WorldWideScience

Sample records for resorcinol formaldehyde ion

  1. Lawps ion exchange column gravity drain of spherical resorcinol formaldehyde resin

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Herman, D. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Restivo, M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-28

    Experiments at several different scales were performed to understand the removal of spherical resorcinol formaldehyde (sRF) ion exchange resin using a gravity drain system with a valve located above the resin screen in the ion exchange column (IXC). This is being considered as part of the design for the Low Activity Waste Pretreatment System (LAWPS) to be constructed at the DOE Hanford Site.

  2. Synthesis, structural characterization, and performance evaluation of resorcinol-formaldehyde (R-F) ion-exchange resin

    International Nuclear Information System (INIS)

    Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Bryan, S.A.; Hallen, R.T.; Brown, G.N.; Bray, L.A.; Linehan, J.C.

    1995-08-01

    The 177 underground storage tanks at the DOE's Hanford Site contain an estimated 180 million tons of high-level radioactive wastes. It is desirable to remove and concentrate the highly radioactive fraction of the tank wastes for vitrification. Resorcinol-formaldehyde (R-F) resin, an organic ion-exchange resin with high selectivity and capacity for the cesium ion, which is a candidate ion-exchange material for use in remediation of tank wastes. The report includes information on the structure/function analysis of R-F resin and the synthetic factors that affect performance of the resin. CS-100, a commercially available phenol-formaldehyde (P-F) resin, and currently the baseline ion-exchanger for removal of cesium ion at Hanford, is compared with the R-F resin. The primary structural unit of the R-F resin was determined to consist of a 1,2,3,4-tetrasubstituted resorcinol ring unit while CS-100, was composed mainly of a 1,2,4-trisubstituted ring. CS-100 shows the presence of phenoxy-ether groups, and this may account for the much lower decontamination factor of CS-100 for cesium ion. Curing temperatures for the R-F resin were found to be optimal at 105--130C. At lower temperatures, insufficient curing, hence crosslinking, of the polymer resin occurs and selectivity for cesium drops. Curing at elevated temperatures leads to chemical degradation. Optimal particle size for R-F resin is in the range of 20--50 mesh-sized particles. R-F resin undergoes chemical degradation or oxidation which destroys ion-exchange sites. The ion-exchange sites (hydroxyl groups) are converted to quinones and ketones. CS-100, though it has much lower performance for cesium ion-exchange, is significantly more chemically stable than R-F resin. To gamma radiation, CS-100 is more radiolytically stable than R-F resin

  3. Synthesis, structural characterization, and performance evaluation of resorcinol-formaldehyde (R-F) ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Bryan, S.A.; Hallen, R.T.; Brown, G.N.; Bray, L.A.; Linehan, J.C.

    1995-08-01

    The 177 underground storage tanks at the DOE`s Hanford Site contain an estimated 180 million tons of high-level radioactive wastes. It is desirable to remove and concentrate the highly radioactive fraction of the tank wastes for vitrification. Resorcinol-formaldehyde (R-F) resin, an organic ion-exchange resin with high selectivity and capacity for the cesium ion, which is a candidate ion-exchange material for use in remediation of tank wastes. The report includes information on the structure/function analysis of R-F resin and the synthetic factors that affect performance of the resin. CS-100, a commercially available phenol-formaldehyde (P-F) resin, and currently the baseline ion-exchanger for removal of cesium ion at Hanford, is compared with the R-F resin. The primary structural unit of the R-F resin was determined to consist of a 1,2,3,4-tetrasubstituted resorcinol ring unit while CS-100, was composed mainly of a 1,2,4-trisubstituted ring. CS-100 shows the presence of phenoxy-ether groups, and this may account for the much lower decontamination factor of CS-100 for cesium ion. Curing temperatures for the R-F resin were found to be optimal at 105--130C. At lower temperatures, insufficient curing, hence crosslinking, of the polymer resin occurs and selectivity for cesium drops. Curing at elevated temperatures leads to chemical degradation. Optimal particle size for R-F resin is in the range of 20--50 mesh-sized particles. R-F resin undergoes chemical degradation or oxidation which destroys ion-exchange sites. The ion-exchange sites (hydroxyl groups) are converted to quinones and ketones. CS-100, though it has much lower performance for cesium ion-exchange, is significantly more chemically stable than R-F resin. To gamma radiation, CS-100 is more radiolytically stable than R-F resin.

  4. Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins.

    Science.gov (United States)

    Palamarchuk, Marina; Egorin, Andrey; Tokar, Eduard; Tutov, Mikhail; Marinin, Dmitry; Avramenko, Valentin

    2017-01-05

    The origin of the emergence of radioactive contamination not removable in the process of acid-base regeneration of ion-exchange resins used in treatment of technological media and liquid radioactive waste streams has been determined. It has been shown that a majority of cesium radionuclides not removable by regeneration are bound to inorganic deposits on the surface and inside the ion-exchange resin beads. The nature of the above inorganic inclusions has been investigated by means of the methods of electron microscopy, IR spectrometry and X-ray diffraction. The method of decontamination of spent ion-exchange resins and zeolites contaminated with cesium radionuclides employing selective resorcinol-formaldehyde resins has been suggested. Good prospects of such an approach in deep decontamination of spent ion exchangers have been demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Chemical derivatization to enhance chemical/oxidative stability of resorcinol-formaldehyde resin

    Energy Technology Data Exchange (ETDEWEB)

    Hubler, T.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The goal of this task is to develop modified resorcinol-formaldehyde (R-F) resin to improve the chemical/oxidative stability of the resin. R-F resin is a regenerable organic ion-exchange resin that is selective for cesium ion in highly alkaline, high ionic-strength solutions. R-F resin tends to undergo chemical degradation, reducing its ability to remove cesium ion from waste solutions; the mechanistic details of these decomposition reactions are currently unknown. The approach used for this task is chemical modification of the resin structure, particularly the resorcinol ring unit of the polymer resin. This approach is based on prior characterization studies conducted at Pacific Northwest National Laboratory (PNNL) that indicated the facile chemical degradation of the resin is oxidation of the resorcinol ring to the para-quinone structure, with subsequent loss of ion-exchange sites for cesium ion. R-F resin represents an important alternative to current radiocesium remediation technology for tank wastes at both the Hanford and Savannah River sites, particularly if regenerable resins are needed.

  6. Low-density carbonized resorcinol-formaldehyde foams

    International Nuclear Information System (INIS)

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-01-01

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 Angstrom, and cell sizes are less than 0.1 μm. We have achieved densities of 16 to 200 mg/cm 3 . The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-μm cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells

  7. Melamine-bridged alkyl resorcinol modified urea - formaldehyde resin for bonding hardwood plywood

    Science.gov (United States)

    Chung-Yun Hse; Mitsuo Higuchi

    2010-01-01

    A powdery product was obtained by the reaction of methylolated melamine with alkyl resorcinols to form melamine-bridged alkyl resorcinols (MARs). The effects of the addition of this powder on the bonding strength and formaldehyde emission of urea–formaldehyde (UF) resins were investigated. Three types of UF resins with a formaldehyde/urea molar ratio of 1.3 synthesized...

  8. Preliminary flowsheet: Ion exchange for separation of cesium from Hanford tank waste using resorcinol-formaldehyde resin

    International Nuclear Information System (INIS)

    Penwell, D.L.

    1994-01-01

    This preliminary flowsheet document describes an ion exchange process which uses resorcinol-formaldehyde (R-F) resin to remove cesium from Hanford tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. The flowsheet also discusses process alternatives, unresolved issues, and development needs associated with the ion exchange process. It is expected that this flowsheet will evolve as open issues are resolved and progress is made on development needs. This is part of the Tank Waste Remediation Program at Hanford. 26 refs, 6 figs, 25 tabs

  9. Synthesis of morphology-controlled carbon hollow particles by carbonization of resorcinol-formaldehyde precursor microspheres and applications in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haijiao, E-mail: seaboyfang@163.com [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China); Xu Huifang, E-mail: xuhf@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 (China); Zhao Can [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Resorcinol-formaldehyde hollow particles could be obtained by inverse suspension method. Black-Right-Pointing-Pointer The morphologies of RF carbon precursor particles could be controlled by adjusting the pH values of the RF precursor. Black-Right-Pointing-Pointer The prepared carbon hollow particles, which derived from resorcinol-formaldehyde, exhibited microporous properties. Black-Right-Pointing-Pointer The RF carbon microcapsules displayed excellent power property and cycle durability. - Abstract: The morphology-controlled carbon hollow particles, derived from resorcinol-formaldehyde (RF) particles, were prepared by using an (oil phase) O/(water phase) W/(oil phase) O inverse-emulsion system which was formed by adding RF precursor (water phase) to n-hexane (oil phase) with Span-80 as surfactant and the following carbonization. This simple method led to the formation of various morphologies of RF carbon precursor particles such as hollow spheres, bowl-like hollow structures, microcapsules, or solid microspheres by adjusting the pH values of the RF precursor. The synthesized carbon particles exhibited porous characters with the surface area of 659 m{sup 2} g{sup -1} and the total pore volume of 0.44 cm{sup 3} g{sup -1}. Additionally, the electrochemical behavior of the typical RF carbon particles in lithium-ion batteries revealed that the RF carbon microcapsules displayed a high initial discharge capacity of 1059 mAh g{sup -1} and stabilized at about 330 mAh g{sup -1}, indicating its excellent power property and cycle durability.

  10. Concentrating cesium-137 from seawater using resorcinol-formaldehyde resin for radioecological monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Egorin, Andrei; Tokar, Eduard; Tutov, Mikhail; Avramenko, Valentin [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation); Far Eastern Federal Univ., Vladivostok (Russian Federation); Palamarchuk, Marina; Marinin, Dmitry [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation)

    2017-04-01

    A method of preconcentrating cesium-137 from seawater using a resorcinol-formaldehyde resin, which enables one to optimize the ecological monitoring procedure, has been suggested. Studies of sorption of cesium-137 from seawater by resorcinol-formaldehyde resin have been performed, and it has been demonstrated that the cation exchanger is characterized by high selectivity with respect to cesium-137. It was found that the selectivity depended on the temperature of resin solidification and the seawater pH value. The maximal value of the cesium-137 distribution coefficient is equal to 4.1-4.5 x 10{sup 3} cm{sup 3} g{sup -1}. Under dynamic conditions, the ion-exchange resin capacity is 310-910 bed volumes depending on the seawater pH, whereas the efficiency of cesium removal exceeds 95%. The removal of more than 95% of cesium-137 has been attained using 1-3 M solutions of nitric acid: here, the eluate volume was 8-8.4 bed volumes. Application of 3 M solution of nitric acid results in resin degradation with the release of gaseous products.

  11. Ion Exchange Modeling Of Cesium Removal From Hanford Waste Using Spherical Resorcinol-Formaldehyde Resin

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2007-06-27

    This report discusses the expected performance of spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from alkaline Hanford radioactive waste. Predictions of full scale column performance in a carousel mode are made for the Hot Commissioning, Envelope B, and Subsequent Operations waste compositions under nominal operating conditions and for perturbations from the nominal. Only the loading phase of the process cycle is addressed in this report. Pertinent bench-scale column tests, kinetic experiments, and batch equilibrium experiments are used to estimate model parameters and to benchmark the ion-exchange model. The methodology and application presented in this report reflect the expected behavior of spherical RF resin manufactured at the intermediate-scale (i.e., approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary some. As such, the full-scale facility predictions provided within this report should provide reasonable estimates of production-scale column performance.

  12. Solid-state /sup 13/C NMR study of cured resorcinol-formaldehyde resins

    Energy Technology Data Exchange (ETDEWEB)

    Lippmaa, H.; Samoson, A.

    1988-08-01

    The curing process generally follows the pattern observed in the stage of prepolymer formation. Catalysts (NaOH, hexa, Mg(OCOCH/sub 3/)/sub 2/) that have no substantial influence on the isomeric composition of the resorcinol-formaldehyde prepolymers, do not affect the isomeric composition of the cured resins to any significant extent either. Isomeric composition of the cured resins depends mostly on the presence of water during the curing process, necessary for depolymerisation of the added paraformaldehyde. Curing in the melt leads to enhanced 2-substitution in the 1,3-dihydroxybenzene rings. In the /sup 13/C NMR spectra of cured powdered samples, the tendency of 5-methylresorcinol to form oligomers with a higher degree of 2-substitution than resorcinol is clearly apparent. Polycondensation process continues in the powdered resins after initial curing until complete consumption of all formaldehyde. Curing of phenol-formaldehyde resols proceeds through intermediate dimethylene ether formation.

  13. Cesium Isotherm Testing with Spherical Resorcinol-Formaldehyde Resin at High Sodium Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smoot, Margaret R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, Donald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Washington River Protection Solutions (WRPS) is developing a Low-Activity Waste Pretreatment System (LAWPS) to provide low-activity waste (LAW) directly to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste Facility for immobilization. The pretreatment that will be conducted on tank waste supernate at the LAWPS facility entails filtration to remove entrained solids and cesium (Cs) ion exchange to remove Cs from the product sent to the WTP. Currently, spherical resorcinol-formaldehyde (sRF) resin (Microbeads AS, Skedsmokorset, Norway) is the Cs ion exchange resin of choice. Most work on Cs ion exchange efficacy in Hanford tank waste has been conducted at nominally 5 M sodium (Na). WRPS is examining the possibility of processing supernatant at high Na concentrations—up to 8 M Na—to maximize processing efficiency through the LAWPS. Minimal Cs ion exchange work has been conducted at 6 M and 8 M Na concentrations..

  14. Chemical and radiation stability of SuperLig reg-sign 644, resorcinol-formaldehyde, and CS-100 cesium ion exchange materials

    International Nuclear Information System (INIS)

    Brown, G.N.; Adami, S.R.; Bray, L.A.

    1995-09-01

    At the request of the Initial Pretreatment Module Project within Westinghouse Hanford Company, Pacific Northwest Laboratory (PNL) conducted this study for the Efficient Separations and Processing Crosscutting Program (ESP) under the task ''Develop and Test Sorbents.'' The purpose of the study was to assess and compare the chemical and radiolytic stability of several cesium-selective ion exchange materials in simulated alkaline Hanford tank waste matrices. Pretreatment of nuclear process wastes to remove of cesium and other radionuclides by ion exchange was proposed previously as one method of minimizing the amount of high-level radioactive waste at Hanford. In this study, PNL evaluated three cesium-selective materials SuperLig reg-sign 644, resorcinol-formaldehyde (R-F), and CS-100 for chemical and radiation stability in 1 M NaOH and a simulated neutralized current acid waste (NCAW). The objective of the study is to investigate the stability of the newly produced SuperLig reg-sign 644 under a variety of conditions in an attempt to simulate and predict the degradation process. The following specific conclusions and recommendations resulted from the study

  15. Chemical and radiation stability of SuperLig{reg_sign}644, resorcinol-formaldehyde, and CS-100 cesium ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Adami, S.R.; Bray, L.A. [and others

    1995-09-01

    At the request of the Initial Pretreatment Module Project within Westinghouse Hanford Company, Pacific Northwest Laboratory (PNL) conducted this study for the Efficient Separations and Processing Crosscutting Program (ESP) under the task ``Develop and Test Sorbents.`` The purpose of the study was to assess and compare the chemical and radiolytic stability of several cesium-selective ion exchange materials in simulated alkaline Hanford tank waste matrices. Pretreatment of nuclear process wastes to remove of cesium and other radionuclides by ion exchange was proposed previously as one method of minimizing the amount of high-level radioactive waste at Hanford. In this study, PNL evaluated three cesium-selective materials SuperLig{reg_sign}644, resorcinol-formaldehyde (R-F), and CS-100 for chemical and radiation stability in 1 M NaOH and a simulated neutralized current acid waste (NCAW). The objective of the study is to investigate the stability of the newly produced SuperLig{reg_sign}644 under a variety of conditions in an attempt to simulate and predict the degradation process. The following specific conclusions and recommendations resulted from the study.

  16. Development Of An Approach To Modeling Loading And Elution Of Spherical Resorcinol Formaldehyde Ion-Exchange Resin

    International Nuclear Information System (INIS)

    Aleman, S.; Hamm, L.; Smith, F.

    2011-01-01

    The current strategy for removal of cesium from the Hanford waste stream is ion-exchange using spherical Resorcinol-Formaldehyde (sRF) resin. The original resin of choice was granular SuperLig 644 resin and during testing of this resin several operational issues were identified. For example, the granular material had a high angle of internal friction resulting in fragmentation of resin particles along its edges during cycling and adverse hydraulic performance. Efforts to replace SuperLig 644 were undertaken and one candidate was the granular Resorcinol-Formaldehyde (RF) resin where experience with this cation exchanger dates back to the late 1940's. To minimize hydraulic concerns a spherical version of RF was developed and several different chemically produced batches were created. The 5E-370/641 batch of sRF was selected and for the last decade numerous studies have been performed (e.g., batch contact tests, column loading and elution tests). The Waste Treatment Plant (WTP) flowsheet shows that the aqueous phase waste stream will have a wide range of ionic concentrations (e.g., during the loading step 0-3 M free OH, 5+ M Na, 0-1 M K, 0-3 M NO 3 ). Several steps are required in the ion-exchange process to achieve the required Cs separation factors: loading, displacement, washing, elution, and regeneration. The sRF resin will be operated over a wide range in pH (i.e., pH of 12-14 during the loading step and pH of 0.01-1 during the elution step). During some of these steps very high levels of counter-ions and co-ions will be present within the aqueous phase. Alternative process feeds are under consideration as well (e.g., sodium levels as high as 8 M and column operation up to 45 C during loading, reduced and recycled HNO 3 during elution). In order to model the performance of sRF resin through an entire ion-exchange cycle, a more robust isotherm model is required. To achieve this more robust isotherm model requires knowledge of the numbers and kinds of fixed

  17. DEVELOPMENT OF AN APPROACH TO MODELING LOADING AND ELUTION OF SPHERICAL RESORCINOL FORMALDEHYDE ION-EXCHANGE RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.; Hamm, L.; Smith, F.

    2011-10-03

    The current strategy for removal of cesium from the Hanford waste stream is ion-exchange using spherical Resorcinol-Formaldehyde (sRF) resin. The original resin of choice was granular SuperLig 644 resin and during testing of this resin several operational issues were identified. For example, the granular material had a high angle of internal friction resulting in fragmentation of resin particles along its edges during cycling and adverse hydraulic performance. Efforts to replace SuperLig 644 were undertaken and one candidate was the granular Resorcinol-Formaldehyde (RF) resin where experience with this cation exchanger dates back to the late 1940's. To minimize hydraulic concerns a spherical version of RF was developed and several different chemically produced batches were created. The 5E-370/641 batch of sRF was selected and for the last decade numerous studies have been performed (e.g., batch contact tests, column loading and elution tests). The Waste Treatment Plant (WTP) flowsheet shows that the aqueous phase waste stream will have a wide range of ionic concentrations (e.g., during the loading step 0-3 M free OH, 5+ M Na, 0-1 M K, 0-3 M NO{sub 3}). Several steps are required in the ion-exchange process to achieve the required Cs separation factors: loading, displacement, washing, elution, and regeneration. The sRF resin will be operated over a wide range in pH (i.e., pH of 12-14 during the loading step and pH of 0.01-1 during the elution step). During some of these steps very high levels of counter-ions and co-ions will be present within the aqueous phase. Alternative process feeds are under consideration as well (e.g., sodium levels as high as 8 M and column operation up to 45 C during loading, reduced and recycled HNO{sub 3} during elution). In order to model the performance of sRF resin through an entire ion-exchange cycle, a more robust isotherm model is required. To achieve this more robust isotherm model requires knowledge of the numbers and kinds of

  18. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid

    International Nuclear Information System (INIS)

    King, William D.; Fondeur, Fernando F.; Wilmarth, William R.; Pettis, Myra E.

    2005-01-01

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. The threshold conditions promoting reaction have been identified. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material

  19. Hydraulic Permeability of Resorcinol-Formaldehyde Ion-Exchange Resin - Effects of Oxygen Uptake and Radiation

    International Nuclear Information System (INIS)

    Taylor, Paul Allen

    2009-01-01

    An ion-exchange process, using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the U.S. Department of Energy's (DOE) Hanford site in Washington State. The RF resin is also being evaluated for use in the proposed Small Column Ion Exchange (SCIX) system, which is an alternative treatment option at DOE's Savannah River Site (SRS)in South Carolina. Testing at ORNL will determine the impact of radiation exposure and oxygen uptake by the RF resin on the hydraulic permeability of the resin. Samples of the resin will be removed periodically to measure physical properties (bead size and compressibility) and cesium capacity. The proposed full-scale treatment system at Hanford, the Waste Treatment Plant (WTP), will use an ion-exchange column containing nominally 680 gal of resin, which will treat 30 gpm of waste solution. The ion-exchange column is designed for a typical pressure drop of 6 psig, with a maximum of 9.7 psig. The lab-scale column is 3-in. clear PVC pipe and is prototypic of the proposed Hanford column. The fluid velocity in the lab-scale test will be much higher than for the full-scale column, in order to generate the maximum pressure drop expected in that column (9.7 psig). The frictional drag from this high velocity will produce similar forces on the resin in the lab-scale column as would be expected at the bottom of the full-scale column. The chemical changes in the resin caused by radiation exposure and oxygen uptake are expected to cause physical changes in the resin that could reduce the bed porosity and reduce the hydraulic permeability of the resin bed. These changes will be monitored by measuring the pressure drop through the lab-scale column and by measuring the physical properties of samples of the resin. The test loop with the lab-scale column is currently being fabricated, and operation will start by late May. Testing will be completed by the

  20. Fire Safety Tests for Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Peterson, Reid A.; Schweiger, Michael J.

    2012-07-30

    A draft safety evaluation of the scenario for spherical resorcinol-formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping, which may be overly bounding based on the fire performance data from the manufacturer of the ion exchange resin selected for use at the WTP. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI), following the American Society for Testing and Materials (ASTM) standard procedures, through a subcontract managed by Pacific Northwest National Laboratory (PNNL). For some tests, the ASTM standard procedures were not entirely appropriate or practical for the SRF resin material, so the procedures were modified and deviations from the ASTM standard procedures were noted. This report summarizes the results of fire safety tests performed and reported by SwRI. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. All as-received SwRI reports are attached to this report in the Appendix. Where applicable, the precision and bias of each test method, as given by each ASTM standard procedure, are included and compared with the SwRI test results of the SRF resin.

  1. Evaluations of Mechanisms for Pu Uptake and Retention within Spherical Resorcinol-Formaldehyde Resin Columns

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-15

    The unexpected uptake and retention of plutonium (Pu) onto columns containing spherical resorcinol-formaldehyde (sRF) resin during ion exchange testing of Cs (Cs) removal from alkaline tank waste was observed in experiments at both the Pacific Northwest National Laboratory (PNNL) and the Savannah River National Laboratory (SRNL). These observations have raised concern regarding the criticality safety of the Cs removal unit operation within the low-activity waste pretreatment system (LAWPS). Accordingly, studies have been initiated at Washington River Protection Solutions (WRPS), who manages the operations of the Hanford Site tank farms, including the LAWPS, PNNL, and elsewhere to investigate these findings. As part of these efforts, PNNL has prepared the present report to summarize the laboratory testing observations, evaluate these phenomena in light of published and unpublished technical information, and outline future laboratory testing, as deemed appropriate based on the literature studies, with the goal to elucidate the mechanisms for the observed Pu uptake and retention.

  2. Evolution of mechanical properties and final textural properties of resorcinol-formaldehyde xerogels during ambient air drying

    OpenAIRE

    Léonard, Angélique; Blacher, Silvia; Crine, Michel; Jomaa, Wahbi

    2008-01-01

    Porous carbon xerogels can be obtained by convective drying of resorcinol (R)-formaldehyde (F) hydrogels, followed by pyrolysis. Drying conditions have to be carefully controlled when crack-free monoliths with well-defined shape and size are required. The knowledge of the mechanical properties of the RF xerogels and their evolution with water content is essential to model their thermo-hygro-mechanical behavior during convective drying and avoid mechanical stresses leading to deformation and c...

  3. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    International Nuclear Information System (INIS)

    Ramsey, A.A.; Thorson, M.R.

    2010-01-01

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  4. Gas Generation Testing of Spherical Resorcinol-Formaldehyde (sRF) Resin

    Energy Technology Data Exchange (ETDEWEB)

    Colburn, Heather A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryan, Samuel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Camaioni, Donald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahoney, Lenna A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adami, Susan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-01-19

    This report describes gas generation testing of the spherical resorcinol-formaldehyde (sRF) resin that was conducted to support the technology maturation of the LAWPS facility. The current safety basis for the LAWPS facility is based primarily on two studies that had limited or inconclusive data sets. The two studies indicated a 40% increase in hydrogen generation rate of water (as predicted by the Hu model) with sRF resin over water alone. However, the previous studies did not test the range of conditions (process fluids and temperatures) that are expected in the LAWPS facility. Additionally, the previous studies did not obtain replicate test results or comparable liquid-only control samples. All of the testing described in this report, conducted with water, 0.45M nitric acid, and waste simulants with and without sRF resin, returned hydrogen generation rates that are within the current safety basis for the facility of 1.4 times the Hu model output for water.

  5. Incidence of flare-ups and evaluation of quality after retreatment of resorcinol-formaldehyde resin ("Russian Red Cement") endodontic therapy.

    Science.gov (United States)

    Gound, Tom G; Marx, David; Schwandt, Nathan A

    2003-10-01

    The purpose of this retrospective study was to evaluate the quality of treatment and incidence of flare-ups when teeth with resorcinol-formaldehyde resin are retreated in a postgraduate endodontic clinic. Fifty-eight cases were included in this study. Obturated and unfilled canal space was measured on radiographs. Forty-eight percent of the total canal space was filled before retreatment; 90% was filled after retreatment. After retreatment, obturations were rated as optimal in 59%, improved in 33%, unchanged in 6%, and worse in 2%. Seven patients (12%) had postretreatment flare-ups. Data were statistically analyzed using the Cochran-Armitage Test for Discrete Variables. No statistical difference in the incidence of flare-ups was found in teeth that before treatment had more than half the canal space filled compared to teeth with less than half, cases with pre-existing periradicular radiolucencies compared to cases with normal periradicular appearance, symptomatic cases compared to asymptomatic cases, or cases with optimal fillings after retreatment compared to less than optimal cases. It was concluded that teeth with resorcinol-formaldehyde fillings might be retreated with a good prognosis for improving the radiographic quality, but a higher than normal incidence of flare-ups may occur.

  6. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    Science.gov (United States)

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2011-01-01

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 °C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 °C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l−1, and the acid–cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H3PO4, close to 2200 m2 g−1 and 0.7 cm3 g−1, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l−1 led to authentic bimodal activated carbons, having a surface area as high as 1780 m2 g−1 and 0.6 cm3 g−1 of microporous volume easily accessible through a widely developed macroporosity. PMID:27877405

  7. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Celzard, Alain [Institut Jean Lamour-UMR CNRS 7198, CNRS-Nancy-Universite-UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces. ENSTIB, 27 rue Philippe Seguin, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, Antonio, E-mail: Alain.Celzard@enstib.uhp-nancy.fr [ENSTIB-LERMAB, Nancy-Universite, 27 rue Philippe Seguin, BP1041, 88051 Epinal cedex 9 (France)

    2011-06-15

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 deg. C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 deg. C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l{sup -1}, and the acid-cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H{sub 3}PO{sub 4}, close to 2200 m{sup 2} g{sup -1} and 0.7 cm{sup 3} g{sup -1}, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l{sup -1} led to authentic bimodal activated carbons, having a surface area as high as 1780 m{sup 2} g{sup -1} and 0.6 cm{sup 3} g{sup -1} of microporous volume easily accessible through a widely developed macroporosity.

  8. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    International Nuclear Information System (INIS)

    Adamson, D

    2007-01-01

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12-inch IX Column and sixteen cycles were completed in the 24-inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead

  9. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D

    2007-01-09

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12-inch IX Column and sixteen cycles were completed in the 24-inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead

  10. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D

    2006-11-08

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12 inch IX Column and sixteen cycles were completed in the 24 inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead

  11. FABRICATION AND PROPERTIES OVERCOATED RESORCINOL-FORMALDEHYDE SHELLS FOR OMEGA EXPERIMENTS

    International Nuclear Information System (INIS)

    NIKROO, A; CZECHOWICZ, D; PAGUIO, R; GREENWOOD, A.L; TAKAGI, M.

    2003-09-01

    OAK-B135 New high gain designs for direct drive ignition on NIF require foam shells. Scaled down versions of these designs are needed for near term experiments on the OMEGA laser facility at the Laboratory Laser Energetics (LLE). These shells need to be about 1 mm in diameter and 50-100 (micro)m wall thickness and densities of 100-250 mg/cc. In addition, a full density permeation seal needs to be deposited for retention of the fill gas at room temperature or the ice at cryogenic temperatures. They have fabricated such shells using Resorcinol-formaldehyde (R/F) as the selected foam material due to its transparency in the optical region. Extensive characterization of the wall uniformity of these shells has been performed. The foam shells have ∼ 5%-6% non-concentricities on the average. A full density permeation seal has been deposited on the R/F shells using two different techniques. In the first technique R/F shells are coated directly with plasma polymer to thicknesses of 3-4 (micro)m. In the second technique, R/F shells are coated with polyvinylphenol, using a chemical interfacial polymerization technique. Data on surface finish and gas retention for R/F shells coated by both methods are provided

  12. Mixture Design Approach on the Physical Properties of Lignin-Resorcinol-Formaldehyde Xerogels

    Directory of Open Access Journals (Sweden)

    Chris D. Castro

    2015-01-01

    Full Text Available Organic xerogels were functionalized by incorporating sugarcane bagasse lignin from soda pulping black liquor, not used so far in this materials, with the aim of introducing new functional groups on traditional gels that could improve its adsorptive capacity. Two mixing designs were applied to identify the reactive combinations that allow a well gel formation and to adjust models that predict physical properties. The designs study five components: resorcinol (R, 0.04–0.3, lignin (L, 0.004–0.14, formaldehyde (F, 0.08–0.17, water (W, 0.45–0.8, and NaOH (C, 0.0003–0.0035. The first experimental design was an extreme vertices design and its results showed shrinkage between 4.3 and 59.7 and a bulk density from 0.54 to 1.3; a mass ratio LR/F near 1.5 was required for gel formation. In the second design a D-Optimal was used to achieve better adjusted coefficients and incorporate the largest possible amount of lignin in the gels. Bulk density varies from 0.42 to 0.9, shrinkage varies from 3.42 to 25.35, and specific surface area reaches values of 451.86 m2/g with 13% lignin and 270 m2/g with 27% lignin. High catalyst content improves lignin dissolution and increase shrinkage and bulk density of xerogels and bulk density. Lignin contributes to reducing shrinkage and specific surface area due to his compact and rigid structure.

  13. INFLUÊNCIA DO CATALISADOR EM SOLUÇÕES POLIMÉRICAS PARA O PREPARO DE GÉIS ORGÂNICOS DE RESORCINOL-FORMALDEÍDO

    Directory of Open Access Journals (Sweden)

    Thalita S. Taiariol

    2015-11-01

    Full Text Available Resorcinol-formaldehyde (RF organic gels have been extensively used to produce carbon aerogels. The organic gel synthesis parameters greatly affect the structure of the resulting aerogel. In this study, the influence of the catalyst quantity on the polymeric solution sol-gel process was investigated. Sodium carbonate was used as a basic catalyst. RF gels were synthesized with a resorcinol to formaldehyde molar ratio of 0.5, a resorcinol to catalyst (R/C molar ratio equal to 50 or 300, and a resorcinol to solvent ratio of 0.1 g mL-1. The sol-gel process was evaluated in situ by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor and measurements of the kinematic viscosity. The techniques showed the evolution of the sol-gel process, and the results showed that the lower catalyst quantity induced a higher gel point, with a lower viscosity at the gel point. Differential scanning calorimetry was used to investigate the thermal behavior of the RF dried gel, and results showed that the exothermic event related to the curing process was shifted to higher temperatures for solutions containing higher R/C ratios.

  14. (2-PYRIDYLAZO)RESORCINOL FOR FLOTATION

    African Journals Online (AJOL)

    KEY WORDS: Iron(II), Fe-PAR complex, Flotation, Spectrophotometry, Soils, Zinc sulfide concentrates. INTRODUCTION. 4-(2-Pyridylazo)resorcinol (PAR) is one of the most popular analytical reagents. It forms colored complexes with many metal ions and can be used for their spectrophotometric determination. A well-known ...

  15. Chemical derivation to enhance the chemical/oxidative stability of resorcinol-formaldehyde (R-F) resin

    International Nuclear Information System (INIS)

    Hubler, T.L.; Shaw, W.J.; Brown, G.N.; Linehan, J.C.; Franz, J.A.; Hart, T.R.; Hogan, M.O.

    1996-09-01

    Tank wastes at Hanford and SRS contain highly alkaline supernate solutions of conc. Na, K nitrates with large amounts of 137 Cs. It is desirable to remove and concentrate the highly radioactive fraction for vitrification. One candidate ion exchange material for removing the radiocesium is R-F resin. This report summarizes studies into synthesis and characterization of 4-derivatized R-F resins prepared in pursuit of more chemically/oxidatively robust resin. 85% 4-fluororesorcinol/15% phenol formaldehyde resin appears to have good stability in alkaline solution, although there may be some nucleophilic displacement reaction during synthesis; further studies are needed

  16. Small Column Ion Exchange

    International Nuclear Information System (INIS)

    Huff, Thomas

    2010-01-01

    Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.

  17. Resorcinol derivatives from Ardisia maculosa.

    Science.gov (United States)

    Zheng, Ying; Wu, Feng-E

    2007-01-01

    Besides a series of known sterols and triterpenoids, a new resorcinol (1) and a known resorcinol (2) have been isolated from ethanol extract of Ardisia maculosa for the first time. The structures of these resorcinol derivatives were elucidated as 2-methyl-5-(Z-heptadec-8-enyl) resorcinol and 5-Z-heptadec-8-enyl) resorcinol by HRESI-MS, NMR ((1)H, (13)C, HSQC, HMBC) experiments. In our in vitro assay, compounds 1 and 2 showed no antimicrobial activities, however, compound 2 exhibited cytotoxity activity against human cancer cell line with GI(50) value of 2.14 x 10(- 4) mmol/ml.

  18. HIGH ASPECT RATIO ION EXCHANGE RESIN BED - HYDRAULIC RESULTS FOR SPERICAL RESIN BEADS

    International Nuclear Information System (INIS)

    Duignan, M; Charles Nash, C; Timothy Punch, T

    2007-01-01

    A principal role of the DOE Savannah River Site is to safely dispose of a large volume of liquid nuclear waste held in many storage tanks. An in-tank ion exchange unit is being considered for cesium removal to accelerate waste processing. This unit is planned to have a relatively high bed height to diameter ratio (10:1). Complicating the design is the need to cool the ion exchange media; therefore, the ion exchange column will have a central cooling core making the flow path annular. To separate cesium from waste the media being considered is made of resorcinol formaldehyde resin deposited on spherical plastic beads and is a substitute for a previously tested resin made of crystalline silicotitanate. This spherical media not only has an advantage of being mechanically robust, but, unlike its predecessor, it is also reusable, that is, loaded cesium can be removed through elution and regeneration. Resin regeneration leads to more efficient operation and less spent resin waste, but its hydraulic performance in the planned ion exchange column was unknown. Moreover, the recycling process of this spherical resorcinol formaldehyde causes its volume to significantly shrink and swell. To determine the spherical media's hydraulic demand a linearly scaled column was designed and tested. The waste simulant used was prototypic of the wastes' viscosity and density. This paper discusses the hydraulic performance of the media that will be used to assist in the design of a full-scale unit

  19. Summary of pilot-scale activities with resorcinol ion exchange resin

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Sargent, T.N.; Andrews, M.K.; Bibler, J.P.; Bibler, N.E.; Jantzen, C.M.

    1995-01-01

    The Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) is currently investigating vitrification technology for treatment of low level mixed wastes (LLMW). They have chartered the Savannah River Technology Center (SRTC) to study vitrification of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC's efforts have included crucible-scale studies and pilot scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. As part of the fiscal year (FY) 1995 activities, SRTC performed crucible-scale studies with organic resins. This waste stream was selected because of the large number of DOE sites, as well as commercial industries, that use resins for treatment of liquid wastes. Pilot-scale studies were to be completed in FY 1995, but could not be due to a reduction in funding. Instead, a compilation of pilot-scale tests with organic resins performed under the guidance of SRTC was provided in this report. The studies which will be discussed used a resorcinol- formaldehyde resin loaded with non-radioactive cesium, which was fed with simulated wastewater treatment sludge feed. The first study was performed at the SRTC in the mini-melter, 1/100th scale of the Defense Waste Processing Facility (DWPF) melter, and also involved limited crucible-scale studies to determine the resin loading obtainable. The other study was performed at the DOE/Industrial Center for Vitrification Research (Center) and involved both crucible and pilot-scale testing in the Stir-Melter stirred-melter. Both studies were successful in vitrifying the resin in simulated radioactive sludge and glass additive feeds

  20. Design of Ion-Exchange Resins Through EDTA and DTPA Modified Ligands

    Directory of Open Access Journals (Sweden)

    2014-07-01

    Catechol, resorcinol, and their admixtures with EDTA and DTPA moieties were converted into polymeric resins by alkaline polycondensation with formaldehyde. The resins were characterized by FTIR spectroscopy, elemental analysis, ion-exchange capacity, and distribution coefficient (D for heavy metal and radionuclide such as Cs and Sr. 137Cs and 90Sr constitutes a major source of heat in nuclear waste streams and in regards to recent nuclear event their remediation in complex solution – sea water - represent an important issue.

  1. Adsorption of Pb, Cd, Zn, Cu and Hg ions on Formaldehyde and ...

    African Journals Online (AJOL)

    Adsorption of Pb(II), Cd(II), Zn(II), Cu(II) and Hg(II) ions on formaldehyde and Pyridine modified bean husks were determined. The adsorption capacity of formaldehyde modified bean husks (mg/g) was: Pb2+, 5.01; Cd2+, 3.63; Zn2+, 2.18; Hg2+, 1.82; Cu2+, 1.58 and that of pyridine modified bean husk was: Hg2+, 6.92; Cd2+ ...

  2. Synthesis and characterization of resorcinol–formaldehyde resin chars doped by zinc oxide

    International Nuclear Information System (INIS)

    Gun’ko, Vladimir M.; Bogatyrov, Viktor M.; Oranska, Olena I.; Urubkov, Iliya V.; Leboda, Roman; Charmas, Barbara; Skubiszewska-Zięba, Jadwiga

    2014-01-01

    Polycondensation polymerization of resorcinol–formaldehyde (RF) mixtures in water with addition of different amounts of zinc acetate and then carbonization of dried gels are studied to prepare ZnO doped chars. Zinc acetate as a catalyst of resorcinol–formaldehyde polycondensation affects structural features of the RF resin (RFR) and, therefore, the texture of chars prepared from Zn-doped RFR. The ZnO doped chars are characterized using thermogravimetry, low temperature nitrogen adsorption/desorption, Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM). At a relatively high content of zinc acetate (1 mol per 10–40 mol of resorcinol) in the reaction mixture, the formation of crystallites of ZnO (zincite) occurs in a shape of straight nanorods of 20–130 nm in diameter and 1–3 μm in length. At a small content of zinc acetate (1 mol per 100–500 mol of resorcinol), ZnO in composites is XRD amorphous and does not form individual particles. The ZnO doped chars are pure nanoporous at a minimal ZnO content and nano-mesoporous or nano-meso-macroporous at a higher ZnO content.

  3. Biodegradation of resorcinol byPseudomonas sp.

    Institute of Scientific and Technical Information of China (English)

    Nader Hajizadeh; Najibeh Shirzad; Ali Farzi; Mojtaba Salouti; Azra Momeni

    2016-01-01

    ABSTRACT Objective:To investigate the ability ofPseudomonas sp. isolated from East Azarbaijan, Iran in bioremediation of resorcinol. Methods: Resorcinol biodegradation was evaluated using spectrophotometry and confirmed by gas chromatography-mass spectroscopy. Results:This isolate was able to remove up to 37.12% of resorcinol from contaminated water. Reusability experiments had confirmed the biodegradation process which produced seven intermediate compounds. These intermediates were characterized by gas chromatography-mass spectroscopy technique. The products of resorcinol biodegradation were apparently 1, 4-cyclohexadiene, nonadecene, 2-heptadecanone, 1-isopropyl-2-methoxy-4-methylbenzene, hexadecanoic acid, 9-octadecenoic acid, phenol and 5-methyl-2-(1-methylethyl). Conclusions: The findings revealed thatPseudomonas sp. is able to degrade resorcinol. Because of being an indigenous organism, this isolate is more compatible with the climate of the northwest region of Iran and possibly will be used for degradation of other similar aromatic compounds.

  4. New ion selective materials. Application to the selective extraction of caesium

    International Nuclear Information System (INIS)

    Favre-Reguillon, Alain

    1996-01-01

    This research thesis addresses the synthesis and assessment of ion selective materials. The first part reports the development of a general method of assessment of ion selective materials. In the second part, the author describes different methods used to insolubilize macro-cycles on hydrophilic polymers. The obtained polyurethanes are synthesised. These hydrophilic polymers display interesting complexing properties and selectivities with respect to cations of alkali metals. Then the author addresses the improvement of selectivity with respect to caesium of ion exchange resorcinol-formaldehyde resins. Different factors affecting selectivity are identified, and the concept of molecular print is used to study the improvement of selectivity. The effect of macro-cyclic structures on phenolic resins with respect to caesium is highlighted [fr

  5. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    International Nuclear Information System (INIS)

    Smith, F.; Hamm, Luther; Aleman, Sebastian; Michael, Johnston

    2008-01-01

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system

  6. Cesium Ion Exchange Program at the Hanford River Protection Project Waste Treatment Plant

    International Nuclear Information System (INIS)

    CHARLES, NASH

    2004-01-01

    The River Protection Project - Hanford Tank Waste Treatment and Immobilization Plant will use cesium ion exchange to remove 137Cs from Low Activity Waste down to 0.3 Ci/m3 in the Immobilized LAW, ILAW product. The project baseline for cesium ion exchange is the elutable SuperLig, R, 644, SL-644, resin registered trademark of IBC Advanced Technologies, Inc., American Fork, UT or the Department of Energy approved equivalent. SL-644 is solely available through IBC Advanced Technologies. To provide an alternative to this sole-source resin supply, the RPP--WTP initiated a three-stage process for selection and qualification of an alternative ion exchange resin for cesium removal in the RPPWTP. It was recommended that resorcinol formaldehyde RF be pursued as a potential alternative to SL-644

  7. Environmental and occupational exposure to resorcinol in Finland.

    Science.gov (United States)

    Porras, Simo P; Hartonen, Minna; Ylinen, Katriina; Tornaeus, Jarkko; Tuomi, Tapani; Santonen, Tiina

    2018-03-27

    Resorcinol is a suspected endocrine disruptor that affects thyroid function by inhibiting thyroxin peroxidase. It may also have an impact on iodine uptake. Resorcinol has various uses; for example in the manufacture of rubber products and in wood adhesives, flame retardants, UV stabilizers, and dyes. It is also used in personal care products such as hair colorants, anti-acne preparations, and peels. The aim of this study was to assess both environmental background exposure and occupational exposure to resorcinol in Finland. We investigated occupational exposure in hairdresser work and in the manufacture of tyres, adhesive resins and glue-laminated timber by biomonitoring total resorcinol concentration in urine samples. The biomonitoring results were compared to the urinary levels of occupationally non-exposed volunteers, and to the biomonitoring equivalent (BE), which we estimated on the basis of the EFSA's acceptable daily intake (ADI) value for resorcinol. Almost all the urine samples (99%) of the non-occupationally exposed volunteers contained measurable amounts of resorcinol. The urinary resorcinol data were rather scattered, and the resorcinol concentrations among women (GM 84 μg/l, 95th percentile 2072 μg/l) were clearly higher than the respective concentrations among men (GM 35 μg/l, 95th percentile 587 μg/l). The reason for this difference remains unclear. Although the two highest results exceeded the BE of 4 mg/l calculated on the basis of the EFSA's ADI, the 95th percentile of the occupationally non-exposed volunteers' results remained well below the BE among both males and females. According to the results, hairdressers' exposure to resorcinol was at the same level as that of the reference population of occupationally non-exposed volunteers. All hairdresser's values remained below the BE for resorcinol. The urinary resorcinol levels of the industrial workers were also at the same level as those of the reference population. We observed

  8. Study of transport properties and conduction mechanism of pure and composite resorcinol formaldehyde aerogel doped with Co-ferrite

    International Nuclear Information System (INIS)

    Attia, S.M.; Sharshar, T.; Abd-Elwahed, A.R.; Tawfik, A.

    2013-01-01

    Highlights: • A novel composite RF aerogels with Co-ferrite were prepared by sol–gel process. • RF aerogels exhibit a semiconducting behavior. • The dielectric constant of RF aerogel is very low (4 times as that of air) and can be controlled by adding Co-ferrite. • Large overlapping polaron (OLP) was found to be the preferred conduction mechanism in these materials. -- Abstract: A series of resorcinol formaldehyde aerogels (RF aerogels) composite with nanoparticles of CoFe 2 O 4 have been prepared by sol–gel method. Four samples of pure RF aerogels were prepared at different concentrations of Na 2 CO 3 as catalyst (0.02, 0.025, 0.03, and 0.04 wt.%) and four samples of composite RF aerogels were prepared at different concentration of doped CoFe 2 O 4 (0.075, 0.1, 0.125, and 0.15 wt.%; Na 2 CO 3 concentration = 0.03 wt.%). DC electrical conductivity as a function of temperature was studied in the temperature range 25 °C–200 °C for all samples. AC electrical conductivity and dielectric properties were determined using RLC Bridge in the frequency range 100 Hz–1 MHz at different temperature (25–200 °C). The pore size of the samples was determined using positron annihilation lifetime spectroscopy (PALS). RF aerogels are found to exhibit a semiconducting behavior and characterized by two transition temperatures T 1 and T 2 . Also σ DC increases with increase of Co-ferrite contents. Pure RF aerogels posses a very low dielectric constant, where the lowest value of ε′ is ∼4 times as that of air. ε′ decreases with increase of frequency, and increases with increase of temperature. Large overlapping polaron (OLP) is found to be the preferred conduction mechanism in these materials. The results of PALS show that there are two types of pore size in these samples; the first ranges from 1.9 to 2.5 nm, while the second ranges from 3.2 to 5.3 nm

  9. Removal of cesium from aluminum decladding wastes generated in irradiated target processing using a fixed-bed column of resorcinol-formaldehyde resin

    International Nuclear Information System (INIS)

    Brunson, R.R.; Williams, D.F.; Bond, W.D.; Benker, D.E.; Chattin, F.R.; Collins, E.D.

    1994-09-01

    The removal of cesium (Cs) from a low-level liquid waste (LLLW) with a cation-exchange column was demonstrated using a resorcinol-formaldehyde (RF) resin. The RF resin was developed at the Westinghouse Savannah River Laboratory (SRL) and is highly specific for the removal of Cs from an alkaline waste of high sodium content. It was determined that the RF resin would be suitable for removing Cs, the largest gamma radiation contributor, from the LLLW generated at the Radiochemical Engineering Development Center located at the Oak Ridge National Laboratory. Presently, the disposal of the LLLW is limited due to the amount of Cs contained in the waste. Cesium removal from the waste solution offers immediate benefits by conserving valuable tank space and would allow cask shipments of the treated waste should the present Laboratory pipelines become unavailable in the future. Preliminary laboratory tests of the RF resins, supplied from two different sources, were used to design a full-scale cation-exchange column for the removal of Cs from a Mark 42 SRL fuel element dejacketing waste solution. The in-cell tests reproduced the preliminary bench-scale test results. The initial Cs breakthrough range was 85--92 column volumes (CV). The resin capacity for Cs was found to be ∼0.35 meq per gram of resin. A 1.5-liter resin bed loaded a combined ∼1,300 Ci of 134 Cs and 137 Cs. A distribution coefficient of ∼110 CV was determined, based on a 50% Cs breakthrough point. The kinetics of the system was studied by examining the rate parameters; however, it was decided that several more tests would be necessary to define the mass transfer characteristics of the system

  10. Calculation of kinetic parameters of amino-formaldehyde polymers formation in the presence of calcium ions

    Directory of Open Access Journals (Sweden)

    V.V. Arhipova

    2016-05-01

    Full Text Available Calcium carbonate is on of widely used fillers of composite materials. The area of its application depend on disperse structure, particle shape and other. The modification of calcium carbonate by high-molecular polymers allows changing its characteristics and surface properties in a wide range. The modification of calcium carbonate often carried out with use of amino-formaldehyde polymers (AFP. Aim: The aim of this work is to determine the kinetic characteristics of amino-formaldehyde polymers polycondensation process in the presence of calcium ions. Materials and Methods: The mechanism of AFP polycondensation is complex and depends on various factors. Polycondensation of AFP took place under following conditions: the temperature is 20, 30, 60°C; the molar ratio of carbamide to formaldehyde is 1:1.25; the polycondensation duration is 2 hours; the mass ratio of CaCO3:AFP = 1:1. The polycondensation process was carried out in calcium chloride solution with рН=2…5.5. The concentration of formaldehyde and metilol groups determined during the experiment using chemical titrimetric method. Results: It is shown that polycondensation process of AFP in the presence of Сa2+ ions at their concentration from 0 to 2,25 mol/l (0…90 g/l leads to acceleration of process more than by 1.8 times at temperature of 20°C. Further increase of Сa2+ concentration leads to reduction of process speed. At temperature of 30°C the speed of process almost does not change in the range of Сa2+ concentration from 0 to 2,25 mol/l and further decreases slightly. For all range of Сa2+ concentration at temperature of 60°C the reduction of process speed is observed. Influence of Сa2+ on process of polycondensation confirms assumption made earlier of formation of weak bonds between AFP and calcium ions which at low temperatures interfere with hydrolysis of methyleneurea and collapse at increasing of process temperature.

  11. Ion Exchange Properties of a Terpolymer Resin Derived from 2, 4-Dihydroxybenzaldehyde, Oxamide and Formaldehyde

    Directory of Open Access Journals (Sweden)

    M. V. Tarase

    2009-01-01

    Full Text Available Terpolymer resins (2,4-DHBOF were synthesized by the condensation of 2,4-dihydroxybenzaldehyde and oxamide with formaldehyde in the presence of hydrochloric acid as catalyst, proved to be selective chelation ion exchange terpolymer resins for certain metals. Chelation ion exchange properties of these polymers were studied for Fe+3, Cu+2, Hg+2, Cd+2, Co+2, Zn+2, Ni+2 and Pb+2 ions. A batch equilibrium method was employed in the study of the selectivity of the distribution of a given metal ions between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in a media of various ionic strengths. The polymer showed a higher selectivity for Fe+3, Cd+2 and Co+2 ions than for Cu+2, Hg+2, Zn+2, Ni+2 and Pb+2 ions.

  12. Chelation Ion Exchange Properties of 2, 4-Dihydroxyacetophenone-Biuret-Formaldehyde Terpolymer Resin

    Directory of Open Access Journals (Sweden)

    Sanjiokumar S. Rahangdale

    2009-01-01

    Full Text Available The terpolymer resin 2, 4-HABF has been synthesized by the condensation of 2, 4-dihydroxyacetophenone (2, 4-HA and biuret (B with formaldehyde (F in 1:1:2 molar ratios in presence of 2 M hydrochloric acid as catalyst. UV-Visible, IR and proton NMR spectral studies have been carried out to elucidate the structure of the resin. A terpolymer (2, 4-HABF proved to be a selective chelating ion exchange polymer for certain metals. Chelating ion-exchange properties of this polymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+ and Pb2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurement of the distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The polymer showed highest selectivity for Fe3+, Cu2+ ions than for Ni2+, Co2+, Zn2+, Cd2+, and Pb2+ ions. Study of distribution ratio as a formation of pH indicates that the amount of metal ion taken by resin is increases with the increasing pH of the medium.

  13. An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode

    International Nuclear Information System (INIS)

    Zhu, Yinhai; Xiang, Xiaoxia; Liu, Enhui; Wu, Yuhu; Xie, Hui; Wu, Zhilian; Tian, Yingying

    2012-01-01

    Highlights: ► Microporous carbon was prepared by chemical activation of phenol-melamine-formaldehyde resin. ► Activation leads to high surface area, well-developed micropores. ► Micropores lead to strong intercalation between carbon and lithium ion. ► Large surface area promotes to improve the lithium storage capacity. -- Abstract: Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl 2 and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a current density of 100 mA g −1 , the carbon without activation shows a first discharge capacity of 515 mAh g −1 . After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl 2 and KOH activation was 1010 and 2085 mAh g −1 , respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g −1 after 20 cycles, which was much better than that activated by ZnCl 2 . These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.

  14. Formaldehyde-releasers: relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde-releasers

    DEFF Research Database (Denmark)

    de Groot, Anton C; Flyvholm, Mari-Ann; Lensen, Gerda

    2009-01-01

    in the literature as formaldehyde-releasers, data are inadequate to consider them as such beyond doubt. Several (nomenclature) mistakes and outdated information are discussed. Formaldehyde and formaldehyde allergy are reviewed: applications, exposure scenarios, legislation, patch testing problems, frequency....... The frequency of contact allergy to formaldehyde is consistently higher in the USA (8-9%) than in Europe (2-3%). Patch testing with formaldehyde is problematic; the currently used 1% solution may result in both false-positive and false-negative (up to 40%) reactions. Determining the relevance of patch test...

  15. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    Science.gov (United States)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  16. Low-density hydrocarbon foams for laser fusion targets: Progress report, 1987

    International Nuclear Information System (INIS)

    Haendler, B.L.; Buckley, S.R.; Chen, C.

    1988-06-01

    This report describes progress made in the development of direct-drive hydrocarbon foam targets for laser inertial confinement fusion during 1987. The foam materials are polystyrene, resorcinol-formaldehyde, carbonized resorcinol-formaldehyde, and cellulose acetate. The processes for making the foams, their properties, characterization techniques, and the relationship of their properties to target specifications are presented. Progress in the creation and testing of prototype targets is also described

  17. Boron complexing with H-resorcinol and acidic hydroxyxanthene dyes

    International Nuclear Information System (INIS)

    Nazarenko, V.A.; Flyantikova, G.V.; Chekirda, T.N.

    1984-01-01

    Complex formation of boron with H-resorcinol (hr; 2,4-dihydroxybenzene-azo -8-hydroxynaphtalene-3,6-disulfonic acid) and acidic hydroxyxanthene dyes (hxd: fluorescein, eosine, erathrosine). Mixed-ligand complexes with a ratio of r:hr:hxd=1:1:1 are formed at pH=5-6. The chemism of the complex formation of boron with H-resorcinol and fluorescein has been studied. The stability consta nt of the complex is 1.12x10 21 , the conditional molar absorptivitis 1.80x10 0 . This complex formation reaction was used for photometric determination of boron in natural water

  18. persimmon tannin-formaldehyde gel decontamination of dilute aqueous solutions

    International Nuclear Information System (INIS)

    Omar, H.A.

    2009-01-01

    in the present work, the extracted juice of unripe astringent persimmon fruit, designated as (kakishibu) was found to have an extremely high affinity for uranium ion. to develop efficient adsorbent for uranium ion the juice was immobilized in formaldehyde. the removal of uranium ion onto the formed gel was found to be affected by several factors such as, concentration of formaldehyde in gel, equilibration time, solution ph, concentration of uranium ion, mass of adsorbent, presence of some cations and anions . the sorption isotherm was discussed in the light of Freundlich and Langmuir models. from Freundlich equation, the exponent 1/n was found in the range of 1>1/n 0 , δS 0 and δG 0 were calculated . the capacity of adsorbent was also determined by column technique and found to 20.20 mg/g

  19. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  20. Complex Formation in a Liquid-Liquid Extraction System Containing Cobalt(II), 4-(2-Pyridylazo)resorcinol, and Nitron

    OpenAIRE

    Racheva, Petya Vassileva; Gavazov, Kiril Blazhev; Lekova, Vanya Dimitrova; Dimitrov, Atanas Nikolov

    2013-01-01

    Complex formation and liquid-liquid extraction were studied in a system containing cobalt(II), 4-(2-pyridylazo)resorcinol (PAR), 1,4-diphenyl-3-(phenylamino)-1H-1,2,4-triazole (Nitron, Nt), water, and chloroform. The effect of some experimental parameters (pH, shaking time, concentration of PAR, and concentration of Nt) was systematically investigated, and the optimum conditions for cobalt extraction as an ion-association complex, (NtH+)[Co3+(PAR)2], were found. The following key equilibrium ...

  1. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  2. Resorcinol adsorption from aqueous solution on activated carbon: Relation adsorption isotherm and immersion enthalpy

    International Nuclear Information System (INIS)

    Blanco, Diago A; Giraldo, Liliana; Moreno, Juan C.

    2008-01-01

    The resorcinol adsorption on a modified activated carbon, obtained from an activated commercial carbon Carbochem T M - PS30, CAG, modified by means of chemical treatment with HNO 3 7M oxidized activated carbon (CAO) and heat treatment under H 2 flow, reduced activated carbon (CAR) are studied. The influence of solution pH, the reduction and oxidation of the activated surface carbons in resorcinol aqueous solutions is determined. The interaction solid solution is characterized by adsorption isotherms analysis at 298 K and at pHs of 7.9 and 11 in order to evaluate the system on and below the value of resorcinol pKa. The adsorption capacity of carbons increases with diminishing solution pH. The amount retained increases in the reduced carbon at maximum adsorption pH and diminishes in the oxidized carbon. the experimental results of the adsorption isotherms are adjusted to the Freundlich and Langmuir models, obtaining values for the Q m ax parameter Langmuir model in the CAG of 179, 156 and 44 mgg - 1 For pH values of 7,9 and 11 respectively. In this case of modified carbons values of 233, 179 and 164 mgg - 1 Are obtained for CAR, CAG and CAO to pH 7 respectively, as general tendency the resorcinol adsorption increases in the following order CAR > CAG > CAO. Similar conclusions from immersion enthalpies are obtained, their values increase with the amount of solute retained. In the case of the CAG, immersion enthalpies between 25.8 to 40.9 Jg - 1, are obtained for resorcinol aqueous solutions in a range from 20 to 1500 mgL - 1

  3. Synthesis and Characterization of Pine Needles Reinforced RF Matrix Based Biocomposites

    Directory of Open Access Journals (Sweden)

    A. S. Singha

    2008-01-01

    Full Text Available Synthesis and characterization of pine needles reinforced thermosetting resin (Resorcinol-Formaldehyde which is most suitable as composite matrix has been reported. The polycondensation reaction between resorcinol and formaldehyde (RF in different molar ratios has been applied to the synthesis of RF polymer matrix. A thermosetting resin based composite, containing approximately 10, 20, 30 and 40% of natural fiber by weight, has been obtained by adding pine needles to the Resorcinol-Formaldehyde (RF resin. The mechanical properties of randomly oriented intimately mixed particle reinforced (Pine needles composites were determined. Effect of fiber loading in terms of weight % on mechanical properties such as tensile, compressive, and flexural and wear properties have also been evaluated. The reinforcing of the resin with Pine needles was accomplished in particle size of 200 micron by employing optimized resin. Present work reveals that mechanical properties of the RF resin increases to extensive extent when reinforced with Pine needles. Thermal (TGA/DTA and morphological studies (SEM of the resin, fiber and polymer composites thus synthesized have also been carried out.

  4. SIMPLE METHOD TO PRODUCE NANOPOROUS CARBON FOR VARIOUS APPLICATIONS BY PYROLYSIS OF SPECIALLY SYNTHESIZED PHENOLIC RESIN

    Directory of Open Access Journals (Sweden)

    Imam Prasetyo

    2013-08-01

    Full Text Available Nanoporous carbon materials, a unique and useful material, have been widely used in many technologies such as separation processes, catalysis, energy storage, gas storage, energy conversion, etc. due to its high specific surface area and tunable porosity. In this research, nanoporous carbons were prepared using simple and innovative approach based on structural array of phenolic resin polymer without activation during carbonization process. The effect of phenolic reactant type and composition on pore structure and carbon surface morphologies was studied. Nanoporous carbon derived from resorcinol formaldehyde (RF and from resorcinol phenol formaldehyde (RPF polymers was suitable for electrode material supercapacitor and CO2 capture medium. RF-derived and RPF-derived carbons provide electrode material supercapacitor with specific capacitance up to 246 F/g, whereas carbonized RPF exhibited CO2 uptake of 10.63 mmol/g (at 3.5 MPa 298 K. Nanoporous carbon derived from resorcinol para-tert-butyl phenol formaldehyde (RTBPF polymer exhibited attractive characteristics as methane storage media with methane uptake capacity as high as 8.98 mmol/g (at 3.5 MPa 298 K.

  5. Improving reservoir conformance using gelled polymer systems. Annual report, September 25, 1994--September 24, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1996-05-01

    The objectives of the research program are to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems -- KUSP1 systems which contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethylphthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system. The KUSP1 polymer-ester system and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to super-critical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.

  6. Concise access to primin, miconidin and related natural resorcinols

    Czech Academy of Sciences Publication Activity Database

    Šíša, Miroslav; Dvořáková, Marcela; Vaněk, Tomáš

    2017-01-01

    Roč. 73, č. 35 (2017), s. 5297-5301 ISSN 0040-4020 R&D Projects: GA MŠk(CZ) LD15006 Institutional support: RVO:61389030 Keywords : Cross - coupling * Natural products * Primin * Qionones * Resorcinols Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.651, year: 2016

  7. The influence of hydrogen peroxide on the permeability of protective gloves to resorcinol in hairdressing.

    Science.gov (United States)

    Lind, Marie-Louise; Johnsson, Stina; Lidén, Carola; Meding, Birgitta; Boman, Anders

    2015-01-01

    Hairdressers are exposed to hair dye chemicals, for example resorcinol and hydrogen peroxide. Adequate skin protection is an important preventive measure against occupational skin disease. To examine whether hydrogen peroxide may cause deterioration of protective gloves. Permeation of resorcinol through gloves of polyvinylchloride (PVC) (n = 8), natural rubber latex (NRL) (n = 5) and nitrile rubber (NR) (n = 5) was studied in a two-compartment cell, with resorcinol as an indicator for hair dyes. The amount of resorcinol that had permeated was analysed with a high-performance liquid chromatography instrument. Cumulative breakthrough time and permeation rate were compared for hydrogen peroxide-pretreated and untreated gloves. The cumulative breakthrough time was > 1 hr but gloves. Pretreatment of PVC gloves resulted in a slightly decreased breakthrough time, and pretreatment of NRL gloves decreased the permeation rate. No change was recorded in NR gloves. Treatment with hydrogen peroxide had a minor effect on permeation in the tested gloves. NR gloves provided the best protection. However, taking the allergy risk of rubber gloves into account, plastic gloves are recommended in hairdressing. PVC gloves may be used, but not for > 1 hr. Disposable gloves should never be reused, regardless of material. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Spectrophotometric Determination of Gallium(III with 4-(2-Pyridylazo-resorcinol and Nitron

    Directory of Open Access Journals (Sweden)

    Petya Vassileva Racheva

    2015-07-01

    Full Text Available The formation and liquid-liquid extraction of ion-association complex between gallium(III − 4-(2-pyridylazo-resorcinol (PAR – 1,4-diphenyl-3-(phenylamino-1H-1,2,4-triazole (nitron, Nt, water and chloroform were studied. The optimum conditions for gallium(III extraction as an ion-association complex, (NtH+[Ga3+(PAR2]-, were found: pH, concentration of the reagents and shaking time. The following key constants were calculated: constant of extraction (logKex = 6.28 ± 0.07, constant of association (logβ = 4.98 ± 0.05, constant of distribution (logKD = 1.30 ± 0.02 and recovery factor (R / % = 95.17 ± 0.02. Beerʼs law is obeyed for Ga(III concentration up to 0.8 μg cm-3 with apparent molar absorptivity of (10.3 ± 0.4×104 dm-3 mol-1 cm-1 at λmax = 510 nm. Some additional characteristics, such as limit of detection (LOD = 0.072 μg cm-3, limit of quantification (LOQ = 0.24 μg cm-3 and Sandellʼs sensitivity (SS = 0.000675 ng cm-2 were estimated as well.

  9. 78 FR 44090 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Science.gov (United States)

    2013-07-23

    ... Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite Wood Products..., concerning a third-party certification framework for the formaldehyde standards for composite wood products... Environmental protection, Composite wood products, Formaldehyde, Reporting and recordkeeping, Third-party...

  10. Determination of trace amounts of lead by chelating ion exchange and on-line preconcentration in flow-injection atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Purohit, Rajesh; Devi, Surekha

    1992-01-01

    Resins synthesized from quinolin-8-ol and resorcinol or hydro-quinone, with furfuraldehyde, formaldehyde or benzaldehyde as cross-linking agent, were used for the preconcentration of nanogram amounts of lead. The rate of exchange and activation energy of lead exchange were calculated. Column separations of lead-copper and lead-zinc did not show any cross-contamination. A continuous flow manifold using resin microcolumns was developed for the preconcentration and determination of lead. (author). 24 refs.; 5 figs.; 3 tabs

  11. Initial inventory of alternatives to biocidal products containing formaldehyde of formaldehyde releasers

    NARCIS (Netherlands)

    Wezenbeek JM; Janssen MPM; Scheepmaker JWA; MSP; M&V

    2015-01-01

    Formaldehyde is de werkzame stof in veel desinfecteer- en conserveringsmiddelen, maar deze stof is kankerverwekkend. Daarom zal formaldehyde naar verwachting per 1 januari 2016 op Europees niveau als zodanig worden geclassificeerd (carcinogeen 1B). Dit kan betekenen dat formaldehyde-houdende

  12. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  13. Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol

    Science.gov (United States)

    Douglas J. Gardner; Charles E. Frazier; Alfred W. Christiansen

    2006-01-01

    A recent collaborative effort among the U.S. Forest Products Laboratory, Virginia Tech, and the University of Maine has explored the possible bonding mechanisms contributing to durable wood adhesive bonding using hydroxymethyl resorcinol (HMR) surface treatment. Current adhesive bonding mechanisms include: mechanical interlocking, electronic or electrostatic theory,...

  14. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  15. Estimation of formaldehyde concentration in working environment by using 14C-labeled formaldehyde

    International Nuclear Information System (INIS)

    Hamada, Masana; Kitano, Katsuhiro; Miketa, Daigo

    2010-01-01

    It became to be ruled to check the concentration of formaldehyde as the estimation of airborne concentration in working environment since March, 2009 and then, liquid chromatography and easily analyzing equipment methods, mainly gas detector tube method, are given as the official methods. When we estimate the airborne formaldehyde concentration in a work place where only formalin is used as a formaldehyde emission source such as a room for pathological examination, it is not necessary to separate formaldehyde and therefore not very reasonable to use liquid chromatography including troublesome procedures. On the other hand, gas detector tube method is convenient but has possibility of causing errors by individual differences. The errors might cause the additional differences of the control classes and of the measures to prevent workers from being exposed to harmful materials. In order to solve these problems and to exam alternative analyzing method for formaldehyde, we tried to measure the concentration by using 14 C-labelled one. After 14 C-labelled formaldehyde solution is put into the emission source of formaldehyde (formalin solution), the vaporized samples are taken by silica gel tubes quantitatively as usual at the estimation of airborne concentration in working environment. By counting the desorpted amount of radioactivity from silica gel, it was revealed that the obtained concentrations of formaldehyde are correspond to both the calculated values and the values indicated on the gas detector tubes at various concentrations. In this study, we used the amount below the lower activity limits of radioactive material. Except the users who have radioisotope controlled area, we are allowed to use 14 C-labeled materials below 10 MBq without being regulated under the Law Concerning Prevention of Radiation Hazards. When we use a little amount of 14 C-formaldehyde at formaldehyde using area to check the concentration of vaporized formaldehyde, this method was found to

  16. Application of cross-linked soy protein isolate with resorcinol films for release studies of naturally occurring bioactive agent with antiproliferative activity

    CSIR Research Space (South Africa)

    Siva Mohan Reddy, G

    2014-01-01

    Full Text Available The potential of soy protein isolate films as a release system for naturally occurring antiproliferative agent was investigated. The soy protein isolates was cross linked with resorcinol and the resorcinol content was varied between 10...

  17. Electrochemical Degradation of Phenol and Resorcinol Molecules through the Dissolution of Sacrificial Anodes of Macro-Corrosion Galvanic Cells

    Directory of Open Access Journals (Sweden)

    Boguslaw Pierozynski

    2018-06-01

    Full Text Available This paper reports on the processes of phenol and resorcinol electrodegradation carried-out through continuous anodic dissolution of aluminum alloy and carbon steel sacrificial anodes for artificially aerated Cu-Al alloy and Cu-Fe-based galvanic (macro-corrosion cells and synthetically prepared wastewater solutions. Electrochemical experiments were carried-out by means of a laboratory size, PMMA (Poly-methyl methacrylate-made electrolyser unit, where significant degrees of phenol (10–89% and resorcinol (13–37% decomposition were obtained and visualized through the respective chemical/spectroscopy analyses. In addition, quantitative determination of phenol, as well as resorcinol (and possible electrodegradation products for the selected experimental conditions was performed by means of instrumental high-performance liquid chromatography/mass spectrometry analysis.

  18. 78 FR 34795 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Science.gov (United States)

    2013-06-10

    ... Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite Wood Products... Certification Framework for the Formaldehyde Standards for Composite Wood Products AGENCY: Environmental... certification, auditing and reporting of third-party certifiers, recordkeeping, enforcement, laminated products...

  19. High temperature performance of soy-based adhesives

    Science.gov (United States)

    Jane L. O’Dell; Christopher G. Hunt; Charles R. Frihart

    2013-01-01

    We studied the high temperature performance of soy meal processed to different protein concentrations (flour, concentrate, and isolate), as well as formulated soy-based adhesives, and commercial nonsoy adhesives for comparison. No thermal transitions were seen in phenol-resorcinol-formaldehyde (PRF) or soy-phenol-formaldehyde (SoyPF) or in as-received soy flour...

  20. 78 FR 51696 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Science.gov (United States)

    2013-08-21

    ... Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite Wood Products..., concerning a third-party certification framework for the formaldehyde standards for composite wood products... INFORMATION CONTACT. List of Subjects in 40 CFR Part 770 Environmental protection, Composite wood products...

  1. Synthesis, characterization and electrochemical properties of 4.8 V LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} cathode material in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Le Ha [Faculty of Engineering Physics and NanoTechnology, College of Technology, 144 Xuan Thuy Road, Hanoi (Viet Nam)] [Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi (Viet Nam); Dinh, Nguyen Nang [Faculty of Engineering Physics and NanoTechnology, College of Technology, 144 Xuan Thuy Road, Hanoi (Viet Nam); Brutti, Sergio, E-mail: sergio.brutti@uniroma1.i [Department of Chemistry, University of Rome ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Scrosati, Bruno [Department of Chemistry, University of Rome ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy)

    2010-07-15

    In this work the synthesis of a nickel doped cubic manganese spinel has been studied for application as cathode material in secondary lithium batteries. Six different experimental approaches have been tested in order to carry out a screening of the various possible synthetic routes. The used synthetic strategies were wet chemistry (WC), solid state (SS), combustion synthesis (CS), cellulose-based sol-gel synthesis (SG-C), ascorbic acid-based sol-gel synthesis (SG-AA) and resorcinol/formaldehyde-based sol-gel synthesis (SG-RF). The goal of our study is to obtain insights about how the synthesis conditions can be modified in order to achieve a material with improved electrochemical performances in such devices, especially in high current operating regimes. The synthesized materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), atomic absorption, inductively coupled plasma (ICP-MS) atomic emission spectroscopy, surface area measurements and tested as high voltage cathodes in Li-ion electrochemical devices.

  2. Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries

    International Nuclear Information System (INIS)

    Wen, Jian-Wu; Zhang, Da-Wei; Zang, Yong; Sun, Xin; Cheng, Bin; Ding, Chu-Xiong; Yu, Yan; Chen, Chun-Hua

    2014-01-01

    Highlights: • A unique bowl-like hollow spherical Co 3 O 4 structure is prepared through a simple, low-cost and mass-yield method. • Such a bowl-like hollow Co 3 O 4 microsphere demonstrates extraordinary rate and cycling performance for Li-storage. • The sodium-storage behavior of Co 3 O 4 is investigated for the first time. - Abstract: Bowl-like hollow Co 3 O 4 microspheres are prepared via a simple and low-cost route by thermally treating Co-containing resorcinol-formaldehyde composites gel in air. Scanning electron microscopy, transmission electron microscope and N 2 adsorption-desorption measurements demonstrate that these bowl-like hollow Co 3 O 4 microspheres are composed of hollow inner cavities and outer shell walls (70 nm thickness), on which a considerable amount of mesopores centered around 5-17 nm size are distributed. When employed as the anode material for lithium-ion batteries, these bowl-like hollow Co 3 O 4 microspheres exhibit extraordinary cycling performance (111% retention after 50 cycles owing to capacity rise), fairly high rate capacity (650 mAh g −1 at 5 C) and enhanced lithium storage capacity. Meanwhile, the Na-storage behavior of Co 3 O 4 as an anode material of Na-ion batteries is initially investigated based on such a hollow structure and it exhibits similar feature of discharge/charge profiles and a high initial discharge capacity but relatively moderate capacity retention compared with the Li-storage performance

  3. Melamine-formaldehyde aerogels

    Science.gov (United States)

    Pekala, Richard Walter

    1992-01-01

    Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.

  4. Carbon-covered Fe_3O_4 hollow cubic hierarchical porous composite as the anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen, Shouhui; Zhou, Rihui; Chen, Yaqin; Fu, Yuanyuan; Li, Ping; Song, Yonghai; Wang, Li

    2017-01-01

    In this work, Prussian blue nanocrystals, a kind of cubic metal-organic frameworks, was firstly covered by a uniform layer of resorcinol-formaldehyde (RF) resin, and then followed with heat treatment at different pyrolysis temperatures. The effects of pyrolysis temperature on the morphologies, phase, pore size, and electrochemical performance of the pyrolysis products were studied in this work. The composite generated at 600 "∘C, FexC600, was a hollow cubic composite of Fe_3O_4 covered by a thin RF-derived carbon layer. The carbon layer on FexC600 was a robust and conductive protective layer, which can accommodate Fe_3O_4 NPs and withstand the huge volume change of Fe_3O_4 during the process of discharge and charge. When used as anodes for lithium-ion batteries, FexC600 showed excellent electrochemical performance. It delivered a discharge capacity of 1126 mAh g"−"1 with a coulombic efficiency of 98.8% at the current density of 100 mA g"−"1 after 100 times discharge/charge cycling. It even delivered a capacity of 492 mAh g"−"1 at the current density of 500 mA g"−"1. This cubic hollow composite would be a promising alternative anode material for lithium-ion batteries.

  5. Formaldehyde in reusable protective gloves.

    Science.gov (United States)

    Pontén, Ann

    2006-05-01

    Due to the clinical findings in a single patient's case, formaldehyde was suspected to be present in clinically relevant levels in reusable protective gloves. Therefore, 9 types of gloves were investigated with the semi-quantitative chromotropic acid method. It was found that 6/9 gloves emitted some formaldehyde and that 4/9 gloves emitted > or =40 microg of formaldehyde. Most of the formaldehyde was found on the inside of the gloves. To get an indication of the clinical relevance, a comparison with a protective cream declared to contain the formaldehyde-releasing agent diazolidinyl urea was performed by comparing areas of gloves with areas of cream layers with thickness 1-2 mg/cm(2). It was found that the amounts of formaldehyde emitted from the gloves might be in the same range as emitted from a layer of cream.

  6. Towards a feasible and scalable production of bio-xerogels.

    Science.gov (United States)

    Rey-Raap, Natalia; Szczurek, Andrzej; Fierro, Vanessa; Menéndez, J Angel; Arenillas, Ana; Celzard, Alain

    2015-10-15

    The synthesis process of carbon xerogels is limited, mainly due to two drawbacks that prevent their introduction onto the market: (i) the long time required for producing the material and (ii) the reagents used for the synthesis, which are costly and harmful to the environment. Microwave radiation is expected to produce a reduction in time of more than 90%, while the use of tannin instead of resorcinol will probably result in a cost-effective carbonaceous material. Resorcinol-tannin-formaldehyde xerogels containing different amounts of tannin, either with or without a surfactant (sodium dodecyl sulphate), were synthesized by means of two different heating methods: conventional and microwave heating. The effects of the surfactant, the heating method and the addition of tannin upon the porous structure and the chemical composition of the final materials were evaluated. It was found that the addition of surfactant is essential for obtaining highly porous xerogels when using tannins. The heating method also plays an important role, as conventionally synthesized samples display a greater volume of large pores. However, tannins are less sensitive to microwave radiation and their use results in tannin-formaldehyde xerogels that have a porous structure and chemical composition similar to those of resorcinol-formaldehyde xerogels. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Self-Assembly of Antisite Defectless nano-LiFePO4 @C/Reduced Graphene Oxide Microspheres for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Hongbin; Liu, Lijia; Wang, Runwei; Yan, Xiao; Wang, Ziqi; Hu, Jiangtao; Chen, Haibiao; Jiang, Shang; Ni, Ling; Qiu, Hailong; Tang, Haitong; Wei, Yingjin; Zhang, Zongtao; Qiu, Shilun; Pan, Feng

    2018-05-18

    LiFePO 4 @C/reduced graphene oxide (rGO) hierarchical microspheres with superior electrochemical activity and a high tap density were first synthesized by using a Fe 3+ -based single inorganic precursor (LiFePO 4 OH@RF/GO; RF=resorcinol-formaldehyde, GO=graphene oxide) obtained from a template-free self-assembly synthesis followed by direct calcination. The synthetic process requires no physical mixing step. The phase transformation pathway from tavorite LiFePO 4 OH to olivine LiFePO 4 upon calcination was determined by means of the in situ high-temperature XRD technique. Benefitting from the unique structure of the material, these microspheres can be densely packed together, giving a high tap density of 1.3 g cm -3 , and simultaneously, defectless LiFePO 4 primary nanocrystals modified with a highly conductive surface carbon layer and ultrathin rGO provide good electronic and ionic kinetics for fast electron/Li + ion transport. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Adsorption of formaldehyde on graphene and graphyne

    Science.gov (United States)

    Majidi, R.; Karami, A. R.

    2014-05-01

    The adsorption of formaldehyde on graphene and graphyne was investigated to search high sensitivity sensors for detection of formaldehyde. We have used density functional theory to study the effect of formaldehyde on the electronic properties of graphene and graphyne. It is found that formaldehyde is physisorbed on the graphene and graphyne with small binding energy, large binding distance, and small charge transfer. The calculations also indicate that formaldehyde adsorption modifies the electronic properties of semimetallic graphene, α-graphyne, and β-graphyne and semiconducting γ-graphyne. The graphene and graphyne show semiconducting property in the presence of formaldehyde. The effect of formaldehyde on the electronic properties of graphene and graphyne suggests the potential application of these carbon nanomaterials for formaldehyde detection.

  9. Formaldehyde Emissions from Urea-Formaldehyde- and no-added-formaldehyde-Bonded particleboard as Influenced by Temperature and Relative Humidity

    Science.gov (United States)

    Charles R. Frihart; James M. Wescott; Timothy L. Chaffee; Kyle M. Gonner

    2012-01-01

    It is well documented that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF)–type adhesives. This work investigates the effect of temperature and humidity on newer commercial California Air Resources Board (CARB) phase II–compliant particleboard produced with UF-type adhesives. These...

  10. Ion Exchange Temperature Testing with SRF Resin - 12088

    Energy Technology Data Exchange (ETDEWEB)

    Russell, R.L.; Rinehart, D.E.; Brown, G.N.; Peterson, R.A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2012-07-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy's Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing Cs-137. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50 deg. C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow at elevated temperature (45 deg., 50 deg., 55 deg., 60 deg., 65 deg., 75 deg. C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45 deg. C. Above 60 deg. C the resin appears to not load at all. It was observed that the resin disintegrated at 75 deg. C until not much was left and partially disintegrated at 65 deg. C, which caused the column to plug in both tests after ∼336 hours. The results indicate that WTP will lose resin loading capacity if the ion exchange process is performed above 25 deg. C, and the resin will disintegrate above 65 deg. C. Therefore, WTP will have a restricted operating range of temperatures to perform the ion exchange process with this resin. PNNL and WTP are currently evaluating the operating limits of the resin in further detail. Aging in 0.5 M HNO{sub 3} also caused the resin to lose capacity above 25 deg. C and to completely dissolve at 55 deg. C. Again, WTP will have a restricted operating range of temperatures when eluting the resin with nitric acid in order to maintain resin loading capacity and avoid disintegration of the resin

  11. Phenolic cation exchange resin material for recovery of cesium and strontium

    Science.gov (United States)

    Ebra, Martha A.; Wallace, Richard M.

    1983-01-01

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear waste solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs.sup.+ and Sr.sup.2+ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  12. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    Science.gov (United States)

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  13. Chemical functionalization and stabilization of type I collagen with organic tanning agents

    International Nuclear Information System (INIS)

    Albu, Madalina Georgiana; Deselnicu, Viorica; Ioannidis, Ioannis; Deselnicu, Dana; Chelaru, Ciprian

    2015-01-01

    We investigated the interactions between selected organic tanning agents and type I fibrillar collagen as a model fibrillar substrate to enable the fast direct evaluation and validation of interpretations of tanning activity. Type I fibrillar collagen (1%) as gel was used as substrate of tanning and tannic acid, resorcinol- and melamine-formaldehyde and their combination at three concentrations as crosslinking agents (tannins). To evaluate the stability of collagen during tanning, the crosslinked gels at 2.8, 4.5 and 9.0 pHs were freeze-dried as discs which were characterized by FTIR, shrinkage temperature, enzymatic degradation and optical microscopy, and the results were validated by statistical analyses. The best stability was given by combinations between resorcinol- and melamine-formaldehyde at isoelectric pH

  14. Chemical functionalization and stabilization of type I collagen with organic tanning agents

    Energy Technology Data Exchange (ETDEWEB)

    Albu, Madalina Georgiana; Deselnicu, Viorica; Ioannidis, Ioannis; Deselnicu, Dana; Chelaru, Ciprian [Leather and Footwear Research Institute, Bucharest (Romania)

    2015-02-15

    We investigated the interactions between selected organic tanning agents and type I fibrillar collagen as a model fibrillar substrate to enable the fast direct evaluation and validation of interpretations of tanning activity. Type I fibrillar collagen (1%) as gel was used as substrate of tanning and tannic acid, resorcinol- and melamine-formaldehyde and their combination at three concentrations as crosslinking agents (tannins). To evaluate the stability of collagen during tanning, the crosslinked gels at 2.8, 4.5 and 9.0 pHs were freeze-dried as discs which were characterized by FTIR, shrinkage temperature, enzymatic degradation and optical microscopy, and the results were validated by statistical analyses. The best stability was given by combinations between resorcinol- and melamine-formaldehyde at isoelectric pH.

  15. Carbon aerogels as electrode material for electrical double layer supercapacitors-Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Halama, Agnieszka [Electrotechnical Institute, Division of Electrotechnology and Materials Science, Wroclaw (Poland); Szubzda, Bronislaw, E-mail: szubzda@iel.wroc.p [Electrotechnical Institute, Division of Electrotechnology and Materials Science, Wroclaw (Poland); Pasciak, Grzegorz [Electrotechnical Institute, Division of Electrotechnology and Materials Science, Wroclaw (Poland)

    2010-10-30

    This paper constitutes a description of technological research the aim of which was to design a symmetric supercapacitor dedicated for the system of quality of electrical energy improvement (supply interruption, voltage dip). The main task was to use the carbon aerogel technology as the efficient method for production of electrode material with desirable properties. Carbon aerogels were prepared by carbonization of resorcinol-formaldehyde (RF) polymer gels. RF-gels were synthesized by curing polycondensation and by the inverse emulsion polymerization of resorcinol with formaldehyde, followed by microwave drying. The morphostructural characteristics of the carbon aerogels were investigated by atomic force microscopy (AFM) and the N{sub 2} adsorption (BET method). The electrochemical properties were characterized by means of cycle voltammetry, galvanostatic charging/discharging, and self-discharge.

  16. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF Expression

    Directory of Open Access Journals (Sweden)

    Shu-Mei Lee

    2015-01-01

    Full Text Available Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.

  17. Vitrification of cesium-contaminated organic ion exchange resin

    International Nuclear Information System (INIS)

    Sargent, T.N. Jr.

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass

  18. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  19. Electrogeneration of disinfection byproducts at a boron-doped diamond anode with resorcinol as a model substance

    International Nuclear Information System (INIS)

    Li Hongna; Ni Jinren

    2012-01-01

    Highlights: ► DBPs formation was studied in BDD cell with several organics. ► Accumulated chloroform was wholly mineralized in the electrolysis. ► Chlorate produced was oxidized to perchlorate as electrolysis continued. ► Inorganic byproducts should be carefully watched in electrolysis with BDD. ► Resorcinol had the greatest reactivity for DBPs production in the studied precursors. - Abstract: Electrochemical disinfection in chloride electrolyte with a boron-doped diamond (BDD) electrode has unique advantages due to the high oxidizing ability of active chlorine and reactive oxygen species produced under certain conditions in the electrolysis. However, the electrogeneration of disinfection byproducts (DBPs) in the presence of organics in the system has rarely been reported. In this study, the discontinuous formation of DBPs (chloroform, chlorate and perchlorate) was investigated in model water containing chloride electrolyte (10 mM) with a BDD anode in the presence of resorcinol (0.5 mM) at a current density of 20 mA cm −2 . We found that the formation of chloroform and chlorate increased with the free available chlorine production at the beginning and reached peaks at 2 h (0.01 mM), 4 h (1.67 mM), respectively. When the free available chlorine started to decrease, chloroform was gradually mineralized and chlorate was oxidized to perchlorate due to the strong and non-selective oxidizing ability of the BDD. After electrolysis for 25 h, only perchlorate was left (3.84 mM). So inorganic DBPs should be carefully watched in the BDD system. The chloride concentration in the electrolyte affected the production of all three DBPs, due to its influence on the active chlorine production. Organic was not involved in the chlorate and perchlorate formation, and thus the resorcinol concentration had little impact on inorganic DBPs. DBPs formation at acidic pH was lower than that in the basic condition, mainly due to the different forms of resorcinol and chlorine

  20. Fast fluorometric flow injection analysis of formaldehyde in atmospheric water

    Energy Technology Data Exchange (ETDEWEB)

    Dong, S.; Dasgupta, P.K.

    1987-06-01

    Formaldehyde can be determined in aqueous solution at a rate of 45 samples/h with a small sample requirement (100 ..mu..L). The fluorescence of 3,5-diacetyl-1,4-dihydrolutidine formed upon reaction of formaldehyde with ammonium acetate and 2,4-pentanedione (25 s, 95 /sup 0/C) is monitored with a filter fluorometer. The detection limit is 0.1 ..mu..M (3 ..mu..g/L) or 10 pmol of HCHO. The response is linear up to 3.3 ..mu..M (100 ..mu..g/L), the departure from linearity at 0.33 mM is 21%, but high levels are satisfactorily determined with a second-order calibration equation. Interference from S(IV) has been investigated in detail and completely eliminated by addition of H/sub 2/O/sub 2/ before rendering the sample alkaline. There are no effects from commonly occurring metal ions and anions; the method is very selective to formaldehyde compared to other carbonyl compounds. A S(IV)-containing preservative has been formulated for the stabilization of low concentrations of HCHO. Results are presented for fogwater samples. 8 figures, 41 references.

  1. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  2. Formaldehyde concentration in diagnostic patch testing

    DEFF Research Database (Denmark)

    Trattner, A; Johansen, J D; Menné, T

    1998-01-01

    Exposure to formaldehyde is common from both consumer products and industry. The reliability of the patch test is essential for the diagnosis of formaldehyde allergy as it is difficult to suspect from the patient's history. The recommended formaldehyde patch test concentration has been reduced over...

  3. Microfabricated Formaldehyde Gas Sensors

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2009-11-01

    Full Text Available Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation.

  4. Fixing of various simulated radioactive wastes in urea-formaldehyde resin

    International Nuclear Information System (INIS)

    Du Dahai; Wei Peng

    1986-01-01

    This paper outlines the results of the fixing of a variety of simulated radioactive wastes in the urea-formaldehyde resin. The radioactive waste materials fixed include spent ion exchange resin, concentrates of NaNO 3 -NaBO 2 as well as NaBO 2 and sludge. The performance of the fixed products has been improved by means of selecting the synthetic conditions of resin, a suitable hardener and an inorganic additive

  5. PROJECT W-551 DETERMINATION DATA FOR EARLY LAW INTERIM PRETREATMENT SYSTEM SELECTION

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR

    2008-08-11

    This report provides the detailed assessment forms and data for selection of the solids separation and cesium separation technology for project W-551, Interim Pretreatment System. This project will provide early pretreated low activity waste feed to the Waste Treatment Plant to allow Waste Treatment Plan Low Activity Waste facility operation prior to construction completion of the Pretreatment and High Level Waste facilities. The candidate solids separations technologies are rotary microfiltration and crossflow filtration, and the candidate cesium separation technologies are fractional crystallization, caustic-side solvent extraction, and ion-exchange using spherical resorcinol-formaldehyde resin. This data was used to prepare a cross-cutting technology summary, reported in RPP-RPT-37740.

  6. Pd-Cu/poly(o-Anisidine) nanocomposite as an efficient catalyst for formaldehyde oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Sayed Reza, E-mail: r.hosseini@umz.ac.ir [Nanochemistry Research Laboratory, Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar (Iran, Islamic Republic of); Raoof, Jahan-Bakhsh [Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar (Iran, Islamic Republic of); Ghasemi, Shahram; Gholami, Zahra [Nanochemistry Research Laboratory, Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar (Iran, Islamic Republic of)

    2016-08-15

    Highlights: • o-Anisidine monomer was electro-polymerized at the pCPE surface in acid medium. • Palladium/copper NPs were prepared by galvanic replacement method at the POA/pCPE. • Pd-Cu NPs showed excellent electrocatalytic activity towards formaldehyde oxidation. • The bimetallic Pd-Cu NPs/POA nanocomposite showed satisfactory long-term stability. - Abstract: In this work, for the first time, the electrocatalytic oxidation of formaldehyde in 0.5 M sulfuric acid solution at spherical bimetallic palladium-copper nanoparticles (Pd-Cu NPs) deposited on the poly (o-Anisidine) film modified electrochemically pretreated carbon paste electrode (POA/pCPE) has been investigated. Highly porous POA film prepared by electropolymerization onto the pCPE was used as a potent support for deposition of the Pd-Cu NPs. The Pd-Cu NPs were prepared through spontaneous and irreversible reaction via galvanic replacement between Pd{sup II} ions and the Cu{sup 0} particles. The prepared Pd-Cu NPs were characterized by scanning electron microscopy, energy dispersive spectroscopy and electrochemical methods. The obtained results showed that the utilization of Cu nanoparticles and pretreatment technique enhances the electrocatalytic activity of the modified electrode towards formaldehyde oxidation. The influence of several parameters on formaldehyde oxidation as well as stability of the Pd-Cu/POA/pCPE has been investigated.

  7. Carbon-covered Fe{sub 3}O{sub 4} hollow cubic hierarchical porous composite as the anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shouhui, E-mail: csh2k@jxnu.edu.cn; Zhou, Rihui; Chen, Yaqin; Fu, Yuanyuan; Li, Ping; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, College of Chemistry and Chemical Engineering (China)

    2017-04-15

    In this work, Prussian blue nanocrystals, a kind of cubic metal-organic frameworks, was firstly covered by a uniform layer of resorcinol-formaldehyde (RF) resin, and then followed with heat treatment at different pyrolysis temperatures. The effects of pyrolysis temperature on the morphologies, phase, pore size, and electrochemical performance of the pyrolysis products were studied in this work. The composite generated at 600 {sup ∘}C, FexC600, was a hollow cubic composite of Fe{sub 3}O{sub 4} covered by a thin RF-derived carbon layer. The carbon layer on FexC600 was a robust and conductive protective layer, which can accommodate Fe{sub 3}O{sub 4} NPs and withstand the huge volume change of Fe{sub 3}O{sub 4} during the process of discharge and charge. When used as anodes for lithium-ion batteries, FexC600 showed excellent electrochemical performance. It delivered a discharge capacity of 1126 mAh g{sup −1} with a coulombic efficiency of 98.8% at the current density of 100 mA g{sup −1} after 100 times discharge/charge cycling. It even delivered a capacity of 492 mAh g{sup −1} at the current density of 500 mA g{sup −1}. This cubic hollow composite would be a promising alternative anode material for lithium-ion batteries.

  8. Test Report for Cesium and Solids Removal from an 11.5L Composite of Archived Hanford Double Shell Tank Supernate for Off-Site Disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Doll, S. R.; Cooke, G. A.

    2017-08-31

    The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid in the classification of the waste for shipping, receiving, treatment, and disposal determinations.

  9. Test Report for Cesium and Solids Removal from an 11.5L Composite of Archived Hanford Double Shell Tank Supernate for Off-Site Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Stephanie R. [Hanford Site (HNF), Richland, WA (United States); Cooke, Gary A. [Hanford Site (HNF), Richland, WA (United States)

    2017-08-31

    The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion-exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid in the classification of the waste for shipping, receiving, treatment, and disposal determinations.

  10. Improving reservoir conformance using gelled polymer systems. Final report, September 25, 1992--July 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Buller, C.; McCool, S.; Vossoughi, S.; Michnick, M.

    1997-06-01

    The objectives of the research program were to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems--KUSP1 systems that contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethyl phthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to supercritical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.

  11. SHEAR STRENGTH IN THE GLUE LINE OF Eucalyptus sp. AND Pinus sp.WOOD

    Directory of Open Access Journals (Sweden)

    Juliana Jerásio Bianche

    Full Text Available ABSTRACT To evaluate the adhesive efficiency on the union of glued joints in a particular temperature and humidity conditions for a specified time the adhesive must be submitted to specific load tests, such as shear in the glue line. The objective of this study was to evaluate the shear strength in the glue line of Eucalyptus sp and Pinus sp.woods. Five adhesives (castor oil, sodium silicate, modified silicate, , PVA and resorcinol-formaldehyde, three weights (150 g/m2, 200 g/m2, and 250 g/m2 and two species (Eucalyptus sp. and Pinus sp. of wood were used. Twelve specimens were obtained from each repetition per treatment, corresponding to 108 specimens that were conditioned at a temperature of 23 ± 1°C and relative humidity of 50 ± 2%. The interaction between the weight and type of adhesive was significant for the shear strength in the glue line of eucalyptus wood. However, no interaction between the weight and the adhesive was found for pinus, only the isolated from the adhesive effect. Chemical bonds originated in the polymerization of resorcinol-formaldehyde adhesives and castor bi-component conferred upon these adhesives the greatest resistance in the glue line. Castor and resorcinol-formaldehyde adhesives showed the highest shear strength values in the line of glue and wood failure. Castor adhesive presented satisfactory performance for bonding of eucalyptus and pine woods.

  12. The study on the ion exchange behavior of metal ions using composite ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kukki; Lee, Kunjai [Nuclear Engineering Department Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Youngkyun [Korea Institute of Nuclear Safety, Daejon (Korea, Republic of); Lee, Sangjin; Yang, Hoyeon; Ha, Jonghyun [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2002-04-15

    In this study, a series of stepwise procedures to prepare a new organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite was established, based upon wet-and-neutralization method for synthesizing iron ferrite and pearl-polymerization method for synthesizing rigid bead-type composite resin. And a separation of metal ions in the liquid radioactive waste have been performed using organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite. The PSF-F (phenol sulphonic formaldehyde-iron ferrite) composite resin prepared by the above method shows stably high removal efficiency to Co(II), Fe, Cs species from wastewater in a wide range of solution pH. The wide range of applicable solution pH (i. e. pH 4.0 to 10.3) implies that the PSF-F composite resin overcomes the limitations of the conventional ferrite process which is practically applicable only to alkaline conditions. The experiment proceeded using batch reactor in a constant temperature with water bath. The experiments divided into three parts. The first one is TG/DTA (Thermogravimetry / Differential Thermal Analysis) which can analyze the trend of pyrolysis of PSF-F ion exchanger. The Second one is equilibrium experiment in which the separation factor of metal ions and Langmuir, Freundlich isotherm was achieved. The last one is kinetics experiment in which the equilibrium reaction time and removal efficiency is estimated.

  13. The study on the ion exchange behavior of metal ions using composite ion exchange resin

    International Nuclear Information System (INIS)

    Kim, Kukki; Lee, Kunjai; Kim, Youngkyun; Lee, Sangjin; Yang, Hoyeon; Ha, Jonghyun

    2002-01-01

    In this study, a series of stepwise procedures to prepare a new organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite was established, based upon wet-and-neutralization method for synthesizing iron ferrite and pearl-polymerization method for synthesizing rigid bead-type composite resin. And a separation of metal ions in the liquid radioactive waste have been performed using organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite. The PSF-F (phenol sulphonic formaldehyde-iron ferrite) composite resin prepared by the above method shows stably high removal efficiency to Co(II), Fe, Cs species from wastewater in a wide range of solution pH. The wide range of applicable solution pH (i. e. pH 4.0 to 10.3) implies that the PSF-F composite resin overcomes the limitations of the conventional ferrite process which is practically applicable only to alkaline conditions. The experiment proceeded using batch reactor in a constant temperature with water bath. The experiments divided into three parts. The first one is TG/DTA (Thermogravimetry / Differential Thermal Analysis) which can analyze the trend of pyrolysis of PSF-F ion exchanger. The Second one is equilibrium experiment in which the separation factor of metal ions and Langmuir, Freundlich isotherm was achieved. The last one is kinetics experiment in which the equilibrium reaction time and removal efficiency is estimated

  14. Emission of formaldehyde from furniture

    DEFF Research Database (Denmark)

    Andersen, Helle Vibeke; Klinke, Helene B.; Funch, Lis Winther

    The emission of formaldehyde from 20 pieces of furniture, representing a variety of types, was measured in climate chambers. Most tests show low emissions but certain scenarios of furnishing, including furniture with large surface areas in relation to room volume can emit formaldehyde resulting...

  15. Resorcinol adsorption from aqueous solution over activated carbon

    International Nuclear Information System (INIS)

    Blanco, Diego A; Giraldo, Liliana; Moreno, Juan C

    2007-01-01

    In this paper, the adsorption behavior of Resorcinol a monohydroxylated phenol, poorly acid to 298 K, over activated carbon is analyzed by studying the solution's pH influence and the surface reduction in the adsorption process. To do this, an activated carbon of lignocellulose origin and a reduced activated carbon was used. The interaction solid solution is characterized by the analyses of adsorption in the isotherms to 298 K and pH values of 7. 00, 9.00 and 11.00 for a period of 48 hours. The capacity adsorption of activated carbons increases when the solution's pH decreases and the retained amount increases in the reduced coal to the pH of maximum adsorption.

  16. Identification of formaldehyde-responsive genes by suppression subtractive hybridization

    International Nuclear Information System (INIS)

    Lee, Min-Ho; Kim, Young-Ae; Na, Tae-Young; Kim, Sung-Hye; Shin, Young Kee; Lee, Byung-Hoon; Shin, Ho-Sang; Lee, Mi-Ock

    2008-01-01

    Formaldehyde is frequently used in indoor household and occupational environments. Inhalation of formaldehyde invokes an inflammatory response, including a variety of allergic signs and symptoms. Therefore, formaldehyde has been considered as the most prevalent cause of sick building syndrome, which has become a major social problem, especially in developing urban areas. Further formaldehyde is classified as a genotoxicant in the respiratory tract of rats and humans. To better understand the molecular mechanisms involved in formaldehyde intoxication, we sought differentially regulated genes by formaldehyde exposure to Hs 680.Tr human trachea cells, using polymerase chain reaction (PCR)-based suppression subtractive hybridization. We identified 27 different formaldehyde-inducible genes, including those coding for the major histocompatibility complex, class IA, calcyclin, glutathione S-transferase pi, mouse double minute 2 (MDM2), platelet-derived growth factor receptor alpha, and which are known to be associated with cell proliferation and differentiation, immunity and inflammation, and detoxification. Induction of these genes by formaldehyde treatment was confirmed by reverse transcription PCR and western blot analysis. Further, the expression of calcyclin, glutathione S-transferase pi, PDGFRA and MDM2 were significantly induced in the tracheal epithelium of Sprague Dawley rats after formaldehyde inhalation. Our results suggest that the elevated levels of these genes may be associated with the formaldehyde-induced toxicity, and that they deserve evaluation as potential biomarkers for formaldehyde intoxication

  17. Radiation thermal transformations of formaldehyde in alcohols

    International Nuclear Information System (INIS)

    Vetrov, V.S.; Korolev, V.M.; Koroleva, G.N.; Likholap, V.F.; Khomich, F.G.

    1978-01-01

    The effect of acid and reactor gamma radiation on the interaction of formaldehyde and methanol has been studied. The radiation-thermal investigations were carried out in the range of temperatures from 150 to 230 deg C. A dose rate of n,γ-radiation amounted to 2.4x10 17 eV (gxs). From the data obtained it is concluded that the 0.01-0.1 M formic acid addition and irradiation of the methanol-formaldehyde mixture result in a substantial increase in formaldehyde consumption, the acid addition increasing the rate of formaldehyde consumption in about two times; the n,γ-radiation effect is much powerful. The rate of methylal formation increases in the presence of acid and at the temperature rise; its maximum is formed in the range of 180-190 deg C. The methyl formiate formation increases with the acid addition and temperature rise. It is concluded that radiolytic protons can accelerate methylal formation from methanol-formaldehyde solutions. The temperature rise results in the concentration increase in a free form of formaldehyde and the formation of methylal and methyl formiate

  18. Synthesis of resorcinolic lipids bearing structural similarities to cytosporone A

    International Nuclear Information System (INIS)

    Santos, Edson dos Anjos dos; Beatriz, Adilson; Lima, Denis Pires de; Marques, Maria Rita; Leite, Carla Braga

    2009-01-01

    Inspired by the structure and biological activities of resorcinolic lipids and, particularly cytosporone A- a potent inhibitor of plantule germination and growth, we have performed the synthesis of the analogs 3-heptyl-3-hydroxy-5,7-dimethoxy-2-benzofuran-1(3H)-one (1) and 3-heptyl-3-hydroxy-4,6-dimethoxy-2-benzofuran-1(3H)-one (2). The intermediates and products were submitted to allelopathic test using Lactuca sativa L. seeds. Target compound 1 showed an inhibitory effect on germination and growth of hypocotyl and radicle in millimolar range. (author)

  19. Synthesis of resorcinolic lipids bearing structural similarities to cytosporone A

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Edson dos Anjos dos; Beatriz, Adilson; Lima, Denis Pires de [Universidade Federal Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Centro de Ciencias Exatas e Tecnologia. Dept. de Quimica], e-mail: dlima@nin.ufms.br; Marques, Maria Rita; Leite, Carla Braga [Universidade Federal Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Centro de Ciencias Biologicas. Dept. de Morfofisiologia

    2009-07-01

    Inspired by the structure and biological activities of resorcinolic lipids and, particularly cytosporone A- a potent inhibitor of plantule germination and growth, we have performed the synthesis of the analogs 3-heptyl-3-hydroxy-5,7-dimethoxy-2-benzofuran-1(3H)-one (1) and 3-heptyl-3-hydroxy-4,6-dimethoxy-2-benzofuran-1(3H)-one (2). The intermediates and products were submitted to allelopathic test using Lactuca sativa L. seeds. Target compound 1 showed an inhibitory effect on germination and growth of hypocotyl and radicle in millimolar range. (author)

  20. Synthesis of resorcinolic lipids bearing structural similarities to cytosporone A

    Directory of Open Access Journals (Sweden)

    Edson dos Anjos dos Santos

    2009-01-01

    Full Text Available Inspired by the structure and biological activities of resorcinolic lipids and, particularly cytosporone A- a potent inhibitor of plantule germination and growth, we have performed the synthesis of the analogs 3-heptyl-3-hydroxy-5,7-dimethoxy-2-benzofuran-1(3H-one (1 and 3-heptyl-3-hydroxy-4,6-dimethoxy-2-benzofuran-1(3H-one (2. The intermediates and products were submitted to allelopathic test using Lactuca sativa L. seeds. Target compound 1 showed an inhibitory effect on germination and growth of hypocotyl and radicle in milimolar range.

  1. The microcapsule-type formaldehyde scavenger: the preparation and the application in urea-formaldehyde adhesives.

    Science.gov (United States)

    Duan, Hongyun; Qiu, Teng; Guo, Longhai; Ye, Jun; Li, Xiaoyu

    2015-08-15

    The limitation and regulation of formaldehyde emissions (FE) now shows great importance in wood-based materials such as plywood and particle board manufactured for building and furnishing materials. The widely used formaldehyde-based adhesives are one of the main sources of FE from the wood products. In this work, a new kind of long-term effective formaldehyde scavenger in the microcapsule form was prepared by using an intra-liquid desiccation method. The characterizations of the capsule (UC) were performed including the morphologies, the yields, the loading efficiency as well as its sustained-release of urea in aqueous conditions. The prepared UC could be integrated in urea-formaldehyde resins by simply physical blending, and the mixtures were available to be applied as the adhesives for the manufacture of plywood. The bonding strength (BS) and the FE of the bonded plywood in both short (3h) and long (12 week) period were evaluated in detail. It was found that the FE profile of the plywood behaved following a duple exponential law within 12 week. The addition of UC in the adhesive can effectively depress the FE of the plywood not only in a short period after preparation but also in a long-term period during its practical application. The slow released urea would continuously suppress the emission of toxic formaldehyde in a sustained manner without obviously deteriorating on the BS of the adhesives. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Preconcentration of trace amounts of formaldehyde from water, biological and food samples using an efficient nanosized solid phase, and its determination by a novel kinetic method

    International Nuclear Information System (INIS)

    Afkhami, A.; Bagheri, H.

    2012-01-01

    This work presents a sensitive method for the determination of formaldehyde. It is based on the use of modified alumina nanoparticles for its preconcentration, this followed by a new and simple catalytic kinetic method for its determination. Alumina nanoparticles were chemically modified by immobilization of 2,4-dinitrophenylhydrazine via sodium dodecyl sulfate as a surfactant. The formaldehyde retained on the modified adsorbent was then desorbed and determined via its catalytic effect on the oxidation of thionine by bromate ion. Factors affecting the preconcentration and determination of formaldehyde have been investigated. Formaldehyde can be detected in the range from 0. 05 to 38. 75 μg L -1 , and no serious interferences have been observed. The method has been successfully applied to the quantitation of formaldehyde in water, food, and certain biological samples. (author)

  3. SYNTHESIS AND CHARACTERIZATION OF CANNABIS INDICA FIBER REINFORCED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Amar Singh Singha

    2011-04-01

    Full Text Available This paper reports on the synthesis of Cannabis indica fiber-reinforced composites using Urea-Resorcinol-Formaldehyde (URF as a novel matrix through compression molding technique. The polycondensation between urea, resorcinol, and formaldehyde in different molar ratios was applied to the synthesis of the URF polymer matrix. A thermosetting matrix based composite, reinforced with lignocellulose from Cannabis indica with different fiber loadings 10, 20, 30, 40, and 50% by weight, was obtained. The mechanical properties of randomly oriented intimately mixed fiber particle reinforced composites were determined. Effects of fiber loadings on mechanical properties such as tensile, compressive, flexural strength, and wear resistance were evaluated. Results showed that mechanical properties of URF resin matrix increased considerably when reinforced with particles of Cannabis indica fiber. Thermal (TGA/DTA/DTG and morphological studies (SEM of the resin, fiber and polymer composite thus synthesized were carried out.

  4. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy

    Science.gov (United States)

    Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David

    2017-04-01

    Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.

  5. Hardness evaluation of cured urea-formaldehyde resins with different formaldehyde/urea mole ratios using nanoindentation method

    Science.gov (United States)

    Byung-Dae Park; Charles R. Frihart; Yan Yu; Adya P. Singh

    2013-01-01

    To understand the influence of formaldehyde/urea (F/U) mole ratio on the properties of urea–formaldehyde (UF) resins, this study investigated hardness of cured UF resins with different F/U mole ratios using a nanoindentation method. The traditional Brinell hardness (HB) method was also used...

  6. Aquagel electrode separator for use in batteries and supercapacitors

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1995-01-01

    An electrode separator for electrochemical energy storage devices, such as a high energy density capacitor incorporating a variety of carbon foam electrodes. The separator is derived from an aquagel of resorcinol-formaldehyde and related polymers and containing ionically conducting electrolyte in the pores thereof.

  7. Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure

    Science.gov (United States)

    Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng

    2016-07-01

    An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.

  8. Photochemical decomposition of Formaldehyde in solution

    International Nuclear Information System (INIS)

    Garrido Z, G.

    1995-01-01

    In this work was studied the effect of ultraviolet radiation produced by a mercury low pressure lamp in solutions of formaldehyde. These solutions were exposed to ultraviolet rays at different times. In some of these series of solutions was added a photosensibilizer in order to obtain a high photodecomposition of formaldehyde. The techniques used for determine the products of the decomposition were the following: 1. In order to measure the residual formaldehyde and glioxal, the Hantzsch and 2,4-dinitrophenylhydrazine methods were used. 2. pH's measurements of the solutions, before and after exposition. 3. Paper's chromatography for determine presence of formed acids. 4. Acid-base tritiations for measure total acidification. We observed that when the time of exposition to UV rays was increased, a high photodecomposition of formaldehyde was formed and, besides, a greater quantity of another products. Of the reagents used like photosensibilizers, with the ruthenium reagent, the best results were obtained. (Author)

  9. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    Science.gov (United States)

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D[subscript 2]O and a catalytic amount of H[subscript 2]SO[subscript 4]. The resulting labeled product is characterized by [superscript 1]H NMR. Students also…

  10. CO2-based hydrogen storage - Hydrogen generation from formaldehyde/water

    Science.gov (United States)

    Trincado, Monica; Grützmacher, Hansjörg; Prechtl, Martin H. G.

    2018-04-01

    Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies' energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.

  11. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N.S. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil); Zaiat, M. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil)], E-mail: zaiat@sc.usp.br

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m{sup 3} day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 {+-} 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  12. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    International Nuclear Information System (INIS)

    Pereira, N.S.; Zaiat, M.

    2009-01-01

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m 3 day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 ± 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms

  13. Optimization of the synthesis based on Resorcine and formaldehyde to obtain carbon nanoxérogels

    Science.gov (United States)

    Zweg, A.; Elaloui, E.; Nouri, S.; Moussaoui, Y.

    2012-02-01

    The sol-gel method consists on obtaining very pure products from selected precursors. Indeed, synthesizing very pure activated carbon (> 99% carbon) using organic precursors containing only carbon and oxygen as hetero atoms to form a polymeric resin by pyrolysis. The proposed synthesis reaction is in the border of two sciences: the Sol-gel and polymerization. The polymerization by mechanism followed by the initiation and propagation, the sol-gel by evolution of the media environment starting with a solution of various ingredients to have the particle's sol in the emulsion solvent. The sol turns into a gel which is the result of three-dimensional crosslinking of the material trapping the solvent. In this work we propose to introduce a new method of synthesis of these nanoxérogels by polycondensation of resorcinol with formaldehyde in two different media (water and acetone) in the presence of two catalysts (acetic acid and sodium carbonate). By varying the following parameters: solvent, nature and quantity of catalyst, 16 samples were obtained. By the method of factorial design (2k): an optimization is realized by following three characteristics of nanoxerogels prepared: the density, the gel time and performance. The results indicate the best conditions for the synthesis of a carbon nanoxerogel: the lowest quantity of acid catalyst in aqueous media (A5).

  14. 7746 CONCENTRATIONS OF FORMALDEHYDE IN RAIN WATERS ...

    African Journals Online (AJOL)

    Win7Ent

    2013-06-03

    Jun 3, 2013 ... The chromotropic acid method described by the. National Institute for ... concentration range of the formaldehyde in the rain waters varied from month to month throughout the six ... vicinity of vegetation [3]. Formaldehyde is the ...

  15. Halogen poisoning effect of Pt-TiO{sub 2} for formaldehyde catalytic oxidation performance at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaofeng; Cheng, Bei [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ho, Wingkei, E-mail: keithho@ied.edu.hk [Department of Science and Environmental Studies and Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Tai Po, N.T. Hong Kong (China)

    2016-02-28

    Graphical abstract: - Highlights: • The Pt-TiO{sub 2} catalyst is deactivated by adsorption of halogen ions. • The halogen poison is mainly attributed to the active site blocking of the Pt surface. • Halogen ions and Pt form Pt−X coordination bonds. • Large halogen diameter exhibits severe poisoning effect. - Abstract: Catalytic decomposition of formaldehyde (HCHO) at room temperature is an important method for HCHO removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. However, the stability of this catalyst remains unexplored. In this study, Pt-TiO{sub 2} (Pt-P25) catalysts with and without adsorbed halogen ions (including F{sup −}, Cl{sup −}, Br{sup −}, and I{sup −}) were prepared through impregnation and ion modification. Pt-TiO{sub 2} samples with adsorbed halogen ions exhibited reduced catalytic activity for formaldehyde decomposition at room temperature compared with the Pt-TiO{sub 2} sample; the catalytic activity followed the order of F-Pt-P25, Cl-Pt-P25, Br-Pt-P25, and I-Pt-P25. Characterization results (including XRD, TEM, HRTEM, BET, XPS, and metal dispersion) showed that the adsorbed halogen ions can poison Pt nanoparticles (NPs), thereby reducing the HCHO oxidation activity of Pt-TiO{sub 2}. The poison mechanism is due to the strong adsorption of halogen ions on the surface of Pt NPs. The adsorbed ions form coordination bonds with surface Pt atoms by transferring surplus electrons into the unoccupied 5d orbit of the Pt atom, thereby inhibiting oxygen adsorption and activation of the Pt NP surface. Moreover, deactivation rate increases with increasing diameter of halogen ions. This study provides new insights into the fabrication of high-performance Pt-based catalysts for indoor air purification.

  16. Formation of formaldehyde adducts in the reactions of DNA and deoxyribonucleosides with alpha-acetates of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and N-nitrosodimethylamine (NDMA).

    Science.gov (United States)

    Cheng, Guang; Wang, Mingyao; Upadhyaya, Pramod; Villalta, Peter W; Hecht, Stephen S

    2008-03-01

    The cytochrome P450-mediated alpha-hydroxylation of the carcinogenic nitrosamines N-nitrosodimethylamine (NDMA, 1), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 6a), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, 6b) produces diazonium ions and formaldehyde. The DNA-binding properties of the diazonium ions have been thoroughly characterized, and there is no doubt that they are critical in cancer induction by these nitrosamines. However, the possibility of additional DNA damage via released formaldehyde has not been reported. In this study, we used acetoxymethylmethylnitrosamine (5), 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (10a), and 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol (10b) as stable precursors to the alpha-hydroxymethylnitrosamines that would be formed in the metabolism of NDMA, NNK, and NNAL. These alpha-acetates were incubated with calf thymus DNA in the presence of esterase at pH 7.0 and 37 degrees C. The DNA was isolated and enzymatically hydrolyzed to deoxyribonucleosides, and the hydrolysates were analyzed by liquid chromatography-electrospray ionization-mass spectrometry-selected ion monitoring for formaldehyde DNA adducts. Convincing evidence for the formation of the formaldehyde adducts N6-hydroxymethyl-dAdo (11), N4-hydroxymethyl-dCyd (12), N2-hydroxymethyl-dGuo (13), and the cross-links di-(N6-deoxyadenosyl)methane (14), (N6-deoxyadenosyl- N2-deoxyguanosyl)methane (15), and di-(N2-deoxyguanosyl)methane (16) was obtained in these reactions. These results demonstrate that NDMA, NNK, and NNAL have the potential to be bident carcinogens, damaging DNA through the metabolic formation of both diazonium ions and formaldehyde.

  17. Formaldehyde as an antiseptic in the production of alcohol from molasses

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, M; Vernerova, J; Stros, F

    1962-01-01

    The effect of formaldehyde as an antiseptic for the noncontaminated alcohol fermentation of molasses was examined with five different yeast-mash batches containing formaldehyde 0.01%. Following 24 hour cultivation, increase in the activity of formaldehyde-inoculated mash was lowered by 47%; the formaldehyde decreased the alcohol fermentation and lessened the rate of fermentation of sugar by 20% in noncontaminated mash. The decrease in the fermentation rate was also observed during the entire course of fermentation. On the other hand, formaldehyde addition to molasses contaminated with lactic acid bacteria accelerated the fermentation rate by inhibiting the bacterial growth; the degree of retardation due to the contamination was greater than that due to the antiseptic. The view that formaldehyde decreased the effectiveness of growth substances by binding the amino acid present in mash mixtures could not be confirmed; it was believed that formaldehyde was absorbed by yeast cells even through the entities thus destroyed could not be differentiated from living cells by methylene blue. Higher resistance of yeast cultures to formaldehyde was obtained by repeated transfers of the yeast in media containing formaldehyde. It was concluded that formaldehyde added to contaminated molasses inhibited the further growth of the contamination, increased yield of ethanol on the basis of the sugar, and simultaneously decreased the net yield of ethanol in contrast to the yield from noncontaminated mashes in the absence of formaldehyde.

  18. ADSORCIÓN DE RESORCINOL DESDE SOLUCIÓN ACUOSA SOBRE CARBÓN ACTIVADO. RELACIÓN ISOTERMAS DE ADSORCIÓN Y ENTALPÍA DE INMERSIÓN RESORCINOL

    OpenAIRE

    Blanco, Diego A; Giraldo, Liliana; JuanC, Moreno

    2008-01-01

    Se estudia la adsorción de resorcinol sobre carbones activados modificados, obtenidos a partir de un carbón activado granular comercial CarbochemTM –PS30, (CAG), por medio de tratamiento químico con HNO37M, carbón activado oxidado (CAO) y tratamiento térmico bajo flujo de H2, carbón activado reducido (CAR). Se analiza la influencia del pH de la solución, la reducción y oxidación de la superficie del carbón y se determina la entalpía de inmersión de los carbones activados en soluciones acuosas...

  19. One-step synthesis and effect of heat-treatment on the structure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wen, Jian-Wu; Zhang, Da-Wei; Zang, Yong; Sun, Xin; Cheng, Bin; Ding, Chu-Xiong; Yu, Yan; Chen, Chun-Hua

    2014-01-01

    Highlights: • A one-step sol-gel route with resorcinol-formaldehyde resin is designed to synthesis LiNi 0.5 Mn 1.5 O 4 . • Fd-3 m phase delivers an excellent high rate performance and stable cycling retention. • A double “w”-shape R-V curve is a potential tool to indicate structure transition. - Abstract: Spinel LiNi 0.5 Mn 1.5 O 4 (Fd-3 m) powders are synthesized by a facile one-step sol-gel approach with a resorcinol formaldehyde (RF) resin as a chelating agent. The cross-linked metal-containing RF xerogel particles are sintered at different high temperatures from 750 to 950 °C to produce several micron-sized LiNi 0.5 Mn 1.5 O 4 powders. Electrochemical measurements suggest that the 850 °C-sintered (in air) sample (Fd-3 m phase) performs the best with a discharge capacity of 141 mAh g −1 at 0.1 C and 110 mAh g −1 at 10 C, and capacity-retention of 96.3% after 60 cycles at 0.25 C and 89% after 200 cycles at 1 C. For comparison, the LiNi 0.5 Mn 1.5 O 4 sample sintered at 850 °C in O 2 (P4 3 32 phase) presents limited rate performance (45 mAh g −1 at 10 C) and higher values in both AC impedance and DC-method derived resistance. A characteristic double “w”-shape curve of DC resistance against cell potential can be possibly considered as an indicator to probe the material structure transition during the charge/discharge process of the cell

  20. Expansive failure reactions and their prevention in the encapsulation of phenol formaldehyde type ion exchange resins in cement based systems

    Energy Technology Data Exchange (ETDEWEB)

    Constable, M.; Howard, C.G.; Johnson, M.A.; Jolliffe, C.B. (AEA Decommissioning and Waste Management, Winfrith (United Kingdom)); Sellers, R.M. (Nuclear Electric plc, Barnwood (United Kingdom))

    1992-01-01

    Lewatit DN is a phenol formaldehyde based ion exchange resin used to remove radioactive caesium from liquid waste streams such as fuel cooling ponds and effluents. This paper presents the results of a study of the encapsulation of the bead form of the resin in cement with particular reference to the mechanisms of its interaction with the encapsulant. When incorporated in pure ordinary Portland cement (OPC) at loadings in excess of 15 wt % an unstable product results due to expansion of the systems and at higher waste loadings failure results after only a few days. Evidence from differential scanning calorimetry, X-ray diffraction and scanning electron microscopy all indicate the cause of the expansive reaction to be the formation of crystals of calcium salts around and within the resin beads. Addition of BFS and sodium hydroxide prevent the formation of these salts by removal of calcium hydroxide from the system in other reactions. (author).

  1. Primary Formation Path of Formaldehyde in Hydrothermal Vents

    Science.gov (United States)

    Inaba, Satoshi

    2018-03-01

    Formaldehyde is abundant in the universe and one of the fundamental molecules for life. Hydrothermal vents produce a substantial amount of hydrogen molecules by serpentinization and promote reductive reactions of single carbon compounds. The abundance of formaldehyde is expected to be low due to the high Gibbs free energy in hydrothermal vents. We consider two competing formation pathways of formaldehyde: (1) the reduction of CO by H2 and (2) the reduction of HCOOH by H2 to form a methanediol, followed by the dehydration of the methanediol. We performed a number of quantum chemical simulations to examine the formation of formaldehyde in the gas phase as well as in aqueous solution. The energy barrier is significantly reduced by the catalytic effect of water molecules in aqueous solution and becomes lowest when a water cluster consisted of 5 water molecules catalyzes the reduction. The energy barrier to form a methanediol by the reduction of HCOOH is lower by 17.5 kcal/mol than that to form a formaldehyde by the reduction of CO. Considering the low energy barrier to dehydrate methanediol, the primary pathway to form formaldehyde in hydrothermal vents is concluded to be the reduction of HCOOH by H2, followed by the dehydration of methanediol.

  2. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Science.gov (United States)

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  3. One-Pot Synthesis of Lithium-Rich Cathode Material with Hierarchical Morphology.

    Science.gov (United States)

    Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Liberti, Emanuela; Allen, Christopher S; Kirkland, Angus I; Bruce, Peter G

    2016-12-14

    Lithium-rich transition metal oxides, Li 1+x TM 1-x O 2 (TM, transition metal), have attracted much attention as potential candidate cathode materials for next generation lithium ion batteries because their high theoretical capacity. Here we present the synthesis of Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 using a facile one-pot resorcinol-formaldehyde method. Structural characterization indicates that the material adopts a hierarchical porous morphology consisting of uniformly distributed small pores and disordered large pore structures. The material exhibits excellent electrochemical cycling stability and a good retention of capacity at high rates. The material has been shown to be both advantageous in terms of gravimetric and volumetric capacities over state of the art commercial cathode materials.

  4. Maximum Potential Hydrogen Gas Retention in the sRF Resin Ion Exchange Column for the LAWPS Process

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bottenus, Courtney LH [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schonewill, Philip P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-01-22

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogen gas is being generated by radiolysis. In normal operations, the generated hydrogen is expected to remain dissolved in the liquid and be continuously removed by liquid flow. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin and below the bottom screen that supports the resin within the column. The purpose of this report is to summarize calculations that estimate the upper-bound volume of hydrogen gas that can be retained in the column and potentially be released to the headspace of the IX column or to process equipment connected to the IX column and, thus, pose a flammability hazard.

  5. the histological effects of formaldehyde vapour on the lungs

    African Journals Online (AJOL)

    Uwaifoh

    2012-12-31

    Dec 31, 2012 ... In the world day, the active chemical used for embalming is formaldehyde. ... formaldehyde causes nasopharyngeal cancer in humans,” (Collins et al., 1997; Gardner et ... pattern for inhalation of formaldehyde in rats presented cell ... temperature of about 25-28oC and photo-periodicity of 12h day/ 12h night.

  6. Development of a formaldehyde biosensor with application to synthetic methylotrophy.

    Science.gov (United States)

    Woolston, Benjamin M; Roth, Timothy; Kohale, Ishwar; Liu, David R; Stephanopoulos, Gregory

    2018-01-01

    Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD-dependent methanol dehydrogenase (Mdh) variants, the rate-limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross-talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build-up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy. © 2017 Wiley Periodicals, Inc.

  7. Fabrication and characterization of S. cilliare fibre reinforced

    Indian Academy of Sciences (India)

    In the recent times, there has been an ever-increasing interest in green composite materials for its applications in the field of industries, aerospace, sports, household etc and in many other fields. In this paper, fabrication of Saccharum cilliare fibre reinforced green polymer composites using resorcinol formaldehyde (RF) as ...

  8. Status of iodine in formaldehyde-preserved milk - revisited

    International Nuclear Information System (INIS)

    Montgomery, D.M.; Gibson, J.E.

    1977-01-01

    The results of an investigation into the effect of formaldehyde preservation of raw milk in view of the differences observed by Murthy (J. Dairy Sci.; 45:1066 (1962) and J. Dairy Sci.; 49:1190 (1966)) and Thomas (personal communication. (1976)) are reported. The use of the specific electrode method for iodine analysis of formaldehyde-preserved milk has also been investigated. It was found that the Thomas preservation technique for 4 litre milk samples for 131 I analysis was acceptable, and an aliquot of the formaldehyde-preserved milk can be analyzed for total iodide concentration by the electrode method. Milk samples may also be preserved for stable iodide measurement (without iodide carrier addition) by addition of formaldehyde at 0.5 M concentration. (U.K.)

  9. 78 FR 34820 - Formaldehyde Emissions Standards for Composite Wood Products

    Science.gov (United States)

    2013-06-10

    .... Examples of sources of formaldehyde gas inside homes include cigarette smoke, unvented, fuel- burning... derived an inhalation unit risk factor for assessing formaldehyde cancer risk. The risk factor and... formaldehyde by inhalation (Ref. 8). This draft IRIS assessment was peer-reviewed by the National Research...

  10. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject to...

  11. Method for making thin carbon foam electrodes

    Science.gov (United States)

    Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  12. Formaldehyde as an antiseptic in the production of alcohol from molasses

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, V J; Stros, F

    1962-01-01

    The effect of formaldehyde as an antiseptic for the noncontaminated alcohol fermentation of molasses was examined with five different yeasts mash batches containing formaldehyde 0.01%. Following 24 hour cultivation, increase in the activity of formaldehyde-inoculated mash was lowered by 47%; the formaldehyde decreased the alcohol fermentation and lessened the rate of fermentation of sugar by 20% in noncontaminated mash. The decrease in the fermentation rate was also observed during the entire course of fermentation. On the other hand, formaldehyde addition to molasses contaminated with lactic acid bacteria accelerated the fermentation rate.

  13. Effects of swelling forces on the durability of wood adhesive bonds

    Science.gov (United States)

    Blake M. Hofferber; Edward Kolodka; Rishawn Brandon; Robert J. Moon; Charles R. Frihart

    2006-01-01

    The purpose of this study was to investigate the role of wood swelling on performance of wood-adhesive bonds (resorcinol formaldehyde, epoxy, emulsion polymerisocyanate), for untreated and acetylated wood. Effects of these treatments on measured strain anisotropy and swelling stress were measured and then related to compressive shear strength and percentage wood...

  14. Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Drage; A. Arenillas; K.M. Smith; C. Pevida; S. Piippo; C.E. Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2007-01-15

    Adsorption is considered to be one of the more promising technologies for the capture of CO{sub 2} from flue gases. In general, nitrogen enrichment is reported to be effective in enhancing the specific adsorbent-adsorbate interaction for CO{sub 2}. Nitrogen enriched carbons were produced from urea-formaldehyde and melamine-formaldehyde resins polymerised in the presence of K{sub 2}CO{sub 3} as a chemical activation agent, with activation undertaken over a range of temperatures. CO{sub 2} adsorption capacity was determined to be dependent upon both textural properties and more importantly nitrogen functionality. Adsorbents capable of capturing above 8 wt.% CO{sub 2} at 25{sup o}C were produced from the chemical activation of urea-formaldehyde resin at 500{sup o}C. Chemical activation seems to produce more effective adsorbents than CO{sub 2} activation. 29 refs., 4 figs., 3 tabs.

  15. Comparison of organic and inorganic ion exchangers for removal of cesium and strontium from simulated and actual Hanford 241-AW-101 DSSF tank waste

    International Nuclear Information System (INIS)

    Brown, G.N.; Bray, L.A.; Carlson, C.D.

    1996-04-01

    A number of organic and inorganic exchangers are being developed and evaluated for cesium removal from Hanford tank wastes. The exchangers of interest that are investigated in this work include powdered (IONSIV reg-sign IE-910; referred to as IE-910) and engineered (IONSIV reg-sign IE-911; referred to as IE-911) forms of the crystalline silico-titanate (CST) inorganic sorbent developed by Sandia National Laboratories (SNL)/Texas A and M and prepared by UOP; a phenol-formaldehyde (CS-100) resin developed by Rohm and Haas; a resorcinol-formaldehyde (R-F) polymer developed at the Westinghouse Savannah River Company (WSRC) and produced by Boulder Scientific; an inorganic zeolite exchanger produced by UOP (IONSIV reg-sign TIE-96; referred to as TIE-96); an inorganic sodium titanate produced by Allied Signal/Texas A and M (NaTi); and a macrocyclic organic resin developed and produced by IBC Advanced Technologies (SuperLig reg-sign 644; referred to as SL-644). Several of these materials are still under development and may not be in the optimal form. The work described in this report involves the direct comparison of the ion exchange materials for the pretreatment of actual and simulated Hanford tank waste. Data on the performance of all of the exchangers with simulated and actual double shell slurry feed (DSSF) is included. The DSSF waste is a mixture of the supernate from tanks 101-AW (70%), 106-AP (20%) and 102-AP (10%). The comparative parameters include radionuclide removal efficiency under a variety of conditions and material properties (e.g., bed density and percent removable water). Cesium and strontium distribution (K d ), lambda (λ = K d x ρ b ), and decontamination factors (DF) are compared as a function of exchanger contact duration, solution composition (Na and Cs concentration), exchanger/waste phase ratio, and multiple sequential contacts

  16. Formaldehyde: a candidate toxic air contaminant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frye, B.; Parker, T.

    1988-03-01

    Formaldehyde (HCHO) is a gas widely used in adhesives and resins, textiles, embalming fluids, fungicides, air fresheners, and cosmetics. It is directly emitted into the ambient outdoor air from vehicular and stationary sources, and is also produced in the atmosphere from other substances by photochemical smog processes. The International Agency for Research on Cancer (IARC) has determined that there is sufficient evidence for carcinogenicity of formaldehyde to animals, and limited evidence for carcinogenicity to humans. EPA classifies formaldehyde as a probable human carcinogen with a one in a million risk concentration of 0.08 ppb.

  17. Chemosorption sampling and analysis of formaldehyde in air. Influence on recovery during the simultaneous sampling of formaldehyde, phenol, furfural and furfuryl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.; Hallgren, C.; Levin, J.O.; Nilsson, C.A.

    1981-12-01

    A method based on trapping formaldehyde on a 2,4-dinitrodinitrophenylhydrazine-coated porous polymer (Amberlite XAD-2) was evaluated for air sampling in occupational environments. The aldehyde is converted to its 2,4-dinitrophenylhydrazone on the adsorbent. The influence of some organic compounds which often occur together with formaldehyde-furfural, phenol and furfuryl alcohol--was studied. The results show that the method allows the sampling of formaldehyde in the range 0.01--1.0 mg/m3 of air, based on a 3-1 (15 min) sample and a coating of 1%. Furfural, phenol, and furfuryl alcohol do not interfere and may be conveniently sampled at the same time. Formaldehyde and furfural hydrazones were analyzed by high-performance liquid chromatography, phenol and furfuryl alcohol by gas chromatography.

  18. Formaldehyde cross-linking and structural proteomics: Bridging the gap.

    Science.gov (United States)

    Srinivasa, Savita; Ding, Xuan; Kast, Juergen

    2015-11-01

    Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. 21 CFR 177.1900 - Urea-formaldehyde resins in molded articles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Urea-formaldehyde resins in molded articles. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1900 Urea-formaldehyde resins in molded articles. Urea-formaldehyde resins may be safely used as the food-contact surface...

  20. Preliminary study: Formaldehyde exposure in laboratories of Sharjah university in UAE

    OpenAIRE

    Ahmed, Hafiz Omer

    2011-01-01

    Objectives : Laboratory technicians, students, and instructors are at high risk, because they deal with chemicals including formaldehyde. Thus, this preliminary study was conducted to measure the concentration of formaldehyde in the laboratories of the University of Sharjah in UAE. Materials and Methods: Thirty-two air samples were collected and analyzed for formaldehyde using National Institute for Occupational Safety and Health (NIOSH) method 3500. In this method, formaldehyde reacts with c...

  1. Effects of Sodium Selenite on Formaldehyde Induced Renal Toxicity in Mice

    Directory of Open Access Journals (Sweden)

    Shabnam Mohammadi 1,2 * , Maryam Moghimian 3, Hanieh Torabzadeh 4, Mahla Langari 4, Roghayeh Nazeri 4, Zahra Karimi 4, Elham Sangari 4, Najmeh Jagarmi 5, Alireza Mohammad Zadeh 3, Mehdi Karimi 7, Kamyar Tavakkoli 8, Ali Delshad 9, Fatemeh Mohammadzadeh 3, Majid Ghayour-Mobarhan 10

    2016-12-01

    Full Text Available Background: Formaldehyde is widely used for industrial applications. Renal injury is an adverse effect associated with formaldehyde. Few studies have explored the potential benefits of protective factors on formaldehyde induced renal toxicity. This study evaluated the dose dependent effects of sodium selenite on the biochemical and histopathological effects of formaldehyde on murine kidney. Methods: Forty eight adult Balb/c male mice were randomized into six groups: a control group, a formaldehyde group and experimental III-VI groups. Formaldehyde group was injected with 10 mg/kg formaldehyde and groups III-VI received intraperitoneally doses of 0.1, 0.2, 0.4, 0.8 mg/kg selenium. After two weeks, a stereological study was done in accordance with the principle of Cavalieri and serum concentrations of urea and creatinine were measured. Data were analyzed using ANOVA and SPSS software. Results: Glomerosclerosis, necrosis and vacuolization were observed in the convoluted tubules of animals treated with formaldehyde. The biochemical markers, volume and count of glomeruli in the group treated with formaldehyde was significantly difference compared to the control group (P<0.05. The volume of the glomeruli in the group treated with 0.2 and 0.4 mg selenium and urea level in the group treated with 0.4 and 0.1 mg/kg selenium was significantly difference compared to the control group (P <0.05. The count of glomeruli and creatinine level in the selenium group was significantly difference compared to the control group (P ≤ 0.0001. Conclusions: A dose of 0.2 mg/kg of sodium selenite caused partial protective effect on the renal tissue and function in exposed to formaldehyde.

  2. Exposure to formaldehyde: a challenge of occupational health significance

    International Nuclear Information System (INIS)

    Kaonga, K.

    2009-01-01

    The use of formaldehyde as the fixative for general microscopic demonstration of tissues in medical laboratory establishments is as significant as the diagnosis of the underlying ailment. Instantaneous human exposure to formaldehyde elicits symptoms that may include watery eyes, headache, inflamed throat and dyspnea. The gaseous chemical is toxic, allergenic and carcinogenic. A study to determine the incidence of human exposure to formaldehyde was carried out at the University Teaching Hospital in Lusaka, Zambia from January to December, 2007. Anonymous questionnaires on various aspects of human exposure to formaldehyde were given to laboratory technical personnel. Exposure to formaldehyde was determined using general consideration model comprising points awarded to participants according to their responses. Five points represented the maximum level of exposure, while one point denoted the minimum encounter. There were 8 incidents of formaldehyde pollution, with five being emissions from 210-litre formalin receptacles whose stoppers were inadvertently left loose overnight, while three involved accidental breakage of Winchester bottles of formalin. A total of 115 people were exposed during the year. Fifteen (13.0 percent) participants scored one point each, while 20 (17.4 percent) participants obtained 2 points each. Thirty-five (30.4 percent) participants got 3 points each, while 30 (26.0 percent) participants received 4 points each. Twenty-five (21.7 percent) participants attained 5 points each. Human exposure to formaldehyde is an issue of occupational health concern. Participants with a score of 3 points or more need regular medical check ups in order to safeguard their health. Programs on effective management of hazardous chemicals are worth setting up.(author)

  3. ADSORCIÓN DE RESORCINOL DESDE SOLUCIÓN ACUOSA SOBRE CARBÓN ACTIVADO. RELACIÓN ISOTERMAS DE ADSORCIÓN Y ENTALPÍA DE INMERSIÓN

    Directory of Open Access Journals (Sweden)

    Diego Blanco

    2009-04-01

    Full Text Available Se estudia la adsorción de resorcinol, sobre carbones activados modificados, obtenidos a partir de un carbón activado comercial CarbochemTM –PS30, CAG, por medio de tratamiento químico con HNO3 7M, CAO y tratamiento térmico bajo flujo de H2, CAR; se analiza la influencia del pH de la solución, la reducción y oxidación de la superficie del carbón y se determina la entalpía de inmersión de los carbones activados en soluciones acuosas de resorcinol.La interacción sólido-solución se caracteriza por el análisis de las isotermas de adsorción a 298 K a los pHs de 7, 9 y 11 con el propósito de evaluar el sistema sobre y por debajo del valor de las pKa del resorcinol. La capacidad de adsorción de los carbones aumenta al disminuir el pH de la solución. La cantidad retenida aumenta en el carbón reducido al pH de máxima adsorción y disminuye en el carbón oxidado. Los resultados experimentales de las isotermas de adsorción se ajustaron a los modelos de Freundlich y Langmuir, obteniendo valores para el parámetro Qmáx del modelo de Langmuir en el CAG de 179, 156 y 44 mgg-1, para valores de pH de 7, 9 y 11 respectivamente. En el caso de los carbones modificados se obtienen valores de 233, 179 y 164 mgg-1, para el CAR, CAG y CAO a pH 7 respectivamente. Como tendencia general la adsorción de resorcinol aumenta en el siguiente orden CAR > CAG > CAO Similares conclusiones se obtienen de las entalpías de inmersión, cuyos valores se incrementan con la cantidad de soluto retenido. En el caso del CAG se obtienen entalpías de inmersión entre 25,8 a 40,9 Jg-1 para soluciones acuosas de resorcinol en un rango de 20 a 1500 mgL-1.

  4. Photostabilizing of bisphenol A polycarbonate by using UV-absorbers and self protective block copolymers based on resorcinol polyarylate blocks

    NARCIS (Netherlands)

    Diepens, M.; Gijsman, P.

    2009-01-01

    Bisphenol A polycarbonate degrades due to sunlight, humidity and oxygen. In this study two possible techniques to stabilize the polymer were compared, i.e. blending of UV-absorbers (UVAs) into the polymer or using block copolymers based on resorcinol polyarylates. Combination of different analysis

  5. Influence of indoor formaldehyde pollution on respiratory system ...

    African Journals Online (AJOL)

    Background The decoration of interior spaces can lead to dangerous levels of indoor formaldehyde pollution. Exposure to indoor air pollution may be responsible for nearly 2 million deaths per year in developing countries. Objectives To assess the prevalence of indoor formaldehyde pollution caused by decoration and ...

  6. Electrodeposition of gold from formaldehyde-sulfite baths: bath stability and deposits characterization

    Directory of Open Access Journals (Sweden)

    Juliana L. Cardoso

    2011-01-01

    Full Text Available It was investigated Au(I-sulfite baths containing formaldehyde. As a result, high stability was achieved for baths containing formaldehyde concentration close to 10 mL L-1 with a lifetime superior to 600 days. On the other hand, cyclic voltammograms indicated that the increase of formaldehyde concentration in the bath promotes decreasing of the maximum cathodic current, so that, if the formaldehyde concentration is high, the surface areal concentration of gold will be low. Also, the lowest surface roughness was obtained for 10 mL L-1 of formaldehyde.

  7. Combined effect of formaldehyde and gamma-irradiation. Vitamin complex effect

    International Nuclear Information System (INIS)

    Ban'kovskij, A.A.; El'chaninova, M.A.

    1996-01-01

    Combined inhalation effect of formaldehyde and gamma-irradiation on the activities of alcohol and aldehyde dehydrogenases in rat lung tissue was studied. The possibility of fitting the parameters studied by the vitamin PP, A and E and complex was shown. At investigation of white rats in conditions of formaldehyde inhalation in concentration 10 mg/m 3 and gamma-irradiation by dose 0.25 Gy the changes of activities of alcohol and aldehyde dehydrogenases in the rat lung tissue were detected. An injection of PP, A and E vitamin complex after combined effect of formaldehyde and gamma-irradiation contributes to normalization of studied parameters. The K(C -1 ) constant is reduced. On this basis it is proposed that in such conditions formaldehyde stabilizes membranes and protects important metabolic processes against damages. Thus, vitamin complex is capable to level a toxic combined effect of formaldehyde and gamma-irradiation. 9 refs., 1 tab

  8. Formaldehyde in the Galactic Centre

    International Nuclear Information System (INIS)

    Cohen, R.J.; Few, R.W.

    1981-01-01

    Formaldehyde 6-cm absorption in the direction of the Galactic Centre has been surveyed using the Jodrell Bank MK II radio telescope (beam-width 10 x 9 arcmin). The observations sample the region - 2 0 = 0 and - 0 0 .5 = 0 .5, with a velocity range of 620 km s -1 , a velocity resolution of 2.1 km s -1 and an rms noise level of approximately 0.03 K. The data are presented as contour maps showing line temperature as a function of latitude and velocity (b-V maps) and as a function of longitude and velocity (l-V maps). Similar maps of the line-to-continuum ratio are also presented. The radial distribution of formaldehyde (H 2 CO) in the Galactic Centre region is derived using two different kinematic models which give similar results. Formaldehyde is strongly concentrated in the Galactic Centre in a layer of latitude extent approximately 0 0 .5 and longitude extent approximately 4 0 which contains one quarter of all the H 2 CO in the Galaxy. The distribution is centred on l approximately 1 0 . The individual H 2 CO features are described in detail. (author)

  9. Release rate of diazinon from microcapsule based on melamine formaldehyde

    Science.gov (United States)

    Noviana Utami C., S.; Rochmadi

    2018-04-01

    The microcapsule containing diazinon as the core material and melamine formaldehyde as the membrane material have been synthesized by in situ polymerization method. The microcapsule membrane in this research is melamine formaldehyde (MF). This research aims to study the effect of pH and temperature on the release rate of diazinon from microcapsule based on melamine formaldehyde in aqueous medium. The results showed that pH and temperature has little effect on the release rate of diazinon from microcapsule based on melamine formaldehyde. This is due to the diffusion through the microcapsule membrane is not influenced by the pH and temperature of the solution outside of microcapsule.

  10. Solution of Azelaic Acid (20%), Resorcinol (10%) and Phytic Acid (6%) Versus Glycolic Acid (50%) Peeling Agent in the Treatment of Female Patients with Facial Melasma.

    Science.gov (United States)

    Faghihi, Gita; Taheri, Azam; Shahmoradi, Zabihollah; Nilforoushzadeh, Mohammad Ali

    2017-01-01

    Melasma, a common acquired disorder of hyperpigmentation, especially in women, is often resistant to therapy. This study was aimed to evaluate the efficacy and safety of azelaic acid, resorcinol and phytic acid solution in chemical peeling of melasma in comparison to 50% glycolic acid. This clinical trial was performed, on 42 female patients with bilateral melasma. Severity of melasma was assessed by melasma area and severity index (MASI). Combination of (20% azelaic acid + 10% resorcinol + 6% phytic acid) was used as a new peeling agent on the right side of the face and 50% glycolic acid on the left side every 2 weeks for 6 times. Follow-up was carried out for 3 months after the last session. Any decrease in MASI score and unwanted complications following peeling were evaluated and compared during the trial. Patients showed marked improvement as calculated with MASI score before and after treatment in both sides of the face. The efficacy of combination formula (azelaic acid, resorcinol and phytic acid) was similar to glycolic acid, but with fewer complications. There was no statistically difference in improvement between two groups ( P > 0.05). However, the patient's discomfort following procedures was significantly lower with azelaic acid, resorcinol and phytic compared with the glycolic acid peels ( P < 0.05) and there was the same duration in the beginning of the therapeutic response in both groups. Results showed that triple-combination was found to be an effective and safe peeling agent in the treatment of melasma and it was as effective as 50% glycolic acid peel.

  11. Hydrogen storage property of nanoporous carbon aerogels

    International Nuclear Information System (INIS)

    Shen Jun; Liu Nianping; Ouyang Ling; Zhou Bin; Wu Guangming; Ni Xingyuan; Zhang Zhihua

    2011-01-01

    Carbon aerogels were prepared from resorcinol and formaldehyde via sol-gel process, high temperature carbonization and atmospheric pressure drying technology with solvent replacement. By changing the resorcinol-sodium carbonate molar ratio and the mass fraction of the reactants,resorcinol and formaldehyde, the pore structure of carbon aerogels can be controlled and the palladium-doped carbon aerogels were prepared.By transmission electron microscopy (TEM), X-ray diffraction (XRD) spectra, it is confirmed that the Pd exists in the skeleton structure of carbon aerogels as a form of nano simple substance pellet. The specific surface area is successfully raised by 2 times, and palladium-doped carbon aerogels with a specific surface area of 1 273 m 2 /g have been obtained by carrying out the activation process as the post-processing to the doped carbon aerogels. The hydrogen adsorption results show that the saturated hydrogen storage mass fraction of the carbon aerogels with the specific surface area of 3 212 m 2 /g is 3% in the condition of 92 K, 3.5 MPa, and 0.84% in the condition of 303 K, 3.2 MPa. In addition, the hydrogen adsorption test of palladium-doped carbon aerogels at room temperature (303 K) shows that the total hydrogen storage capacity of doped carbon aerogels is declined due to the relative small specific surface, but the hydrogen storage of unit specific surface area is enhanced. (authors)

  12. In vitro biological characterization of a novel, synthetic diaryl pyrazole resorcinol class of heat shock protein 90 inhibitors.

    Science.gov (United States)

    Sharp, Swee Y; Boxall, Kathy; Rowlands, Martin; Prodromou, Chrisostomos; Roe, S Mark; Maloney, Alison; Powers, Marissa; Clarke, Paul A; Box, Gary; Sanderson, Sharon; Patterson, Lisa; Matthews, Thomas P; Cheung, Kwai-Ming J; Ball, Karen; Hayes, Angela; Raynaud, Florence; Marais, Richard; Pearl, Laurence; Eccles, Sue; Aherne, Wynne; McDonald, Edward; Workman, Paul

    2007-03-01

    The molecular chaperone heat shock protein 90 (HSP90) has emerged as an exciting molecular target. Derivatives of the natural product geldanamycin, such as 17-allylamino-17-demethoxy-geldanamycin (17-AAG), were the first HSP90 ATPase inhibitors to enter clinical trial. Synthetic small-molecule HSP90 inhibitors have potential advantages. Here, we describe the biological properties of the lead compound of a new class of 3,4-diaryl pyrazole resorcinol HSP90 inhibitor (CCT018159), which we identified by high-throughput screening. CCT018159 inhibited human HSP90beta with comparable potency to 17-AAG and with similar ATP-competitive kinetics. X-ray crystallographic structures of the NH(2)-terminal domain of yeast Hsp90 complexed with CCT018159 or its analogues showed binding properties similar to radicicol. The mean cellular GI(50) value of CCT018159 across a panel of human cancer cell lines, including melanoma, was 5.3 mumol/L. Unlike 17-AAG, the in vitro antitumor activity of the pyrazole resorcinol analogues is independent of NQO1/DT-diaphorase and P-glycoprotein expression. The molecular signature of HSP90 inhibition, comprising increased expression of HSP72 protein and depletion of ERBB2, CDK4, C-RAF, and mutant B-RAF, was shown by Western blotting and quantified by time-resolved fluorescent-Cellisa in human cancer cell lines treated with CCT018159. CCT018159 caused cell cytostasis associated with a G(1) arrest and induced apoptosis. CCT018159 also inhibited key endothelial and tumor cell functions implicated in invasion and angiogenesis. Overall, we have shown that diaryl pyrazole resorcinols exhibited similar cellular properties to 17-AAG with potential advantages (e.g., aqueous solubility, independence from NQO1 and P-glycoprotein). These compounds form the basis for further structure-based optimization to identify more potent inhibitors suitable for clinical development.

  13. A survey of formaldehyde in the Cepheus OB3 molecular cloud

    International Nuclear Information System (INIS)

    Few, R.W.; Cohen, R.J.

    1983-01-01

    The 1 11 - 1 10 absorption line of formaldehyde at 6-cm wavelength has been surveyed over the region of the Cepheus OB3 molecular cloud, using the Jodrell Bank Mk II radio telescope (beamwidth 9 x 10 arcmin 2 ). The measurements have a velocity resolution of 0.27 km s - 1 and an rms noise level of approx. 0.01 K. The formaldehyde has a very clumpy distribution which is broadly similar to the CO distribution found by Sargent. A total molecular mass of 1.9 x 10 4 solar masses is implied by the formaldehyde measurements. Cepheus A is not the dominant concentration in the formaldehyde map. The most massive formaldehyde concentration is Cepheus C, which has a mass of 3600 solar masses. It appears to be stabilized by rotation. (author)

  14. Teratogenic effect of formaldehyde in rabbits

    Directory of Open Access Journals (Sweden)

    A. A. Al–Saraj

    2009-01-01

    Full Text Available Thirty three pregnant rabbits were exposed to vapour of 10% formaldehyde (12 ppm throughout the gestation period to know its effect on newborns. The results showed no abortion or foetal mortality but there were some anomalies (23.8% among the newborns rabbits which includes: meromelia (6.8%, encephalocele (6.1%, Oligodactyly (4.1%, Umbilical hernia (3.4% and Short tail (3.4%; besides that small for date and decrease in the body weight of the newborns were also noticed. These findings suggest that formaldehyde is a teratogenic agent.

  15. Contact allergic dermatitis from melamine formaldehyde resins in a patient with a negative patch-test reaction to formaldehyde.

    Science.gov (United States)

    García Gavin, Juan; Loureiro Martinez, Manuel; Fernandez-Redondo, Virginia; Seoane, Maria-José; Toribio, Jaime

    2008-01-01

    Melamine paper is a basic material used in the furniture industry for home and office interiors. Contact allergic dermatitis from melamine formaldehyde resins (MFRs) should be considered in patients who work on melamine paper impregnation lines. We report a case of a 28-year-old female plywood worker who developed eczema on the dorsal side of her hands and wrists after 2 years of working on the melamine paper impregnation line. She had a relevant positive patch-test reaction to MFR, with a negative reaction to formaldehyde. Contact dermatitis due to MFR is not common, and it is usually related to products that are not fully cured or to close contact with intermediate products on the assembly line. Formaldehyde release from MFR can explain most of the positive responses. To our knowledge, this is the first report of MFR contact allergic dermatitis in a worker on a melamine paper impregnation line.

  16. Effect of formaldehyde on the upper respiratory tract _ormal flora of ...

    African Journals Online (AJOL)

    Background: Formaldehyde is a chemical that is used to fix a tissue after death or removal from the body to prevent autolysis and putrefaction. Exposure to formaldehyde can occur as a result of occupation. Objective: To determine the effect of the formaldehyde on the throat and nasal flora of upper respiratory tract of rabbits ...

  17. Sol-gel based sensor for selective formaldehyde determination

    Energy Technology Data Exchange (ETDEWEB)

    Bunkoed, Opas [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Davis, Frank [Cranfield Health, Cranfield University, Bedford MK43 0AL (United Kingdom); Kanatharana, Proespichaya, E-mail: proespichaya.K@psu.ac.th [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Thavarungkul, Panote [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Higson, Seamus P.J., E-mail: s.p.j.higson@cranfield.ac.uk [Cranfield Health, Cranfield University, Bedford MK43 0AL (United Kingdom)

    2010-02-05

    We report the development of transparent sol-gels with entrapped sensitive and selective reagents for the detection of formaldehyde. The sampling method is based on the adsorption of formaldehyde from the air and reaction with {beta}-diketones (for example acetylacetone) in a sol-gel matrix to produce a yellow product, lutidine, which was detected directly. The proposed method does not require preparation of samples prior to analysis and allows both screening by visual detection and quantitative measurement by simple spectrophotometry. The detection limit of 0.03 ppmv formaldehyde is reported which is lower than the maximum exposure concentrations recommended by both the World Health Organisation (WHO) and the Occupational Safety and Health Administration (OSHA). This sampling method was found to give good reproducibility, the relative standard deviation at 0.2 and 1 ppmv being 6.3% and 4.6%, respectively. Other carbonyl compounds i.e. acetaldehyde, benzaldehyde, acetone and butanone do not interfere with this analytical approach. Results are provided for the determination of formaldehyde in indoor air.

  18. Sol-gel based sensor for selective formaldehyde determination

    International Nuclear Information System (INIS)

    Bunkoed, Opas; Davis, Frank; Kanatharana, Proespichaya; Thavarungkul, Panote; Higson, Seamus P.J.

    2010-01-01

    We report the development of transparent sol-gels with entrapped sensitive and selective reagents for the detection of formaldehyde. The sampling method is based on the adsorption of formaldehyde from the air and reaction with β-diketones (for example acetylacetone) in a sol-gel matrix to produce a yellow product, lutidine, which was detected directly. The proposed method does not require preparation of samples prior to analysis and allows both screening by visual detection and quantitative measurement by simple spectrophotometry. The detection limit of 0.03 ppmv formaldehyde is reported which is lower than the maximum exposure concentrations recommended by both the World Health Organisation (WHO) and the Occupational Safety and Health Administration (OSHA). This sampling method was found to give good reproducibility, the relative standard deviation at 0.2 and 1 ppmv being 6.3% and 4.6%, respectively. Other carbonyl compounds i.e. acetaldehyde, benzaldehyde, acetone and butanone do not interfere with this analytical approach. Results are provided for the determination of formaldehyde in indoor air.

  19. The margin of exposure to formaldehyde in alcoholic beverages.

    Science.gov (United States)

    Monakhova, Yulia B; Jendral, Julien A; Lachenmeier, Dirk W

    2012-06-01

    Formaldehyde has been classified as carcinogenic to humans (WHO IARC group 1). It causes leukaemia and nasopharyngeal cancer, and was described to regularly occur in alcoholic beverages. However, its risk associated with consumption of alcohol has not been systematically studied, so this study will provide the first risk assessment of formaldehyde for consumers of alcoholic beverages.Human dietary intake of formaldehyde via alcoholic beverages in the European Union was estimated based on WHO alcohol consumption data and literature on formaldehyde contents of different beverage groups (beer, wine, spirits, and unrecorded alcohol). The risk assessment was conducted using the margin of exposure (MOE) approach with benchmark doses (BMD) for 10 % effect obtained from dose-response modelling of animal experiments.For tumours in male rats, a BMD of 30 mg kg(-1) body weight per day and a "BMD lower confidence limit" (BMDL) of 23 mg kg(-1) d(-1) were calculated from available long-term animal experiments. The average human exposure to formaldehyde from alcoholic beverages was estimated at 8·10(-5) mg kg(-1) d(-1). Comparing the human exposure with BMDL, the resulting MOE was above 200,000 for average scenarios. Even in the worst-case scenarios, the MOE was never below 10,000, which is considered to be the threshold for public health concerns.The risk assessment shows that the cancer risk from formaldehyde to the alcohol-consuming population is negligible and the priority for risk management (e.g. to reduce the contamination) is very low. The major risk in alcoholic beverages derives from ethanol and acetaldehyde.

  20. Migration of formaldehyde from melamine-ware: UK 2008 survey results.

    Science.gov (United States)

    Potter, E L J; Bradley, E L; Davies, C R; Barnes, K A; Castle, L

    2010-06-01

    Fifty melamine-ware articles were tested for the migration of formaldehyde - with hexamethylenetetramine (HMTA) expressed as formaldehyde - to see whether the total specific migration limit (SML(T)) was being observed. The SML(T), given in European Commission Directive 2002/72/EC as amended, is 15 mg kg(-1). Fourier transform-infrared (FT-IR) spectroscopy was carried out on the articles to confirm the plastic type. Articles were exposed to the food simulant 3% (w/v) aqueous acetic acid under conditions representing their worst foreseeable use. Formaldehyde and HMTA in food simulants were determined by a spectrophotometric derivatization procedure. Positive samples were confirmed by a second spectrophotometric procedure using an alternative derivatization agent. As all products purchased were intended for repeat use, three sequential exposures to the simulant were carried out. Formaldehyde was detected in the simulant exposed to 43 samples. Most of the levels found were well below the limits set in law such that 84% of the samples tested were compliant. However, eight samples had formaldehyde levels that were clearly above the legal maximum at six to 65 times the SML(T).

  1. Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Geppert, W. D.; Persson, C. M.

    2012-01-01

    Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes

  2. Solution of Azelaic Acid (20%, Resorcinol (10% and Phytic Acid (6% Versus Glycolic Acid (50% Peeling Agent in the Treatment of Female Patients with Facial Melasma

    Directory of Open Access Journals (Sweden)

    Gita Faghihi

    2017-01-01

    Full Text Available Background: Melasma, a common acquired disorder of hyperpigmentation, especially in women, is often resistant to therapy. This study was aimed to evaluate the efficacy and safety of azelaic acid, resorcinol and phytic acid solution in chemical peeling of melasma in comparison to 50% glycolic acid. Materials and Methods: This clinical trial was performed, on 42 female patients with bilateral melasma. Severity of melasma was assessed by melasma area and severity index (MASI. Combination of (20% azelaic acid + 10% resorcinol + 6% phytic acid was used as a new peeling agent on the right side of the face and 50% glycolic acid on the left side every 2 weeks for 6 times. Follow-up was carried out for 3 months after the last session. Any decrease in MASI score and unwanted complications following peeling were evaluated and compared during the trial. Results: Patients showed marked improvement as calculated with MASI score before and after treatment in both sides of the face. The efficacy of combination formula (azelaic acid, resorcinol and phytic acid was similar to glycolic acid, but with fewer complications. There was no statistically difference in improvement between two groups (P > 0.05. However, the patient's discomfort following procedures was significantly lower with azelaic acid, resorcinol and phytic compared with the glycolic acid peels (P < 0.05 and there was the same duration in the beginning of the therapeutic response in both groups. Conclusion: Results showed that triple-combination was found to be an effective and safe peeling agent in the treatment of melasma and it was as effective as 50% glycolic acid peel.

  3. Performance of optical biosensor using alcohol oxidase enzyme for formaldehyde detection

    Science.gov (United States)

    Sari, A. P.; Rachim, A.; Nurlely, Fauzia, V.

    2017-07-01

    The recent issue in the world is the long exposure of formaldehyde which is can increase the risk of human health, therefore, that is very important to develop a device and method that can be optimized to detect the formaldehyde elements accurately, have a long lifetime and can be fabricated and produced in large quantities. A new and simple prepared optical biosensor for detection of formaldehyde in aqueous solutions using alcohol oxidase (AOX) enzyme was successfully fabricated. The poly-n-butyl acrylic-co-N-acryloxysuccinimide (nBA-NAS) membranes containing chromoionophore ETH5294 were used for immobilization of alcohol oxidase enzyme (AOX). Biosensor response was based on the colour change of chromoionophore as a result of enzymatic oxidation of formaldehyde and correlated with the detection concentration of formaldehyde. The performance of biosensor parameters were measured through the optical absorption value using UV-Vis spectrophotometer including the repeatability, reproducibility, selectivity and lifetime. The results showed that the prepared biosensor has good repeatability (RSD = 1.9 %) and good reproducibility (RSD = 2.1 %). The biosensor was selective formaldehyde with no disturbance by methanol, ethanol, and acetaldehyde, and also stable before 49 days and decrease by 41.77 % after 49 days.

  4. A Formaldehyde Exposure Assessment Tool for Occupants of FEMA Temporary Housing Units

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, Srinandini; Spears, Michael; Maddalena, Randy L.; Russell, Marion L; Apte, Michael G.

    2010-10-01

    The report outlines the methodology used to develop a web-based tool to assess the formaldehyde exposure of the occupants of Federal Emergency Management Administration (FEMA) temporary housing units (THUs) after Hurricanes Katrina and Rita in 2005. Linear regression models were built using available data to retrospectively estimate the indoor temperature and relative humidity, formaldehyde emission factors and concentration, and hence the formaldehyde exposures. The interactive web-tool allows the user to define the inputs to the model to evaluate formaldehyde exposures for different scenarios.

  5. Concentrations of formaldehyde in rain waters harvested at the ...

    African Journals Online (AJOL)

    Formaldehyde has been recognized as one of the most important pollutants and a carcinogen that is present in the air, water, foods, soils, fabrics, cosmetics, cigarette smoke and treated wood. Related health effects and hazards are linked to formaldehyde, depending on mode of exposure which includes: weakness, ...

  6. Characterization and Application of Urea-Formaldehyde-Furfural Co-condensed Resins as Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Jizhi Zhang

    2014-08-01

    Full Text Available Furfural, as an organic compound derived from biomass materials, was used to partially substitute for formaldehyde in the synthesis of UF resin. Urea-formaldehyde-furfural co-condensed (UFFR resins with different substitute ratios of furfural to formaldehyde (FR/F were prepared. The effects of the FR/F substitute ratio on the performances of UFFR resins were investigated. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS and Fourier transform infrared spectroscopy (FT-IR were applied to characterize the chemical structures of UFFR resins. Plywood bonded by these resins was manufactured, and its bond strength and formaldehyde emission were measured. The results showed that the substitution of furfural in place of formaldehyde could reduce the free formaldehyde content effectively at the expense of prolongation of the curing time. The spectra of MALDI-TOF and FTIR confirmed the co-condensation of urea-formaldehyde-furfural both in uncured and cured resins. Plywood prepared under optimized parameters could yield high bond strength and low formaldehyde emission, which were 0.84 MPa and 0.23 ppm, respectively. The optimized parameters were as follows: a FR/F substitute ratio of 1/3; 1% (NH42S2O8 as the curing agent; and a hot pressing temperature of 130 °C. Hence, it is feasible to substitute partially formaldehyde by furfural to prepare UFFR resins as wood adhesives for plywood.

  7. Genotoxicity of formaldehyde: Molecular basis of DNA damage and mutation

    Directory of Open Access Journals (Sweden)

    Masanobu eKawanishi

    2014-09-01

    Full Text Available Formaldehyde is commonly used in the chemical industry and is present in the environment, such as vehicle emissions, some building materials, food and tobacco smoke. It also occurs as a natural product in most organisms, the sources of which include a number of metabolic processes. It causes various acute and chronic adverse effects in humans if they inhale its fumes. Among the chronic effects on human health, we summarize data on genotoxicity and carcinogenicity in this review, and we particularly focus on the molecular mechanisms involved in the formaldehyde mutagenesis. Formaldehyde mainly induces N-hydroxymethyl mono-adducts on guanine, adenine and cytosine, and N-methylene crosslinks between adjacent purines in DNA. These crosslinks are types of DNA damage potentially fatal for cell survival if they are not removed by the nucleotide excision repair pathway. In the previous studies, we showed evidence that formaldehyde causes intra-strand crosslinks between purines in DNA using a unique method (Matsuda et al. Nucleic Acids Res. 26, 1769-1774,1998. Using shuttle vector plasmids, we also showed that formaldehyde as well as acetaldehyde induces tandem base substitutions, mainly at 5’-GG and 5’-GA sequences, which would arise from the intra-strand crosslinks. These mutation features are different from those of other aldehydes such as crotonaldehyde, acrolein, glyoxal and methylglyoxal. These findings provide molecular clues to improve our understanding of the genotoxicity and carcinogenicity of formaldehyde.

  8. Formation, Accumulation, and Hydrolysis of Endogenous and Exogenous Formaldehyde-Induced DNA Damage

    Science.gov (United States)

    Yu, Rui; Lai, Yongquan; Hartwell, Hadley J.; Moeller, Benjamin C.; Doyle-Eisele, Melanie; Kracko, Dean; Bodnar, Wanda M.; Starr, Thomas B.; Swenberg, James A.

    2015-01-01

    Formaldehyde is not only a widely used chemical with well-known carcinogenicity but is also a normal metabolite of living cells. It thus poses unique challenges for understanding risks associated with exposure. N2-hydroxymethyl-dG (N2-HOMe-dG) is the main formaldehyde-induced DNA mono-adduct, which together with DNA-protein crosslinks (DPCs) and toxicity-induced cell proliferation, play important roles in a mutagenic mode of action for cancer. In this study, N2-HOMe-dG was shown to be an excellent biomarker for direct adduction of formaldehyde to DNA and the hydrolysis of DPCs. The use of inhaled [13CD2]-formaldehyde exposures of rats and primates coupled with ultrasensitive nano ultra performance liquid chromatography-tandem mass spectrometry permitted accurate determinations of endogenous and exogenous formaldehyde DNA damage. The results show that inhaled formaldehyde only reached rat and monkey noses, but not tissues distant to the site of initial contact. The amounts of exogenous adducts were remarkably lower than those of endogenous adducts in exposed nasal epithelium. Moreover, exogenous adducts accumulated in rat nasal epithelium over the 28-days exposure to reach steady-state concentrations, followed by elimination with a half-life (t1/2) of 7.1 days. Additionally, we examined artifact formation during DNA preparation to ensure the accuracy of nonlabeled N2-HOMe-dG measurements. These novel findings provide critical new data for understanding major issues identified by the National Research Council Review of the 2010 Environmental Protection Agency’s Draft Integrated Risk Information System Formaldehyde Risk Assessment. They support a data-driven need for reflection on whether risks have been overestimated for inhaled formaldehyde, whereas underappreciating endogenous formaldehyde as the primary source of exposure that results in bone marrow toxicity and leukemia in susceptible humans and rodents deficient in DNA repair. PMID:25904104

  9. ISOFORMAL: isotopic tracing of formaldehyde sources in housing. Intermediary report

    International Nuclear Information System (INIS)

    2011-01-01

    The authors report an investigation which comprised a sampling and a chemical and isotopic analysis of emissions from the main indoor formaldehyde pollution sources in order to create a exhaustive database. Emissions which are characteristic of motorcar traffic, are also sampled in order to asses their possible contribution in the housing air. This step will be used to develop emission simulations of formaldehyde sources in a laboratory-house in order to validate the isotopic approach as tracing tool for sources of this compound. The report describes the carbon and hydrogen steady isotopes. It presents the sampling procedure, reports the determination of formaldehyde concentrations by high performance liquid chromatography with UV detectors, the use of gas source mass spectrometry, and the analytic development of the isotopic analysis of formaldehyde by gas chromatography combustion isotope ratio mass spectrometry. Outdoor and indoor pollution sources are discussed

  10. Investigation of the detoxification mechanism of formaldehyde-treated tetanus toxin

    DEFF Research Database (Denmark)

    Thaysen-Andersen, Morten; Jørgensen, Sys Borcher; Wilhelmsen, Ellen Sloth

    2007-01-01

    and properties of the vaccine component, occurs through partly unknown chemical modifications of the toxin. The aim of this study was to gain knowledge of the detoxification mechanism in the generation of the tetanus vaccine. Two approaches were chosen: (i) the effect of changes in the concentrations of lysine...... The tetanus vaccine is based on the extremely potent tetanus neurotoxin (TeNT), which is converted by treatment with formaldehyde and lysine into the non-toxic, but still immunogenic tetanus toxoid (TTd). This formaldehyde-induced detoxification, which to a large extend determines the quality...... and formaldehyde in the detoxification process and (ii) characterisation of the chemically detoxified TTd. (i) We examined a number of TTd components that was produced by varying the concentrations of formaldehyde and lysine during the inactivation. Toxicity tests showed that the detoxification failed when...

  11. Development program for magnetically assisted chemical separation: Evaluation of cesium removal from Hanford tank supernatant

    International Nuclear Information System (INIS)

    Nunez, L.; Buchholz, B.A.; Ziemer, M.; Dyrkacz, G.; Kaminski, M.; Vandegrift, G.F.; Atkins, K.J.; Bos, F.M.; Elder, G.R.; Swift, C.A.

    1994-12-01

    Magnetic particles (MAG*SEP SM ) coated with various absorbents were evaluated for the separation and recovery of low concentrations of cesium from nuclear waste solutions. The MAG*SEP SM particles were coated with (1) clinoptilolite, (2) transylvanian volcanic tuff, (3) resorcinol formaldehyde, and (4) crystalline silico-titanate, and then were contacted with a Hanford supernatant simulant. Particles coated with the crystalline silico-titanate were identified by Bradtec as having the highest capacity for cesium removal under the conditions tested (variation of pH, ionic strength, cesium concentration, and absorbent/solution ratio). The MAG*SEP SM particles coated with resorcinol formaldehyde had high distribution ratios values and could also be used to remove cesium from Hanford supernant simulant. Gamma irradiation studies were performed on the MAG*SEP SM particles with a gamma dose equivalent to 100 cycles of use. This irradiation decreased the loading capacity and distribution ratios for the particles by greater than 75%. The particles demonstrated high sensitivity to radiolytic damage due to the degradation of the polymeric regions. These results were supported by optical microscopy measurements. Overall, use of magnetic particles for cesium separation under nuclear waste conditions was found to be marginally effective

  12. The Effectors and Sensory Sites of Formaldehyde-responsive Regulator FrmR and Metal-sensing Variant *

    Science.gov (United States)

    Osman, Deenah; Piergentili, Cecilia; Chen, Junjun; Sayer, Lucy N.; Usón, Isabel; Huggins, Thomas G.; Robinson, Nigel J.; Pohl, Ehmke

    2016-01-01

    The DUF156 family of DNA-binding transcriptional regulators includes metal sensors that respond to cobalt and/or nickel (RcnR, InrS) or copper (CsoR) plus CstR, which responds to persulfide, and formaldehyde-responsive FrmR. Unexpectedly, the allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by metals in vitro, and variant FrmRE64H gains responsiveness to Zn(II) and cobalt in vivo. Here we establish that the allosteric mechanism of FrmR is triggered directly by formaldehyde in vitro. Sensitivity to formaldehyde requires a cysteine (Cys35 in FrmR) conserved in all DUF156 proteins. A crystal structure of metal- and formaldehyde-sensing FrmRE64H reveals that an FrmR-specific amino-terminal Pro2 is proximal to Cys35, and these residues form the deduced formaldehyde-sensing site. Evidence is presented that implies that residues spatially close to the conserved cysteine tune the sensitivities of DUF156 proteins above or below critical thresholds for different effectors, generating the semblance of specificity within cells. Relative to FrmR, RcnR is less responsive to formaldehyde in vitro, and RcnR does not sense formaldehyde in vivo, but reciprocal mutations FrmRP2S and RcnRS2P, respectively, impair and enhance formaldehyde reactivity in vitro. Formaldehyde detoxification by FrmA requires S-(hydroxymethyl)glutathione, yet glutathione inhibits formaldehyde detection by FrmR in vivo and in vitro. Quantifying the number of FrmR molecules per cell and modeling formaldehyde modification as a function of [formaldehyde] demonstrates that FrmR reactivity is optimized such that FrmR is modified and frmRA is derepressed at lower [formaldehyde] than required to generate S-(hydroxymethyl)glutathione. Expression of FrmA is thereby coordinated with the accumulation of its substrate. PMID:27474740

  13. BEHAVIOR OF GLUED JOINTS OF EUCALYPTUS sp. SAWN WOOD

    Directory of Open Access Journals (Sweden)

    Octávio Barbosa Plaster

    2008-09-01

    Full Text Available This research evaluated eucalypt wood adhesion capacity. The material evaluated was a commercial sawn wood composed by a blend of species of the genus Eucalyptus. The adhesives used were resorcinol-formaldehyde and polyvinila acetate (PVAc. The wood was segregated in three density with 0% of moisture content: class 1; 2 and 3 that, when combined (class1 x class1; 2x2; 3x3; 1x2; 1x3; 2x3 resulted in six treatments. The performance of the adhesion was evaluated by the shear strength to parallel compression and by wood failure in the glue line. The obtained results allowed to conclude that the adhesion of the combinations of wood/adhesive presented satisfactory performance. The average shear strength of the joints were shown equivalent to the shear strength of the solid wood with similar performance of adhesion in the two adhesives. In general, resorcinol-formaldheyde adhesive presented higher values (74.41% for wood failure in the joints, but similar to all treatments. The adhesion of samples of higher density presented lower performance probably when only the values of wood failure are considered. The values for the strength of glued joints, in general, were similar when analyzed the results achieved with the resorcinol-formaldehyde adhesive- base 140,56 Kgf/cm2. To polyvinila acetate the values of wood failure decrease when the density increase (65.94%, but the resistance in the glue line was positively affected (140.25 Kgf/cm2. In general, the density influenced the adhesion of the joints for the employed adhesives.

  14. Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde.

    Science.gov (United States)

    Akshath, Uchangi Satyaprasad; Bhatt, Praveena

    2018-02-15

    Supramolecular nanoparticle hybrids for biosensing of analytes have been a major focus due to their tunable optical and surface properties. Quantum dots-Gold nanoparticle (QDs-GNP) based FRET probes involving turn on/off principles have gained immense interest due to their specificity and sensitivity. Recent focus is on applying these supramolecular hybrids for enzyme operated biosensors that can specifically turn-on fluorescence induced by co-factor or product formed from enzymatic reaction. The present study focuses on locking and unlocking the interaction between QD-GNP pair leading to differential fluorescent properties. Cationic GNPs efficiently quenched the anionic QD fluorescence by forming nanoparticle hybrid. Quenching interaction between QD-GNP pair was unlocked by NADH leading to QD fluorescence turn-on. This phenomenon was applied for the successful detection of formaldehyde using NAD + dependent formaldehyde dehydrogenase. The proposed nano-sniffer could successfully detect formaldehyde from 0.001 to 100000ng/mL (R 2 = 0.9339) by the turn off-turn on principle. It could also detect formaldehyde in fruit juice and wine samples indicating its stability and sensitivity in real samples. The proposed nanoprobe can have wide applications in developing enzyme biosensors in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Urea-formaldehyde resins: production, application, and testing

    Science.gov (United States)

    Nuryawan, A.; Risnasari, I.; Sucipto, T.; Heri Iswanto, A.; Rosmala Dewi, R.

    2017-07-01

    Urea-formaldehyde (UF) resin, one of the most important formaldehyde resin adhesives, is a polymeric condensation product of formaldehyde with urea, and being widely used for the manufacture of wood-based composite panels, such as plywood, particleboard, and fiberboard. In spite of its benefits such as fast curing, good performance in the panels (colorless), and lower cost; formaldehyde emission (FE) originated from either UF resin itself or composite products bonded by UF resins is considered a critical drawback as it affects human health particularly in indoor environment. In order to reduce the FE, lowering formaldehyde/urea (F/U) mole ratio in the synthesis of the UF resin was done. In this study, synthesis of UF resins was carried out following the conventional alkaline-acid two-step reaction with a second addition of urea, resulting in F/U mole ratio around 1.0, namely 0.95; 1.05, and 1.15. The UF resins produced were used as binder for particleboard making. The board was manufactured in the laboratory using shaving type particle of Gmelina wood, 8% UF resin based on oven dry particle, and 1% NH4Cl (20%wt) as hardener for the resin. The target of the thickness was 10 mm and the dimension was 25 cm x 25 cm. The resulted particleboard then was evaluated the physical and the mechanical properties by Japanese Industrial Standard (JIS) A 5908 (2003). Further, the resulted particleboard also was used for the mice cage’s wall in order to mimic the real living environment. After four weeks exposure in the cages, the mice then were evaluated their mucous organs as well as their blood. The experiment results were as follows: 1) It was possible to synthesis UF resins with low F/U mole ratio; 2) However, the particleboard bonded UF resins with low F/U mole ratio showed poor properties, particularly on the thickness swelling and modulus of elasticity; 3) There was no significant differences among the mucous organs of the mice after a month exposure FE originated from

  16. Research of radiation firmness of transparent melamine-formaldehyde polymers

    International Nuclear Information System (INIS)

    Lebedev, V.V.

    2007-01-01

    Radiation properties of the transparent melamine-formaldehyde polymers offered in quality polymeric basis for making of plastic scintillators are explored in this work. Plastic scintillator is composition, that consists of polymer (polymeric basis) and organic fluorescent addition. Scintillation efficiency and light output are basic properties of plastic scintillators. Firmness to influencing of ionizing radiation is important property of scintillators. From all types of scintillators the plastic are most radiation-proof. Cured melamine-formaldehyde resin and melamine-formaldehyde resin modified by different polyol modifiers was a research object. It is shown that radiation firmness for given types of polymeric material considerably depends on composition of polymer and from technology and temperature condition of its receipt. By the method IR-spectroscopy the structural changes in melamine-formaldehyde polymers under action of irradiation were explored. The maximal falling after the irradiation was marked in intensity of luminescence, which went down to 50% from an initial level. Like the coefficients of admission for all compositions got worse of a to 30-35% level from initial one. Mechanical properties went down on 20-30%. The radiation loss of mass made less than 1% for all polymers. With the increase of temperature of curing firmness rises. Thus, on the basis of the conducted researches radiation firmness for different melamine-formaldehyde polymers is determined and processes what is going on in material under action of radiation are studied. The limited doses of irradiation for each of explored polymers are determined. (authors)

  17. Absorption of formaldehyde in water

    NARCIS (Netherlands)

    Winkelman, Jozef Gerhardus Maria

    2003-01-01

    Deze dissertatie beschrijft theoretisch en experimenteel werk aan de absorptie van formaldehyde in water. Met resultaten hiervan zijn chemisch-technische modellen ontwikkeld voor de beschrijving en optimalisatie van industriële formaldehydeabsorbeurs. Deze samenvatting geeft eerst algemene

  18. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.

    Science.gov (United States)

    Kudo, Hiroyuki; Suzuki, Yuki; Gessei, Tomoko; Takahashi, Daishi; Arakawa, Takahiro; Mitsubayashi, Kohji

    2010-10-15

    An ultrahigh-sensitive fiber-optic biochemical gas sensor (bio-sniffer) for continuous monitoring of indoor formaldehyde was constructed and tested. The bio-sniffer measures gaseous formaldehyde as fluorescence of nicotinamide adenine dinucleotide (NADH), which is the product of formaldehyde dehydrogenase (FALDH) reaction. The bio-sniffer device was constructed by attaching a flow cell with a FALDH immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode (UV-LED) with peak emission of 335 nm as an excitation light source. The excitation light was introduced to an optical fiber probe, and fluorescence emission of neighboring NADH, which was produced by applying formaldehyde vapor to the FALDH membrane, was concentrically measured with a photomultiplier tube. Assessment of the bio-sniffer was carried out using a standard gas generator. Response, calibration range and selectivity to other chemical substances were investigated. Circulating phosphate buffer, which contained NAD+, available for continuous monitoring of formaldehyde vapor. The calibration range of the bio-sniffer was 2.5 ppb to 10 ppm, which covers the guideline value of the World Health Organization (80 ppb). High selectivity to other gaseous substances due to specific activity of FALDH was also confirmed. Considering its high sensitivity, a possible application of the bio-sniffer is continuous indoor formaldehyde monitoring to provide healthy residential atmosphere. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Formation, Accumulation, and Hydrolysis of Endogenous and Exogenous Formaldehyde-Induced DNA Damage.

    Science.gov (United States)

    Yu, Rui; Lai, Yongquan; Hartwell, Hadley J; Moeller, Benjamin C; Doyle-Eisele, Melanie; Kracko, Dean; Bodnar, Wanda M; Starr, Thomas B; Swenberg, James A

    2015-07-01

    Formaldehyde is not only a widely used chemical with well-known carcinogenicity but is also a normal metabolite of living cells. It thus poses unique challenges for understanding risks associated with exposure. N(2-)hydroxymethyl-dG (N(2)-HOMe-dG) is the main formaldehyde-induced DNA mono-adduct, which together with DNA-protein crosslinks (DPCs) and toxicity-induced cell proliferation, play important roles in a mutagenic mode of action for cancer. In this study, N(2)-HOMe-dG was shown to be an excellent biomarker for direct adduction of formaldehyde to DNA and the hydrolysis of DPCs. The use of inhaled [(13)CD2]-formaldehyde exposures of rats and primates coupled with ultrasensitive nano ultra performance liquid chromatography-tandem mass spectrometry permitted accurate determinations of endogenous and exogenous formaldehyde DNA damage. The results show that inhaled formaldehyde only reached rat and monkey noses, but not tissues distant to the site of initial contact. The amounts of exogenous adducts were remarkably lower than those of endogenous adducts in exposed nasal epithelium. Moreover, exogenous adducts accumulated in rat nasal epithelium over the 28-days exposure to reach steady-state concentrations, followed by elimination with a half-life (t1/2) of 7.1 days. Additionally, we examined artifact formation during DNA preparation to ensure the accuracy of nonlabeled N(2)-HOMe-dG measurements. These novel findings provide critical new data for understanding major issues identified by the National Research Council Review of the 2010 Environmental Protection Agency's Draft Integrated Risk Information System Formaldehyde Risk Assessment. They support a data-driven need for reflection on whether risks have been overestimated for inhaled formaldehyde, whereas underappreciating endogenous formaldehyde as the primary source of exposure that results in bone marrow toxicity and leukemia in susceptible humans and rodents deficient in DNA repair. © The Author 2015

  20. Formaldehyde Surface Distributions and Variability in the Mexico City Basin

    Science.gov (United States)

    Junkermann, W.; Mohr, C.; Steinbrecher, R.; Ruiz Suarez, L.

    2007-05-01

    Formaldehyde ambient air mole fractions were measured throughout the dry season in March at three different locations in the Mexico City basin. The continuously running instruments were operated at Tenago del Aire, a site located in the Chalco valley in the southern venting area of the basin, at the Intituto Mexicano del Petroleo (IMP) in the northern part of the city and about 30 km north of the city at the campus of the Universidad Tecnològica de Tecamac (UTTEC). The technique used is the Hantzsch technology with a time resolution of 2 minutes and a detection limit of 100 ppt. Daily maxima peaked at 35 ppb formaldehyde in the city and about 15 to 20 ppb at the other sites. During night formaldehyde levels dropped to about 5 ppb or less. It is evident that the observed spatial and temporal variability in near surface formaldehyde distributions is strongly affected by local and regional advection processes.

  1. Characterization of hydroxybenzoic acid chelating resins: equilibrium, kinetics, and isotherm profiles for Cd(II and Pb(II uptake

    Directory of Open Access Journals (Sweden)

    BHAVNA A. SHAH

    2011-06-01

    Full Text Available Chelating ion-exchange resins were synthesized by polycondensation of ortho/para hydroxybenzoic acid with resorcinol/catechol employing formaldehyde as cross-linking agent at 80±5 °C in DMF. The resins were characterized by FTIR and XRD. The uptake behaviour of synthesized resins for Cd(II and Pb(II ions have been studied depending on contact time, pH, metal ion concentration and temperature. The sorption data obtained at optimized conditions were analyzed by the Langmuir and Freundlich isotherms. Experimental data of all metal–resin system were best represented by the Freundlich isotherm. The maximum obtained sorption capacity for cadmium was 69.53 mg g-1 and 169.32 mg g-1 for Lead. The adsorption process follows first order kinetics and the specific rate constant Kr was obtained by the application of the Lagergan equation. Thermodynamic parameters ∆Gads, ∆Sads and ∆Hads were calculated for the metal–resin systems. The external diffusion rate constant (KS and the intra-particle diffusion rate constant (Kid were calculated by the Spahn–Schlunder and Weber–Morris models, respectively. The sorption process was found to follow an intra-particle diffusion phenomenon.

  2. A simple and low cost dual-wavelength β-correction spectrophotometric determination and speciation of mercury(II) in water using chromogenic reagent 4-(2-thiazolylazo) resorcinol

    Science.gov (United States)

    Al-Bagawi, A. H.; Ahmad, W.; Saigl, Z. M.; Alwael, H.; Al-Harbi, E. A.; El-Shahawi, M. S.

    2017-12-01

    The most common problems in spectrophotometric determination of various complex species originate from the background spectral interference. Thus, the present study aimed to overcome the spectral matrix interference for the precise analysis and speciation of mercury(II) in water by dual-wavelength β-correction spectrophotometry using 4-(2-thiazolylazo) resorcinol (TAR) as chromogenic reagent. The principle was based on measuring the correct absorbance for the formed complex of mercury(II) ions with TAR reagent at 547 nm (lambda max). Under optimized conditions, a linear dynamic range of 0.1-2.0 μg mL- 1 with correlation coefficient (R2) of 0.997 were obtained with lower limits of detection (LOD) of 0.024 μg mL- 1 and limit of quantification (LOQ) of 0.081 μg mL- 1. The values of RSD and relative error (RE) obtained for β-correction method and single wavelength spectrophotometry were 1.3, 1.32% and 4.7, 5.9%, respectively. The method was validated in tap and sea water in terms of the data obtained from inductively coupled plasma-optical emission spectrometry (ICP-OES) using student's t and F tests. The developed methodology satisfactorily overcomes the spectral interference in trace determination and speciation of mercury(II) ions in water.

  3. Preparation and characterization of phloroglucinol-formaldehyde aerogel

    International Nuclear Information System (INIS)

    Huang Changgang; China Academy of Engineering Physics, Mianyang; Tang Yongjian; Wang Chaoyang; Yan Hongmei

    2006-01-01

    Phloroglucinol-formaldehyde (PF) aerogels and carbonized PF (CPF) aerogels were prepared from Phloroglucinol (P) and Formaldehyde (F) by sol-gel, solvent exchanging, supercritical drying and carbonization processes. The aerogel has a large specific surface area, continuous nano-network and porous structure. The density and mean porosity radius will enlarge after being carbonized, while the specific surface area will be influenced little. The micro-structure and density of aerogel are controlled by concentration of total reactants and catalyzer, respectively. Aerogels with different micro-structure and different density fit for ICF targets can be prepared by optimizing synthesis conditions. (authors)

  4. Formaldehyde emissions from ULEF- and NAF-bonded commercial hardwood plywood as influenced by temperature and relative humidity

    Science.gov (United States)

    Charles R. Frihart; James M. Wescott; Michael J. Birkeland; Kyle M. Gonner

    2010-01-01

    It is well documented in the literature that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF) adhesives. This work investigates the effect of temperature and humidity on newer, ultra-low emitting formaldehyde urea formaldehyde (ULEF-UF) and no-added formaldehyde (NAF) adhesives. A...

  5. PRODUCTION OF HIGH DENSITY PARTICLEBOARD USING MELAMINE-UREA-FORMALDEHYDE RESIN

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2005-12-01

    Full Text Available This research was developed aiming to evaluate the effects of board density and melamine-urea-formaldehyde resin onthe properties of particleboard for semi-structural applications. The boards were manufactured with nominal density of 0.65 g/cm³and 0.90 g/cm³ using urea-formaldehyde resin as control and melamine-urea-formaldehyde. The results showed a better dimensionallystability and mechanical properties of the boards manufactured with higher density and MUF resin content. The fine furnish usedfor external layer of particleboard in the industrial process, could be used for high density homogeneous board to semi-strucuturaluses, such as flooring applications.

  6. The Australian Work Exposures Study: Prevalence of Occupational Exposure to Formaldehyde.

    Science.gov (United States)

    Driscoll, Timothy R; Carey, Renee N; Peters, Susan; Glass, Deborah C; Benke, Geza; Reid, Alison; Fritschi, Lin

    2016-01-01

    The aims of this study were to produce a population-based estimate of the prevalence of work-related exposure to formaldehyde, to identify the main circumstances of exposure and to describe the use of workplace control measures designed to decrease those exposures. The analysis used data from the Australian Workplace Exposures Study, a nationwide telephone survey, which investigated the current prevalence and exposure circumstances of work-related exposure to 38 known or suspected carcinogens, including formaldehyde, among Australian workers aged 18-65 years. Using the web-based tool OccIDEAS, semi-quantitative information was collected about exposures in the current job held by the respondent. Questions were addressed primarily at tasks undertaken rather than about self-reported exposures. Of the 4993 included respondents, 124 (2.5%) were identified as probably being exposed to formaldehyde in the course of their work [extrapolated to 2.6% of the Australian working population-265 000 (95% confidence interval 221 000-316 000) workers]. Most (87.1%) were male. About half worked in technical and trades occupations. In terms of industry, about half worked in the construction industry. The main circumstances of exposure were working with particle board or plywood typically through carpentry work, building maintenance, or sanding prior to painting; with the more common of other exposures circumstances being firefighters involved in fighting fires, fire overhaul, and clean-up or back-burning; and health workers using formaldehyde when sterilizing equipment or in a pathology laboratory setting. The use of control measures was inconsistent. Workers are exposed to formaldehyde in many different occupational circumstances. Information on the exposure circumstances can be used to support decisions on appropriate priorities for intervention and control of occupational exposure to formaldehyde, and estimates of burden of cancer arising from occupational exposure to formaldehyde

  7. Quantification of Atmospheric Formaldehyde by Near-Infrared Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Rella, C.; Hoffnagle, J.; Fleck, D.; Kim-Hak, D.

    2017-12-01

    Formaldehyde is an important species in atmospheric chemistry, especially in urban environments, where it is a decay product of methane and volatile hydrocarbons. It is also a toxic, carcinogenic compound that can contaminate ambient air from incomplete combustion, or outgassing of commercial products such as adhesives used to fabricate plywood or to affix indoor carpeting. Formaldehyde has a clearly resolved ro-vibrational absorption spectrum that is well-suited to optical analysis of formaldehyde concentration. We describe an instrument based on cavity ring-down spectroscopy for the quantitative analysis of formaldehyde concentration in ambient air. The instrument has a precision (1-sigma) of about 1 ppb at a measurement rate of 1 second, and provides measurements of less than 100 ppt with averaging. The instrument provides stable measurements (drift < 1 ppb) over long periods of time (days). The instrument has been ruggedized for mobile applications, and with a fast response time of a couple of seconds, it is suitable for ground-based vehicle deployments for fenceline monitoring of formaldehyde emissions. In addition, we report on ambient atmospheric measurements at a 10m urban tower, which demonstrate the suitability of the instrument for applications in atmospheric chemistry.

  8. Design of a formaldehyde photodissociation process for carbon and oxygen isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Scheibner, K.F.

    1993-01-01

    The current shortage of 18 O has revived interest in using one step UV photodissociation of formaldehyde to enrich 13 C, 17 O and 18 O. The frequency doubled output of the copper laser pumped dye laser system currently in operation at LLNL can be used to drive this dissociation. The authors use a simple kinetics model and their experience with Atomic Vapor Laser Isotope Separation (AVLIS) process design to examine the relative merits of different designs for a formaldehyde photodissociation process. Given values for the molecular photoabsorption cross section, partition function, spectroscopic selectivity, collisional exchange and quenching cross sections (all as parameters), they perform a partial optimization in the space of illuminated area, formaldehyde pressure in each stage, and formaldehyde residence time in each stage. They examine the effect of cascade design (heads and tails staging) on molecule and photon utilization for each of the three isotope separation missions, and look in one case at the system's response to different ratios of laser to formaldehyde costs. Finally, they examine the relative cost of enrichment as a function of isotope and product assay. Emphasis is as much on the process design methodology, which is general, as on the specific application to formaldehyde

  9. Graphene oxide as efficient high-concentration formaldehyde scavenger and reutilization in supercapacitor.

    Science.gov (United States)

    Liang, Hongyu; Bu, Yongfeng; Zhang, Yutian; Zhang, Junyan

    2015-04-15

    Graphene oxide (GO) was investigated as a low-cost and high-efficient scavenger for high-concentration formaldehyde in alkali media. It showed very high removal capacity, 411 mg of formaldehyde per milligram of GO, and strong resistant to temperature changes. Additionally, the used GO can be easily renewed by a simple electrochemical method. By analyzing the componential and electrochemical characterizations of GO before and after use, the results showed that the degradation mechanism of formaldehyde is a collaborative process of chemical oxidation and physical adsorption, and the former dominates the degradation process. With the aid of oxygen-containing groups in GO, most formaldehyde can be easily oxidized by GO in alkaline media (this is equivalent to GO was reduced by formaldehyde). On the other hand, the used GO (reduced GO, noted as rGO) exhibits more ideal electronic double-layer capacitor (EDLC) feature than GO, along with higher rate capacitance (up to 136 F g(-1) at 50 A g(-1)). In short, GO is not only an efficient formaldehyde scavenger, but the used GO (rGO) can serve as promising electrical energy storage material. This study provides new insights for us to reutilize the discarded adsorbents generated from the environmental protection. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Nitrogen Doped Graphene Supported Pt Nanoflowers as Electrocatalysts for Oxidation of Formaldehyde.

    Science.gov (United States)

    Xie, Aijuan; Zhou, Wenting; Luo, Shiping; Chen, Yu; Zhou, Xiaoqing; Chao, Yao

    2017-02-01

    A facile Pt nanoflowers/nitrogen-doped graphene (PtNFs/NG) electrocatalyst was prepared via depositing Pt nanoflowers (PtNFs) onto the nitrogen-doped graphene (NG) matrix with urea as the nitrogen source and PtNFs/NG modified glassy carbon electrode (GCE) was prepared by electro-chemical method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscope, X-ray photoelectron spectroscopy (XPS) and Scanning electron microscope (SEM) were used to characterize the resulting composites. Also oxidation of formaldehyde on the resulting PtNFs/NG modified electrode was investigated. The influence of deposition time, electrodeposition potential and formaldehyde concentration on electrooxidation of formaldehyde was detected, the experimental results indicate the high performance of PtNFs/NG catalyst for formaldehyde oxidation is at electrodeposition time of 300 s with the applied potential of −0.3 V. Electrochemical process, electrocatalytic stability and chronoamperometry were also inspected, it was indicated that formalde-hyde oxidation reaction on the PtNFs/NG electrode is diffusion-controlled and PtNFs/NG exhibits a high catalytic activity, stability as well as excellent poisoning-tolerance towards formaldehyde oxidation, which is attributed to the synergistic effect of PtNFs and NG. It turns out that PtNFs/NG can be used in direct liquid-feed fuel cells as a promising alternative catalyst.

  11. Injection Seeded Laser for Formaldehyde Differential Fluorescence Lidar

    Directory of Open Access Journals (Sweden)

    Schwemmer G.

    2016-01-01

    Full Text Available We describe the design and development of an injection seeded Nd:YVO4 laser for use in a differential fluorescence lidar for measuring atmospheric formaldehyde profiles. A high repetition rate Q-switched laser is modified to accept injection seed input to spectrally narrow and tune the output. The third harmonic output is used to excite formaldehyde (HCHO fluorescence when tuned to a HCHO absorption line. Spectral confirmation is made with the use of a photoacoustic cell and grating spectrometer.

  12. Glycerol acetals, kinetic study of the reaction between glycerol and formaldehyde

    International Nuclear Information System (INIS)

    Agirre, I.; Garcia, I.; Requies, J.; Barrio, V.L.; Gueemez, M.B.; Cambra, J.F.; Arias, P.L.

    2011-01-01

    The acetalization reaction between glycerol and formaldehyde using Amberlyst 47 acidic ion exchange resin was studied. These acetals can be obtained from renewable sources (bioalcohols and bioalcohol derived aldehydes) and seem to be good candidates for different applications such as oxygenated diesel additives. A preliminary kinetic study was performed in a batch stirred tank reactor studying the influence of different process parameters like temperature, feed composition and the stirring speed. A pseudo homogenous kinetic model able to explain the reaction mechanism was adjusted. Thus, the corresponding order of reaction was determined. Amberlyst 47 acidic ion exchange resin showed a fairly good behavior allowing 100% of selectivity towards acetals formation. However, the studied acetalization reaction showed high thermodynamic limitations achieving glycerol conversions around 50% using a stoichiometric feed ratio at 353 K. The product is a mixture of two isomers (1,3-Dioxan-5-ol and 1,3-dioxolane-4-methanol) and the conversion of 1,3-dioxolane-4-methanol into 1,3-Dioxan-5-ol was also observed. -- Highlights: → The reaction between glycerol and acetaldehyde shows thermodynamic limitations. → Amberlyst 47 ion exchange resins show 100% of selectivity. → A pseudo-homogeneous kinetic model is able to predict the reaction progress. → Isomerization reactions were observed from dioxalanes to dioxanes.

  13. Destruction of nitric acid in purex process streams by formaldehyde treatment

    International Nuclear Information System (INIS)

    Kumar, S.V.; Nadkarni, M.N.; Mayankutty, P.C.; Pillai, N.S.; Shinde, S.S.

    1974-01-01

    Efficiency of destruction of nitric acid in purex process streams with formaldehyde has been studied as a function of initial acidity, uranium concentration, rate of addition of formaldehyde and temperature in the range 6 - 0.5M acid. Guidelines are suggested for the accurate calculations of the volume of formaldehyde needed to effect the required change of acidity at 100degC. Sodium nitrite has been established as a 'key' to initiate the reaction and water as an effective scrubber for collecting the acid fumes emanating from the reaction vessel. (author)

  14. Guinea pig maximization tests with formaldehyde releasers. Results from two laboratories

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Boman, A; Hamann, K

    1984-01-01

    The guinea pig maximization test was used to evaluate the sensitizing potential of formaldehyde and 6 formaldehyde releasers (Forcide 78, Germall 115, Grotan BK, Grotan OX, KM 200 and Preventol D2). The tests were carried out in 2 laboratories (Copenhagen and Stockholm), and although we intended...... the procedures to be the same, discrepancies were observed, possibly due to the use of different animal strains, test concentrations and vehicles. The sensitizing potential was in general found to be stronger in Stockholm compared to Copenhagen: formaldehyde sensitized 50% of the guinea pigs in Copenhagen and 95...

  15. Compact, Ultrasensitive Formaldehyde Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop an ultrasensitive, laser-based formaldehyde gas sensor system for airborne and ground-based...

  16. Formaldehyde's Impact on Indoor Air Quality

    Science.gov (United States)

    Formaldehyde is an important chemical used widely by industry to manufacture building materials and numerous household products. It is also a by-product of combustion and certain other natural processes.

  17. The Nitrite-Scavenging Properties of Catechol, Resorcinol, and Hydroquinone: A Comparative Study on Their Nitration and Nitrosation Reactions.

    Science.gov (United States)

    Lu, Yunhao; Dong, Yanzuo; Li, Xueli; He, Qiang

    2016-10-14

    The nitration and nitrosation reactions of catechol, resorcinol, and hydroquinone (0.05 mmol/L) with sodium nitrite (0.05 mmol/L) at pH 3 and 37 °C were studied by using liquid chromatography and mass spectrometry (LC-MS) and atom charge analysis, which was aimed to provide chemical insight into the nitrite-scavenging behavior of polyphenols. The 3 benzenediols showed different mechanisms to scavenge nitrite due to their differences in hydroxyl position. Catechol was nitrated with 1 NO 2 group at the hydroxyl oxygen, and resorcinol was nitrosated with 2 NO groups at the C 2 and C 4 (or C 6 ) positions of the benzene ring. Hydroquinone could scavenge nitrite through both nitration and nitrosation mechanisms. The nitrated hydroquinone had 1 NO 2 group at the hydroxyl oxygen in the molecule, while the nitrosated 1 containing 2 NO groups at the benzene ring might have 3 structure probabilities. The results may provide a structure-activity understanding on the nitrite-scavenging property of polyphenols, so as to promote their application in the food industry for the removal of possibly toxic nitrites found in many vegetables and often in processed meat products. © 2016 Institute of Food Technologists®.

  18. Inactivation kinetics of formaldehyde on N-acetyl-β-D-glucosaminidase from Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Zhang, Wei-Ni; Bai, Ding-Ping; Lin, Xin-Yu; Chen, Qing-Xi; Huang, Xiao-Hong; Huang, Yi-Fan

    2014-04-01

    Formaldehyde is a widely used sanitizer in aquaculture in China, while the appropriate concentration is not available to be used effectively and without damage to tilapia much less to its reproductive function. N-acetyl-β-D-glucosaminidase (EC 3.2.1.52, NAGase), hydrolyzing the oligomers of N-acetyl-β-D-glucosamine into monomer, is proved to be correlated with reproduction of male animals. In this paper, NAGase from spermary of tilapia was chosen as the material to study the effects of formaldehyde on its activity in order to further investigate the effects of formaldehyde use on tilapia reproduction. The results showed the relationship between the residual enzyme activity and the concentration of formaldehyde was concentration dependent, and the IC50 value was estimated to be 3.2 ± 0.1 %. Appropriate concentration of formaldehyde leaded to competitive reversible inhibition on tilapia NAGase. Moreover, formaldehyde could reduce the thermal and pH stability of the enzyme. The inactivation kinetics of formaldehyde on the enzyme was studied using the kinetic method of substrate reaction. The inactivation model was setup, and the rate constants were determined. The results showed that the inactivation of formaldehyde on tilapia NAGase was a slow, reversible reaction with partially residual activity. The results will give some basis to determine the concentration of formaldehyde used in tilapia culture.

  19. Dust Measurement of Two Organophosphorus Flame Retardants, Resorcinol Bis(diphenylphosphate) (RBDPP) and Bisphenol A Bis(diphenylphosphate) (BPA-BDPP), Used as Alternatives for BDE-209

    NARCIS (Netherlands)

    Brandsma, S.H.; Sellström, U.; de Wit, C.A.; de Boer, J.; Leonards, P.E.G.

    2013-01-01

    Resorcinol bis(diphenylphosphate) (RBDPP) and bisphenol A bis(diphenylphosphate) (BPA-BDPP) are two halogen-free organophosphorus flame retardant (PFRs) that are used as an alternative for the decabromodiphenyl ether (Deca-BDE) technical mixture in TV/flatscreen housing and other electronic consumer

  20. Supercapacitors based on carbon foams

    Science.gov (United States)

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1993-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  1. 29 CFR 1910.1048 - Formaldehyde.

    Science.gov (United States)

    2010-07-01

    ... resolve their disagreement, then the employer and the employee through their respective physicians shall... the disagreement of the prior physicians. (v) In the alternative, the employer and the employee or.... Employee exposure means the exposure to airborne formaldehyde which would occur without corrections for...

  2. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies.

    Science.gov (United States)

    Maruo, Yasuko Yamada; Nakamura, Jiro

    2011-09-30

    We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde.

    Science.gov (United States)

    Ridpath, John R; Nakamura, Ayumi; Tano, Keizo; Luke, April M; Sonoda, Eiichiro; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Gillespie, David A F; Sale, Julian E; Yamazoe, Mitsuyoshi; Bishop, Douglas K; Takata, Minoru; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun

    2007-12-01

    Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that DNA-protein crosslinks (DPC) likely play an important role with regard to the genotoxicity and carcinogenicity of formaldehyde. However, little is known about which DNA damage response pathways are essential for cells to counteract formaldehyde. In the present study, we first assessed the DNA damage response to plasma levels of formaldehyde using chicken DT40 cells with targeted mutations in various DNA repair genes. Here, we show that the hypersensitivity to formaldehyde is detected in DT40 mutants deficient in the BRCA/FANC pathway, homologous recombination, or translesion DNA synthesis. In addition, FANCD2-deficient DT40 cells are hypersensitive to acetaldehyde, but not to acrolein, crotonaldehyde, glyoxal, and methylglyoxal. Human cells deficient in FANCC and FANCG are also hypersensitive to plasma levels of formaldehyde. These results indicate that the BRCA/FANC pathway is essential to counteract DPCs caused by aliphatic monoaldehydes. Based on the results obtained in the present study, we are currently proposing that endogenous formaldehyde might have an effect on highly proliferating cells, such as bone marrow cells, as well as an etiology of cancer in Fanconi anemia patients.

  4. Surface modification of bone char for removal of formaldehyde from air

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Abbas, E-mail: rezaee@modares.ac.ir [Environmental Health Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Rangkooy, Hosseinali [Environmental Health Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Occupational Health Department, Faculty of Health, Jondishapor Medical Sciences University, Ahvaz (Iran, Islamic Republic of); Jonidi-Jafari, Ahmad; Khavanin, Ali [Environmental Health Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2013-12-01

    The aim of this study was to evaluate the adsorption performance of bone char (BC) modified with acetic acid for formaldehyde removal from polluted air. The porous structure, surface characteristics and functional groups involved in formaldehyde adsorption were determined using the Brunauer–Emmett–Teller (BET) method, scanning electron microscope (SEM) equipped with energy dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that the modified BC has a higher specific surface area than the original BC. The maximum surface area of the modified BC was 118.58 m{sup 2}/g. The FTIR spectrum of modified BC indicated that the hydroxyl and carboxyl groups on the BC surface played a significant role in the adsorption of formaldehyde by modified BC. The breakthrough, equilibrium time and adsorption capacity of modified BC were greater than the original BC. Moreover, the results showed that at initial concentrations of 20, 50, 100 and 200 mg/L, the equilibrium times for BC and modified BC were 85, 75, 65 and 45 min and 95, 85, 70 and 50 min, respectively. It seems that the formaldehyde adsorption capacity of modified BC depends on both physical and chemical properties. These results showed that modified BC can be used as an efficient adsorbent for formaldehyde removal.

  5. 24 CFR 3280.308 - Formaldehyde emission controls for certain wood products.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Formaldehyde emission controls for certain wood products. 3280.308 Section 3280.308 Housing and Urban Development Regulations Relating to... Body and Frame Construction Requirements § 3280.308 Formaldehyde emission controls for certain wood...

  6. short communication quantitative determination of formaldehyde

    African Journals Online (AJOL)

    Preferred Customer

    irritation, respiration, asthma and pulmonary edema have been reported previously [1]. ... for improving the capabilities, performing more reliable models and achieving more ... Formaldehyde was added to the Fluoral P solution in a 1:1 volume.

  7. Biofiltration of waste gases containing a mixture of formaldehyde and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Prado, O.J.; Veiga, M.C.; Kennes, C. [Chemical Engineering Lab., Faculty of Sciences, Univ. of La Coruna, La Coruna (Spain)

    2004-07-01

    Several biofilters and biotrickling filters were used for the treatment of a mixture of formaldehyde and methanol; and their efficiencies were compared. Results obtained with three different inert filter bed materials (lava rock, perlite, activated carbon) suggested that the packing material had only little influence on the performance. The best results were obtained in a biotrickling filter packed with lava rock and fed a nutrient solution that was renewed weekly. A maximum formaldehyde elimination capacity of 180 g m{sup -3} h{sup -1} was reached, while the methanol elimination capacity rose occasionally to more than 600 g m{sup -3} h{sup -1}. Formaldehyde degradation was affected by the inlet methanol concentration. Several combinations of load vs empty bed residence time (EBRTs of 71.9, 46.5, 30.0, 20.7 s) were studied, reaching a formaldehyde elimination capacity of 112 g m{sup -3} h{sup -1} with about 80% removal efficiency at the lowest EBRT (20.7 s). (orig.)

  8. Biofiltration of waste gases containing a mixture of formaldehyde and methanol.

    Science.gov (United States)

    Prado, Oscar J; Veiga, María C; Kennes, Christian

    2004-08-01

    Several biofilters and biotrickling filters were used for the treatment of a mixture of formaldehyde and methanol; and their efficiencies were compared. Results obtained with three different inert filter bed materials (lava rock, perlite, activated carbon) suggested that the packing material had only little influence on the performance. The best results were obtained in a biotrickling filter packed with lava rock and fed a nutrient solution that was renewed weekly. A maximum formaldehyde elimination capacity of 180 g m(-3) h(-1) was reached, while the methanol elimination capacity rose occasionally to more than 600 g m(-3) h(-1). Formaldehyde degradation was affected by the inlet methanol concentration. Several combinations of load vs empty bed residence time (EBRTs of 71.9, 46.5, 30.0, 20.7 s) were studied, reaching a formaldehyde elimination capacity of 112 g m(-3) h(-1) with about 80% removal efficiency at the lowest EBRT (20.7 s).

  9. Determination of free formaldehyde in cosmetics containing formaldehyde-releasing preservatives by reversed-phase dispersive liquid-liquid microextraction and liquid chromatography with post-column derivatization.

    Science.gov (United States)

    Miralles, Pablo; Chisvert, Alberto; Alonso, M José; Hernandorena, Sandra; Salvador, Amparo

    2018-03-30

    An analytical method for the determination of traces of formaldehyde in cosmetic products containing formaldehyde-releasing preservatives has been developed. The method is based on reversed-phase dispersive liquid-liquid microextraction (RP-DLLME), that allows the extraction of highly polar compounds, followed by liquid chromatography-ultraviolet/visible (LC-UV/vis) determination with post-column derivatization. The variables involved in the RP-DLLME process were studied to provide the best enrichment factors. Under the selected conditions, a mixture of 500 μL of acetonitrile (disperser solvent) and 50 μL of water (extraction solvent) was rapidly injected into 5 mL of toluene sample solution. The extracts were injected into the LC-UV/vis system using phosphate buffer 6 mmol L -1 at pH 2 as mobile phase. After chromatographic separation, the eluate merged with a flow stream of pentane-2,4-dione in ammonium acetate solution as derivatizing reagent and passed throughout a post-column reactor at 85 °C in order to derivatize formaldehyde into 3,5-diacetyl-1,4-dihydrolutidine, according to Hantzsch reaction, which was finally measured spectrophotometrically at 407 nm. The method was successfully validated showing good linearity, an enrichment factor of 86 ± 2, limits of detection and quantification of 0.7 and 2.3 ng mL -1 , respectively, and good repeatability (RSD < 9.2%). Finally, the proposed analytical method was applied to the determination of formaldehyde in different commercial cosmetic samples containing formaldehyde-releasing preservatives, such as bronopol, diazolidinyl urea, imidazolidinyl urea, and DMDM hydantoin, with good relative recovery values (91-113%) thus showing that matrix effects were negligible. The good analytical features of the proposed method besides of its simplicity and affordability, make it useful to carry out the quality control of cosmetic products containing formaldehyde-releasing preservatives. Copyright

  10. Relationship between formaldehyde and quaternium-15 contact allergy. Influence of strength of patch test reactions

    NARCIS (Netherlands)

    de Groot, Anton C.; Blok, Janine; Coenraads, Pieter-Jan

    2010-01-01

    Objectives: To test our hypothesis that patients with stronger patch test reactions to formaldehyde are more likely to react to quaternium-15, attesting to the aetiological role for formaldehyde in such co-reactivity. Methods: Retrospective analysis of all patients patch tested with formaldehyde and

  11. Effect of electric field on adsorption of formaldehyde by β-cellobiose in micro-scale

    Science.gov (United States)

    Xu, Bo; Chen, Zhenqian

    2018-05-01

    To provide a microcosmic theoretical support for the reduction of formaldehyde in building material by the effect of electric fields, the adsorption between formaldehyde molecule and β-cellobiose was studied by density function theory (DFT). Details of geometric structures, molecule bonds and adsorption energy were discussed respectively. The obtained results indicated the energy of formaldehyde molecule decreased while the energy of β-cellobiose increased with greater electric intensity. In addition, the adsorption energy between formaldehyde molecule and β-cellobiose was greatly influenced by external electric field. The adsorption energy reduced gradually with greater electric intensity, and the changing curve of adsorption energy could be fitted as an exponential function, verified by the experiment. The results of this study confirmed the external electric field would be a good strategy for decreasing formaldehyde within building materials in the microcosmic view.

  12. Utilization of Merbau Wood Extract to Bind Laminated Bamboo Products

    OpenAIRE

    Santoso, Adi; Sulastiningsih, Ignasia Maria; Pari, Gustan; Jasni, Jasni

    2016-01-01

    The report describes the use of adhesive made from merbau wood extract (Intsia Spp.) which is allowed to copolymerize with resorcinol, formaldehyde under alkaline conditions, and tapioca as an extender. The adhesive was used to manufacture three-ply composite board consisting of a back and core layers made from sengon (Falcataria mollucana), and jabon (Anthocephalus chinensis), while the face layer was made either one of three bamboo species, namely, andong (Gigantochloa pseudoarundinacea)...

  13. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  14. Développement de trois différents types de matériaux innovants à base de tannins

    OpenAIRE

    Thébault , Marion

    2014-01-01

    Tannins are chemical extracts which represent a natural alternative to chemicals as phenol or resorcinol which are from oil resources. They are already used industrially for the synthesis of adhesives used for the manufacture of wood-based products such as particleboards and plywood, but generally always used with formaldehyde as a hardener to improve their mechanical strengths. The first products developed in this thesis are adhesive resins for the manufacture of particleboards, synthesized ...

  15. Quantification of free formaldehyde in carrageenan and processed Eucheuma seaweed using high-performance liquid chromatography.

    Science.gov (United States)

    Hornshøj, Bettina Høj; Kobbelgaard, Sara; Blakemore, William R; Stapelfeldt, Henrik; Bixler, Harris J; Klinger, Markus

    2015-01-01

    In 2010 the European Commission placed a limit on the amount of free formaldehyde in carrageenan and processed Eucheuma seaweed (PES) of 5 mg kg(-1). Formaldehyde is not used in carrageenan and PES processing and accordingly one would not expect free formaldehyde to be present in carrageenan and PES. However, surprisingly high levels up to 10 mg kg(-1) have been found using the generally accepted AOAC and Hach tests. These findings are, per proposed reaction pathways, likely due to the formation of formaldehyde when sulphated galactose, the backbone of carrageenan, is hydrolysed with the strong acid used in these conventional tests. In order to minimise the risk of false-positives, which may lead to regulatory non-compliance, a new high-performance liquid chromatography (HPLC) method has been developed. Initially, carrageenan or PES is extracted with 2-propanol and subsequently reacted with 2,4-dinitrophenylhydrazine (DNPH) to form the chromophore formaldehyde-DNPH, which is finally quantified by reversed-phase HPLC with ultraviolet light detection at 355 nm. This method has been found to have a limit of detection of 0.05 mg kg(-1) and a limit of quantification of 0.2 mg kg(-1). Recoveries from samples spiked with known quantities of formaldehyde were 95-107%. Using this more specific technique, 20 samples of carrageenan and PES were tested for formaldehyde. Only one sample had a detectable content of formaldehyde (0.40 mg kg(-1)), thus demonstrating that the formaldehyde content of commercial carrageenan and PES products are well below the European Commission maximum limit of 5 mg kg(-1).

  16. Investigations on potential co-mutagenic effects of formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Speit, Günter, E-mail: guenter.speit@uni-ulm.de; Linsenmeyer, Regina; Duong, Giang; Bausinger, Julia

    2014-02-15

    Highlights: • A549 cells were exposed to formaldehyde in combination with various mutagens. • Formaldehyde did not affect the induction and removal of DNA damage (comet assay). • Formaldehyde did not affect the induction of micronuclei by the mutagens tested. • The expression of the O{sup 6}-methylguanine-DNA methyltransferase was not affected. - Abstract: The genotoxicity and mutagenicity of formaldehyde (FA) has been well-characterized during the last years. Besides its known direct DNA-damaging and mutagenic activity in sufficiently exposed cells, FA at low concentrations might also enhance the mutagenic and carcinogenic effects of other environmental mutagens by interfering with the repair of DNA lesions induced by these mutagens. To further assess potential co-mutagenic effects of FA, we exposed A549 human lung cells to FA in combination with various mutagens and measured the induction and removal of DNA damage by the comet assay and the production of chromosomal mutations by the cytokinesis-block micronucleus assay (CBMN assay). The mutagens tested were ionizing radiation (IR), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), N-nitroso-N-methylurea (methyl nitrosourea; MNU) and methyl methanesulfonate (MMS). FA (10–75 μM) did not enhance the genotoxic and mutagenic activity of these mutagens under the test conditions applied. FA alone and in combination with MNU or MMS did not affect the expression (mRNA level) of the gene of the O{sup 6}-methylguanine-DNA methyltransferase (MGMT) in A549 cells. The results of these experiments do not support the assumption that low FA concentrations might interfere with the repair of DNA damage induced by other mutagens.

  17. Photochemical decomposition of Formaldehyde in solution.; Descomposicion fotoquimica de formaldehido en solucion.

    Energy Technology Data Exchange (ETDEWEB)

    Garrido Z, G

    1995-10-01

    In this work was studied the effect of ultraviolet radiation produced by a mercury low pressure lamp in solutions of formaldehyde. These solutions were exposed to ultraviolet rays at different times. In some of these series of solutions was added a photosensibilizer in order to obtain a high photodecomposition of formaldehyde. The techniques used for determine the products of the decomposition were the following: 1. In order to measure the residual formaldehyde and glioxal, the Hantzsch and 2,4-dinitrophenylhydrazine methods were used. 2. pH`s measurements of the solutions, before and after exposition. 3. Paper`s chromatography for determine presence of formed acids. 4. Acid-base tritiations for measure total acidification. We observed that when the time of exposition to UV rays was increased, a high photodecomposition of formaldehyde was formed and, besides, a greater quantity of another products. Of the reagents used like photosensibilizers, with the ruthenium reagent, the best results were obtained. (Author).

  18. Highly efficient quenching of tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence by ozone using formaldehyde, methylglyoxal, and glyoxalate as co-reactants and its application to ozone sensing.

    Science.gov (United States)

    Gao, Ying; Liu, Xiaoyun; Qi, Wenjing; Gao, Wenyue; Li, Yunhui; Xu, Guobao

    2015-06-21

    Most electrochemiluminescence (ECL) systems require high concentrations of quencher to totally quench ECL. In this study, we found that ozone can quench tris(2,2'-bipyridyl)ruthenium(II) ECL using formaldehyde, methylglyoxal, or glyoxalate as co-reactants at a glassy carbon electrode with remarkable efficiencies even when the concentration of ozone is merely 0.25% of that of the co-reactant. The strongest quenching is observed with the tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL system. The tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL intensities decrease linearly with the ozone concentration over the range of 0.025-25 μM (r = 0.9947) with a limit of detection of 8 nM. The method is more sensitive and faster than most methods. It shows high selectivity in the presence of other ROS or oxidants and some metal ions, such as H2O2, ClO(-), Mg(2+), Ni(2+), etc. The method exhibits high recoveries for the detection of ozone in a ventilated photocopy room.

  19. A Simple Approach to Distinguish Classic and Formaldehyde-Free Tannin Based Rigid Foams by ATR FT-IR

    Directory of Open Access Journals (Sweden)

    Gianluca Tondi

    2015-01-01

    Full Text Available Tannin based rigid foams (TBRFs have been produced with formaldehyde since 1994. Only recently several methods have been developed in order to produce these foams without using formaldehyde. TBRFs with and without formaldehyde are visually indistinguishable; therefore a method for determining the differences between these foams had to be found. The attenuated total reflectance infrared spectroscopy (ATR FT-IR investigation of the TBRFs presented in this paper allowed discrimination between the formaldehyde-containing (classic and formaldehyde-free TBRFs. The spectra of the formaldehyde-free TBRFs, indeed, present decreased band intensity related to the C–O stretching vibration of (i the methylol groups and (ii the furanic rings. This evidence served to prove the chemical difference between the two TBRFs and explained the slightly higher mechanical properties measured for the classic TBRFs.

  20. Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor

    Science.gov (United States)

    Bingyan, CHEN; Xiangxiang, GAO; Ke, CHEN; Changyu, LIU; Qinshu, LI; Wei, SU; Yongfeng, JIANG; Xiang, HE; Changping, ZHU; Juntao, FEI

    2018-02-01

    Discharge plasmas in air can be accompanied by ultraviolet (UV) radiation and electron impact, which can produce large numbers of reactive species such as hydroxyl radical (OH·), oxygen radical (O·), ozone (O3), and nitrogen oxides (NO x ), etc. The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds (VOCs) treatment with the discharge plasmas. In this paper, we propose a volume discharge setup used to purify formaldehyde in air, which is configured by a plate-to-plate dielectric barrier discharge (DBD) channel and excited by an AC high voltage source. The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde. The energy efficiency ratios (EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel, and the most desirable processing effect is the gas flow velocity within the range from 2.50 to 3.33 m s-1. Moreover, the EERs of both the generated dosages of oxides (O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell. Additionally, the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density, and the peak of the function is appeared in the range from 273.5 to 400.0 W l-1. This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD, and it is helpful in the applications of VOCs removal by using discharge plasma.

  1. Separation of 134Cs and 137Cs from 125I solution for medical applications

    International Nuclear Information System (INIS)

    Ram, Ramu; Dash, Ashutosh; Banerjee, Dayamoy

    2015-01-01

    While neutron irradiation of natural Xe gas followed by wet chemical dissolution of activation products constitutes a successful paradigm for the small scale production 125 I, the concomitant production of 134 Cs and 137 Cs emerged as the primary impediment which necessitates purification of 125 I solution. This paper describes an ion-exchange chromatographic technique using Resorcinol Formaldehyde (RF) resin to purify 125 I solution from 134 Cs and 137 Cs impurities. A thorough investigation of the adsorption parameters of RF resin was carried out to arrive at the experimental conditions resulting optimum retention of 134 Cs and 137 Cs impurities. Based on the experimental findings, an optimized separation procedure was developed in which the neutron irradiated dissolved products at pH ∝ 13 was passed through a chromatography column containing RF resin where in 134 Cs and 137 Cs impurities gets adsorbed leaving behind 125 I to appear in the effluent. The overall recovery of 125 I was >90% with acceptable purity amenable for clinical applications.

  2. Determination of carbonyl compounds (acetaldehyde and formaldehyde in polyethylene terephthalate containers designated for water conservation

    Directory of Open Access Journals (Sweden)

    Redžepović Azra S.

    2012-01-01

    Full Text Available Polyethylene terephthalate (PET has in the last several years become the main packaging material for many food products, particularly carbonated beverages and bottled water, as well as for products of chemical industry (packaging of various hygiene maintenance agents, pesticides, solvents, etc.. The strength and permeability properties of PET are very good for packaging of beverages, its resistance to chemicals is high and it has a high degree of transparency. Acetaldehyde and formaldehyde are formed during the thermoforming of PET containers. After cooling, acetaldehyde and formaldehyde remain trapped in the walls of a PET bottle and may migrate into the water after filling and storage. Since there are no migration tests in Serbia prescribed for the determination of acetaldehyde and formaldehyde, the purpose of the paper is to test the quantitative contents of carbonyl compounds (acetaldehyde and formaldehyde in PET containers of different volumes, made by various manufacturers of bottled mineral carbonated and noncarbonated water, and exposed to different temperatures. In this study, the migration of acetaldehyde and formaldehyde from PET bottles into mineral carbonated and noncarbonated water was determined by high performance liquid chromatography. Taking into consideration that formaldehyde and acetaldehyde have no UV active or fluorescent group, the chromatography shall be preceded by derivatization in a closed system (due to a low boiling point of acetaldehyde and formaldehyde, which shall transform carbonyl compounds into UV active compounds.

  3. Investigation of the Characteristic Properties of Glacial Acetic Acid-Catalyzed Carbon Xerogels and Their Electrochemical Performance for Use as Electrode Materials in Electrical Double-Layer Capacitors

    Directory of Open Access Journals (Sweden)

    Nguyen Khanh Nguyen Quach

    2017-01-01

    Full Text Available Glacial acetic acid was used as a catalyst in the preparation process of carbon xerogels from the condensation of resorcinol and formaldehyde for shortening significantly the gelation time. The effect of the resorcinol/catalyst ratio over a large range of 2 to 500, the solvent exchange manner with acetone, and the pyrolysis temperature of 700 to 1000°C on the characteristic properties of the carbon xerogels were investigated. A resorcinol/catalyst ratio of 2 and a pyrolysis temperature at 800°C were found to be the optimal condition for the preparation of carbon xerogels with a well-balanced porosity between micro- and mesopores, high surface area (577.62 m2g−1, and large pore volume (0.97 cm3g−1, which are appropriate for use as electrode materials in an electrical double-layer capacitor. The carbon xerogel electrodes that were prepared under these optimal conditions exhibited a good electrochemical performance with the highest specific capacitance of 169 Fg−1 in 6 M KOH electrolyte at a scan rate of 5 mVs−1 from cyclic voltammetry.

  4. Novel silicone-based polymer containing active methylene designed for the removal of indoor formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Song, E-mail: niusong84@163.com; Yan, Hongxia, E-mail: hongxiayan@nwpu.edu.cn

    2015-04-28

    Highlights: • A novel silicone-based polymer with active methylene was explored. • Surface tension of liquid paints could be lowered using the polymer. • The polymer was easy to migrate toward the air-coating interface. • Free HCHO could effectively be removed using the polymer. • A lights on HCHO reduction without complicated preparation procedure was shielded. - Abstract: Indoor air pollution is caused inevitably due to complicated home decoration, in which formaldehyde is one of the most typical pollutants. It will be a convenient, economical and effective strategy to remove indoor formaldehyde if imparting a feature of formaldehyde removal to decorative coatings. We have successfully explored a novel silicone-based polymer containing active methylene used as a formaldehyde absorbent in coatings via a straightforward transesterification process using inexpensive and easily available chemicals. The polymer has been characterized by {sup 13}C NMR, FTIR, GC and GPC. Formaldehyde removal capacity of the coating films containing different contents of the polymer has been investigated. The results indicated that coatings incorporating 4 wt% of the polymer could make the coating films exhibit significant improvement on formaldehyde removal including purificatory performance (>85%) and durability of purificatory effect (>60%), compared to those consisting of absorbents without any silicon, and improve yellowing resistance performance, while other properties, such as gloss, adhesion, pencil hardness, flexibility and impact resistance, were kept almost unaffected. The chemical absorption process of the silicone-based polymer filled in interior decorative coatings is demonstrated as a promising technology to purify indoor formaldehyde and thus can reduce the harm to individuals.

  5. Adsorción de resorcinol desde solución acuosa sobre carbón activado. relación isotermas de adsorción y entalpía de inmersión

    OpenAIRE

    Blanco, Diego; Moreno, Juan; Giraldo, Liliana

    2009-01-01

    Se estudia la adsorción de resorcinol, sobre carbones activados modificados, obtenidos a partir de un carbón activado comercial CarbochemTM –PS30, CAG, por medio de tratamiento químico con HNO3 7M, CAO y tratamiento térmico bajo flujo de H2, CAR; se analiza la influencia del pH de la solución, la reducción y oxidación de la superficie del carbón y se determina la entalpía de inmersión de los carbones activados en soluciones acuosas de resorcinol.La interacción sólido-solución se caracteriza...

  6. Adsorción de resorcinol desde solución acuosa sobre carbón activado

    OpenAIRE

    BLANCO, DIEGO A.; GIRALDO, LILIANA; MORENO, JUAN C.

    2009-01-01

    Se analiza el comportamiento de adsorción de resorcinol, un fenol monohidroxilado débilmente ácido a 298 K sobre carbón activado, estudiando la influencia del pH de la solución en el proceso de adsorción y la influencia de la reducción de la superficie del carbón. Para ello se utiliza un carbón activado de origen lignocelulósico y un material que resulta de la reducción del mismo. La interacción sólido­solución se caracteriza por el análisis de sus isotermas de adsorción a 298 K a valore...

  7. Evaluation of improved techniques for the removal of fission products from process wastewater and groundwater: FY 1996 status

    International Nuclear Information System (INIS)

    Bostick, D.T.; Guo, B.

    1997-07-01

    This report describes laboratory results acquired in the course of evaluating new sorbents for the treatment of radiologically contaminated groundwater and process wastewater. During FY 1996, the evaluation of resorcinol-formaldehyde (R-F) resin for the removal of cesium and strontium from wastewaters was completed. Additionally, strontium sorption on sodium nonatitanate powder was characterized in a series of multicomponent batch studies. Both of these materials were evaluated in reference to a baseline sorbent, natural chabazite zeolite

  8. Investigation of formaldehyde pollution of tap water and rain water using a novel visual colorimetry.

    Science.gov (United States)

    Murai, K; Okano, M; Kuramitz, H; Hata, N; Kawakami, T; Taguchi, S

    2008-01-01

    The pollution of tap water and rain water with formaldehyde in Toyama Pref., Japan was investigated by means of a simple, rapid and cost-effective visual colorimetry developed by us. The levels of formaldehyde in three tap waters from different sources of dams on mountainside and a well-water pumped in urban area in Toyama Pref. were lower than 0.01 mg L(-1) that was the detection limit of the colorimetry. On the other hand, rain waters were seriously polluted with formaldehyde. Rain waters were sampled from three different sites (urban area, top of hill and industrial area) in Toyama Pref. from autumn to winter in 2006. The levels of formaldehyde in the rain waters ranged from 0.07 to 0.30 mg L(-1). The analytical results by the visual colorimetry were in good agreement with those obtained by GC-MS method. It was confirmed that the colorimetry is excellent for practical use for the determination of formaldehyde. It must be concerned about the pollution of rainwater with formaldehyde, when rain water is applied for tap water and miscellaneous purpose. Copyright IWA Publishing 2008.

  9. Cross-Aldol condensation of isobutyraldehyde and formaldehyde using phase transfer catalyst

    Directory of Open Access Journals (Sweden)

    Azhar Hashmi

    2016-09-01

    Full Text Available The hydroxypivaldehyde (HPA precursor intermediate for the synthesis of neopentyl glycol (NPG is prepared by novel cross Aldol condensation of isobutyraldehyde and formaldehyde at 20 °C using benzyltrimethylammonium hydroxide, a basic phase transfer catalyst. A feed mole ratio of 1.1:1.0:0.04 (isobutyraldehyde:formaldehyde:benzyltrimethylammonium hydroxide afforded hydroxypivaldehyde as white solid in almost quantitative yield with ∼100% selectivity.

  10. Cross-Aldol condensation of isobutyraldehyde and formaldehyde using phase transfer catalyst

    OpenAIRE

    Azhar Hashmi

    2016-01-01

    The hydroxypivaldehyde (HPA) precursor intermediate for the synthesis of neopentyl glycol (NPG) is prepared by novel cross Aldol condensation of isobutyraldehyde and formaldehyde at 20 °C using benzyltrimethylammonium hydroxide, a basic phase transfer catalyst. A feed mole ratio of 1.1:1.0:0.04 (isobutyraldehyde:formaldehyde:benzyltrimethylammonium hydroxide) afforded hydroxypivaldehyde as white solid in almost quantitative yield with ∼100% selectivity.

  11. Formaldehyde emission from particleboard and plywood paneling : measurement, mechanism, and product standards

    Science.gov (United States)

    George E. Myers

    1983-01-01

    A number of commercial panel products, primarily particleboard and hardwood plywood, were tested for their formaldehyde emission behavior using desiccator, perforator, and dynamic chamber methods. The results were analyzed in terms of the source of formaldehyde observed in the tests (free vs. hydrolytically produced) and the potential utility of the testa as product...

  12. Synthesis and Structure Characterization of Phenol-Urea-Formaldehyde Resins in the Presence of Magnesium Oxide as Catalyst

    Directory of Open Access Journals (Sweden)

    Dong-Bin Fan

    2014-08-01

    Full Text Available The objective of this research was to provide a useful approach of polymer synthesis for accelerating the fast cure of phenol-urea-formaldehyde (PUF resin as wood adhesive by optimizing its structure and composition. The PUF resins containing high contents of very reactive groups such as para-methylol groups were synthesized by reacting methylolurea, phenol, and formaldehyde in the presence of magnesium oxide (MgO as catalyst. The effects of synthesis parameters including F/(P + U, OH/P, and MgO/P mole ratios on the structure, composition, curing characteristics, and their relationships of PUF resins were investigated. The results indicated that MgO seemed to be an efficacious catalyst for PUF resin synthesis and promote its faster cure. The increase in the F/(P + U mole ratio or/and OH/P mole ratio appeared to be beneficial for the formation of para-methylol groups and cocondensed methylene linkages between phenolic methylol groups and urea units, and for the removal of unreacted urea. In case of Catalyst/P mole ratio, an appropriate dosage of added metal-ion was very important for synthesizing the high-content reactive groups of PUF resins, otherwise leading to the reverse effects.

  13. Angle-resolved photoelectron spectroscopy of formaldehyde and methanol

    Science.gov (United States)

    Keller, P. R.; Taylor, J. W.; Grimm, F. A.; Carlson, Thomas A.

    1984-10-01

    Angle-resolved photoelectron spectroscopy was employed to obtain the angular distribution parameter, β, for the valence orbitals (IP < 21.1 eV) of formaldehyde and methanol over the 10-30 eV photon energy range using dispersed polarized synchrotron radiation as the excitation source. It was found that the energy dependence of β in the photoelectron energy range between 2 and 10 eV can be related to the molecular-orbital type from which ionization occurs. This generalized energy behavior is discussed with regard to earlier energy-dependence studies on molecules of different orbital character. Evidence is presented for the presence of resonance photoionization phenomena in formaldehyde in agreement with theoretical cross-section calculations.

  14. Enzymatic synthesis of C-11 formaldehyde: concise communication

    International Nuclear Information System (INIS)

    Slegers, G.; Lambrecht, R.H.D.; Vandewalle, T.; Meulewaeter, L.; Vandecasteele, C.

    1984-01-01

    An enzymatic synthesis of C-11 formaldehyde from C-11 methanol is presented, with immobilized alcohol oxidase and catalase: a rapid, simple procedure, with a high and reproducible yield. Carbon-11 methanol is oxidized to C-11 formaldehyde by passage over a column on which the enzymes alcohol oxidase and catalase are immobilized. The catalase increases reaction velocity by recycling the oxygen, and prevents destruction of the alcohol oxidase by eliminating the excess of hydrogen peroxide. The yield of the enzyme-catalyzed oxidation was 80-95%. A specific activity of 400-450 mCi/μmole was obtained at EOB + 20 min. Various immobilization techniques and the optimal reaction conditions of the immobilized enzymes are investigated

  15. Formaldehyde-related clinical symptoms reported by medical students during gross anatomy cadaver dissection

    Directory of Open Access Journals (Sweden)

    Łukasz Pietrzyk

    2016-09-01

    Full Text Available Introduction . Formaldehyde is a noxious gas used as a tissue preservative of cadavers in autopsy rooms. Therefore, exposure to higher concentrations applies particularly to laboratory staff, anatomists and medical students. Prolonged exposure to formaldehyde is associated with clinical complications. Objective. To assess whether exposure to repeated inhalation of low concentrations of formaldehyde (FA experienced during a gross anatomy course triggers subjective clinical symptoms in medical students. Material and methods . All 198 first-year medical students of the Medical University of Lublin, Poland (28% with allergy history and 72% without allergy history; 69% male and 31% female responded to a questionnaire concerning their subjective FA-related clinical symptoms. Differences in proportions of experienced symptoms between allergic vs. nonallergic, and female vs. males were compared by the Mann-Whitney U test. Results . Even though formaldehyde concentrations in the gross anatomy laboratory were relatively low (0.47–0.57 mg/m3, medical students experienced various reactions (lacrimation in 85.9%, red eyes, dry and itchy eyes, runny nose, sneezing, and headache in > 50% of students, cough in 44%, and dry throat or throat irritation in 42% of students. Among students with a history of allergy, eye, nose, skin and respiratory system symptoms occurred more frequently in comparison to nonallergic students. Female individuals demonstrated higher sensitivity to FA exposure. Conclusions . Exposure to formaldehyde may result in development of clinical symptoms in medical students. Particularly unpleasant symptoms may be experienced by individuals with allergy history. It is necessary to decrease formaldehyde concentrations in the anatomy dissection laboratory.

  16. A new system to reduce formaldehyde levels improves safety conditions during gross veterinary anatomy learning.

    Science.gov (United States)

    Nacher, Víctor; Llombart, Cristina; Carretero, Ana; Navarro, Marc; Ysern, Pere; Calero, Sebastián; Fígols, Enric; Ruberte, Jesús

    2007-01-01

    Dissection is a very useful method of learning veterinary anatomy. However, formaldehyde, which is widely used to preserve cadavers, is an irritant, and it has recently been classified as a carcinogen. In 1997, the Instituto Nacional de Seguridad e Higiene en el Trabajo [National Institute of Workplace Security and Hygiene] found that the levels of formaldehyde in our dissection room were above the threshold limit values. Unfortunately, no optimal substitute for formaldehyde is currently available. Therefore, we designed a new ventilation system that combines slow propulsion of fresh air from above the dissection table and rapid aspiration of polluted air from the perimeter. Formaldehyde measurements performed in 2004, after the introduction of this new system into our dissection laboratory, showed a dramatic reduction (about tenfold, or 0.03 ppm). A suitable propelling/aspirating air system successfully reduces the concentration of formaldehyde in the dissection room, significantly improving safety conditions for students, instructors, and technical staff during gross anatomy learning.

  17. Formaldehyde Crosses the Human Placenta and Affects Human Trophoblast Differentiation and Hormonal Functions.

    Directory of Open Access Journals (Sweden)

    Guillaume Pidoux

    Full Text Available The chorionic villus of the human placenta is the source of specific endocrine functions and nutrient exchanges. These activities are ensured by the syncytiotrophobast (ST, which bathes in maternal blood. The ST arises and regenerates throughout pregnancy by fusion of underlying cytotrophoblasts (CT. Any anomaly of ST formation or regeneration can affect pregnancy outcome and fetal growth. Because of its direct interaction with maternal blood, the ST is sensitive to drugs, pollutants and xenohormones. Ex vivo assays of perfused cotyledon show that formaldehyde, a common pollutant present in furniture, paint and plastics, can accumulate in the human placenta and cross to the fetal compartment. By means of RT-qPCR, immunoblot and immunocytochemistry experiments, we demonstrate in vitro that formaldehyde exerts endocrine toxicity on human trophoblasts, including a decrease in the production of protein hormones of pregnancy. In addition, formaldehyde exposure triggered human trophoblast fusion by upregulating syncitin-1 receptor expression (ASC-type amino-acid transporter 2: ASCT2. Moreover, we show that formaldehyde-exposed trophoblasts present an altered redox status associated with oxidative stress, and an increase in ASCT2 expression intended to compensate for this stress. Finally, we demonstrate that the adverse effects of formaldehyde on trophoblast differentiation and fusion are reversed by N-acetyl-L-cysteine (Nac, an antioxidant.

  18. Simultaneous bond degradation and bond formation during phenol-formaldehyde curing with wood

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Bonding of wood using phenol–formaldehyde adhesive develops highly durable bonds. Phenol– formaldehyde is believed to form primary bonds with wood cell wall polymers (e.g., lignin). However, it is unclear how this adhesive interacts and bonds to lignin. Through wood solubilisation methodologies, earlywood and latewood bonded assemblies were characterized using two-...

  19. Nuclear spin conversion in formaldehyde

    OpenAIRE

    Chapovsky, Pavel L.

    2000-01-01

    Theoretical model of the nuclear spin conversion in formaldehyde (H2CO) has been developed. The conversion is governed by the intramolecular spin-rotation mixing of molecular ortho and para states. The rate of conversion has been found equal 1.4*10^{-4}~1/s*Torr. Temperature dependence of the spin conversion has been predicted to be weak in the wide temperature range T=200-900 K.

  20. Detection of Waterborne and Airborne Formaldehyde: From Amperometric Chemosensing to a Visual Biosensor Based on Alcohol Oxidase

    Directory of Open Access Journals (Sweden)

    Sasi Sigawi

    2014-02-01

    Full Text Available A laboratory prototype of a microcomputer-based analyzer was developed for quantitative determination of formaldehyde in liquid samples, based on catalytic chemosensing elements. It was shown that selectivity for the target analyte could be increased by modulating the working electrode potential. Analytical parameters of three variants of the amperometric analyzer that differed in the chemical structure/configuration of the working electrode were studied. The constructed analyzer was tested on wastewater solutions that contained formaldehyde. A simple low-cost biosensor was developed for semi-quantitative detection of airborne formaldehyde in concentrations exceeding the threshold level. This biosensor is based on a change in the color of a solution that contains a mixture of alcohol oxidase from the yeast Hansenula polymorpha, horseradish peroxidase and a chromogen, following exposure to airborne formaldehyde. The solution is enclosed within a membrane device, which is permeable to formaldehyde vapors. The most efficient and sensitive biosensor for detecting formaldehyde was the one that contained alcohol oxidase with an activity of 1.2 U·mL−1. The biosensor requires no special instrumentation and enables rapid visual detection of airborne formaldehyde at concentrations, which are hazardous to human health.

  1. Chemical Interactions of Surface-Active Agents with Growing Resorcinol-Formaldehyde Gels

    Czech Academy of Sciences Publication Activity Database

    Jirglová, Hana; Maldonato-Hódar, F. J.

    2010-01-01

    Roč. 26, č. 20 (2010), s. 16103-16109 ISSN 0743-7463 Institutional research plan: CEZ:AV0Z40400503 Keywords : chemical interactions * FTIR * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.269, year: 2010

  2. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices

    KAUST Repository

    Xu, Xuezhu

    2015-04-15

    Currently, most carbon aerogels are based on carbon nanotubes (CNTs) or graphene, which are produced through a catalyst-assisted chemical vapor deposition method. Biomass based organic aerogels and carbon aerogels, featuring low cost, high scalability, and small environmental footprint, represent an important new research direction in (carbon) aerogel development. Cellulose and lignin are the two most abundant natural polymers in the world, and the aerogels based on them are very promising. Classic silicon aerogels and available organic resorcinol-formaldehyde (RF) or lignin-resorcinol-formaldehyde (LRF) aerogels are brittle and fragile; toughening of the aerogels is highly desired to expand their applications. This study reports the first attempt to toughen the intrinsically brittle LRF aerogel and carbon aerogel using bacterial cellulose. The facile process is catalyst-free and cost-effective. The toughened carbon aerogels, consisting of blackberry-like, core-shell structured, and highly graphitized carbon nanofibers, are able to undergo at least 20% reversible compressive deformation. Due to their unique nanostructure and large mesopore population, the carbon materials exhibit an areal capacitance higher than most of the reported values in the literature. This property makes them suitable candidates for flexible solid-state energy storage devices. Besides energy storage, the conductive interconnected nanoporous structure can also find applications in oil/water separation, catalyst supports, sensors, and so forth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Study of Necrosis in the Liver of Formaldehyde and Benzo(αPyrene Exposured-Mice

    Directory of Open Access Journals (Sweden)

    Ahmad Soni

    2013-04-01

    Full Text Available Formaldehyde and benzo(αpyrene are compounds that harmful for health. Misapplication of this compound has an impact in the form of organ damage in the body. This study aims to determine the impact of the treatment of the combined exposure of formaldehyde and benzo(αpyrene to cell necrosis in the liver of mice (Mus musculus. Treatment of formaldehyde dose of 25 mg/kg BW to mice was given orally every day for 60 days. Treatment of benzo(αpyrene via intraperitoneal injection at a dose of 250 mg/kg BW were given after 30 days of incubation with four times injection with one day interval. Liver organ histological preparations were made through the HE staining. Observations were made by using a microscope for liver organ preparations. The data obtained that is the percentage of cells necrosis and necrotic foci. This research used Completely Randomized Design (CRD with 95% confidence interval. Liver organ preparations observations indicate that the percentage of necrosis in the untreated control, benzo(αpyrene 250 mg/kg BW, formaldehyde 25 mg/kg BW, combination of formaldehyde 25 mg/kg BW with BaP in a row that is equal to 14.43% ± 0.91; 26.05% ± 3.75; 49.38% ± 2.66; 51.86 ± 1.73. The mean of necrotic foci in liver organ formed in the untreatment control, benzo(αpyrene 250 mg/kg BW, Formaldehyde 25 mg/kg BW, and the combination of formaldehyde 25 mg/kg BW with BaP in a row, equal to 1.3 ± 0,07; 1.63 ± 0.61; 2 ± 0.51, and 3.4 ± 0.76. This suggests that the combined treatment had the highest level of toxicity compared with other treatments.

  4. Biodegradation of formaldehyde from contaminated air using a laboratory scale static-bed bioreactor

    Directory of Open Access Journals (Sweden)

    Yaghoub Hajizadeh

    2014-01-01

    Full Text Available Aims: The objective of the present study was to evaluate the performance of an aerobic fixed-bed bioreactor (FBR enriched with microorganisms of sewage sludge in biodegradation of formaldehyde in air stream with various retention times and airflow rates in laboratory scale. Materials and Methods: An aerobic biofilter 60 cm in height and 14 cm internal diameter made of steel was constructed and packed with a mixture of pumice and compost as a medium and utilized in this study. The microorganism′s growth, which is derived from the sludge of a municipal wastewater treatment plant, was initiated by adding nutrient. During the first few days of run, the airflow containing different concentrations of formaldehyde (from 24 ± 3 to 224 ± 5 mg/m 3 was introduced to the reactor to ensure biological adaptation. Sampling was performed through a series of two impingers containing adsorbent, and analyzed by chromotropic acid assay using DR-5000. Results: The maximum removal and elimination capacity of formaldehyde was yielded at 0.48 ± 0.06 g/m 3 /h inlet loading rate and 180 s of empty bed retention time (EBRT. These values for stabilized days were almost 88% and 0.42 g/m 3 /h, respectively. Conclusion: The results showed that by increasing the inlet concentration of formaldehyde and reducing the EBRT, the formaldehyde removal capacity of the system decreases. Aerobic bioreactor with appropriate bed volume and compatible with inlet pollutant mass flow rate in optimum retention time will admissibly degrade and reduce the formaldehyde concentration from contaminated gas phase, such as gases produced in municipal wastewater treatment facilities.

  5. Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunyoung [College of Pharmacy, Seoul National University, Seoul 08826 (Korea, Republic of); Natural Products Research Institute, Seoul National University, Seoul 08826 (Korea, Republic of); Kim, Hyoung-June [Basic Research and Innovation Division, AmorePacific Corporation R& D Center, Yongin, Gyeounggi-do 17074 (Korea, Republic of); Lee, Moonyoung [College of Pharmacy, Seoul National University, Seoul 08826 (Korea, Republic of); Jin, Sun Hee; Hong, Soo Hyun; Ahn, Seyeon; Kim, Sae On [College of Pharmacy, Seoul National University, Seoul 08826 (Korea, Republic of); Natural Products Research Institute, Seoul National University, Seoul 08826 (Korea, Republic of); Shin, Dong Wook [Basic Research and Innovation Division, AmorePacific Corporation R& D Center, Yongin, Gyeounggi-do 17074 (Korea, Republic of); Lee, Seung-Taek [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722 (Korea, Republic of); Noh, Minsoo, E-mail: minsoonoh@snu.ac.kr [College of Pharmacy, Seoul National University, Seoul 08826 (Korea, Republic of); Natural Products Research Institute, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-11-01

    Low-level formaldehyde exposure is inevitable in industrialized countries. Although daily-life formaldehyde exposure level is practically impossible to induce cell death, most of mechanistic studies related to formaldehyde toxicity have been performed in cytotoxic concentrations enough to trigger cell death mechanism. Currently, toxicological mechanisms underlying the sub-cytotoxic exposure to formaldehyde are not clearly elucidated in skin cells. In this study, the genome-scale transcriptional analysis in normal human keratinocytes (NHKs) was performed to investigate cutaneous biological pathways associated with daily life formaldehyde exposure. We selected the 175 upregulated differentially expressed genes (DEGs) and 116 downregulated DEGs in NHKs treated with 200 μM formaldehyde. In the Gene Ontology (GO) enrichment analysis of the 175 upregulated DEGs, the endoplasmic reticulum (ER) unfolded protein response (UPR) was identified as the most significant GO biological process in the formaldeyde-treated NHKs. Interestingly, the sub-cytotoxic formaldehyde affected NHKs to upregulate two enzymes important in the cellular transsulfuration pathway, cystathionine γ-lyase (CTH) and cystathionine-β-synthase (CBS). In the temporal expression analysis, the upregulation of the pro-inflammatory DEGs such as MMP1 and PTGS2 was detected earlier than that of CTH, CBS and other ER UPR genes. The metabolites of CTH and CBS, L-cystathionine and L-cysteine, attenuated the formaldehyde-induced upregulation of pro-inflammatory DEGs, MMP1, PTGS2, and CXCL8, suggesting that CTH and CBS play a role in the negative feedback regulation of formaldehyde-induced pro-inflammatory responses in NHKs. In this regard, the sub-cytotoxic formaldehyde-induced CBS and CTH may regulate inflammation fate decision to resolution by suppressing the early pro-inflammatory response. - Highlights: • Sub-cytotoxic formaldehyde upregulates ER UPR-associated genes in NHKs. • Formaldehyde-induced ER UPR

  6. Formaldehyde, methanol and hydrocarbon emissions from methanol-fueled cars

    International Nuclear Information System (INIS)

    Williams, R.L.; Lipari, F.; Potter, R.A.

    1990-01-01

    Exhaust and evaporative emissions tests were conducted on several methanol- and gasoline-fueled vehicles. Separate samples for chromatographic analysis of formaldehyde, methanol, and individual hydrocarbons were collected in each of the three phases of the driving cycle and in each of the two portions of the evaporative emissions test. One vehicle, equipped with an experimental variable-fuel engine, was tested using methanol/gasoline fuel mixtures of 100, 85, 50, 15, and 0 percent methanol. Combustion-generated hydrocarbons were lowest using methanol fuel, and increased several-fold as the gasoline fraction was increased. Gasoline components in the exhaust increased from zero as the gasoline fraction of the fuel was increased. On the other hand, formaldehyde emissions were several times higher using methanol fuel than they were using gasoline. A dedicated methanol car and the variable-fuel car gave similar emissions patterns when they both were tested using methanol fuel. The organic-carbon composition of the exhaust was 85-90 percent methanol, 5-7 percent formaldehyde, and 3-9 percent hydrocarbons. Several cars that were tested using gasoline emitted similar distributions of hydrocarbons, even through the vehicles represented a broad range of current and developmental engine families and emissions control systems

  7. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Science.gov (United States)

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  8. Comparative Study of Textural Characteristics on Methane Adsorption for Carbon Spheres Produced by CO2 Activation

    OpenAIRE

    Yang, Wen; Feng, Yanyan; Chu, Wei

    2014-01-01

    Resorcinol-formaldehyde resin polymer was used as raw material for preparation of carbon spheres. Samples were treated with CO2 flow at 850°C by varying activation times. The CO2 activation granted better pore development of pore structure. The experimental data of CH4 adsorption as a function of equilibrium pressure was fitted by Langmuir and Dubinin-Astakhov (D-A) models. It was concluded that the high surface area and micropore volume of carbon spheres did unequivocally determine methane c...

  9. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    Directory of Open Access Journals (Sweden)

    Cordula Klockenbusch

    2010-01-01

    Full Text Available Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively.

  10. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    Science.gov (United States)

    Klockenbusch, Cordula; Kast, Juergen

    2010-01-01

    Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively. PMID:20634879

  11. Multicenter Patch Testing With a Resol Resin Based on Phenol and Formaldehyde Within the International Contact Dermatitis Research Group

    DEFF Research Database (Denmark)

    Isaksson, M.; Ale, I.; Andersen, Klaus Ejner

    2015-01-01

    Background Contact allergy to phenol-formaldehyde resins (PFRs) based on phenol and formaldehyde is not detected by a p-tertiary-butylphenol-formaldehyde resin included in most baseline patch test series. Objective The aims of this study were to investigate the contact allergy rate to PFR-2.......2%) reacted to PFR-2. Of those 28 individuals, one had a positive reaction to formaldehyde and 2 to p-tertiary-butylphenol-formaldehyde resin. Simultaneous allergic reactions were noted to colophonium in 3, to Myroxylon pereirae in 5, and to fragrance mix I in 8. Conclusions The contact allergy frequency...

  12. Airborne In-Situ Measurements of Formaldehyde Over California: First Results from the Compact Formaldehyde Fluorescence Experiment (COFFEE) Instrument

    Science.gov (United States)

    Marrero, Josette Elizabeth; Saint Clair, Jason; Yates, Emma L.; Gore, Warren; Swanson, Andrew K.; Iraci, Laura T.; Hanisco, Thomas F.

    2016-01-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. Results of the first COFFEE science flights preformed over the California's Central Valley will be presented. Boundary layer measurements and vertical profiles in the tropospheric column will both be included. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  13. Selective determination of thorium in water using dual-wavelength β-correction spectrophotometry and the reagent 4-(2-pyridylazo)-resorcinol

    International Nuclear Information System (INIS)

    Kadi, M.W.; El-Shahawi, M.S.

    2011-01-01

    A simple, fast, low cost, and precise direct β-correction spectrophotometric method was developed for thorium determination in water. The method is based on the reaction of Th(IV) with 4-(2-pyridylazo)-resorcinol (PAR) in aqueous solution of pH 5-6 and measuring the absorbance of the resulting red-colored complex at λ max 497 nm. The effective molar absorptivity of the Th(IV)-PAR complex was 2.52 x 10 4 L mol -1 cm -1 . Beer's law and Ringbom plots were obeyed in the concentration range 0.04-2.0 and 0.07-1.2 μg mL -1 of thorium ions using β-correction spectrophotometry, respectively. The limits of detection and quantification of Th(IV) were 0.02 and 0.066 μg mL -1 , respectively. The developed method was applied for the analysis of thorium in certified reference material (IAEA-soil-7), tap-, underground- and Red-sea water samples. The validation of the method was also tested by comparison with data obtained by ICP-MS. The method is convenient, less sensitive to common interfering species and less laborious than most of published methods. The statistical treatment of data in terms of Student t-tests and variance ratio f-tests has revealed no significance differences. The structure of the Th(IV)-PAR complex was determined with the aid of spectroscopic measurements (UV-Visible and Fourier Transform Infrared Spectroscopy). (author)

  14. Gas-diffusion microextraction coupled with spectrophotometry for the determination of formaldehyde in cork agglomerates.

    Science.gov (United States)

    Brandão, Pedro F; Ramos, Rui M; Valente, Inês M; Almeida, Paulo J; Carro, Antonia M; Lorenzo, Rosa A; Rodrigues, José A

    2017-04-01

    In this work, a simple methodology was developed for the extraction and determination of free formaldehyde content in cork agglomerate samples. For the first time, gas-diffusion microextraction was used for the extraction of volatile formaldehyde directly from samples, with simultaneous derivatization with acetylacetone (Hantzsch reaction). The absorbance of the coloured solution was read in a spectrophotometer at 412 nm. Different extraction parameters were studied and optimized (extraction temperature, sample mass, volume of acceptor solution, extraction time and concentration of derivatization reagent) by means of an asymmetric screening. The developed methodology proved to be a reliable tool for the determination of formaldehyde in cork agglomerates with the following suitable method features: low LOD (0.14 mg kg -1 ) and LOQ (0.47 mg kg -1 ), r 2  = 0.9994, and intraday and interday precision of 3.5 and 4.9%, respectively. The developed methodology was applied to the determination of formaldehyde in different cork agglomerate samples, and contents between 1.9 and 9.4 mg kg -1 were found. Furthermore, formaldehyde was also determined by the standard method EN 717-3 for comparison purposes; no significant differences between the results of both methods were observed. Graphical abstract Representation of the GDME system and its main components.

  15. Formaldehyde and TVOC emission behavior of laminate flooring by structure of laminate flooring and heating condition.

    Science.gov (United States)

    An, Jae-Yoon; Kim, Sumin; Kim, Hyun-Joong

    2011-03-15

    Formaldehyde was measured with a desiccator, a 20 L chamber and the FLEC method. The formaldehyde emission rate from laminate was the highest at 32 °C using the desiccator, which then decreased with time. The formaldehyde emission using the 20 L small chamber and FLEC showed a similar tendency. There was a strong correlation between the formaldehyde and total volatile organic compounds (TVOCs) with both types of floorings using the two different methods. The formaldehyde emission rate and TVOC results were higher when tested using the FLEC method than with the 20 L small chamber method. The emission rate was affected by the joint edge length in laminate flooring. Toluene, ethylbenzene and xylene were the main VOCs emitted from laminate flooring, and there were more unidentified VOCs emitted than identified VOCs. The samples heated with a floor heating system emitted more formaldehyde than those heated using an air circulation system due to the temperature difference between the bottom panel and flooring. The TVOC emission level of the samples was higher when an air circulation system was used than when a floor heating system was used due to the high ventilation rate. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Cohort mortality study of garment industry workers exposed to formaldehyde: update and internal comparisons.

    Science.gov (United States)

    Meyers, Alysha R; Pinkerton, Lynne E; Hein, Misty J

    2013-09-01

    To further evaluate the association between formaldehyde and leukemia, we extended follow-up through 2008 for a cohort mortality study of 11,043 US formaldehyde-exposed garment workers. We computed standardized mortality ratios and standardized rate ratios stratified by year of first exposure, exposure duration, and time since first exposure. Associations between exposure duration and rates of leukemia and myeloid leukemia were further examined using Poisson regression models. Compared to the US population, myeloid leukemia mortality was elevated but overall leukemia mortality was not. In internal analyses, overall leukemia mortality increased with increasing exposure duration and this trend was statistically significant. We continue to see limited evidence of an association between formaldehyde and leukemia. However, the extended follow-up did not strengthen previously observed associations. In addition to continued epidemiologic research, we recommend further research to evaluate the biological plausibility of a causal relation between formaldehyde and leukemia. Copyright © 2013 Wiley Periodicals, Inc.

  17. CCQM-K90, formaldehyde in nitrogen, 2 μmol mol-1 Final report

    Science.gov (United States)

    Viallon, Joële; Flores, Edgar; Idrees, Faraz; Moussay, Philippe; Wielgosz, Robert Ian; Kim, D.; Kim, Y. D.; Lee, S.; Persijn, S.; Konopelko, L. A.; Kustikov, Y. A.; Malginov, A. V.; Chubchenko, I. K.; Klimov, A. Y.; Efremova, O. V.; Zhou, Z.; Possolo, A.; Shimosaka, T.; Brewer, P.; Macé, T.; Ferracci, Valerio; Brown, Richard J. C.; Aoki, Nobuyuki

    2017-01-01

    The CCQM-K90 comparison is designed to evaluate the level of comparability of national metrology institutes (NMI) or designated institutes (DI) measurement capabilities for formaldehyde in nitrogen at a nominal mole fraction of 2 μmol mol-1. The comparison was organised by the BIPM using a suite of gas mixtures prepared by a producer of specialty calibration gases. The BIPM assigned the formaldehyde mole fraction in the mixtures by comparison with primary mixtures generated dynamically by permeation coupled with continuous weighing in a magnetic suspension balance. The BIPM developed two dynamic sources of formaldehyde in nitrogen that provide two independent values of the formaldehyde mole fraction: the first one based on diffusion of trioxane followed by thermal conversion to formaldehyde, the second one based on permeation of formaldehyde from paraformaldehyde contained in a permeation tube. Two independent analytical methods, based on cavity ring down spectroscopy (CRDS) and Fourier transform infrared spectroscopy (FTIR) were used for the assignment procedure. Each participating institute was provided with one transfer standard and value assigned the formaldehyde mole fraction in the standard based on its own measurement capabilities. The stability of the formaldehyde mole fraction in transfer standards was deduced from repeated measurements performed at the BIPM before and after measurements performed at participating institutes. In addition, 5 control standards were kept at the BIPM for regular measurements during the course of the comparison. Temporal trends that approximately describe the linear decrease of the amount-of-substance fraction of formaldehyde in nitrogen in the transfer standards over time were estimated by two different mathematical treatments, the outcomes of which were proposed to participants. The two treatments also differed in the way measurement uncertainties arising from measurements performed at the BIPM were propagated to the

  18. Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors

    Science.gov (United States)

    Lv, Lingxiao; Fan, Yueqiong; Chen, Qing; Zhao, Yang; Hu, Yue; Zhang, Zhipan; Chen, Nan; Qu, Liangti

    2014-06-01

    A three-dimensional (3D) carbon quantum dot (CQD) aerogel has been prepared by in situ assembling CQDs in the sol-gel polymerization of resorcinol (R) and formaldehyde (F) and subsequently pyrolyzing the formed CQD gel. Compared to the supercapacitor based on the CQD-free aerogel, the supercapacitor fabricated with the CQD aerogel showed 20-fold higher specific capacitance (294.7 F g-1 at the current density of 0.5 A g-1) and an excellent stability over 1000 consecutive charge-discharge cycles.

  19. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Science.gov (United States)

    2010-07-01

    ... products with (butoxymethyl) oxirane formaldehyde-phenol polymer glycidyl ether, morpholinepropanamine...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N... products with (butoxymethyl) oxirane formaldehyde-phenol polymer glycidyl ether, morpholinepropanamine...

  20. A neutron powder diffraction study of deuterated α-resorcinol: a test of profile refinement using TLS constraints

    International Nuclear Information System (INIS)

    Bacon, G.E.; Lisher, E.J.

    1979-01-01

    Constrained TL, TLX and TLS refinements have been used, with the powder-profile method, in the analysis of accurate neutron powder data for deuterated α-resorcinol at room temperature. There is good agreement between the translational and librational parameters derived from the TL refinement and those obtained from an equivalent analysis of accurate single-crystal neutron measurements. The fine details of the benzene ring are lost in the powder analysis, but the molecular orientation and the OH bond angles are in good agreement with the single-crystal values. No significant improvement could be found in the powder fit by applying the full TLS theory and, therefore, the approximate TLX model appears to be adequate for powder data. (Auth.)

  1. Synthesis of resorcinol resin as a polymer adsorbent, and study of its usability in uranium sorption process

    International Nuclear Information System (INIS)

    Aslani, M. A. A.; Yusan, S.; Goek, C.; Akyil, S.; Aytas, S.

    2009-01-01

    Uranium is one of the most important elements in nuclear fuel technology. In order to obtain purified of this element at uranium mining and processing the use of synthetic resins is significant at column and/or batch process. The synthesis of resorcinol resin polymer was carried out with a modified microwave oven instead of the conventional heater due to the some advantage properties such as very rapid reaction, rapid bulk heat, short reaction duration and high yield etc. To characterization of synthesized resin FT-IR, TG-DTA and SEM techniques were used. In order to obtain the optimum uranium adsorption conditions the effective sorption parameters such as solution pH, uranium concentration, reaction time and temperature were investigated.

  2. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage

    International Nuclear Information System (INIS)

    Noda, Taichi; Takahashi, Akihisa; Kondo, Natsuko; Mori, Eiichiro; Okamoto, Noritomo; Nakagawa, Yosuke; Ohnishi, Ken; Zdzienicka, Malgorzata Z.; Thompson, Larry H.; Helleday, Thomas; Asada, Hideo

    2011-01-01

    The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA -/- , FANCC -/- , FANCA -/- C -/- , FANCD2 -/- and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical γH2AX-staining assay. Although the sensitivity of FANCA -/- , FANCC -/- and FANCA -/- C -/- cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2 -/- cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, γH2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: → We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). → DSBs are repaired through the Fanconi anemia (FA) repair pathway. → This pathway is independent of the FA nuclear core complex. → We also found that homologous recombination repair was induced by formaldehyde.

  3. Solid phase microextraction method development for measuring Henry's Law constants of formaldehyde in aqueous solutions

    Science.gov (United States)

    Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its existence in a wide range of products and its adverse health effects. The air-water partitioning behavior of volatile organic compounds (VOCs) such as formaldehyde is an important process th...

  4. Assimilation of formaldehyde and other C1-compounds by Gliocladium deliquescens and Paecilomyces varioti

    International Nuclear Information System (INIS)

    Sakaguchi, Kenji; Kurane, Ryuichiro; Murata, Machiko

    1975-01-01

    Two fungi were isolated from soil which grew on 0.1--0.2% formaldehyde as the sole carbon source, and identified as Gliocladium deliquescens and Paecilomyces varioti. Both the strains could grow on 5% methanol and 5% Na-formate, while the former could grow even on 7% methanol. Metabolic pathways were traced through two dimensional paper chromatography and autoradiographic techniques using 14 C-formaldehyde, 14 C-methanol or 14 C-CO 2 as substrates. The intracellular metabolites were persued and their quantitative variation with time was measured. Along with the fact that serine and malate appeared in the earlier time, then appeared organic acids and amino acids belonging to TCA cycle, and the fact that hydroxy-pyruvate reductase and phosphoenolpyruvate carboxylase activities were much stronger in methanol culture than in ethanol culture, it was concluded that the two fungi followed the serine pathway in assimilating C 1 -compounds. Oxidation enzymes of methanol and formaldehyde were also studied, and an oxidizing system was found besides usual NAD linked methanol or formaldehyde dehydrogenases. (auth.)

  5. A Reagentless Amperometric Formaldehyde-Selective Chemosensor Based on Platinized Gold Electrodes.

    Science.gov (United States)

    Demkiv, Olha; Smutok, Oleh; Gonchar, Mykhailo; Nisnevitch, Marina

    2017-05-06

    Fabrication and characterization of a new amperometric chemosensor for accurate formaldehyde analysis based on platinized gold electrodes is described. The platinization process was performed electrochemically on the surface of 4 mm gold planar electrodes by both electrolysis and cyclic voltamperometry. The produced electrodes were characterized using scanning electron microscopy and X-ray spectral analysis. Using a low working potential (0.0 V vs. Ag/AgCl) enabled an essential increase in the chemosensor's selectivity for the target analyte. The sensitivity of the best chemosensor prototype to formaldehyde is uniquely high (28180 A·M -1 ·m -2 ) with a detection limit of 0.05 mM. The chemosensor remained stable over a one-year storage period. The formaldehye-selective chemosensor was tested on samples of commercial preparations. A high correlation was demonstrated between the results obtained by the proposed chemosensor, chemical and enzymatic methods ( R = 0.998). The developed formaldehyde-selective amperometric chemosensor is very promising for use in industry and research, as well as for environmental control.

  6. 75 FR 37792 - Formaldehyde Gas; Receipt of Application for Emergency Exemption, Solicitation of Public Comment

    Science.gov (United States)

    2010-06-30

    ... Emergency Management, Office of Solid Waste and Emergency Response (OSWER) to use formaldehyde gas (CAS No... American Industrial Classification System (NAICS) codes have been provided to assist you and others in... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0420; FRL-8828-9] Formaldehyde Gas; Receipt of...

  7. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Taichi [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Takahashi, Akihisa [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Kondo, Natsuko [Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Mori, Eiichiro [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Okamoto, Noritomo [Department of Otorhinolaryngology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nakagawa, Yosuke [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ohnishi, Ken [Department of Biology, Ibaraki Prefectual University of Health Sciences, 4669-2 Ami, Ami-mati, Inasiki-gun, Ibaraki 300-0394 (Japan); Zdzienicka, Malgorzata Z. [Department of Molecular Cell Genetics, Collegium Medicum in Bydgoszcz, Nicolaus-Copernicus-University in Torun, ul. Sklodowskiej-Curie 9, 85-094 Bydgoszcz (Poland); Thompson, Larry H. [Biosciences and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808 (United States); Helleday, Thomas [Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ (United Kingdom); Department of Genetics, Microbiology and Toxicology Stockholm University, SE-106 91 Stockholm (Sweden); Asada, Hideo [Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); and others

    2011-01-07

    The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA{sup -/-}, FANCC{sup -/-}, FANCA{sup -/-}C{sup -/-}, FANCD2{sup -/-} and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical {gamma}H2AX-staining assay. Although the sensitivity of FANCA{sup -/-}, FANCC{sup -/-} and FANCA{sup -/-}C{sup -/-} cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2{sup -/-} cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, {gamma}H2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: {yields} We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). {yields} DSBs are repaired through the Fanconi anemia (FA) repair pathway. {yields} This pathway is independent of the FA nuclear core complex. {yields} We also found that homologous recombination repair was induced by formaldehyde.

  8. "Greener" hybrid adhesives composed of urea formaldehyde resin and cottonseed meal for wood based composites

    Science.gov (United States)

    Urea formaldehyde (UF) resins are one of the most widely used adhesives in wood based composites. The major concerns of the resin utilization are free formaldehyde release and poor water resistance. As a renewable raw materials, water washed conttonseed meal can be used in wood bonding. To produce “...

  9. Influence of indoor formaldehyde pollution on respiratory system ...

    African Journals Online (AJOL)

    Some adults surveyed complained of common respiratory system disorders, including coughing (11.8%), nasal irritation (39.2%), Heterosmia (14.51%), and throat irritation (25.27%); 12% of children suffered from asthma. The analysis identified formaldehyde pollution and ventilation frequency as risk factors for respiratory ...

  10. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry.

    Science.gov (United States)

    Wongniramaikul, Worawit; Limsakul, Wadcharawadee; Choodum, Aree

    2018-05-30

    A biodegradable colorimetric film was fabricated on the lid of portable tube for in-tube formaldehyde detection. Based on the entrapment of colorimetric reagents within a thin film of tapioca starch, the yellow reaction product was observed with formaldehyde. Intensity of the blue channel from the digital image of yellow product showed a linear relationship in the range of 0-25 mg L -1 with low detection limit of 0.7 ± 0.1 mg L -1 . Inter-day precision of 0.61-3.10%RSD were obtained with less than 4.2% relative error from control samples. The developed method was applied for various food samples in Phuket and formaldehyde concentration range was non-detectable to 1.413 mg kg -1 . The quantified concentrations of formaldehyde in fish and squid samples provided relative errors of -7.7% and +10.8% compared to spectrophotometry. This low cost sensor (∼0.04 USD/test) with digital image colorimetry was thus an effective alternative for formaldehyde detection in food sample. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  12. Porous structured niobium pentoxide/carbon complex for lithium-ion intercalation pseudocapacitors

    International Nuclear Information System (INIS)

    Luo, Guoming; Li, Heshun; Gao, Lixin; Zhang, Daquan; Lin, Tong

    2016-01-01

    Highlights: • A simple one-pot in situ hydrothermal method to prepare T-Nb_2O_5/C. • The composite has well-dispersed C among nano-scale Nb_2O_5. • The composite has excellent large-current discharge property. • The composite has no obvious drop after 1000 cycles at 5 A g"−"1. - Abstract: A facile soft-templated synthesis of the niobium pentoxide/carbon (Nb_2O_5/C) from the polymerization of resorcinol with formaldehyde under the hydrothermal condition is introduced. This material has been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS) techniques. The carbon is well-dispersed in the nanostructure along with Nb_2O_5 and the material is porous. The intimate contact between Nb_2O_5 and carbon improves its conductivity. The electrochemical studies revealed that the porous Nb_2O_5/C displayed good pseudocapacitive response. The specific capacitance of the Nb_2O_5/C was 387 F g"−"1 at 0.1 A g"−"1 and 210 F g"−"1 at 5 A g"−"1. The Nb_2O_5/C exhibits superior cycling performance, which can remain about 96% of its initial capacitance after 1000 cycles at 5 A g"−"1.

  13. Formaldehyde and acetaldehyde exposure mitigation in US residences: In-home measurements of ventilation control and source control

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Willem, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, Marion L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-01

    Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h-1, increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energy and Environmental Design (LEED) certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h-1, and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low-VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low-VOC homes. The mean and standard deviation of formaldehyde concentration were 33 μg m-3 and 22 μg m-3 for low-VOC homes and 45 μg m-3 and 30 μg m-3 for conventional.

  14. Nitrogen-doped carbon aerogels for electrical energy storage

    Science.gov (United States)

    Campbell, Patrick; Montalvo, Elizabeth; Baumann, Theodore F.; Biener, Juergen; Merrill, Matthew; Reed, Eric W.; Worsley, Marcus A.

    2017-10-03

    Disclosed here is a method for making a nitrogen-doped carbon aerogel, comprising: preparing a reaction mixture comprising formaldehyde, at least one nitrogen-containing resorcinol analog, at least one catalyst, and at least one solvent; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel; and thermally annealing the dry gel to produce the nitrogen-doped carbon aerogel. Also disclosed is a nitrogen-doped carbon aerogel obtained according to the method and a supercapacitor comprising the nitrogen-doped carbon aerogel.

  15. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Isern, Nancy G.; Romine, Margaret F.; Riha, Krystin M.; Inskeep, William P.; Kreuzer, Helen W.

    2016-03-19

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonesis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with 13C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.

  16. Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal

    Science.gov (United States)

    Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro

    2013-06-01

    A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.

  17. A Potentiometric Formaldehyde Biosensor Based on Immobilization of Alcohol Oxidase on Acryloxysuccinimide-modified Acrylic Microspheres

    Directory of Open Access Journals (Sweden)

    Lee Yook Heng

    2010-11-01

    Full Text Available A new alcohol oxidase (AOX enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide [poly(nBA-NAS] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS microspheres were deposited on a pH transducer made from a layer of photocured and self-plasticized polyacrylate membrane with an entrapped pH ionophore coated on a Ag/AgCl screen printed electrode (SPE. Oxidation of formaldehyde by the immobilized AOX resulted in the production of protons, which can be determined via the pH transducer. Effects of buffer concentrations, pH and different amount of immobilization matrix towards the biosensor’s analytical performance were investigated. The formaldehyde biosensor exhibited a dynamic linear response range to formaldehyde from 0.3–316.2 mM and a sensitivity of 59.41 ± 0.66 mV/decade (R2 = 0.9776, n = 3. The lower detection limit of the biosensor was 0.3 mM, while reproducibility and repeatability were 3.16% RSD (relative standard deviation and 1.11% RSD, respectively (n = 3. The use of acrylic microspheres in the potentiometric formaldehyde biosensor improved the biosensor’s performance in terms of response time, linear response range and long term stability when compared with thick film immobilization methods.

  18. Novel Reaction of N,N'-Bisarylmethanediamines with Formaldehyde. Synthesis of Some New 1,3,5-Triaryl-1,3,5-hexahydrotriazines

    Directory of Open Access Journals (Sweden)

    Abolfazl Olyaei

    2006-07-01

    Full Text Available The acid-catalyzed cyclocondensation of N,N'-bisaryl (aryl = 2-pyrimidinyl, 2- pyrazinyl and 4-nitrophenyl methanediamines 5a-c with aqueous formaldehyde in refluxing acetonitrile leads to the formation of the corresponding 1,3,5-triaryl-1,3,5-hexa- hydrotriazines 6a-c. The stoichiometric reactions of 2-aminopyrimidine and 2-amino- pyrazine with aqueous formaldehyde in acetonitrile under reflux conditions also afforded 6a and 6b, respectively. Treatment of 2-aminopyrimidine with aqueous formaldehyde in a 3:2 ratio yielded N,N',N"-tris(2-pyrimidinyldimethylenetriamine (7a as a sole product, which upon subsequent reaction with formaldehyde also afforded 6a. The reaction of N,N'-biphenylmethanediamine with formaldehyde was also investigated.

  19. Evaluation on potential for assessing indoor formaldehyde using biosensor system based on swimming behavior of Japanese medaka (oryzias latipes)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghun [Department of Architecture, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, 153-8505 (Japan); Kato, Shinsuke; Tatsuma, Tetsu [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, 153-8505 (Japan); Takeuchi, Kenichiro [Sumitomo Forestry Co., Ltd. (Japan); Kang, Ik Joon [Aquatic Biomonitoring and Environmental Laboratory, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 (Japan)

    2011-04-15

    In order to develop an early-warning biosensor system for predicting the impact on health of long-term and low-level exposure to indoor chemical compounds, e.g. volatile organic compounds (VOCs), we evaluated the potential for assessing indoor air quality using the biosensor system based on the swimming behavior of Japanese medaka (oryzias latipes) as an indicator of indoor air quality in the beginning. As a technology to dissolve chemical compounds into water efficiently, a micro bubble generator was introduced. The test chemical was formaldehyde which is a representative of chemical compounds existing indoors. The result of the measuring solubility of formaldehyde was that formaldehyde concentration in water was raised to 0.12 mg/L when 1.0 mg/m{sup 3} of formaldehyde in air was bubbled for approximately 44 h. The correlation between the 0.1 mg/L of formaldehyde in water, which is roughly equivalent to 0.83 mg/m{sup 3} of formaldehyde in air, and the swimming activities of medaka was investigated. The fish showed abnormal behavior compared to one under a control treatment, e.g. the body movement distance decreased and the duration time near the upper water column increased significantly. It was verified that it is possible to detect concentrations of formaldehyde of 0.83 mg/m{sup 3} in indoor air using this proposed biosensor system. (author)

  20. 40 CFR Appendix B to Subpart Nnn... - Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride

    Science.gov (United States)

    2010-07-01

    ... Insulation Resins by Hydroxylamine Hydrochloride B Appendix B to Subpart NNN of Part 63 Protection of...—Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride 1. Scope This method was... hydrochloric acid that is liberated when hydroxylamine hydrochloride reacts with formaldehyde to form...

  1. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

  2. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    Directory of Open Access Journals (Sweden)

    Mirella Gutiérrez-Arzaluz

    2016-05-01

    Full Text Available We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce–Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  3. Health Risk Assessment of Inhalation Exposure to Formaldehyde and Benzene in Newly Remodeled Buildings, Beijing

    Science.gov (United States)

    Huang, Lihui; Mo, Jinhan; Sundell, Jan; Fan, Zhihua; Zhang, Yinping

    2013-01-01

    Objective To assess health risks associated with inhalation exposure to formaldehyde and benzene mainly emitted from building and decoration materials in newly remodeled indoor spaces in Beijing. Methods We tested the formaldehyde and benzene concentrations in indoor air of 410 dwellings and 451 offices remodeled within the past year, in which the occupants had health concerns about indoor air quality. To assess non-carcinogenic health risks, we compared the data to the health guidelines in China and USA, respectively. To assess carcinogenic health risks, we first modeled indoor personal exposure to formaldehyde and benzene using the concentration data, and then estimated the associated cancer risks by multiplying the indoor personal exposure by the Inhalation Unit Risk values (IURs) provided by the U.S. EPA Integrated Risk Information System (U.S. EPA IRIS) and the California Office of Environmental Health Hazard Assessment (OEHHA), respectively. Results (1) The indoor formaldehyde concentrations of 85% dwellings and 67% offices were above the acute Reference Exposure Level (REL) recommended by the OEHHA and the concentrations of all tested buildings were above the chronic REL recommended by the OEHHA; (2) The indoor benzene concentrations of 12% dwellings and 32% offices exceeded the reference concentration (RfC) recommended by the U.S. EPA IRIS; (3) The median cancer risks from indoor exposure to formaldehyde and benzene were 1,150 and 106 per million (based on U.S. EPA IRIS IURs), 531 and 394 per million (based on OEHHA IURs). Conclusions In the tested buildings, formaldehyde exposure may pose acute and chronic non-carcinogenic health risks to the occupants, whereas benzene exposure may pose chronic non-carcinogenic risks to the occupants. Exposure to both compounds is associated with significant carcinogenic risks. Improvement in ventilation, establishment of volatile organic compounds (VOCs) emission labeling systems for decorating and refurbishing materials

  4. Formaldehyde-induced mutations in Drosophila melanogaster in dependence of the presence of acids

    Energy Technology Data Exchange (ETDEWEB)

    Stumm-Tegethoff, B F.A.

    1969-01-01

    The mutagenic activity of various combinations of formaldehyde, formic acid, acetic acid and hydrochloric acid was investigated by a sex-linked lethal test. All combinations were mutagenic and showed a mutation pattern from which it is concluded that in feeding experiments spermatocytes I are especially sensitive to the pairs of chemicals tested. In vapour experiments all germ cell stages were found to be susceptible. The presence of volatile acids was found to be necessary for the mutagenic activity of formaldehyde in the vapour state. Mutagenic effects were also observed in larval feeding experiments, in which only these acids were added to the medium. Experiments with stabilized pH at 7.5 did not show a significant mutagenic effect of formaldehyde. It is postulated that the tested agents are catalase inhibitors, which promote the formation of peroxides or free radicals which interfere with DNA replication, thus producing mutations.

  5. An assessment of formaldehyde emissions from laminate flooring manufactured in China.

    Science.gov (United States)

    Pierce, Jennifer S; Abelmann, Anders; Lotter, Jason T; Ruestow, Peter S; Unice, Kenneth M; Beckett, Evan M; Fritz, Heidi A; Bare, Jennifer L; Finley, Brent L

    2016-11-01

    Formaldehyde emissions from two laminate flooring products, labeled as California Air Resources Board (CARB) compliant, were evaluated. Passive 24-hr samples (n = 79) and real-time measurements were collected following installation and removal of the products in two rooms of similar size. Mean formaldehyde concentrations following installation were 0.038 and 0.022 ppm for Products 1 and 2 respectively, and 7 days after flooring removal the concentrations returned to background pre-installation levels. Both products were also evaluated in a small chamber (ASTM D6007) using Deconstructive (de-laminated product) and Non-Deconstructive (intact product) methods. Deconstructive testing showed that Product 1 exceeded the applicable CARB emission standard by 4-fold, while Product 2 was equivalent to the standard. Non-Deconstructive measurements were far below the Deconstructive results and were used to predict 24-hr steady-state room air concentrations. Based on the products that we tested (one of which was found to not be compliant with the CARB standard), the airborne formaldehyde concentrations measured following installation in a real-world setting would not be expected to elicit adverse acute health effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters...

  7. Determination of formaldehyde in frozen fish with formaldehyde dehydrogenase using a flow injection system with an incorporated gel-filtration chromatrography column

    DEFF Research Database (Denmark)

    Bechmann, Iben Ell

    1996-01-01

    in a FIA system. The FIA system is furnished with a gel-filtration chromatography column for on-line removal of the proteins from the extract before the enzymatic analysis is performed. Compared with the standard methods for determination of formaldehyde in fish products the present method is much faster...

  8. Determination of Formaldehyde in Frozen Fish with Formaldehyde Dehydrogenase Using a Flow Injection System with an Incorporated Gel-filtration Chromatography Column

    DEFF Research Database (Denmark)

    Bechmann, Iben Ellegaard

    1996-01-01

    in a FIA system. The FIA system is furnished with a gel-filtration chromatography column for on-line removal of the proteins from the extract before the enzymatic analysis is performed. Compared with the standard methods for determination of formaldehyde in fish products the present method is much faster...

  9. A short review on photocatalytic degradation of formaldehyde

    NARCIS (Netherlands)

    Tasbihi, M.; Bendyna, J.K.; Notten, P.H.L.; Hintzen, H.T.J.M.

    2015-01-01

    Nowadays, it is a great challenge to eliminate toxic and harmful organic pollutants from air and water. This paper reviews the role of TiO2 as a photocatalyst, light source and photoreactor in the particular case of removal of formaldehyde using the photocatalytic reaction by titanium dioxide (TiO2

  10. Effects of a single inhalative exposure to formaldehyde on the open field behavior of mice.

    Science.gov (United States)

    Malek, Fathi A; Möritz, Klaus-Uwe; Fanghänel, Jochen

    2004-02-01

    The effects of formaldehyde on the explorative behavior and locomotor activity of mice after a single inhalative exposure were examined in an open field. Adult male mice were exposed to approximately 1.1 ppm, 2.3 ppm, or 5.2 ppm formaldehyde vapour for 2 hours and the open field test was carried out two hours after the end of exposure (trial 1) and repeated 24 hours thereafter (trial 2). The following behavioral parameters were quantitatively examined: numbers of crossed floor squares (inner, peripheral, total), sniffing, grooming, rearing, climbing, and incidence of fecal boli. The results of the first trial revealed that the motion activity was significantly reduced in all exposed groups. In the 1.1 ppm group, the frequency of rearing was reduced and that of floor sniffing increased. The exposure to the two higher formaldehyde concentrations caused a significant decrease in total numbers of floor squares crossed by the subjects, air sniffing, and rearing. The open field test on the next day (trial 2) showed that the frequencies of floor sniffing, grooming, and rearing in all formaldehyde groups were significantly altered. In the 2.5 ppm group, an increased incidence of fecal boli was observed. From the results obtained, we conclude that the exposure of male mice to formaldehyde vapour affects their locomotor and explorative activity in the open field, and that some open field parameters are still altered in the exposed animals even after 24 hours.

  11. Thermal Performance Analysis For Small Ion-Exchange Cesium Removal Process

    International Nuclear Information System (INIS)

    Lee, S.; King, W.

    2009-01-01

    The In-Riser Ion Exchange program focuses on the development of in-tank systems to decontaminate high level waste (HLW) salt solutions at the Savannah River Site (SRS) and the Hanford Site. Small Column Ion Exchange (SCIX) treatment for cesium removal is a primary in-riser technology for decontamination prior to final waste immobilization in Saltstone. Through this process, radioactive cesium from the salt solution is adsorbed onto the ion exchange media which is packed within a flow-through column. Spherical Resorcinol-Formaldehyde (RF) is being considered as the ion exchange media for the application of this technology at both sites. A packed column loaded with media containing radioactive cesium generates significant heat from radiolytic decay. Under normal operating conditions, process fluid flow through the column can provide adequate heat removal from the columns. However, in the unexpected event of loss of fluid flow or fluid drainage from the column, the design must be adequate to handle the thermal load to avoid unacceptable temperature excursions. Otherwise, hot spots may develop locally which could degrade the performance of the ion-exchange media or the temperature could rise above column safety limits. Data exists which indicates that performance degradation with regard to cesium removal occurs with RF at 65C. In addition, the waste supernate solution will boil around 130C. As a result, two temperature limits have been assumed for this analysis. An additional upset scenario was considered involving the loss of the supernate solution due to inadvertent fluid drainage through the column boundary. In this case, the column containing the loaded media could be completely dry. This event is expected to result in high temperatures that could damage the column or cause the RF sorbent material to undergo undesired physical changes. One objective of these calculations is to determine the range of temperatures that should be evaluated during testing with the RF

  12. Low-level liquid waste decontamination by ion exchange

    International Nuclear Information System (INIS)

    Campbell, D.O.; Lee, D.D.; Dillow, T.A.

    1991-12-01

    Improved processes are being developed to treat contaminated liquid wastes that have been and continue to be generated at Oak Ridge National Laboratory. Both inorganic and organic ion-exchange methods have given promising results. Nickel and cobalt hexacyanoferrate(2) compounds are extremely selective for cesium removal, with distribution coefficients in excess of 10 6 and remarkable insensitivity to competition from sodium and potassium. They tend to lose effectiveness at pH > ∼11, but some formulations are useful for limited periods of time up to pH ∼13. Sodium titanate is selective for strontium removal at high pH. The separations are so efficient that simple batch processes can yield large decontamination factors while generating small volumes of solid waste. A resorcinol-based resin developed at the Savannah River Site gave superior cesium removal, compared with other organic ion exchangers; the distribution coefficient was limited primarily by competition from potassium and was nearly independent of sodium. The optimum pH was ∼12.5. It was much less effective for strontium removal, which was limited by competition from sodium. 8 refs., 6 figs., 9 tabs

  13. Preparation of Diatomite Supported Nano Zinc Oxide Composite Photocatalytic Material and Study on its Formaldehyde Degradation

    Science.gov (United States)

    Xiao, Liguang; Pang, Bo

    2017-09-01

    This experiment used zinc nitrate as precursor, ethanol as solvent and polyethylene glycol as dispersant, diatomite as carrier, diatomite loaded nano Zinc Oxide was prepared by sol-gel method, in addition, the formaldehyde degradation was studied by two kinds of experimental methods: preparation and loading, preparation and post loading, The samples were characterized by SEM, XRD, BET and IR. Experimental results showed that: Diatomite based nano Zinc Oxide had a continuous adsorption and degradation of formaldehyde, formaldehyde gas with initial concentration was 0.7mg/m3, after 36h degradation, the concentration reached 0.238mg/m3, the degradation rate reached to 66%.

  14. Growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes as affected from formaldehyde and methylformate.

    Science.gov (United States)

    Aggelis, G; Margariti, N; Kralli, C; Flouri, F

    2000-06-23

    Formaldehyde and methylformate affect the growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes. The presence of both intermediates in the feeding medium caused an increase in biomass yield and productivity and a decrease in the specific rate of methanol consumption. In the presence of formaldehyde, the activity of formaldehyde dehydrogenase and formate dehydrogenase was essentially increased, whereas the activity of methanol oxidase was decreased. On the contrary, the presence of methylformate caused an increase of the activity of methanol oxidase and a decrease of the activity of formaldehyde dehydrogenase and formate dehydrogenase. Interpretations concerning the yeast behavior in the presence of intermediate oxidation products were considered and discussed.

  15. Emission of formaldehyde by particleboard : effect of ventilation rate and loading on air-contamination levels

    Science.gov (United States)

    George E. Myers; Muneo Nagaoka

    1981-01-01

    Dynamic tests for determining the formaldehyde emission behavior of UF-bonded boards involve the measurement of formaldehyde concentration in the air within a vessel which contains a specified board loading L (m2 of board area per m3 of vessel free volume) and is being ventilated at a specified air exchange rate N (hr.-1). Such tests constitute a primary...

  16. Formaldehyde in Alcoholic Beverages: Large Chemical Survey Using Purpald Screening Followed by Chromotropic Acid Spectrophotometry with Multivariate Curve Resolution

    Directory of Open Access Journals (Sweden)

    Julien A. Jendral

    2011-01-01

    Full Text Available A strategy for analyzing formaldehyde in beer, wine, spirits, and unrecorded alcohol was developed, and 508 samples from worldwide origin were analyzed. In the first step, samples are qualitatively screened using a simple colorimetric test with the purpald reagent, which is extremely sensitive for formaldehyde (detection limit 0.1 mg/L. 210 samples (41% gave a positive purpald reaction. In the second step, formaldehyde in positive samples is confirmed by quantitative spectrophotometry of the chromotropic acid-formaldehyde derivative combined with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS. Calculation of UV-VIS and 13C NMR spectra confirmed the monocationic dibenzoxanthylium structure as the product of the reaction and disproved the widely cited para,para-quinoidal structure. Method validation for the spectrophotometric procedure showed a detection limit of 0.09 mg/L and a precision of 4.2–8.2% CV. In total, 132 samples (26% contained formaldehyde with an average of 0.27 mg/L (range 0–14.4 mg/L. The highest incidence occurred in tequila (83%, Asian spirits (59%, grape marc (54%, and brandy (50%. Our survey showed that only 9 samples (1.8% had formaldehyde levels above the WHO IPCS tolerable concentration of 2.6 mg/L.

  17. Formaldehyde in alcoholic beverages: large chemical survey using purpald screening followed by chromotropic Acid spectrophotometry with multivariate curve resolution.

    Science.gov (United States)

    Jendral, Julien A; Monakhova, Yulia B; Lachenmeier, Dirk W

    2011-01-01

    A strategy for analyzing formaldehyde in beer, wine, spirits, and unrecorded alcohol was developed, and 508 samples from worldwide origin were analyzed. In the first step, samples are qualitatively screened using a simple colorimetric test with the purpald reagent, which is extremely sensitive for formaldehyde (detection limit 0.1 mg/L). 210 samples (41%) gave a positive purpald reaction. In the second step, formaldehyde in positive samples is confirmed by quantitative spectrophotometry of the chromotropic acid-formaldehyde derivative combined with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Calculation of UV-VIS and (13)C NMR spectra confirmed the monocationic dibenzoxanthylium structure as the product of the reaction and disproved the widely cited para,para-quinoidal structure. Method validation for the spectrophotometric procedure showed a detection limit of 0.09 mg/L and a precision of 4.2-8.2% CV. In total, 132 samples (26%) contained formaldehyde with an average of 0.27 mg/L (range 0-14.4 mg/L). The highest incidence occurred in tequila (83%), Asian spirits (59%), grape marc (54%), and brandy (50%). Our survey showed that only 9 samples (1.8%) had formaldehyde levels above the WHO IPCS tolerable concentration of 2.6 mg/L.

  18. Co-Adsorption of Ammonia and Formaldehyde on Regenerable Carbon Sorbents for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique S.

    2016-01-01

    Results are presented on the development of a reversible carbon sorbent for trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is deemed non-regenerable, while the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on concurrent sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, are presented in this paper. A carbon sorbent was fabricated by dry impregnation of a reticulated carbon-foam support with polyvinylidene chloride, followed by carbonization and thermal oxidation in air. Sorbent performance was tested for ammonia and formaldehyde sorption and vacuum regeneration, with and without water present in the gas stream. It was found that humidity in the gas phase enhanced ammonia-sorption capacity by a factor larger than two. Co-adsorption of ammonia and formaldehyde in the presence of water resulted in strong formaldehyde sorption (to the point that it was difficult to saturate the sorbent on the time scales used in this study). In the absence of humidity, adsorption of formaldehyde on the carbon surface was found to impair ammonia sorption in subsequent runs; in the presence of water, however, both ammonia and formaldehyde could be efficiently removed from the gas phase by the sorbent. The efficiency of vacuum regeneration could be enhanced by gentle heating to temperatures below 60 deg.

  19. Two-photon imaging of formaldehyde in live cells and animals utilizing a lysosome-targetable and acidic pH-activatable fluorescent probe.

    Science.gov (United States)

    Xie, Xilei; Tang, Fuyan; Shangguan, Xiaoyan; Che, Shiyi; Niu, Jinye; Xiao, Yongsheng; Wang, Xu; Tang, Bo

    2017-06-13

    Lyso-TPFP presents lysosomal targetability and an acidic pH-activatable response toward formaldehyde. Thus, it exclusively visualizes lysosomal formaldehyde and is immune against it in neutral cytosol and other organelles. In addition, two-photon fluorescence imaging endows Lyso-TPFP with the capability of in situ tracking formaldehyde in live cells and animals.

  20. Selective Removal of Toxic Metals like Copper and Arsenic from Drinking Water Using Phenol-Formaldehyde Type Chelating Resins

    Directory of Open Access Journals (Sweden)

    Debasis Mohanty

    2009-01-01

    Full Text Available The concentration of different toxic metals has increased beyond environmentally and ecologically permissible levels due to the increase in industrial activity. More than 100 million people of Bangladesh and West Bengal in India are affected by drinking ground water contaminated with arsenic and some parts of India is also affected by poisoning effect of copper, cadmium and fluoride. Different methods have been evolved to reduce the arsenic concentration in drinking water to a maximum permissible level of 10 μg/L where as various methods are also available to separate copper from drinking water. Of the proven methods available today, removal of arsenic by polymeric ion exchangers has been most effective. While chelating ion exchange resins having specific chelating groups attached to a polymer have found extensive use in sorption and pre concentration of Cu2+ ions. Both the methods are coupled here to separate and preconcentrate toxic metal cation Cu2+ and metal anion arsenate(AsO4– at the same time. We have prepared a series of low-cost polymeric resins, which are very efficient in removing copper ion from drinking water and after coordinating with copper ion they act as polymeric ligand exchanger, which are efficiently removing arsenate from drinking water. For this purpose Schiff bases were prepared by condensing o-phenylenediamine with o-, m-, and p-hydroxybenzaldehydes. Condensing these phenolic Schiff bases with formaldehyde afforded the chelating resins in high yields. These resins are loaded with Cu2+, Ni2+ 2+, and Fe3+ ions. The resins and the polychelates are highly insoluble in water. In powdered form the metal ion-loaded resins are found to very efficiently remove arsenate ion from water at neutral pH. Resins loaded with optimum amount of Cu2+ ion is more effective in removing arsenate ions compared to those with Fe3+ ion, apparently because Cu2+ is a stronger Lewis acid than Fe3+. Various parameters influencing the removal of the

  1. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    Science.gov (United States)

    Hooker, Jacob Matthew [Port Jefferson, NY; Schonberger, Matthias [Mains, DE; Schieferstein, Hanno [Aabergen, DE; Fowler, Joanna S [Bellport, NY

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  2. Resorcinol-, catechol- and saligenin-based bronchodilating β2-agonists as inhibitors of human cholinesterase activity.

    Science.gov (United States)

    Bosak, Anita; Knežević, Anamarija; Gazić Smilović, Ivana; Šinko, Goran; Kovarik, Zrinka

    2017-12-01

    We investigated the influence of bronchodilating β2-agonists on the activity of human acetylcholinesterase (AChE) and usual, atypical and fluoride-resistant butyrylcholinesterase (BChE). We determined the inhibition potency of racemate and enantiomers of fenoterol as a resorcinol derivative, isoetharine and epinephrine as catechol derivatives and salbutamol and salmeterol as saligenin derivatives. All of the tested compounds reversibly inhibited cholinesterases with K i constants ranging from 9.4 μM to 6.4 mM and had the highest inhibition potency towards usual BChE, but generally none of the cholinesterases displayed any stereoselectivity. Kinetic and docking results revealed that the inhibition potency of the studied compounds could be related to the size of the hydroxyaminoethyl chain on the benzene ring. The additional π-π interaction of salmeterol's benzene ring and Trp286 and hydrogen bond with His447 probably enhanced inhibition by salmeterol which was singled out as the most potent inhibitor of all the cholinesterases.

  3. Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible "prebiotic" conditions

    Science.gov (United States)

    Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.

    2011-08-01

    The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.

  4. [Determination of formaldehyde and acetaldehyde in packaging paper by dansylhydrazine derivatization-high performance liquid chromatography-fluorescence detection].

    Science.gov (United States)

    Gong, Shuguo; Liang, Yong; Tang, Liyun; Huang, Ping; Dai, Yunhui

    2017-07-08

    A high performance liquid chromatography with fluorescence detection (HPLC-FLD) method was developed for the simultaneous determination of formaldehyde and acetaldehyde in packaging paper by dansylhydrazine (DNSH) derivatization. The samples were extracted by derivatization reagent for 30 min, and derived for 24 h. After purifying treatment with a PSA/C18 cartridge, a Diamonsil ® C18 column (150 mm×4.6 mm, 5 μ m) was used as stationary phase for separation, the mixtures of acetic acid aqueous solution (pH 2.55)-acetonitrile were used as mobile phases by gradient elution, and the excitation and emission wavelengths were 330 nm and 484 nm, respectively. The results showed that the recoveries of formaldehyde and acetaldehyde spiked in the samples were 81.64%-106.78%, and the relative standard deviations (RSDs) were 2.02%-5.53% ( n =5). The limits of detection of formaldehyde and acetaldehyde were 19.2 μ g/kg and 20.7 μ g/kg, respectively. The limits of quantification of formaldehyde and acetaldehyde were 63.9 μ g/kg and 69.1 μ g/kg, respectively. The method is simple, sensitive and reproducible. It provides a basic approach for the determination of trace formaldehyde and acetaldehyde.

  5. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Prakash, Amrit; Afzal, Mohd.; Panakkal, J.P.

    2009-02-01

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO 2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na 2 SO 4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe 3+ , Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Mn 2+ , Li + , Na + , K + , Mg 2+ , Ca 2+ and Sr 2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO 2 sample by solvent extraction with 30% TBP - TOPO/CCl 4 . Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO 2 . (author)

  6. Treatment of marine sewage pumpout and RV park pumpout wastewater containing high strength concentrations of formaldehyde

    International Nuclear Information System (INIS)

    Salonich, J.

    2002-01-01

    'Full text:' A consortium of companies has developed an integrated 'on-site' wastewater treatment technology that is capable of handling and degrading RV Park and Marine Sewage Pumpout Wastes which contain formaldehyde [35 - 80 mg/L]. Boat and RV owners add formaldehyde to their toilets to eliminate odors. When these materials are pumped out they are high in solids content and have high concentrations of HCHO, which makes them difficult to degrade at POTWs. At the heart of this process is 1. An aeration tank with a Venturi Aerator totally external to the tank and 2. The addition of a blend of cultured bacteria that have selected for their ability to degrade formaldehyde. For a complete 'on-site' treatment system Bioclere Trickling Filters can follow this aeration/bacterial treatment system. This is an ideal system configuration for remote locations (RV Parks) or for fresh water lake Marinas looking to reduce their disposal costs and for groundwater discharge with no adverse effect on water quality. Until the development of the formaldehyde degrading bacteria for an industrial wastewater process there were no cultures commercially available specifically for degrading formaldehyde. The most commonly used bacteria were pseudomonas strains for carbohydrate or hydrocarbon wastewater extracted from activated sludge plants. And since formaldehyde is infinitely soluble in a liquid it is difficult to degrade or mineralize. The process in an activated sludge WWTP plant took over 72 hours. With the newly selected consortia of cultures, HCHO can be degraded in 12-14 hours on a batch basis. This is accomplished in a uniquely configured aeration tank where the 'environment' of the tank is constantly conditioned by a Venturi Aerator which strips carbon dioxide generated by the aerobes to maintain a neutral pH, and provide high levels of DO (>5.0 mg/L) to keep the process aerobic. (author)

  7. Formaldehyde Adsorption into Clinoptilolite Zeolite Modified with the Addition of Rich Materials and Desorption Performance Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Amin Kalantarifard

    2016-01-01

    Full Text Available Granite, bentonite, and starch were mixed with clinoptilolite zeolite to produce a modified zeolite. The modified zeolite was tested for its ability to absorb formaldehyde from air. The modified sample formaldehyde adsorption capacity was then compared with those of commercially available clinoptilolite, faujasite (Y, mordenite, and zeolite type A. Studies were focused on the relationships between the physical characteristics of the selected zeolites (crystal structure, surface porosity, pore volume, pore size and their formaldehyde adsorption capacity. The removal of starch at high temperature (1100°C and addition of bentonite during modified clinoptilolite zeolite (M-CLZ preparation generated large pores and a higher pore distribution on the sample surface, which resulted in higher adsorption capacity. The formaldehyde adsorption capacities of M-CLZ, clinoptilolite, faujasite (Y, zeolite type A, and mordenite were determined to be 300.5, 194.5, 123.7, 106.7, and 70 mg per gram of zeolite, respectively. The M-CLZ, clinoptilolite, and faujasite (Y crystals contained both mesoporous and microporous structures, which resulted in greater adsorption, while the zeolite type A crystal showed a layered structure and lower surface porosity, which was less advantageous for formaldehyde adsorption. Furthermore, zeolite regeneration using microwave heating was investigated focusing on formaldehyde removal by desorption from the zeolite samples. XRD, XRF, N2 adsorption/desorption, and FE-SEM experiments were performed to characterize the surface structure and textural properties the zeolites selected in this study.

  8. Prebiotic Amino Acid Thioester Synthesis: Thiol-Dependent Amino Acid Synthesis from Formose substrates (Formaldehyde and Glycolaldehyde) and Ammonia

    Science.gov (United States)

    Weber, Arthur L.

    1998-01-01

    Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.

  9. Improved Nissl method to stain formaldehyde or glutaraldehyde-fixed material.

    Science.gov (United States)

    Böck, P

    1979-05-15

    Nissl staining of paraffin sections from formaldehyde- or glutaraldehyde-fixed specimens is significantly intensified when sections are kept in a 50% (w/v) aqueous solution of potassium metabisulfite before being stained by a conventional Nissl method.

  10. Effect of ventilation rate and board loading on formaldehyde concentration : a critical review of the literature

    Science.gov (United States)

    George E. Myers

    1984-01-01

    A critical literature review has been carried out on the influence of ventilation rate (N, hr.-1) and board loading (L, m2/m3) on steady state formaldehyde concentrations (Cs, ppm) resulting from particleboard and plywood emissions. Large differences exist among boards in the extent to which their formaldehyde concentrations change with N or L in laboratory chambers....

  11. Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO{sub 2} composite

    Energy Technology Data Exchange (ETDEWEB)

    Kibanova, Daria [Facultad de Quimica, Universidad Nacional Autonoma de Mexico (Mexico); Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana (Mexico); Sleiman, Mohamad [Lawrence Berkeley National Laboratory, Indoor Environment Group, Environmental Energy Technologies Division (United States); Cervini-Silva, Javiera, E-mail: jcervini@correo.cua.uam.mx [Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana (Mexico); NASA Astrobiology Institute (United States); Destaillats, Hugo, E-mail: HDestaillats@lbl.gov [Lawrence Berkeley National Laboratory, Indoor Environment Group, Environmental Energy Technologies Division (United States); Arizona State University, Department of Chemistry and Biochemistry (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Formaldehyde adsorption and photocatalytic elimination on hectorite-TiO{sub 2} nanocomposites. Black-Right-Pointing-Pointer Dark adsorption in dry air >4 times higher than P25 (reference). Black-Right-Pointing-Pointer Dark adsorption in humid air dominated by adsorbed water layer. Black-Right-Pointing-Pointer Photocatalytic removal efficiency proportional to the Ti content, increased with contact time. Black-Right-Pointing-Pointer More complete elimination with 254 + 185 nm irradiation. - Abstract: We investigated the adsorption capacity and photocatalytic removal efficiency of formaldehyde using a hectorite-TiO{sub 2} composite in a bench flow reactor. The same experimental conditions were applied to pure TiO{sub 2} (Degussa P25) as a reference. The catalysts were irradiated with either a UVA lamp (365 nm) or with one of two UVC lamps of 254 nm and 254 + 185 nm, respectively. Formaldehyde was introduced upstream at concentrations of 100-500 ppb, with relative humidity (RH) in the range 0-66% and residence times between 50 and 500 ms. Under dry air and without illumination, saturation of catalyst surfaces was achieved after {approx}200 min for P25 and {approx}1000 min for hectorite-TiO{sub 2}. The formaldehyde uptake capacity by hectorite-TiO{sub 2} was 4.1 times higher than that of P25, almost twice the BET surface area ratio. In the presence of humidity, the difference in uptake efficiency between both materials disappeared, and saturation was achieved faster (after {approx}200 min at 10% RH and {approx}60 min at 65% RH). Under irradiation with each of the three UV sources, removal efficiencies were proportional to the Ti content and increased with contact time. The removal efficiency decreased at high RH. A more complete elimination of formaldehyde was observed with the 254 + 185 nm UV source.

  12. Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry

    Directory of Open Access Journals (Sweden)

    J. P. DiGangi

    2012-10-01

    Full Text Available We present simultaneous fast, in-situ measurements of formaldehyde and glyoxal from two rural campaigns, BEARPEX 2009 and BEACHON-ROCS, both located in Pinus Ponderosa forests with emissions dominated by biogenic volatile organic compounds (VOCs. Despite considerable variability in the formaldehyde and glyoxal concentrations, the ratio of glyoxal to formaldehyde, RGF, displayed a very regular diurnal cycle over nearly 2 weeks of measurements. The only deviations in RGF were toward higher values and were the result of a biomass burning event during BEARPEX 2009 and very fresh anthropogenic influence during BEACHON-ROCS. Other rapid changes in glyoxal and formaldehyde concentrations have hardly any affect on RGF and could reflect transitions between low and high NO regimes. The trend of increased RGF from both anthropogenic reactive VOC mixtures and biomass burning compared to biogenic reactive VOC mixtures is robust due to the short timescales over which the observed changes in RGF occurred. Satellite retrievals, which suggest higher RGF for biogenic areas, are in contrast to our observed trends. It remains important to address this discrepancy, especially in view of the importance of satellite retrievals and in situ measurements for model comparison. In addition, we propose that RGF represents a useful metric for biogenic or anthropogenic reactive VOC mixtures and, in combination with absolute concentrations of glyoxal and formaldehyde, furthermore represents a useful metric for the extent of anthropogenic influence on overall reactive VOC processing via NOx. In particular, RGF yields information about not simply the VOCs dominating reactivity in an airmass, but the VOC processing itself that is directly coupled to ozone and secondary organic aerosol production.

  13. Multicenter Patch Testing With a Resol Resin Based on Phenol and Formaldehyde Within the International Contact Dermatitis Research Group.

    Science.gov (United States)

    Isaksson, Marléne; Ale, Iris; Andersen, Klaus; Diepgen, Thomas; Elsner, Peter; Goossens, An; Goh, Chee-Leok; Jerajani, Hemangi; Maibach, Howard; Matsunaga, Kayoko; McFadden, John; Nixon, Rosemary; Sasseville, Denis; Bruze, Magnus

    2015-01-01

    Contact allergy to phenol-formaldehyde resins (PFRs) based on phenol and formaldehyde is not detected by a p-tertiary-butylphenol-formaldehyde resin included in most baseline patch test series. The aims of this study were to investigate the contact allergy rate to PFR-2 in an international population and to investigate associated simultaneous allergic reactions. Thirteen centers representing the International Contact Dermatitis Research Group included PFR-2 into their patch test baseline series during a period of 6 months in 2012. Of 2259 patients tested, 28 (1.2%) reacted to PFR-2. Of those 28 individuals, one had a positive reaction to formaldehyde and 2 to p-tertiary-butylphenol-formaldehyde resin. Simultaneous allergic reactions were noted to colophonium in 3, to Myroxylon pereirae in 5, and to fragrance mix I in 8. The contact allergy frequency in the tested population (1.2%) merits its inclusion into the international baseline series and possibly also into other baseline series after appropriate investigations. Significantly, overrepresented simultaneous allergic reactions were noted for M. pereirae and fragrance mix I.

  14. EXPLORING THE POTENTIAL FORMATION OF ORGANIC SOLIDS IN CHONDRITES AND COMETS THROUGH POLYMERIZATION OF INTERSTELLAR FORMALDEHYDE

    International Nuclear Information System (INIS)

    Kebukawa, Yoko; Cody, George D.; David Kilcoyne, A. L.

    2013-01-01

    Polymerization of interstellar formaldehyde, first through the formose reaction and then through subsequent condensation reactions, provides a plausible explanation for how abundant and highly chemically complex organic solids may have come to exist in primitive solar system objects. In order to gain better insight on the reaction, a systematic study of the relationship of synthesis temperature with resultant molecular structure was performed. In addition, the effect of the presence of ammonia on the reaction rate and molecular structure of the product was studied. The synthesized formaldehyde polymer is directly compared to chondritic insoluble organic matter (IOM) isolated from primitive meteorites using solid-state 13 C nuclear magnetic resonance, Fourier transform infrared, and X-ray absorption near edge structure spectroscopy. The molecular structure of the formaldehyde polymer is shown to exhibit considerable similarity at the functional group level with primitive chondritic IOM. The addition of ammonia to the solution enhances the rate of polymerization reaction at lower temperatures and results in substantial incorporation of nitrogen into the polymer. Morphologically, the formaldehyde polymer exists as submicron to micron-sized spheroidal particles and spheroidal particle aggregates that bare considerable similarity to the organic nanoglobules commonly observed in chondritic IOM. These spectroscopic and morphological data support the hypothesis that IOM in chondrites and refractory organic carbon in comets may have formed through the polymerization of interstellar formaldehyde after planetesimal accretion, in the presence of liquid water, early in the history of the solar system.

  15. EXPLORING THE POTENTIAL FORMATION OF ORGANIC SOLIDS IN CHONDRITES AND COMETS THROUGH POLYMERIZATION OF INTERSTELLAR FORMALDEHYDE

    Energy Technology Data Exchange (ETDEWEB)

    Kebukawa, Yoko; Cody, George D. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015 (United States); David Kilcoyne, A. L., E-mail: ykebukawa@ciw.edu, E-mail: yoko@ep.sci.hokudai.ac.jp [Advanced Light Source, Lawrence Berkeley National Laboratory, Mail Stop 7R0222, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2013-07-01

    Polymerization of interstellar formaldehyde, first through the formose reaction and then through subsequent condensation reactions, provides a plausible explanation for how abundant and highly chemically complex organic solids may have come to exist in primitive solar system objects. In order to gain better insight on the reaction, a systematic study of the relationship of synthesis temperature with resultant molecular structure was performed. In addition, the effect of the presence of ammonia on the reaction rate and molecular structure of the product was studied. The synthesized formaldehyde polymer is directly compared to chondritic insoluble organic matter (IOM) isolated from primitive meteorites using solid-state {sup 13}C nuclear magnetic resonance, Fourier transform infrared, and X-ray absorption near edge structure spectroscopy. The molecular structure of the formaldehyde polymer is shown to exhibit considerable similarity at the functional group level with primitive chondritic IOM. The addition of ammonia to the solution enhances the rate of polymerization reaction at lower temperatures and results in substantial incorporation of nitrogen into the polymer. Morphologically, the formaldehyde polymer exists as submicron to micron-sized spheroidal particles and spheroidal particle aggregates that bare considerable similarity to the organic nanoglobules commonly observed in chondritic IOM. These spectroscopic and morphological data support the hypothesis that IOM in chondrites and refractory organic carbon in comets may have formed through the polymerization of interstellar formaldehyde after planetesimal accretion, in the presence of liquid water, early in the history of the solar system.

  16. Exploring the Potential Formation of Organic Solids in Chondrites and Comets through Polymerization of Interstellar Formaldehyde

    Science.gov (United States)

    Kebukawa, Yoko; Kilcoyne, A. L. David; Cody, George D.

    2013-07-01

    Polymerization of interstellar formaldehyde, first through the formose reaction and then through subsequent condensation reactions, provides a plausible explanation for how abundant and highly chemically complex organic solids may have come to exist in primitive solar system objects. In order to gain better insight on the reaction, a systematic study of the relationship of synthesis temperature with resultant molecular structure was performed. In addition, the effect of the presence of ammonia on the reaction rate and molecular structure of the product was studied. The synthesized formaldehyde polymer is directly compared to chondritic insoluble organic matter (IOM) isolated from primitive meteorites using solid-state 13C nuclear magnetic resonance, Fourier transform infrared, and X-ray absorption near edge structure spectroscopy. The molecular structure of the formaldehyde polymer is shown to exhibit considerable similarity at the functional group level with primitive chondritic IOM. The addition of ammonia to the solution enhances the rate of polymerization reaction at lower temperatures and results in substantial incorporation of nitrogen into the polymer. Morphologically, the formaldehyde polymer exists as submicron to micron-sized spheroidal particles and spheroidal particle aggregates that bare considerable similarity to the organic nanoglobules commonly observed in chondritic IOM. These spectroscopic and morphological data support the hypothesis that IOM in chondrites and refractory organic carbon in comets may have formed through the polymerization of interstellar formaldehyde after planetesimal accretion, in the presence of liquid water, early in the history of the solar system.

  17. Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams

    International Nuclear Information System (INIS)

    Ding Huixian; Zhu Aimin; Lu Fugong; Xu Yong; Zhang Jing; Yang Xuefeng

    2006-01-01

    Formaldehyde (HCHO) is a typical air pollutant capable of causing serious health disorders in human beings. This work reports plasma-catalytic oxidation of formaldehyde in gas streams via dielectric barrier discharges over Ag/CeO 2 pellets at atmospheric pressure and 70 0 C. With a feed gas mixture of 276 ppm HCHO, 21.0% O 2 , 1.0% H 2 O in N 2 , ∼99% of formaldehyde can be effectively destructed with an 86% oxidative conversion into CO 2 at GHSV of 16500 h -1 and input discharge energy density of 108 J l -1 . At the same experimental conditions, the conversion percentages of HCHO to CO 2 from pure plasma-induced oxidation (discharges over fused silica pellets) and from pure catalytic oxidation over Ag/CeO 2 (without discharges) are 6% and 33% only. The above results and the CO plasma-catalytic oxidation experiments imply that the plasma-generated short-lived gas phase radicals, such as O and HO 2 , play important roles in the catalytic redox circles of Ag/CeO 2 to oxidize HCHO and CO to CO 2

  18. Pressure dependent isotopic fractionation in the photolysis of formaldehyde-d2

    DEFF Research Database (Denmark)

    Nilsson, E.J.K.; Schmidt, Johan Albrecht; Johnson, Matthew Stanley

    2014-01-01

    role in the observed pressure dependent photolytic fractionation of deuterium. The model shows that part of the fractionation is a result of competition between the isotopologue dependent rates of unimolecular dissociation and collisional relaxation. We suggest that the remaining fractionation is due......The isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions and the δD of atmospheric in situ hydrogen production. A few recent studies have suggested that a pressure dependence in the isotopic fractionation can partly explain enrichment of deuterium...... with altitude in the atmosphere. The mechanism and the extent of this pressure dependency is, however, not adequately described. In the present work D2CO and H2CO were photolyzed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our...

  19. The effect of occupational exposure to formaldehyde on blood platelets of employees in a wood industry company

    Directory of Open Access Journals (Sweden)

    2013-02-01

    Full Text Available Introduction: Existing literatures indicate that occupational exposure to formaldehyde may decrease blood platelets. In this study, the influences of occupational exposure to formaldehyde on the number of blood plateletsand clinical symptoms were studied while determining the occupational exposure of employees of a wood industry to formaldehyde. .Material and Method: In a case study, the occupational exposure to formaldehyde was determined among 30 workers from production line and 30 administrative staffs of a wood company using US-NIOSH method No 2541. The number of blood platelets was determined using the normal blood count method and related indices. Demographic data as well as the clinical symptoms of exposure to formaldehyde were collected using a standard questionnaire. The smokers and those using drugs interacting with similar symptoms and blood characteristics were excluded from the study. Ethical principles for medical research involving human subjects announced in Helsinki declaration were considered. The research proposal had been approved by the university committee of ethics prior to its execution. Details of tests were explained for all subjects and a written consent was signed by each subject. .Result: Occupational exposure of workers in various parts of particle board production line ranged from 0.5 ppm to 1.52 ppm which was higher than the ceiling level (0.3 ppm recommended by US-ACGIH. The prevalence of all studied symptoms from formaldehyde exposure in workers was significantly higher than the administrative staffs. In case group, tearing rate was the highest average 8.98 while the chest pain with an average rate of 3.20 was the lowest. In control group, the prevalence of coughing with an average rate of 6.62 was the highest and the chest pain with an average rate of 5.53 was the lowest. The average number and standard deviation of blood platelets of workers in production line and staffs were statistically different with the

  20. Extractive spectrophotometric determination of molybdenum in steels and nickel base high-temperature alloys as a ternary complex with hydroxylamine hydrochloride and 4-(2-pyridylazo) resorcinol

    International Nuclear Information System (INIS)

    Reddy, M.R.P.; Kumar, P.V.S.; Shyamsundar, J.P.; Anjaneyulu, Y.

    1990-01-01

    The red coloured, ternary complex formed by molybdenum(VI) with hydroxylamine hydrchloride and 4-(2-pyridylazo) resorcinol (PAR), on heating for 20 minutes in a hot water bath at pH 6-8, can be extracted with a mixture of n-butanol and benzene (4:1). This complex exhibits absorption maximum at 530nm with a molar absorptivity of 2.8x10 4 lit. mol -1 cm -1 and obeys Beer's law upto 4.5μg/ml of Mo(VI). The composition of the complex is found to be 1:1:1, for Mo(VI): hydroxylamine hydrochloride: PAR. Large amounts of tartaric acid and 2, 2-diamino-cyclohexane tetra acetic acid (CyDTA) can be tolerated in this method. The extraction becomes highly selective in presence of CyDTA (3ml of 5x10 -2 M) and interference of ions like Fe(III)(5mg), Pb(II)(4mg), Zn(II)(2mg), Cu(II)(4mg), Mn(II)(3mg), Ni(II)(4mg), Sn(II)(3mg), Cr(VI)(2mg) and Bi(III)(0.5mg) can be effectively supressed in the determination of 10-45μg of molybdenum. The method can be successfully applied for the determination of molybdenum in steels and nickel base high temperature alloys. (author). 2 tabs., 8 refs

  1. Preparation and characterization of poly (urea-formaldehyde) walled dicyclopentadiene microcapsules

    NARCIS (Netherlands)

    Xiong, W.; Zhu, G.; Tang, J.; Dong, B.; Han, N.; Xing, F.; Schlangen, H.E.J.G.

    2013-01-01

    Poly (urea-formaldehyde) (PUF) shelled dicyclopentadiene (DCPD) microcapsules were prepared by in-situ polymerization technology for self-healing concrete applications. It’s found, during the process, sodium dodecyl benzene sulfonate (SDBS) behaves better in emulsification of DCPD than other

  2. Synthesis and Characterization Carbon Nanotubes Doped Carbon Aerogels

    Science.gov (United States)

    Xu, Yuelong; Yan, Meifang; Liu, Zhenfa

    2017-12-01

    Polycondensation of phloroglucinol, resorcinol and formaldehyde with carbon nanotube (CNT) as the additives, using sodium carbonate as the catalyst, leads to the formation of CNT - doped carbon aerogels. The structure of carbon aerogels (CAs) with carbon nanotubes (CNTs) were characterized by X-ray diffraction and scanning electron microscopy. The specific surface area, pore size distribution and pore volume were measured by surface area analyzer. The results show that when the optimum doping dosage is 5%, the specific surface area of CNT - doped carbon aerogel is up to 665 m2 g-1 and exhibit plentiful mesoporous.

  3. Porous structured niobium pentoxide/carbon complex for lithium-ion intercalation pseudocapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Guoming; Li, Heshun; Gao, Lixin [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Zhang, Daquan, E-mail: zhangdaquan@shiep.edu.cn [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Lin, Tong [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia)

    2016-12-15

    Highlights: • A simple one-pot in situ hydrothermal method to prepare T-Nb{sub 2}O{sub 5}/C. • The composite has well-dispersed C among nano-scale Nb{sub 2}O{sub 5}. • The composite has excellent large-current discharge property. • The composite has no obvious drop after 1000 cycles at 5 A g{sup −1}. - Abstract: A facile soft-templated synthesis of the niobium pentoxide/carbon (Nb{sub 2}O{sub 5}/C) from the polymerization of resorcinol with formaldehyde under the hydrothermal condition is introduced. This material has been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS) techniques. The carbon is well-dispersed in the nanostructure along with Nb{sub 2}O{sub 5} and the material is porous. The intimate contact between Nb{sub 2}O{sub 5} and carbon improves its conductivity. The electrochemical studies revealed that the porous Nb{sub 2}O{sub 5}/C displayed good pseudocapacitive response. The specific capacitance of the Nb{sub 2}O{sub 5}/C was 387 F g{sup −1} at 0.1 A g{sup −1} and 210 F g{sup −1} at 5 A g{sup −1}. The Nb{sub 2}O{sub 5}/C exhibits superior cycling performance, which can remain about 96% of its initial capacitance after 1000 cycles at 5 A g{sup −1}.

  4. Micro-Electromechanical Acoustic Resonator Coated with Polyethyleneimine Nanofibers for the Detection of Formaldehyde Vapor

    Directory of Open Access Journals (Sweden)

    Da Chen

    2018-02-01

    Full Text Available We demonstrate a promising strategy to combine the micro-electromechanical film bulk acoustic resonator and the nanostructured sensitive fibers for the detection of low-concentration formaldehyde vapor. The polyethyleneimine nanofibers were directly deposited on the resonator surface by a simple electrospinning method. The film bulk acoustic resonator working at 4.4 GHz acted as a sensitive mass loading platform and the three-dimensional structure of nanofibers provided a large specific surface area for vapor adsorption and diffusion. The ultra-small mass change induced by the absorption of formaldehyde molecules onto the amine groups in polyethyleneimine was detected by measuring the frequency downshift of the film bulk acoustic resonator. The proposed sensor exhibits a fast, reversible and linear response towards formaldehyde vapor with an excellent selectivity. The gas sensitivity and the detection limit were 1.216 kHz/ppb and 37 ppb, respectively. The study offers a great potential for developing sensitive, fast-response and portable sensors for the detection of indoor air pollutions.

  5. Concomitant contact allergies to formaldehyde, methylchloroisothiazolinone/methylisothiazolinone, methylisothiazolinone, and fragrance mixes I and II.

    Science.gov (United States)

    Pontén, Ann; Bruze, Magnus; Engfeldt, Malin; Hauksson, Inese; Isaksson, Marléne

    2016-11-01

    Contact allergies to the preservatives formaldehyde and methylchloroisothiazolinone (MCI)/methylisothiazolinone (MI) have been reported to appear together at a statistically significant level. Recently, revisions concerning the patch test preparations of MCI/MI, MI and formaldehyde have been recommended for the European baseline series. To investigate (i) the number of concomitant contact allergies to the preservatives, (ii) the number of concomitant contact allergies to the preservatives and the fragrance mixes (FM I and FM II) and (iii) gender differences. Patients tested with the Swedish baseline series during the period 2012-2014 at the Department of Occupational and Environmental Dermatology in Malmö, Sweden were investigated. 2165 patients were patch tested with the baseline series (34% males and 66% females). Contact allergies to formaldehyde and MCI/MI and/or MI were significantly associated (p fragrance allergy. Males and females do not differ significantly concerning contact allergy to fragrances. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. [Microbial resistance to formaldehyde. I. Comparative quantitative studies in some selected species of vegetative bacteria, bacterial spores, fungi, bacteriophages and viruses].

    Science.gov (United States)

    Spicher, G; Peters, J

    1976-12-01

    The resistence of different microorganisms to formaldehyde was determined. As test objects served gram-negative and gram-positive vegetative germs (Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella paratyphi-B, Staphylococcus aureus, Streptococcus faecalis), bacterial spores (Bacillus cereus, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis), fungi (Aspergillus niger, Candida albicans), bacteriophages (Escherichia coli phages, T1, T2, T3), and viruses (adenovirus, poliomyelitis virus, vaccinia virus). For the studies, suspensions of germs were exposed at identical temperature (20 degrees C) and pH (7.0). The microbicidal effect of formaldehyde was measured by the decrease of the proportion of germs capable of multiplication in the suspension (lg (N/N0); where: N0 equals initial number of germs capable of multiplication; N equals number of germs capable of multiplication after exposure to formaldehyde). For all germs the dependence of the microbicidal effect on the concentration of formaldehyde was determined. In all experiments, the duration of exposure was two hours. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella paratyphi-B were found to be more susceptible than Staphylococcus aureus (vf. Fig. 1 A). The strains of Pseudomonas aeruginosa used were widely varying as to their susceptibility. To obtain equal microbicidal effects, concentrations of formaldehyde almost three times as high had to be used for the most resistant strain than were necessary for the most susceptible strain of Pseudomonas aeruginosa. All strains of Klebsiella pneumoniae examined were found to have an identical resistence to formaldehyde. Streptococcus faecalis was even more resistant to formaldehyde than Staphylococcus aureus. In the case of Streptococcus faecalis, a concentration of formaldehyde about three times as high had to be used to obtain microbicidal effects of identical magnitude. For the killing of Candida albicans cells concentrations of

  7. Formaldehyde roaming dynamics: Comparison of quasi-classical trajectory calculations and experiments.

    Science.gov (United States)

    Houston, Paul L; Wang, Xiaohong; Ghosh, Aryya; Bowman, Joel M; Quinn, Mitchell S; Kable, Scott H

    2017-07-07

    The photodissociation dynamics of roaming in formaldehyde are studied by comparing quasi-classical trajectory calculations performed on a new potential energy surface (PES) to new and detailed experimental results detailing the CO + H 2 product state distributions and their correlations. The new PES proves to be a significant improvement over the past one, now more than a decade old. The new experiments probe both the CO and H 2 products of the formaldehyde dissociation. The experimental and trajectory data offer unprecedented detail about the correlations between internal states of the CO and H 2 dissociation products as well as information on how these distributions are different for the roaming and transition-state pathways. The data investigated include, for dissociation on the formaldehyde 2 1 4 3 band, (a) the speed distributions for individual vibrational/rotational states of the CO products, providing information about the correlated internal energy distributions of the H 2 product, and (b) the rotational and vibrational distributions for the CO and H 2 products as well as the contributions to each from both the transition state and roaming channels. The agreement between the trajectory and experimental data is quite satisfactory, although minor differences are noted. The general agreement provides support for future use of the experimental techniques and the new PES in understanding the dynamics of photodissociative processes.

  8. Modeling formalin fixation and histological processing with ribonuclease A: effects of ethanol dehydration on reversal of formaldehyde cross-links.

    Science.gov (United States)

    Fowler, Carol B; O'Leary, Timothy J; Mason, Jeffrey T

    2008-07-01

    Understanding the chemistry of protein modification by formaldehyde fixation and subsequent tissue processing is central to developing improved methods for antigen retrieval in immunohistochemistry and for recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissues for proteomic analysis. Our initial studies of single proteins, such as bovine pancreatic ribonuclease A (RNase A), in 10% buffered formalin solution revealed that upon removal of excess formaldehyde, monomeric RNase A exhibiting normal immunoreactivity could be recovered by heating at 60 degrees C for 30 min at pH 4. We next studied tissue surrogates, which are gelatin-like plugs of fixed proteins that have sufficient physical integrity to be processed using normal tissue histology. Following histological processing, proteins could be extracted from the tissue surrogates by combining heat, detergent, and a protein denaturant. However, gel electrophoresis revealed that the surrogate extracts contained a mixture of monomeric and multimeric proteins. This suggested that during the subsequent steps of tissue processing protein-formaldehyde adducts undergo further modifications that are not observed in aqueous proteins. As a first step toward understanding these additional modifications we have performed a comparative evaluation of RNase A following fixation in buffered formaldehyde alone and after subsequent dehydration in 100% ethanol by combining gel electrophoresis, chemical modification, and circular dichroism spectroscopic studies. Our results reveal that ethanol-induced rearrangement of the conformation of fixed RNase A leads to protein aggregation through the formation of large geometrically compatible hydrophobic beta-sheets that are likely stabilized by formaldehyde cross-links, hydrogen bonds, and van der Waals interactions. It requires substantial energy to reverse the formaldehyde cross-links within these sheets and regenerate protein monomers free of formaldehyde modifications

  9. Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission.

    Science.gov (United States)

    Kim, Sumin

    2009-01-01

    The objective of this research was to develop environment-friendly adhesives for face fancy veneer bonding of engineered flooring using the natural tannin form bark in the wood. The natural wattle tannin adhesive were used to replace UF resin in the formaldehyde-based resin system in order to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. PVAc was added to the natural tannin adhesive to increase viscosity of tannin adhesive for surface bonding. For tannin/PVAc hybrid adhesives, 5%, 10%, 20% and 30% of PVAc to the natural tannin adhesives were added. tannin/PVAc hybrid adhesives showed better bonding than the commercial natural tannin adhesive with a higher level of wood penetration. The initial adhesion strength was sufficient to be maintained within the optimum initial tack range. The standard formaldehyde emission test (desiccator method), field and laboratory emission cell (FLEC) and VOC analyzer were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with commercial the natural tannin adhesive and tannin/PVAc hybrid adhesives. By desiccator method and FLEC, the formaldehyde emission level of each adhesive showed the similar tendency. All adhesives satisfied the E(1) grade (below 1.5 mg/L) and E(0) grade (below 0.5 mg/L) with UV coating. VOC emission results by FLEC and VOC analyzer were different with the formaldehyde emission results. TVOC emission was slightly increased as adding PVAc.

  10. Determination of Very Low Level of Free Formaldehyde in Liquid Detergents and Cosmetic Products Using Photoluminescence Method

    Directory of Open Access Journals (Sweden)

    Ali Gholami

    2016-01-01

    Full Text Available Formaldehyde is commonly used in detergents and cosmetic products as antibacterial agent and preservative. This substance is unfavorable for human health because it is known to be toxic for humans and causes irritation of eyes and skins. The toxicology studies of this compound indicate risk of detergents and cosmetic formulations with a minimum content of 0.05% free formaldehyde. Therefore, determination of formaldehyde as quality control parameter is very important. In this study, a photoluminescence method was achieved by using 2-methyl acetoacetanilide. Also, the Box-Behnken design was applied for optimization of Hantzsch reaction for formaldehyde derivatization. The investigated factors (variables were temperature, % v/v ethanol, reaction time, ammonium acetate, and 2-methyl acetoacetanilide concentration. The linear range was obtained from 0.33–20 × 10−7 M (1–60 μg·kg−1 and the limit of detection (LOD was 0.12 μg·kg−1. The proposed method was applied for the analysis of Iranian brands of liquid detergents and cosmetic products. The formaldehyde content of these products was found to be in the range of 0.03–3.88%. Some brands of these products had higher concentration than the maximum allowed concentration of 0.2%. High recoveries (96.15%–104.82% for the spiked dishwashing liquid and hair shampoo indicate the proposed method is proper for the assessment of formaldehyde in detergents and cosmetic products. The proposed methodology has some advantages compared with the previous methods such as being rapid, without the necessity of applying separation, low cost, and the fact that the derivatization reaction is carried out at room temperature without any heating system.

  11. The comparison of mechanical and thermal properties of carbon nanotubes and graphene naonosheets enhanced phenol-formaldehyde resin

    International Nuclear Information System (INIS)

    Wu, X.F.; Zhang, Y.; Wu, Y.Z.; Li, Y.J.W.H.

    2017-01-01

    Graphene naonosheets were prepared via one-pot hydrothermal process in a Teflon-lined autoclave. Moreover, the mechanical and thermal degradation behaviors of the phenol formaldehyde/carbon nanotubes and phenol formaldehyde/graphene naonosheets composites were discussed. Experimental results showed that the graphene naonosheets possessed better performances than that of carbon nanotubes. When the filler loading was 0.6wt%, tensile strength, Young's modulus, compressive strength and modulus of the as-prepared composites reached their maximum values, which were increased by 77.0, 141.3, 109.1 and 114.8% for graphene naonosheets and 54.7, 85.9, 61.7 and 45.2% for carbon nanotubes than those of pure sample, respectively. In addition, both of these two carbon materials could increase the thermo-stability of the matrix. When their usage amount was 0.6wt%, the thermal degradation temperature (at 10% weight loss) was increased to 255.6°C for phenol formaldehyde/graphene naonosheets composites and 253.5°C for phenol formaldehyde/carbon nanotubes composites from 233.6°C for pure sample. (author)

  12. Ayty: a New Line-List for Hot Formaldehyde

    Science.gov (United States)

    Al-Refaie, Ahmed Faris; Yurchenko, Sergei N.; Tennyson, Jonathan; Yachmenev, Andrey

    2015-06-01

    The ExoMol [1] project aims at providing spectroscopic data for key molecules that can be used to characterize the atmospheres of exoplanets and cool stars. Formaldehyde (H2CO) is of growing importance in studying and modelling terrestrial atmospheric chemistry and dynamics. It also has relevance in astrophysical phenomena that include interstellar medium abundance, proto-planetary and cometary ice chemistry and masers from extra-galactic sources. However there gaps in currently available absolute intensities and a lack of higher rotational excitations that makes it unfeasible to accurately model high temperature systems such as hot Jupiters. Here we present AYTY [2], a new line list for formaldehyde applicable to temperatures up to 1500 K. AYTY contains almost 10 million states reaching rotational excitations up to J=70 and over 10 billion transitions at up to 10 000 cm-1. The line list was computed using the variational ro-vibrational solver TROVE with a refined ab-initio potential energy surface and dipole moment surface. J.~Tennyson and S.~N. Yurchenko MNRAS, 425:21--33, 2012. A.~F. Al-Refaie, S.~N. Yurchenko, A.~Yachmenev, and J.~Tennyson MNRAS, 2015.

  13. Fiber-Based Adsorbents Tailored for PLSS Ammonia and Formaldehyde Removal, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of advanced lightweight Trace Contaminant Control (TCC) filters plays an important role in removing ammonia and formaldehyde contaminants?both those...

  14. Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol-formaldehyde resins with high performance for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhoujun [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Graduate School, Shanghai Institute of Ceramics, Chinese Academy of Science, 1295 Dingxi Road, Shanghai 200050 (China); Gao, Qiuming [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Graduate School, Shanghai Institute of Ceramics, Chinese Academy of Science, 1295 Dingxi Road, Shanghai 200050 (China); School of Chemistry and Environment, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191 (China)

    2011-02-01

    Hierarchical porous carbons are prepared by an easy one-step process of carbonization and activation derived from phenol-formaldehyde resins, in which potassium hydroxide acts as both the catalyst of polymerization and the activation reagent. The simple one-step preparation saves the cost of carbons and leads to high yield. The porous carbons have high surface areas with abundant pore structures. The plenty of micropores and small mesopores increase the capacitance and make the electrolyte ions diffuse fast into the pores. These hierarchical porous carbons show high performance for supercapacitors possessing of the optimized capacitance of 234 F g{sup -1} in aqueous electrolyte and 137 F g{sup -1} in organic electrolyte with high capacitive retention. (author)

  15. FORMALDEHYDE-INDUCED GENE EXPRESSION IN F344 RAT NASAL RESPIRATORY EPITHELIUM.

    Science.gov (United States)

    Formaldehyde-induced gene expression in F344 rat nasal respiratory epithelium ABSTRACTFormaldehyde, an occupational and environmental toxicant used extensively in the manufacturing of many household and personal use products, is known to induce squamous cell carci...

  16. Spherical Resorcinol-Formaldehyde Resin for the Removal of Cesium from Hanford Tank Waste

    International Nuclear Information System (INIS)

    Wilmarth, William

    2006-01-01

    This power-point presentation highlights that spherical RF continues to out-perform baseline technology (SuperLig(registered trademark)644) due to several factors: increased radiation stability from Cs Capacity perspective, outstanding hydraulic performance, and flammable gas generation being the same as the baseline technology. Actual waste testing at Pacific Northwest National Lab. is going well, and isotherm modeling is continuing at Savannah River National Lab. Regulatory analysis of spent resin is planned for early summer 2006

  17. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    Directory of Open Access Journals (Sweden)

    Wenjuan Wei

    Full Text Available Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0, the diffusion coefficient (D, and the partition coefficient (K, can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  18. Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres

    Science.gov (United States)

    Li, Mingqi; Zeng, Ying; Ren, Yurong; Zeng, Chunmei; Gu, Jingwei; Feng, Xiaofang; He, Hongyan

    2015-08-01

    Nonstoichiometric SiOx is a kind of very attractive anode material for high-energy lithium-ion batteries because of a high specific capacity and facile synthesis. However, the poor electrical conductivity and unstable electrode structure of SiOx severely limit its electrochemical performance as anode in lithium-ion batteries. In this work, highly durable sugar apple-shaped SiOx@C nanocomposite spheres are fabricated to achieve significantly improved electrochemical performance. The composite is synthesized by homogenous one-pot synthesis, using ethyltriethoxysilanes (EtSi(OEt)3) and resorcinol/formaldehyde (RF) as starting materials. The morphology, composition and structure of the composite are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis (EA) and X-ray photoelectron spectroscopy (XPS). At a current density of 50 mA g-1, the sugar apple-shaped SiOx@C spheres exhibit a stable discharge capacity of about 630 mAh g-1 calculated on the total mass of both SiOx and C. At a current density of 100 mA g-1, a stable discharge capacity of about 550 mAh g-1 is obtained and the capacity has been kept up to 400 cycles. The excellent cycling performance is attributed to the homogeneous dispersion of SiOx in disordered carbon at the nanometer scale and the unique structure of the composite.

  19. Mechanistic and dose considerations for supporting adverse pulmonary physiology in response to formaldehyde

    International Nuclear Information System (INIS)

    Thompson, Chad M.; Subramaniam, Ravi P.; Grafstroem, Roland C.

    2008-01-01

    Induction of airway hyperresponsiveness and asthma from formaldehyde inhalation exposure remains a debated and controversial issue. Yet, recent evidences on pulmonary biology and the pharmacokinetics and toxicity of formaldehyde lend support for such adverse effects. Specifically, altered thiol biology from accelerated enzymatic reduction of the endogenous bronchodilator S-nitrosoglutathione and pulmonary inflammation from involvement of Th2-mediated immune responses might serve as key events and cooperate in airway pathophysiology. Understanding what role these mechanisms play in various species and lifestages (e.g., child vs. adult) could be crucial for making more meaningful inter- and intra-species dosimetric extrapolations in human health risk assessment

  20. Simultaneous Determination of Hydroquinone, Catechol and Resorcinol at Graphene Doped Carbon Ionic Liquid Electrode

    Directory of Open Access Journals (Sweden)

    Li Ma

    2012-01-01

    Full Text Available A new composite electrode has been prepared with doping graphene into the paste consisting graphite and ionic liquid, n-octyl-pyridinum hexafluorophosphate (OPFP. This electrode shows an excellent electrochemical activity for the redox of hydroquinone (HQ, catechol (CC, and resorcinol (RS. In comparison with bare paste electrode, the redox peaks of three isomers of dihydroxybenzene can be obviously, simultaneously observed at graphene doping paste electrode. Under the optimized condition, the simultaneous determination of HQ, CC, and RS in their ternary mixture can be carried out with a differential pulse voltammetric technique. The peak currents are linear to the concentration of HQ, CC, and RS in the range form 1×10−5 to 4×10−4, 1×10−5 to 3×10−4, and 1×10−6 to 1.7×10−4 mol L−1, respectively. The limits of detection are 1.8×10−6 mol L−1 for HQ, 7.4×10−7 mol L−1 for CC, and 3.6×10−7 M for RS, respectively.

  1. Porous Carbon Spheres Doped with Fe_3C as an Anode for High-Rate Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Chen, Shouhui; Wu, Jiafeng; Zhou, Rihui; Zuo, Li; Li, Ping; Song, Yonghai; Wang, Li

    2015-01-01

    Highlights: • Novel porous carbon spheres doped with Fe_3C was prepared via hydrothermal reaction. • The resulted material was fabricated as an anode for high-rate lithium-ion batteries. • A stepwise increase profile was shown in the discharge/charge process. • Pseudocapacity was one of the properties owned by the as-prepared anode. - Abstract: The search of advanced anodes has been an important way to satisfy the ever-growing demands on high rate performance lithium-ion batteries (LIBs). It was observed that the capacity of Fe_3C as an anode is larger than its theoretical one, which might be attributed to the pseudocapacity on the interface between the carbide and electrolyte. In this work, a novel carbon sphere doped with Fe_3C nanoparticles was fabricated and tested as the anode in LIBs. In the first place, iron precursors were embedded in the cross-link polymer resorcinol-formaldehyde (RF) spheres via a facile hydrothermal reaction, in which RF served as the carbon source and ethanol as a dispersant agent. Consequently, the hydrothermal products were carbonized successively at 700 °C under inert atmosphere to obtain porous carbon spheres doped with Fe_3C. When the composite severed as an anode in LIBs, its discharge capacity increased to the largest during the first 250-400 cycles, then dropped down to a similar level of that after 1000 cycles at different current rates. The discharge capacity of the composite increased from ∼300 mAh g"−"1 to ∼540 mAh g"−"1 at the current of 100 mA g"−"1 during the initial hundreds cycles, and even a discharge capacity of ∼230 mAh g"−"1 at the current of 2000 mA g"−"1. Moreover, it was observed that a discharge plateau gradually appeared between 0.7∼1.1 V during the first hundreds of cycles. The electrochemical behaviors of the anode before 1000 discharge/charge cycles were compared with that after 1000 discharge/charge cycles by cyclic voltammetry and electrochemical impedance spectroscopy to find

  2. Metabolic evaluation of skin absorption of tritiated formaldehyde in hairless rats

    International Nuclear Information System (INIS)

    Trivedi, A.

    1993-11-01

    Tritiated organics are present as trace impurities in tritium handling facilities. Tritiated formaldehyde has been detected in the atmosphere and gaseous effluents of tritium handling and storage sites. The ability of tritiated formaldehyde to diffuse through the skin is a possible route of intake. Since the metabolism of tritium through this mode of contamination is not currently established, experiments were performed in which tritiated formaldehyde was applied topically on the dorsal skin of hairless rats. These experiments demonstrated that tritium was assimilated and retained in the exposed skin as organically bound tritium (OBT). This retained OBT dominates tritium turnover in the body. OBT retention in the unexposed skin, liver, heart and kidneys was also observed. The loss of tritium from the animals showed that about 10% of the applied tritium was excreted in urine. It is assumed that the rest of the applied activity may have been lost through other excretory pathways, or may not have entered into the body. The biokinetics of tritium excretion is best described by a sum of three exponential functions. Most of the excreted tritium was in the form of OBT (90%) and results in the rapid clearing of OBT in the skin to urine and retention in other tissues. The evaluation of the dose-rate data showed that the dose-rate to exposed skin was almost a magnitude greater than the dose-rate to other organs. (author). 21 refs., 4 tabs., 4 figs

  3. Metabolic evaluation of skin absorption of tritiated formaldehyde in hairless rats

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A

    1993-11-01

    Tritiated organics are present as trace impurities in tritium handling facilities. Tritiated formaldehyde has been detected in the atmosphere and gaseous effluents of tritium handling and storage sites. The ability of tritiated formaldehyde to diffuse through the skin is a possible route of intake. Since the metabolism of tritium through this mode of contamination is not currently established, experiments were performed in which tritiated formaldehyde was applied topically on the dorsal skin of hairless rats. These experiments demonstrated that tritium was assimilated and retained in the exposed skin as organically bound tritium (OBT). This retained OBT dominates tritium turnover in the body. OBT retention in the unexposed skin, liver, heart and kidneys was also observed. The loss of tritium from the animals showed that about 10% of the applied tritium was excreted in urine. It is assumed that the rest of the applied activity may have been lost through other excretory pathways, or may not have entered into the body. The biokinetics of tritium excretion is best described by a sum of three exponential functions. Most of the excreted tritium was in the form of OBT (90%) and results in the rapid clearing of OBT in the skin to urine and retention in other tissues. The evaluation of the dose-rate data showed that the dose-rate to exposed skin was almost a magnitude greater than the dose-rate to other organs. (author). 21 refs., 4 tabs., 4 figs.

  4. RELATION BETWEEN MECHANICAL PROPERTIES AND PYROLYSIS TEMPERATURE OF PHENOL FORMALDEHYDE RESIN FOR GAS SEPARATION MEMBRANES

    Directory of Open Access Journals (Sweden)

    MONIKA ŠUPOVÁ

    2012-03-01

    Full Text Available The aim of this paper has been to characterize the relation between the pyrolysis temperature of phenol-formaldehyde resin, the development of a porous structure, and the mechanical properties for the application of semipermeable membranes for gas separation. No previous study has dealt with this problem in its entirety. Phenol-formaldehyde resin showed an increasing trend toward micropore porosity in the temperature range from 500 till 1000°C, together with closure of mesopores and macropores. Samples cured and pyrolyzed at 1000°C pronounced hysteresis of desorption branch. The ultimate bending strength was measured using a four-point arrangement that is more suitable for measuring of brittle materials. The chevron notch technique was used for determination the fracture toughness. The results for mechanical properties indicated that phenol-formaldehyde resin pyrolyzates behaved similarly to ceramic materials. The data obtained for the material can be used for calculating the technical design of gas separation membranes.

  5. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde

    Science.gov (United States)

    Zhang, Guangxin; Sun, Zhiming; Duan, Yongwei; Ma, Ruixin; Zheng, Shuilin

    2017-08-01

    The TiO2/diatomite composite was synthesized through a mild hydrolysis of titanyl sulfate. The prepared composite was characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffused reflectance spectroscopy. The results demonstrate that the anatase TiO2 nanopartilces anchored on the surface of diatomite with Ti-O-Si bonds between diatomite and TiO2. The photodegradation of gaseous formaldehyde under UV irradiation by the TiO2/diatomite composite was studied under various operating conditions, including relative humidity, illumination intensity and catalyst amount, which have significant influence on the degradation process. The TiO2/diatomite composite exhibited better photocatalytic activity than pure TiO2, which could be attributed to the favorable nanoparticles dispersibility and strong formaldehyde adsorption capacity. In addition, the composite exhibited outstanding reusability over five cycles. The TiO2/diatomite composite shows great promising application foreground in formaldehyde degradation.

  6. EFFECT OF WOOD SPECIES USED FOR CORE LAYER ON SOME PROPERTIES OF OKUME PLYWOOD PANELS BONDED WITH MELAMINE-UREA FORMALDEHYDE (MUF ADHESIVE

    Directory of Open Access Journals (Sweden)

    Cenk Demirkır

    2005-04-01

    Full Text Available In this study; changes in some properties of the okume plywood panels when used alder and beech veneers in their core layers were investigated. Two types of melamine-urea formaldehyde (MUF resins having different free formaldehyde contents were used for bonding plywood panels manufactured from 2 mm thick veneers at industrial conditions. The formaldehyde emission values of plywood panels bonded with MÜF having higher free formaldehyde content were found to be higher than those of the panels bonded with other resin type. The highest formaldehyde emission value was found for the panels manufactured from okume veneers in all layers while the lowest value was determined from the panels include beech veneers in the core layer. The shear and bending strength values of the panels consisted of beech veneers in the core layer were found to be higher than those of the panels consisted of okume and alder veneers in the core layers.

  7. Control of formaldehyde and TVOC emission from wood-based flooring composites at various manufacturing processes by surface finishing.

    Science.gov (United States)

    Kim, Sumin

    2010-04-15

    This paper assesses the reproducibility of testing formaldehyde and TVOC emission behavior from wood flooring composites bonded by urea-formaldehyde resin at various manufacturing steps for surface finishing materials. The surface adhesion step of laminate flooring for this research was divided into two steps; HDF only and HDF with LPMs. In the case of engineered flooring, the manufacturing steps were divided into three steps; plywood only, fancy veneer bonded on plywood and UV coated on fancy veneer with plywood. Formaldehyde and VOCs emission decreased at the process of final surface finishing materials; LPMs were applied on the surface of HDF for laminate flooring. Although emissions increased when fancy veneer was bonded onto plywood in the case of engineered flooring, emission was dramatically reduced up to similar level with plywood only when final surface finishing; UV-curable coating was applied on fancy veneer. This study suggests that formaldehyde and VOCs emission from floorings can be controlled at manufacturing steps for surface finishing. 2009 Elsevier B.V. All rights reserved.

  8. Layered sphere-shaped TiO₂ capped with gold nanoparticles on structural defects and their catalysis of formaldehyde oxidation.

    Science.gov (United States)

    Ma, Chunyan; Pang, Guanglong; He, Guangzhi; Li, Yang; He, Chi; Hao, Zhengping

    2016-01-01

    We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials, which were formed by layered deposition of multiple anatase TiO2 nanosheets. The Au nanoparticles were stabilized by structural defects in each TiO2 nanosheet, including crystal steps and edges, thereby fixing the Au-TiO2 perimeter interface. Reactant transfer occurred along the gaps between these TiO2 nanosheet layers and in contact with catalytically active sites at the Au-TiO2 interface. The doped Au induced the formation of oxygen vacancies in the Au-TiO2 interface. Such vacancies are essential for generating active oxygen species (*O(-)) on the TiO2 surface and Ti(3+) ions in bulk TiO2. These ions can then form Ti(3+)-O(-)-Ti(4+) species, which are known to enhance the catalytic activity of formaldehyde (HCHO) oxidation. These studies on structural and oxygen vacancy defects in Au/TiO2 samples provide a theoretical foundation for the catalytic mechanism of HCHO oxidation on oxide-supported Au materials. Copyright © 2015. Published by Elsevier B.V.

  9. Hot demonstration of proposed commercial cesium removal technology

    International Nuclear Information System (INIS)

    Lee, D.D.; Travis, J.R.; Gibson, M.R.

    1997-12-01

    This report describes the work done in support of the development of technology for the continuous removal and concentration of radioactive cesium in supernatant from Melton Valley Storage Tanks (MVSTs) at the ORNL site. The primary objective was to test candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the MVSTs. An experimental system contained in a hot-cell facility was constructed to test the materials in columns or modules using the same batch of supernatant to allow comparison on an equal basis. Resorcinol/formaldehyde (RF) resin was evaluated at three flow rates with 50% breakthrough ranges of 35 to 50 column volumes (CV) and also through a series of five loading/elution/regeneration cycles. The results reported here include the cesium loading breakthrough curves, elution curves (when applicable), and operational problems and observations for each material. The comparative evaluations should provide critical data for the selection of the sorbent for the ORNL Cesium Removal Demonstration project. These results will be used to help determine the design parameters for demonstration-scale systems. Such parameters include rates of cesium removal, quantity of resin or sorbent to be used, and elution and regeneration requirements, if applicable

  10. By-passing acidification limitations during the biofiltration of high formaldehyde loads via the application of ozone pulses

    Energy Technology Data Exchange (ETDEWEB)

    García-Pérez, Teresa [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Aizpuru, Aitor [Universidad del Mar, Puerto Ángel, Distrito de San Pedro Pochutla, Oaxaca, México C.P. 70902 (Mexico); Arriaga, Sonia, E-mail: sonia@ipicyt.edu.mx [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico)

    2013-11-15

    Highlights: • Ozone addition permits to treat higher formaldehyde loads than ever reported. • Ozone addition acts as an indirect in situ pH regulator, minimizing the accumulation of acid byproducts. • Mineralization of formaldehyde occurs, which has never been reported. • Low ozone levels have no negative effects on biological degradation activity. • The use of hybrid processes allows overcoming biofiltration limitations. -- Abstract: A formaldehyde airstream was treated in a biofilter for an extended period of time. During the first 133 days, the reactor was operated without ozone, whereas over the following 82 days ozone was intermittently implemented. The maximum stable elimination capacity obtained without ozone was around 57 g m{sup −3} h{sup −1}. A greater load could not be treated under these conditions, and no significant formaldehyde removal was maintained for inlet loads greater than 65 g m{sup −3} h{sup −1}; the activity of microorganisms was then inhibited by the presence of acidic byproducts, and the media acidified (pH < 4). The implementation of ozone pulses allowed a stable elimination capacity to be obtained, even at greater loads (74 g m{sup −3} h{sup −1}). The effect of ozone on the extra cellular polymeric substances detachment from the biofilm could not be confirmed due to the too low biofilter biomass content. Thus, the results suggest that ozone acted as an in situ pH regulator, preventing acidic byproducts accumulation, and allowing the treatment of high loads of formaldehyde.

  11. Effects of Endogenous Formaldehyde in Nasal Tissues on Inhaled Formmaldehyde Dosimetry Predictions in the Rat, Monkey, and Human Nasal Passages

    Science.gov (United States)

    ABSTRACT Formaldehyde, a nasal carcinogen, is also an endogenous compound that is present in all living cells. Due to its high solubility and reactivity, quantitative risk estimates for inhaled formaldehyde rely on internal dose calculations in the upper respiratory tract which ...

  12. Metal ion release from metallothioneins: proteolysis as an alternative to oxidation.

    Science.gov (United States)

    Peroza, Estevão A; dos Santos Cabral, Augusto; Wan, Xiaoqiong; Freisinger, Eva

    2013-09-01

    Metallothioneins (MTs) are among others involved in the cellular regulation of essential Zn(II) and Cu(I) ions. However, the high binding affinity of these proteins requires additional factors to promote metal ion release under physiological conditions. The mechanisms and efficiencies of these processes leave many open questions. We report here a comprehensive analysis of the Zn(II)-release properties of various MTs with special focus on members of the four main subfamilies of plant MTs. Zn(II) competition experiments with the metal ion chelator 4-(2-pyridylazo)resorcinol (PAR) in the presence of the cellular redox pair glutathione (GSH)/glutathione disulfide (GSSG) show that plant MTs from the subfamilies MT1, MT2, and MT3 are remarkably more affected by oxidative stress than those from the Ec subfamily and the well-characterized human MT2 form. In addition, we evaluated proteolytic digestion with trypsin and proteinase K as an alternative mechanism for selective promotion of metal ion release from MTs. Also here the observed percentage of liberated metal ions depends strongly on the MT form evaluated. Closer evaluation of the data additionally allowed deducing the thermodynamic and kinetic properties of the Zn(II) release processes. The Cu(I)-form of chickpea MT2 was used to exemplify that both oxidation and proteolysis are also effective ways to increase the transfer of copper ions to other molecules. Zn(II) release experiments with the individual metal-binding domains of Ec-1 from wheat grain reveal distinct differences from the full-length protein. This triggers the question about the roles of the long cysteine-free peptide stretches typical for plant MTs.

  13. NMR studies of proton exchange kinetics in aqueous formaldehyde solutions.

    Science.gov (United States)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2014-05-01

    Aqueous solutions of formaldehyde, formalin, are commonly used for tissue fixation and preservation. Treatment with formalin is known to shorten the tissue transverse relaxation time T2. Part of this shortening is due to the effect of formalin on the water T2. In the present work we show that the shortening of water T2 is a result of proton exchange between water and the major constituent of aqueous solutions of formaldehyde, methylene glycol. We report the observation of the signal of the hydroxyl protons of methylene glycol at 2ppm to high frequency of the water signal that can be seen at low temperatures and at pH range of 6.0±1.5 and, at conditions where it cannot be observed by the single pulse experiment, it can be detected indirectly through the water signal by the chemical exchange saturation transfer (CEST) experiment. The above finding made it possible to obtain the exchange rate between the hydroxyl protons of the methylene glycol and water in aqueous formaldehyde solutions, either using the dispersion of the spin-lattice relaxation rate in the rotating frame (1/T1ρ) or, at the slow exchange regime, from the line width hydroxyl protons of methylene glycol. The exchange rate was ∼10(4)s(-1) at pH 7.4 and 37°C, the activation energy, 50.2kJ/mol and its pH dependence at 1.1°C was fitted to: k (s(-1))=520+6.5×10(7)[H(+)]+3.0×10(9)[OH(-)]. Copyright © 2014. Published by Elsevier Inc.

  14. CONTINUOUS FORMALDEHYDE MEASUREMENT SYSTEM BASED ON MODIFIED FOURIER TRANSFORM INFRARED SPECTROSCOPY

    Science.gov (United States)

    EPA is developing advanced open-path and cell-based optical techniques for time-resolved measurement of priority hazardous air pollutants such as formaldehyde (HCHO). Due to its high National Air Toxics Assessment risk factor, there is increasing interest in continuous measuremen...

  15. Studies of Deactivation of Methanol to Formaldehyde Selective Oxidation Catalyst

    DEFF Research Database (Denmark)

    Raun, Kristian Viegaard; Schumann, Max; Høj, Martin

    This work presents a study of the deactivation behavior of Fe-Mo oxide catalyst during selective oxidation of methanol to formaldehyde in a period of 5 days. The structural changes in the catalyst have been investigated in situ for the initial 10 h by Raman spectroscopy, and the structure after 5...

  16. Phenol-formaldehyde reactivity with lignin in the wood cell wall

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Latewood from Pinus taeda was reacted with alkaline phenol–formaldehyde (PF) adhesive and characterised using two-dimensional 1H–13C solution-state nuclear magnetic resonance (NMR) spectroscopy so that chemical modification of the wood cell wall polymers, after PF resol curing, could be elucidated. The...

  17. Oxidation of methanol to formaldehyde over a series of Fe1-xAlx-V-oxide catalysts

    DEFF Research Database (Denmark)

    Häggblad, Robert; Wagner, Jakob Birkedal; Hansen, Staffan

    2008-01-01

    A series of triclinic Fe1−xAlxVO4 phases with 0x1 were prepared and used in the oxidation of methanol to formaldehyde. The activity measurements revealed that both the activity and especially the selectivity to formaldehyde increased with time of operation for at least 16 h, indicating...... restructuring of the catalysts. Characterisation of the catalysts with XRD, XANES, and electron microscopy after use in methanol oxidation showed that the stability of the bulk phases improved when Al was substituted for Fe in the structure. XRD and XANES of the used FeVO4 showed that it partly transformed...... in methanol oxidation revealed no significant change in the metal composition, in good agreement with the corresponding bulk values, except for a lower Fe value. Steady-state activity data showed a modest increase in specific activity with the Al content, whereas the selectivity to formaldehyde was about 90...

  18. Measurement of emissions during the crosslinking of phenolic resins. Problems with cross-sensibility when determining formaldehyde. Messung von Emissionen bei der Aushaertung von Phenolharzen. Probleme durch Querempfindlichkeiten bei der Bestimmung von Formaldehyd

    Energy Technology Data Exchange (ETDEWEB)

    Haub, H.G.; Muehlhauser, S.; Mueller, F.J.; Gardziella, A. (Bakelite GmbH, Iserlohn (Germany, F.R.))

    1988-04-01

    Phenol and formol (37-50% aqueous solution of formaldehyde) are the main raw materials for the production of phenolic resins. Hexamethylene tetramine is the common constituent for crosslinking when processing phenol novolaks. Most of the today colorimetric methods for the determination of formaldehyde have a strong cross sensibility to hexamethylene tetramine. The error may be 1-2 powers of ten. The only exception is the AHMT-method. Hexamethylene tetramine-containing phenolic resin systems are required for grinding and friction materials, for textile fibre mass and in the foundry industries (croning process). These systems are also used for refractories, for impregnation and for producing carbon and graphite materials. (orig.).

  19. Effects of creatine supplementation along with resistance training on urinary formaldehyde and serum enzymes in wrestlers.

    Science.gov (United States)

    Nasseri, Azadeh; Jafari, Afshar

    2016-04-01

    Formaldehyde is a cytotoxic agent produced from creatine through a metabolic pathway, and in this regard, it has been claimed that creatine supplementation could be cytotoxic. Even though the cytotoxic effects of creatine supplementation have been widely studied, yet little is known about how resistance training can alter these toxic effects. This study aimed to determine the effects of short-term creatine supplementation plus resistance training on the level of urinary formaldehyde and concentrations of serum enzymes in young male wrestlers. In a double-blind design twenty-one subjects were randomized into creatine supplementation (Cr), creatine supplementation plus resistance training (Cr + T) and placebo plus resistance training (Pl + T) groups. Participants ingested creatine (0.3 g/kg/day) or placebo for 7 days. The training protocol consisted of 3 sessions in one week, each session including three sets of 6-9 repetitions at 80-85% of one-repetition maximum for whole-body exercise. Urine and blood samples were collected at baseline and at the end of the supplementation. Creatine supplementation significantly increased the excretion rate of urinary formaldehyde in the Cr and Cr + T groups by 63.4% and 30.4%, respectively (P0.05). These findings indicate that resistance training may lower the increase of urinary formaldehyde excretion induced by creatine supplementation, suggesting that creatine consumption could be relatively less toxic when combined with resistance training.

  20. Synthesis of nano-TiO{sub 2}/diatomite composite and its photocatalytic degradation of gaseous formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangxin; Sun, Zhiming, E-mail: zhimingsun@cumtb.edu.cn; Duan, Yongwei; Ma, Ruixin; Zheng, Shuilin, E-mail: shuilinzheng8@gmail.com

    2017-08-01

    Highlights: • TiO{sub 2}/diatomite composite was synthesized by hydrolysis deposition method. • The composite displayed higher photocatalytic performance for formaldehyde. • The dispersion effect of diatomite was a key factor for high photoactivity. • The composite is a promising photocatalyst for the indoor air purification. - Abstract: The TiO{sub 2}/diatomite composite was synthesized through a mild hydrolysis of titanyl sulfate. The prepared composite was characterized by X-ray diffraction, N{sub 2} adsorption–desorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffused reflectance spectroscopy. The results demonstrate that the anatase TiO{sub 2} nanopartilces anchored on the surface of diatomite with Ti–O–Si bonds between diatomite and TiO{sub 2}. The photodegradation of gaseous formaldehyde under UV irradiation by the TiO{sub 2}/diatomite composite was studied under various operating conditions, including relative humidity, illumination intensity and catalyst amount, which have significant influence on the degradation process. The TiO{sub 2}/diatomite composite exhibited better photocatalytic activity than pure TiO{sub 2}, which could be attributed to the favorable nanoparticles dispersibility and strong formaldehyde adsorption capacity. In addition, the composite exhibited outstanding reusability over five cycles. The TiO{sub 2}/diatomite composite shows great promising application foreground in formaldehyde degradation.

  1. 2-[(Hydroxymethyl)amino]ethanol in water as a preservative: Study of formaldehyde released by Taguchi's method

    Science.gov (United States)

    Wisessirikul, W.; Loykulnant, S.; Montha, S.; Fhulua, T.; Prapainainar, P.

    2016-06-01

    This research studied the quantity of free formaldehyde released from 2- [(hydroxymethyl)amino]ethanol (HAE) in DI water and natural rubber latex mixture using high-performance liquid chromatography (HPLC) technique. The quantity of formaldehyde retained in the solution was cross-checked by using titration technique. The investigated factors were the concentration of preservative (HAE), pH, and temperature. Taguchi's method was used to design the experiments. The number of experiments was reduced to 16 experiments from all possible experiments by orthogonal arrays (3 factors and 4 levels in each factor). Minitab program was used as a tool for statistical calculation and for finding the suitable condition for the preservative system. HPLC studies showed that higher temperature and higher concentration of the preservative influence the amount of formaldehyde released. It was found that conditions at which formaldehyde was released in the lowest amount were 1.6%w/v HAE, 4 to 40 °C, and the original pH. Nevertheless, the pH value of NR latex should be more than 10 (the suitable pH value was found to be 13). This preservative can be used to replace current preservative systems and can maintain the quality of latex for long-term storage. Use of the proposed preservative system was also shown to have reduced impact on the toxicity of the environment.

  2. Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Ding Huixian; Zhu Aimin; Yang Xuefeng; Li Cuihong; Xu Yong

    2005-01-01

    Formaldehyde is a major indoor air pollutant and can cause serious health disorders in residents. This work reports the removal of formaldehyde from gas streams via alumina-pellet-filled dielectric barrier discharge plasmas at atmospheric pressure and 70 deg. C. With a feed gas mixture of 140 ppm HCHO, 21.0% O 2 , 1.0% H 2 O in N 2 , ∼92% of formaldehyde can be effectively destructed at GHSV (gas flow volume per hour per discharge volume) of 16 500 h -1 and E in = 108 J l -1 . An increase in the specific surface area of the alumina pellets enhances the HCHO removal, and this indicates that the adsorbed HCHO species may have a lower C-H bond breakage energy. Based on an examination of the influence of gas composition on the removal efficiency, the primary destruction pathways, besides the reactions initiated by discharge-generated radicals, such as O, H, OH and HO 2 , may include the consecutive dissociations of HCHO molecules and HCO radicals through their collisions with vibrationally- and electronically-excited metastable N 2 species. The increase of O 2 content in the inlet gas stream is able to diminish the CO production and to promote the formation of CO 2 via O-atom or HO 2 -radical involved reactions

  3. Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry.

    Science.gov (United States)

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J; Moeller, Benjamin C; Bodnar, Wanda M; Swenberg, James A

    2016-05-01

    DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Fe atoms trapped on graphene as a potential efficient catalyst for room-temperature complete oxidation of formaldehyde: a first-principles investigation

    KAUST Repository

    Guo, Huimin

    2017-03-24

    We investigated the oxidation of formaldehyde, one of the major indoor air pollutants, into CO2 and H2O over Fe atoms trapped in defects on graphene by first-principles based calculations. These trapped Fe atoms are not only stable to withstand interference from the reaction environments but are also efficient in catalyzing the reactions between coadsorbed O-2 and formaldehyde. The oxidation of formaldehyde starts with the formation of a peroxide-like intermediate and continues by its dissociation into. eta(1)-OCHO coadsorbed with an OH radical. Then, the adsorbed OCHO undergoes conformational changes and hydride transfer, leading to the formation of H2O and CO2. Subsequent adsorption of O2 or formaldehyde facilitates desorption of H2O and a new reaction cycle initiates. The calculated barriers for formation and dissociation of the peroxide-like intermediate are 0.43 and 0.40 eV, respectively, and those for conformation changes and hydride transfer are 0.47 and 0.13 eV, respectively. These relatively low barriers along the reaction path suggest the potential high catalytic performance of trapped Fe atoms for formaldehyde oxidation.

  5. Fe atoms trapped on graphene as a potential efficient catalyst for room-temperature complete oxidation of formaldehyde: a first-principles investigation

    KAUST Repository

    Guo, Huimin; Li, Min; Liu, Xin; Meng, Changgong; Linguerri, Roberto; Han, Yu; Chambaud, Gilberte

    2017-01-01

    We investigated the oxidation of formaldehyde, one of the major indoor air pollutants, into CO2 and H2O over Fe atoms trapped in defects on graphene by first-principles based calculations. These trapped Fe atoms are not only stable to withstand interference from the reaction environments but are also efficient in catalyzing the reactions between coadsorbed O-2 and formaldehyde. The oxidation of formaldehyde starts with the formation of a peroxide-like intermediate and continues by its dissociation into. eta(1)-OCHO coadsorbed with an OH radical. Then, the adsorbed OCHO undergoes conformational changes and hydride transfer, leading to the formation of H2O and CO2. Subsequent adsorption of O2 or formaldehyde facilitates desorption of H2O and a new reaction cycle initiates. The calculated barriers for formation and dissociation of the peroxide-like intermediate are 0.43 and 0.40 eV, respectively, and those for conformation changes and hydride transfer are 0.47 and 0.13 eV, respectively. These relatively low barriers along the reaction path suggest the potential high catalytic performance of trapped Fe atoms for formaldehyde oxidation.

  6. Retrieval of global upper tropospheric and stratospheric formaldehyde (H2CO distributions from high-resolution MIPAS-Envisat spectra

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2008-02-01

    Full Text Available The Fourier transform spectrometer MIPAS (Michelson Interferometer for Passive Atmospheric Sounding on Envisat measures infrared emission of the Earth's atmosphere in a limb viewing mode. High spectral resolution measurements of MIPAS are sensitive to formaldehyde from the upper troposphere to the stratopause. Single profile retrievals of formaldehyde are dominated by a 60% noise error; however zonal mean values for 30 days of data during 8 September 2003 and 1 December 2003 reduces this error by a factor of 20 or more. The number of degrees of freedom for single profile retrieval ranges from 2 to 4.5 depending on latitude and number of cloud-free tangent altitudes. In the upper tropical troposphere zonal mean values of about 70 parts per trillion by volume (pptv were found, which have been attributed to biomass burning emissions. In the stratosphere, formaldehyde values are determined by photochemical reactions. In the upper tropical stratosphere, formaldehyde zonal mean maximum values can reach 130 pptv. Diurnal variations in this region can be up to 50 pptv. Comparisons with other satellite instruments show generally good agreement in the region of upper troposphere and lower stratosphere as well as in the upper stratosphere.

  7. Awareness, prevalence of hair smoothing products that contain formaldehyde and determinants of their harmful effects among women in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Yara Nasser Hameed

    2017-10-01

    Full Text Available Individuals who use hair smoothing products at home or in a salon work environment are at risk of exposure to various chemical compounds. Formaldehyde mixed with keratin as a hair straightening product is in common use by women in Saudi Arabia. The high temperatures used during blow-drying can release gas fumes that have several implications to include irritation of the skin, eyes and respiratory complications. Furthermore, formaldehyde is classified as a known human carcinogen. The aim of this study is to assess the source of keratin hair treatment among women, demonstrate the symptoms related to formaldehyde exposure during keratin hair treatment process and determine the practices that can increase the exposure to formaldehyde and to evaluate the level of formaldehyde in the keratin hair treatment products. A national cross-sectional survey was first conducted during March-April 2017 on Saudi Arabian children and women aged between the age of 12 and 50 years old. A standardized, fully confidential questionnaire was provided to participating members. A total of 330 filled questionnaires were obtained within the study location. Moreover, 30 hair salons that used keratin-based products were visited in 3 different cities in Al Qassim province to check the location of keratin hair treatment, ventilation procedures and take samples of hair products that were later analyzed. Most commonly reported symptom was irritation of the eyes reported by 135 people. Other symptoms described include irritation of throat, burning sensation of the nose, headache and nausea. Argan e Ojon was one of the most famous product tested in this study with formaldehyde levels above 0.2% threshold (0.35%. It is worrying thatArgan e Ojon does not comply with GSO 1943 and SASO 1953 standards. A majority of salons demonstrated poor ventilation measures and failed to isolate their clients from the general public and salon workers. With the evident complications, more should be

  8. Effect of varying levels of formaldehyde treatment of mustard oil cake on rumen fermentation, digestibility in wheat straw based total mixed diets in vitro

    Science.gov (United States)

    Mahima; Kumar, Vinod; Tomar, S. K.; Roy, Debashis; Kumar, Muneendra

    2015-01-01

    Aim: The aim of the current study was to protect the protein in mustard cake by different levels of formaldehyde treatment with a view to optimize the level of formaldehyde. Materials and Methods: Different levels of formaldehyde treatment (0, 1, 1.5 and 2% of crude protein) containing concentrate and roughages diet in 40:60 ratio were tested for their effect on nutrients digestibility, in vitro ammonia release, in vitro gas production and change in protein fractions. Non-significant (p≤0.05) effect on pH, microbial biomass, partitioning factor, total gas production (TGP), TGP per g dry matter and TGP per g digestible dry matter (ml/g) was observed in almost all the treatments. Results: Total volatile fatty acids at 2% formaldehyde treatment level of mustard cake was lower (p<0.05) as compared to other groups, while in vitro dry matter digestibility and in vitro organic matter digestibility were reported to be low in 1% formaldehyde treated group. Conclusion: On a holistic view, it could be considered that formaldehyde treatment at 1.5% level was optimal for protection of mustard oil cake protein. PMID:27047133

  9. Effect of varying levels of formaldehyde treatment of mustard oil cake on rumen fermentation, digestibility in wheat straw based total mixed diets in vitro

    Directory of Open Access Journals (Sweden)

    Mahima

    2015-04-01

    Full Text Available Aim: The aim of the current study was to protect the protein in mustard cake by different levels of formaldehyde treatment with a view to optimize the level of formaldehyde. Materials and Methods: Different levels of formaldehyde treatment (0, 1, 1.5 and 2% of crude protein containing concentrate and roughages diet in 40:60 ratio were tested for their effect on nutrients digestibility, in vitro ammonia release, in vitro gas production and change in protein fractions. Non-significant (p≤0.05 effect on pH, microbial biomass, partitioning factor, total gas production (TGP, TGP per g dry matter and TGP per g digestible dry matter (ml/g was observed in almost all the treatments. Results: Total volatile fatty acids at 2% formaldehyde treatment level of mustard cake was lower (p<0.05 as compared to other groups, while in vitro dry matter digestibility and in vitro organic matter digestibility were reported to be low in 1% formaldehyde treated group. Conclusion: On a holistic view, it could be considered that formaldehyde treatment at 1.5% level was optimal for protection of mustard oil cake protein.

  10. Henry’s Law Constant and Overall Mass Transfer Coefficient for Formaldehyde Emission from Small Water Pools under Simulated Indoor Environmental Conditions

    Science.gov (United States)

    The Henry’s law constant (HLC) and the overall mass transfer coefficient are both important parameters for modeling formaldehyde emissions from aqueous solutions. In this work, the apparent HLCs for aqueous formaldehyde solutions were determined in the concentration range from 0....

  11. Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic

    DEFF Research Database (Denmark)

    Lund, K.H.; Petersen, J.H.

    2006-01-01

    Migration of one or both formaldehyde and/or melamine monomers was found in seven of ten tested melamine samples bought on the Danish market. The samples were a bowl, a jug, a mug, a ladle, and different cups and plates. No violation of the European Union-specific migration limits for melamine (30...... mg kg(-1)) and formaldehyde (15 mg kg(-1)) was found after three successive exposures to the food stimulant 3% acetic acid after 2 h at 70 degrees C. To investigate the effects of long-term use, migration tests were performed with two types of cups from a day nursery. Furthermore, medium-term use...

  12. The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition

    Energy Technology Data Exchange (ETDEWEB)

    Potapov, Alexey; Jäger, Cornelia [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Henning, Thomas [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Jonusas, Mindaugas; Krim, Lahouari, E-mail: alexey.potapov@uni-jena.de [Department of Chemistry, Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, Paris F-75005 (France)

    2017-09-10

    An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H{sub 2}CO is an indication for a possible methanol formation route in such systems.

  13. Forensic Investigation of Formaldehyde in Illicit Products for Hair Treatment by DAD-HPLC: A Case Study.

    Science.gov (United States)

    Oiye, Erica N; Ribeiro, Maria Fernanda M; Okumura, Leonardo L; Saczk, Adelir A; Ciancaglini, Pietro; de Oliveira, Marcelo F

    2016-07-01

    The illegal use of formalin (commercial formaldehyde) in cosmetic products harms the health of individuals exposed to this substance. Over the last years, the commercial availability of these products, especially those containing irregular dosage of formaldehyde, has increased in Brazil. This work analyzes some products for hair treatment available in the Brazilian market and verifies their safety. The adopted analytical methodology involved sample derivatization with 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography with ultraviolet detection (UV-VIS) at λ = 365 nm. The limit of quantification is 2.5 × 10 -3% w/w, and the recovery tests were around 93%. Some of the samples contained high and illegal formaldehyde levels ranging from 9% to 19% (w/w) and others presented suitable concentrations of the analyte. On the basis of the results, this work discusses the efficiency and practicality of this analytical method for forensic purposes. © 2016 American Academy of Forensic Sciences.

  14. Microencapsulation of a fatty acid with Poly(melamine–urea–formaldehyde)

    International Nuclear Information System (INIS)

    Konuklu, Yeliz; Paksoy, Halime O.; Unal, Murat; Konuklu, Suleyman

    2014-01-01

    Highlights: • Decanoic(capric) acid microcapsules were prepared with different capsule wall materials. • The one-step in situ polymerization technique was used. • Leakage-free, thermally stable microPCMs was prepared with Poly(MUF). • Influence of different surfactants on encapsulation and thermal properties reported. - Abstract: The main purpose of this study is to obtain leakage-free, thermally stable decanoic acid microcapsules (microPCMs) for thermal energy storage applications. Decanoic acid (capric acid) is an environmentally friendly fatty acid since it is obtained from vegetable and animal oils. MicroPCMs were prepared with different capsule wall materials via a one-step in situ polymerization technique. The properties of microencapsulated PCMs have been analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analyzer (TGA), Fourier transform infrared (FTIR) spectra analysis and particle size analyzer. The microPCMs prepared using Poly(urea–formaldehyde) (PUF) exhibit higher heat capacities and the microPCMs prepared using Poly(melamine–formaldehyde) (PMF) exhibit higher thermal stabilities. In order to obtain microPCMs with better properties such as suitable latent heat and better heat resistance at high temperatures, we microencapsulated decanoic acid with Poly (melamine–urea–formaldehyde) (PMUF). Furthermore, the effects of surfactants on microPCMs with PMUF were investigated by SEM, a particle size analyzer, DSC, and TGA. The results show that the binary surfactant system was a suitable emulsifier for this process. We determined that the melting temperature was close to 33 °C, the latent heat storage capacity was about 88 J/g, and the mean particle diameter was 0.28 μm for microPCMs with PMUF. We recommend decanoic acid microencapsulated with PMUF for thermally stable and leakage-free applications above 95 °C

  15. Air formaldehyde and solvent concentrations during surface coating with acid-curing lacquers and paints in the woodworking and furniture industry.

    Science.gov (United States)

    Thorud, Syvert; Gjolstad, Merete; Ellingsen, Dag G; Molander, Paal

    2005-06-01

    An investigation of contemporary exposure to formaldehyde and organic solvents has been carried out during surface coating with acid-curing lacquers and paints in the Norwegian woodworking and furniture industry over a period of 3 years. The investigation covered 27 factories of different sizes and with different types of production, and totally 557 parallel formaldehyde and solvent samples were collected. The formaldehyde concentration (geometric mean) was 0.15 ppm (range 0.01-1.48 ppm) with about 10% of the samples exceeding the Norwegian occupational exposure limit of 0.5 ppm. The solvent concentration as additive effect (geometric mean) was 0.13 (range 0.0004-5.08) and about 5% of the samples exceeded the Norwegian occupational exposure limit. The most frequently occurring solvents from acid-curing lacquers were n-butyl acetate, ethanol, ethyl acetate and 1-butanol, which were found in 88-98% of the samples. Toluene, n-butyl acetate and 1-butanol were the only solvents with maximum concentrations exceeding their respective occupational exposure limits. Curtain painting machine operators were exposed to the highest concentrations of both formaldehyde (geometric mean 0.51 ppm, range 0.08-1.48 ppm) and organic solvents (additive effect, geometric mean 1.18, range 0.02-5.08). Other painting application work tasks such as automatic and manual spray-painting, manual painting and dip painting, showed on average considerably lower concentrations of both formaldehyde (geometric means 0.07-0.16 ppm) and organic solvents (additive effect, geometric mean 0.02-0.18). Non-painting work tasks also displayed moderate concentrations of formaldehyde (geometric means 0.11-0.17 ppm) and organic solvents (additive effect, geometric mean 0.04-0.07).

  16. Assessment of lipid peroxidation and p53 as a biomarker of carcinogenesis among workers exposed to formaldehyde in the cosmetic industry.

    Science.gov (United States)

    Attia, Dalia; Mansour, Neveen; Taha, Fatma; Seif El Dein, Aisha

    2016-06-01

    Despite the wide use of cosmetic products, they exert a number of health effects on tissues ranging from irritation to cancer. Our study aimed at assessing the effect of formaldehyde on lipid peroxidation and verifying the susceptibility to carcinogenesis using p53 as a biomarker among workers exposed to formaldehyde in cosmetic industry. Our entire exposed group (n = 40) and the controls (n = 20) were subjected to estimation of formate in urine, serum malondialdehyde (MDA), and p53. Also, complete blood picture, liver, and kidney function tests were carried out. The study revealed significant increase in the levels of formate, MDA, and p53 in the exposed group compared with their control group. Our results showed that workers in cosmetic industry had significant exposure to formaldehyde. Furthermore, the study pointed to the negative impact of formaldehyde as a cause of oxidative stress and suspicious carcinogen. © The Author(s) 2014.

  17. Effects of reuse and bleach/formaldehyde reprocessing on polysulfone and polyamide hemodialyzers.

    Science.gov (United States)

    Cornelius, Rena M; McClung, W Glenn; Barre, Paul; Esguerra, Fe; Brash, John L

    2002-01-01

    The surface features, morphology, and blood interactions of fibers from pristine, bleach/formaldehyde reprocessed, and reused Fresenius Polysulfone High Flux (Hemoflow F80B) hemodialyzers and Gambro Polyflux 21S Polyamide hemodialyzers have been studied. SEM images of fibers from both hemodialyzer types revealed a dense skin layer on the inner surface and a relatively thick porous layer on the outer surface. The 21S polyamide support layer consisted of interconnected highly porous structures. Environmental scanning electron microscopy and atomic force microscopy images of both membrane types showed alterations in morphology due to reprocessing and reuse; however the changes were more marked for the 21S polyamide dialyzers. Fluorescence microscopy images showed only minimal fluorescence associated with the fibers after patient use and reprocessing, suggesting that blood derived deposits were removed by processing. The protein layers formed on pristine and reused hemodialyzer membranes during clinical use were studied using SDS-PAGE and immunoblotting. Before bleach/formaldehyde treatment, protein layers of considerable amount and complexity were found on the blood side of singly and multiply used dialyzers. Proteins adsorbed on the dialysate side were predominantly in the molecular mass region below 30 kDa. However, some higher molecular mass proteins were detected on the dialysate side of the 21 S polyamide dialyzers. Very little protein was detected on dialyzers that were treated with bleach/formaldehyde after dialysis, regardless of whether they had been used/reprocessed once or 12 times.

  18. Amperometric Enzyme-based Gas Sensor for Formaldehyde: Impact of Possible Interferences

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2007-02-01

    Full Text Available In this work, cross-sensitivities and environmental influences on the sensitivityand the functionality of an enzyme-based amperometric sensor system for the directdetection of formaldehyde from the gas phase are studied. The sensor shows a linearresponse curve for formaldehyde in the tested range (0 - 15 vppm with a sensitivity of1.9 μA/ppm and a detection limit of about 130 ppb. Cross-sensitivities by environmentalgases like CO2, CO, NO, H2, and vapors of organic solvents like methanol and ethanol areevaluated as well as temperature and humidity influences on the sensor system. The sensorshowed neither significant signal to CO, H2, methanol or ethanol nor to variations in thehumidity of the test gas. As expected, temperature variations had the biggest influence onthe sensor sensitivity with variations in the sensor signal of up to 10 % of the signal for 5vppm CH2O in the range of 25 - 30 °C.

  19. Investigation of the ageing effects on phenol-urea-formaldehyde binder and alkanol amine-acid anhydride binder coated mineral fibres

    DEFF Research Database (Denmark)

    Zafar, Ashar; Schjødt-Thomsen, Jan; Sodhi, R.

    2013-01-01

    -ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to identify the chemical changes occurring in the PUF binder coated mineral fibres and alkanol amine-acid anhydride binder coated mineral fibres during that ageing. The samples were aged in a climate......Phenol-Urea-Formaldehyde (PUF) binder coated mineral fibres' mechanical properties have been observed to degrade during ageing at elevated temperatures and humidity, while alkanol amine-acid anhydride binder based mineral fibres exhibited better ageing properties for same duration of ageing. X...... chamber for 7 days at 70 °C and 95% relative humidity. In the case of the PUF binder coated fibres, quantitative XPS measurements showed some significant changes in the atomic composition of the PUF binder coated mineral fibres after ageing, including decreased urea and carbonyl groups concentrations...

  20. Sensory irritation to mixtures of formaldehyde, acrolein, and acetaldehyde in rats

    NARCIS (Netherlands)

    Cassee, F.R.; Arts, J.H.E.; Groten, J.P.; Feron, V.J.

    1996-01-01

    Sensory irritation of formaldehyde (FRM), acrolein (ACR) and acetaldehyde (ACE) as measured by the decrease in breathing frequency (DBF) was studied in male Wistar rats using nose-only exposure. Groups of four rats were exposed to each of the single compounds separately or to mixtures of FRM, ACR

  1. Airborne In-Situ Measurements of Formaldehyde over California: First Results from the COFFEE Instrument

    Science.gov (United States)

    Marrero, Josette; St. Clair, Jason; Yates, Emma; Swanson, Andrew; Gore, Warren; Iraci, Laura; Hanisco, Thomas

    2016-04-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. We will present results from flights performed over the Central Valley of California, including boundary layer measurements and vertical profiles in the tropospheric column. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. These results will be presented in conjunction with formaldehyde. Targets in the Central Valley consist of an oil field, agricultural areas, and highways, each of which can emit HCHO primarily and generate HCHO through secondary production. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  2. [Attempt to reduce the formaldehyde concentration by blowing cooled fresh air down in to the breathing zone of medical students from an admission port on the ceiling during gross anatomy class].

    Science.gov (United States)

    Takayanagi, Masaaki; Sakai, Makoto; Ishikawa, Youichi; Murakami, Kunio; Kimura, Akihiko; Kakuta, Sachiko; Sato, Fumi

    2008-09-01

    Cadavers in gross anatomy laboratories at most medical schools are conventionally embalmed in formaldehyde solution, which is carcinogenic to humans. Medical students and instructors are thus exposed to formaldehyde vapors emitted from cadavers during dissection. To reduce high formaldehyde concentrations in the breathing zone above cadavers being examined by anatomy medical students provisionally, dissection beds were located under existing admission ports on the ceiling to supply cooled fresh air from the admission port blowing downward on to the cadaver. In all cases, compared to normal condition, the downward flow of cooled fresh air from an admission port reduced formaldehyde concentrations by 0.09-0.98 ppm and reduced to 12.6-65.4% in the air above a cadaver in the breathing zone of students. The formaldehyde concentrations above cadavers under admission ports were not more than the formaldehyde concentrations between beds representing the indoor formaldehyde concentrations. Although the application of an existing admission port on the ceiling in this study did not remove formaldehyde, the downflow of cooled fresh air using this system reduced the formaldehyde concentration in the air above cadavers being attended by anatomy students during dissections. These results suggest the need for reducing formaldehyde levels in gross anatomy laboratories using fundamental countermeasures in order to satisfy the guidelines of 0.08 ppm established by the World Health Organization and the Japan Ministry of Health, Labor and Welfare.

  3. Immunogenicity of commercial, formaldehyde and binary ethylenimine inactivated Newcastle disease virus vaccines in specific pathogen free chickens

    Directory of Open Access Journals (Sweden)

    Razmaraii, N.

    2012-06-01

    Full Text Available Newcastle disease (ND is one of the most important diseases that affect birds; the epizootic nature of the disease has caused severe economic losses in the poultry industry worldwide. In this experiment ND virus (NDV was inactivated by two different chemicals binary ethylenimine (BEI and formaldehyde. Formaldehyde was used at 0.1%, while BEI was used at concentrations of 1 to 4 mM. NDV inactivation with BEI was done in various incubation temperatures and periods and the best result (30 °C, 4 mM BEI and 21 hrs treatment used as an experimental vaccine. Prepared inactivated NDV vaccines and a commercial vaccine were tested for their efficiency in generating humoral immune response in different groups of specific pathogen free (SPF chicks. Test groups received 0.2 ml formaldehyde inactivated NDV (NDVF, BEI inactivated NDV (NDVEI and Razi institute produced NDV vaccine (NDVR subcutaneously respectively. HI Log 2 total mean titer of NDVEI group (8.42 ± 0.12 were significantly higher than NDVF (7.64 ± 0.16 and NDVR (7.86 ± 0.11 groups (p<0.05. BEI-inactivated vaccine gave higher antibody titers than formaldehyde-inactivated vaccine and preserves both structural integrity and antigenicity of the virus. Thus, it might be possible to use these compounds as an inactivator agent for commercial NDV inactivated vaccines in future.

  4. Evaluation of polyacrylamide gels with accelerator ammonium salts for water shutoff in ultralow temperature reservoirs: Gelation performance and application recommendations

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2016-03-01

    Full Text Available Water shutoff in ultralow temperature reservoirs has received great attention in recent years. In previous study, we reported a phenol-formaldehyde-based gel formula with ammonium salt which can provide a gelation time between 2 hrs and 2 days at 25 °C. However, systematic evaluation and field recommendations of this gel formula when encountering complex reservoirs environment are not addressed. In this paper, how and why such practical considerations as water composition, temperature, pH, weight ratio of formaldehyde to resorcinol and contaminant Fe3+ to affect the gelation performance are examined. Brookfield DV-III and scanning electron microscopy (SEM are employed respectively for viscosity measurement and microstructure analysis. SEM results further illustrate the mechanism of the effect of salinity on gelation performance. It reveals that crosslinking done by covalent bond has great advantage for gel stability under high salinity environment. The target gel formula can provide desirable gelation time below 60 °C, perfect for 15–45 °C, while it is unfeasible to use high salinity to delay gelation at 60 °C. We summarized the effect of salinity on gelation performance of different gel formulas from the present study and published literature. The summarized data can provide important guideline for gel formula design before conducting any kinds of experiments. The variation of gelation performance at different salinity may be dominated by the interaction between crosslinker-salt-polymer, not only limited to “charge-screening effect” and “ion association” proposed by several authors. We hope the analysis encouraging further investigations. Some recommendations for field application of this gel are given in the end of this paper.

  5. Synthesis, characterization and luminescent properties of mixed phase bismuth molybdate-doped with Eu3+ ions

    Science.gov (United States)

    Wang, Liyong; Guo, Xiaoqing; Cai, Xiaomeng; Song, Qingwei; Han, Yuanyuan; Jia, Guang

    2018-02-01

    Red phosphors of Eu3+-doped bismuth molybdate (BMO) are prepared by a low temperature hydrothermal method assisting with Phenol Formaldehyde resin (PFr), and characterized by X-ray diffraction (XRD) patterns, Fourier transform infrared-spectroscopy (FT-IR), thermogravimetric analyzer (TGA), differential thermal analyzer (DTA), and photoluminescence (PL) spectroscopy. PL properties influence factors including molar ratio of Bi3+ and Mo3+ ions, PFr dosage and dopants concentration are discussed in detail. The results show that BMO can act as a useful host for Eu3+ ions doping, and energy transferring from Bi3+ to Eu3+ achieved efficiently, the BMO phosphors displayed intense red color emission under ultraviolet light excitation.

  6. Effect of cultivar and formaldehyde treatment of barley grain on ...

    African Journals Online (AJOL)

    ... but increased the time (h) to produce 50% of A and reduced the time (h) to produce 95% of A. The reduction in gas production ranged from 33.3 to 51 mL/g OM with 6 h incubation showing the highest decrease in gas production. It is concluded that formaldehyde treatment may provide an opportunity to manipulate the site ...

  7. Performance of composite boards from long strand oil palm trunk bonded by isocyanate and urea formaldehyde adhesives

    Science.gov (United States)

    Hermanto, Indra; Massijaya, M. Y.

    2018-03-01

    In this research, the obtained long strand were produced from the outer part of oil palm trunk and then hot-prepressed. The three-ply composite boards were made from hot-prepressed long strand and use bonded by isocyanate and urea formaldehyde adhesives with a glue spread variation of 150 g/m2, 225 g/m2, and 300 g/m2. The board target density was 0.65 g/cm3, face and back layers orientation is the same and the core layer was perpendicular to the face and back layers. The research results showed that : (1) composite boards bonded by isocyanate performed better physical and mechanical properties compared to those of bonded by urea formaldehyde, (2) utilization of higher glue spread level would improve the physical and mechanical properties of the composite board. (3) composite boards bonded by isocyanate and urea formaldehyde adhesives at glue spread of 225 g/m2, 300 g/m2, respectively were enough to fulfill the JIS A 5908 (2003) standard.

  8. Intercomparison of 4 Years of Global Formaldehyde Observations from the GOME-2 and OMI Sensors

    Science.gov (United States)

    De Smedt, Isabelle; Van Roozendael, Michel; Stravrakou, Trissevgeni; Muller, Jean-Francois; Chance, Kelly; Kurosu, Thomas

    2012-11-01

    Formaldehyde (H2CO) tropospheric columns have been retrieved since 2007 from backscattered UV radiance measurements performed by the GOME-2 instrument on the EUMETSAT METOP-A platform. This data set extends the successful time-series of global H2CO observations established with GOME/ ERS-2 (1996-2003), SCIAMACHY/ ENVISAT (2003-2012), and OMI on the NASA AURA platform (2005-now). In this work, we perform an intercomparison of the H2CO tropospheric columns retrieved from GOME-2 and OMI between 2007 and 2010, respectively at BIRA-IASB and at Harvard SAO. We first compare the global formaldehyde data products that are provided by each retrieval group. We then investigate each step of the retrieval procedure: the slant column fitting, the reference sector correction and the air mass factor calculation. New air mass factors are computed for OMI using external parameters consistent with those used for GOME-2. By doing so, the impacts of the different a priori profiles and aerosol corrections are quantified. The remaining differences are evaluated in view of the expected diurnal variations of the formaldehyde concentrations, based on ground-based measurements performed in the Beijing area.

  9. Study on photocatalytic performance of cerium-graphene oxide-titanium dioxide composite film for formaldehyde removal

    International Nuclear Information System (INIS)

    Li, Jia; Zhang, Quan; Lai, Alvin C.K.; Zeng, Liping

    2016-01-01

    In order to degrade in-car formaldehyde gas, graphene oxide (GO), cerium (Ce), and TiO_2 were organically combined by one-step sol-gel method. Then the mixed collosol was coated onto the surface of inorganic glass substrates to form Ce-GO-TiO_2 composite film by way of immersion, coating, and calcinations. The morphology and crystal structure of as-prepared Ce-GO-TiO_2 film were studied by a series of detection techniques. The photocatalytic performance of this film was analyzed by the degradation effect of formaldehyde under simulated sunlight. The results showed that the Ce-GO-TiO_2 film had the inbuilt mesoporous structure in the lamellar stacking with particles. When the doping amount of Ce and GO were 0.4 and 0.2% (mass ratio), the composite film can improve effectively the response to the visible light and its degradation rate for low concentration of formaldehyde was up to 83.8% in simulated sunlight for 7 h, which could be attributed to the co-function of Ce and GO. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Formaldehyd i tekstil som mulig årsag til arthritis og angioødem

    DEFF Research Database (Denmark)

    Jensen, O C; Bach, B

    1992-01-01

    A case of arthritis and angioedema which developed on occupational exposure to formaldehyde in textiles is described. Possible pathological mechanisms are discussed. The suspicion that an unknown immunological reaction may be the cause is raised....

  11. Infrared Line Intensities for Formaldehyde from Simultaneous Measurements in the Infrared and Far Infrared Spectral Ranges

    Science.gov (United States)

    Fissiaux, L.; Földes, T.; Tchana, F. Kwabia; Daumont, L.; Lepère, M.; Vander Auwera, J.

    2011-06-01

    Formaldehyde (H_2CO) is an important intermediate compound in the degradation of the volatile organic compounds (VOCs), including methane, in the terrestrial troposphere. Its observation using optical remote sensing in the infrared range relies on the 3.6 and 5.7 μm absorption bands. Band and individual line intensities have been reported in both ranges. With the present work, we aim to also derive infrared line intensities for formaldehyde, however relying on pure rotation line intensities and the known electric dipole moment to determine the particle density. Indeed, because formaldehyde polymerizes or degrades easily, the gas phase may contain polymerization or degradation products. Spectra of H_2CO diluted in 10 hPa of N_2 were therefore simultaneously recorded in the 20-60 Cm-1 and 3.6 μm ranges, respectively using a Bruker IFS125HR Fourier transform spectrometer and a tunable diode laser. see A. Perrin, D. Jacquemart, F. Kwabia Tchana, N. Lacome, J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 700-716, and references therein

  12. NIOSH comments to DOL on the Occupational Safety and Health Administration's proposed rule on occupational exposure to formaldehyde by R. A. Lemen, June 27, 1986

    International Nuclear Information System (INIS)

    1986-01-01

    NIOSH presented posthearing comments on formaldehyde (50000) including materials which NIOSH indicated it would supply during the testimony, answers to questions which were addressed to the NIOSH panel members at the hearing, and related issues on which NIOSH wanted to expand. Topics included: epidemiologic and industrial hygiene studies of workers exposed to formaldehyde; the percentage of garment manufacturing locations sampled; the facilities studied in the SMR and PMR studies; data from the NIOSH garment manufacturing study; quantitative trend analysis of exposure level and latency; an evaluation conducted by Nelson Leidel; the effects of mixed exposure to formaldehyde and wood dust on cancer incidence; the most recent lists of approved respirators and field test methods for chemical protective clothing; the deposition of radiolabeled formaldehyde; formaldehyde exposure values in other industries; malignant neoplasms of the nervous system; the NIOSH carcinogenesis policy; hyposmia; variations in expected cancer patterns; and the observed pattern of excess lung cancer mortality

  13. Quantitative relationship between trimethylamine-oxide aldolase activity and formaldehyde accumulation in white muscle from gadiform fish during frozen storage

    DEFF Research Database (Denmark)

    Nielsen, Michael Krogsgaard; Jørgensen, Bo

    2004-01-01

    for by the endogenous white muscle in situ TMAOase activity. This TMAOase activity also correlated with the rate of insolubilization of otherwise high ionic strength soluble protein. A simple model describing the accumulation of free formaldehyde during frozen storage of gadiform fish is proposed. The model is based......The accumulation of formaldehyde and the resulting deterioration of seafood products during frozen storage are primarily caused by the enzymatic activity of trimethylamine oxide aldolase (TMAOase). A screening of muscle samples from 24 species showed TMAOase activity in only the nine gadiform...... species that were analyzed. Enzyme activities in the major white muscle of gadiform fish showed large variations between species as well as between individuals. A frozen storage experiment showed a similarly large variation in the rate of formaldehyde accumulation, which could be accounted...

  14. CeO2 thin film as a low-temperature formaldehyde sensor in mixed ...

    Indian Academy of Sciences (India)

    Administrator

    vapour sensing properties of the cerium oxide film in mixed environment were studied and reported. Keywords. .... The output signal from the op-amp is connected to a computer- controlled .... film as a function of formaldehyde concentration.

  15. Hierarchical porous nitrogen-doped partial graphitized carbon monoliths for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yifeng; Du, Juan; Liu, Lei; Wang, Guoxu; Zhang, Hongliang; Chen, Aibing, E-mail: chen-ab@163.com [Hebei University of Science and Technology, College of Chemical and Pharmaceutical Engineering (China)

    2017-03-15

    Porous carbon monoliths have attracted great interest in many fields due to their easy availability, large specific surface area, desirable electronic conductivity, and tunable pore structure. In this work, hierarchical porous nitrogen-doped partial graphitized carbon monoliths (N–MC–Fe) with ordered mesoporous have been successfully synthesized by using resorcinol-formaldehyde as precursors, iron salts as catalyst, and mixed triblock copolymers as templates via a one-step hydrothermal method. In the reactant system, hexamethylenetetramine (HMT) is used as nitrogen source and one of the carbon precursors under hydrothermal conditions instead of using toxic formaldehyde. The N–MC–Fe show hierarchically porous structures, with interconnected macroporous and ordered hexagonally arranged mesoporous. Nitrogen element is in situ doped into carbon through decomposition of HMT. Iron catalyst is helpful to improve the graphitization degree and pore volume of N–MC–Fe. The synthesis strategy is user-friendly, cost-effective, and can be easily scaled up for production. As supercapacitors, the N–MC–Fe show good capacity with high specific capacitance and good electrochemical stability.

  16. Trace gas sensing using quantum cascade lasers and a fiber-coupled optoacoustic sensor: Application to formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Elia, A; Lugara, P M; Scamarcio, G [CNR-INFM Regional Laboratory LIT and Dipartimento Interateneo di Fisica, Universita di Bari, via Amendola 173, 70126 Bari (Italy); Spagnolo, V [CNR-INFM Regional Laboratory LIT and Dipartimento Interateneo di Fisica, Politecnico di Bari, via Amendola 173, 70126 Bari (Italy); Di Franco, C, E-mail: spagnolo@fisica.uniba.i [CNR-INFM Regional Laboratory LIT, via Amendola 173, 70126 Bari (Italy)

    2010-03-01

    We will report here on the design and realization of an optoacoustic sensor for the detection of formaldehyde. The sensor consists of a commercial QCL and a resonant PA cell. Two different cell configurations have been investigated: a 'standard' H cell and an innovative T-cell with an optical fiber directly inserted into. Two different type of sound detector have been employed: electret microphones and optical MEMS-based microphone. As possible applications, we will describe the results obtained in the detection of formaldehyde (CH{sub 2}O), a gas of great interest for industrial processes and environmental monitoring.

  17. Effect of varying levels of formaldehyde treatment of mustard oil cake on rumen fermentation, digestibility in wheat straw based total mixed diets in vitro

    OpenAIRE

    Mahima,; Kumar, Vinod; Tomar, S. K.; Roy, Debashis; Kumar, Muneendra

    2015-01-01

    Aim: The aim of the current study was to protect the protein in mustard cake by different levels of formaldehyde treatment with a view to optimize the level of formaldehyde. Materials and Methods: Different levels of formaldehyde treatment (0, 1, 1.5 and 2% of crude protein) containing concentrate and roughages diet in 40:60 ratio were tested for their effect on nutrients digestibility, in vitro ammonia release, in vitro gas production and change in protein fractions. Non-significant (p≤0....

  18. Formaldehyde exposure in U.S. industries from OSHA air sampling data.

    Science.gov (United States)

    Lavoue, Jerome; Vincent, Raymond; Gerin, Michel

    2008-09-01

    National occupational exposure databanks have been cited as sources of exposure data for exposure surveillance and exposure assessment for occupational epidemiology. Formaldehyde exposure data recorded in the U.S Integrated Management Information System (IMIS) between 1979 and 2001 were collected to elaborate a multi-industry retrospective picture of formaldehyde exposures and to identify exposure determinants. Due to the database design, only detected personal measurement results (n = 5228) were analyzed with linear mixed-effect models, which explained 29% of the total variance. Short-term measurement results were higher than time-weighted average (TWA) data and decreased 18% per year until 1987 (TWA data 5% per year) and 5% per year (TWA data 4% per year) after that. Exposure varied across industries with maximal estimated TWA geometric means (GM) for 2001 in the reconstituted wood products, structural wood members, and wood dimension and flooring industries (GM = 0.20 mg/m(3). Highest short-term GMs estimated for 2001 were in the funeral service and crematory and reconstituted wood products industries (GM = 0.35 mg/m(3). Exposure levels in IMIS were marginally higher during nonprogrammed inspections compared with programmed inspections. An increasing exterior temperature tended to cause a decrease in exposure levels for cold temperatures (-5% per 5 degrees C for T 15 degrees C). Concentrations measured during the same inspection were correlated and varied differently across industries and sample type (TWA, short term). Sensitivity analyses using TOBIT regression suggested that the average bias caused by excluding non-detects is approximately 30%, being potentially higher for short-term data if many non-detects were actually short-term measurements. Although limited by availability of relevant exposure determinants and potential selection biases in IMIS, these results provide useful insight on formaldehyde occupational exposure in the United States in the last

  19. Effect of Palm Oil Fiber-TiO_2 Ratio in the Composite on the Reduction of BTX and Formaldehyde in the Air

    International Nuclear Information System (INIS)

    Nor Rahafza Abdul Manap; Roslinda Shamsudin; Mohd Norhafsam Maghpor; Muhammad Azmi Abdul Hamid; Azman Jalar

    2016-01-01

    The effect of palm oil fiber-TiO_2 ratio in the composite on the reduction of benzene, toluene, xylene and formaldehyde in the air is studied. The ratio was set at 1:0, 1:9 and 5:5. The combination of adsorption process by palm oil fiber and photooxidation of volatile organic compounds by titanium dioxide was revealed. The composite were prepared by using mechanical milling technique. The performance of the composite was characterized in terms of percentage of recovery of benzene, toluene and xylene (BTX) using GC/ FID and formaldehyde concentration reduction using formaldehyde meter. The results of recovery of the BTX by palm oil fiber/ titanium dioxide composite were more than 90 %. The palm oil fiber/ titanium dioxide composite has successfully reduced the concentration of formaldehyde by up to 66.7 %. Therefore, the palm oil mesocarp fiber/ titanium dioxide composite produced is able to reduce the concentration of volatile organic compounds. (author)

  20. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air

    Science.gov (United States)

    Lui, K. H.; Ho, Steven Sai Hang; Louie, Peter K. K.; Chan, C. S.; Lee, S. C.; Hu, Di; Chan, P. W.; Lee, Jeffrey Chi Wai; Ho, K. F.

    2017-03-01

    Gas-phase formaldehyde (HCHO) is an intermediate and a sensitive indicator for volatile organic compounds (VOCs) oxidation, which drives tropospheric ozone production. Effective photochemical pollution control strategies demand a thorough understanding of photochemical oxidation precursors, making differentiation between sources of primary and secondary generated HCHO inevitable. Spatial and seasonal variations of airborne carbonyls based on two years of measurements (2012-2013), coupled with a correlation-based HCHO source apportionment analysis, were determined for three sampling locations in Hong Kong (denoted HT, TC, and YL). Formaldehyde and acetaldehyde were the two most abundant compounds of the total quantified carbonyls. Pearson's correlation analysis (r > 0.7) implies that formaldehyde and acetaldehyde possibly share similar sources. The total carbonyl concentration trends (HT rural). A regression analysis further quantifies the relative primary HCHO source contributions at HT (∼13%), TC (∼21%), and YL (∼40%), showing more direct vehicular emissions in urban than rural areas. Relative secondary source contributions at YL (∼36%) and TC (∼31%) resemble each other, implying similar urban source contributions. Relative background source contributions at TC could be due to a closed structure microenvironment that favors the trapping of HCHO. Comparable seasonal differences are observed at all stations. The results of this study will aid in the development of a new regional ozone (O3) control policy, as ambient HCHO can enhance O3 production and also be produced from atmospheric VOCs oxidation (secondary HCHO).

  1. Catalytic Activity Studies of Vanadia/Silica–Titania Catalysts in SVOC Partial Oxidation to Formaldehyde: Focus on the Catalyst Composition

    Directory of Open Access Journals (Sweden)

    Niina Koivikko

    2018-02-01

    Full Text Available In this work, silica–titania supported catalysts were prepared by a sol–gel method with various compositions. Vanadia was impregnated on SiO2-TiO2 with different loadings, and materials were investigated in the partial oxidation of methanol and methyl mercaptan to formaldehyde. The materials were characterized by using N2 physisorption, X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, X-ray photoelectron spectroscopy (XPS, Scanning transmission electron microscope (STEM, NH3-TPD, and Raman techniques. The activity results show the high importance of an optimized SiO2-TiO2 ratio to reach a high reactant conversion and formaldehyde yield. The characteristics of mixed oxides ensure a better dispersion of the active phase on the support and in this way increase the activity of the catalysts. The addition of vanadium pentoxide on the support lowered the optimal temperature of the reaction significantly. Increasing the vanadia loading from 1.5% to 2.5% did not result in higher formaldehyde concentration. Over the 1.5%V2O5/SiO2 + 30%TiO2 catalyst, the optimal selectivity was reached at 415 °C when the maximum formaldehyde concentration was ~1000 ppm.

  2. Tenth target fabrication specialists' meeting: Proceedings

    International Nuclear Information System (INIS)

    Foreman, L.R.; Stark, J.C.

    1995-01-01

    This tenth meeting of specialists in target fabrication for inertial confinement is unique in that it is the first meeting that was completely unclassified. As a result of the new classification, we were able to invite more foreign participation. In addition to participants from the US, UK, and Canada, representatives from France, Japan, and two Russian laboratories attended, about 115 in all. This booklet presents full papers and poster sessions. Indirect and direct drive laser implosions are considered. Typical topics include: polymer or aluminium or resorcinol/formaldehyde shells, laser technology, photon tunneling microscopy as a characterization tool, foams, coatings, hohlraums, and beryllium capsules. Hydrogen, deuterium, tritium, and beryllium are all considered as fuels

  3. Tenth target fabrication specialists` meeting: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, L.R.; Stark, J.C. [comp.

    1995-11-01

    This tenth meeting of specialists in target fabrication for inertial confinement is unique in that it is the first meeting that was completely unclassified. As a result of the new classification, we were able to invite more foreign participation. In addition to participants from the US, UK, and Canada, representatives from France, Japan, and two Russian laboratories attended, about 115 in all. This booklet presents full papers and poster sessions. Indirect and direct drive laser implosions are considered. Typical topics include: polymer or aluminium or resorcinol/formaldehyde shells, laser technology, photon tunneling microscopy as a characterization tool, foams, coatings, hohlraums, and beryllium capsules. Hydrogen, deuterium, tritium, and beryllium are all considered as fuels.

  4. Exposition by inhalation to the formaldehyde in the air. Source, measures and concentrations; Exposition par inhalation au formaldehyde dans l'air. Source, mesures et concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I

    2004-12-15

    This document presents the main techniques today available to characterize the formaldehyde concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  5. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found

  6. Detection of formaldehyde emissions from an industrial zone in the Yangtze River Delta region of China using a proton transfer reaction ion-drift chemical ionization mass spectrometer

    Science.gov (United States)

    Ma, Yan; Diao, Yiwei; Zhang, Bingjie; Wang, Weiwei; Ren, Xinrong; Yang, Dongsen; Wang, Ming; Shi, Xiaowen; Zheng, Jun

    2016-12-01

    A proton transfer reaction ion-drift chemical ionization mass spectrometer (PTR-ID-CIMS) equipped with a hydronium (H3+O) ion source was developed and deployed near an industrial zone in the Yangtze River Delta (YRD) region of China in spring 2015 to investigate industry-related emissions of volatile organic compounds (VOCs). Air pollutants including formaldehyde (HCHO), aromatics, and other trace gases (O3 and CO) were simultaneously measured. Humidity effects on the sensitivity of the PTR-ID-CIMS for HCHO detection were investigated and quantified. The performances of the PTR-ID-CIMS were also validated by intercomparing with offline HCHO measurement technique using 2,4-dinitrophenylhydrazone (DNPH) cartridges and the results showed fairly good agreement (slope = 0.81, R2 = 0.80). The PTR-ID-CIMS detection limit of HCHO (10 s, three-duty-cycle averages) was determined to be 0.9-2.4 (RH = 1-81.5 %) parts per billion by volume (ppbv) based on 3 times the standard deviations of the background signals. During the field study, observed HCHO concentrations ranged between 1.8 and 12.8 ppbv with a campaign average of 4.1 ± 1.6 ppbv, which was comparable with previous HCHO observations in other similar locations of China. However, HCHO diurnal profiles showed few features of secondary formation. In addition, time series of both HCHO and aromatic VOCs indicated strong influence from local emissions. Using a multiple linear regression fit model, on average the observed HCHO can be attributed to secondary formation (13.8 %), background level (27.0 %), and industry-related emissions, i.e., combustion sources (43.2 %) and chemical productions (16.0 %). Moreover, within the plumes the industry-related emissions can account for up to 69.2 % of the observed HCHO. This work has provided direct evidence of strong primary emissions of HCHO from industry-related activities. These primary HCHO sources can potentially have a strong impact on local and regional air pollution formation

  7. Formation of trihalomethanes from the halogenation of 1,3-dihydroxybenzenes in dilute aqueous solution: synthesis of 2-13C-resorcinol and its reaction with chlorine and bromine

    International Nuclear Information System (INIS)

    Boyce, S.D.; Barefoot, A.C.; Britton, D.R.; Hornig, J.F.

    1983-01-01

    As part of this study, the reaction of bromine with resorcinol and structurally related substrates to produce bromoform was examined. Preliminary results suggest that the chlorination and bromination of dihydroxybenzenes proceeded by similar reaction pathways. This chapter describes the successful synthesis of 2- 13 C-1, 3-dihydroxybenzene. Treatment of the isotopically labelled substrate with chlorine and bromine in dilute aqueous solution has elucidated many important details of the sequence of reactions leading to the production of chloroform (CHCl 3 ) and bromoform (CHBr 3 ). The 13 C-enriched products and intermediates formed during these reactions were identified by gas chromatography/mass spectrometry

  8. In situ ruminal degradation of phytic acid in formaldehyde treated rice bran

    NARCIS (Netherlands)

    Martin-Tereso, J.; Gonzalez, A.; Laar, van H.; Burbara, C.; Pedrosa, M.; Mulder, K.; Hartog, den L.A.; Verstegen, M.W.A.

    2009-01-01

    Rice bran has a very high content of phytic acid (IP6), which is a nutritional antagonist of Ca. Microbial phytase degrades IP6, but ruminal degradation of nutrients can be reduced by formaldehyde treatment. Milk fever in dairy cows can be prevented by reducing available dietary Ca to stimulate Ca

  9. Relationship between structural properties and electrochemical characteristics of monolithic carbon xerogel-based electrochemical double-layer electrodes in aqueous and organic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Mario [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Institute of Radiology, University Clinic, University of Wuerzburg (Germany); Lorrmann, Volker; Reichenauer, Gudrun; Wiener, Matthias [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Pflaum, Jens [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Department of Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany)

    2012-05-15

    The impact of the micropore width, external surface area, and meso-/macropore size on the charging performance of electrochemical double-layer capacitor (EDLC) electrodes is systematically investigated. Nonactivated carbon xerogels are used as model electrodes in aqueous and organic electrolytes. Monolithic porous model carbons with different structural parameters are prepared using a resorcinol-formaldehyde-based sol-gel process and subsequent pyrolysis of the organic precursors. Electrochemical properties are characterized by utilizing them as EDLC half-cells operated in aqueous and organic electrolytes, respectively. Experimental data derived for organic electrolytes reveals that the respective ions cannot enter the micropores within the skeleton of the meso- and macroporous carbons. Therefore the total capacitance is limited by the external surface formed by the interface between the meso-/macropores and the microporous carbon particles forming the xerogel skeleton. In contrast, for aqueous electrolytes the total capacitance solely depends on the total surface area, including interfaces at the micropore scale. For both types of electrolytes the charging rate of the electrodes is systematically enhanced when increasing the diameter of the carbon xerogel particles from 10 to 75 nm and the meso-/macropore size from 10 to 121 nm. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Evaluation of improved technologies for the removal of 90Sr and 137Cs from process wastewater and groundwater: FY 1995 status

    International Nuclear Information System (INIS)

    Bostick, D.T.; Arnold, W.D. Jr.; Burgess, M.W.; McTaggart, D.R.; Taylor, P.A.; Guo, B.

    1996-03-01

    A number of new sorbents are currently being developed for the removal of 90 Sr and 137 Cs from contaminated, caustic low-level liquid waste (LLLW). These sorbents are potentially promising for use in the cleanup of contaminated groundwater and process wastewater containing the two radionuclides. The goal of this subtask is to evaluate the new sorbents to determine whether their associated treatment technology is more selective for the decontamination of wastewater streams than that of currently available processes. Activities during fiscal year 1995 have included completing the characterization of the standard treatment technology, ion exchange on chabazite zeolite. Strontium and cesium sorption on sodium-modified zeolite was observed in the presence of elevated concentrations of wastewater components: sodium, potassium, magnesium, and calcium. The most significant loss of nuclide sorption was noted in the first 0- to 4-meq/L addition of the cations to a wastewater simulant. Radionuclide sorption on the pretreated zeolite was also determined under dynamic flow conditions. Resorcinol-formaldehyde (R-F) resin, which was developed at the Savannah River Site, was selected as the first new sorbent to be evaluated for wastewater treatment. Nuclide sorption on this resin was greater when the resin had been washed with ultrapure water and air dried prior to use

  11. Modified ion exchange resins - synthesis and properties. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Doescher, F.; Klein, J.; Pohl, F.; Widdecke, H.

    1982-01-22

    Sulfomethylated resins are prepared by polymer analogous reactions, starting from macroporous poly(styrene-co-divinylbenzene) matrices. Different reaction paths are discussed and used in the synthesis. Sulfomethylation can be achieved by reaction of a chloromethylated resin with dimethyl sulfide and sodium sulfonate or alternatively by oxidation of polymer-bound thiol groups. Both methods give high conversions as shown by IR spectra and titration of the sulfonic acid groups. Poly(1-(4-hydroxysulfomethylphenyl)ethylene) (3) is obtained by reaction of poly(1-(4-hydroxyphenyl)ethylene) (2) resin with formaldehyde/sodium sulfonate. The thermal stability, catalytic activity, and ion exchange equilibria of the sulfomethylated resin are investigated.

  12. Radiation-chemical hardening of phenol-formaldehyde oligomers

    International Nuclear Information System (INIS)

    Shlapatskaya, V.V.; Omel'chenko, S.I.

    1978-01-01

    Radiation-chemical hardening of phenol formaldehyde oligomers of the resol type has been studied in the presence of furfural and diallylphthalate diluents. The samples have been hardened on an electron accelerator at an electron energy of 1.0-1.1 MeV and a dose rate of 2-3 Mrad/s. The kinetics of hardening has been studied on the yield of gel fraction within the range of absorbed doses from 7 to 400 Mrad. Radiation-chemical hardening of the studied compositions is activated with sensitizers, namely, amines, metal chlorides, and heterocyclic derivatives of metals. Furfural and diallylphthalate compositions are suitable for forming glass-fibre plastic items by the wet method and coatings under the action of ionizing radiations

  13. An outbreak of contact dermatitis from toluenesulfonamide formaldehyde resin in a nail hardener

    NARCIS (Netherlands)

    de Wit, F. S.; de Groot, A. C.; Weyland, J. W.; Bos, J. D.

    1988-01-01

    8 cases of contact dermatitis from toluenesulfonamide formaldehyde resin in a nail hardener are presented. Most patients had used nail lacquers containing this resin for many years without trouble, but became sensitized to the resin shortly after the introduction of this particular nail hardener. A

  14. Plasma regeneration of mineral adsorbents for the precipitation of formaldehyde from exhaust gases of biogas engines; Plasmaregeneration mineralischer Adsorbentien zur Formaldehydabscheidung aus Abgasen von Biogas-Motoren

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Siegfried; Saulich, Katja [Leibniz-Institut fuer Plasmaforschung und Technologie, Greifswald (Germany); Schomburg, Joachim [DURTEC, Neubrandenburg (Germany)

    2013-10-01

    Formaldehyde.is a harmful ambient air pollutant which can be produced by incomplete combustion processes, e.g. in power plants or combustion engines. Adsorbents are widely applied in the area of cleaning as well as enrichment of gas components. In this study, we designed a bench-scale experiment to investigate a gas pollution treatment technique, which integrated the adsorption process and the plasma treatment for formaldehyde removal from gas streams. The mineral granulate used consisted of 80% halloysite and showed a good adsorption capacity for formaldehyde. In the discharge step, the adsorbed formaldehyde molecules were decomposed to CO{sub 2}, CO and hydrocarbons. For the further optimization of the method the influence of the power and the pulse break ratio of sustaining voltage were tested. Further the decomposition performance on adsorbed formaldehyde molecules was studied depending on space-time, a 10% oxygen fraction of the carrier gas, and the influence of temperature. It was shown that with the chosen plasma method the absorber material could be loaded repeatedly and subsequently regenerated at a low input discharge power. (orig.)

  15. Airborne In-Situ Measurements of Formaldehyde over California: One Year of Results from the Compact Formaldehyde Fluorescence Experiment (COFFEE) Instrument

    Science.gov (United States)

    Marrero, J. E.; St Clair, J. M.; Yates, E. L.; Ryoo, J. M.; Gore, W.; Swanson, A. K.; Iraci, L. T.; Hanisco, T. F.

    2016-12-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role in multiple atmospheric processes, such as ozone (O3) production in polluted environments. Due to its short lifetime of only a few hours in daytime, HCHO also serves as tracer of recent photochemical activity. While photochemical oxidation of non-methane hydrocarbons is the dominant source, HCHO can also be emitted directly from fuel combustion, vegetation, and biomass burning. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument was built for integration onto the Alpha Jet Atmospheric eXperiment (AJAX) payload, based out of NASA's Ames Research Center (Moffett Field, CA). Using Non-Resonant Laser Induced Fluorescence (NR-LIF), trace concentrations of HCHO can be detected with a sensitivity of 200 parts per trillion. Since its first research flight in December 2015, COFFEE has successfully flown on more than 20 science missions throughout California and Nevada. Presented here are results from these flights, including boundary layer measurements and vertical profiles throughout the tropospheric column. California's San Joaquin Valley is a primary focus, as this region is known for its elevated levels of HCHO as well as O3. Measurements collected in wildfire plumes, urban centers, agricultural lands, and on and off shore comparisons will be presented. In addition, the correlation of HCHO to other trace gases also measured by AJAX, including O3, methane, carbon dioxide, and water vapor will also be shown. Lastly, the implications of these HCHO measurements on calibration and validation of remote sensing data collected by NASA's OMI (Aura) and OMPS (SuomiNPP) satellites will be addressed.

  16. Indoor Levels of Formaldehyde and Other Pollutants and Relationship to Air Exchange Rates and Human Activities

    Science.gov (United States)

    Huangfu, Y.; O'Keeffe, P.; Kirk, M.; Walden, V. P.; Lamb, B. K.; Jobson, B. T.

    2017-12-01

    This paper reports results on an indoor air quality study conducted on six homes in summer and winter, contrasting indoor and outdoor concentrations of O3, CO, CO2, NOx, PM2.5, and selected volatile organic hydrocarbons measured by PTR-MS. Data were collected as 1 minute averages. Air exchange rates of the homes were determined by CO2 tracer release. Smart home sensors, recording human activity level in various places in the home, and window and doors openings, were utilized to better understand the link between human activity and indoor air pollution. From our study, averaged air exchange rates of the homes ranged from 0.2 to 1.2 hour-1 and were greatly affected by the ventilation system type and window and door openings. In general, a negative correlation between air exchange rate and indoor VOCs levels was observed, with large variation of pollutant levels between the homes. For most of the VOCs measured in the house, including formaldehyde and acetaldehyde, summer levels were much higher than winter levels. In some homes formaldehyde levels displayed a time of day variation that was linked to changes in indoor temperature. During a wildfire period in the summer of 2015, outdoor levels of PM2.5, formaldehyde, and benzene dramatically increased, significantly impacting indoor levels due to infiltration. Human activities, such as cooking, can significantly change the levels of most of the compounds measured in the house and the levels can be significantly elevated for short periods of time, with peak levels can be several orders higher compared with typical levels. The data suggest that an outcome of state energy codes that require new homes to be energy efficient, and as a consequence built with lower air exchange rates, will be unacceptable levels of air toxics, notably formaldehyde.

  17. Patch testing with 2.0% (0.60 mg/cm2) formaldehyde instead of 1.0% (0.30 mg/cm2) detects significantly more contact allerg

    DEFF Research Database (Denmark)

    Pontén, Ann; Aalto-Korte, Kristiina; Agner, Tove

    2013-01-01

    .To validate earlier patch test results for comparison of 1% (wt/vol) and 2% (wt/vol) formaldehyde in water, and to investigate co-reactivity with quaternium-15. Materials and methods.In 12 dermatology clinics, 3591 patients were routinely patch tested simultaneously with 2.0% (wt/vol) (0.60 mg/cm(2) ) and 1.......0% (wt/vol) (0.30 mg/cm(2) ) formaldehyde. Micropipettes were used for delivering the exact dosage of the allergen. Results.Significantly more patients reacted to 2.0% formaldehyde than to 1.0% (3.4% versus 1.8%, p

  18. Monitoring the efficacy of steam and formaldehyde treatment of naturally Salmonella-infected layer houses

    DEFF Research Database (Denmark)

    Gradel, K.O.; Jørgensen, J.C.; Andersen, J.S.

    2004-01-01

    steam treated in a download period, aiming at greater than or equal to60degreesC and 100% relative humidity (RH) during a 24-h period, with or without the addition of 30 ppm formaldehyde. In addition, two control layer houses were disinfected chemically. Salmonella samples taken from predetermined sites...... before and after treatment were tested qualitatively for Salmonella and coliforms. Samples with indicator bacteria (feed inoculated with Escherichia coli or Enterococcus faecalis and faeces with naturally occurring E. coli and enterococci) were placed during steam-treatment at 12 sites in each house...... (where the temperature was logged at 5-min intervals) and tested for surviving bacteria. Generally, the field test results confirmed the results of laboratory tests, especially when 30 ppm formaldehyde was added to the steam. In well-sealed houses, the recommended temperature-humidity-time scheme...

  19. Impact of curing time on ageing and degradation of phenol-urea-formaldehyde binder

    DEFF Research Database (Denmark)

    Okhrimenko, D. V.; Thomsen, A. B.; Ceccato, M.

    2018-01-01

    Phenol-urea-formaldehyde (PUF) resin is one of the most important thermosetting polymers. It is widely used in many industrial and construction applications as an organic coating and adhesive. For example, in production of mineral wool for insulation, PUF is used together with the coupling agent (3...

  20. Toxicity of formaldehyde and acrolein mixtures : in vitro studies using nasal epithelial cells

    NARCIS (Netherlands)

    Cassee, F.R.; Stenhuis, W.S.; Groten, J.P.; Feron, V.J.

    1996-01-01

    In vitro studies with human and rat nasal epithelial cells were carried out to investigate the combined toxicity of formaldehyde and acrolein and the role of aldehyde dehydrogenases in this process. These studies showed that the toxic effect of mixtures of aldehydes was additive. In addition,

  1. Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.

  2. Crosslinking studies in gelatin capsules treated with formaldehyde and in capsules exposed to elevated temperature and humidity.

    Science.gov (United States)

    Ofner, C M; Zhang, Y E; Jobeck, V C; Bowman, B J

    2001-01-01

    Incomplete in vitro capsule shell dissolution and subsequent drug release problems have recently received attention. A modified USP dissolution method was used to follow capsule shell dissolution, and a 2,4,6-trinitrobenzenesulfonic acid (TNBS) assay was used to follow loss of epsilon-amino groups to study this shell dissolution problem postulated to be due to gelatin crosslinking. The dissolution problems were simulated using hard gelatin capsule (HGC) shells previously treated with formaldehyde to crosslink the gelatin. These methods were also used to study the effect of uncrosslinked HGC stored under stressed conditions (37 degrees C and 81% RH) with or without the presence of soft gelatin capsule shells (SGC). A 120 ppm formaldehyde treatment reduced gelatin shell dissolution to 8% within 45 min in water at 37 degrees C. A 200 ppm treatment reduced gelatin epsilon-amino groups to 83% of the original uncrosslinked value. The results also support earlier reports of non-amino group crosslinking by formaldehyde in gelatin. Under stressed conditions, HGC stored alone showed little change over 21 weeks. However, by 12 to 14 weeks, the HGC exposed to SGC showed a 23% decrease in shell dissolution and an 8% decrease in the number of epsilon-amino groups. These effects on the stressed HGC are ascribed to a volatile agent from SGC shells, most likely formaldehyde, that crosslinked nearby HGC shells. This report also includes a summary of the literature on agents that reduce gelatin and capsule shell dissolution and the possible mechanisms of this not-so-simple problem. Copyright 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90: 79-88, 2001

  3. The electro-oxidation of the mixture of formaldehyde and 2-propanol on gold (100 and (111 single crystal planes in alkaline medium

    Directory of Open Access Journals (Sweden)

    BRANISLAV Z. NIKOLIC

    2000-12-01

    Full Text Available The effect of formaldehyde on the oxidation of 2-propanol and vice versa on gold single crystal planes (100 and 111 was studied. An activating effect in the reaction of the simultaneous oxidation of 2-propanol and formaldehyde was obtained on a gold (100 plane. In the case of a gold (111 electrode, the activation effect was not obtained. It was concluded that the adsorption of formaldehyde on the electrode surface prevents the adsorption of poisoning species formed during the electro-oxidation of 2-propanol on the Au(100 plane, while this is not the case on the Au(111 plane. The different behaviour is caused by the difference in the symmetry of the surface atoms of these two Au single-crystal planes.

  4. [Reducing the levels of formaldehyde exposure during a gross anatomy dissection course with a local ventilation system].

    Science.gov (United States)

    Kikuta, Akio; Yamato, Hiroshi; Kunugita, Naoki; Nakashima, Tamiji; Hayashi, Haruki

    2010-03-01

    Reducing the levels of formaldehyde (FA) exposure in gross anatomy laboratories has been urgently required. We improved the environment of our gross anatomy laboratory by changing the existing general ventilation to local ventilation. We developed a local ventilation apparatus (grid-type of hood with downward suction) that can be attached to an ordinary dissection table. Furthermore, in order to make this local ventilation apparatus an enclosure hood, the upper plate of the dissection table was surrounded by flexible vertical flanges. The apparatus works as an effective enclosure hood without interfering with students' practice of dissection. We installed 26 local ventilation apparatuses and connected them to the ventilation duct. The ventilation ducts were installed above the ceiling or along the pillars not to interfere with students' vision and movements in the room. Adopting the local ventilation system reduced dramatically the students' and lecturers' exposure to formaldehyde. The geometric mean formaldehyde concentration was 0.066 ppm in the anatomy laboratory in 2005. Since 2005, the new system has enabled us to comply with safety and health regulations and providing a smell- and irritant-free dissection room with an excellent environment for anatomy study.

  5. Structural, absorption, and molecular properties of o,o'-dihydroxyazo resorcinol dyes bearing an acryloyloxy group

    Science.gov (United States)

    Özkınalı, Sevil; Çavuş, M. Serdar; Ceylan, Abdullah; Gür, Mahmut

    2017-12-01

    To the best of our knowledge, this is the first study reporting the synthesis and characterization of o,o‧-dihydroxyazo dyes bearing an acryloyl group. The o,o‧-dihydroxyazo dyes were synthesized through coupling of resorcinol with the diazonium salts of 2-amino-4-methylphenol, 2-aminophenol, 2-amino-4-chlorophenol, and 2-amino-4-nitrophenol. Their acryloyl derivatives were synthesized using metallic sodium and acryloyl chloride under an inert atmosphere. Characterization of the compounds was conducted using infrared (IR), ultraviolet-visible (UV-vis), proton nuclear magnetic resonance (1H NMR), and carbon nuclear magnetic resonance (13C NMR) spectroscopic methods. The tautomerism of the synthesized compounds' was also evaluated. The results were compared with theoretical results obtained by density functional theory (DFT). The DFT calculations were performed to obtain ground-state optimized geometries and calculate the relevant electronic and chemical reactivity parameters. Furthermore, possible tautomers deduced from the UV-vis spectra were investigated using theoretical calculations. Both the IR and NMR spectral data showed that azo tautomers predominate in the solid state and DMSO solvent. The effects of pH, solvent, and substituent on the predominant tautomers were further investigated through UV-vis spectroscopy. The results indicate that hydrazone tautomers were dominant at pH 12 in dimethylformamide (DMF), whereas azo tautomers were dominant at pH 2 in EtOH or CHCl3.

  6. OMI/Aura Formaldehyde (HCHO) Total Column Global 0.25deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The Version-3 Aura-OMI Formaldehyde Product OMHCHOG is now available (http://disc.gsfc.nasa.gov/Aura/OMI/omhchog_v003.shtml) from the NASA Goddard Earth Sciences...

  7. Some characteristics of urea-formaldehyde powder adhesives

    Directory of Open Access Journals (Sweden)

    Miljković Jovan

    2006-01-01

    Full Text Available Urea-formaldehyde (UF glue resins were the most important type of adhesives in the wood industry last 60 years, especially for the production of wood based panels. More convenient spray dried UF powders went into use last two decades. Small and medium private wood processing plants in Serbia prefer to use such powder adhesives, since they are more convenient for small capacity production. There is no production of UF powder resin in Serbia so necessary quantities are imported from abroad including producers from Asia. However, their characteristics are variable, dependent on syntheses steps and not well known among users. Objective of this research was to determine conveniences and lacks in application of two imported UF powder resins in comparison to domestic UF emulsion.

  8. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2011-01-01

    Full Text Available Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  9. KASUS DISTRIBUSI DAN PENGGUNAAN FORMALIN DALAM PENGAWETAN KOMODITI IKAN LAUT SEGAR (STUDI KASUS DI KOTA BANDAR LAMPUNG [Formaldehyde Distribution and Using for Preserving Fresh Fish (A Case Study in Bandar Lampung City

    Directory of Open Access Journals (Sweden)

    Dias Yusdianson Girsang

    2014-12-01

    Full Text Available The purpose of this study was to identify the presence of formaldehyde in some fresh fish commodities and to trace formaldehyde distribution in Bandar Lampung City. The  formadelhyde tests were done  on the storage water of fresh fish samples. The study conducted in July to October 2013 was devided in two stages: a survey to fill out a questionnaire to a number of respondents, followed by sampling some storage water of fresh fish to be tested in the laboratory.  The tests were  carried out on 52 sampling points taken from the fishing boats in the fishing landing port (17 boats, fish supplier car from outside Bandar Lampung (6 cars as well as some fish sellers in 5 traditional market in Bandar Lampung (29 sellers. By conducting a laboratory test using Formaldehyde Test Kit, there were 2 samples that were purple (positively contain formaldehyde, which were taken from 2 boats in fish landing port of Lempasing. Then the assertion test was carried out to the positive samples using chromotropic acid (SNI 01 – 2894 – 1992. The results showed that the samples positively contained formaldehyde indeed, which was characterized by a bluish purple color. Based on the survey results and tracking, there was a distortion of formaldehyde distribution in Bandar Lampung, where domestic industries (including fisherman obtained formaldehyde illegally, either from End Users, a local manufacturer or drugstore/hospital/other health care facilities. Keywords: formaldehyde, fresh fish storage water, distribution distortion.

  10. Low temperature synthesis of no-carrier-added [{sup 11}C]formaldehyde with metal hydrides and preparation of [1-{sup 11}C]1,2,3,4-Tetrahydro-{beta}-Carboline Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Nader, M.W.; Zeisler, S.K.; Theobald, A.; Oberdorfer, F

    1998-12-01

    A comparative study has been performed on the selective reduction of cyclotron-produced [{sup 11}C]carbon dioxide to [{sup 11}C]formaldehyde with solutions of various complex metal hydrides at temperatures between -52 and +25 deg. C. Under optimal reaction conditions, lithium tetrahydridoaluminate gave the highest yield of [{sup 11}C]formaldehyde (58%, decay-corrected), followed by lithium triethylhydridoborate (34%) and sodium tetrahydridoborate (22%). Radiochemically pure [{sup 11}C]formaldehyde could be obtained with lithium tetrahydridoaluminate and sodium tetrahydridoborate, but not with lithium triethyl hydridoborate. The produced [{sup 11}C]formaldehyde was used for the synthesis of [1-{sup 11}C]1,2,3,4-tetrahydro-{beta}-carboline derivatives by the Pictet-Spengler reaction.

  11. COMPORTAMENTO DE ADESÃO DA MADEIRA DE UM HÍBRIDO CLONAL DE EUCALYPTUS UROPHYLLA × EUCALYPTUS GRANDIS PROVENIENTE DE TRÊS CONDIÇÕES DE MANEJO

    Directory of Open Access Journals (Sweden)

    Octávio Barbosa Plaster

    2012-01-01

    treatments on the adhesive used. We evaluated the shear strength by compression tests and the percentage of wood failure in the glue line. Based on the results obtained, it can be said that the adhesion had satisfactory performance with all the resins used, and the average values of shear strength of the glue line were shown to be equivalent to the shear strength of solid wood only for the samples which adhered with 'Wonderbond' adhesive and also provide higher values for wood failure (97.64%. The highest density present in the wood of the second stratum (E2 influenced only sticking with the resorcinol formaldehyde resin. For polyvinyl acetate (Cascorez 2590, shear values decreased in the third management condition (E3.

  12. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors

    Science.gov (United States)

    Liu, Feng; Yuan, Ren-Lu; Zhang, Ning; Ke, Chang-Ce; Ma, Shao-Xia; Zhang, Ru-Liang; Liu, Lei

    2018-04-01

    Nitrogen doped hollow carbon spheres (NHCSs) with tunable surface morphology have been prepared through one-pot carbonization method by using melamine-formaldehyde spheres as template and resorcinol-based resin as carbon precursor in ethanol-water solution. Well-dispersed NHCSs with particle size of 800 nm were obtained and the surface of NHCSs turn from smooth to tough, wrinkled, and finally concave by increasing the ethanol concentration. The fabricated NHCSs possessed high nitrogen content (3.99-4.83%) and hierarchical micro-dual mesoporous structure with surface area range of 265-405 m2 g-1 and total pore volume of 0.18-0.29 cm3 g-1, which contributed to high specific capacitance, excellent rate capability and long cycle life.

  13. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    International Nuclear Information System (INIS)

    Maiellaro, Marília; Correa-Costa, Matheus; Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio; Câmara, Niels Olsen Saraiva; Tavares-de-Lima, Wothan; Farsky, Sandra Helena Poliselli; Lino-dos-Santos-Franco, Adriana

    2014-01-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment

  14. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Maiellaro, Marília [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil); Correa-Costa, Matheus [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio [Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Câmara, Niels Olsen Saraiva [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Tavares-de-Lima, Wothan [Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Farsky, Sandra Helena Poliselli [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil); Lino-dos-Santos-Franco, Adriana, E-mail: adrilino@usp.br [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil)

    2014-08-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment.

  15. Assessment of formaldehyde levels in local and imported fresh fish in Ghana: a case study in the Tamale Metropolis of Ghana.

    Science.gov (United States)

    Saba, Courage Kosi Setsoafia; Atayure, Seidu Isaac; Adzitey, Frederick

    2015-03-01

    Fish is an important source of protein all over the world, including in Ghana. The fishery sector plays a major role in meeting the domestic need of animal protein and also contributes greatly in foreign exchange earnings. The domestic supply of fish does not meet the demand, so Ghana imports fish and fish products from other countries. Media reports in Ghana have alleged the use of formaldehyde to preserve fish for increased shelf life and to maintain freshness. This research, therefore, sought to establish the levels of formaldehyde in imported and local fresh fish in the Tamale Metropolis by using a ChemSee formaldehyde and formalin detection test kit. Positive and negative controls were performed by using various concentrations of formalin (1, 10, 30, 50, 100, and 300 ppm) and sterile distilled water, respectively. Three times over a 6-month period, different fish species were obtained from five wholesale cold stores (where fish are sold in cartons) and some local sales points (where locally caught fish are sold). A total of 32 samples were taken during three different sampling sessions: 23 imported fish (mackerel, herring, horse mackerel, salmon, and redfish) and 9 local tilapia. The fish were cut, and 50 g was weighed and blended with an equal volume (50 ml) of sterile distilled water. Samples were transferred to test tubes and centrifuged. A test strip was dipped into the supernatant and observed for a color change. A change in color from white to pink or purple indicated the presence of formaldehyde in fish. The study showed that no formaldehyde was present in the imported and local fish obtained. The appropriate regulatory agencies should carry out this study regularly to ensure that fish consumed in Ghana is safe for consumption.

  16. A Reagentless Amperometric Formaldehyde-Selective Chemosensor Based on Platinized Gold Electrodes

    OpenAIRE

    Demkiv, Olha; Smutok, Oleh; Gonchar, Mykhailo; Nisnevitch, Marina

    2017-01-01

    Fabrication and characterization of a new amperometric chemosensor for accurate formaldehyde analysis based on platinized gold electrodes is described. The platinization process was performed electrochemically on the surface of 4 mm gold planar electrodes by both electrolysis and cyclic voltamperometry. The produced electrodes were characterized using scanning electron microscopy and X-ray spectral analysis. Using a low working potential (0.0 V vs. Ag/AgCl) enabled an essential increase in th...

  17. Ethanol-Glycerin Fixation with Thymol Conservation: A Potential Alternative to Formaldehyde and Phenol Embalming

    Science.gov (United States)

    Hammer, Niels; Loffler, Sabine; Feja, Christine; Sandrock, Mara; Schmidt, Wolfgang; Bechmann, Ingo; Steinke, Hanno

    2012-01-01

    Anatomical fixation and conservation are required to prevent specimens from undergoing autolysis and decomposition. While fixation is the primary arrest of the structures responsible for autolysis and decomposition, conservation preserves the state of fixation. Although commonly used, formaldehyde has been classified as carcinogenic to humans. For…

  18. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations

    NARCIS (Netherlands)

    Bauwens, Maite; Stavrakou, Trissevgeni; Müller, Jean François; De Smedt, Isabelle; Van Roozendael, Michel; Van Der Werf, Guido R.; Wiedinmyer, Christine; Kaiser, Johannes W.; Sindelarova, Katerina; Guenther, Alex

    2016-01-01

    As formaldehyde (HCHO) is a high-yield product in the oxidation of most volatile organic compounds (VOCs) emitted by fires, vegetation, and anthropogenic activities, satellite observations of HCHO are well-suited to inform us on the spatial and temporal variability of the underlying VOC sources. The

  19. CHARACTERIZATION OF ALKALINE LIGNINS FOR USE IN PHENOL-FORMALDEHYDE AND EPOXY RESINS

    Directory of Open Access Journals (Sweden)

    Nour Eddine El Mansouri

    2011-05-01

    Full Text Available Besides polyurethanes and polyesters, phenolic and epoxy resins are the most prominent applications for technical lignins in thermosetting materials. To evaluate the potential application of lignin raw materials in phenol formaldehyde and epoxy resins, three types of alkaline lignins were characterized in terms of their structures and thermal properties. The lignin samples analyzed were kraft lignin (LIG-1, soda–rice straw lignin (LIG-2, and soda-wheat straw lignin (LIG-3. FTIR and 1H-NMR methods were used to determine their structure. Gel permeation chromatography (GPC was used to determine the molecular weight distribution (MWD. Differential scanning calorimetry (DSC was used to measure the glass transition temperature (Tg, and thermogravimetric analysis (TGA to determine the thermal stability of lignin samples. Results showed that kraft lignin (LIG-1 has moderate hydroxyl-group content, is rich in G-type units, and has good thermal stability. These properties make it more suitable for direct use in phenol formaldehyde resins, and it is therefore a good raw material for this purpose. The alkaline soda-rice straw lignin (LIG-2 with a high hydroxyl-group content and excellent thermal stability is most suited to preparing lignin-based epoxy resins.

  20. The effect of α-cellulose fiber on the properties of melamine-formaldehyde molding compounds

    International Nuclear Information System (INIS)

    Khatibi, M. A.; Beheshti, M. A.; Morshedian, J.

    2001-01-01

    Melamine-formaldehyde molding compounds have found different industrial applications. This is due to their good mechanical properties such as hardness, gloss and high modulus and strength. One of the major components of these compounds is α-cellulose fiber and has a major effect on the mechanical properties. Although this fiber is being used in these compounds for a long time, there is not much data available of α-cellulose fibers on the physical and mechanical properties of melamine-formaldehyde molding compounds being investigated. Results show that although the microstructures of these two fibers are quite different from each other, but they do not have any effect on the mechanical properties of the molding. Whereas, it has a significant effect on the wettability (processing condition) and glossiness of the mol dings. Since this latter property is very important in house wares applications, the darker mol dings can not be used in domestic applications

  1. A novel reaction catalysed by active carbons production of dichloromethane from phosgene and formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T A; Stacey, M H

    1984-08-01

    A variety of Activated charcoals have been found to catalyse a reaction between phosgene and formaldehyde. In a continuous flow fluidized bed reactor, the reaction rate reaches a broad maximum near 170/sup 0/C where the selectivity is consistent with the stoichiometry. The reaction proceeds via a strongly adsorbed intermediate which has been identified as chloromethyl chloroformate. This ester is an adduct of formaldehyde and phosgen and forms rapidly above 100/sup 0/C in co-adsorption/desorption experiments. It decomposes rapidly 170/sup 0/C without significant desorption of the intact molecule to give the observed products dichloromethane and carbon dioxide. Under steady-state conditions the rate-determining step is the formation of this ester so that it is normally only present on the surface at low coverages; hence it is not observable in the gas phase. The catalysis is probably due to the presence of polar acid or base sites on the surface of the activated charcoals.

  2. KASUS DISTRIBUSI DAN PENGGUNAAN FORMALIN DALAM PENGAWETAN KOMODITI IKAN LAUT SEGAR (STUDI KASUS DI KOTA BANDAR LAMPUNG Formaldehyde Distribution and Using for Preserving Fresh Fish (A Case Study in Bandar Lampung City

    Directory of Open Access Journals (Sweden)

    Dias Yusdianson Girsang

    2014-12-01

    Full Text Available The purpose of this study was to identify the presence of formaldehyde in some fresh fish commodities and to trace formaldehyde distribution in Bandar Lampung City. The  formadelhyde tests were done  on the storage water of fresh fish samples. The study conducted in July to October 2013 was devided in two stages: a survey to fill out a questionnaire to a number of respondents, followed by sampling some storage water of fresh fish to be tested in the laboratory.  The tests were  carried out on 52 sampling points taken from the fishing boats in the fishing landing port (17 boats, fish supplier car from outside Bandar Lampung (6 cars as well as some fish sellers in 5 traditional market in Bandar Lampung (29 sellers. By conducting a laboratory test using Formaldehyde Test Kit, there were 2 samples that were purple (positively contain formaldehyde, which were taken from 2 boats in fish landing port of Lempasing. Then the assertion test was carried out to the positive samples using chromotropic acid (SNI 01 – 2894 – 1992. The results showed that the samples positively contained formaldehyde indeed, which was characterized by a bluish purple color. Based on the survey results and tracking, there was a distortion of formaldehyde distribution in Bandar Lampung, where domestic industries (including fisherman obtained formaldehyde illegally, either from End Users, a local manufacturer or drugstore/hospital/other health care facilities. Key word: formaldehyde, fresh fish storage water, distribution distortion.

  3. Adsorption of Mefenamic Acid From Water by Bentonite Poly urea formaldehyde Composite Adsorbent

    Directory of Open Access Journals (Sweden)

    Basma Abbas Abdel Majeed

    2017-07-01

    Full Text Available Poly urea formaldehyde –Bentonite (PUF-Bentonite composite was tested as new adsorbent for removal of mefenamic acid (MA from simulated wastewater in batch adsorption procedure. Developed a method for preparing poly urea formaldehyde gel in basic media by using condensation polymerization. Adsorption experiments were carried out as a function of water pH, temperature, contact time, adsorbent dose and initial MA concentration .Effect of sharing surface with other analgesic pharmaceuticals at different pH also studied. The adsorption of MA was found to be strongly dependent to pH. The Freundlich isotherm model showed a good fit to the equilibrium adsorption data. From Dubinin–Radushkevich model the mean free energy (E was calculated and the value of 5 KJ/mole indicated that the main mechanism governing the adsorption of MA on PUF-Bentonite composite was physical in nature. The kinetics of adsorption tested for first order, pseudo second order models and Elovich’s equation, results showed the adsorption followed the pseudo-second-order model

  4. Cellular mechanism underlying formaldehyde-stimulated Cl- secretion in rat airway epithelium.

    Directory of Open Access Journals (Sweden)

    Yu-Li Luo

    Full Text Available BACKGROUND: Recent studies suggest that formaldehyde (FA could be synthesized endogeneously and transient receptor potential (TRP channel might be the sensor of FA. However, the physiological significance is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: The present study investigated the FA induced epithelial Cl(- secretion by activation of TRPV-1 channel located in the nerve ending fiber. Exogenously applied FA induced an increase of I(SC in intact rat trachea tissue but not in the primary cultured epithelial cells. Western blot and immunofluorescence analysis identified TRPV-1 expression in rat tracheal nerve ending. Capsazepine (CAZ, a TRPV-1 specific antagonist significantly blocked the I(SC induced by FA. The TRPV-1 agonist capsaicin (Cap induced an increase of I(SC, which was similar to the I(SC induced by FA. L-703606, an NK-1 specific inhibitor and propranolol, an adrenalin β receptor inhibitor significantly abolished the I(SC induced by FA or Cap. In the ion substitute analysis, FA could not induce I(SC in the absence of extracelluar Cl(-. The I(SC induced by FA could be blocked by the non-specific Cl(- channel inhibitor DPC and the CFTR specific inhibitor CFTR(i-172, but not by the Ca(2+-activated Cl(- channel inhibitor DIDS. Furthermore, both forskolin, an agonist of adenylate cyclase (AC and MDL-12330A, an antagonist of AC could block FA-induced I(SC. CONCLUSION: Our results suggest that FA-induced epithelial I(SC response is mediated by nerve, involving the activation of TRPV-1 and release of adrenalin as well as substance P.

  5. Effect of catalyst on melamine-formaldehyde organic aerogel

    International Nuclear Information System (INIS)

    Sun Zhipeng; Yang Xi; Fu Zhibing; Zhong Minglong; Wang Chaoyang; Ma Kangfu; Huang Xiaoli; Chang Lijuan

    2013-01-01

    A series of melamine-formaldehyde(MF) organic aerogel templates were prepared with different categories and concentration of catalyst. Their molecular structure, thermal stability and pore structure were tested by Fourier transform infrared spectroscopy, thermogravimetric analysis and nitrogen adsorption. It is indicated that the type and concentration of catalyst do not affect molecular structure and thermal stability of the MF organic aerogel template. The specific surface area and pore volume of the MF organic aerogel template using Na 2 CO 3 as catalyst are higher than those using NaOH, NaHCO 3 as catalyst. When the ratio of the concentration of melamine to that of catalyst is 500, the specific surface area is maximized. (authors)

  6. Fabrication and optimisation of optical biosensor using alcohol oxidase enzyme to evaluate detection of formaldehyde

    Science.gov (United States)

    Rachim, A.; Sari, A. P.; Nurlely, Fauzia, V.

    2017-07-01

    In this study, a new and simple biosensor base on alcohol oxidase (AOX)-enzyme for detecting formaldehyde in aqueous solutions has been successfully fabricated. The alcohol oxidase (AOX) enzyme was immobilized on poly-n-butyl acrylic-co-N-acryloxysuccinimide (nBA-NAS) membrane containing chromoionophore. The chemical reaction between AOX and formaldehyde generates a colour change of chromoionophore detected by optical absorbance measured in UV Vis. This paper focuses on the concentration optimization of buffer phosphate solution, response time, the quantity of enzyme and the measurement of the detection range of biosensors. The result shows that the optimum concentration and pH of buffer phosphate solution is 0.05 M and pH 7, respectively. The optimum response time is 3 min, the optimum unit of enzyme for biosensor is 1 unit/sample and the detection range of biosensor is 0.264 mM with R2 = 0.9421.

  7. Isotope effects and their implications for the covalent binding of inhaled [3H]- and [14C]formaldehyde in the rat nasal mucosa

    International Nuclear Information System (INIS)

    Heck Hd'; Casanova, M.

    1987-01-01

    DNA-protein crosslinks were formed in the nasal respiratory mucosa of Fischer-344 rats exposed for 3 hr to selected concentrations of [ 3 H]- and [ 14 C]formaldehyde ( 3 HCHO and H 14 CHO). In rats depleted of glutathione (GSH) and exposed to 10 ppm of 3 HCHO and H 14 CHO, the 3 H/ 14 C ratio of the fraction of the DNA that was crosslinked to proteins was significantly (39 +/- 6%) higher than that of the inhaled gas. This suggests an isotope effect, either on the formation of DNA-protein crosslinks by labeled HCHO or on the oxidation of labeled HCHO catalyzed by formaldehyde (FDH) or aldehyde dehydrogenase (AldDH). The possibility of an isotope effect on the formation of crosslinks was investigated using rat hepatic nuclei incubated with [ 3 H]- and [ 14 C]formaldehyde (0.1 mM, 37 degrees C). A small (3.4 +/- 0.9%) isotope effect was detected on this reaction, which slightly favored 3 HCHO over H 14 CHO in binding to DNA. The magnitude of this isotope effect cannot account for the high isotope ratio observed in the crosslinked DNA in vivo. The possibility of an isotope effect on the oxidation of 3 HCHO and H 14 CHO catalyzed by FDH was investigated using homogenates of the rat nasal mucosa incubated with [ 3 H]- and [ 14 C]formaldehyde at total formaldehyde concentrations ranging from 0.1 to 11 microM, NAD+ (1 mM), GSH (15 mM), and pyrazole (1 mM). The experiments showed that 3 HCHO is oxidized significantly more slowly than H 14 CHO under these conditions (Vmax/Km (H 14 CHO) divided by Vmax/Km ( 3 HCHO) = 1.82 +/- 0.11). A similar isotope effect was observed in the absence of GSH, presumably due to the oxidation of 3 HCHO and H 14 CHO catalyzed by AldDH

  8. A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms

    Directory of Open Access Journals (Sweden)

    P. Amato

    2007-08-01

    Full Text Available The interactions between microbial and chemical contents of cloud water were investigated. First, we observe that the bulk cloud water solution provides a substantial environment where bacteria can develop significantly. Then, a total number of 60 microbial strains originating from seven distinct samples of cloud water and affiliated to various taxonomic groups were examined for their ability to degrade some of the main atmospheric carboxylic compounds: formate, acetate, lactate, succinate, as well as formaldehyde and methanol. Biodegradation tests show that all these compounds can be transformed when used as single carbonaceous substrates, with activities depending on both the strain and the compound. The highest capacities of biodegradation are observed towards formaldehyde, formate and acetate, which are also the more concentrated compounds typically measured in cloud water. Hence, analyses by 1H NMR permitted to establish for instance that compounds like pyruvate or fumarate can be produced and released in the media in relation to the transformation of lactate or succinate. In addition, utilization of 13C labelled formaldehyde showed that it can be transformed through many metabolic pathways, similar to those induced by photochemistry and leading to the production of formate and/or methanol. These results suggest that microorganisms of cloud water can have various behaviours towards the chemical compounds present in the atmosphere: they can represent either a sink or source for organic carbon, and may have to be considered as actors of cloud chemistry.

  9. Exposition by inhalation to the formaldehyde in the air. Source, measures and concentrations

    International Nuclear Information System (INIS)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I.

    2004-12-01

    This document presents the main techniques today available to characterize the formaldehyde concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  10. Source emission and model evaluation of formaldehyde from composite and solid wood furniture in a full-scale chamber

    Science.gov (United States)

    Liu, Xiaoyu; Mason, Mark A.; Guo, Zhishi; Krebs, Kenneth A.; Roache, Nancy F.

    2015-12-01

    This paper describes the measurement and model evaluation of formaldehyde source emissions from composite and solid wood furniture in a full-scale chamber at different ventilation rates for up to 4000 h using ASTM D 6670-01 (2007). Tests were performed on four types of furniture constructed of different materials and from different manufacturers. The data were used to evaluate two empirical emission models, i.e., a first-order and power-law decay model. The experimental results showed that some furniture tested in this study, made only of solid wood and with less surface area, had low formaldehyde source emissions. The effect of ventilation rate on formaldehyde emissions was also examined. Model simulation results indicated that the power-law decay model showed better agreement than the first-order decay model for the data collected from the tests, especially for long-term emissions. This research was limited to a laboratory study with only four types of furniture products tested. It was not intended to comprehensively test or compare the large number of furniture products available in the market place. Therefore, care should be taken when applying the test results to real-world scenarios. Also, it was beyond the scope of this study to link the emissions to human exposure and potential health risks.

  11. Initial evaluation of Sandia National Laboratory-prepared crystalline silico-titanates for cesium recovery

    International Nuclear Information System (INIS)

    Bray, L.A.; Carson, K.J.; Elovich, R.J.

    1993-10-01

    Pacific Northwest Laboratory initiated a study of a new class of inorganic ion exchange materials that selectively extracts cesium (Cs), strontium (Sr), and plutonium (Pu) from alkaline radioactive waste solutions. These materials, identified as crystalline silico-titanates (CST), were developed by scientists at the Sandia National Laboratory (SNL) and Texas A ampersand M. This report summarizes preliminary results for the measurement of batch distribution coefficient (K d ) values for the powdered CST materials compared to previously tested ion exchange materials: IONSIV IE-96 (a zeolite produced by UOP), CS-100 (an organic resin produced by Rohm and Haas), and BIB-DJ (a new resorcinol-formaldehyde organic resin produced by Boulder Scientific). Excellent results were obtained for CST inorganic exchangers that could be significant in the development of processes for the near-term pretreatment of Hanford alkaline wastes. The following observations and conclusions resulted from this study: (1) Several CST samples prepared at SNL had a higher capacity to remove Cs from solution as compared to BIB-DJ, IE-96, and CS-100. (2) Cesium distribution results showed that CST samples TAM-40, -42, -43, -70, and -74 had λ values of ∼2,200 (λ = Cs K d x ρ b ; where λ represents the number of exchanger bed volumes of feed that can be loaded on an ion exchange column) at a pH value >14. (3) Cesium distribution values for CST exchangers doubled as the aqueous temperature decreased from 40 degrees to 10 degrees C. (4) Crystalline silico-titanates have the capacity to remove Cs as well as Sr and Pu from alkaline wastes unless organic complexants are present. Experimental results indicated that complexed Sr was not removed, and Pu is not expected to be removed

  12. Melamine-formaldehyde microcapsules filled sappan dye modified polypropylene composites: encapsulation and thermal properties

    Science.gov (United States)

    Phanyawong, Suphitcha; Siengchin, Suchart; Parameswaranpillai, Jyotishkumar; Asawapirom, Udom; Polpanich, Duangporn

    2018-01-01

    Sappan dye, a natural dye extracted from sappan wood is widely used in cosmetics, textile dyeing and as food additives. However, it was recognized that natural dyes cannot withstand high temperature. In this study, a protective coating of melamine-formaldehyde shell material was applied over the sappan dye to improve its thermal stability. The percentage of sappan dye used in the microencapsulation was 30, 40, 50, 60 and 70 wt%. The color, shape, size, and thermal stability of sappan dye microcapsules were investigated. It was found that increasing amount of sappan dye content in the microcapsules decreased the particle size. Thermal analysis reveals that the melamine-formaldehyde resin served as an efficient protective shell for sappan dye. Besides, 30 wt% sappan dye microcapsules with different weight percent (1, 3 and 5 wt%) of sappan dye was used as modifier for polypropylene (PP). All the prepared composites are red in color which supports the thermal stability of the microcapsules. The changes in crystallinity and melting behavior of PP by the addition of microcapsules were studied in detail by differential scanning calorimetry. Thermogravimetric studies showed that the thermal stability of PP composites increased by the addition of microcapsules.

  13. Preparation and Characterization of UV-Curable Cyclohexanone-Formaldehyde Resin and Its Cured Film Properties

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2014-01-01

    Full Text Available UV-curable cyclohexanone-formaldehyde (UVCF resin was prepared with cyclohexanone-formaldehyde (CF resin, isophorone diisocyanate (IPDI, and pentaerythritol triacrylate (PETA as base substance, bridging agent, and functional monomer, respectively. The structure of UVCF was characterized by Fourier transform infrared spectroscopy (FT-IR, 1H-nuclear magnetic resonance spectroscopy (1H-NMR, and gel permeation chromatography (GPC. The viscosity and photopolymerization behavior of the UV-curable formulations were studied. The thermal stability and mechanical properties of the cured films were also investigated. The results showed that UVCF resin was successfully prepared, the number of average molecular weight was about 2010, and its molecular weight distribution index was 2.8. With the increase of UVCF resin content, the viscosity of the UV-curable formulations increased. After exposure to UV irradiation for 230 s, the photopolymerization conversion of the UV-curable formulations was above 80%. Moreover, when the UVCF content was 60%, the formulations had high photopolymerization rate, and the cured UVCF films showed good thermal stability and mechanical properties.

  14. Preparation of iron molybdate catalysts for methanol to formaldehyde oxidation based on ammonium molybdoferrate(II precursor

    Directory of Open Access Journals (Sweden)

    N.V. Nikolenko

    2018-03-01

    Full Text Available It was demonstrated that iron molybdate catalysts for methanol oxidation can be prepared using Fe(II as a precursor instead of Fe(III. This would allow for reduction of acidity of preparation solutions as well as elimination of Fe(III oxide impurities which are detrimental for the process selectivity. The system containing Fe(II and Mo(VI species in aqueous solution was investigated using UV–Vis spectroscopy. It was demonstrated that three types of chemical reactions occur in the Fe(II–Mo(VI system: (i formation of complexes between Fe(II and molybdate(VI ions, (ii inner sphere oxidation of coordinated Fe(II by Mo(VI and (iii decomposition of the Fe–Mo complexes to form scarcely soluble Fe(III molybdate, Mo(VI hydrous trioxide and molybdenum blue. Solid molybdoferrate(II prepared by interaction of Fe(II and Mo(VI in solution was characterized by EDXA, TGA, DTA and XRD and a scheme of its thermal evolution proposed. The iron molybdate catalyst prepared from Fe(II precursor was tested in methanol-to-formaldehyde oxidation in a continuous flow fixed-bed reactor to show similar activity and selectivity to the conventional catalyst prepared with the use of Fe(III.

  15. Adsorption of formaldehyde molecule on the pristine and transition metal doped graphene: First-principles study

    International Nuclear Information System (INIS)

    Chen, Xin; Xu, Lei; Liu, Lin-Lin; Zhao, Lu-Si; Chen, Chun-Ping; Zhang, Yong; Wang, Xiao-Chun

    2017-01-01

    Highlights: • Formaldehyde molecule (H_2CO) is a common environmental pollutant with strong toxicity. • Total 36 different initial configurations of H_2CO molecule adsorbing onto three types of substrates have been investigated. • The Ti-doped graphene has the enough binding energy, significant changes in electronic structure, and reasonable short recovery time 10"−"3 s. • The Ti-doped graphene is a promising candidate for detecting formaldehyde gas. - Abstract: The adsorption of H_2CO molecule on pristine and transition metal (Ti and V) doped graphene samples were investigated via a first-principles approach based on density functional theory. The most stable adsorption geometry, energy and charge transfer of H_2CO molecule on pristine and doped graphene are discussed respectively. We have found that Ti and V dopant atoms can significantly enhance the interaction between H_2CO molecule and graphene. The calculated net electron transfers, electronic density difference images and densities of states give the evidence that the H_2CO molecules stay on Ti (or V) – doped graphene by chemisorption. After H_2CO adsorption, there are significant changes in electronic structure near the Fermi level, for both two systems of Ti and V doped graphene. This indicates distinct changes of electron transport properties. We have also found that H_2CO molecule has a larger absorption energy on V-doped graphene (1.939 eV) compared with Ti-doped graphene (1.120 eV). It is shown that the Ti-doped graphene has enough binding energy, adequate changes in electronic structure and reasonable short recovery time 10"−"3 s, making it a promising candidate for detecting formaldehyde gas.

  16. Simultaneous measurements of formaldehyde and nitrous acid in dews and gas phase in the atmosphere of Santiago, Chile

    Science.gov (United States)

    Rubio, María A.; Lissi, Eduardo; Villena, Guillermo; Elshorbany, Y. F.; Kleffmann, Jörg; Kurtenbach, Ralf; Wiesen, Peter

    2009-12-01

    The amounts of formaldehyde and nitrous acid (HONO) in gas phase and dews of Santiago de Chile were simultaneously measured. Formaldehyde concentrations values in the liquid phase (dews) correlate fairly well with those in the gaseous phase and are even higher than those expected from gas-dew equilibrium. On the other hand, nitrite concentrations in dews were considerably smaller (ca. 15 times) than those expected from the gas-phase concentrations. This under-saturation is attributed to diffusion limitations due to the relatively large HONO solubility. In agreement with this, under-saturation increases with the rate of dew formation and the pH of the collected waters, factors that should increase the rate of gas to liquid HONO transfer required to reach equilibrium.

  17. Study of changes in bacterial and viral abundance in formaldehyde - Fixed water samples by epifluorescence microscopy

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Radhakrishnan, S.; Sajila, M.P.; Jacob, B.

    of bacteria and viruses in water samples from Cochin Backwater was determined by SYBR Green I staining and epifluorescence microscopy. The counts were determined for 45 days in samples fixed with 1–6% formaldehyde. The results suggest rapid decline in counts...

  18. 75 FR 17163 - Formaldehyde Standard; Extension of the Office of Management and Budget's (OMB) Approval of...

    Science.gov (United States)

    2010-04-05

    ... (29 CFR 1910.1048). The standard protects workers from the adverse health effects from occupational... protects workers from the adverse health effects from occupational exposure to formaldehyde, including an... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2009-0041...

  19. Syntheses with isotopically labelled carbon. Methyl iodide, formaldehyde and cyanide

    International Nuclear Information System (INIS)

    Finn, R.D.; Boothe, T.E.; Vora, M.M.; Hildner, J.C.; Emran, A.M.; Kothari, P.J.

    1984-01-01

    Many of the uniquely labelled synthetic precursors currently employed in the design of sophisticated radiolabelled compounds have their origins in the field of hot atom chemistry. Particularly, the development during the past few years of automated, on-line synthetic procedures which combine the nuclear reaction, hot atom and classical chemistry, and rapid purification methods has allowed the incorporation of useful radionuclides into suitable compounds of chemical and biochemical interest. The application of isotopically labelled methyl iodide, formaldehyde, and cyanide anion as synthetic intermediates in research involving human physiology and nuclear medicine, as well as their contributions to other scientific methodology, is reviewed. (author)

  20. Acute airway effects of airborne formaldehyde in sensitized and non-sensitized mice housed in a dry or humid environment

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Søren Thor, E-mail: stl@nrcwe.dk; Wolkoff, Peder, E-mail: pwo@nrcwe.dk; Hammer, Maria, E-mail: mha@nrcwe.dk; Kofoed-Sørensen, Vivi, E-mail: vks@nrcwe.dk; Clausen, Per Axel, E-mail: pac@nrcwe.dk; Nielsen, Gunnar Damgård, E-mail: gdn@nrcwe.dk

    2013-05-01

    We investigated the role of air humidity and allergic sensitization on the acute airway response to inhaled formaldehyde (FA) vapor. Mice were sensitized to the immunogen ovalbumin (OVA) by three intraperitoneal injections followed by two aerosol challenges, giving rise to allergic airway inflammation. Control mice were sham sensitized by saline injections and challenged by saline aerosols. Once sensitized, the mice were housed at high (85–89%) or low (< 10%) relative humidity, respectively for 48 h prior to a 60-min exposure to either 0.4, 1.8 or about 5 ppm FA. Before, during and after exposure, breathing parameters were monitored. These included the specific markers of nose and lung irritations as well as the expiratory flow rate, the latter being a marker of airflow limitation. The sensory irritation response in the upper airways was not affected by allergic inflammation or changes in humidity. At high relative humidity, the OVA-sensitized mice had a decreased expiratory airflow rate compared to the saline control mice after exposure to approximately 5 ppm FA. This is in accordance with the observations that asthmatics are more sensitive than non-asthmatics to higher concentrations of airway irritants including FA. In the dry environment, the opposite trend was seen; here, the saline control mice had a significantly decreased expiratory airflow rate compared to OVA-sensitized mice when exposed to 1.8 and 4 ppm FA. We speculate that increased mucus production in the OVA-sensitized mice has increased the “scrubber effect” in the nose, consequently protecting the conducting and lower airways. - Highlights: ► Role of air humidity and allergy on sensitivity to an airway irritant was studied. ► In the humid environment, allergy amplified the effects of formaldehyde. ► In the dry environment, allergy reduced the effect of formaldehyde. ► Neither allergy nor humidity changed the formaldehyde-induced nasal irritation.

  1. Acute airway effects of airborne formaldehyde in sensitized and non-sensitized mice housed in a dry or humid environment

    International Nuclear Information System (INIS)

    Larsen, Søren Thor; Wolkoff, Peder; Hammer, Maria; Kofoed-Sørensen, Vivi; Clausen, Per Axel; Nielsen, Gunnar Damgård

    2013-01-01

    We investigated the role of air humidity and allergic sensitization on the acute airway response to inhaled formaldehyde (FA) vapor. Mice were sensitized to the immunogen ovalbumin (OVA) by three intraperitoneal injections followed by two aerosol challenges, giving rise to allergic airway inflammation. Control mice were sham sensitized by saline injections and challenged by saline aerosols. Once sensitized, the mice were housed at high (85–89%) or low (< 10%) relative humidity, respectively for 48 h prior to a 60-min exposure to either 0.4, 1.8 or about 5 ppm FA. Before, during and after exposure, breathing parameters were monitored. These included the specific markers of nose and lung irritations as well as the expiratory flow rate, the latter being a marker of airflow limitation. The sensory irritation response in the upper airways was not affected by allergic inflammation or changes in humidity. At high relative humidity, the OVA-sensitized mice had a decreased expiratory airflow rate compared to the saline control mice after exposure to approximately 5 ppm FA. This is in accordance with the observations that asthmatics are more sensitive than non-asthmatics to higher concentrations of airway irritants including FA. In the dry environment, the opposite trend was seen; here, the saline control mice had a significantly decreased expiratory airflow rate compared to OVA-sensitized mice when exposed to 1.8 and 4 ppm FA. We speculate that increased mucus production in the OVA-sensitized mice has increased the “scrubber effect” in the nose, consequently protecting the conducting and lower airways. - Highlights: ► Role of air humidity and allergy on sensitivity to an airway irritant was studied. ► In the humid environment, allergy amplified the effects of formaldehyde. ► In the dry environment, allergy reduced the effect of formaldehyde. ► Neither allergy nor humidity changed the formaldehyde-induced nasal irritation

  2. Optical chemical sensors for atmospheric pollutants based on nano porous materials: application to the formaldehyde and the other carbonyl compounds

    International Nuclear Information System (INIS)

    Paolacci, H.

    2006-12-01

    Formaldehyde, a well-identified indoor pollutant, was recently classified as carcinogenic. New regulations for the air quality are expected and therefore there is a need for low-cost sensors, sensitive and selective with a fast response time for the detection of formaldehyde at ppb level. In the present work, we had developed a chemical sensor based on nano-porous matrices doped with Fluoral-P and optical methods of detection. The nano-porous matrices, elaborated via the Sol-Gel process, display nano-pores whose cavity is tailored for the trapping of the targeted pollutant. They provide a first selectivity with the discrimination of the pollutants by their size. A second selectivity is obtained with a molecular probe, Fluoral-P, which reacts specifically with formaldehyde leading to the 3,5- di-acetyl-1,4-dihydro-lutidine (DDL). The kinetics of formation of DDL was studied as function of many parameters such as the concentration of Fluoral-P in the matrix, the pollutant content in gas mixture, the flow rate, the relative humidity of the gas mixtures and interference with other carbonylated compounds. The present chemical sensor can detect, via absorbance measurements, 2 ppb of formaldehyde within 30 min over a O to 60% relative humidity range. Moreover, to detect the total carbonylated compounds, we also explored the potentiality of a chemical sensor using, as a probe molecule, the 2'4-dinitro-phenyl-hydrazine which forms with these compounds the corresponding hydrazones derivatives. A patent was deposited for these two sensors. We have also developed a semi-miniaturized prototype for demonstration, using a flow cell, a miniaturized spectrophotometer, a light source and a lap-top. (author)

  3. Discovery of 2,4-diarylaminopyrimidines bearing a resorcinol motif as novel ALK inhibitors to overcome the G1202R resistant mutation.

    Science.gov (United States)

    Geng, Kaijun; Xia, Zongjun; Ji, Yinchun; Zhang, Ruisi Ruthy; Sun, Deqiao; Ai, Jing; Song, Zilan; Geng, Meiyu; Zhang, Ao

    2018-01-20

    To address drug resistance caused by ALK kinase mutations, especially the most refractory and predominant mutation G1202R for the second-generation ALK inhibitor, a series of new diarylaminopyrimidine analogues were designed by incorporating a resorcinol moiety (A-ring) to interact the ALK kinase domain where the G1202R is located. Compound 12d turns out as the most potent with IC 50 values of 1.7, 3.5, and 1.8 nM against ALK wild type, gatekeeper mutant L1196M, and the G1202R mutant, respectively. More importantly, compound 12d has excellent inhibitory effects against the proliferation of BaF3 cells specifically expressing ALK wild type, gatekeeper L1196M, and the most challenging mutant G1202R, with IC 50 values all less than 1.5 nM. Collectively, compound 12d is worthy of further investigation as a new more potent third-generation ALK inhibitor to circumvent drug resistance of both the first-generation and the second-generation inhibitors. Copyright © 2017. Published by Elsevier Masson SAS.

  4. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  5. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    International Nuclear Information System (INIS)

    King, W.

    2007-01-01

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  6. Spherical agarose-coated magnetic nanoparticles functionalized with a new salen for magnetic solid-phase extraction of uranyl ion

    International Nuclear Information System (INIS)

    Serenjeh, Fariba Nazari; Hashemi, Payman; Ghiasvand, Ali Reza; Naeimi, Hossein; Zakerzadeh, Elham

    2016-01-01

    The authors describe a method for magnetic solid phase extraction of uranyl ions from water samples. It is based on the use of spherical agarose-coated magnetic nanoparticles along with magnetic field agitation. The salen type Schiff base N,N’-bis(4-hydroxysalicylidene)-1,2-phenylenediamine was synthesized from resorcinol in two steps and characterized by infrared and nucleic magnetic resonance spectroscopies. The particles were then activated by an epichlorohydrin method and functionalized with the Schiff base which acts as a selective ligand for the extraction of UO 2 (II). Following preconcentration and elution with HCl, the ions were quantified by spectrophotometry using Arsenazo III as the indicator. The effects of pH value, ionic strength and amount of the adsorbent on the extraction of UO 2 (II) were optimized by a multivariate central composite design method. Six replicate analyses under optimized conditions resulted in a recovery of 96.6 % with a relative standard deviation of 3.4 % for UO 2 (II). The detection limit of the method (at a signal-to-noise ratio of 3σ) is 10 μg L -1 . The method was successfully applied to the determination of UO 2 (II) in spiked water samples. (author)

  7. Effect of the polymerization with formaldehyde on the thermal reactivity of a low-temperature coal tar pitch

    Energy Technology Data Exchange (ETDEWEB)

    Jose L. Crespo; Ana Arenillas; Jose A. Vin; Roberto Garcia; Colin E. Snape; Sabino R. Moinelo [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2005-04-01

    The influence of polymerization with formaldehyde on the thermal reactivity of a low-temperature coal tar pitch has been investigated. The mechanism and extent of the polymerization depends on the catalyst used, the greatest extent of polymerization being achieved under basic catalytic conditions. After the polymerization treatment, samples were carbonized at 420{sup o}C and the products were characterized by optical microscopy. According to the results, polymerization with formaldehyde increases the reactivity of the pitch, giving rise to increased carbonization yields and leading to the formation of the mesophase with milder conditions. The polymerization process also affects the morphology of the resultant anisotropic material, giving rise to the formation of irregularly shaped mesophase particles and reducing the optical texture size of the anisotropic domains, giving mosaic texture, especially when basic catalysis is used. 36 refs., 11 figs., 5 tabs.

  8. Innovative Highly Selective Removal of Cesium and Strontium Utilizing a Newly Developed Class of Inorganic Ion Specific Media - 16221

    International Nuclear Information System (INIS)

    Denton, Mark S.; Kanatzidis, Mercouri G.

    2009-01-01

    Highly selective removal of Cesium and Strontium is critical for waste treatment and environmental remediation. Cesium-137 is a beta-gamma emitter and Strontium-90 is a beta emitter with respective half-lives of 30 and 29 years. Both elements are present at many nuclear sites. Cesium and Strontium can be found in wastewaters at Washington State's Hanford Site, as well as in waste streams of many Magnox reactor sites. Cesium and Strontium are found in the Reactor Coolant System of light water reactors at nuclear power plants. Both elements are also found in spent nuclear fuel and in high-level waste (HLW) at DOE sites. Cesium and Strontium are further major contributors to the activity and the heat load. Therefore, technologies to extract Cesium and Strontium are critical for environmental remediation waste treatment and dose minimization. Radionuclides such as Cesium-137 and Strontium-90 are key drivers of liquid waste classification at light water reactors and within the DOE tank farm complexes. The treatment, storage, and disposal of these wastes represents a major cost for nuclear power plant operators, and comprises one of the most challenging technology-driven projects for the DOE Environmental Management (EM) program. Extraction technologies to remove Cesium and Strontium have been an active field of research. Four notable extraction technologies have been developed so far for HLW: solvent extraction, prussian blue, crystalline silico-titanate (CST) and organic ion-exchangers (e.g., resorcinol formaldehyde and SuperLig). The use of one technology over another depends on the specific application. For example, the waste treatment plant (WTP) at Hanford is planning on using a highly-selective organic ion-exchange resin to remove Cesium and Strontium. Such organic ion-exchangers use molecular recognition to selectively bind to Cesium and Strontium. However, these organic ion-exchangers are synthesized using multi-step organic synthesis. The associated cost to

  9. Determination of partition and diffusion coefficient of formaldehyde in selected building materials and impact of relative humidity

    Science.gov (United States)

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  10. 'Real-world' compensatory behaviour with low nicotine concentration e-liquid: subjective effects and nicotine, acrolein and formaldehyde exposure.

    Science.gov (United States)

    Dawkins, Lynne; Cox, Sharon; Goniewicz, Maciej; McRobbie, Hayden; Kimber, Catherine; Doig, Mira; Kośmider, Leon

    2018-06-07

    To compare the effects of i) high versus low nicotine concentration e-liquid, ii) fixed versus adjustable power and iii) the interaction between the two on: a) vaping behaviour, b) subjective effects, c) nicotine intake, and d) exposure to acrolein and formaldehyde in e-cigarette users vaping in their everyday setting. Counterbalanced, repeated measures with four conditions: i) low nicotine (6 mg/mL)/fixed power; ii) low nicotine/adjustable power; iii) high nicotine (18 mg/mL)/fixed power; iv) high nicotine/adjustable power. London and the South East, England. Twenty experienced e-cigarette users (recruited between September 2016 and February 2017) vaped ad libitum using an eVic Supreme™ with a 'Nautilus Aspire' tank over four weeks (one week per condition). Puffing patterns (daily puff number [PN], puff duration [PD], inter-puff interval [IPI]), mL of e-liquid consumed, changes to power (where permitted), and subjective effects (urge to vape, nicotine withdrawal symptoms) were measured in each condition. Nicotine intake was measured via salivary cotinine. 3-hydroxypropylmercapturic acid (3-HPMA), a metabolite of the toxicant acrolein, and formate, a metabolite of the carcinogen formaldehyde, were measured in urine. There was a significant nicotine concentration x power interaction for PD (p<0.01). PD was longer with low nicotine/fixed power compared with i) high nicotine/fixed power (p< 0.001 and ii) low nicotine/adjustable power (p< 0.01). PN and liquid consumed were higher in the low versus high nicotine condition (main effect of nicotine, p<0.05). Urge to vape and withdrawal symptoms were lower, and nicotine intake was higher, in the high nicotine condition (main effects of nicotine: p<0.01). Whilst acrolein levels did not differ, there was a significant nicotine x power interaction for formaldehyde (p<0.05). Use of a lower nicotine concentration e-liquid may be associated with compensatory behaviour (e.g., higher number and duration of puffs) and increases

  11. Electrochemical and visco metric studies on some copolymer/ homopolymer poly electrolytes and transition metal ion interaction

    International Nuclear Information System (INIS)

    Rajabi, F. H.; Frahani, B. V.

    2003-01-01

    Some random three-component copolymers have been prepared by condensing of formaldehyde with various aromatic amines. The compositions of the copolymers have been determined by known methods. selective complexation of copolymers have been carried out with PAA, PEI, PVP and some transition metal ions (e.g., Cu 2+ )by adding the components in various sequences. The relative complexation ability of different -NH 2 groups, associated with the various comonomer units, has been interpreted in terms of the these complexes has been studied by conductometry. potentiometry and viscometry techniques. A scheme has presented to explain the mode of interaction of the various components

  12. SCIAMACHY formaldehyde observations: constraint for isoprene emission estimates over Europe?

    Directory of Open Access Journals (Sweden)

    G. Dufour

    2009-03-01

    Full Text Available Formaldehyde (HCHO is an important intermediate compound in the degradation of volatile organic compounds (VOCs in the troposphere. Sources of HCHO are largely dominated by its secondary production from VOC oxidation, methane and isoprene being the main precursors in unpolluted areas. As a result of the moderate lifetime of HCHO, its spatial distribution is determined by reactive hydrocarbon emissions. We focus here on Europe and investigate the influence of the different emissions on HCHO tropospheric columns with the CHIMERE chemical transport model in order to interpret the comparisons between SCIAMACHY and simulated HCHO columns. Europe was never specifically studied before for these purposes using satellite observations. The bias between measurements and model is less than 20% on average. The differences are discussed according to the errors on the model and the observations and remaining discrepancies are attributed to a misrepresentation of biogenic emissions. This study requires the characterisation of: (1 the model errors and performances concerning formaldehyde. The errors on the HCHO columns, mainly related to chemistry and mixed emission types, are evaluated to 2×1015 molecule/cm2 and the model performances evaluated using surface measurements are satisfactory (~13%; (2 the observation errors that define the needs in spatial and temporal averaging for meaningful comparisons. Using SCIAMACHY observations as constraint for biogenic isoprene emissions in an inverse modelling scheme reduces their uncertainties by about a factor of two in region of intense emissions. The retrieved correction factors for the isoprene emissions range from a factor of 0.15 (North Africa to a factor of 2 (Poland, the United Kingdom depending on the regions.

  13. Adsorption of formaldehyde molecule on the pristine and transition metal doped graphene: First-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin [Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012 (China); Institute of Theoretical Chemistry, Jilin University, Changchun 130012 (China); Xu, Lei [Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012 (China); College of Physics, Jilin University, Changchun, 130012 (China); Liu, Lin-Lin; Zhao, Lu-Si; Chen, Chun-Ping [Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012 (China); Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), Changchun, 130012 (China); Zhang, Yong [Department of Electrical and Computer Engineering, The University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States); Wang, Xiao-Chun, E-mail: wangxiaochun@jlu.edu.cn [Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012 (China); Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), Changchun, 130012 (China)

    2017-02-28

    Highlights: • Formaldehyde molecule (H{sub 2}CO) is a common environmental pollutant with strong toxicity. • Total 36 different initial configurations of H{sub 2}CO molecule adsorbing onto three types of substrates have been investigated. • The Ti-doped graphene has the enough binding energy, significant changes in electronic structure, and reasonable short recovery time 10{sup −3} s. • The Ti-doped graphene is a promising candidate for detecting formaldehyde gas. - Abstract: The adsorption of H{sub 2}CO molecule on pristine and transition metal (Ti and V) doped graphene samples were investigated via a first-principles approach based on density functional theory. The most stable adsorption geometry, energy and charge transfer of H{sub 2}CO molecule on pristine and doped graphene are discussed respectively. We have found that Ti and V dopant atoms can significantly enhance the interaction between H{sub 2}CO molecule and graphene. The calculated net electron transfers, electronic density difference images and densities of states give the evidence that the H{sub 2}CO molecules stay on Ti (or V) – doped graphene by chemisorption. After H{sub 2}CO adsorption, there are significant changes in electronic structure near the Fermi level, for both two systems of Ti and V doped graphene. This indicates distinct changes of electron transport properties. We have also found that H{sub 2}CO molecule has a larger absorption energy on V-doped graphene (1.939 eV) compared with Ti-doped graphene (1.120 eV). It is shown that the Ti-doped graphene has enough binding energy, adequate changes in electronic structure and reasonable short recovery time 10{sup −3} s, making it a promising candidate for detecting formaldehyde gas.

  14. Production of bioflocculants prepared from formaldehyde wastewater for the potential removal of arsenic.

    Science.gov (United States)

    Zhao, Haijuan; Zhong, Chunying; Chen, Honggao; Yao, Jie; Tan, Liqing; Zhang, Youlang; Zhou, Jiangang

    2016-05-01

    A novel bioflocculant (MBF-79) prepared using formaldehyde wastewater as carbon resource was investigated in the study. The optimal conditions for bioflocculant production were determined to be an inoculum size of 7.0%, initial pH of 6.0, and formaldehyde concentration of 350 mg/L. An MBF-79 of 8.97 g/L was achieved as the maximum yield. Three main elements, namely C, H, and O, were present in MBF-79 with relative weigh percentages of 39.17%, 6.74%, and 34.55%, respectively. The Gel permeation chromatography analysis indicated that the approximate molecular weight (MW) of MBF-79 was 230 kDa. MBF-79 primarily comprised polysaccharide (71.2%) and protein (27.9%). Additionally, conditions for the removal of arsenic by MBF-79 were found to be MBF-79 at 120 mg/L, an initial pH 7.0, and a contact time 60 min. Under the optimal conditions, the removal efficiencies of arsenate (0.5 mg/L) and arsenite (0.5 mg/L) were 98.9% and 84.6%, respectively. Overall, these findings indicate bioflocculation offers an effective alternative method of decreasing arsenic during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. High-resolution inversion of OMI formaldehyde columns over the Southeast US to infer isoprene emissions

    Science.gov (United States)

    Kaiser, J.; Zhu, L.; Travis, K.; Jacob, D.

    2017-12-01

    In the South East United States, biogenic isoprene fuels tropospheric ozone formation, and its oxidation products contribute significantly to organic aerosol. Bottom-up emission inventories rely on very limited isoprene emission and land-cover data, yielding uncertainties of a factor of 2 or more. Here, we use formaldehyde columns from the Ozone Monitoring Instrument in a high-resolution (0.25 x 0.325o) adjoint-based inversion to constrain isoprene emissions over the SE US during Aug-Sept of 2013. We find that the MEGANv2.1 inventory is biased high over most of the SE US. Our derived scaling factors show significant spatial variability, with the largest corrections applied to Louisiana and the Edwards Plateau in Texas. We test our inversion results against a comprehensive set of isoprene oxidation product observations from the NASA SEAC4RS flight campaign. The SEAC4RS data provides new confidence in the satellite retrievals and in mechanism linking isoprene oxidation to formaldehyde production. Finally, we relate the posterior scaling factors to the underlying land-type, and examine potential sources of observed biases.

  16. Rotational spectrum of formaldehyde reinvestigated using a photomixing THz synthesizer

    Science.gov (United States)

    Eliet, Sophie; Cuisset, Arnaud; Guinet, Mickaël; Hindle, Francis; Mouret, Gaël; Bocquet, Robin; Demaison, Jean

    2012-09-01

    Approximately 60 pure rotational frequency transitions of formaldehyde in its ground state have been measured with sub-MHz uncertainty in the 0.7-1.8 THz frequency range using a photomixing THz synthesizer locked onto a frequency comb. The frequencies associated with previous submillimeter and infrared data have been included in a fit providing a new set of improved molecular parameters. The assignment of each line was checked using the usual statistical diagnostics. Finally, the ability of the continuous-wave spectrometer coupled to a multipass-cell to measure THz rotational transitions of H2CO in the 31, 41 and 61 vibrational states was demonstrated.

  17. Studies of Deactivation of Methanol to Formaldehyde Selective Oxidation Catalyst

    DEFF Research Database (Denmark)

    Raun, Kristian Viegaard; Schumann, Max; Høj, Martin

    Formaldehyde (CH2O) may be synthesized industrially by selective oxidation of methanol over an iron-molybdate (Fe-Mo) oxide catalyst according to: CH3OH + ½O2 →CH2O + H2O. The reaction is normally carried out in a multitubular reactor with excess of air at 250-400 °C (yield = 90-95 %), known...... the activity of the catalyst [2]. Pure MoO3 in itself has low activity. Literature from the last decades agrees that the major reason for the deactivation is loss of molybdenum from the catalyst. Molybdenum forms volatile species with methanol, which can leave behind Mo poor zones. The catalyst is usually...

  18. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1320-90 Gas meter or flow..., methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  19. Sensitivity of Ambient Atmospheric Formaldehyde and Ozone to Precursor Species and Source Types Across the United States

    Science.gov (United States)

    Formaldehyde (HCHO) is an important air pollutant from both an atmospheric chemistry and human health standpoint. This study uses an instrumented photochemical Air Quality Model, CMAQ-DDM, to identify the sensitivity of HCHO concentrations across the United States (U.S.) to major...

  20. Changes in the nasal epithelium of rats exposed by inhalation to mixtures of formaldehyde, acetaldehyde, and acrolein

    NARCIS (Netherlands)

    Cassee, F.R.; Groten, J.P.; Feron, V.J.

    1996-01-01

    Formaldehyde, acetaldehyde, and acrolein are well-known upper respiratory tract irritants and occur simultaneously as pollutants in many indoor and outdoor environments. The upper respiratory tract, and especially the nose, is the prime target for inhaled aldehydes. To study possible additive or