cement in the embankment, granular sub-base (GSB), water bound macadam (WBM) and pavement quality concrete (PQC) layers of fly ash based road formation with flexible and rigid pavements of a given geometry have been developed. The quantity of fly ash utilized in these layers of different pavements has also been quantified. In the present study, the maximum amount of resource savings is found in GSB followed by WBM and other layers of pavement. The soil quantity saved increases asymptotically with the rise in the embankment height. The results of financial analysis based on Indian fly ash based road construction cost data indicate that the savings in construction cost decrease with the lead and the investment on this alternative is found to be financially attractive only for a lead less than 60 and 90km for flexible and rigid pavements, respectively. (author)

  13. Expanding Geothermal Resource Utilization through Directed Research, Education, and Public Outreach

    Calvin, Wendy [Univ. of Nevada, Reno, NV (United States)

    2015-06-29

    The Great Basin Center for Geothermal Energy (GBCGE or the Center) was established at the University of Nevada, Reno (UNR) in May 2000 to promote research and utilization of geothermal resources. The Center received funding through this grant to promote increased geothermal development in the Great Basin, with most of the funding used for peerreviewed research. Funding to the Center and work under the contract were initiated in March 2002, with supplemental funding in subsequent years. The Center monitored the research projects that were competitively awarded in a series of proposal calls between 2002 and 2007. Peer-reviewed research promoted identification and utilization of geothermal resources in Nevada. Projects used geology, geochemistry, geophysics, remote sensing, and the synthesis of multi-disciplinary information to produce new models of geothermal systems in the Western U.S. and worldwide. Funds were also used to support graduate student research and training. Part of the grant was used to support public outreach activities, including webpages, online maps and data resources, and informational workshops for stakeholders.

  14. Electrostatic Beneficiation of Lunar Regolith: Applications in In-Situ Resource Utilization

    Trigwell, Steve; Captain, James; Weis, Kyle; Quinn, Jacqueline

    2011-01-01

    Upon returning to the moon, or further a field such as Mars, presents enormous challenges in sustaining life for extended periods of time far beyond the few days the astronauts experienced on the moon during the Apollo missions. A stay on Mars is envisioned to last several months, and it would be cost prohibitive to take all the requirements for such a stay from earth. Therefore, future exploration missions will be required to be self-sufficient and utilize the resources available at the mission site to sustain human occupation. Such an exercise is currently the focus of intense research at NASA under the In-situ Resource Utilization (ISRU) program. As well as oxygen and water necessary for human life, resources for providing building materials for habitats, radiation protection, and landing/launch pads are required. All these materials can be provided by the regolith present on the surface as it contains sufficient minerals and metals oxides to meet the requirements. However, before processing, it would be cost effective if the regolith could be enriched in the mineral(s) of interest. This can be achieved by electrostatic beneficiation in which tribocharged mineral particles are separated out and the feedstock enriched or depleted as required. The results of electrostatic beneficiation of lunar simulants and actual Apollo regolith, in lunar high vacuum are reported in which various degrees of efficient particle separation and mineral enrichment up to a few hundred percent were achieved.

  15. Local wisdom of Ngata Toro community in utilizing forest resources as a learning source of biology

    Yuliana, Sriyati, Siti; Sanjaya, Yayan

    2017-08-01

    Indonesian society is a pluralistic society with different cultures and local potencies that exist in each region. Some of local community still adherethe tradition from generation to generation in managing natural resources wisely. The application of the values of local wisdom is necessary to teach back to student to be more respect the culture and local potentials in the region. There are many ways developing student character by exploring local wisdom and implementing them as a learning resources. This study aims at revealing the values of local wisdom Ngata Toro indigenous people of Central Sulawesi Province in managing forest as a source of learning biology. This research was conducted by in-depth interviews, participant non-observation, documentation studies, and field notes. The data were analyzed with triangulation techniques by using a qualitative interaction analysis that is data collection, data reduction, and data display. Ngata Toro local community manage forest by dividing the forest into several zones, those arewana ngkiki, wana, pangale, pahawa pongko, oma, and balingkea accompanied by rules in the management of result-based forest conservation and sustainable utilization. By identifying the purpose of zonation and regulation of the forest, such values as the value of environmental conservation, balance value, sustainable value, and the value of mutual cooperation. These values are implemented as a biological learning resource which derived from the competences standard of analyze the utilization and conservation of the environment.

  16. Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture

    Zachritz, W.H., II; Polka, R.; Schoenmackers

    1996-04-01

    A demonstration high rate aquaculture production system utilizing a cascaded geothermal resource was designed, constructed and operated to fulfill the objectives of this project. Analysis of the energy and water balances for the system indicated that the addition of an Aquaculture Facility expanded the use of the existing resource. This expanded use in no way affected the up- stream processes. Analysis of the system`s energy and water requirements indicated that the present resource was under-utilized and could be expanded. Energy requirements appeared more limiting than water use, but the existing system could be expanded to a culture volume of 72,000 gal. This system would have a potential production capacity of 93,600 lb/yr with a potential market value of $280,00/yr. Based on the results of this study, the heat remaining in the geothermal fluid from one square foot of operating greenhouse is sufficient to support six gallons of culture water for a high density aquaculture facility. Thus, the over 1.5M ft{sup 2} of existing greenhouse space in New Mexico, has the potential to create an aquaculture industry of nearly 9M gal. This translates to an annual production potential of 11.7M lb with a market value of $35.lM.

  17. Covariates of depression and high utilizers of healthcare: Impact on resource use and costs.

    Robinson, Rebecca L; Grabner, Michael; Palli, Swetha Rao; Faries, Douglas; Stephenson, Judith J

    2016-06-01

    To characterize healthcare costs, resource use, and treatment patterns of survey respondents with a history of depression who are high utilizers (HUds) of healthcare and to identify factors associated with high utilization. Adults with two or more depression diagnoses identified from the HealthCore Integrated Research Database were invited to participate in the CODE study, which links survey data with 12-month retrospective claims data. Patient surveys provided data on demographics, general health, and symptoms and/or comorbidities associated with depression. Similar clinical conditions also were identified from the medical claims. Factors associated with high utilization were identified using logistic regression models. Of 3132 survey respondents, 1921 were included, 193 of whom were HUds (defined as those who incurred the top 10% of total all-cause costs in the preceding 12months). Mean total annual healthcare costs were eightfold greater for HUds than for non-HUds ($US56,145 vs. $US6,954; pcosts/resource use. HUds were prescribed twice as many medications (total mean: 16.86 vs. 8.32; psychotropic mean: 4.11 vs. 2.61; both pcosts in patients with depression. Copyright © 2016 Eli Lilly and Company. Published by Elsevier Inc. All rights reserved.

  18. Workplace productivity, employment issues, and resource utilization in patients with bipolar I disorder.

    McMorris, Barbara J; Downs, Kristen E; Panish, Jessica M; Dirani, Riad

    2010-03-01

    To collect workplace productivity and healthcare utilization data from subjects with bipolar I disorder and compare the results with those from normative subjects. A cross sectional survey was administered to patients and recruiting physicians. Data collected included employment status, Endicott Workplace Productivity Scale (EWPS) results, healthcare resource utilization, and quality-of-life. In comparison with normative subjects, bipolar I subjects reported lower levels of work productivity (measured by the EWPS). Bipolar I subjects also reported more frequent outpatient visits and more prescribed pharmaceuticals. Bipolar I subjects were more likely to miss work, have worked reduced hours due to medical or mental health issues, receive disability payments, been involved in a crime, be uninsured or covered by Medicare, or have been fired or laid off. The study groups were age- and gender-matched to reduce the impact of selection bias associated with a non-randomized study design. Other potential limitations affecting the results of the study include recall bias and possibly an impact of different data collection methods (e.g. Internet versus telephone). Bipolar I disorder is associated with a negative effect on work productivity and resource utilization and is an appropriate disease management target for employers and healthcare decision makers.

  19. Estimating the Value of Improved Distributed Photovoltaic Adoption Forecasts for Utility Resource Planning

    Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barbose, Galen L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stoll, Brady [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ehlen, Ali [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zuboy, Jarret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mills, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-05-15

    Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities; forecasting capabilities can be improved, but generally at a cost. This paper informs this decision-space by using a suite of models to explore the capacity expansion and operation of the Western Interconnection over a 15-year period across a wide range of DPV growth rates and misforecast severities. The system costs under a misforecast are compared against the costs under a perfect forecast, to quantify the costs of misforecasting. Using a simplified probabilistic method applied to these modeling results, an analyst can make a first-order estimate of the financial benefit of improving a utility’s forecasting capabilities, and thus be better informed about whether to make such an investment. For example, under our base assumptions, a utility with 10 TWh per year of retail electric sales who initially estimates that DPV growth could range from 2% to 7.5% of total generation over the next 15 years could expect total present-value savings of approximately $4 million if they could reduce the severity of misforecasting to within ±25%. Utility resource planners can compare those savings against the costs needed to achieve that level of precision, to guide their decision on whether to make an investment in tools or resources.

  20. Reactor technology assessment and selection utilizing systems engineering approach

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  1. Utilization of Information and Communication Technologies as a Predictor of Educational Stress on Secondary School Students

    Eskicumali, Ahmet; Arslan, Serhat; Demirtas, Zeynep

    2015-01-01

    The purpose of this study is to examine the relationship between utilization of information and communication technologies and educational stress. Participants were 411 secondary school students. Educational Stress Scale and Utilization of Information and Communication Technologies Scale were used as measures. The relationships between students'…

  2. Bridging the Technology Readiness "Valley of Death" Utilizing Nanosats

    Bauer, Robert A.; Millar, Pamela S.; Norton, Charles D.

    2015-01-01

    Incorporating new technology is a hallmark of space missions. Missions demand ever-improving tools and techniques to allow them to meet the mission science requirements. In Earth Science, these technologies are normally expressed in new instrument capabilities that can enable new measurement concepts, extended capabilities of existing measurement techniques, or totally new detection capabilities, and also, information systems technologies that can enhance data analysis or enable new data analyses to advance modeling and prediction capabilities. Incorporating new technologies has never been easy. There is a large development step beyond demonstration in a laboratory or on an airborne platform to the eventual space environment that is sometimes referred to as the "technology valley of death." Studies have shown that non-validated technology is a primary cause of NASA and DoD mission delays and cost overruns. With the demise of the New Millennium Program within NASA, opportunities for demonstrating technologies in space have been rare. Many technologies are suitable for a flight project after only ground testing. However, some require validation in a relevant or a space flight environment, which cannot be fully tested on the ground or in airborne systems. NASA's Earth Science Technology Program has initiated a nimble program to provide a fairly rapid turn-around of space validated technologies, and thereby reducing future mission risk in incorporating new technologies. The program, called In-Space Validation of Earth Science Technology (InVEST), now has five tasks in development. Each are 3U CubeSats and they are targeted for launch opportunities in the 2016 time period. Prior to formalizing an InVEST program, the technology program office was asked to demonstrate how the program would work and what sort of technologies could benefit from space validation. Three projects were developed and launched, and have demonstrated the technologies that they set out to validate

  3. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction

    Broberg Viklund, Sarah; Johansson, Maria T.

    2014-01-01

    Highlights: • Technologies for recovery and use of industrial excess heat were investigated. • Heat harvesting, heat storage, heat utilization, and heat conversion technologies. • Heat recovery potential for Gävleborg County in Sweden was calculated. • Effects on global CO 2 emissions were calculated for future energy market scenarios. - Abstract: Industrial excess heat is a large untapped resource, for which there is potential for external use, which would create benefits for industry and society. Use of excess heat can provide a way to reduce the use of primary energy and to contribute to global CO 2 mitigation. The aim of this paper is to present different measures for the recovery and utilization of industrial excess heat and to investigate how the development of the future energy market can affect which heat utilization measure would contribute the most to global CO 2 emissions mitigation. Excess heat recovery is put into a context by applying some of the excess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden. Two different cases for excess heat recovery are studied: heat delivery to a district heating system and heat-driven electricity generation. To investigate the impact of excess heat recovery on global CO 2 emissions, six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrial excess heat in Gävleborg County is not used today. The results show that with the proposed recovery measures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be supplied from this heat. Electricity generation would result in reduced global CO 2 emissions in all of the analyzed scenarios, while heat delivery to a DH system based on combined heat and power production from biomass would result in increased global CO 2 emissions when the CO 2 emission charge is low

  4. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Tao, W. C., LLNL

    1998-03-23

    regional water resources; As an evaluation tool for selecting appropriate remediation technologies for reclaiming water; and As an assessment tool for determining the effectiveness of implementing the remediation technologies. We have included a discussion on the appropriate strategy for LLNL to integrate its technical tools into the global business, geopolitical, and academic communities, whereby LLNL can form partnerships with technology proponents in the commercial, industrial, and public sectors.

  5. Utilization of Information and Communication Technologies in Mathematics Learning

    Farzaneh Saadati

    2014-07-01

    Full Text Available Attention to integrate technology in teaching and learning has provided a major transformation in the landscape of education. Therefore, many innovations in teaching and learning have been technology-driven. The study attempted to examine what is engineering students’ perception regarding the use of Information and Communication Technologies (ICT in mathematics learning as well as investigate their opinion about how ICT can be integrated to improve teaching and learning processes. The subjects were Iranian engineering students from two universities. The finding showed they are fully aware of importance of ICT in teaching and learning mathematics. Whilst, they were feeling comfortable and confident with technology, they do not have more experience of using technology in mathematics classes before. The findings supported the other studies, which indicated the potentials of ICT to facilitate students’ learning, improve teaching, and enhance institutional administration as established in the literature.

  6. WE-FG-201-00: High Impact Technologies for Low Resource Environments

    2016-01-01

    Many low- and middle-income countries lack the resources and services to manage cancer, from screening and diagnosis to radiation therapy planning, treatment and quality assurance. The challenges in upgrading or introducing the needed services are enormous, and include severe shortages in equipment and trained staff. In this symposium, we will describe examples of technology and scientific research that have the potential to impact all these areas. These include: (1) the development of high-quality/low-cost colposcopes for cervical cancer screening, (2) the application of automated radiotherapy treatment planning to reduce staffing shortages, (3) the development of a novel radiotherapy treatment unit, and (4) utilizing a cloud-based infrastructure to facilitate collaboration and QA. Learning Objectives: Understand some of the issues in cancer care in low- resource environments, including shortages in staff and equipment, and inadequate physical infrastructure for advanced radiotherapy. Understand the challenges in developing and deploying diagnostic and treatment devices and services for low-resource environments. Understand some of the emerging technological solutions for cancer management in LMICs. NCI; L. Court, NIH, Varian, Elekta; I. Feain, Ilana Feain is founder and CTO of Nano-X Pty Ltd

  7. WE-FG-201-00: High Impact Technologies for Low Resource Environments

    NONE

    2016-06-15

    Many low- and middle-income countries lack the resources and services to manage cancer, from screening and diagnosis to radiation therapy planning, treatment and quality assurance. The challenges in upgrading or introducing the needed services are enormous, and include severe shortages in equipment and trained staff. In this symposium, we will describe examples of technology and scientific research that have the potential to impact all these areas. These include: (1) the development of high-quality/low-cost colposcopes for cervical cancer screening, (2) the application of automated radiotherapy treatment planning to reduce staffing shortages, (3) the development of a novel radiotherapy treatment unit, and (4) utilizing a cloud-based infrastructure to facilitate collaboration and QA. Learning Objectives: Understand some of the issues in cancer care in low- resource environments, including shortages in staff and equipment, and inadequate physical infrastructure for advanced radiotherapy. Understand the challenges in developing and deploying diagnostic and treatment devices and services for low-resource environments. Understand some of the emerging technological solutions for cancer management in LMICs. NCI; L. Court, NIH, Varian, Elekta; I. Feain, Ilana Feain is founder and CTO of Nano-X Pty Ltd.

  8. Blood transfusion is associated with infection and increased resource utilization in combat casualties.

    Dunne, James R; Riddle, Mark S; Danko, Janine; Hayden, Rich; Petersen, Kyle

    2006-07-01

    Combat casualty care has made significant advances in recent years, including administration of blood products in far-forward locations. However, recent studies have shown blood transfusion to be a significant risk factor for infection and increased resource utilization in critically injured patients. We therefore sought to investigate the incidence of blood transfusion and its association with infection and resource utilization in combat casualties. Prospective data were collected and retrospectively reviewed on 210 critically injured patients admitted to the USNS Comfort over a 7-week period during the 2003 assault phase of Operation Iraqi Freedom. Patients were stratified by age, gender, and injury severity score (ISS). Multivariate regression analyses were used to assess blood transfusion and hematocrit (HCT) as independent risk factors for infection and intensive care unit (ICU) admission controlling for age, gender, and ISS. The study cohort had a mean age of 30 +/- 2 years, a mean ISS of 14 +/- 3, 84 per cent were male, and 88 per cent sustained penetrating trauma. Blood transfusion was required in 44 per cent (n = 93) of the study cohort. Transfused patients had a higher ISS (18 +/- 4 vs. 10 +/- 3, P transfused. Patients receiving blood transfusion had an increased infection rate (69% vs. 18%, P transfused and nontransfused patients. Multivariate binomial regression analysis identified blood transfusion and HCT as independent risk factors for infection (P blood transfusion as an independent risk factor for ICU admission (P blood transfusion. Blood transfusion is an independent risk factor for infection and increased resource utilization. Therefore, consideration should be given to the use of alternative blood substitutes and recombinant human erythropoietin in the treatment and management of combat casualties.

  9. Resource utilization and costs associated with the diagnostic evaluation of nonrefluxing primary hydronephrosis in infants.

    Akhavan, Ardavan; Shnorhavorian, Margarett; Garrison, Louis P; Merguerian, Paul A

    2014-09-01

    Long-term evaluation of postnatal nonrefluxing primary hydronephrosis presents a dilemma for urologists since most cases resolve without surgery. We report longitudinal resource utilization and costs associated with diagnostic evaluation of infants with isolated primary nonrefluxing hydronephrosis to determine the costs associated with diagnosing a surgical case, and we assess the implications using a cost-consequences analysis. A retrospective chart review was used to capture resource utilization for all patients younger than 6 months with hydronephrosis evaluated at our institution during a 5-year period. Infants with confounding urological diagnoses were excluded. Payer and societal perspectives were used. Costs were estimated from resource utilization, including radiographic imaging and clinical encounter types. Data were collected from first clinic visit until surgery or resolution or 3 years, whichever was shortest. Of 165 included patients surgical rates for hydronephrosis were 0% for grade I, 5% for grade II, 21% for grade III and 74% for grade IV. Median respective costs of identifying a single surgical case per increasing hydronephrosis grade 0 to IV were infinite, $37,600, $11,741 and $2,124 (p hydronephrosis is significantly more productive in terms of identifying patients requiring surgery vs evaluation of patients with lower grade disease. In patients with grades I and II hydronephrosis a more abbreviated diagnostic strategy than the current standard of care may be warranted. For the population in this analysis we project that a less intensive approach could save about 24% of costs. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Linguistic confusion in economics: utility, causality, product differentiation, and the supply of natural resources.

    Simon, J L

    1982-01-01

    Lack of careful attention to the language used in the discussion of economic concepts has resulted in considerable confusion and error. 2 frequent sources of confusion include tautology and the absence of operational definitions of concepts. This paper outlines a more effective scientific practice through reference to 2 economic examples: 1) the concept of utility, where it is demonstrated that choice of an operational definition of the concept facilitates interpersonal comparisons; and 2) causality, where a multidimensional operational definition is needed to discriminate among the various meanings of the term in theoretical, empirical, and policy contexts. The paper further discusses the example of natural resource scarcity, where application of the term "finite" reveals that there is no empirical evidence of physical limits to growth in the use of resources. A more appropriate measure of scarcity is the economic concept of price.

  11. Bamboo resources, utilization and ex-situ conservation in Xishuangbanna, South-eastern China

    YANG Qing; DUAN Zhu-biao; WANG Zheng-liang; HE Kai-hong; SUN Qi-xiang; PENG Zhen-hua

    2008-01-01

    This paper describes the geographical distribution, utilization, cultural value and ex-situ conservation of bamboo resources in Xishuangbanna, Yunan Province, China. Sixty species of bamboo in 19 genera are recorded in Xishuangbanna. The area of natural bamboo forest is 14319 ha, accounting for 5.92% of whole area of Xishuangbanna. The abundant resource of bamboo plays an important role in the economics and culture of national minorities in Xishuangbanna. Xishuangbanna Tropic Botanic Garden, Chinese Academy of Sciences (CAS), started to introduce bamboo species in 1961 and established the ex-situ conservation reserve (8 ha) of bamboo in 1981. Up to now, 211 species in 27 genera collected from tropic and sub-tropic of China and South-east Asia have been planted in the bamboo reserve, of which 11 species have bloomed and seeded, and their seeds were cultivated in Xishuangbanna Tropical Botanic Gardens, CAS, China.

  12. Results from utility wind resource assessment programs in Nebraska, Colorado, and Arizona

    Drapeau, C.L. [Global Energy Concepts, Inc., Bothell, WA (United States)

    1997-12-31

    Global Energy Concepts (GEC) has been retained by utilities in Colorado, Nebraska, and Arizona to site, install, and operate 21 wind monitoring stations as part of the Utility Wind Resource Assessment Program (U*WRAP). Preliminary results indicate wind speed averages at 40 meters (132 ft) of 6.5 - 7.4 m/s (14.5-16.5 mph) in Nebraska and 7.6 - 8.9 m/s (17.0-19.9 mph) in Colorado. The Arizona stations are not yet operational. This paper presents the history and current status of the 21 monitoring stations as well as preliminary data results. Information on wind speeds, wind direction, turbulence intensity, wind shear, frequency distribution, and data recovery rates are provided.

  13. Assessing the Utility of Temporally Dynamic Terrain Indices in Alaskan Moose Resource Selection

    Jennewein, J. S.; Hebblewhite, M.; Meddens, A. J.; Gilbert, S.; Vierling, L. A.; Boelman, N.; Eitel, J.

    2017-12-01

    The accelerated warming in arctic and boreal regions impacts ecosystem structure and plant species distribution, which have secondary effects on wildlife. In summer months, moose (Alces alces) are especially vulnerable to changes in the availability and quality of forage and foliage cover due to their thermoregulatory needs and high energetic demands post calving. Resource selection functions (RSFs) have been used with great success to model such tradeoffs in habitat selection. Recently, RSFs have expanded to include more dynamic representations of habitat selection through the use of time-varying covariates such as dynamic habitat indices. However, to date few studies have investigated dynamic terrain indices, which incorporate long-term, highly-dynamic meteorological data (e.g., albedo, air temperature) and their utility in modeling habitat selection. The purpose of this study is to compare two dynamic terrain indices (i.e., solar insolation and topographic wetness) to their static counterparts in Alaskan moose resource selection over a ten-year period (2008-2017). Additionally, the utility of a dynamic wind-shelter index is assessed. Three moose datasets (n=130 total), spanning a north-to-south gradient in Alaska, are analyzed independently to assess location-specific resource selection. The newly-released, high-resolution Arctic Digital Elevation Model (5m2) is used as the terrain input into both dynamic and static indices. Dynamic indices are programmed with meteorological data from the North American Regional Analysis (NARR) and NASA's Goddard Earth Sciences Data and Information Services Center (GES-DISC) databases. Static wetness and solar insolation indices are estimated using only topographic parameters (e.g., slope, aspect). Preliminary results from pilot analyses suggest that dynamic terrain indices may provide novel insights into resource selection of moose that could not be gained when using static counterparts. Future applications of such dynamic

  14. Application of Resource Utilization in Dementia (RUD) instrument in a global setting.

    Wimo, Anders; Gustavsson, Anders; Jönsson, Linus; Winblad, Bengt; Hsu, Ming-Ann; Gannon, Brenda

    2013-07-01

    The Resource Utilization in Dementia (RUD) questionnaire is the most widely used instrument for resource use data collection in dementia, enabling comparison of costs of care across countries with differing health care provisions. Recent feedback from payers questioned its face validity given that health care provisions have changed since the initial development of the RUD in 1998. The aim of this study was to update the RUD to improve its face validity in Alzheimer's disease (AD) clinical research and its utility for health care resource allocation. An extensive PubMed review was conducted of current relevant resource items in AD in 15 countries. The findings were complemented by interviews with local care providers and experts in dementia care and health economics. Their proposed revisions were discussed with five leading dementia experts in North and South America, northern and southern Europe, and Asia. A new version of the RUD was developed based on their recommendations. RUD users identified a need for more information relevant to coverage decisions. Proposed revisions included changes to existing questions (e.g., to capture more accurately the number and type of health care visits) and the addition of new questions (e.g., on informal caregiver hours and the primary caregiver's hours of sleep). Several minor changes were made to the RUD instrument to improve the accuracy and precision of the data while maintaining comparability with the original version and reflecting current medical practice. The RUD Complete Version 4.0 is now available for use in future AD clinical trials. Copyright © 2013 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  15. Study benefit value of utilization water resources for energy and sustainable environment

    Juniah, Restu; Sastradinata, Marwan

    2017-11-01

    Referring to the concept of sustainable development, the environment is said to be sustainable if the fulfillment of three pillars of development that is economic, social and ecological or the environment itself. The environment can sustained in the principle of ecology or basic principles of environmental science, when the three environmental components, namely the natural environment, the artificial environment (the built environment) and the social environment can be aligned for sustainability. The natural environment in this study is the water resources, the artificial environment is micro hydroelectric power generation (MHPG), and the social environment is the community living around the MHPG. The existence of MHPG is intended for the sustainability of special electrical energy for areas not yet reached by electricity derived from the state electricity company (SEC). The utilization of MHPG Singalaga in South Ogan Komering Ulu (OKUS) district is not only intended for economic, ecological, and social sustainability in Southern OKU district especially those who live in Singalaga Village, Kisam Tinggi District. This paper discusses the economic, ecological and social benefits of water resources utilization in Southern OKU District for MHPG Singalaga. The direct economic benefits that arise for people living around MHPG Singalaga is the cost incurred by the community for the use of electricity is less than if the community uses electricity coming from outside the MHPG. The cost to society in the form of dues amounting to IDR 15,000 a month / household. Social benefits with the absorption of manpower to manage the MHPG is chairman, secretary and 3 members, while the ecological benefits of water resources and sustainable energy as well as the community while maintaining the natural vegetation that is located around the MHPG for the continuity of water resources.

  16. Multi-purpose utilization of hydrothermal resources within the City of El Centro. Final report

    Sherwood, P.B.; Province, S.G.; Yamasaki, R.N.; Newman, K.L.

    1979-04-01

    The engineering and economic feasibility of utilizing geothermal heat from the Heber KGRA for space heating/cooling and water heating for domestic and industrial process applications within the City of El Centro was investigated. The analysis proceeds through an engineering survey of present conventional energy utilization within the City to identify and evaluate those end uses which could potentially utilize geothermal heat as a substitute for fossil fuel or electrically produced heating and cooling. A general engineering and economic evaluation of heat and cold delivery alternatives followed including evaluations of geothermal fluid transmission options, alternative refrigeration techniques, heat and cold transmission media options, probable systems interfaces, materials evaluations, projected conventional energy costs, life cycle costs for existing conventional systems, projected pricing requirements for privately and municipally developed geothermal resources, the relative distribution costs of heat delivery options, and estimated residential and commercial retrofit costs. A cost-effective plan for large-scale utilization of geothermal energy in El Centro for district heating/cooling and industrial applications was developed from this evaluation and preliminary conclusions drawn. Institutional barriers and environmental impacts associated with geothermal development in the City were also evaluated. Potentially adverse impacts were identified along with mitigating measures that should either completely eliminate or reduce these adverse effects to levels of insignificance.

  17. Externalities in utility resource selection: A means to formally recognize the envionmental benefits of wind farms

    Birner, S.

    1992-01-01

    Wind can only make its full contribution to the minimization of the total cost of energy services if it is valued for all the costs that it avoids, including avoided environmental costs. Means of incorporating environmental costs, or externalities, into utility planning decisions are described. Externalities are defined as uncompensated costs or benefits of an action borne by a party other than the one causing the costs. A simple example of the use of externalities in utility resource selection is presented, comparing costs of a coal-fired power plant and a wind farm. Externalities of wind farms are analyzed and found to be very low. An examination of some aspects of legislation in the USA and Canada shows a trend for utility commissions and other regulatory bodies to determine that including externalitites lies within their mandate. By formally recognizing and accounting for the environmental benefits of wind farms, it is seen that externalities can have a significant effect on utility demand for wind energy. A review of USA state actions regarding externalities is appended. 10 refs

  18. Dressing-related trauma: clinical sequelae and resource utilization in a UK setting

    Charlesworth B

    2014-04-01

    Full Text Available Bruce Charlesworth,1 Claire Pilling,1 Paul Chadwick,2 Martyn Butcher31Adelphi Values, Macclesfield, 2Salford Royal Foundation Trust, Salford, 3Northern Devon Healthcare Trust, Devon, UKBackground: Dressings are the mainstay of wound care management; however, adherence of the dressing to the wound or periwound skin is common and can lead to dressing-related pain and trauma. Dressing-related trauma is recognized as a clinical and economic burden to patients and health care providers. This study was conducted to garner expert opinion on clinical sequelae and resource use associated with dressing-related trauma in a UK setting.Methods: This was an exploratory study with two phases: qualitative pilot interviews with six wound care specialists to explore dressing-related trauma concepts, sequelae, and resource utilization; and online quantitative research with 30 wound care specialists to validate and quantify the concepts, sequelae, and resource utilization explored in the first phase of the study. Data were collected on mean health care professional time, material costs, pharmaceutical costs, and inpatient management per sequela occurrence until resolution. Data were analyzed to give total costs per sequela and concept occurrence.Results: The results demonstrate that dressing-related trauma is a clinically relevant concept. The main types of dressing-related trauma concepts included skin reactions, adherence to the wound, skin stripping, maceration, drying, and plugging of the wound. These were the foundation for a number of clinical sequelae, including wound enlargement, increased exudate, bleeding, infection, pain, itching/excoriation, edema, dermatitis, inflammation, and anxiety. Mean total costs range from £56 to £175 for the complete onward management of each occurrence of the six main concepts.Conclusion: These results provide insight into the hidden costs of dressing-related trauma in a UK setting. This research successfully conceptualized

  19. Entrepreneurship and technology transfer knowledge utilization and management

    Chavez, Victor

    2016-01-01

    Research at the intersection of creative enterprise, knowledge intensive entrepreneurship, public policy, and economic development is limited, although individually, each of these areas has been researched extensively. Reflective practitioners in industry, Government, and Technology Transfer can

  20. Barriers to Successful Information Technology (IT) Utilization by ...

    International Journal of Pedagogy, Policy and ICT in Education ... use of Information Communication Technology (ICT) among librarians in academic libraries in ... of use and affect towards use, Habits, Social Norms and Facilitating Conditions.

  1. Optimal benefits of utilizing renewable energy technologies in ...

    With rapid population growth and increase in industrial activities, more energy is consumed, resulting in environmental pollution and economic difficulties, ttherefore, the need for utilising renewable energy resources has emerged globally and it is possible that China, India, Brazil and South Africa (CIBS) would develop ...

  2. UTILIZATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES IN MATHEMATICS LEARNING

    Farzaneh Saadati

    2014-07-01

    Full Text Available Attention to integrate technology in teaching and learning has provided a major transformation in the landscape of education. Therefore, many innovations in teaching and learning have been technology-driven. The study attempted to examine what is engineering students’ perception regarding the use of Information and Communication Technologies (ICT in mathematics learning as well as investigate their opinion about how ICT can be integrated to improve teaching and learning processes. The subjects were Iranian engineering students from two universities. The finding showed they are fully aware of importance of ICT in teaching and learning mathematics. Whilst, they were feeling comfortable and confident with technology, they do not have more experience of using technology in mathematics classes before. The findings supported the other studies, which indicated the potentials of ICT to facilitate students’ learning, improve teaching, and enhance institutional administration as established in the literature.Keywords: Technology, Mathematics Learning, Facebook, Attitude Toward ICT DOI: http://dx.doi.org/10.22342/jme.5.2.1498.138-147

  3. 48 CFR 1252.239-70 - Security requirements for unclassified information technology resources.

    2010-10-01

    ... unclassified information technology resources. 1252.239-70 Section 1252.239-70 Federal Acquisition Regulations... of Provisions and Clauses 1252.239-70 Security requirements for unclassified information technology... Unclassified Information Technology Resources (APR 2005) (a) The Contractor shall be responsible for...

  4. 48 CFR 3052.204-70 - Security requirements for unclassified information technology resources.

    2010-10-01

    ... unclassified information technology resources. 3052.204-70 Section 3052.204-70 Federal Acquisition Regulations... for unclassified information technology resources. As prescribed in (HSAR) 48 CFR 3004.470-3, insert a clause substantially the same as follows: Security Requirements for Unclassified Information Technology...

  5. NASA Remote Sensing Technologies for Improved Integrated Water Resources Management

    Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lee, C. M.

    2014-12-01

    This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts for improved Integrated Water Resources Management (IWRM). NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and international community to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. Key objectives of this talk will highlight NASA's Water Resources and Capacity Building Programs with their objective to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management in national and international applications. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. The presentation will also demonstrate how NASA is a major contributor to water tasks and activities in GEOSS (Global Earth Observing System of Systems) and GEO (Group on Earth Observations).

  6. Rare resource supply crisis and solution technology for semiconductor manufacturing

    Fukuda, Hitomi; Hu, Sophia; Yoo, Youngsun; Takahisa, Kenji; Enami, Tatsuo

    2016-03-01

    There are growing concerns over future environmental impact and earth resource shortage throughout the world and in many industries. Our semiconductor industry is not excluded. "Green" has become an important topic as production volume become larger and more powerful. Especially, the rare gases are widely used in semiconductor manufacturing because of its inertness and extreme chemical stability. One major component of an Excimer laser system is Neon. It is used as a buffer gas for Argon (Ar) and Krypton (Kr) gases used in deep ultraviolet (DUV) lithography laser systems. Since Neon gas accounting for more than 96% of the laser gas mixture, a fairly large amount of neon gas is consumed to run these DUV lasers. However, due to country's instability both in politics and economics in Ukraine, the main producer of neon gas today, supply reduction has become an issue and is causing increasing concern. This concern is not only based on price increases, but has escalated to the point of supply shortages in 2015. This poses a critical situation for the semiconductor industry, which represents the leading consumer of neon gas in the world. Helium is another noble gas used for Excimer laser operation. It is used as a purge gas for optical component modules to prevent from being damaged by active gases and impurities. Helium has been used in various industries, including for medical equipment, linear motor cars, and semiconductors, and is indispensable for modern life. But consumption of helium in manufacturing has been increased dramatically, and its unstable supply and price rise has been a serious issue today. In this article, recent global supply issue of rare resources, especially Neon gas and Helium gas, and its solution technology to support semiconductor industry will be discussed.

  7. Implementation of the program for conservation and sustainable utilization of forest genetic resources in Republic of Serbia

    Šijačić-Nikolić Mirjana

    2017-01-01

    Full Text Available Program for conservation and sustainable utilization of forest genetic resources has been defined for 2016-2025 period and it is a base for concrete activities in this field. This Program could be divided into several parts that deal with: the legal framework for the conservation and sustainable utilization of forest genetic resources; status of forest genetic resources in Serbia; previous activities on the conservation of forest genetic resources; and objectives, priorities and measures of conservation. The Program should have an impact on the development of the forestry sector through the following activities: conservation and sustainable utilization of the available gene pool; improving forest management in accordance with conservation principles; improving the production of reproductive material of forest trees; make the public awareness of the need for conservation and sustainable utilization of forest genetic resources; fulfillment of international obligations related to this field and the possibility of joining FAO activities related to forest genetic resources - development of the national report as a part of the publication The State of the World's Forest Genetic Resources. Implementation of the Program will depend upon raising the awareness on the importance, conservation and sustainable utilization of forest genetic resources, as a precondition for the forests survival; it will depend of funds that will be allocated for this purpose and enthusiasm of people who deal with these issues.

  8. UTILIZING THE RIGHT MIX OF ENVIRONMENTAL CLEANUP TECHNOLOGIES

    Bergren, C; Wade Whitaker, W; Mary Flora, M

    2007-01-01

    The Savannah River Site (SRS) Figure 1 is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  9. Science, Technology and Natural Resources Policy: Overcoming Congressional Gridlock

    McCurdy, K. M.

    2015-12-01

    The current status of Science, Technology and Natural Resources (STNR) policy in the United States provides an ideal context to examine the influence of committee seniority within the public policy process. Exemplars of the Policy Entrepreneur have been individuals in leadership positions, whether executive or legislative. The role of junior committee members in shaping policy innovation is less well understood, and is frequently masked either in cross-sectional research designs or in case studies. The House Natural Resources committee seniority patterns are compared to the House of Representatives Chamber data from 1975 to 2015. This expanse of congressional time captures both the policy innovation of the Class of 1974 who helped transform the public lands by pursuing a preservation agenda, along with the contemporaneous gridlock caused by disagreements about reducing the size of the federal government, a policy agenda championed and sustained by the Class of 1994. Several types of political actors have served as policy entrepreneurs, President Kennedy and Secretary of Interior Udall shepherding the Wilderness Act of 1964 from the Executive branch, or in the 111th Congress Committee chairmen Senator Christopher Dodd and Representative Barney Frank, having announced their retirements, spent their final Congress shaping the consensus that produced the Wall Street Reform and Consumer Protection Act of 2010. A less studied policy phenomenon relies on "packing the committee" to outvote the leadership. This tactic can be used by the party leadership to overcome recalcitrant senior committee members, as was the case for Democrats in the House Interior and Insular Affairs Committee shift to preservation in the 1970s, or the tactic can be employed from the grassroots, as may be happening in the case of the House Natural Resources Committee in the 114th Congress. A policy making process analog to rivers is more appropriate than a mechanistic model. As there are multiple

  10. Discussion on the trend of information resource utilization in nuclear power enterprise

    Cheng Lihong

    2010-01-01

    Content of abstract The use for information resources of nuclear power enterprises will play increasingly vital role in network environment and market competition. Based on the digitization library and archives management conception, Nuclear power enterprise intelligence information service should achieve its function as 'the reference centre of the of administration and decision-making', 'the implement centre of work', 'the museum that witnesses the development and assimilates experience', 'the resource centre for employee's training' for the enterprise combining with the archives center resource by using the technology of digitization and network to deepen the professional edit and research and searches service, which establishes incorporate information management environment for the enterprise. In the process of digitization and informationization management for scientific and technical information construction, enterprise should perform according to its state by stages, ensuring a field carrying out a job according to reality. With the transformation of intelligence information service pattern, an enterprise should pay attention to the ability improvement and the role transformation of the intelligence agent, also to the intellectual property rights during the process and use of information resources. (authors)

  11. Technological Innovation and Developmental Strategies for Sustainable Management of Aquatic Resources in Developing Countries

    Agboola, Julius Ibukun

    2014-12-01

    Sustainable use and allocation of aquatic resources including water resources require implementation of ecologically appropriate technologies, efficient and relevant to local needs. Despite the numerous international agreements and provisions on transfer of technology, this has not been successfully achieved in developing countries. While reviewing some challenges to technological innovations and developments (TID), this paper analyzes five TID strategic approaches centered on grassroots technology development and provision of localized capacity for sustainable aquatic resources management. Three case studies provide examples of successful implementation of these strategies. Success requires the provision of localized capacity to manage technology through knowledge empowerment in rural communities situated within a framework of clear national priorities for technology development.

  12. Outcomes and Resource Utilization of Endoscopic Mass-Closure Technique for Laryngeal Clefts.

    Balakrishnan, Karthik; Cheng, Esther; de Alarcon, Alessandro; Sidell, Douglas R; Hart, Catherine K; Rutter, Michael J

    2015-07-01

    To compare resource utilization and clinical outcomes between endoscopic mass-closure and open techniques for laryngeal cleft repair. Case series with chart review. Tertiary academic children's hospital. Pediatric patients undergoing repair for Benjamin-Inglis type 1-3 laryngeal clefts over a 15-year period. All 20 patients undergoing endoscopic repair were included. Eight control patients undergoing open repair were selected using matching by age and cleft type. Demographic, clinical, and resource utilization data were collected. Twenty-eight patients were included (20 endoscopic, 8 open). Mean age, rates of tracheostomy and vocal fold immobility, and distribution of cleft types were not different between the 2 groups (all P > .2). Mean operative time (P = .004) and duration of hospital stay (P group. All repairs were intact in both groups at final postoperative endoscopy. Rates of persistent laryngeal penetration or aspiration on swallow study were not different between groups (P = 1.000), although results were available for only 11 patients. Endoscopic laryngeal cleft repair using a mass-closure technique provides a durable result while requiring significantly shorter operative times and hospital stays than open repair and avoiding the potential morbidity of laryngofissure. However, open repair may allow the simultaneous performance of other airway reconstructive procedures and may be a useful salvage technique when endoscopic repair fails. Postoperative swallowing results require further study. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  13. A composite efficiency metrics for evaluation of resource and energy utilization

    Yang, Siyu; Yang, Qingchun; Qian, Yu

    2013-01-01

    Polygeneration systems are commonly found in chemical and energy industry. These systems often involve chemical conversions and energy conversions. Studies of these systems are interdisciplinary, mainly involving fields of chemical engineering, energy engineering, environmental science, and economics. Each of these fields has developed an isolated index system different from the others. Analyses of polygeneration systems are therefore very likely to provide bias results with only the indexes from one field. This paper is motivated from this problem to develop a new composite efficiency metrics for polygeneration systems. This new metrics is based on the second law of thermodynamics, exergy theory. We introduce exergy cost for waste treatment as the energy penalty into conventional exergy efficiency. Using this new metrics could avoid the situation of spending too much energy for increasing production or paying production capacity for saving energy consumption. The composite metrics is studied on a simplified co-production process, syngas to methanol and electricity. The advantage of the new efficiency metrics is manifested by comparison with carbon element efficiency, energy efficiency, and exergy efficiency. Results show that the new metrics could give more rational analysis than the other indexes. - Highlights: • The composite efficiency metric gives the balanced evaluation of resource utilization and energy utilization. • This efficiency uses the exergy for waste treatment as the energy penalty. • This efficiency is applied on a simplified co-production process. • Results show that the composite metrics is better than energy efficiencies and resource efficiencies

  14. Early severe morbidity and resource utilization in South African adults on antiretroviral therapy

    Meintjes Graeme A

    2009-12-01

    Full Text Available Abstract Background High rates of mortality and morbidity have been described in sub-Saharan African patients within the first few months of starting highly active antiretroviral therapy (HAART. There is limited data on the causes of early morbidity on HAART and the associated resource utilization. Methods A cross-sectional study was conducted of medical admissions at a secondary-level hospital in Cape Town, South Africa. Patients on HAART were identified from a register and HIV-infected patients not on HAART were matched by gender, month of admission, and age group to correspond with the first admission of each case. Primary reasons for admission were determined by chart review. Direct health care costs were determined from the provider's perspective. Results There were 53 in the HAART group with 70 admissions and 53 in the no-HAART group with 60 admissions. The median duration of HAART was 1 month (interquartile range 1-3 months. Median baseline CD4 count in the HAART group was 57 × 106 cells/L (IQR 15-115. The primary reasons for admission in the HAART group were more likely to be due to adverse drug reactions and less likely to be due to AIDS events than the no-HAART group (34% versus 7%; p Conclusions Causes of early morbidity are different and more complex in HIV-infected patients on HAART. This results in greater resource utilization of diagnostic and therapeutic services.

  15. Handbook of Research on E-Transformation and Human Resources Management Technologies: Organizational Outcomes and Challenges

    Bondarouk, Tatiana; Ruel, Hubertus Johannes Maria; Guiderdoni-Jourdain, Karine; Oiry, Ewan

    2009-01-01

    Digital advancements and discoveries are now challenging traditional human resource management services within businesses. The Handbook of Research on E-Transformation and Human Resources Management Technologies: Organizational Outcomes and Challenges provides practical, situated, and unique

  16. Profiling microbial lignocellulose degradation and utilization by emergent omics technologies.

    Rosnow, Joshua J; Anderson, Lindsey N; Nair, Reji N; Baker, Erin S; Wright, Aaron T

    2017-08-01

    The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emerging technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzyme activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint in order to advance biofuel production.

  17. An assessment of General Aviation utilization of advanced avionics technology

    Quinby, G. F.

    1980-01-01

    Needs of the general aviation industry for services and facilities which might be supplied by NASA were examined. In the data collection phase, twenty-one individuals from nine manufacturing companies in general aviation were interviewed against a carefully prepared meeting format. General aviation avionics manufacturers were credited with a high degree of technology transfer from the forcing industries such as television, automotive, and computers and a demonstrated ability to apply advanced technology such as large scale integration and microprocessors to avionics functions in an innovative and cost effective manner. The industry's traditional resistance to any unnecessary regimentation or standardization was confirmed. Industry's self sufficiency in applying advanced technology to avionics product development was amply demonstrated. NASA research capability could be supportive in areas of basic mechanics of turbulence in weather and alternative means for its sensing.

  18. Pulmonary rehabilitation in COPD – available resources and utilization in Swedish primary and secondary care

    Sundh J

    2017-06-01

    Full Text Available Josefin Sundh,1 Helena Lindgren,2 Mikael Hasselgren,2 Scott Montgomery,3–5 Christer Janson,6 Björn Ställberg,7 Karin Lisspers7 1Department of Respiratory Medicine, School of Medical Sciences, 2Medical Programme, School of Medical Sciences, 3Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, 4Clinical Epidemiology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Epidemiology and Public Health, University College, London, UK; 6Department of Medical Sciences, Respiratory, Allergy and Sleep Research, 7Department of Public Health and Caring Science, Family Medicine and Preventive Medicine, Uppsala University, Uppsala, Sweden Introduction: Pulmonary rehabilitation is effective in all stages of COPD. The availability and utilization of pulmonary rehabilitation resources, and the characteristics of COPD patients receiving rehabilitation, were investigated in primary and secondary care in central Sweden. Materials and methods: Data on available pulmonary rehabilitation resources were collected using questionnaires, to 14 hospitals and 54 primary health care centers, and information on utilization of different rehabilitation professionals was obtained from questionnaires completed by 1,329 COPD patients from the same centers. Multivariable logistic regression examined associations with having received rehabilitation in the previous year. Results: In primary care, nurse-based asthma/COPD clinics were common (87%, with additional separate access to other rehabilitation professionals. In secondary care, rehabilitation was more often offered as part of a multidisciplinary teamwork (71%. In total, 36% of the patients met an asthma/COPD nurse in the previous year. Utilization was lower in primary than in secondary care for physiotherapists (7% vs 16%, occupational therapists (3% vs 10%, nutritionists (5% vs 13%, and counselors (1% vs 4%. A higher COPD Assessment Test score

  19. Interactions to the fifth trophic level: secondary and tertiary parasitoid wasps show extraordinary efficiency in utilizing host resources

    Harvey, J.A.; Wagenaar, R.; Bezemer, T.M.

    2009-01-01

    1. Parasitoid wasps are highly efficient organisms at utilizing and assimilating limited resources from their hosts. This study explores interactions over three trophic levels, from the third (primary parasitoid) to the fourth (secondary parasitoid) and terminating in the fifth (tertiary

  20. Abstracts of the Seminar on Modern State of Water Resources of Tajikistan - Problems and Perspectives of Rational Utilization

    2003-01-01

    This publication contains the abstracts of papers presented at the Seminar on Modern State of Water Resources of Tajikistan - Problems and Perspectives of Rational Utilization, held in Dushanbe in 2003

  1. Stochastic simulation of power systems with integrated renewable and utility-scale storage resources

    Degeilh, Yannick

    The push for a more sustainable electric supply has led various countries to adopt policies advocating the integration of renewable yet variable energy resources, such as wind and solar, into the grid. The challenges of integrating such time-varying, intermittent resources has in turn sparked a growing interest in the implementation of utility-scale energy storage resources ( ESRs), with MWweek storage capability. Indeed, storage devices provide flexibility to facilitate the management of power system operations in the presence of uncertain, highly time-varying and intermittent renewable resources. The ability to exploit the potential synergies between renewable and ESRs hinges on developing appropriate models, methodologies, tools and policy initiatives. We report on the development of a comprehensive simulation methodology that provides the capability to quantify the impacts of integrated renewable and ESRs on the economics, reliability and emission variable effects of power systems operating in a market environment. We model the uncertainty in the demands, the available capacity of conventional generation resources and the time-varying, intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random processes. We deploy models of the ESRs to emulate their scheduling and operations in the transmission-constrained hourly day-ahead markets. To this end, we formulate a scheduling optimization problem (SOP) whose solutions determine the operational schedule of the controllable ESRs in coordination with the demands and the conventional/renewable resources. As such, the SOP serves the dual purpose of emulating the clearing of the transmission-constrained day-ahead markets (DAMs ) and scheduling the energy storage resource operations. We also represent the need for system operators to impose stricter ramping requirements on the conventional generating units so as to maintain the system capability to perform "load following'', i

  2. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    Gerke, Frank G.

    2001-01-01

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy

  3. Utilizing today's technology to improve the procedure development process

    Morgan, R.A.; White, P.A.

    1995-01-01

    The purpose of this paper is to describe the systematic approach being utilized by the Civilian Radioactive Waste Management System, Managing and Operating (M ampersand O) Contractor to electronically connect geographically-separated organizational work units for the common goal of developing, reviewing, and approving Quality Administrative Procedures. The Board members were equipped with a common electronic network access. The results of establishing a GRB and an electronic network have proven to be very cost effective

  4. Effective Utilization of Resources and Infrastructure for a Spaceport Network Architecture

    Gill, Tracy; Larson, Wiley; Mueller, Robert; Roberson, Luke

    2012-01-01

    Providing routine, affordable access to a variety of orbital and deep space destinations requires an intricate network of ground, planetary surface, and space-based spaceports like those on Earth (land and sea), in various Earth orbits, and on other extraterrestrial surfaces. Advancements in technology and international collaboration are critical to establish a spaceport network that satisfies the requirements for private and government research, exploration, and commercial objectives. Technologies, interfaces, assembly techniques, and protocols must be adapted to enable mission critical capabilities and interoperability throughout the spaceport network. The conceptual space mission architecture must address the full range of required spaceport services, from managing propellants for a variety of spacecraft to governance structure. In order to accomplish affordability and sustainability goals, the network architecture must consider deriving propellants from in situ planetary resources to the maximum extent possible. Water on the Moon and Mars, Mars' atmospheric CO2, and O2 extracted from lunar regolith are examples of in situ resources that could be used to generate propellants for various spacecraft, orbital stages and trajectories, and the commodities to support habitation and human operations at these destinations. The ability to use in-space fuel depots containing in situ derived propellants would drastically reduce the mass required to launch long-duration or deep space missions from Earth's gravity well. Advances in transformative technologies and common capabilities, interfaces, umbilicals, commodities, protocols, and agreements will facilitate a cost-effective, safe, reliable infrastructure for a versatile network of Earth- and extraterrestrial spaceports. Defining a common infrastructure on Earth, planetary surfaces, and in space, as well as deriving propellants from in situ planetary resources to construct in-space propellant depots to serve the spaceport

  5. Impact of ranolazine on clinical outcomes and healthcare resource utilization in patients with refractory angina pectoris.

    Ling, Hua; Packard, Kathleen A; Burns, Tammy L; Hilleman, Daniel E

    2013-12-01

    Ranolazine is a novel antianginal medication approved for the treatment of chronic angina. There are only limited data concerning the efficacy of ranolazine in reducing healthcare resource utilization in patients with refractory angina pectoris. The primary objective of this analysis was to evaluate the efficacy and safety of ranolazine in refractory angina pectoris. In addition, the impact of ranolazine on healthcare resource utilization was assessed. Consecutive patients with refractory angina pectoris treated with ranolazine at two cardiology practices in the state of Nebraska were included in this analysis. The Canadian Cardiovascular Society (CCS) angina class and frequency and type of healthcare resource consumption were determined during the 12 months prior to and the 12 months after initiation of ranolazine. A total of 150 pts (64 % men) with a mean age of 66 ± 12 years were included in this analysis. All patients had previously undergone coronary revascularization. Nitrates, β-adrenoceptor antagonists (β-blockers), and calcium antagonists (calcium channel blockers) were being used in 83, 97, and 75 % of patients, respectively. During ranolazine treatment, a significant improvement in CCS angina class was observed, with 23 patients improving by one class and no patient experiencing a deterioration in functional class (p = 0.025). A total of 53 side effects occurred in 28 (19 %) patients receiving ranolazine. Of those patients with side effects, four required dose reduction and seven required drug discontinuation. The frequency of clinic visits and emergency room visits was lower during ranolazine treatment, but the differences in frequency were not significant. The number of patients hospitalized and the number of hospitalizations were significantly lower during ranolazine therapy than in the pre-ranolazine study period (p = 0.002). Ranolazine improved the CCS angina class and reduced hospitalizations over a 12-month follow-up period in a group

  6. Space Resource Utilization and Extending Human Presence Across the Solar System

    Curreri, Peter A.

    2005-01-01

    The Presidents Vision for Exploration is not a single mission, but an open ended journey that seeks to answer "How can we live on other worlds?" Using space resources is the only known approach for affordable, sustained, flexible, and self sufficient, human occupation beyond Earth orbit. Earth is a large planet. A simple analysis using the rocket equation shows that if Earth were a bit larger, chemical propulsion as a mechanism to access space would become impractical. Thus, even with the most efficient chemical rocket launch capability, the cost of lifting massive payloads into space will remain very steep (currently about $l00k/lb to the Moon and greater than $500k/lb to Mars). Space resource utilization should begin with an aggressive broad based demonstration program as afforded by the precursor missions implementation of the President's Vision of Exploration. Ion engine upper stages, for example, were studied for over 30 years, but only implemented in design after the Deep Space 1 in space demonstration. These demonstrations should include: extraction of elements from lunar regolith, and Martian soil and atmosphere, demonstration of power break even and growth from lunar or Mars moons derived photovoltaics, oxygen extraction for life support and propellant, and metals and alloys for in space repair and the production of habits and radiation shielding. Space resource utilization yields operational dividends through the subsequent programs including: propellant from lunar oxygen which could cut transportation costs from Earth in half, mega watts per year of power grown from lunar photovoltaics at decreasing cost per kW, decreased cost for human Mars missions by a factor of 10 by using propellant derived from Mars atmosphere for return, and in space manufacturing and food production with space resources yielding safe sustained and eventually self sufficient human presence in space. After the demonstration and implementation, the space resource utilization

  7. Use of indigenous technology in processing and utilization of non ...

    Information used for this paper came from both primary and secondary sources. Ten (10) respondents were interviewed from each secondary source of information. The use of indigenous technology to process these forest products to forest foods is currently limited by use of crude methods, inability to expand production ...

  8. A History of the Utilization of Technology in Academic Libraries.

    Boden, Dana W. R.

    This paper examines the history of academic libraries with special emphasis on the beginnings, growth, and progress in the uses of technology in those libraries. The earliest libraries were maintained for the preservation of knowledge and information. Access to the items in these collections was limited. With the growth of higher education in the…

  9. Technology Utilization: Confidence and Leadership Behavior at Three Elementary Schools

    Varnado, Roslyn Lea

    2013-01-01

    With the high emphasis placed on student achievement and accountability from the governing entities and the increase of teacher assessment, the analysis of instruction is at the forefront of educational leadership. When analyzing instruction and instructional tools, technology has been a component of school districts for years with funding, plans,…

  10. Designing Technology-Enabled Instruction to Utilize Learning Analytics

    Davies, Randall; Nyland, Robert; Bodily, Robert; Chapman, John; Jones, Brian; Young, Jay

    2017-01-01

    A key notion conveyed by those who advocate for the use of data to enhance instruction is an awareness that learning analytics has the potential to improve instruction and learning but is not currently reaching that potential. Gibbons (2014) suggested that a lack of learning facilitated by current technology-enabled instructional systems may be…

  11. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  12. Utilizing the right mix of environmental cleanup technologies

    Whitaker, Wade; Bergren, Chris; Flora, Mary

    2007-01-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990's), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical / pH-adjusting injection, phyto-remediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baro-balls, electrical resistance heating, soil vapor extraction, and micro-blowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works pro-actively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  13. Exploring New Models for Utility Distributed Energy Resource Planning and Integration: SMUD and Con Edison

    2018-01-23

    As a result of the rapid growth of renewable energy in the United States, the U.S. electric grid is undergoing a monumental shift away from its historical status quo. These changes are occurring at both the centralized and local levels and have been driven by a number of different factors, including large declines in renewable energy costs, federal and state incentives and mandates, and advances in the underlying technology. Higher levels of variable-generation renewable energy, however, may require new and increasingly complex methods for utilities to operate and maintain the grid while also attempting to limit the costly build-out of supporting grid infrastructure.

  14. Utilizing HPC Network Technologies in High Energy Physics Experiments

    AUTHOR|(CDS)2088631; The ATLAS collaboration

    2017-01-01

    Because of their performance characteristics high-performance fabrics like Infiniband or OmniPath are interesting technologies for many local area network applications, including data acquisition systems for high-energy physics experiments like the ATLAS experiment at CERN. This paper analyzes existing APIs for high-performance fabrics and evaluates their suitability for data acquisition systems in terms of performance and domain applicability. The study finds that existing software APIs for high-performance interconnects are focused on applications in high-performance computing with specific workloads and are not compatible with the requirements of data acquisition systems. To evaluate the use of high-performance interconnects in data acquisition systems a custom library, NetIO, is presented and compared against existing technologies. NetIO has a message queue-like interface which matches the ATLAS use case better than traditional HPC APIs like MPI. The architecture of NetIO is based on a interchangeable bac...

  15. Utilization of Near Field Communication Technology for Loyalty Management

    Ferina Ferdianti

    2013-09-01

    Full Text Available Near Field Communication (NFC is one of wireless technology developed at this time. We can use a mobile phone to do many transactions with NFC. Mobile developments have created to provide convenience for users in all aspects. However, at this time the function of NFC just limited for payment and micropayment. Beside it, there are assets that support to increase sales with attention of loyality management system. In this system, discounts or prizes are given based on data mining for every transaction costumers. Loyalty management has three concept, those are Frequency, Recency and Quantity. The goals are minimizing the cost, making purchase process faster, and managing data obtained through the NFC technology more simple. The result of this paper is the procedure to use data mining of NFC for loyalty management and system design using Unified Modeling Language approach.

  16. Utilizing Ultrasound Technology to Improve Livestock Marketing Decisions

    Jayson L. Lusk; Randall Little; Allen Williams; John Anderson; Blair McKinley

    2003-01-01

    This study estimates the value of using ultrasound technology to improve cattle marketing decisions by optimally choosing a particular marketing method. For the particular group of cattle analyzed, results indicate that using ultrasound information to selectively market cattle could have increased revenue by $25.53/head, $4.98/head, or $32.90/head, compared with simply marketing all animals on a live weight, dressed weight, or grid basis, respectively. Even if producers incorporate such infor...

  17. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every

  18. Technology utilization and energy efficiency: Lessons learned and future prospects

    Rosenberg, N.

    1992-01-01

    The concept of energy efficiency within the context of economic and environmental policy making is quite complex. Relatively poor economic performance ratings can weaken the validity of some energy supply systems which tend to reduce energy inputs for specific volumes of output, but don't minimize total cost per unit product; and industry is often slow to adopt new technologies, even those proven to reduce total costs. In this paper, the problems connected with growth in energy requirements in relation to product are first examined within the context of world economic performance history. Three key elements are shown to explain the differences in energy intensity and consumption typology among various countries, i.e., availability of energy sources, prices and government policies. Reference is made to the the role of recent energy prices and policies in the United States whose industrialization has been directly connected with the vast availability of some energy sources. In delineating possible future energy scenarios, the paper cites the strong influence of long term capital investment on the timing of the introduction of energy efficient technologies into industrial process schemes. It illustrates the necessity for flexibility in new energy strategies which are to take advantage the opportunities offered by a wide range of alternative energy sources now being made available through technological innovation

  19. OpenSearch technology for geospatial resources discovery

    Papeschi, Fabrizio; Enrico, Boldrini; Mazzetti, Paolo

    2010-05-01

    In 2005, the term Web 2.0 has been coined by Tim O'Reilly to describe a quickly growing set of Web-based applications that share a common philosophy of "mutually maximizing collective intelligence and added value for each participant by formalized and dynamic information sharing". Around this same period, OpenSearch a new Web 2.0 technology, was developed. More properly, OpenSearch is a collection of technologies that allow publishing of search results in a format suitable for syndication and aggregation. It is a way for websites and search engines to publish search results in a standard and accessible format. Due to its strong impact on the way the Web is perceived by users and also due its relevance for businesses, Web 2.0 has attracted the attention of both mass media and the scientific community. This explosive growth in popularity of Web 2.0 technologies like OpenSearch, and practical applications of Service Oriented Architecture (SOA) resulted in an increased interest in similarities, convergence, and a potential synergy of these two concepts. SOA is considered as the philosophy of encapsulating application logic in services with a uniformly defined interface and making these publicly available via discovery mechanisms. Service consumers may then retrieve these services, compose and use them according to their current needs. A great degree of similarity between SOA and Web 2.0 may be leading to a convergence between the two paradigms. They also expose divergent elements, such as the Web 2.0 support to the human interaction in opposition to the typical SOA machine-to-machine interaction. According to these considerations, the Geospatial Information (GI) domain, is also moving first steps towards a new approach of data publishing and discovering, in particular taking advantage of the OpenSearch technology. A specific GI niche is represented by the OGC Catalog Service for Web (CSW) that is part of the OGC Web Services (OWS) specifications suite, which provides a

  20. Research on Upgrade Path to Technology Innovation of Resource-based SMEs in China

    Jie, Xu

    2017-08-01

    Complexity, diversity and coordination are features of technology innovation of resource-based SMEs in China. This paper studies on the key factors of macro-environment, cooperation among enterprises and enterprise interior, which influence the upgrading of technology innovation of resource-based SMEs in China. This paper constructs integrated system of technology innovation to analyse the upgrade path to technology innovation of resource-based SMEs in China, so that enterprises would improve their technology innovation and get a new way to accomplish sustainable innovated development.