WorldWideScience

Sample records for resonators loaded periodic

  1. Predicting the conditions under which vibroacoustic resonances with external periodic loads occur in the primary coolant circuits of VVER-based NPPs

    Science.gov (United States)

    Proskuryakov, K. N.; Fedorov, A. I.; Zaporozhets, M. V.

    2015-08-01

    The accident at the Japanese Fukushima Daiichi nuclear power plant (NPP) caused by an earthquake showed the need of taking further efforts aimed at improving the design and engineering solutions for ensuring seismic resistance of NPPs with due regard to mutual influence of the dynamic processes occurring in the NPP building structures and process systems. Resonance interaction between the vibrations of NPP equipment and coolant pressure pulsations leads to an abnormal growth of dynamic stresses in structural materials, accelerated exhaustion of equipment service life, and increased number of sudden equipment failures. The article presents the results from a combined calculation-theoretical and experimental substantiation of mutual amplification of two kinds of external periodic loads caused by rotation of the reactor coolant pump (RCP) rotor and an earthquake. The data of vibration measurements at an NPP are presented, which confirm the predicted multiple amplification of vibrations in the steam generator and RCP at a certain combination of coolant thermal-hydraulic parameters. It is shown that the vibration frequencies of the main equipment may fall in the frequency band corresponding to the maximal values in the envelope response spectra constructed on the basis of floor accelerograms. The article presents the results from prediction of conditions under which vibroacoustic resonances with external periodic loads take place, which confirm the occurrence of additional earthquake-induced multiple growth of pressure pulsation intensity in the steam generator at the 8.3 Hz frequency and additional multiple growth of vibrations of the RCP and the steam generator cold header at the 16.6 Hz frequency. It is shown that at the elastic wave frequency equal to 8.3 Hz in the coolant, resonance occurs with the frequency of forced vibrations caused by the rotation of the RCP rotor. A conclusion is drawn about the possibility of exceeding the design level of equipment vibrations

  2. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    Science.gov (United States)

    Zhang, Yiming; Zhao, Zhengming; Chen, Kainan; Fan, Jun

    2017-05-01

    Wireless Power Transfer (WPT) has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  3. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    Directory of Open Access Journals (Sweden)

    Yiming Zhang

    2017-05-01

    Full Text Available Wireless Power Transfer (WPT has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  4. Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides

    DEFF Research Database (Denmark)

    Han, Zhanghua; García Ortíz, César Eduardo; Radko, Ilya P.

    2013-01-01

    We report on the experimental demonstration of detuned-resonator induced transparency in the near-infrared (∼800  nm) using two detuned racetrack resonators side-coupled to a bus waveguide. Both resonators and the bus waveguide are in the form of dielectric-loaded surface plasmon polariton...

  5. Novel dielectric photonic-band-gap resonant cavity loaded in a gyrotron

    International Nuclear Information System (INIS)

    Chen Xiaoan; Liu Gaofeng; Tang Changjian

    2010-01-01

    A novel resonant cavity composed of a periodic, multilayer, dielectric photonic crystal is proposed. Using the transfer matrix method and the Bloch theorem for periodic systems, an analysis on the band-gap property of such a structure is made, and the basic electromagnetic property of the photonic-band-gap resonant cavity (PBGC) is preliminarily exhibited. The theoretical studies and the cold cavity simulation results obtained from a high-frequency structure simulator are presented. On the basis of the present research, such a PBGC is quite similar to the two-dimensional PBGC made of triangular lattices of metal rods with a defect at its centre, in which a frequency selectivity is similarly demonstrated. Because of its unique electromagnetic property, the cavity has many promising applications in active and passive devices operating in the millimetre, sub-millimetre, and even THz wave range. As a specific application, the feasibility of substituting the traditional cylindrical resonant cavity loaded in a gyrotron for a dielectric PBGC to achieve a transverse high-order operation is discussed under the consideration of the electromagnetic features of the cavity. The study shows the great potential value of such a cavity for gyrotron devices.

  6. Propagation of steady-state vibration in periodic pipes conveying fluid on elastic foundations with external moving loads

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dianlong, E-mail: dianlongyu@yahoo.com.cn [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073 (China); MOE Key Laboratory of Photonic and Phononic Crystals, National University of Defense Technology, Changsha 410073 (China); Wen, Jihong; Shen, Huijie; Wen, Xisen [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073 (China); MOE Key Laboratory of Photonic and Phononic Crystals, National University of Defense Technology, Changsha 410073 (China)

    2012-10-01

    The propagation of steady-state vibration in a periodic pipe conveying fluid on elastic foundation with an external moving load is studied using wave propagation and attenuation theory. Wavenumbers and propagation properties in a moving coordinate system are investigated. The propagation constants are calculated using transfer matrix theory to determine whether the perturbation, which is introduced by an external moving load, can propagate through the pipe or not. The Bragg and locally resonant band gaps, corresponding to the velocity field, can exist in a periodic pipe system. In addition, the effects on both types of band gaps have been analysed.

  7. Propagation of steady-state vibration in periodic pipes conveying fluid on elastic foundations with external moving loads

    International Nuclear Information System (INIS)

    Yu, Dianlong; Wen, Jihong; Shen, Huijie; Wen, Xisen

    2012-01-01

    The propagation of steady-state vibration in a periodic pipe conveying fluid on elastic foundation with an external moving load is studied using wave propagation and attenuation theory. Wavenumbers and propagation properties in a moving coordinate system are investigated. The propagation constants are calculated using transfer matrix theory to determine whether the perturbation, which is introduced by an external moving load, can propagate through the pipe or not. The Bragg and locally resonant band gaps, corresponding to the velocity field, can exist in a periodic pipe system. In addition, the effects on both types of band gaps have been analysed.

  8. A design procedure for the phase-controlled parallel-loaded resonant inverter

    Science.gov (United States)

    King, Roger J.

    1989-01-01

    High-frequency-link power conversion and distribution based on a resonant inverter (RI) has been recently proposed. The design of several topologies is reviewed, and a simple approximate design procedure is developed for the phase-controlled parallel-loaded RI. This design procedure seeks to ensure the benefits of resonant conversion and is verified by data from a laboratory 2.5 kVA, 20-kHz converter. A simple phasor analysis is introduced as a useful approximation for design purposes. The load is considered to be a linear impedance (or an ac current sink). The design procedure is verified using a 2.5-kVA 20-kHz RI. Also obtained are predictable worst-case ratings for each component of the resonant tank circuit and the inverter switches. For a given load VA requirement, below-resonance operation is found to result in a significantly lower tank VA requirement. Under transient conditions such as load short-circuit, a reversal of the expected commutation sequence is possible.

  9. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    Science.gov (United States)

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.

  10. Periodic orbits near the particle resonance in galaxies

    CERN Document Server

    Contopoulos, George

    1978-01-01

    Near the particle resonance of a spiral galaxy the almost circular periodic orbits that exist inside the resonance (direct) or outside it (retrograde) are replaced by elongated trapped orbits around the maxima of the potential L/sub 4/ and L/sub 5/. These are the long- period trapped periodic orbits. The long-period orbits shrink to the points L/sub 4/, L/sub 5/ for a critical value of the Hamiltonian h. For still larger h, a family of short-period trapped orbits appears, with continuously growing size. The evolution of the periodic orbits with h is followed, theoretically and numerically, from the untrapped orbits to the long-periodic orbits and then to the short-periodic orbits, mainly in the case of a bar. In a tight spiral case an explanation of the asymmetric periodic and banana orbits is given, and an example of short-period orbits not surrounding L/sub 4/ or L/sub 5/ is provided. Another family of periodic orbits reaching corotation is trapped at the inner Lindblad resonance. (5 refs).

  11. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    International Nuclear Information System (INIS)

    Naqui, J.; Su, L.; Mata, J.; Martín, F.

    2015-01-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties. - Highlights: • Magnetic-coupling between resonant elements affects transmission properties. • Inter-resonant coupling enhances the distance of two resonant frequencies. • The structures are useful for sensors and comparators, etc

  12. Compact Dual-Band Bandpass Filter Using Stubs Loaded Ring Resonator

    Science.gov (United States)

    Xu, Jin

    2016-01-01

    This paper presents a novel second-order dual-band bandpass filter (BPF) by using proposed stubs loaded ring resonator. The resonant behavior of proposed stubs loaded ring resonator is analyzed by even-/odd-mode method, which shows its multiple-mode resonant characteristic. Parameters sweep is done so as to give the design guidelines. As an example, a second-order dual-band BPF operating at 1.8/5.2 GHz for GSM and WLAN applications is designed, fabricated and measured. The fabricated filter has a very compact size of 0.05λg×0.15λg. Measured results also show that the proposed dual-band BPF has a better than 20 dB rejection upper stopband from 5.47 GHz to 12.56 GHz. Good agreement is shown between the simulated and measured results.

  13. Resonances in a periodically driven bosonic system

    Science.gov (United States)

    Quelle, Anton; Smith, Cristiane Morais

    2017-11-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems.

  14. Resonances in a periodically driven bosonic system.

    Science.gov (United States)

    Quelle, Anton; Smith, Cristiane Morais

    2017-11-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems.

  15. An Optimized Control for LLC Resonant Converter with Wide Load Range

    Science.gov (United States)

    Xi, Xia; Qian, Qinsong

    2017-05-01

    This paper presents an optimized control which makes LLC resonant converters operate with a wider load range and provides good closed-loop performance. The proposed control employs two paralleled digital compensations to guarantee the good closed-loop performance in a wide load range during the steady state, an optimized trajectory control will take over to change the gate-driving signals immediately at the load transients. Finally, the proposed control has been implemented and tested on a 150W 200kHz 400V/24V LLC resonant converter and the result validates the proposed method.

  16. Resonant Quasi-Optical Systems with Multi-Row Periodic Structures

    DEFF Research Database (Denmark)

    Oleksandr, Rybalko; Rybalko, Yu A.; Buriak, I. A.

    2017-01-01

    Selective properties of resonant quasi-optical systems with periodical multi-row structures in millimeter wavelength range are described. The possibility of selection fluctuations in the volume of open resonator using double-row periodic elements was shown in the experiment at 70-80 GHz. Advantages...... and possibility of control the energy characteristics of such structures are also described. The obtained experimental data is used to confirm the results of computational analysis previously described in the literature. Implementation of resonant quasi-optical systems with multi-row periodic structures...

  17. Internal resonances in periodically modulated long Josephson junctions

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Mygind, Jesper; Ustinov, Alexey V.

    1995-01-01

    Current-voltage (I-V) characteristics of long Josephson junctions with a periodic lattice of localized inhomogeneities are studied. The interaction between the moving fluxons and the inhomogeneities causes resonant steps in the IV-curve. Some of these steps are due to a synchronization to resonant...... Fiske modes in the sub-junctions formed between the inhomogeneities. The voltage positions of the resonant steps oscillate as function of the applied magnetic field with a period corresponding to the inclusion of one magnetic flux quantum, Φ0=h/2e, per sub-junction. A qualitative explanation that takes...

  18. An efficient approach for electric load forecasting using distributed ART (adaptive resonance theory) and HS-ARTMAP (Hyper-spherical ARTMAP network) neural network

    International Nuclear Information System (INIS)

    Cai, Yuan; Wang, Jian-zhou; Tang, Yun; Yang, Yu-chen

    2011-01-01

    This paper presents a neural network based on adaptive resonance theory, named distributed ART (adaptive resonance theory) and HS-ARTMAP (Hyper-spherical ARTMAP network), applied to the electric load forecasting problem. The distributed ART combines the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multi-layer perceptions. The HS-ARTMAP, a hybrid of an RBF (Radial Basis Function)-network-like module which uses hyper-sphere basis function substitute the Gaussian basis function and an ART-like module, performs incremental learning capabilities in function approximation problem. The HS-ARTMAP only receives the compressed distributed coding processed by distributed ART to deal with the proliferation problem which ARTMAP (adaptive resonance theory map) architecture often encounters and still performs well in electric load forecasting. To demonstrate the performance of the methodology, data from New South Wales and Victoria in Australia are illustrated. Results show that the developed method is much better than the traditional BP and single HS-ARTMAP neural network. -- Research highlights: → The processing of the presented network is based on compressed distributed data. It's an innovation among the adaptive resonance theory architecture. → The presented network decreases the proliferation the Fuzzy ARTMAP architectures usually encounter. → The network on-line forecasts electrical load accurately, stably. → Both one-period and multi-period load forecasting are executed using data of different cities.

  19. Compact Microstrip Triple-Mode Bandpass Filters Using Dual-Stub-Loaded Spiral Resonators

    Directory of Open Access Journals (Sweden)

    K. D. Xu

    2017-04-01

    Full Text Available Two new microstrip triple-mode resonators loaded with T-shaped open stubs using axially and centrally symmetric spiral structures, respectively, are presented. Spiraled for circuit size reduction, these two half-wavelength resonators can both generate three resonant modes over a wide frequency band by loading two T-stubs with different lengths. Due to the structural symmetry, they can be analyzed by odd- and even-mode method. To validate the design concept, two compact bandpass filters (BPFs using these two novel resonators with center frequencies of 1.76 GHz and 2.44 GHz for the GSM1800 and WLAN/Zigbee applications, respectively, have been designed, fabricated and tested. The center frequencies and bandwidths can be tunable through the analysis of resonant frequency responses, fractional bandwidths and external quality factor versus the resonator parameters. The final measured results have achieved good consistence with the simulations of these two BPFs.

  20. Waveguide-loaded silica fibers for coupling to high-index micro-resonators

    Science.gov (United States)

    Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.

    2016-01-01

    Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.

  1. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    Science.gov (United States)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  2. Low frequency wireless power transfer using modified parallel resonance matching at a complex load

    Directory of Open Access Journals (Sweden)

    Artit Rittiplang

    2016-10-01

    Full Text Available In the Impedance Matching (IM condition of Wireless Power Transfer (WPT, series resonant and strong coupling structures have been widely studied which operate at an optimal parameter, a resistive load, and the high resonant frequency of greater than 1 MHz. However, i The optimal parameter (particular value limits the design, ii the common loads are complex, iii The high frequency RF sources are usually inefficient. This paper presents a modified parallel resonant structure that can operate at a low frequency of 15 kHz without an optimal parameter under the IM condition with a complex load, and the calculated efficiency is equal to 71.2 % at 5-cm transfer distance.

  3. Hydrodynamic loading and viscous damping of patterned perforations on microfabricated resonant structures

    DEFF Research Database (Denmark)

    Park, Kidong; Shim, Jeong; Solovyeva, Vita

    2012-01-01

    We examined the hydrodynamic loading of vertically resonating microfabricated plates immersed in liquids with different viscosities. The planar structures were patterned with focused ion beam, perforating various shapes with identical area but varying perimeters. The hydrodynamic loading of various...

  4. Influence of resonant magnetic perturbations on transient heat load deposition and fast ion losses

    International Nuclear Information System (INIS)

    Rack, Michael Thomas

    2014-01-01

    Thermonuclear fusion is the energy conversion process which keeps the sun shining. For the last six decades, researchers have been investigating the physics involved in order to enable the usage of this energy supply on Earth. The most promising candidates for fusion power plants are based on magnetic confinement of plasma to provide the ideal conditions for efficient thermonuclear fusion in well controlled surroundings. One important aspect is the control of instabilities that occur in the edge region of the plasma and lead to an ejection of huge amounts of energy. Magnetic perturbation fields which are resonant in the plasma edge are found to modify the plasma favourably and reduce the impact of these instabilities. This dissertation focuses on the effects of resonant magnetic perturbation fields on the ejected energy as well as on the drawbacks of these perturbation fields. The transient energy ejection which is triggered by the instabilities causes extreme heat loads on the wall components in fusion devices. Therefore, it is crucial to understand how resonant magnetic perturbation fields affect the heat load deposition. Furthermore, the impact of resonant magnetic perturbation fields on the confinement of fast ions is an important aspect as fast ions are still required to be well confined in order to avoid additional wall loads and increase the fusion efficiency. Recent upgrades on the Joint European Torus allow for a detailed study of the heat load deposition profiles caused by transient events. Throughout this work, the new features are used for the study of the modifications of the transient heat load depositions that occur if resonant magnetic perturbation fields are applied. This leads to a further understanding of the processes involved during the plasma edge instabilities. Additionally, an alternative method using lower hybrid waves for applying resonant magnetic perturbations is investigated. Furthermore, a new diagnostic, capable of detecting fast ion

  5. Influence of resonant magnetic perturbations on transient heat load deposition and fast ion losses

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Michael Thomas

    2014-07-11

    Thermonuclear fusion is the energy conversion process which keeps the sun shining. For the last six decades, researchers have been investigating the physics involved in order to enable the usage of this energy supply on Earth. The most promising candidates for fusion power plants are based on magnetic confinement of plasma to provide the ideal conditions for efficient thermonuclear fusion in well controlled surroundings. One important aspect is the control of instabilities that occur in the edge region of the plasma and lead to an ejection of huge amounts of energy. Magnetic perturbation fields which are resonant in the plasma edge are found to modify the plasma favourably and reduce the impact of these instabilities. This dissertation focuses on the effects of resonant magnetic perturbation fields on the ejected energy as well as on the drawbacks of these perturbation fields. The transient energy ejection which is triggered by the instabilities causes extreme heat loads on the wall components in fusion devices. Therefore, it is crucial to understand how resonant magnetic perturbation fields affect the heat load deposition. Furthermore, the impact of resonant magnetic perturbation fields on the confinement of fast ions is an important aspect as fast ions are still required to be well confined in order to avoid additional wall loads and increase the fusion efficiency. Recent upgrades on the Joint European Torus allow for a detailed study of the heat load deposition profiles caused by transient events. Throughout this work, the new features are used for the study of the modifications of the transient heat load depositions that occur if resonant magnetic perturbation fields are applied. This leads to a further understanding of the processes involved during the plasma edge instabilities. Additionally, an alternative method using lower hybrid waves for applying resonant magnetic perturbations is investigated. Furthermore, a new diagnostic, capable of detecting fast ion

  6. The wave attenuation mechanism of the periodic local resonant metamaterial

    Science.gov (United States)

    Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying

    2018-01-01

    This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.

  7. Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos

    International Nuclear Information System (INIS)

    Chen Sheng-Bing; Wen Ji-Hong; Wang Gang; Wen Xi-Sen

    2013-01-01

    Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. More importantly, we propose an approach to solving the conventional issue of the nonlinear eigenvalue problem, and give a convenient solution to the dispersion properties of 2D metamaterials with periodic arrays of resonant shunts in this article. Based on this modeling method, the dispersion relations of a 2D metamaterial with periodic arrays of resonant shunted piezos are calculated. The results show that the internal resonances of the shunting system split the dispersion curves, thereby forming a locally resonant band gap. However, unlike the conventional locally resonant gap, the vibrations in this locally resonant gap are unable to be completely localized in oscillators consisting of shunting inductors and piezo-patches

  8. Clinical role of secretin loading magnetic resonance cholangiopancreatography in the patients undergoing pancreatic resection

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Ken; Takahashi, Tsuyoshi; Yoshida, Muneki; Kakita, Akira [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine

    2002-01-01

    We determined factors contributing to increased signal intensity in the reconstructed jejunal loop in patients undergoing pancreatic resection, frequently observed on magnetic resonance cholangiopancreatography following intravenous injection of secretin (S/MRCP). We also evaluated the possible roles of S/MRCP in assessing the patency of pancreatojejunal anastomosis and the secretory function of the remnant pancreas. Subject were 44 patients undergoing several types of pancreatic resection. Baseline output and response to secretin of the remnant pancreas were measured after surgery. S/MRCP and pancreatic function diagnostant (PFD) tests were conducted preoperatively, and in early and late periods after surgery. Baseline pancreatic output was 1.2{+-}0.7 ml/10-min, and increased after secretin load to a maximum 9.0{+-}6.6 ml/10-min in 10 min. Signal intensity of the jejunal loop increased in 2 patients versus 40 patients (95%) during the early versus late postoperative periods. During the late period, PFD was significantly higher in patients with increased signal intensity than in those without. PFD correlated well with cumulative pancreatic output following secretin loading (r=0.820). A major factor responsible for increased signal intensity in S/MRCP of the jejunal loop was increased pancreatic output. The increase in signal intensity was a definitive sign of patent pancreatojejunal anastomosis. S/MRCP thus seems to have a potential for evaluating the secretory function of the remnant pancreas. (author)

  9. Clinical role of secretin loading magnetic resonance cholangiopancreatography in the patients undergoing pancreatic resection

    International Nuclear Information System (INIS)

    Shimada, Ken; Takahashi, Tsuyoshi; Yoshida, Muneki; Kakita, Akira

    2002-01-01

    We determined factors contributing to increased signal intensity in the reconstructed jejunal loop in patients undergoing pancreatic resection, frequently observed on magnetic resonance cholangiopancreatography following intravenous injection of secretin (S/MRCP). We also evaluated the possible roles of S/MRCP in assessing the patency of pancreatojejunal anastomosis and the secretory function of the remnant pancreas. Subject were 44 patients undergoing several types of pancreatic resection. Baseline output and response to secretin of the remnant pancreas were measured after surgery. S/MRCP and pancreatic function diagnostant (PFD) tests were conducted preoperatively, and in early and late periods after surgery. Baseline pancreatic output was 1.2±0.7 ml/10-min, and increased after secretin load to a maximum 9.0±6.6 ml/10-min in 10 min. Signal intensity of the jejunal loop increased in 2 patients versus 40 patients (95%) during the early versus late postoperative periods. During the late period, PFD was significantly higher in patients with increased signal intensity than in those without. PFD correlated well with cumulative pancreatic output following secretin loading (r=0.820). A major factor responsible for increased signal intensity in S/MRCP of the jejunal loop was increased pancreatic output. The increase in signal intensity was a definitive sign of patent pancreatojejunal anastomosis. S/MRCP thus seems to have a potential for evaluating the secretory function of the remnant pancreas. (author)

  10. Control of stochastic resonance in bistable systems by using periodic signals

    International Nuclear Information System (INIS)

    Min, Lin; Li-Min, Fang; Yong-Jun, Zheng

    2009-01-01

    According to the characteristic structure of double wells in bistable systems, this paper analyses stochastic fluctuations in the single potential well and probability transitions between the two potential wells and proposes a method of controlling stochastic resonance by using a periodic signal. Results of theoretical analysis and numerical simulation show that the phenomenon of stochastic resonance happens when the time scales of the periodic signal and the noise-induced probability transitions between the two potential wells achieve stochastic synchronization. By adding a bistable system with a controllable periodic signal, fluctuations in the single potential well can be effectively controlled, thus affecting the probability transitions between the two potential wells. In this way, an effective control can be achieved which allows one to either enhance or realize stochastic resonance

  11. REDUCING THE LOAD OF THE ELASTIC SUPPORT OF THE RESONANCE VIBRATING CONVEYOR MACHINES

    Directory of Open Access Journals (Sweden)

    A. I. Afanas'ev

    2018-03-01

    Full Text Available The relevance of the work is conditioned by the necessity of improving the efficiency of vibrator machines. This is done by means of increasing the reliability of the elastic reference elements. The purpose of the work is to develop a dynamic resonance system of the vibrator machine with a reduced mass of the working body and loads on elastic supports. The resonance vibrator machines appeared in the USSR in the mid-twentieth century. They were used in the coal industry. The machines of foreign production and some of the domestic machines are now produced according to the balanced scheme. Domestic machines of the "PEV" series are made according to the vibro-isolated scheme, and the vibro-exciter is rigidly connected to the box. The resonant oscillation frequency of these machines is 50 Hz, and the maximum acceleration is significantly greater than the one of free fall. These resonant machines operate with the amplitude up to 2.2 mm and they have a ratio mode greater than unity. The practice of running these machines shows their relatively low efficiency when screening thin products. The common disadvantage of unbalanced resonance vibrator machines is a relatively large loading of elastic elements (supports and the presence of a massive frame. The disadvantage of the balanced ones is the reactive mass or several working bodies with the same mass. One of the ways to achieve the goal is to define a rational dynamic scheme of the resonance vibrator machines. The results and their application. The authors proposed to transform a traditional one-mass oscillatory system into a system equivalent to a dynamic vibration dampener. This system can significantly reduce the weight of the machine. It can reduce the rigidity and loading of the elastic supports at a given frequency of oscillations. The upper mass can be reduced by 2 or 3 times, and the lower mass can be several times smaller than the upper one. At the same time, the dynamic loads on the supports

  12. Non-resonant terahertz field enhancement in periodically arranged nanoslits

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Ivinskaya, Aliaksandra; Zalkovskij, Maksim

    2012-01-01

    We analyze ultra strong non-resonant field enhancement of THz field in periodic arrays of nanoslits cut in ultrathin metal films. The main feature of our approach is that the slit size and metal film thickness are several orders of magnitude smaller than the wavelength λ of the impinging radiatio...... by the microscopic Drude-Lorentz model taking into account retardation processes in the metal film and validated by the finite difference frequency domain method. We expect sensor and modulation applications of the predicted giant broadband field enhancement.......We analyze ultra strong non-resonant field enhancement of THz field in periodic arrays of nanoslits cut in ultrathin metal films. The main feature of our approach is that the slit size and metal film thickness are several orders of magnitude smaller than the wavelength λ of the impinging radiation...... approaches the THz wavelength but before entering the Raleigh-Wood anomaly, the field enhancement in nanoslit stays close to that in a single isolated slit, i.e., the well-known inversefrequency dependence. Both regimes are non-resonant and thus extremely broadband for P

  13. A Study of Stochastic Resonance in the Periodically Forced Rikitake Dynamo

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen Chih-Yuan Tseng

    2007-01-01

    Full Text Available The geodynamo has widely been thought to be an intuitive and selfsustained model of the Earth¡¦s magnetic field. In this paper, we elucidate how a periodic signal could be embedded in the geomagnetic filed via the mechanism of stochastic resonance in a forced Rikitake dynamo. Based on the stochastic resonance observed in the periodically forced Rikitake dynamo, we thus suggest a common triggering for geomagnetic reversal and glacial events. Both kinds of catastrophes may result from the cyclic variation of the Earth¡¦s orbital eccentricity.

  14. Waves on fluid-loaded shells and their resonance frequency spectrum

    DEFF Research Database (Denmark)

    Bao, X.L.; Uberall, H.; Raju, P.K.

    2005-01-01

    , or axially propagating waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am. 105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum shells; the present study extends this to fluid-filled shells in air......Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of air, or doubly fluid-loaded inside and out. They may support circumferential waves....... For practical applications, steel shells are most important and we have here obtained corresponding results for these. To find the natural frequencies of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are formed around the circumference, or in the axial...

  15. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, Jason Aaron; Kekelia, Bidzina; Tomerlin, Jeff; Kreutzer, Cory J.; Yeakel, Skip; Adelman, Steven; Luo, Zhiming; Zehme, John

    2016-04-05

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation

  16. Resonant power converter driving and inductive load like a discharge lamp

    NARCIS (Netherlands)

    2010-01-01

    A resonant power converter (1) for driving an inductive load as, e.g. an inductively coupled gas- discharge lamp, is designed for operation at an operational frequency (Fop) of 13.56 MHz and comprises: a series arrangement of a first inductor (L1) and a first controllable switch (Q1) connected to a

  17. Tunable Clamped–Guided Arch Resonators Using Electrostatically Induced Axial Loads

    KAUST Repository

    Alcheikh, Nouha; Ramini, Abdallah; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2017-01-01

    We present a simulation and experimental investigation of bi-directional tunable in-plane clamped-guided arch microbeam resonators. Tensile and compressive axial forces are generated from a bi-directional electrostatic actuator, which modulates the microbeam stiffness, and hence changes its natural frequency to lower or higher values from its as-fabricated value. Several devices of various anchor designs and geometries are fabricated. We found that for the fabricated shallow arches, the effect of the curvature of the arch is less important compared to the induced axial stress from the axial load. We have shown that the first mode resonance frequency can be increased up to twice its initial value. Additionally, the third mode resonance frequency can be increased up to 30% of its initial value. These results can be promising as a proof-of-concept for the realization of wide-range tunable microresonators. The experimental results have been compared to finite-element simulations, showing good agreement among them.

  18. Tunable Clamped–Guided Arch Resonators Using Electrostatically Induced Axial Loads

    KAUST Repository

    Alcheikh, Nouha

    2017-01-04

    We present a simulation and experimental investigation of bi-directional tunable in-plane clamped-guided arch microbeam resonators. Tensile and compressive axial forces are generated from a bi-directional electrostatic actuator, which modulates the microbeam stiffness, and hence changes its natural frequency to lower or higher values from its as-fabricated value. Several devices of various anchor designs and geometries are fabricated. We found that for the fabricated shallow arches, the effect of the curvature of the arch is less important compared to the induced axial stress from the axial load. We have shown that the first mode resonance frequency can be increased up to twice its initial value. Additionally, the third mode resonance frequency can be increased up to 30% of its initial value. These results can be promising as a proof-of-concept for the realization of wide-range tunable microresonators. The experimental results have been compared to finite-element simulations, showing good agreement among them.

  19. [Effect of antecedent dry weather period on urban storm runoff pollution load].

    Science.gov (United States)

    Li, Li-qing; Yin, Cheng-qing; Kong, Ling-li; He, Qing-ci

    2007-10-01

    Twelve storm events were surveyed at Shilipu catchment in Wuhan City through three-year monitoring regime. The flow discharges, total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in runoff were measured to study the mechanism of urban stormwater runoff pollution. The relationship between the event pollution load and the antecedent dry weather period was identified to discuss the influence of the urban surface sanitation management, operation of sewer pipe maintenance and rainfall characteristics on the urban stormwater runoff pollution. It was found that the antecedent dry weather period and runoff amount were the important determining factors in the generation of urban stormwater runoff pollution. The event pollution load was positively correlated to the antecedent dry weather period between two rainfall events (R2 = 0.95, p pollution loads. The best regression equation to estimate pollution load for storm events was developed based on the antecedent dry weather period and runoff depth. Source control including improving urban street sweeping activities and operation of sewer pipe maintenance should be made to reduce the amount of available pollutant over the dry days. It is important alternative to control urban stormwater runoff pollution for Hanyang District.

  20. Bound states in the continuum on periodic structures surrounded by strong resonances

    Science.gov (United States)

    Yuan, Lijun; Lu, Ya Yan

    2018-04-01

    Bound states in the continuum (BICs) are trapped or guided modes with their frequencies in the frequency intervals of the radiation modes. On periodic structures, a BIC is surrounded by a family of resonant modes with their quality factors approaching infinity. Typically the quality factors are proportional to 1 /|β - β*|2 , where β and β* are the Bloch wave vectors of the resonant modes and the BIC, respectively. But for some special BICs, the quality factors are proportional to 1 /|β - β*|4 . In this paper, a general condition is derived for such special BICs on two-dimensional periodic structures. As a numerical example, we use the general condition to calculate special BICs, which are antisymmetric standing waves, on a periodic array of circular cylinders, and show their dependence on parameters. The special BICs are important for practical applications, because they produce resonances with large quality factors for a very large range of β .

  1. Strong reflection and periodic resonant transmission of helical edge states in topological-insulator stub-like resonators

    International Nuclear Information System (INIS)

    Takagaki, Y.

    2015-01-01

    The helical edge states of two-dimensional topological insulators (TIs) experience appreciable quantum mechanical scattering in narrow channels when the width changes abruptly. The interference of the geometry scattering in narrow-wide-narrow waveguide structures is shown to give rise to the strong suppression of transmission when the incident energy is barely above the propagation threshold. Periodic resonant transmission takes place in this high reflection regime while the length of the wide section is varied. The resonance condition is governed by the transverse confinement in the wide section, where the form of quantization is manifested to differ for the two orthogonal directions. The confined energy levels in TI quantum dots are derived based on this observation. In addition, the off-diagonal spin-orbit term is found to produce an anomalous resonance state, which merges with the bottom ordinary resonance state to annihilate

  2. Optimization of enhanced biological phosphorus removal after periods of low loading.

    Science.gov (United States)

    Miyake, Haruo; Morgenroth, Eberhard

    2005-01-01

    Enhanced biological phosphorus removal is a well-established technology for the treatment of municipal wastewater. However, increased effluent phosphorus concentrations have been reported after periods (days) of low organic loading. The purpose of this study was to evaluate different operating strategies to prevent discharge of effluent after such low-loading periods. Mechanisms leading to these operational problems have been related to the reduction of polyphosphate-accumulating organisms (PAOs) and their storage compounds (polyhydroxy alkanoates [PHA]). Increased effluent phosphorus concentrations can be the result of an imbalance between influent loading and PAOs in the system and an imbalance between phosphorus release and uptake rates. The following operating conditions were tested in their ability to prevent a reduction of PHA and of overall biomass during low organic loading conditions: (a) unchanged operation, (b) reduced aeration time, (c) reduced sludge wastage, and (d) combination of reduced aeration time and reduced sludge wastage. Experiments were performed in a laboratory-scale anaerobic-aerobic sequencing batch reactor, using acetate as the carbon source. Without operational adjustments, phosphorus-release rates decreased during low-loading periods but recovered rapidly. Phosphorus-uptake rates also decreased, and the recovery typically required several days to increase to normal levels. The combination of reduced aeration time and reduced sludge wastage allowed the maintenance of constant levels of both PHA and overall biomass. A mathematical model was used to explain the influence of the tested operating conditions on PAO and PHA concentrations. While experimental results were in general agreement with model predictions, the kinetic expression for phosphorus uptake deviated significantly for the first 24 hours after low-loading conditions. Mechanisms leading to these deviations need to be further investigated.

  3. Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths

    DEFF Research Database (Denmark)

    Garcia, Cesar; Coello, Victor; Han, Zhanghua

    2012-01-01

    Dielectric-loaded plasmonic waveguide-racetrack resonators (WRTRs) were designed and fabricated for operating at near-infrared wavelengths (750–850 nm) and characterized using leakage-radiation microscopy. The transmission spectra of the WRTRs are found experimentally and compared to the calculat...

  4. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, Jason; Kekelia, Bidzina; Tomerlin, Jeff; Kreutzer, Cory; Adelman, Steve; Yeakel, Skip; Luo, Zhiming; Zehme, John

    2016-03-24

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation

  5. Higher harmonic imaging of tensile plastic deformation in loading and reloading processes by local resonance method

    International Nuclear Information System (INIS)

    Kawashima, Koichiro; Yasui, Hajime

    2015-01-01

    We have imaged plastically deformed region in a 5052 aluminum plate under tensile loading, unloading and reloading processes by using an immersion local resonance method. By transmitting large-amplitude burst wave of which frequency is a through-thickness resonant frequency of the plate, dislocation loops in plastic zone are forced to vibrate. The higher harmonic amplitude excited by the dislocation movement is mapped for the transducer position. The extension of plastic zone under monotonically increased loading, decrease in harmonic amplitude under unloading process and marked extension of plastic zone in reloading up to 0.4% plastic strain are clearly imaged. (author)

  6. Effect of eddy current damping on phononic band gaps generated by locally resonant periodic structures

    Science.gov (United States)

    Ozkaya, Efe; Yilmaz, Cetin

    2017-02-01

    The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.

  7. Shunt impedance of spiral loaded resonant rf cavities

    International Nuclear Information System (INIS)

    Peebles, P.Z. Jr.; Parvarandeh, M.

    1975-01-01

    Based upon a treatment of the spiral loaded resonant radio frequency cavity as a shorted quarter-wave transmission line, a model for shunt impedance is developed. The model is applicable to loosely wound spirals in large diameter containers. Theoretical shunt impedance is given for spirals wound from tubing of circular or rectangular cross section. The former produces higher shunt impedance. Measurements made at Oak Ridge National Laboratory on 17 copper cavities are described which support the theoretical results. Theoretical results are also compared to data from twenty-three additional cavities measured at Los Alamos Scientific Laboratory. It is shown that the theoretical function forms a useful means of interpreting the quality of constructed cavities. (author)

  8. Mechanically Reconfigurable Microstrip Lines Loaded with Stepped Impedance Resonators and Potential Applications

    Directory of Open Access Journals (Sweden)

    J. Naqui

    2014-01-01

    Full Text Available This paper is focused on exploring the possibilities and potential applications of microstrip transmission lines loaded with stepped impedance resonators (SIRs etched on top of the signal strip, in a separated substrate. It is shown that if the symmetry plane of the line (a magnetic wall is perfectly aligned with the electric wall of the SIR at the fundamental resonance, the line is transparent. However, if symmetry is somehow ruptured, a notch in the transmission coefficient appears. The notch frequency and depth can thus be mechanically controlled, and this property can be of interest for the implementation of sensors and barcodes, as it is discussed.

  9. A High-Power Low-Loss Continuously Tunable Bandpass Filter With Transversely Biased Ferrite-Loaded Coaxial Resonators

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2015-01-01

    This paper presents a technology for high-power lowlosscontinuously tunable RF filters demonstrated by the exampleof a two-pole coupled-resonator filter. The resonators are shortenedcoaxial cavities loaded with ferrite inserts, where an externallyapplied transverse dc magnetic bias controls the c...... is observed to be 53.1 dBm at aninput fundamental tone level of 2 43 dBm....

  10. Theoretical study of platonic crystals with periodically structured N-beam resonators

    Science.gov (United States)

    Gao, Penglin; Climente, Alfonso; Sánchez-Dehesa, José; Wu, Linzhi

    2018-03-01

    A multiple scattering theory is applied to study the properties of flexural waves propagating in a plate with periodically structured N-beam resonators. Each resonator consists of a circular hole containing an inner disk connected to background plate with N rectangular beams. The Bloch theorem is employed to obtain the band structure of a two-dimensional lattice containing a single resonator per unit cell. Also, a numerical algorithm has been developed to get the transmittance through resonator slabs infinitely long in the direction perpendicular to the incident wave. For the numerical validation, a square lattice of 2-beam resonators has been comprehensively analyzed. Its band structure exhibits several flat bands, indicating the existence of local resonances embedded in the structure. Particularly, the one featured as the fundamental mode of the inner disk opens a bandgap at low frequencies. This mode has been fully described in terms of a simple spring-mass model. As a practical application of the results obtained, a homogenization approach has been employed to design a focusing lens for flexural waves, where the index gradient is obtained by adjusting the orientation of the resonators beams. Numerical experiments performed within the framework of a three-dimensional finite element method have been employed to discuss the accuracy of the models described here.

  11. Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

    Directory of Open Access Journals (Sweden)

    Chunxia Cheng

    2014-01-01

    Full Text Available A triband omnidirectional circularly polarized dielectric resonator antenna with a top-loaded modified Alford loop for GSM, WLAN, and WiMAX applications is proposed. Fed by an axial probe, the DRA (dielectric resonator antenna radiates like a vertically polarized electric monopole. The top-loaded modified Alford loop provides an equivalent horizontally polarized magnetic dipole mode at triband. Omnidirectional CP (circular polarized fields can be obtained when the two orthogonally polarized fields are equal in amplitude with phase quadrature. The antenna has been successfully simulated, fabricated, and measured. The experimental and numerical results exhibit that the antenna can obtain usable CP bandwidths of 1.925–1.955 GHz, 2.36–2.48 GHz, and 3.502–3.53 GHz with return loss larger than 10 dB and axial ratio less than 3 dB. In addition, over the three bands, the antenna obtains very good omnidirectional CP radiation patterns in the azimuth plane. Moreover, an average CP gain in the azimuth plane of 1.2, 1.6, and −1.5 dBic for the lower, middle, and upper bands has been obtained.

  12. Stochastic resonance in a periodic potential system under a constant force

    International Nuclear Information System (INIS)

    Hu Gang.

    1992-10-01

    An overdamped particle moving in a periodic potential, and subject to a constant force and a stochastic force (i.e., χ = -sin(2πχ) + B + Γ(t),Γ(t) is a white noise) is considered. The mobility of the particle, d /dt, is investigated. The stochastic resonance type of behaviour is revealed. The study of the SR problem can thus be extended to systems with periodic force. (author). 13 refs

  13. Intrinsic periodic and aperiodic stochastic resonance in an electrochemical cell

    Science.gov (United States)

    Tiwari, Ishant; Phogat, Richa; Parmananda, P.; Ocampo-Espindola, J. L.; Rivera, M.

    2016-08-01

    In this paper we show the interaction of a composite of a periodic or aperiodic signal and intrinsic electrochemical noise with the nonlinear dynamics of an electrochemical cell configured to study the corrosion of iron in an acidic media. The anodic voltage setpoint (V0) in the cell is chosen such that the anodic current (I ) exhibits excitable fixed point behavior in the absence of noise. The subthreshold periodic (aperiodic) signal consists of a train of rectangular pulses with a fixed amplitude and width, separated by regular (irregular) time intervals. The irregular time intervals chosen are of deterministic and stochastic origins. The amplitude of the intrinsic internal noise, regulated by the concentration of chloride ions, is then monotonically increased, and the provoked dynamics are analyzed. The signal to noise ratio and the cross-correlation coefficient versus the chloride ions' concentration curves have a unimodal shape indicating the emergence of an intrinsic periodic or aperiodic stochastic resonance. The abscissa for the maxima of these unimodal curves correspond to the optimum value of intrinsic noise where maximum regularity of the invoked dynamics is observed. In the particular case of the intrinsic periodic stochastic resonance, the scanning electron microscope images for the electrode metal surfaces are shown for certain values of chloride ions' concentrations. These images, qualitatively, corroborate the emergence of order as a result of the interaction between the nonlinear dynamics and the composite signal.

  14. Miniaturized bandpass filter using a meandered stepped-impedance resonator with a meandered-line stub-load on a GaAs substrate.

    Science.gov (United States)

    Chuluunbaatar, Z; Wang, C; Kim, N Y

    2014-01-01

    This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  15. Changes in resonance frequency analysis assessed by Osstell mentor during osseointegration: comparison between immediately loaded implants and control implants without load

    Directory of Open Access Journals (Sweden)

    M. González-Jaranay

    2014-10-01

    Full Text Available Aim: The aim of this prospective clinical study was to evaluate the changes in resonance frequency analysis (RFA, assessed by Osstell Mentor, obtaining information on the implant stability quotient (ISQ during implants tissue integration for immediately loaded and non-loaded control implants. Materials and methods: A total of 40 implants, 20 implants with no immediate loading (control and 20 immediately loaded implants (test, were placed in 15 patients. ISQ implants was evaluated at baseline and at 6 and 8 weeks. Provisional crowns were removed at 8 weeks, when the definitive restoration was placed. Data of control and test implants and maxillary and mandibular areas were statistically compared. Results: At 8 weeks, all implants were integrated and there were no major postoperative complications. A statistically significant difference was found only at baseline between test and control maxillary implants (p=0.009 but not at 6 or 8 weeks (p>0.05. Conclusion: Immediate loading procedures may be applied with primary stability ISQ values >60 and inserted with a force of ≥30 N. The Osstell Mentor RFA may offer an objective method to determine when implant stability is adequate for immediate loading.

  16. Monitoring Training Loads in Professional Basketball Players Engaged in a Periodized Training Program.

    Science.gov (United States)

    Aoki, Marcelo S; Ronda, Lorena T; Marcelino, Pablo R; Drago, Gustavo; Carling, Chris; Bradley, Paul S; Moreira, Alexandre

    2017-02-01

    Aoki, MS, Ronda, LT, Marcelino, PR, Drago, G, Carling, C, Bradley, PS, and Moreira, A. Monitoring training loads in professional basketball players engaged in a periodized training program. J Strength Cond Res 31(2): 348-358, 2017-The aim of this study was to investigate the dynamics of external training load (eTL) and internal training load (iTL) during seasonal periods, and examine the effect of a periodized training program on physical performance in professional basketball players. Repeated measures for 9 players (28 ± 6 years; 199 ± 8 cm; 101 ± 12 kg) were collected from 45 training sessions, over a 6-week preseason phase and a 5-week in-season phase. Physical tests were conducted at baseline (T1), week 4 (T2), and week 9 (T3). Differences in means are presented as % ± confident limits. A very likely difference was observed during in-season compared with preseason for the eTL variables (measured by multivariable monitoring device), mechanical load (13.5 ± 8.8) and peak acceleration (11.0 ± 11.2), respectively. Regarding iTL responses, a very large decrement in TRIMP (most likely difference, -20.6 ± 3.8) and in session rating of perceived exertion training load (very likely difference, -14.2 ± 9.0) was detected from preseason to in-season. Physical performance improved from T1 to T3 for Yo-Yo intermittent recovery test 1 (62.2 ± 34.3, effect size [ES] > 1.2); countermovement jump (8.8 ± 6.1, ES > 0.6); and squat jump (14.8 ± 10.2, ES > 0.8). Heart rate (HR; %HRpeak) exercise responses during a submaximal running test decreased from T1 to T3 (3.2 ± 4.3, ES 1.2). These results provide valuable information to coaches about training loads and physical performance across different seasonal periods. The data demonstrate that both eTL and iTL measures should be monitored in association with physical tests, to provide a comprehensive understanding of the training process.

  17. Optical resonance analysis of reflected long period fiber gratings with metal film overlay

    Science.gov (United States)

    Zhang, Guiju; Cao, Bing; Wang, Chinua; Zhao, Minfu

    2008-11-01

    We present the experimental results of a novel single-ended reflecting surface plasma resonance (SPR) based long period fiber grating (LPFG) sensor. A long period fiber grating sensing device is properly designed and fabricated with a pulsed CO2 laser writing system. Different nm-thick thin metal films are deposited on the fiber cladding and the fiber end facet for the excitation of surface plasma waves (SPWs) and the reflection of the transmission spectrum of the LPFG with doubled interaction between metal-dielectric interfaces of the fiber to enhance the SPW of the all-fiber SPR-LPFG sensing system. Different thin metal films with different thicknesses are investigated. The effect of the excited SPW transmission along the fiber cladding-metal interface with silver and aluminum films is observed. It is found that different thicknesses of the metal overlay show different resonant behaviors in terms of resonance peak situation, bandwidth and energy loss. Within a certain range, thinner metal film shows narrower bandwidth and deeper peak loss.

  18. Miniaturized Bandpass Filter Using a Meandered Stepped-Impedance Resonator with a Meandered-Line Stub-Load on a GaAs Substrate

    Directory of Open Access Journals (Sweden)

    Z. Chuluunbaatar

    2014-01-01

    Full Text Available This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  19. Load/resource matching for period-of-record computer simulation

    International Nuclear Information System (INIS)

    Lindsey, E.D. Jr.; Robbins, G.E. III

    1991-01-01

    The Southwestern Power Administration (Southwestern), an agency of the Department of Energy, is responsible for marketing the power and energy produced at Federal hydroelectric power projects developed by the U.S. Army Corps of Engineers in the southwestern United States. This paper reports that in order to maximize benefits from limited resources, to evaluate proposed changes in the operation of existing projects, and to determine the feasibility and marketability of proposed new projects, Southwestern utilizes a period-of-record computer simulation model created in the 1960's. Southwestern is constructing a new computer simulation model to take advantage of changes in computers, policy, and procedures. Within all hydroelectric power reservoir systems, the ability of the resources to match the load demand is critical and presents complex problems. Therefore, the method used to compare available energy resources to energy load demands is a very important aspect of the new model. Southwestern has developed an innovative method which compares a resource duration curve with a load duration curve, adjusting the resource duration curve to make the most efficient use of the available resources

  20. The Preparation Period in Basketball: Training Load and Neuromuscular Adaptations.

    Science.gov (United States)

    Ferioli, Davide; Bosio, Andrea; Bilsborough, Johann C; Torre, Antonio La; Tornaghi, Michele; Rampinini, Ermanno

    2018-01-18

    To investigate the 1) effect of the preparation period on the neuromuscular characteristics of 12 professional (PRO) and 16 semi-professional (SEMI-PRO) basketball players; 2) relationships between training load indices and changes in neuromuscular physical performance. Prior to and following the preparation period, players underwent a counter-movement jump (CMJ) test, followed by a repeated change of direction (COD) test consisting of 4 levels with increasing intensities. The peripheral neuromuscular functions of the knee extensors (peak torque, PT) were measured using electrical stimulations after each level (PT1, PT2, PT3 and PT4). Furthermore, PT Max (the highest value of PT) and PT Dec (PT decrement from PT Max to PT4) were calculated. Trivial-to-small (effect size, ES: -0.17 to 0.46) improvements were found in CMJ variables, regardless of the competitive levels. After the preparation period, peripheral fatigue induced by a COD test was similarly reduced in both PRO (PT Dec: from 27.8±21.3% to 11.4±13.7%, ES±90%CI= -0.71±0.30) and SEMI-PRO (PT Dec: from 26.1±21.9% to 10.2±8.2%, ES±90%CI= -0.69±0.32). Moderate-to-large relationships were found between session rating of perceived exertion training load and changes in PPO measured during the CMJs (r s ±90%CI: PPOabs, -0.46±0.26; PPOrel, -0.53±0.23) and in some PTs measured during the COD test (PT1, -0.45±0.26; PT2, -0.44±0.26; PT3, -0.40±0.27 and PT Max, -0.38±0.28). Preparation period induced minimal changes in the CMJ, while the ability to sustain repeated COD efforts was improved. Reaching high session rating of perceived exertion training loads might partially and negatively affect the ability to produce strength and power.

  1. Metglas-Elgiloy bi-layer, stent cell resonators for wireless monitoring of viscosity and mass loading

    KAUST Repository

    Viswanath, Anupam; Green, Scott Ryan; Kosel, Jü rgen; Gianchandani, Yogesh B.

    2012-01-01

    This paper presents the design and evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors are fabricated from 28 μm thick foils of magnetoelastic 2826MB Metglas™, an amorphous Ni-Fe alloy. The sensor layer consists of a frame and an active resonator portion. The frame consists of 150 μm wide struts that are patterned in the same wishbone array pattern as a 12 mm × 1.46 mm Elgiloy stent cell. The active portion is a 10 mm long symmetric leaf shape and is anchored to the frame at mid length. The active portion nests within the stent cell, with a uniform gap separating the two. A gold-indium eutectic bonding process is used to bond Metglas™ and Elgiloy foils, which are subsequently patterned to form bi-layer resonators. The response of the sensor to viscosity changes and mass loading that precede and accompany artery occlusion is tested in vitro. The typical sensitivity to viscosity of the fundamental, longitudinal resonant frequency at 361 kHz is 427 ppm cP -1 over a 1.1-8.6 cP range. The sensitivity to mass loading is typically between 63000 and 65000 ppm mg-1 with the resonant frequency showing a reduction of 8.1% for an applied mass that is 15% of the unloaded mass of the sensor. This is in good agreement with the theoretical response. © 2013 IOP Publishing Ltd.

  2. Metglas-Elgiloy bi-layer, stent cell resonators for wireless monitoring of viscosity and mass loading

    KAUST Repository

    Viswanath, Anupam

    2012-12-21

    This paper presents the design and evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors are fabricated from 28 μm thick foils of magnetoelastic 2826MB Metglas™, an amorphous Ni-Fe alloy. The sensor layer consists of a frame and an active resonator portion. The frame consists of 150 μm wide struts that are patterned in the same wishbone array pattern as a 12 mm × 1.46 mm Elgiloy stent cell. The active portion is a 10 mm long symmetric leaf shape and is anchored to the frame at mid length. The active portion nests within the stent cell, with a uniform gap separating the two. A gold-indium eutectic bonding process is used to bond Metglas™ and Elgiloy foils, which are subsequently patterned to form bi-layer resonators. The response of the sensor to viscosity changes and mass loading that precede and accompany artery occlusion is tested in vitro. The typical sensitivity to viscosity of the fundamental, longitudinal resonant frequency at 361 kHz is 427 ppm cP -1 over a 1.1-8.6 cP range. The sensitivity to mass loading is typically between 63000 and 65000 ppm mg-1 with the resonant frequency showing a reduction of 8.1% for an applied mass that is 15% of the unloaded mass of the sensor. This is in good agreement with the theoretical response. © 2013 IOP Publishing Ltd.

  3. Periodic Forcing of Inhibition-Stabilized Networks: Nonlinear Resonances and Phase-Amplitude Coupling

    Science.gov (United States)

    Veltz, Romain; Sejnowski, Terrence J.

    2016-01-01

    Inhibition-stabilized networks (ISNs) are neural architectures with strong positive feedback among pyramidal neurons balanced by strong negative feedback from inhibitory interneurons, a circuit element found in the hippocampus and the primary visual cortex. In their working regime, ISNs produce damped oscillations in the γ-range in response to inputs to the inhibitory population. In order to understand the properties of interconnected ISNs, we investigated periodic forcing of ISNs. We show that ISNs can be excited over a range of frequencies and derive properties of the resonance peaks. In particular, we studied the phase-locked solutions, the torus solutions, and the resonance peaks. Periodically forced ISNs respond with (possibly multistable) phase-locked activity, whereas networks with sustained intrinsic oscillations respond more dynamically to periodic inputs with tori. Hence, the dynamics are surprisingly rich, and phase effects alone do not adequately describe the network response. This strengthens the importance of phaseamplitude coupling as opposed to phase-phase coupling in providing multiple frequencies for multiplexing and routing information. PMID:26496044

  4. Selective loads periodization attenuates biochemical disturbances and enhances performance in female futsal players during competitive season

    Directory of Open Access Journals (Sweden)

    Ricelli Endrigo Ruppel da Rocha

    2015-06-01

    Full Text Available This study evaluated the effect of selective loads periodization on physical performance and biochemical parameters in professional female futsal players during competitive season. Twelve elite female futsal players from Kindermann team (Brazil participated in the study. Variables of physical performance and erythrogram, leukogram, plasma cortisol, plasma immunoglobulin A (IgA in the beginning of the preparatory period (PP, in the competitive period (CP and in the final competitive period (FCP were evaluated. Using selective loads periodization, all variables of physical performance increased (p < .01 during CP and were maintained during FCP (p < .05. White blood cells did not modify during CP and the increase of FCP in 28% remained within normal ranges. Plasma cortisol also increased during CP (p < .01 and was within the normal ranges during FCP. Plasma IgA also was within the normal ranges during CP and FCP. Selective loads periodization is adequate and attends the requirements of the sport during competitive season in female futsal players.

  5. Evaluation of trickle-bed air biofilter performance under periodic stressed operating conditions as a function of styrene loading.

    Science.gov (United States)

    Kim, Daekeun; Cai, Zhangli; Sorial, George A

    2005-02-01

    Trickle-bed air biofilters (TBABs) are suitable for treating volatile organic compounds (VOCs) at a significantly high practical loading because of their controlled environmental conditions. The application of TBAB for treating styrene-contaminated air under periodic backwashing and cyclical nonuse periods at a styrene loading of 0.64-3.17 kg chemical oxygen demand (COD)/m3 x day was the main focus of this study. Consistent long-term efficient performance of TBAB strongly depended on biomass control. A periodic in situ upflow with nutrient solution under media fluidization, that is, backwashing, was approached in this study. Two different nonuse periods were employed to simulate a shutdown for equipment repair or during weekends and holidays. The first is a starvation period without styrene loading, and the second is a stagnant period, which reflects no flow passing through the biofilter. For styrene loadings up to 1.9 kg COD/m3 x day, removal efficiencies consistently above 99% were achieved by conducting a coordinated biomass control strategy, that is, backwashing for 1 hr once per week. Under cyclical nonuse periods for styrene loadings up to 1.27 kg COD/m3 x day, stable long-term performance of the biofilter was maintained at more than 99% removal without employing backwashing. No substantial impact of nonuse periods on the biofilter performance was revealed. However, a coordinated biomass control by backwashing subsequently was unavoidable for attaining consistently high removal efficiency at a styrene loading of 3.17 kg COD/m3 x day. As styrene loading was increased, reacclimation of the biofilter to reach the 99% removal efficiency following backwashing or the nonuse periods was delayed. After the non-use periods, the response of the biofilter was a strong function of the biomass in the bed. No significant difference between the effects of the two different nonuse periods on TBAB performance was observed during the study period.

  6. Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, J. A.; Kreutzer, C.; Adelman, S.; Yeakel, S.; Zehme, J.

    2015-04-29

    Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy’s National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, their effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. For this study, load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, and conductive pathways. The technologies selected for a complete-cab package of technologies were “ultra-white” paint, advanced insulation, and advanced curtains. To measure the impact of these technologies, a nationally-averaged solar-weighted reflectivity long-haul truck paint color was determined and applied to the baseline test vehicle. Using the complete-cab package of technologies, electrical energy consumption for long-haul truck daytime rest period air conditioning was reduced by at least 35% for summer weather conditions in Colorado. The National Renewable Energy Laboratory's CoolCalc model was then used to extrapolate the performance of the thermal load reduction technologies nationally for 161 major U.S. cities using typical weather conditions for each location over an entire year.

  7. Steady-state response of periodically supported structures to a moving load

    NARCIS (Netherlands)

    Metrikine, A.V.; Wolfert, A.R.M.; Vrouwenvelder, A.C.W.M.

    1999-01-01

    Steady-state vibrations of periodically supported structures under a moving load are analytically investigated. The following three structures are considered: an overhead power line for a train, a long suspended bridge and a railway track. The study is based on the application of so-called

  8. Nonequilibrium steady states and resonant tunneling in time-periodically driven systems with interactions

    Science.gov (United States)

    Qin, Tao; Hofstetter, Walter

    2018-03-01

    Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.

  9. Magnetic resonance imaging of the lumbar spine with axial loading: A review of 120 cases

    International Nuclear Information System (INIS)

    Kinder, Andre; Palma Filho, Fernando; Ribeiro, Elisio; Domingues, Romeu C.; Domingues, Roberto C.; Marchiori, Edson; Gasparetto, Emerson

    2012-01-01

    Purpose: To evaluate the imaging findings of patients with clinical symptoms of lower back pain who underwent magnetic resonance imaging (MRI) of the lumbar spine with axial loading. Materials and methods: We examined 120 patients by MRI, before and after axial loading, using a compression device that applied 50% of their body weight for a load time of 5 min. The dural sac cross area (DSCA) was examined by two experienced radiologists before and after axial load, and their findings were compared. Degenerative abnormalities within and adjacent to the spinal canal were also analyzed. Results: A reduction in DSCA greater than 15 mm 2 after axial load was defined as significant, and was found in 81 patients (67.5%) and 138 disc spaces (38.3%). Reduction was most frequent at L4-L5 (n = 55). For other disorders, a 9% increase in cases of bulging disc was seen during axial loading, and seven disc spaces showed protrusion/extrusion only after load. Facet joint synovial cysts, foraminal stenosis, and hypertrophy of the flavum ligaments showed almost no differences, pre- and post-load. Conclusion: For adequate evaluation of lumbar symptoms, examination should be performed with axial loading, especially in cases of suspected spinal stenosis.

  10. A hybrid dielectric and iris loaded periodic accelerating structure

    International Nuclear Information System (INIS)

    Zou, P.; Xiao, L.; Sun, X.; Gai, W.

    2001-01-01

    One disadvantage of conventional iris-loaded accelerating structures is the high ratio of the peak surface electric field to the peak axial electric field useful for accelerating a beam. Typically this ratio E s /E a ≥ 2. The high surface electric field relative to the accelerating gradient may prove to be a limitation for realizing technologies for very high gradient accelerators. In this paper, we present a scheme that uses a hybrid dielectric and iris loaded periodic structure to reduce E s /E a to near unity, while the shunt impedance per unit length r and the quality factor Q compare favorably with conventional metallic structures. The analysis based on MAFIA simulations of such structures shows that we can lower the peak surface electric field close to the accelerating gradient while maintaining high acceleration efficiency as measured by r/Q. Numerical examples of X-band hybrid accelerating structures are given

  11. Stress-strain state analysis and optimization of rod system under periodic pulse load

    Directory of Open Access Journals (Sweden)

    Grebenyuk Grigory

    2018-01-01

    Full Text Available The paper considers the problem of analysis and optimization of rod systems subjected to combined static and periodic pulse load. As a result of the study the analysis method was developed based on traditional approach to solving homogeneous matrix equations of state and a special algorithm for developing a particular solution. The influence of pulse parameters variations on stress-strain state of a rod system was analyzed. Algorithms for rod systems optimization were developed basing on strength recalculation and statement and solution of optimization problem as a problem of nonlinear mathematical programming. Recommendations are developed for efficient organization of process for optimization of rod systems under static and periodic pulse load.

  12. Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal

    International Nuclear Information System (INIS)

    Yong-Feng, Guo; Wei, Xu; Liang, Wang

    2010-01-01

    This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker–Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time τ on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears. (general)

  13. Transverse Periodic Beam Loading Effects in a Storage Ring

    International Nuclear Information System (INIS)

    Thompson, J.R.; Byrd, J.M.

    2009-01-01

    Uneven beam fill patterns in storage rings, such as gaps in the fill patterns, leads to periodic, or transient loading of the modes of the RF cavities. We show that an analogous effect can occur in the loading of a dipole cavity mode when the beam passes off the electrical center of the cavity mode. Although this effect is small, it results in a variation of the transverse offset of the beam along the bunch train. For ultralow emittance beams, such as optimized third generation light sources and damping rings, this effect results in a larger projected emittance of the beam compared with the single bunch emittance. The effect is particularly strong for the case when a strong dipole mode has been purposely added to the ring, such as a deflecting, or 'crab' cavity. We derive an approximate analytic solution for the variation of the beam-induced deflecting voltage along the bunch train.

  14. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    Science.gov (United States)

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  15. Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring–mass resonators

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Denghui, E-mail: qdhsd318@163.com; Shi, Zhiyu, E-mail: zyshi@nuaa.edu.cn

    2016-10-07

    Bandgap properties of the locally resonant phononic crystal double panel structure made of a two-dimensional periodic array of a spring–mass resonator surrounded by n springs (n equals to zero at the beginning of the study) connected between the upper and lower plates are investigated in this paper. The finite element method is applied to calculate the band structure, of which the accuracy is confirmed in comparison with the one calculated by the extended plane wave expansion (PWE) method and the transmission spectrum. Numerical results and further analysis demonstrate that two bands corresponding to the antisymmetric vibration mode open a wide band gap but is cut narrower by a band corresponding to the symmetric mode. One of the regulation rules shows that the lowest frequency on the symmetric mode band is proportional to the spring stiffness. Then, a new design idea of adding springs around the resonator in a unit cell (n is not equal to zero now) is proposed in the need of widening the bandwidth and lowering the starting frequency. Results show that the bandwidth of the band gap increases from 50 Hz to nearly 200 Hz. By introducing the quality factor, the regulation rules with the comprehensive consideration of the whole structure quality limitation, the wide band gap and the low starting frequency are also discussed. - Highlights: • The locally resonant double panel structure opens a band gap in the low frequency region. • The band gap is the coupling between the symmetric and antisymmetric vibration modes. • The band structure of the double panel is the evolution of that of the single plate. • By adding springs around the resonator in a unit cell, the bandwidth gets wider. • The band gap can be controlled by tuning the parameters.

  16. Forecasting of resonances vibration equipment with elastic waves coolant and with the external periodic loads on NPP with WWER

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Zaporozhets, M.V.; Fedorov, A.I.

    2015-01-01

    Forecasting are carried out for external loads in relation to the main circulation circuit - dynamic loads caused by the rotation of the MCP, dynamic loads caused by the earthquake, dynamic loads caused by damage to the MCP in the earthquake. A comparison of the response spectrum of one of the variants of the base of the NPP, with the frequency vibration of the primary circuit equipment for NPP with WWER-1000 and self-frequency of elastic waves in the fluid. Analysis of the comparison results shows that the frequency of vibration of the main equipment of the reactor plant and elastic waves are in the frequency band in the spectrum response corresponding to the maximum amplitude of the seismic action [ru

  17. Resonance frequency analysis of thermal acid-etched, hydrophilic implants during first 3 months of healing and osseointegration in an early-loading protocol

    NARCIS (Netherlands)

    van Eekeren, P.; Said, C.; Tahmaseb, A.; Wismeijer, D.

    2015-01-01

    Purpose: Safe loading of dental implants requires an optimal osseointegration. This osseointegration process during healing could be analyzed by resonance frequency analysis (RFA). The purpose of the study was to evaluate RFA changes during healing in splinted, early-loaded, thermal acid-etched,

  18. A diurnal resonance in the ocean tide and in the earth's load response due to the resonant free 'core nutation'

    Science.gov (United States)

    Wahr, J. M.; Sasao, T.

    1981-01-01

    The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.

  19. Effect of intervertebral disk degeneration on spinal stenosis during magnetic resonance imaging with axial loading

    International Nuclear Information System (INIS)

    Ahn, Tae-Joon; Lee, Sang-Ho; Choi, Gun; Ahn, Yong; Liu, Wei-Chiang; Kim, Ho-Jin; Lee, Ho-Yeon

    2009-01-01

    Magnetic resonance (MR) imaging with axial loading can simulate the physiological standing state and disclose spinal stenosis undetected or underestimated in the conventional position. Intervertebral disk degeneration may be an important factor in spinal stenosis. This study investigated whether intervertebral disk degeneration increases spinal stenosis during axial loading. MR imaging with and without axial loading was obtained in 51 patients with neurogenic intermittent claudication and/or sciatica and reviewed retrospectively. The grade of disk degeneration was rated in four disk spaces from L2-3 to L5-S1. The dural sac cross-sectional area (DCSA) was measured on MR images taken in both conventional and axial loading positions, and the change in the DCSA was calculated. The effect of disk degeneration on the DCSA was statistically analyzed. Significant decreases in the DCSA occurred with grade 4 disk degeneration (mean±standard deviation, 20.1±14.1 mm 2 ), followed by grade 3 (18.3±15.1 mm 2 ) and grade 2 (8.9±13.1 mm 2 ). DCSA decreased considerably with increased severity of disk degeneration with axial loading, except for grade 5 disk degeneration. More accurate diagnosis of stenosis can be achieved using MR imaging with axial loading, especially if grade 2 to 4 disk degeneration is present. (author)

  20. Study of loading by beam of dual-resonator structure of linear electron accelerator

    International Nuclear Information System (INIS)

    Milovanov, O.S.; Smirnov, I.A.

    1988-01-01

    Loading by the beam of the accelerating structure of an Argus dual-resonator linear electron accelerator with a kinetic energy of ∼ 1 MeV and a pulsed beam current of up to 0.5 A is studied experimentally. It is shown that the conditions for stable single-frequency operation of the magnetron are disrupted and the acceleration process is cut off at certain electron-beam currents. Experimental curves of the maximum beam current and maximum electron efficiency of the Argus linear electron accelerator as functions of rf power are given

  1. A neutral network based technique for short-term forecasting of anomalous load periods

    Energy Technology Data Exchange (ETDEWEB)

    Sforna, M [ENEL, s.p.a, Italian Power Company (Italy); Lamedica, R; Prudenzi, A [Rome Univ. ` La Sapienza` , Rome (Italy); Caciotta, M; Orsolini Cencelli, V [Rome Univ. III, Rome (Italy)

    1995-01-01

    The paper illustrates a part of the research activity conducted by authors in the field of electric Short Term Load Forecasting (STLF) based on Artificial Neural Network (ANN) architectures. Previous experiences with basic ANN architectures have shown that, even though these architecture provide results comparable with those obtained by human operators for most normal days, they evidence some accuracy deficiencies when applied to `anomalous` load conditions occurring during holidays and long weekends. For these periods a specific procedure based upon a combined (unsupervised/supervised) approach has been proposed. The unsupervised stage provides a preventive classification of the historical load data by means of a Kohonen`s Self Organizing Map (SOM). The supervised stage, performing the proper forecasting activity, is obtained by using a multi-layer percept ron with a back propagation learning algorithm similar to the ones above mentioned. The unconventional use of information deriving from the classification stage permits the proposed procedure to obtain a relevant enhancement of the forecast accuracy for anomalous load situations.

  2. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  3. Generalized Analytical Program of Thyristor Phase Control Circuit with Series and Parallel Resonance Load

    OpenAIRE

    Nakanishi, Sen-ichiro; Ishida, Hideaki; Himei, Toyoji

    1981-01-01

    The systematic analytical method is reqUired for the ac phase control circuit by means of an inverse parallel thyristor pair which has a series and parallel L-C resonant load, because the phase control action causes abnormal and interesting phenomena, such as an extreme increase of voltage and current, an unique increase and decrease of contained higher harmonics, and a wide variation of power factor, etc. In this paper, the program for the analysis of the thyristor phase control circuit with...

  4. Progressive immediate loading of a perforated maxillary sinus dental implant: a case report

    Directory of Open Access Journals (Sweden)

    Al-Juboori MJ

    2015-01-01

    Full Text Available Mohammed Jasim Al-Juboori Department of Oral Surgery, MAHSA University, Kuala Lumpur, Malaysia Abstract: The displacement of a dental implant into the maxillary sinus may lead to implant failure due to exposure of the apical third or the tip of the implant beyond the bone, resulting in soft tissue growth. This case report discusses dental implant placement in the upper first molar area with maxillary sinus involvement of approximately 2 mm. A new technique for progressive implant loading was used, involving immediately loaded implants with maxillary sinus perforation and low primary stability. Follow-up was performed with resonance frequency analysis and compared with an implant placed adjacent in the upper second premolar area using a conventional delayed loading protocol. Implants with maxillary sinus involvement showed increasing stability during the healing period. We found that progressive implant loading may be a safe technique for the placement of immediately loaded implants with maxillary sinus involvement. Keywords: progressive implant loading, resonance frequency analysis, implant stability, provisional crown, bone density, maxillary sinus

  5. Weak-periodic stochastic resonance in a parallel array of static nonlinearities.

    Directory of Open Access Journals (Sweden)

    Yumei Ma

    Full Text Available This paper studies the output-input signal-to-noise ratio (SNR gain of an uncoupled parallel array of static, yet arbitrary, nonlinear elements for transmitting a weak periodic signal in additive white noise. In the small-signal limit, an explicit expression for the SNR gain is derived. It serves to prove that the SNR gain is always a monotonically increasing function of the array size for any given nonlinearity and noisy environment. It also determines the SNR gain maximized by the locally optimal nonlinearity as the upper bound of the SNR gain achieved by an array of static nonlinear elements. With locally optimal nonlinearity, it is demonstrated that stochastic resonance cannot occur, i.e. adding internal noise into the array never improves the SNR gain. However, in an array of suboptimal but easily implemented threshold nonlinearities, we show the feasibility of situations where stochastic resonance occurs, and also the possibility of the SNR gain exceeding unity for a wide range of input noise distributions.

  6. Indoor climate design for a monumental building with periodic high indoor moisture loads

    NARCIS (Netherlands)

    Schijndel, van A.W.M.; Lony, R.J.M.; Schellen, H.L.

    2008-01-01

    The paper presents a case study on the performance based design for the indoor climate of a monumental building with periodic high indoor moisture loads. Several scenarios of the past performance and new control classes are simulated and evaluated. The results include the influence of hygric inertia

  7. Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, J.; Kreutzer, C.; Jeffers, M.; Adelman, S.; Yeakel, S.; Brontz, P.; Olson, K.; Ohlinger, J.

    2014-02-01

    Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.

  8. Parametric instability in the Watt governor with periodic loading

    International Nuclear Information System (INIS)

    Bhattacharjee, Shayak; Kumar, Krishna

    2014-01-01

    In this work we examine a potential source of instability in the Watt governor, which can occur when the governor is subjected to periodic variation of the load torque. Floquet analysis is used to obtain the condition for existence of the unstable solutions, and results are obtained which supplement the usual Maxwell–Vyshnegradskii conditions for governor stability. Pedagogically, this paper is relevant for senior undergraduate students. It presents a detailed yet simple exposition of classical Floquet theory, a subject often ignored in undergraduate education even though the related concept of Bloch's theorem is popular in quantum mechanics courses. At the same time, it touches on certain practical engineering applications of physical concepts, with its discussion on mechanical governors. (paper)

  9. Proportional resonant individual pitch control for mitigation of wind turbines loads

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Cheng, Ming

    2013-01-01

    attenuation. The individual pitch control (IPC) is a promising way to reduce the wind turbine loads. This study presents a proportional resonant (PR) IPC, which does not need the measurement of blade azimuth angle and multiple complex Coleman transformations between rotational coordinate frame and stationary...... coordinate frame. The new strategy can attenuate the 1p and higher harmonics on the wind turbine blades as well as 3p on the hub without any filters. The wind turbine code fatigue, aerodynamics, structures and turbulence is applied to a doubly fed induction generator-based wind power generation system....... The simulations are performed on the National Renewable Energy Laboratory 1.5 MW upwind reference wind turbine model. The simulation results are presented and discussed to demonstrate the capability and effectiveness of the proposed PR IPC method....

  10. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li Dongxi, E-mail: lidongxi@mail.nwpu.edu.c [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Xu Wei; Guo, Yongfeng; Xu Yong [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-01-31

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  11. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    International Nuclear Information System (INIS)

    Li Dongxi; Xu Wei; Guo, Yongfeng; Xu Yong

    2011-01-01

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  12. Load partitioning in Ai203-Al composites with three- dimensional periodic architecture

    International Nuclear Information System (INIS)

    Young, M.L.; Rao, R.; Almer, J.D.; Haeffner, D.R.; Lewis, J.A.; Dunand, D.C.

    2009-01-01

    Interpenetrating composites are created by infiltration of liquid aluminum into three-dimensional (3-D) periodic Al 2 O 3 preforms with simple tetragonal symmetry produced by direct-write assembly. Volume-averaged lattice strains in the Al 2 O 3 phase of the composite are measured by synchrotron X-ray diffraction for various uniaxial compression stresses up to -350MPa. Load transfer, found by diffraction to occur from the metal phase to the ceramic phase, is in general agreement with simple rule-of-mixture models and in better agreement with more complex, 3-D finite-element models that account for metal plasticity and details of the geometry of both phases. Spatially resolved diffraction measurements show variations in load transfer at two different positions within the composite.

  13. Life time calculations for LCF loading combined with tensional hold periods

    International Nuclear Information System (INIS)

    Bocek, M.; Armas, A.; Piel, D.

    1983-01-01

    The life time in high amplitude strain cycling with tensional hold periods is analysed presuming that creep failure damage is life determining. The life fraction rule (LFR) is used to calculate the life time consumpted during the dwell period in strain controlled tests as well as during tensional hold time stress cycles. It follows from the present investigation that stress relaxation occurring during the strain hold periods plays the dominant influence upon the relationship between life and dwell time. For strong stress relaxation (e.g. high temperature) less damage is accumulated as compared to suppressed relaxation (low temperature). The damage in stress relaxation is calculated by means of the LFR and the results are compared to experiments conducted on Zircaloy-4 and the austenitic stainless stell Type AISI 304. From the very good agreement between both it is concluded that under the loading conditions considered, creep failure damage is the main life determining damage contribution. (orig.)

  14. HTS dual-band bandpass filters using stub-loaded hair-pin resonators for mobile communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.jp; Sugiyama, S.

    2014-09-15

    Highlights: • We have developed a HTS five-pole dual-band bandpass filter using stub-loaded hair-pin resonators. • The proposed dual-band BPF can independently control of the center frequency. • Flexibly adjustment of the bandwidth can be achieved by the H-shaped waveguide. • The proposed BPF is evaluated by simulation and measurement with good agreement. - Abstract: A HTS dual-band bandpass filter is developed to obtain sharp-cut off characteristics for mobile communication systems. The filter is composed of five stub-loaded hair-pin resonators with H-shaped waveguides between them. The main advantage of the proposed filter is to allow independent control of the center frequency of the first and second bands. The bandwidths can be flexibly adjusted using the H-shaped waveguide. An electromagnetic simulator was used to design and analyze the filter, which have a 3.5-GHz center frequency and a 70-MHz (2%) bandwidth for the first band and a 5.0-GHz center frequency and a 100-MHz (2%) bandwidth for the second band. The filter was fabricated using YBa{sub 2}Cu{sub 3}O{sub y} thin film on an Al{sub 2}O{sub 3} substrate. Ground plane was fabricated using Au thin film. The measured frequency responses of the filter tally well with the simulated ones.

  15. Complete classification of discrete resonant Rossby/drift wave triads on periodic domains

    Science.gov (United States)

    Bustamante, Miguel D.; Hayat, Umar

    2013-09-01

    We consider the set of Diophantine equations that arise in the context of the partial differential equation called "barotropic vorticity equation" on periodic domains, when nonlinear wave interactions are studied to leading order in the amplitudes. The solutions to this set of Diophantine equations are of interest in atmosphere (Rossby waves) and Tokamak plasmas (drift waves), because they provide the values of the spectral wavevectors that interact resonantly via three-wave interactions. These wavenumbers come in "triads", i.e., groups of three wavevectors. We provide the full solution to the Diophantine equations in the physically sensible limit when the Rossby deformation radius is infinite. The method is completely new, and relies on mapping the unknown variables via rational transformations, first to rational points on elliptic curves and surfaces, and from there to rational points on quadratic forms of "Minkowski" type (such as the familiar space-time in special relativity). Classical methods invented centuries ago by Fermat, Euler, Lagrange, Minkowski, are used to classify all solutions to our original Diophantine equations, thus providing a computational method to generate numerically all the resonant triads in the system. Computationally speaking, our method has a clear advantage over brute-force numerical search: on a 10,0002 grid, the brute-force search would take 15 years using optimised C codes on a cluster, whereas our method takes about 40 min using a laptop. Moreover, the method is extended to generate so-called quasi-resonant triads, which are defined by relaxing the resonant condition on the frequencies, allowing for a small mismatch. Quasi-resonant triads' distribution in wavevector space is robust with respect to physical perturbations, unlike resonant triads' distribution. Therefore, the extended method is really valuable in practical terms. We show that the set of quasi-resonant triads form an intricate network of connected triads, forming

  16. Neural Model for Left-Handed CPW Bandpass Filter Loaded Split Ring Resonator

    Science.gov (United States)

    Liu, Haiwen; Wang, Shuxin; Tan, Mingtao; Zhang, Qijun

    2010-02-01

    Compact left-handed coplanar waveguide (CPW) bandpass filter loaded split ring resonator (SRR) is presented in this paper. The proposed filter exhibits a quasi-elliptic function response and its circuit size occupies only 12 × 11.8 mm2 (≈0.21 λg × 0.20 λg). Also, a simple circuit model is given and the parametric study of this filter is discussed. Then, with the aid of NeuroModeler software, a five-layer feed-forward perceptron neural networks model is built up to optimize the proposed filter design fast and accurately. Finally, this newly left-handed CPW bandpass filter was fabricated and measured. A good agreement between simulations and measurement verifies the proposed left-handed filter and the validity of design methodology.

  17. Control of Series Resonant Converter with Robust Performance Against Load and Power Circuit Components Uncertainties

    Directory of Open Access Journals (Sweden)

    A. Mohammadpour

    2009-12-01

    Full Text Available Robust performance controller design for duty-cycle controlled series resonant converter (SRC is proposed in this paper. The uncertainties of the converter are analyzed with load variation and power circuit components tolerances are taken into consideration. Additionally, a nominal performance (NP controller is designed. Closed-loop system is simulated with Orcad and simulation results of robust controller are compared with nominal performance controller. Although nominal performance controller has better performance for nominal plant, the robust performance controller is advantageous in dealing with uncertainties.

  18. Frictional systems under periodic loads — History-dependence, non-uniqueness and energy dissipation

    International Nuclear Information System (INIS)

    Barber, J R

    2012-01-01

    Nominally static contacts such as bolted or shrink-fit joints typically experience regions of microslip when subjected to oscillatory loading. This results in energy dissipation, reflected as apparent hysteretic damping of the system, and also may cause the initiation of fretting fatigue cracks. Early theoretical studies of the Hertzian contact problem by Cattaneo and Mindlin were confirmed experimentally by Johnson, who identified signs of fretting damage in the slip annulus predicted by the theory. For many years, tribologists assumed that Melan's theorem in plasticity could be extended to frictional systems — i.e. that if there exists a state of residual stress associated with frictional slip that is sufficient to prevent periodic slip in the steady state, then the system will shake down, regardless of the initial condition. However, we now know that this is true only if there is no coupling between the normal and tangential loading problems, as will be the case notably when contact occurs on a symmetry plane. For all other cases, periodic loading scenarios can be devised such that shakedown occurs for some initial conditions and not for others. The initial condition here might be determined by the assembly protocol — e.g. the order in which a set of bolts is tightened — or by the exact loading path before the steady cycle is attained. This non-uniqueness of the steady state persists at load amplitudes above the shakedown limit, in which case there is always some dissipation, but the dissipation per cycle (and hence both the effective damping and the susceptibility to fretting damage) depends on the initial conditions. This implies that fretting fatigue experiments need to follow a well-defined assembly protocol if reproducible results are to be obtained. We shall also present results showing that when both normal and tangential forces vary in time, the energy dissipation is very sensitive to the relative phase of the oscillatory components, being greatest

  19. The dose-response relationship between cumulative lifting load and lumbar disk degeneration based on magnetic resonance imaging findings.

    Science.gov (United States)

    Hung, Yu-Ju; Shih, Tiffany T-F; Chen, Bang-Bin; Hwang, Yaw-Huei; Ma, Li-Ping; Huang, Wen-Chuan; Liou, Saou-Hsing; Ho, Ing-Kang; Guo, Yue L

    2014-11-01

    Lumbar disk degeneration (LDD) has been related to heavy physical loading. However, the quantification of the exposure has been controversial, and the dose-response relationship with the LDD has not been established. The purpose of this study was to investigate the dose-response relationship between lifetime cumulative lifting load and LDD. This was a cross-sectional study. Every participant received assessments with a questionnaire, magnetic resonance imaging (MRI) of the lumbar spine, and estimation of lumbar disk compression load. The MRI assessments included assessment of disk dehydration, annulus tear, disk height narrowing, bulging, protrusion, extrusion, sequestration, degenerative and spondylolytic spondylolisthesis, foramina narrowing, and nerve root compression on each lumbar disk level. The compression load was predicted using a biomechanical software system. A total of 553 participants were recruited in this study and categorized into tertiles by cumulative lifting load (ie, lifting load. The best dose-response relationships were found at the L5-S1 disk level, in which high cumulative lifting load was associated with elevated odds ratios of 2.5 (95% confidence interval [95% CI]=1.5, 4.1) for dehydration and 4.1 (95% CI=1.9, 10.1) for disk height narrowing compared with low lifting load. Participants exposed to intermediate lifting load had an increased odds ratio of 2.1 (95% CI=1.3, 3.3) for bulging compared with low lifting load. The tests for trend were significant. There is no "gold standard" assessment tool for measuring the lumbar compression load. The results suggest a dose-response relationship between cumulative lifting load and LDD. © 2014 American Physical Therapy Association.

  20. Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery

    Science.gov (United States)

    Wang, Guangshuo; Zhao, Dexing; Li, Nannan; Wang, Xuehan; Ma, Yingying

    2018-06-01

    In this study, poly (ε-caprolactone) (PCL) microspheres loading magnetic Fe3O4 nanoparticles and anti-cancer drug of doxorubicin hydrochloride (DOX) were successfully prepared by a modified solvent-evaporation method. The obtained magnetic composite microspheres exhibited dual features of magnetic resonance imaging and controlled drug delivery. The morphology, structure, thermal behavior and magnetic properties of the drug-loaded magnetic microspheres were investigated in detail by SEM, XRD, DSC and SQUID. The obtained composite microspheres showed superparamagnetic behavior and T2-weighted enhancement effect. The drug loading, encapsulation efficiency, releasing behavior and in vitro cytotoxicity of the drug-loaded composite microspheres were systematically investigated. It was found that the values of drug loading and encapsulation efficiency were 36.7% and 25.8%, respectively. The composite microspheres were sensitive to pH and released in a sustained way, and both the release curves under various pH conditions (4.0 and 7.4) were well satisfied with the biphase kinetics function. In addition, the magnetic response of the drug-loaded microspheres was studied and the results showed that the composite microspheres had a good magnetic stability and strong targeting ability.

  1. A frequency domain approach to analyzing passive battery-ultracapacitor hybrids supplying periodic pulsed current loads

    International Nuclear Information System (INIS)

    Kuperman, Alon; Aharon, Ilan; Kara, Avi; Malki, Shalev

    2011-01-01

    Highlights: → Passive battery-ultracapacitor hybrids are examined. → Frequency domain analysis is employed. → The ultracapacitor branch operates as a low-pass filter for the battery. → The battery supplies the average load demand. → Design requirements are discussed. - Abstract: A Fourier-based analysis of passive battery-ultracapacitor hybrid sources is introduced in the manuscript. The approach is first introduced for a general load, and then is followed by a study for a case of periodic pulsed current load. It is shown that the ultracapacitor branch is perceived by the battery as a low-pass filter, which absorbs the majority of the high frequency harmonic current and letting the battery to supply the average load demand in addition to the small part of dynamic current. Design requirements influence on the ultracapacitor capacitance and internal resistance choice are quantitatively discussed. The theory is enforced by simulation and experimental results, showing an excellent agreement.

  2. Evaluation of tissue doppler echocardiography and T2* magnetic resonance imaging in iron load of patients with thalassemia major.

    Science.gov (United States)

    Saravi, Mehrdad; Tamadoni, Ahmad; Jalalian, Rozita; Mahmoodi-Nesheli, Hassan; Hojati, Mosatafa; Ramezani, Saeed

    2013-01-01

    Iron-mediated cardiomyopathy is the main complication of thalassemia major (TM) patients. Therefore, there is an important clinical need in the early diagnosis and risk stratification of patients. The aim of this study was to evaluate the efficacy of tissue doppler imaging (TDI) to study cardiac iron overload in patients with TM using T2* magnetic resonance (MR) as the gold-standard non-invasive diagnostic test. A total of 100 TM patients with the mean age of 19±7 years and 100 healthy controls 18.8±7 years were evaluated. Conventional echocardiography, TDI, and cardiac MRI T2* were performed in all subjects. TDI measures included myocardial systolic (Sm), early (Em) and late (Am) diastolic velocities at basal and middle segments of septal and lateral LV wall. The TM patients were also subgrouped according to those with iron load (T2* ≤ 20 ms) and those without (T2* > 20 ms), and also severe (T2* ≤ 10 ms) versus the non-severe (T2* ≤ 10 ms). Using T2* cardiovascular MR, abnormal myocardial iron load (T2* ≤ 20 ms) was detected in 84% of the patients and among these, 50% (42/84) had severe (T2* ≤ 10 ms) iron load. The mean T2* was 11.6±8.6 ms (5-36.7). A negative linear correlation existed between transfusion period of patients and T2* levels (r = -0.53, p=0.02). The following TDI measures were lower in patients than in controls: basal septal Am (p<0.05), mid-septal Em and Am (p<0.05), basal lateral Am (p<0.05), mid-lateral LV wall Sm (p<0.05) and Am (p<0.05). Tissue doppler imaging is helpful in predicting the presence of myocardial iron load in Thalassemia patients. Therefore, it can be used for screening of thalassemia major patients.

  3. Voltage resonant inverter as a power source

    OpenAIRE

    Lupenko, Anatoliy; Stakhiv, Petro

    2014-01-01

    The operation mode of a voltage resonant inverter as a power source with variable load is analyzed. In order to reduce load power variations, an approach to development of the inverter’s load power response based on providing similar positive and negative power deviations from its nominal value has been proposed. The design procedure for resonant inverter with open loop structure as a power source has been elaborated. For a high pressure sodium lamp as a load, the power deviation of about 4% ...

  4. Modal analysis of annual runoff volume and sediment load in the Yangtze river-lake system for the period 1956-2013.

    Science.gov (United States)

    Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan

    2017-07-01

    This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.

  5. Hydro-acoustic resonance behavior in presence of a precessing vortex rope: observation of a lock-in phenomenon at part load Francis turbine operation

    International Nuclear Information System (INIS)

    Favrel, A; Landry, C; Müller, A; Yamamoto, K; Avellan, F

    2014-01-01

    Francis turbines operating at part load condition experience the development of a cavitating helical vortex rope in the draft tube cone at the runner outlet. The precession movement of this vortex rope induces local convective pressure fluctuations and a synchronous pressure pulsation acting as a forced excitation for the hydraulic system, propagating in the entire system. In the draft tube, synchronous pressure fluctuations with a frequency different to the precession frequency may also be observed in presence of cavitation. In the case of a matching between the precession frequency and the synchronous surge frequency, hydro-acoustic resonance occurs in the draft tube inducing high pressure fluctuations throughout the entire hydraulic system, causing torque and power pulsations. The risk of such resonances limits the possible extension of the Francis turbine operating range. A more precise knowledge of the phenomenon occurring at such resonance conditions and prediction capabilities of the induced pressure pulsations needs therefore to be developed. This paper proposes a detailed study of the occurrence of hydro-acoustic resonance for one particular part load operating point featuring a well-developed precessing vortex rope and corresponding to 64% of the BEP. It focuses particularly on the evolution of the local interaction between the pressure fluctuations at the precession frequency and the synchronous surge mode passing through the resonance condition. For this purpose, an experimental investigation is performed on a reduced scale model of a Francis turbine, including pressure fluctuation measurements in the draft tube and in the upstream piping system. Changing the pressure level in the draft tube, resonance occurrences are highlighted for different Froude numbers. The evolution of the hydro-acoustic response of the system suggests that a lock-in effect between the excitation frequency and the natural frequency may occur at low Froude number, inducing a hydro

  6. Formalization, equivalence and generalization of basic resonance electrical circuits

    Science.gov (United States)

    Penev, Dimitar; Arnaudov, Dimitar; Hinov, Nikolay

    2017-12-01

    In the work are presented basic resonance circuits, which are used in resonance energy converters. The following resonant circuits are considered: serial, serial with parallel load parallel capacitor, parallel and parallel with serial loaded inductance. For the circuits under consideration, expressions are generated for the frequencies of own oscillations and for the equivalence of the active power emitted in the load. Mathematical expressions are graphically constructed and verified using computer simulations. The results obtained are used in the model based design of resonant energy converters with DC or AC output. This guaranteed the output indicators of power electronic devices.

  7. Interaction between confined phonons and photons in periodic silicon resonators

    Science.gov (United States)

    Iskandar, A.; Gwiazda, A.; Younes, J.; Kazan, M.; Bruyant, A.; Tabbal, M.; Lerondel, G.

    2018-03-01

    In this paper, we demonstrate that phonons and photons of different momenta can be confined and interact with each other within the same nanostructure. The interaction between confined phonons and confined photons in silicon resonator arrays is observed by means of Raman scattering. The Raman spectra from large arrays of dielectric silicon resonators exhibited Raman enhancement accompanied with a downshift and broadening. The analysis of the Raman intensity and line shape using finite-difference time-domain simulations and a spatial correlation model demonstrated an interaction between photons confined in the resonators and phonons confined in highly defective regions prompted by the structuring process. It was shown that the Raman enhancement is due to collective lattice resonance inducing field confinement in the resonators, while the spectra downshift and broadening are signatures of the relaxation of the phonon wave vector due to phonon confinement in defective regions located in the surface layer of the Si resonators. We found that as the resonators increase in height and their shape becomes cylindrical, the amplitude of their coherent oscillation increases and hence their ability to confine the incoming electric field increases.

  8. Understanding how axial loads on the spine influence segmental biomechanics for idiopathic scoliosis patients: A magnetic resonance imaging study.

    Science.gov (United States)

    Little, J P; Pearcy, M J; Izatt, M T; Boom, K; Labrom, R D; Askin, G N; Adam, C J

    2016-02-01

    Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+2,+1,-2 relative to the apex, (pbiomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Finite gratings of many thin silver nanostrips: Optical resonances and role of periodicity

    Directory of Open Access Journals (Sweden)

    Olga V. Shapoval

    2013-04-01

    Full Text Available We study numerically the optical properties of the periodic in one dimension flat gratings made of multiple thin silver nanostrips suspended in free space. Unlike other publications, we consider the gratings that are finite however made of many strips that are well thinner than the wavelength. Our analysis is based on the combined use of two techniques earlier verified by us in the scattering by a single thin strip of conventional dielectric: the generalized (effective boundary conditions (GBCs imposed on the strip median lines and the Nystrom-type discretization of the associated singular and hyper-singular integral equations (IEs. The first point means that in the case of the metal strip thickness being only a small fraction of the free-space wavelength (typically 5 nm to 50 nm versus 300 nm to 1 μm we can neglect the internal field and consider only the field limit values. In its turn, this enables reduction of the integration contour in the associated IEs to the strip median lines. This brings significant simplification of the scattering analysis while preserving a reasonably adequate modeling. The second point guarantees fast convergence and controlled accuracy of computations that enables us to compute the gratings consisting of hundreds of thin strips, with total size in hundreds of wavelengths. Thanks to this, in the H-polarization case we demonstrate the build-up of sharp grating resonances (a.k.a. as collective or lattice resonances in the scattering and absorption cross-sections of sparse multi-strip gratings, in addition to better known localized surface-plasmon resonances on each strip. The grating modes, which are responsible for these resonances, have characteristic near-field patterns that are distinctively different from the plasmons as can be seen if the strip number gets larger. In the E-polarization case, no such resonances are detectable however the build-up of Rayleigh anomalies is observed, accompanied by the reduced

  10. Periodic modulation-based stochastic resonance algorithm applied to quantitative analysis for weak liquid chromatography-mass spectrometry signal of granisetron in plasma

    Science.gov (United States)

    Xiang, Suyun; Wang, Wei; Xiang, Bingren; Deng, Haishan; Xie, Shaofei

    2007-05-01

    The periodic modulation-based stochastic resonance algorithm (PSRA) was used to amplify and detect the weak liquid chromatography-mass spectrometry (LC-MS) signal of granisetron in plasma. In the algorithm, the stochastic resonance (SR) was achieved by introducing an external periodic force to the nonlinear system. The optimization of parameters was carried out in two steps to give attention to both the signal-to-noise ratio (S/N) and the peak shape of output signal. By applying PSRA with the optimized parameters, the signal-to-noise ratio of LC-MS peak was enhanced significantly and distorted peak shape that often appeared in the traditional stochastic resonance algorithm was corrected by the added periodic force. Using the signals enhanced by PSRA, this method extended the limit of detection (LOD) and limit of quantification (LOQ) of granisetron in plasma from 0.05 and 0.2 ng/mL, respectively, to 0.01 and 0.02 ng/mL, and exhibited good linearity, accuracy and precision, which ensure accurate determination of the target analyte.

  11. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    He Y

    2014-08-01

    Full Text Available Yingna He,1 Linhua Zhang,2 Dunwan Zhu,2 Cunxian Song2 1Laboratory of Chinese Medicine Pharmacology, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China; 2Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People’s Republic of China Abstract: Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs as a magnetic resonance imaging (MRI contrast agent and anticancer drug, mitoxantrone (Mit, were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML showed significantly increased uptake in luteinizing hormone–releasing hormone (LHRH receptor overexpressing MCF-7 (Michigan Cancer Foundation-7 breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3 cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer. Keywords: multifunctional liposome, magnetic resonance imaging, theranostic nanomedicine, mitoxantrone, gonadorelin

  12. Silica-coated Gd(DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages

    Science.gov (United States)

    Bruckman, Michael A.; Randolph, Lauren N.; Gulati, Neetu M.; Stewart, Phoebe L.; Steinmetz, Nicole F.

    2015-01-01

    The molecular imaging of in vivo targets allows non-invasive disease diagnosis. Nanoparticles offer a promising platform for molecular imaging because they can deliver large payloads of imaging reagents to the site of disease. Magnetic resonance imaging (MRI) is often preferred for clinical diagnosis because it uses non-ionizing radiation and offers both high spatial resolution and excellent penetration. We have explored the use of plant viruses as the basis of for MRI contrast reagents, specifically Tobacco mosaic virus (TMV), which can assemble to form either stiff rods or spheres. We loaded TMV particles with paramagnetic Gd ions, increasing the ionic relaxivity compared to free Gd ions. The loaded TMV particles were then coated with silica maintaining high relaxivities. Interestingly, we found that when Gd(DOTA) was loaded into the interior channel of TMV and the exterior was coated with silica, the T1 relaxivities increased by three-fold from 10.9 mM−1 s−1 to 29.7 mM−1s−1 at 60 MHz compared to uncoated Gd-loaded TMV. To test the performance of the contrast agents in a biological setting, we focused on interactions with macrophages because the active or passive targeting of immune cells is a popular strategy to investigate the cellular components involved in disease progression associated with inflammation. In vitro assays and phantom MRI experiments indicate efficient targeting and imaging of macrophages, enhanced contrast-to-noise ratio was observed by shape-engineering (SNP > TMV) and silica-coating (Si-TMV/SNP > TMV/SNP). Because plant viruses are in the food chain, antibodies may be prevalent in the population. Therefore we investigated whether the silica-coating could prevent antibody recognition; indeed our data indicate that mineralization can be used as a stealth coating option to reduce clearance. Therefore, we conclude that the silica-coated protein-based contrast agent may provide an interesting candidate material for further investigation

  13. Different Training Loads Partially Influence Physiological Responses to the Preparation Period in Basketball.

    Science.gov (United States)

    Ferioli, Davide; Bosio, Andrea; La Torre, Antonio; Carlomagno, Domenico; Connolly, Darragh R; Rampinini, Ermanno

    2018-03-01

    Ferioli, D, Bosio, A, La Torre, A, Carlomagno, D, Connolly, DR, and Rampinini, E. Different training loads partially influence physiological responses to preparation period in basketball. J Strength Cond Res 32(3): 790-797, 2018-The aim of this study was to compare the session rating of perceived exertion training load (sRPE-TL), training volume (TV), and the changes in physical fitness between professional (n = 14) and semiprofessional (n = 18) basketball players during the preparation period. Furthermore, relationships between sRPE-TL and TV with changes in physical fitness level were investigated. The players performed the Yo-Yo intermittent recovery test-level 1 (Yo-Yo IR1) before and after the preparation period. In addition, physiological responses to a standardized 6-minute continuous running test (Mognoni's test) and to a standardized 5-minute high-intensity intermittent running test (HIT) were measured. Session rating of perceived exertion-TL and TV were greater for professional (5,241 ± 1787 AU; 914 ± 122 minutes) compared with semiprofessional players (2,408 ± 487 AU; 583 ± 65 minutes). Despite these differences, Yo-Yo IR1 performance improvements (∼30%) and physiological adaptations to the Mognoni's test were similar between the 2 groups. Furthermore, physiological adaptations to HIT were slightly greater for professional compared with semiprofessional players; however, the magnitude of these effects was only small/moderate. No clear relationships were found between sRPE-TL and changes in Yo-Yo IR1 performance and Mognoni's test (rs ± 90% confidence interval [CI]: Yo-Yo IR1, 0.18 ± 0.30; Mognoni's test, -0.14 ± 0.29). Only moderate relationships were found between sRPE-TL and changes in HIT (rs ± 90% CI: [La], -0.48 ± 0.23; [H], -0.42 ± 0.25). These results raise doubts on the effectiveness of using high sRPE-TL and TV during the preparation period to improve the physical fitness level of players. The Yo-Yo IR1 seems to be sensitive to

  14. Multilayered piezomagnetic/piezoelectric composites with periodic interfacial cracks subject to in-plane loading

    International Nuclear Information System (INIS)

    Tian, Wenxiang; Zhong, Zheng; Li, Yaochen

    2016-01-01

    A two-dimensional fracture problem of periodically distributed interfacial cracks in multilayered piezomagnetic/piezoelectric composites is studied under in-plane magnetic or electric loading. The magnetic permittivity of the piezoelectric material and the dielectric constant of the piezomagnetic material are considered. A system of singular integral equations of the second kind with a Cauchy kernel is obtained by means of Fourier transform and further solved by using Jacobi polynomials. The problem is solved in the real domain by constructing real fundamental solutions. The primary interfacial fracture mechanic parameters, such as the stress intensity factors (SIFs), the electric displacement intensity factors (EDIFs), the magnetic induction intensity factors (MIIFs) and the energy release rates (ERRs) are then obtained. It is found that a magnetic or electric loading normal to the crack surfaces can lead to a mixture of mode I and mode II type stress singularities at the crack tips. Numerical results show that increasing the thickness of the active layer will favor the crack initiation. Inversely, increasing the thickness of the passive layer will retard the crack initiation. Furthermore, the results indicate that the crack initiation can be inhibited by adjusting the direction of the applied magnetic or electric loading. (paper)

  15. Acoustically induced transparency using Fano resonant periodic arrays

    KAUST Repository

    El-Amin, Mohamed

    2015-10-22

    A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

  16. Acoustically induced transparency using Fano resonant periodic arrays

    KAUST Repository

    El-Amin, Mohamed; Elayouch, A.; Farhat, Mohamed; Addouche, M.; Khelif, A.; Bagci, Hakan

    2015-01-01

    A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

  17. Resonant dynamics of gravitationally bound pair of binaries: the case of 1:1 resonance

    Science.gov (United States)

    Breiter, Slawomir; Vokrouhlický, David

    2018-04-01

    The work presents a study of the 1:1 resonance case in a hierarchical quadruple stellar system of the 2+2 type. The resonance appears if orbital periods of both binaries are approximately equal. It is assumed that both periods are significantly shorter than the period of principal orbit of one binary with respect to the other. In these circumstances, the problem can be treated as three independent Kepler problems perturbed by mutual gravitational interactions. By means of canonical perturbation methods, the planar problem is reduced to a secular system with 1 degree of freedom involving a resonance angle (the difference of mean longitudes of the binaries) and its conjugate momentum (involving the ratio of orbital period in one binary to the period of principal orbit). The resonant model is supplemented with short periodic perturbations expressions, and verified by the comparison with numerical integration of the original equations of motion. Estimates of the binaries periods variations indicate that the effect is rather weak, but possibly detectible if it occurs in a moderately compact system. However, the analysis of resonance capture scenarios implies that the 1:1 resonance should be exceptional amongst the 2+2 quadruples.

  18. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    Science.gov (United States)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  19. Experimental Investigation of 2:1 and 3:1 Internal Resonances in Nonlinear MEMS Arch Resonators

    KAUST Repository

    Ramini, Abdallah; Hajjaj, Amal Z.; Younis, Mohammad I.

    2016-01-01

    We demonstrate experimentally internal resonances in MEMS resonators. The investigation is conducted on in-plane MEMS arch resonators fabricated with a highly doped silicon. The resonators are actuated electrostatically and their stiffness are tuned by electrothermal loading by passing an electrical current though the microstructures. We show that through this tuning, the ratio of the various resonance frequencies can be varied and set at certain ratios. Particularly, we adjust the resonance frequencies of two different vibrational modes to 2:1 and 3:1. Finally, we validate the internal resonances at these ratios through frequency-response curves and FFTs.

  20. Experimental Investigation of 2:1 and 3:1 Internal Resonances in Nonlinear MEMS Arch Resonators

    KAUST Repository

    Ramini, Abdallah

    2016-12-05

    We demonstrate experimentally internal resonances in MEMS resonators. The investigation is conducted on in-plane MEMS arch resonators fabricated with a highly doped silicon. The resonators are actuated electrostatically and their stiffness are tuned by electrothermal loading by passing an electrical current though the microstructures. We show that through this tuning, the ratio of the various resonance frequencies can be varied and set at certain ratios. Particularly, we adjust the resonance frequencies of two different vibrational modes to 2:1 and 3:1. Finally, we validate the internal resonances at these ratios through frequency-response curves and FFTs.

  1. A 10-day vacancy period after cleaning and disinfection has no effect on the bacterial load in pig nursery units.

    Science.gov (United States)

    Luyckx, K; Millet, S; Van Weyenberg, S; Herman, L; Heyndrickx, M; Dewulf, J; De Reu, K

    2016-10-19

    Biosecurity measures such as cleaning, disinfection and a vacancy period between production cycles on pig farms are essential to prevent disease outbreaks. No studies have tested the effect of a longer vacancy period on bacterial load in nursery units. The present study evaluated the effect of a 10-day vacancy period in pig nursery units on total aerobic flora, Enterococcus spp., Escherichia coli, faecal coliforms and methicillin resistant Staphylococcus aureus (MRSA). Three vacancy periods of 10 days were monitored, each time applied in 3 units. The microbiological load was measured before disinfection and at 1, 4, 7 and 10 days after disinfection. No significant decrease or increase in E. coli, faecal coliforms, MRSA and Enterococcus spp. was noticed. Total aerobic flora counts were the lowest on day 4 after disinfection (i.e. 4.07 log CFU/625 cm 2 ) (P disinfection, drinking nipples were still mostly contaminated with total aerobic flora (i.e. 5.32 log CFU/625 cm 2 ) and Enterococcus spp. (i.e. 95 % of the samples were positive) (P disinfection with no extra biosecurity measures has no impact on the environmental load of total aerobic flora, E. coli, faecal coliforms, MRSA and Enterococcus spp..

  2. Intercomparison of Methods for Determination of Resonant Frequency Shift of a Microstrip Patch Antenna Loaded with Hevea Rubber Latex

    Directory of Open Access Journals (Sweden)

    Nor Zakiah Yahaya

    2014-01-01

    Full Text Available This paper presents an intercomparison between the finite element method, method of moment, and the variational method to determine the effect of moisture content on the resonant frequency shift of a microstrip patch loaded with wet material. The samples selected for this study were Hevea rubber latex with different percentages of moisture content from 35% to 85%. The results were compared with the measurement data in the frequency range between 1 GHz and 4 GHz. It was found that the finite element method is the most accurate among all the three computational techniques with 0.1 mean error when compared to the measured resonant frequency shift. A calibration equation was obtained to predict moisture content from the measured frequency shift with an accuracy of 2%.

  3. Oscillations of end loaded cantilever beams

    International Nuclear Information System (INIS)

    Macho-Stadler, E; Elejalde-García, M J; Llanos-Vázquez, R

    2015-01-01

    This article presents several simple experiments based on changing transverse vibration frequencies in a cantilever beam, when acted on by an external attached mass load at the free end. By using a mechanical wave driver, available in introductory undergraduate laboratories, we provide various experimental results for end loaded cantilever beams that fit reasonably well into a linear equation. The behaviour of the cantilever beam’s weak-damping resonance response is studied for the case of metal resonance strips. As the mass load increases, a more pronounced decrease occurs in the fundamental frequency of beam vibration. It is important to note that cantilever construction is often used in architectural design and engineering construction projects but current analysis also predicts the influence of mass load on the sound generated by musical free reeds with boundary conditions similar to a cantilever beam. (paper)

  4. Oscillations of end loaded cantilever beams

    Science.gov (United States)

    Macho-Stadler, E.; Elejalde-García, M. J.; Llanos-Vázquez, R.

    2015-09-01

    This article presents several simple experiments based on changing transverse vibration frequencies in a cantilever beam, when acted on by an external attached mass load at the free end. By using a mechanical wave driver, available in introductory undergraduate laboratories, we provide various experimental results for end loaded cantilever beams that fit reasonably well into a linear equation. The behaviour of the cantilever beam’s weak-damping resonance response is studied for the case of metal resonance strips. As the mass load increases, a more pronounced decrease occurs in the fundamental frequency of beam vibration. It is important to note that cantilever construction is often used in architectural design and engineering construction projects but current analysis also predicts the influence of mass load on the sound generated by musical free reeds with boundary conditions similar to a cantilever beam.

  5. Resonance spiking by periodic loss in the double-sided liquid cooling disk oscillator

    Science.gov (United States)

    Nie, Rongzhi; She, Jiangbo; Li, Dongdong; Li, Fuli; Peng, Bo

    2017-03-01

    A double-sided liquid cooling Nd:YAG disk oscillator working at a pump repetition rate of 20 Hz is demonstrated. The output energy of 376 mJ is realized, corresponding to the optical-optical efficiency of 12.8% and the slope efficiency of 14%. The pump pulse width is 300 µs and the laser pulse width is 260 µs. Instead of being a damped signal, the output of laser comprises undamped spikes. A periodic intra-cavity loss was found by numerical analysis, which has a frequency component near the eigen frequency of the relaxation oscillation. Resonance effect will induce amplified spikes even though the loss fluctuates in a small range. The Shark-Hartmann sensor was used to investigate the wavefront aberration induced by turbulent flow and temperature gradient. According to the wavefront and fluid mechanics analysis, it is considered that the periodic intra-cavity loss can be attributed to turbulent flow and temperature gradient.

  6. Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films

    Science.gov (United States)

    Matsui, Tatsunosuke; Vardeny, Z. Valy; Agrawal, Amit; Nahata, Ajay; Menon, Reghu

    2006-02-01

    We observed resonantly-enhanced terahertz transmission through two-dimensional (2D) periodic arrays of subwavelength apertures with various periodicities fabricated on metallic organic conducting polymer films of polypyrrole heavily doped with PF6 molecules [PPy(PF6)]. The "anomalous transmission" spectra are in good agreement with a model involving surface plasmon polariton excitations on the film surfaces. We also found that the `anomalous transmission' peaks are broader in the exotic metallic PPy (PF6) films compared to those formed in 2D aperture array in regular metallic films such as silver, showing that the surface plasmon polaritons on the PPy (PF6) film surfaces have higher attenuation.

  7. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    International Nuclear Information System (INIS)

    Kashan, M A M; Kalavally, V; Ramakrishnan, N; Lee, H W

    2016-01-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface. (paper)

  8. Reconfigurable Resonant Regulating Rectifier With Primary Equalization for Extended Coupling- and Loading-Range in Bio-Implant Wireless Power Transfer.

    Science.gov (United States)

    Li, Xing; Meng, Xiaodong; Tsui, Chi-Ying; Ki, Wing-Hung

    2015-12-01

    Wireless power transfer using reconfigurable resonant regulating (R(3)) rectification suffers from limited range in accommodating varying coupling and loading conditions. A primary-assisted regulation principle is proposed to mitigate these limitations, of which the amplitude of the rectifier input voltage on the secondary side is regulated by accordingly adjusting the voltage amplitude Veq on the primary side. A novel current-sensing method and calibration scheme track Veq on the primary side. A ramp generator simultaneously provides three clock signals for different modules. Both the primary equalizer and the R(3) rectifier are implemented as custom integrated circuits fabricated in a 0.35 μm CMOS process, with the global control implemented in FPGA. Measurements show that with the primary equalizer, the workable coupling and loading ranges are extended by 250% at 120 mW load and 300% at 1.2 cm coil distance compared to the same system without the primary equalizer. A maximum rectifier efficiency of 92.5% and a total system efficiency of 62.4% are demonstrated.

  9. Next Day Building Load Predictions based on Limited Input Features Using an On-Line Laterally Primed Adaptive Resonance Theory Artificial Neural Network.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Grid Integration Group; Robinson, Matt [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Mechanical Engineering; Yasaei, Yasser [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering; Caudell, Thomas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering; Martinez-Ramon, Manel [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering; Mammoli, Andrea [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Mechanical Engineering

    2016-07-01

    Optimal integration of thermal energy storage within commercial building applications requires accurate load predictions. Several methods exist that provide an estimate of a buildings future needs. Methods include component-based models and data-driven algorithms. This work implemented a previously untested algorithm for this application that is called a Laterally Primed Adaptive Resonance Theory (LAPART) artificial neural network (ANN). The LAPART algorithm provided accurate results over a two month period where minimal historical data and a small amount of input types were available. These results are significant, because common practice has often overlooked the implementation of an ANN. ANN have often been perceived to be too complex and require large amounts of data to provide accurate results. The LAPART neural network was implemented in an on-line learning manner. On-line learning refers to the continuous updating of training data as time occurs. For this experiment, training began with a singe day and grew to two months of data. This approach provides a platform for immediate implementation that requires minimal time and effort. The results from the LAPART algorithm were compared with statistical regression and a component-based model. The comparison was based on the predictions linear relationship with the measured data, mean squared error, mean bias error, and cost savings achieved by the respective prediction techniques. The results show that the LAPART algorithm provided a reliable and cost effective means to predict the building load for the next day.

  10. Highly Tunable Electrothermally Actuated Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.; Ramini, Abdallah; Alcheikh, Nouha; Younis, Mohammad I.

    2016-01-01

    that after some electro-thermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches

  11. Stochastic resonance on Newman-Watts networks of Hodgkin-Huxley neurons with local periodic driving

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, Mahmut [Zonguldak Karaelmas University, Engineering Faculty, Department of Electrical and Electronics Engineering, 67100 Zonguldak (Turkey)], E-mail: mahmutozer2002@yahoo.com; Perc, Matjaz [University of Maribor, Faculty of Natural Sciences and Mathematics, Department of Physics, Koroska cesta 160, SI-2000 Maribor (Slovenia); Uzuntarla, Muhammet [Zonguldak Karaelmas University, Engineering Faculty, Department of Electrical and Electronics Engineering, 67100 Zonguldak (Turkey)

    2009-03-02

    We study the phenomenon of stochastic resonance on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise via voltage-gated ion channels embedded in neuronal membranes. Importantly thereby, the subthreshold periodic driving is introduced to a single neuron of the network, thus acting as a pacemaker trying to impose its rhythm on the whole ensemble. We show that there exists an optimal intensity of intrinsic ion channel noise by which the outreach of the pacemaker extends optimally across the whole network. This stochastic resonance phenomenon can be further amplified via fine-tuning of the small-world network structure, and depends significantly also on the coupling strength among neurons and the driving frequency of the pacemaker. In particular, we demonstrate that the noise-induced transmission of weak localized rhythmic activity peaks when the pacemaker frequency matches the intrinsic frequency of subthreshold oscillations. The implications of our findings for weak signal detection and information propagation across neural networks are discussed.

  12. Operation Analysis of the Series-Parallel Resonant Converter Working above Resonance Frequency

    Directory of Open Access Journals (Sweden)

    Peter Dzurko

    2006-01-01

    Full Text Available The present article deals with theoretical analysis of operation of a series-parallel converter working above resonance frequency. Derived are principal equations for individual operation intervals. Based on these made out are waveforms of individual quantities during both the inverter operation at load and no-load operation. The waveforms may be utilised at designing the inverter individual parts.

  13. Periodic precursors of nonlinear dynamical transitions

    International Nuclear Information System (INIS)

    Jiang Yu; Dong Shihai; Lozada-Cassou, M.

    2004-01-01

    We study the resonant response of a nonlinear system to external periodic perturbations. We show by numerical simulation that the periodic resonance curve may anticipate the dynamical instability of the unperturbed nonlinear periodic system, at parameter values far away from the bifurcation points. In the presence of noise, the buried intrinsic periodic dynamics can be picked out by analyzing the system's response to periodic modulation of appropriate intensity

  14. Magnetic resonance imaging apparatus

    International Nuclear Information System (INIS)

    Ehnholm, G.J.

    1991-01-01

    This patent describes an electron spin resonance enhanced magnetic resonance (MR) imaging (ESREMRI) apparatus able to generate a primary magnetic field during periods of nuclear spin transition excitation and magnetic resonance signal detection. This allows the generation of ESREMRI images of a subject. A primary magnetic field of a second and higher value generated during periods of nuclear spin transition excitation and magnetic resonance signal detection can be used to generate conventional MR images of a subject. The ESREMRI and native MR images so generated may be combined, (or superimposed). (author)

  15. Nonlinear effects in varactor-tuned resonators.

    Science.gov (United States)

    Everard, Jeremy; Zhou, Liang

    2006-05-01

    This paper describes the effects of RF power level on the performance of varactor-tuned resonator circuits. A variety of topologies are considered, including series and parallel resonators operating in both unbalanced and balanced modes. As these resonators were designed to produce oscillators with minimum phase noise, the initial small signal insertion loss was set to 6 dB and, hence, QL/Q0 = 1/2. To enable accurate analysis and simulation, S parameter and PSPICE models for the varactors were optimized and developed. It is shown that these resonators start to demonstrate nonlinear operation at very low power levels demonstrating saturation and lowering of the resonant frequency. On occasion squegging is observed for modified bias conditions. The nonlinear effects are dependent on the unloaded Q (Q0), the ratio of loaded to unloaded Q (QL/Q0), the bias voltage, and circuit configurations with typical nonlinear effects occurring at -8 dBm in a circuit with a loaded Q of 63 and a varactor bias voltage of 3 V. Analysis, simulation, and measurements that show close correlation are presented.

  16. Fast response double series resonant high-voltage DC-DC converter

    International Nuclear Information System (INIS)

    Lee, S S; Iqbal, S; Kamarol, M

    2012-01-01

    In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.

  17. The influence of the static wind load concept on the material requirements for reinforced-concrete natural-draught cooling towers

    International Nuclear Information System (INIS)

    Harnach, R.

    1977-01-01

    The natural wind is the decisive risk factor in natural-draught cooling towers; therefore, the establishment of an assumed velocity is indispensable for the safety and reliability of the construction. In the framework of a statistical wind concept, static substitution loads for the assumed dynamic wind pressure have been determined, also including dynamic wind effects and the resonance response of the structure. On this basis, it has been studied how wind loads with different periodicity affect the material requirements of reinforced-concrete natural-draught cooling towers. It is found that the additional steel requirements, related to the total building cost, remain within acceptable limits even for extreme wind loads. (orig.) [de

  18. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy.

    Science.gov (United States)

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone-releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer.

  19. A fully packaged micromachined single crystalline resonant force sensor

    Energy Technology Data Exchange (ETDEWEB)

    Cavalloni, C.; Gnielka, M.; Berg, J. von [Kistler Instrumente AG, Winterthur (Switzerland); Haueis, M.; Dual, J. [ETH Zuerich, Inst. of Mechanical Systems, Zuerich (Switzerland); Buser, R. [Interstate Univ. of Applied Science Buchs, Buchs (Switzerland)

    2001-07-01

    In this work a fully packaged resonant force sensor for static load measurements is presented. The working principle is based on the shift of the resonance frequency in response to the applied load. The heart of the sensor, the resonant structure, is fabricated by micromachining using single crystalline silicon. To avoid creep and hysteresis and to minimize temperature induced stress the resonant structure is encapsulated using an all-in-silicon solution. This means that the load coupling, the excitation of the microresonator and the detection of the oscillation signal are integrated in only one single crystalline silicon chip. The chip is packaged into a specially designed housing made of steel which has been designed with respect to application in harsh environments. The unloaded sensor has an initial frequency of about 22,5 kHz. The sensitivity amounts to 26 Hz/N with a linearity error significantly less than 0,5%FSO. (orig.)

  20. Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials

    Science.gov (United States)

    Bedra, Sami; Bedra, Randa; Benkouda, Siham; Fortaki, Tarek

    2017-12-01

    In this paper, the effects of both anisotropies in the substrate and superstrate loading on the resonant frequency and bandwidth of high-Tc superconducting circular microstrip patch in a substrate-superstrate configuration are investigated. A rigorous analysis is performed using a dyadic Galerkin's method in the vector Hankel transform domain. Galerkin's procedure is employed in the spectral domain where the TM and TE modes of the cylindrical cavity with magnetic side walls are used in the expansion of the disk current. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. London's equations and the two-fluid model of Gorter and Casimir are used in the calculation of the complex surface impedance of the superconducting circular disc. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate-superstrate materials. Good agreement is found among all sets of results. The numerical results obtained show that important errors can be made in the computation of the resonant frequencies and bandwidths of the superconducting resonators when substrate dielectric anisotropy, and/or superstrate anisotropy are ignored. Other theoretical results obtained show that the superconducting circular microstrip patch on anisotropic substrate-superstrate with properly selected permittivity values along the optical and the non-optical axes combined with optimally chosen structural parameters is more advantageous than the one on isotropic substrate-superstrate by exhibiting wider bandwidth characteristic.

  1. Multicoil resonance-based parallel array for smart wireless power delivery.

    Science.gov (United States)

    Mirbozorgi, S A; Sawan, M; Gosselin, B

    2013-01-01

    This paper presents a novel resonance-based multicoil structure as a smart power surface to wirelessly power up apparatus like mobile, animal headstage, implanted devices, etc. The proposed powering system is based on a 4-coil resonance-based inductive link, the resonance coil of which is formed by an array of several paralleled coils as a smart power transmitter. The power transmitter employs simple circuit connections and includes only one power driver circuit per multicoil resonance-based array, which enables higher power transfer efficiency and power delivery to the load. The power transmitted by the driver circuit is proportional to the load seen by the individual coil in the array. Thus, the transmitted power scales with respect to the load of the electric/electronic system to power up, and does not divide equally over every parallel coils that form the array. Instead, only the loaded coils of the parallel array transmit significant part of total transmitted power to the receiver. Such adaptive behavior enables superior power, size and cost efficiency then other solutions since it does not need to use complex detection circuitry to find the location of the load. The performance of the proposed structure is verified by measurement results. Natural load detection and covering 4 times bigger area than conventional topologies with a power transfer efficiency of 55% are the novelties of presented paper.

  2. Detection of Periodic Beacon Loads in Electrical Distribution Substation Data

    Energy Technology Data Exchange (ETDEWEB)

    Hammerstrom, Donald J.; Guttromson, Ross T.; Lu, Ning; Boyd, Paul A.; Trudnowski, Daniel; Chassin, David P.; Bonebrake, Christopher A.; Shaw, James M.

    2006-05-31

    This research explores methods for identifying a whether a load is sending a signal to the utility SCADA system. Such a system can identify whether various loads are signialing using existing SCADA infrastructure, that is, without added, high cost communications infrastructure.

  3. Dynamic adjustments in prefrontal, hippocampal, and inferior temporal interactions with increasing visual working memory load.

    Science.gov (United States)

    Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark

    2008-07-01

    The maintenance of visual stimuli across a delay interval in working memory tasks is thought to involve reverberant neural communication between the prefrontal cortex and posterior visual association areas. Recent studies suggest that the hippocampus might also contribute to this retention process, presumably via reciprocal interactions with visual regions. To characterize the nature of these interactions, we performed functional connectivity analysis on an event-related functional magnetic resonance imaging data set in which participants performed a delayed face recognition task. As the number of faces that participants were required to remember was parametrically increased, the right inferior frontal gyrus (IFG) showed a linearly decreasing degree of functional connectivity with the fusiform face area (FFA) during the delay period. In contrast, the hippocampus linearly increased its delay period connectivity with both the FFA and the IFG as the mnemonic load increased. Moreover, the degree to which participants' FFA showed a load-dependent increase in its connectivity with the hippocampus predicted the degree to which its connectivity with the IFG decreased with load. Thus, these neural circuits may dynamically trade off to accommodate the particular mnemonic demands of the task, with IFG-FFA interactions mediating maintenance at lower loads and hippocampal interactions supporting retention at higher loads.

  4. Rest period duration of the coronary arteries: Implications for magnetic resonance coronary angiography

    International Nuclear Information System (INIS)

    Shechter, Guy; Resar, Jon R.; McVeigh, Elliot R.

    2005-01-01

    Magnetic resonance (MR) and computed tomography coronary imaging is susceptible to artifacts caused by motion of the heart. The presence of rest periods during the cardiac and respiratory cycles suggests that images free of motion artifacts could be acquired. In this paper, we studied the rest period (RP) duration of the coronary arteries during a cardiac contraction and a tidal respiratory cycle. We also studied whether three MR motion correction methods could be used to increase the respiratory RP duration. Free breathing x-ray coronary angiograms were acquired in ten patients. The three-dimensional (3D) structure of the coronary arteries was reconstructed from a biplane acquisition using stereo reconstruction methods. The 3D motion of the arterial model was then recovered using an automatic motion tracking algorithm. The motion field was then decomposed into separate cardiac and respiratory components using a cardiac respiratory parametric model. For the proximal-to-middle segments of the right coronary artery (RCA), a cardiac RP (<1 mm 3D displacement) of 76±34 ms was measured at end systole (ES), and 65±42 ms in mid-diastole (MD). The cardiac RP was 80±25 ms at ES and 112±42 ms at MD for the proximal 5 cm of the left coronary tree. At end expiration, the respiratory RP (in percent of the respiratory period) was 26±8% for the RCA and 27±17% for the left coronary tree. Left coronary respiratory RP (<0.5 mm 3D displacement) increased with translation (32% of the respiratory period), rigid body (51%), and affine (79%) motion correction. The RCA respiratory RP using translational (27%) and rigid body (33%) motion correction were not statistically different from each other. Measurements of the cardiac and respiratory rest periods will improve our understanding of the temporal and spatial resolution constraints for coronary imaging

  5. Dielectrically-Loaded Cylindrical Resonator-Based Wireless Passive High-Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Jijun Xiong

    2016-12-01

    Full Text Available The temperature sensor presented in this paper is based on a microwave dielectric resonator, which uses alumina ceramic as a substrate to survive in harsh environments. The resonant frequency of the resonator is determined by the relative permittivity of the alumina ceramic, which monotonically changes with temperature. A rectangular aperture etched on the surface of the resonator works as both an incentive and a coupling device. A broadband slot antenna fed by a coplanar waveguide is utilized as an interrogation antenna to wirelessly detect the sensor signal using a radio-frequency backscattering technique. Theoretical analysis, software simulation, and experiments verified the feasibility of this temperature-sensing system. The sensor was tested in a metal-enclosed environment, which severely interferes with the extraction of the sensor signal. Therefore, frequency-domain compensation was introduced to filter the background noise and improve the signal-to-noise ratio of the sensor signal. The extracted peak frequency was found to monotonically shift from 2.441 to 2.291 GHz when the temperature was varied from 27 to 800 °C, leading to an average absolute sensitivity of 0.19 MHz/°C.

  6. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging

    Directory of Open Access Journals (Sweden)

    Xue S

    2014-05-01

    Full Text Available Sihan Xue,1 Yao Wang,1 Mengxing Wang,2 Lu Zhang,1 Xiaoxia Du,2 Hongchen Gu,1 Chunfu Zhang1,31School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 2Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, 3State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: In this study, a novel magnetic resonance imaging (MRI/computed tomography (CT/fluorescence trifunctional probe was prepared by loading iodinated oil into fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (i-fmSiO4@SPIONs. Fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs were prepared by growing fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles (SPIONs directed by a cetyltrimethylammonium bromide template. As prepared, fmSiO4@SPIONs had a uniform size, a large surface area, and a large pore volume, which demonstrated high efficiency for iodinated oil loading. Iodinated oil loading did not change the sizes of fmSiO4@SPIONs, but they reduced the MRI T2 relaxivity (r2 markedly. I-fmSiO4@SPIONs were stable in their physical condition and did not demonstrate cytotoxic effects under the conditions investigated. In vitro studies indicated that the contrast enhancement of MRI and CT, and the fluorescence signal intensity of i-fmSiO4@SPION aqueous suspensions and macrophages, were intensified with increased i-fmSiO4@SPION concentrations in suspension and cell culture media. Moreover, for the in vivo study, the accumulation of i-fmSiO4@SPIONs in the liver could also be detected by MRI, CT, and fluorescence imaging. Our study demonstrated that i-fmSiO4@SPIONs had great potential for MRI/C/fluorescence trimodal imaging.Keywords: multifunctional probe, SPIONs, mesoporous silica

  7. Experiments on shear Alfven resonance in a tokamak

    International Nuclear Information System (INIS)

    Prager, S.C.; Witherspoon, F.D.; Kieras, C.E.; Kortbawi, D.; Sprott, J.C.; Tataronis, J.A.

    1983-02-01

    Detailed observations have been made of the spatial structure of the wave magnetic field. Measurements of the resonance properties such as radial location, wave polarization, resonance width and risetime are all consistent with shear Alfven resonance theory, although several measurements require improvement in resolution. The resonance location agrees with prediction of a fully two-dimensional ideal MHD theory for the Tokapole II device. To complete the identification a frequency scan and careful comparison of the observed resonance with antenna loading will be undertaken

  8. Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress

    Directory of Open Access Journals (Sweden)

    Hilmi Volkan Demir

    2009-11-01

    Full Text Available We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity.

  9. Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case

    Science.gov (United States)

    Cheng, Jing; Chen, Xi; Shan, Chuan-Jia

    2018-03-01

    We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0

  10. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  11. Resonance phenomenon in classical cepheids

    International Nuclear Information System (INIS)

    Takeuti, Mine; Aikawa, Toshiki

    1981-01-01

    To investigate resonance phenomenon in classical cepheids, the non-linear radial oscillation of stars is studied based on the assumption that the non-adiabatic perturbation is expressed in terms of van der Pol's type damping. Two- and three-wave resonance in this system is applied to classical cepheids to describe their bump and double-mode behavior. The phase of bump and the depression of amplitude are explained for bump cepheids. The double-periodicity is shown by the enhancement of the third overtone in three-wave resonance. Non-linear effect on resonant period is also discussed briefly. (author)

  12. Study on frequency characteristics of wireless power transmission system based on magnetic coupling resonance

    Science.gov (United States)

    Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.

    2017-11-01

    In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.

  13. The effects of initial rise and axial loads on MEMS arches

    KAUST Repository

    Tella, Sherif Adekunle

    2017-04-07

    Arch microbeams have been utilized and proposed for many uses over the past few years due to their large tunability and bistability. However, recent experimental data have shown different mechanical behavior of arches when subjected to axial loads. This paper aims to investigate in depth the influence of the competing effects of initial rise and axial loads on the mechanical behavior of micromachined arches; mainly their static deflection and resonant frequencies. Based on analytical solutions, the static response and eigenvalue problems are analyzed for various values of initial rises and axial loads. Universal curves showing the variation of the first three resonance frequencies of the arch are generated for various values of initial rise under both tensile and compressive axial loads. This study shows that increasing the tensile or compressive axial loads for different values of initial rise may lead to either increase in the stiffness of the beam or initial decrease in the stiffness, which later increases as the axial load is increased depending on the dominant effect of the initial rise of the arch and the axial load. The obtained universal curves represent useful design tools to predict the tunability of arches under axial loads for various values of initial rises. The use of the universal curves is demonstrated with an experimental case study. Analytical formulation is developed to predict the point of minimum where the trend of the resonance frequency versus axial loads changes qualitatively due to the competing effects of axial loads and initial curvature.

  14. Chaos to periodicity and periodicity to chaos by periodic perturbations in the Belousov-Zhabotinsky reaction

    International Nuclear Information System (INIS)

    Li Qianshu; Zhu Rui

    2004-01-01

    A three-variable model of the Belousov-Zhabotinsky reaction system subject to external sinusoidal perturbations is investigated by means of frequency spectrum analysis. In the period-1 window of the model, the transitions from periodicity to chaos are observed; in the chaotic window, the transitions from chaos to periodicity are found. The former might be understood by the circle map of two coupled oscillators, and the latter is partly explained by the resonance between the main frequency of the chaos and the frequency of the external periodic perturbations

  15. SIMULATED CHARACTERISTICS OF PATCH ANTENNA LOADED WITH SRRs

    OpenAIRE

    Debasis Mishra; G. Arun Kumar; D. R. Poddar; R. K. Mishra

    2010-01-01

    This article investigates, from electromagnetic simulation, the effects on gain and efficiency of a patch antenna loaded with split ring resonators. It is observed that it leads to lowering of resonant frequency; some mismatch resulting in a slight degradation of the impedance bandwidth and improvement of gain and efficiency.

  16. Early loading of plalatal implants (ortho-type II a prospective multicenter randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Gedrange Tomasz

    2007-09-01

    Full Text Available Abstract Background In orthodontic treatment, anchorage control is a fundamental aspect. Usually conventional mechanism for orthodontic anchorage control can be either extraoral or intraoral that is headgear or intermaxillary elastics. Their use are combined with various side effects such as tipping of occlusal plane or undesirable movements of teeth. Especially in cases, where key-teeth are missing, conventional anchorage defined as tooth-borne anchorage will meet limitations. Therefore, the use of endosseous implants for anchorage purposes are increasingly used to achieve positional stability and maximum anchorage. Methods/Design The intended study is designed as a prospective, multicenter randomized controlled trial (RCT, comparing and contrasting the effect of early loading of palatal implant therapy versus implant loading after 12 weeks post implantation using the new ortho-implant type II anchor system device (Orthosystem Straumann, Basel, Switzerland. 124 participants, mainly adult males or females, whose diagnoses require temporary stationary implant-based anchorage treatment will be randomized 1:1 to one of two treatment groups: group 1 will receive a loading of implant standard therapy after a healing period of 12 week (gold standard, whereas group 2 will receive an early loading of orthodontic implants within 1 week after implant insertion. Participants will be at least followed for 12 months after implant placement. The primary endpoint is to investigate the behavior of early loaded palatal implants in order to find out if shorter healing periods might be justified to accelerate active orthodontic treatment. Secondary outcomes will focus e.g. on achievement of orthodontic treatment goals and quantity of direct implant-bone interface of removed bone specimens. As tertiary objective, a histologic and microtomography evaluation of all retrieved implants will be performed to obtain data on the performance of the SLA surface in human bone

  17. Influence of edge conditions on material ejection from periodic grooves in laser shock-loaded tin

    Energy Technology Data Exchange (ETDEWEB)

    Rességuier, T. de; Roland, C. [Institut PPRIME, UPR 3346, CNRS, ENSMA, Université de Poitiers, 1 ave. Clément Ader, 86961 Futuroscope Cedex (France); Prudhomme, G.; Lescoute, E.; Mercier, P. [CEA, DAM, DIF, 91297 Arpajon (France); Loison, D. [Institut de Physique de Rennes, CNRS, Université de Rennes 1, 35042 Rennes (France)

    2016-05-14

    In a material subjected to high dynamic compression, the breakout of a shock wave at a rough free surface can lead to the ejection of high velocity debris. Anticipating the ballistic properties of such debris is a key safety issue in many applications involving shock loading, including pyrotechnics and inertial confinement fusion experiments. In this paper, we use laser driven shocks to investigate particle ejection from calibrated grooves of micrometric dimensions and approximately sinusoidal profile in tin samples, with various boundary conditions at the groove edges, including single groove and periodic patterns. Fast transverse shadowgraphy provides ejection velocities after shock breakout. They are found to depend not only on the groove depth and wavelength, as predicted theoretically and already observed in the past, but also, unexpectedly, on the edge conditions, with a jet tip velocity significantly lower in the case of a single groove than behind a periodic pattern.

  18. Development of 600 kV triple resonance pulse transformer.

    Science.gov (United States)

    Li, Mingjia; Zhang, Faqiang; Liang, Chuan; Xu, Zhou

    2015-06-01

    In this paper, a triple-resonance pulse transformer based on an air-core transformer is introduced. The voltage across the high-voltage winding of the air-core transformer is significantly less than the output voltage; instead, the full output voltage appears across the tuning inductor. The maximum ratio of peak load voltage to peak transformer voltage is 2.77 in theory. By analyzing pulse transformer's lossless circuit, the analytical expression for the output voltage and the characteristic equation of the triple-resonance circuit are presented. Design method for the triple-resonance pulse transformer (iterated simulation method) is presented, and a triple-resonance pulse transformer is developed based on the existing air-core transformer. The experimental results indicate that the maximum ratio of peak voltage across the load to peak voltage across the high-voltage winding of the air-core transformer is approximately 2.0 and the peak output voltage of the triple-resonance pulse transformer is approximately 600 kV.

  19. Resonant power processors. II - Methods of control

    Science.gov (United States)

    Oruganti, R.; Lee, F. C.

    1984-01-01

    The nature of resonant converter control is discussed. Employing the state-portrait, different control methods for series resonant converter are identified and their performance evaluated based on their stability, response to control and load changes and range of operation. A new control method, optimal-trajectory control, is proposed which, by utilizing the state trajectories as control laws, continuously monitors the energy level of the resonant tank. The method is shown to have superior control properties especially under transient operation.

  20. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Gu MJ

    2015-08-01

    Full Text Available Meng-Jie Gu,1,* Kun-Feng Li,1,* Lan-Xin Zhang,1 Huan Wang,1 Li-Si Liu,2 Zhuo-Zhao Zheng,2 Nan-Yin Han,1 Zhen-Jun Yang,1 Tian-Yuan Fan1 1State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 2Department of Radiology, Peking University Third Hospital, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III [N,N-bis-stearylamidomethyl-N'-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs. Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA, gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor. Keywords: magnetic resonance imaging, gadolinium, liposomes, tenascin-C, GBI-10 aptamer, tumor targeting

  1. The evaluation of minimum cooling period for loading of PWR spent nuclear fuel of a dual purpose metal cask

    Energy Technology Data Exchange (ETDEWEB)

    Dho, Ho Seog; Kim, Tae Man; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R and D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0-4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask.

  2. The evaluation of minimum cooling period for loading of PWR spent nuclear fuel of a dual purpose metal cask

    International Nuclear Information System (INIS)

    Dho, Ho Seog; Kim, Tae Man; Cho, Chun Hyung

    2016-01-01

    Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R and D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0-4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask

  3. High-Q micromechanical resonators for mass sensing in dissipative media

    International Nuclear Information System (INIS)

    Tappura, Kirsi; Pekko, Panu; Seppä, Heikki

    2011-01-01

    Single crystal silicon-based micromechanical resonators are developed for mass sensing in dissipative media. The design aspects and preliminary characterization of the resonators are presented. For the suggested designs, quality factors of about 20 000 are typically measured in air at atmospheric pressure and 1000–2000 in contact with liquid. The performance is based on a wine-glass-type lateral bulk acoustic mode excited in a rectangular resonator plate. The mode essentially eliminates the radiation of acoustic energy into the sample media leaving viscous drag as the dominant fluid-based dissipation mechanism in the system. For a mass loading distributed over the central areas of the resonator a sensitivity of 27 ppm ng −1 is measured exhibiting good agreement with the results of the finite element method-based simulations. It is also shown that the mass sensitivity can be somewhat enhanced, not only by the proper distribution of the loaded mass, but also by introducing shallow barrier structures on the resonator

  4. Geometrical scaling and modal decay rates in periodic arrays of deeply subwavelength Terahertz resonators

    International Nuclear Information System (INIS)

    Isić, Goran; Gajić, Radoš

    2014-01-01

    It is well known that due to the high conductivity of noble metals at terahertz frequencies and scalability of macroscopic Maxwell equations, a geometrical downscaling of a terahertz resonator results in the linear upscaling of its resonance frequency. However, the scaling laws of modal decay rates, important for the resonator excitation efficiency, are much less known. Here, we investigate the extent to which the scale-invariance of decay rates is violated due to the finite conductivity of the metal. We find that the resonance quality factor or the excitation efficiency may be substantially affected by scaling and show that this happens as a result of the scale-dependence of the metal absorption rate, while the radiative decay and the dielectric cavity absorption rates are approximately scale-invariant. In particular, we find that by downscaling overcoupled resonators, their excitation efficiency increases, while the opposite happens with undercoupled resonators

  5. Resonances in a periodically driven bosonic system

    NARCIS (Netherlands)

    Quelle, Anton; de Morais Smith, Cristiane

    2017-01-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better

  6. Trend of suspended sediment load in the Velika Morava River in the period 1967-2007

    Directory of Open Access Journals (Sweden)

    Mustafić Sanja

    2014-01-01

    Full Text Available The paper is concerned with identifying changes in the time series of discharge (Q, suspended sediment concentration (SSC and sediment load (Qs of the Velika Morva River. The catchment area on farthest hydrological profile Ljubičevski most on Velika Morava River is approximately 35,496 km2. In this profile were carried out daily measurements of flow and concetration of silt in the period from 1967 to 2007. Average perennial transport of suspended sediment is 2.57ˣ106 t (72.4 t/km2/yr and ranged from 0.17ˣ106 t (4.8 t/km2/yr to 10.02ˣ106 t (282.2 t/km2/yr. Trends determined for Q, SSC and Qs are statistically obtained using the non-parametric Mann-Kendall test. Results of Mann-Kendall test show that Q has a slight declining trend of annual values which do not show statistical significance. Decline in trendline SSC and Qs is a significant at the level of 0.01. Calculating the standardized regression coefficients, it was found that the relative impact of SSC on sediment load is 3.1 time higher than the impact of discharge. From 1967 to 2007 the average decrease in sediment load at the mouth of the Velika Morava into the Danube was 3.1 t/km2/yr. [Projekat Ministarstva nauke Republike Srbije, br. 43007: The Research on Climate Change Influences on Environment: Influence Monitoring, Adaptation and Mitigation, subproject No. 9: Torrential Floods Frequency, Soil and Water Degradation as the Consequence of Global Changes

  7. Resonance Analysis of High-Frequency Electrohydraulic Exciter Controlled by 2D Valve

    Directory of Open Access Journals (Sweden)

    Guojun Pan

    2015-01-01

    Full Text Available The resonant characteristic of hydraulic system has not been described yet because it is necessarily restricted by linear assumptions in classical fluid theory. A way of the resonance analysis is presented for an electrohydraulic exciter controlled by 2D valve. The block diagram of this excitation system is established by extracting nonlinear parts from the traditional linearization analysis; as a result the resonant frequency is obtained. According to input energy from oil source which is equal to the reverse energy to oil source, load pressure and load flow are solved analytically as the working frequency reaches the natural frequency. The analytical expression of resonant peak is also derived without damping. Finally, the experimental system is built to verify the theoretical analysis. The initial research on resonant characteristic will lay theoretical foundation and make useful complement for resonance phenomena of classical fluid theory in hydraulic system.

  8. Resonance and Fractal Geometry

    NARCIS (Netherlands)

    Broer, Henk W.

    The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena

  9. Resonance Control for Future Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Schappert, Warren [Fermilab

    2017-05-01

    Many of the next generation of particle accelerators (LCLS II, PIP II) are designed for relatively low beam loading. Low beam loading requirement means the cavities can operate with narrow bandwidths, minimizing capital and base operational costs of the RF power system. With such narrow bandwidths, however, cavity detuning from microphonics or dynamic Lorentz Force Detuning becomes a significant factor, and in some cases can significantly increase both the acquisition cost and the operational cost of the machine. In addition to the efforts to passive environmental detuning reduction (microphonics) active resonance control for the SRF cavities for next generation linear machine will be required. State of the art in the field of the SRF Cavity active resonance control and the results from the recent efforts at FNAL will be presented in this talk.

  10. 101 Modelling and Forecasting Periodic Electric Load for a ...

    African Journals Online (AJOL)

    User

    2012-01-24

    Jan 24, 2012 ... Electricity load consumption in Nigeria is of great concern and its government is ... This is because the energy needed for any system is based on ... is a tool for verifying the validity and reliability of a chosen model. It tells how ...

  11. Superconducting high frequency high power resonators

    International Nuclear Information System (INIS)

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  12. RF Loads for Energy Recovery

    CERN Document Server

    Federmann, S; Caspers, F

    2012-01-01

    Different conceptional designs for RF high power loads are presented. One concept implies the use of solid state rectifier modules for direct RF to DC conversion with efficiencies beyond 80%. In addition, robust metallic low-Q resonant structures, capable of operating at high temperatures (>150 ◦C) are discussed. Another design deals with a very high temperature (up to 800 ◦C) air cooled load using a ceramic foam block inside a metal enclosure. This porous ceramic block is the microwave absorber and is not brazed to the metallic enclosure.

  13. Monitoring training load, recovery-stress state, immune-endocrine responses, and physical performance in elite female basketball players during a periodized training program.

    Science.gov (United States)

    Nunes, João A; Moreira, Alexandre; Crewther, Blair T; Nosaka, Ken; Viveiros, Luis; Aoki, Marcelo S

    2014-10-01

    This study investigated the effect of a periodized training program on internal training load (ITL), recovery-stress state, immune-endocrine responses, and physical performance in 19 elite female basketball players. The participants were monitored across a 12-week period before an international championship, which included 2 overloading and tapering phases. The first overloading phase (fourth to sixth week) was followed by a 1-week tapering, and the second overloading phase (eighth to 10th week) was followed by a 2-week tapering. ITL (session rating of perceived exertion method) and recovery-stress state (RESTQ-76 Sport questionnaire) were assessed weekly and bi-weekly, respectively. Pretraining and posttraining assessments included measures of salivary IgA, testosterone and cortisol concentrations, strength, jumping power, running endurance, and agility. Internal training load increased across all weeks from 2 to 11 (p ≤ 0.05). After the first tapering period (week 7), a further increase in ITL was observed during the second overloading phase (p ≤ 0.05). After the second tapering period, a decrease in ITL was detected (p ≤ 0.05). A disturbance in athlete stress-recovery state was noted during the second overloading period (p ≤ 0.05), before returning to baseline level in end of the second tapering period. The training program led to significant improvements in the physical performance parameters evaluated. The salivary measures did not change despite the fluctuations in ITL. In conclusion, a periodized training program evoked changes in ITL in elite female basketball players, which appeared to influence their recovery-stress state. The training plan was effective in preparing participants for competition, as indicated by improvements in recovery-stress state and physical performance after tapering.

  14. HIGHER MODE FREQUENCY EFFECTS ON RESONANCE IN MACHINERY, STRUCTURES, AND PIPE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.

    2010-05-02

    The complexities of resonance in multi-degree of freedom systems (multi-DOF) may be clarified using graphic presentations. Multi-DOF systems represent actual systems, such as beams or springs, where multiple, higher order, natural frequencies occur. Resonance occurs when a cyclic load is applied to a structure, and the frequency of the applied load equals one of the natural frequencies. Both equations and graphic presentations are available in the literature for single degree of freedom (SDOF) systems, which describe the response of spring-mass-damper systems to harmonically applied, or cyclic, loads. Loads may be forces, moments, or forced displacements applied to one end of a structure. Multi-DOF systems are typically described only by equations in the literature, and while equations certainly permit a case by case analysis for specific conditions, graphs provide an overall comprehension not gleaned from single equations. In fact, this collection of graphed equations provides novel results, which describe the interactions between multiple natural frequencies, as well as a comprehensive description of increased vibrations near resonance.

  15. A hybrid filter to mitigate harmonics caused by nonlinear load and resonance caused by power factor correction capacitor

    Science.gov (United States)

    Adan, N. F.; Soomro, D. M.

    2017-01-01

    Power factor correction capacitor (PFCC) is commonly installed in industrial applications for power factor correction (PFC). With the expanding use of non-linear equipment such as ASDs, power converters, etc., power factor (PF) improvement has become difficult due to the presence of harmonics. The resulting capacitive impedance of the PFCC may form a resonant circuit with the source inductive reactance at a certain frequency, which is likely to coincide with one of the harmonic frequency of the load. This condition will trigger large oscillatory currents and voltages that may stress the insulation and cause subsequent damage to the PFCC and equipment connected to the power system (PS). Besides, high PF cannot be achieved due to power distortion. This paper presents the design of a three-phase hybrid filter consisting of a single tuned passive filter (STPF) and shunt active power filter (SAPF) to mitigate harmonics and resonance in the PS through simulation using PSCAD/EMTDC software. SAPF was developed using p-q theory. The hybrid filter has resulted in significant improvement on both total harmonic distortion for voltage (THDV) and total demand distortion for current (TDDI) with maximum values of 2.93% and 9.84% respectively which were within the recommended IEEE 519-2014 standard limits. Regarding PF improvement, the combined filters have achieved PF close to desired PF at 0.95 for firing angle, α values up to 40°.

  16. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  17. Building CX peanut-shaped disk galaxy profiles. The relative importance of the 3D families of periodic orbits bifurcating at the vertical 2:1 resonance

    Science.gov (United States)

    Patsis, P. A.; Harsoula, M.

    2018-05-01

    Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known "frown-smile" side-on morphology, is unstable. Aims: Our goal is to study the differences that occur in the phase space structure at the vertical 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile profiles are stable and support an X-shaped morphology. Methods: The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the vertical stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results: The two bifurcating families at the vertical 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) profile. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions: In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type profile. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a profile reminiscent of the shape of the orbits of the 3D unstable family existing in each model.

  18. Electrostatically actuated torsional resonant sensors and switches

    KAUST Repository

    Younis, Mohammad I.

    2016-12-29

    Embodiments in accordance of a torsional resonant sensor disclosure is configured to actuate a beam structure using electrostatic actuation with an AC harmonic load (e.g., AC and DC voltage sources) that is activated upon detecting a particular agent having a mass above a predefined level. In various embodiments, the beam structure may be different types of resonant structures that is at least partially coated or layered with a selective material.

  19. Load-Dependent Increases in Delay-Period Alpha-Band Power Track the Gating of Task-Irrelevant Inputs to Working Memory

    Directory of Open Access Journals (Sweden)

    Andrew J. Heinz

    2017-05-01

    Full Text Available Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band power (ABP during the delay period of verbal and visual working memory (VWM tasks. There have been various proposals regarding the functional significance of such increases, including the inhibition of task-irrelevant cortical areas as well as the active retention of information in VWM. The present study examines the role of delay-period ABP in mediating the effects of interference arising from on-going visual processing during a concurrent VWM task. Specifically, we reasoned that, if set-size dependent increases in ABP represent the gating out of on-going task-irrelevant visual inputs, they should be predictive with respect to some modulation in visual evoked potentials resulting from a task-irrelevant delay period probe stimulus. In order to investigate this possibility, we recorded the electroencephalogram while subjects performed a change detection task requiring the retention of two or four novel shapes. On a portion of trials, a novel, task-irrelevant bilateral checkerboard probe was presented mid-way through the delay. Analyses focused on examining correlations between set-size dependent increases in ABP and changes in the magnitude of the P1, N1 and P3a components of the probe-evoked response and how such increases might be related to behavior. Results revealed that increased delay-period ABP was associated with changes in the amplitude of the N1 and P3a event-related potential (ERP components, and with load-dependent changes in capacity when the probe was presented during the delay. We conclude that load-dependent increases in ABP likely play a role in supporting short-term retention by gating task-irrelevant sensory inputs and suppressing potential sources of disruptive interference.

  20. Ion-cyclotron-resonance heating in the Wisconsin Levitated Octupole

    International Nuclear Information System (INIS)

    Fortgang, C.M.; Sprott, J.C.; Strait, E.J.

    1983-06-01

    Ion-cyclotron-resonance heating has been investigated, both experimentally and theoretically, on the Wisconsin Levitated Octupole. Heating of both ions and electrons has been observed. Typically, a two-component ion energy distribution is produced (300 eV and 50 eV) with 500 kW of rf power coupled into a 5 x 10 12 cm -3 plasma. Power is coupled to the plasma with an antenna that also serves as the inductor of an oscillator tank circuit. The oscillator is tunable from 1 to 3 MHz and can be applied for periods up to 10 msec. The experiments were performed with hydrogen, gun-injected plasmas. Most of the theortical work presented deals with a calculation that predicts the plasma loading. A slab model is used, and the questions of accessibility, polarization, and damping of the radio-frequency electromagnetic fields are addressed. It is found that cold-plasma theory cannot account for the heating and, therefore, hot-plasma theory is invoked to explain the results. The loading measurements and theoretical predictions are found to be in reasonable agreement

  1. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  2. Resonant power converter comprising adaptive dead-time control

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising: a first power supply rail for receipt of a positive DC supply voltage and a second power supply rail for receipt of a negative DC supply voltage. The resonant power converter comprises a resonant network with an input...... terminal for receipt of a resonant input voltage from a driver circuit. The driver circuit is configured for alternatingly pulling the resonant input voltage towards the positive and negative DC supply voltages via first and second semiconductor switches, respectively, separated by intervening dead......-time periods in accordance with one or more driver control signals. A dead-time controller is configured to adaptively adjusting the dead-time periods based on the resonant input voltage....

  3. The 77 K operation of a multi-resonant power converter

    Science.gov (United States)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The liquid-nitrogen temperature (77 K) operation of a 55 W, 200 kHz, 48/28 V zero-voltage switching multi-resonant dc/dc converter designed with commercially available components is reported. Upon dipping the complete converter (power and control circuits) into liquid-nitrogen, the converter performance improved as compared to the room-temperature operation. The switching frequency, resonant frequency, and the characteristic impedance did not change significantly. Accordingly, the zero-voltage switching was maintained from no-load to full-load for the specified line variations. Cryoelectronics can provide high density power converters, especially for high power applications.

  4. Localized Fluctuant Oscillatory Activity by Working Memory Load: A Simultaneous EEG-fMRI Study

    Directory of Open Access Journals (Sweden)

    Xiaojie Zhao

    2017-10-01

    Full Text Available Working memory (WM is a resource-limited memory system for temporary storage and processing of brain information during the execution of cognitive tasks. Increased WM load will increase the amount and difficulty of memory information. Several studies have used electroencephalography (EEG or functional magnetic resonance imaging (fMRI to explore load-dependent cognition processing according to the time courses of electrophysiological activity or the spatial pattern of blood oxygen metabolic activity. However, the relationships between these two activities and the underlying neural mechanism are still unclear. In this study, using simultaneously collected EEG and fMRI data under an n-back verbal WM task, we modeled the spectral perturbation of EEG oscillation and fMRI activation through joint independent component analysis (JICA. Multi-channel oscillation features were also introduced into the JICA model for further analysis. The results showed that time-locked activity of theta and beta were modulated by memory load in the early stimuli evaluation stage, corresponding to the enhanced activation in the frontal and parietal lobe, which were involved in stimulus discrimination, information encoding and delay-period activity. In the late response selection stage, alpha and gamma activity changes dependent on the load correspond to enhanced activation in the areas of frontal, temporal and parietal lobes, which played important roles in attention, information extraction and memory retention. These findings suggest that the increases in memory load not only affect the intensity and time course of the EEG activities, but also lead to the enhanced activation of brain regions which plays different roles during different time periods of cognitive process of WM.

  5. Localized Fluctuant Oscillatory Activity by Working Memory Load: A Simultaneous EEG-fMRI Study.

    Science.gov (United States)

    Zhao, Xiaojie; Li, Xiaoyun; Yao, Li

    2017-01-01

    Working memory (WM) is a resource-limited memory system for temporary storage and processing of brain information during the execution of cognitive tasks. Increased WM load will increase the amount and difficulty of memory information. Several studies have used electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) to explore load-dependent cognition processing according to the time courses of electrophysiological activity or the spatial pattern of blood oxygen metabolic activity. However, the relationships between these two activities and the underlying neural mechanism are still unclear. In this study, using simultaneously collected EEG and fMRI data under an n-back verbal WM task, we modeled the spectral perturbation of EEG oscillation and fMRI activation through joint independent component analysis (JICA). Multi-channel oscillation features were also introduced into the JICA model for further analysis. The results showed that time-locked activity of theta and beta were modulated by memory load in the early stimuli evaluation stage, corresponding to the enhanced activation in the frontal and parietal lobe, which were involved in stimulus discrimination, information encoding and delay-period activity. In the late response selection stage, alpha and gamma activity changes dependent on the load correspond to enhanced activation in the areas of frontal, temporal and parietal lobes, which played important roles in attention, information extraction and memory retention. These findings suggest that the increases in memory load not only affect the intensity and time course of the EEG activities, but also lead to the enhanced activation of brain regions which plays different roles during different time periods of cognitive process of WM.

  6. Magnetic resonance imaging of degeneration of uterine adenomyosis during pregnancy and post-partum period.

    Science.gov (United States)

    Hirashima, Hiroto; Ohkuchi, Akihide; Usui, Rie; Kijima, Shigeyoshi; Matsubara, Shigeki

    2018-03-08

    Degeneration of adenomyosis during pregnancy and the post-partum period is very rare. A 42-year-old Japanese parous woman with four normal-term deliveries, who presented with abdominal pain and fever at 22 weeks of gestation with transient increases of the white blood cell count and C-reactive protein, demonstrated sustained inflammation after cesarean section at 29 weeks of gestation due to the occurrence of gestational hypertension with late deceleration. The noncontrast-enhanced magnetic resonance imaging (MRI) at 22 weeks demonstrated a poorly demarcated hypointense area at the posterior uterine wall on T1- and T2-weighted imaging. The 2nd MRI 2 weeks after the cesarean section showed hypointensity on a T1-weighted image and hyperintensity on a T2-weighted image, allowing confirmation of the diagnosis of degeneration of adenomyosis. Repeated MRIs were clinically useful to diagnose the degeneration of adenomyosis. © 2018 Japan Society of Obstetrics and Gynecology.

  7. Analytic reconstruction of magnetic resonance imaging signal obtained from a periodic encoding field.

    Science.gov (United States)

    Rybicki, F J; Hrovat, M I; Patz, S

    2000-09-01

    We have proposed a two-dimensional PERiodic-Linear (PERL) magnetic encoding field geometry B(x,y) = g(y)y cos(q(x)x) and a magnetic resonance imaging pulse sequence which incorporates two fields to image a two-dimensional spin density: a standard linear gradient in the x dimension, and the PERL field. Because of its periodicity, the PERL field produces a signal where the phase of the two dimensions is functionally different. The x dimension is encoded linearly, but the y dimension appears as the argument of a sinusoidal phase term. Thus, the time-domain signal and image spin density are not related by a two-dimensional Fourier transform. They are related by a one-dimensional Fourier transform in the x dimension and a new Bessel function integral transform (the PERL transform) in the y dimension. The inverse of the PERL transform provides a reconstruction algorithm for the y dimension of the spin density from the signal space. To date, the inverse transform has been computed numerically by a Bessel function expansion over its basis functions. This numerical solution used a finite sum to approximate an infinite summation and thus introduced a truncation error. This work analytically determines the basis functions for the PERL transform and incorporates them into the reconstruction algorithm. The improved algorithm is demonstrated by (1) direct comparison between the numerically and analytically computed basis functions, and (2) reconstruction of a known spin density. The new solution for the basis functions also lends proof of the system function for the PERL transform under specific conditions.

  8. Determination of the shear impedance of viscoelastic liquids using cylindrical piezoceramic resonators.

    Science.gov (United States)

    Kiełczyński, Piotr; Pajewski, Wincenty; Szalewski, Marek

    2003-03-01

    In this paper, a new method for determining the rheological parameters of viscoelastic liquids is presented. To this end, we used the perturbation method applied to shear vibrations of cylindrical piezoceramic resonators. The resonator was viscoelastically loaded on the outer cylindrical surface. Due to this loading, the resonant frequency and quality factor of the resonator changed. According to the perturbation method, the change in the complex resonant frequency deltaomega = deltaomega(re) + jdeltaomega(im) is directly proportional to the specific acoustic impedance for cylindrical waves Zc of a viscoelastic liquid surrounding the resonator, i.e., deltaomega is approximately equal to jZc, where j = (-1)1/2. Hence, the measurement of the real and imaginary parts of the complex resonant frequency deltaomega determines the real part, Rc, and imaginary part, Xc, of the complex acoustic impedance for cylindrical waves Zc of an investigated liquid. Furthermore, the specific impedance ZL for plane waves was related to the specific impedance Zc for cylindrical waves. Using theoretical formulas established and the results of the experiments performed, the shear storage modulus mu and the viscosity eta for various liquids (e.g., epoxy resins) were determined. Moreover, the authors derived for cylindrical resonators a formula that relates the shift in resonant frequency to the viscosity of the liquid. This formula is analogous to the Kanazawa-Gordon formula that was derived for planar resonators and Newtonian liquids.

  9. Developing a Magnetic Resonance Imaging measurement of the forces within 3D granular materials under external loads

    Science.gov (United States)

    Elrington, Stefan; Bertrand, Thibault; Frey, Merideth; Shattuck, Mark; O'Hern, Corey; Barrett, Sean

    2014-03-01

    Granular materials are comprised of an ensemble of discrete macroscopic grains that interact with each other via highly dissipative forces. These materials are ubiquitous in our everyday life ranging in scale from the granular media that forms the Earth's crust to that used in agricultural and pharmaceutical industries. Granular materials exhibit complex behaviors that are poorly understood and cannot be easily described by statistical mechanics. Under external loads individual grains are jammed into place by a network of force chains. These networks have been imaged in quasi two-dimensional and on the outer surface of three-dimensional granular materials. Our goal is to use magnetic resonance imaging (MRI) to detect contact forces deep within three-dimensional granular materials, using hydrogen-1 relaxation times as a reporter for changes in local stress and strain. To this end, we use a novel pulse sequence to narrow the line width of hydrogen-1 in rubber. Here we present our progress to date, and prospects for future improvements.

  10. New possible resonance for population II Cepheids

    International Nuclear Information System (INIS)

    Cox, A.N.; Kidman, R.B.

    1984-01-01

    Light and velocity curves of some radial mode variable stars seem to indicate a resonance where the second overtone has a period exactly half that of the fundamental mode. The two classes of stars that show this resonance by bumps in their light curves are the classical Cepheids and the population II BL Her variables. We here propose that there is another resonance for the population II W Vir variables where the ratio of the first overtone to the fundamental periods is 0.5

  11. Multi-bi- and tri-stability using nonlinear plasmonic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2013-09-01

    A plasmonic Fano resonator embedding Kerr nonlinearity is used to achieve multi-bi- and tri-stability. Fano resonance is obtained by inducing higher-order plasmon modes on metallic surfaces via geometrical symmetry breaking. The presence of the multiple higher order plasmon modes provides the means for producing multi-bi- or tri-stability in the response of the resonator when it is loaded with a material with Kerr nonlinearity. The multi-stability in the response of the proposed resonator enables its use in three-state all optical memory and switching applications. © 2013 IEEE.

  12. State-plane analysis of parallel resonant converter

    Science.gov (United States)

    Oruganti, R.; Lee, F. C.

    1985-01-01

    A method for analyzing the complex operation of a parallel resonant converter is developed, utilizing graphical state-plane techniques. The comprehensive mode analysis uncovers, for the first time, the presence of other complex modes besides the continuous conduction mode and the discontinuous conduction mode and determines their theoretical boundaries. Based on the insight gained from the analysis, a novel, high-frequency resonant buck converter is proposed. The voltage conversion ratio of the new converter is almost independent of load.

  13. Effects of Sparring Load on Reaction Speed and Punch Force During the Precompetition and Competition Periods in Boxing.

    Science.gov (United States)

    Hukkanen, Esa; Häkkinen, Keijo

    2017-06-01

    Seven, male, national-level boxers (age, 20.3 ± 2.7 years; height, 1.80 ± 0.06 m; mass, 73.8 ± 11.1 kg) participated in this study to investigate the effects of sparring on reaction time and punch force of straight punches measured during the precompetition and competition periods. Heart rate and blood lactate concentrations were also monitored. Sparring load was chosen in accordance with the current rules: 3 × 3-minute bouts with 1-minute break in between. Reaction time of rear straight lengthened (p boxing-specific and explosive strength training.

  14. Multiharmonic rf feedforward system for compensation of beam loading and periodic transient effects in magnetic-alloy cavities of a proton synchrotron

    Directory of Open Access Journals (Sweden)

    Fumihiko Tamura

    2013-05-01

    Full Text Available Beam loading compensation is a key for acceleration of a high intensity proton beam in the main ring (MR of the Japan Proton Accelerator Research Complex (J-PARC. Magnetic alloy loaded rf cavities with a Q value of 22 are used to achieve high accelerating voltages without a tuning bias loop. The cavity is driven by a single harmonic (h=9 rf signal while the cavity frequency response also covers the neighbor harmonics (h=8,10. Therefore the wake voltage induced by the high intensity beam consists of the three harmonics, h=8,9,10. The beam loading of neighbor harmonics is the source of periodic transient effects and a possible source of coupled bunch instabilities. In the article, we analyze the wake voltage induced by the high intensity beam. We employ the rf feedforward method to compensate the beam loading of these three harmonics (h=8,9,10. The full-digital multiharmonic feedforward system was developed for the MR. We describe the system architecture and the commissioning methodology of the feedforward patterns. The commissioning of the feedforward system has been performed by using high intensity beams with 1.0×10^{14} proteins per pulse. The impedance seen by the beam is successfully reduced and the longitudinal oscillations due to the beam loading are reduced. By the beam loading compensation, stable high power beam operation is achieved. We also report the reduction of the momentum loss during the debunching process for the slow extraction by the feedforward.

  15. The load structure of electro boilers

    International Nuclear Information System (INIS)

    Feilberg, N.; Livik, K.

    1995-01-01

    Load measurements have been performed on 24 electro boilers with a time resolution of one hour throughout a period of one year. The boilers are used for space heating and heating of tap water in office buildings, shopping centres and apartment buildings. All boilers have tariffs with disconnection agreements. This report presents load analyses of the measurements from each boiler, and typical load profiles are calculated and presented. It also analyses how boilers are used in relation to the outdoor temperature and the power price on the spot market. All the measurements are performed in Bergen, Norway, in the period August 1993 - August 1994. Typical load profiles are shown, both annual and daily, as well as specific load parameters in addition to key figures used in calculating the total power load on the distribution network. The climate impact on energy and power load is evaluated. The report also shows examples of how the results may be applied in various special fields. 8 figs., 9 tabs

  16. Electrostatically actuated torsional resonant sensors and switches

    KAUST Repository

    Younis, Mohammad I.

    2016-01-01

    Embodiments in accordance of a torsional resonant sensor disclosure is configured to actuate a beam structure using electrostatic actuation with an AC harmonic load (e.g., AC and DC voltage sources) that is activated upon detecting a particular

  17. Resonating Terahertz Response of Periodic Arrays of Subwavelength Apertures

    KAUST Repository

    D’ Apuzzo, Fausto; Candeloro, Patrizio; Domenici, Fabio; Autore, M.; Di Pietro, Paola; Perucchi, Andrea; Roy, P.; Sennato, Simona; Bordi, Federico; Di Fabrizio, Enzo M.; Lupi, Stefano

    2014-01-01

    Extraordinary optical transmission (EOT) peaks mediated by plasmonic excitations can be observed in a variety of subwavelength patterned metallic surfaces. In this paper, we have fabricated and spectroscopically characterized plasmon devices exhibiting EOT peaks at terahertz (THz) frequencies. These devices, which resonate with intermediate and collective modes of macromolecules, can be used for detection of materials of biological interest and their performances have been experimentally determined by measuring the variation of the EOT frequencies for thin sub-micrometric organic layers deposited onto the device surface.

  18. Resonating Terahertz Response of Periodic Arrays of Subwavelength Apertures

    KAUST Repository

    D’Apuzzo, Fausto

    2014-10-11

    Extraordinary optical transmission (EOT) peaks mediated by plasmonic excitations can be observed in a variety of subwavelength patterned metallic surfaces. In this paper, we have fabricated and spectroscopically characterized plasmon devices exhibiting EOT peaks at terahertz (THz) frequencies. These devices, which resonate with intermediate and collective modes of macromolecules, can be used for detection of materials of biological interest and their performances have been experimentally determined by measuring the variation of the EOT frequencies for thin sub-micrometric organic layers deposited onto the device surface.

  19. Cardiorespiratory interactions during resistive load breathing.

    Science.gov (United States)

    Calabrese, P; Perrault, H; Dinh, T P; Eberhard, A; Benchetrit, G

    2000-12-01

    The addition to the respiratory system of a resistive load results in breathing pattern changes and in negative intrathoracic pressure increases. The aim of this study was to use resistive load breathing as a stimulus to the cardiorespiratory interaction and to examine the extent of the changes in heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in relation to the breathing pattern changes. HRV and RSA were studied in seven healthy subjects where four resistive loads were applied in a random order during the breath and 8-min recording made in each condition. The HRV spectral power components were computed from the R-R interval sequences, and the RSA amplitude and phase were computed from the sinusoid fitting the instantaneous heart rate within each breath. Adding resistive loads resulted in 1) increasing respiratory period, 2) unchanging heart rate, and 3) increasing HRV and changing RSA characteristics. HRV and RSA characteristics are linearly correlated to the respiratory period. These modifications appear to be linked to load-induced changes in the respiratory period in each individual, because HRV and RSA characteristics are similar at a respiratory period obtained either by loading or by imposed frequency breathing. The present results are discussed with regard to the importance of the breathing cycle duration in these cardiorespiratory interactions, suggesting that these interactions may depend on the time necessary for activation and dissipation of neurotransmitters involved in RSA.

  20. EIT in resonator chains: similarities and differences with atomic media

    Science.gov (United States)

    Matsko, A. B.; Maleki, L.; Savchenkov, A. A.; Ilchenko, V. S.

    2004-01-01

    We theoretically study a parallel configuration of two interacting whispering gallery mode optical resonators and show a narrow-band modal structure as a basis for a widely tunable delay line. For the optimum coupling configuration the system can possess an unusually narrow spectral feature with a much narrower bandwidth than the loaded bandwidth of each individual resonator.

  1. Piezoelectric/magnetostrictive resonant inchworm motor

    Science.gov (United States)

    Miesner, John E.; Teter, Joseph P.

    1994-05-01

    Magnetostrictive and piezoelectric materials were used to create a linear motor operating on the inchworm principle. This motor operates at an electrical resonance, switching power internally between inductive and capacitive components. Magnetic coils surrounding the two Terfenol-D rods which drive the inchworm's center expanding element form the inductive component. Piezoelectric stacks that control the end clamping action are the capacitive components. The normal electrical phase relationship between these components provides natural drive timing for the inchworm. The motor direction can be easily reversed by changing the magnetic bias on the Terfenol. A prototype motor was built that achieved a stall load of 26 lb and no-load speed of 1 inch/sec vs the design of 30 lb and 1.3 inch/sec. A new type of power supply that switches power from a dc source was built for the motor. This power supply uses a small number of components to exactly supply the energy used in each inchworm cycle. It tracks the motor circuit resonance and is not affected by frequency shifts.

  2. Resonance self-shielding method using resonance interference factor library for practical lattice physics computations of LWRs

    International Nuclear Information System (INIS)

    Choi, Sooyoung; Khassenov, Azamat; Lee, Deokjung

    2016-01-01

    This paper presents a new method of resonance interference effect treatment using resonance interference factor for high fidelity analysis of light water reactors (LWRs). Although there have been significant improvements in the lattice physics calculations over the several decades, there exist still relatively large errors in the resonance interference treatment, in the order of ∼300 pcm in the reactivity prediction of LWRs. In the newly developed method, the impact of resonance interference to the multi-group cross-sections has been quantified and tabulated in a library which can be used in lattice physics calculation as adjustment factors of multi-group cross-sections. The verification of the new method has been performed with Mosteller benchmark, UO_2 and MOX pin-cell depletion problems, and a 17×17 fuel assembly loaded with gadolinia burnable poison, and significant improvements were demonstrated in the accuracy of reactivity and pin power predictions, with reactivity errors down to the order of ∼100 pcm. (author)

  3. Proportional-Integral-Resonant AC Current Controller

    Directory of Open Access Journals (Sweden)

    STOJIC, D.

    2017-02-01

    Full Text Available In this paper an improved stationary-frame AC current controller based on the proportional-integral-resonant control action (PIR is proposed. Namely, the novel two-parameter PIR controller is applied in the stationary-frame AC current control, accompanied by the corresponding parameter-tuning procedure. In this way, the proportional-resonant (PR controller, common in the stationary-frame AC current control, is extended by the integral (I action in order to enable the AC current DC component tracking, and, also, to enable the DC disturbance compensation, caused by the voltage source inverter (VSI nonidealities and by nonlinear loads. The proposed controller parameter-tuning procedure is based on the three-phase back-EMF-type load, which corresponds to a wide range of AC power converter applications, such as AC motor drives, uninterruptible power supplies, and active filters. While the PIR controllers commonly have three parameters, the novel controller has two. Also, the provided parameter-tuning procedure needs only one parameter to be tuned in relation to the load and power converter model parameters, since the second controller parameter is directly derived from the required controller bandwidth value. The dynamic performance of the proposed controller is verified by means of simulation and experimental runs.

  4. Semiclassical description of resonant tunnel effect: bifurcations and periodic orbits in the resonant current

    International Nuclear Information System (INIS)

    Rouben, D.C.

    1997-01-01

    A semiclassical method for resonant tunneling in a quantum well in the presence of a magnetic field tilted with regard to an electric field is developed. In particular a semiclassical formula is derived for the total current of electrons after the second barrier of the quantum well. The contribution of the stable and unstable orbits is studied. It appears that the parameters which describe the classical chaos in the quantum well have an important effect on the tunneling current. A numerical experiment is led, the contributions to the current of some particular orbits are evaluated and the results are compared with those given by the quantum theory. (A.C.)

  5. On and off controlled resonant dc-dc power converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter comprising an input side circuit comprising a positive and a negative input terminal for receipt of an input voltage or current and an output side circuit comprising positive and negative output terminals for supply of a converter...... output voltage and connection to a converter load. The resonant DC-DC power converter further comprises a rectification circuit connected between an output of a resonant network and the output side circuit. The resonant network is configured for alternatingly being charged from the input voltage...... or current and discharged through the rectification circuit by a first controllable switch arrangement in accordance with a first switch control signal. A second controllable switch arrangement of the resonant DC-DC power converter is configured to select a first impedance characteristic of the resonant...

  6. Measurements of resonance frequencies on prestressed concrete beams during post-tensioning

    International Nuclear Information System (INIS)

    Lundqvist, P.; Ryden, N.

    2011-01-01

    The reactor containment, which is a concrete structure prestressed vertically and horizontally, is the most essential safety barrier in a nuclear power plant and is designed to withstand a severe internal accident. The safety of the containment depends on the induced compressive stresses in the concrete, however due to various long-term mechanisms the tendon forces will decrease with time. Today, no methods exist for measuring these prestress losses in containments with bonded tendons and thus there is a need for non-destructive methods for estimating the losses in these structures. Recent results from non-linear ultrasonic measurements during uniaxial loading have demonstrated a strong acoustic and elastic effect in concrete. The present research applies resonant acoustic spectroscopy (RAS) during static loading and unloading of three prestressed concrete beams. At each load step multiple modes of vibration are measured using an accelerometer and a small impact source. Measured resonant frequencies increase with increasing compressive stress. The stress dependency of the modulus of elasticity indicates that the change in state of stress in a simple concrete structure can be estimated by simply measuring the resonance frequency

  7. A high-voltage resonant converter for pulsed magnets

    International Nuclear Information System (INIS)

    Rafael, F.S.; Lira, A.C.; Apfelbaum, J.; Pomilio, J.A.

    1992-01-01

    A 500-W, 25-kV, parallel-loaded resonant converter has been built in order to feed the LNLS ring kicker magnets. The use of high frequency permits reduction of the transformer and filter sizes. The tank components are the transformer leakage inductance and winding capacitance. The switching frequency is 20 kHz, limited by the tank circuit characteristic. The load is an LC Pulse-Forming Network, which is discharged on the load by a thyratron tube. The current pulse rise and fall times are about 100 ns and the flat top is 200 ns, at 800 A. (author) 3 refs.; 7 figs

  8. The duration perception of loading applications in smartphone: Effects of different loading types.

    Science.gov (United States)

    Zhao, Wenguo; Ge, Yan; Qu, Weina; Zhang, Kan; Sun, Xianghong

    2017-11-01

    The loading time of a smartphone application is an important issue, which affects the satisfaction of phone users. This study evaluated the effects of black loading screen (BLS) and animation loading screen (ALS) during application loading on users' duration perception and satisfaction. A total of 43 volunteers were enrolled. They were asked to complete several tasks by clicking the icons of each application, such as camera or message. The duration of loading time for each application was manipulated. The participants were asked to estimate the duration, evaluate the loading speed and their satisfaction. The results showed that the estimated duration increased and the satisfaction for loading period declined along with the loading time increased. Compared with the BLS, the ALS prolonged the estimated duration, and lowered the evaluation of speed and satisfaction. We also discussed the tendency and key inflection points of the curves involving the estimated duration, speed evaluation and satisfaction with the loading time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fano resonances in bilayer phosphorene nanoring

    Science.gov (United States)

    Zhang, Rui; Wu, Zhenhua; Li, X. J.; Li, L. L.; Chen, Qiao; Li, Yun-Mei; Peeters, F. M.

    2018-05-01

    Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov–Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.

  10. Autapse-induced multiple stochastic resonances in a modular neuronal network

    Science.gov (United States)

    Yang, XiaoLi; Yu, YanHu; Sun, ZhongKui

    2017-08-01

    This study investigates the nontrivial effects of autapse on stochastic resonance in a modular neuronal network subjected to bounded noise. The resonance effect of autapse is detected by imposing a self-feedback loop with autaptic strength and autaptic time delay to each constituent neuron. Numerical simulations have demonstrated that bounded noise with the proper level of amplitude can induce stochastic resonance; moreover, the noise induced resonance dynamics can be significantly shaped by the autapse. In detail, for a specific range of autaptic strength, multiple stochastic resonances can be induced when the autaptic time delays are appropriately adjusted. These appropriately adjusted delays are detected to nearly approach integer multiples of the period of the external weak signal when the autaptic strength is very near zero; otherwise, they do not match the period of the external weak signal when the autaptic strength is slightly greater than zero. Surprisingly, in both cases, the differences between arbitrary two adjacent adjusted autaptic delays are always approximately equal to the period of the weak signal. The phenomenon of autaptic delay induced multiple stochastic resonances is further confirmed to be robust against the period of the external weak signal and the intramodule probability of subnetwork. These findings could have important implications for weak signal detection and information propagation in realistic neural systems.

  11. Smooth, cusped, and discontinuous traveling waves in the periodic fluid resonance equation

    Science.gov (United States)

    Kruse, Matthew Thomas

    The principal motivation for this dissertation is to extend the study of small amplitude high frequency wave propagation in solutions for hyperbolic conservation laws begun by A. Majda and R. Rosales in 1984. It was then that Majda and Rosales obtained equations governing the leading order wave amplitudes of resonantly interacting weakly nonlinear high frequency wave trains in the compressible Euler equations. The equations were obtained through systematic application of multiple scales and result in a pair of nonlinear acoustic wave equations coupled through a convolution operator. The extended solutions satisfy a pair of inviscid Burgers' equations coupled via a spatial convolution operator. Since then, many mathematicians have used this technique to extend the time validity of solutions to systems of equations other than the Euler equations and have arrived at similar nonlinear non-local systems. This work attempts to look at some of the basic features of the linear and nonlinear coupled and decoupled non- local equations, offering some analytic solutions and numerical insight into the phenomena associated with these equations. We do so by examining a single non-local linear equation, and then a single equation coupling a Burgers' nonlinearity with a linear convolution operator. The linear case is completely solvable. Analytic solutions are provided along with numerical results showing the fundamental properties of the linear non- local equations. In the nonlinear case some analytic solutions, including steady state profiles and traveling wave solutions, are provided along with a battery of numerical simulations. Evidence indicates the existence of attractors for solutions of the single equation with a single mode kernel. Provided resonant interaction takes place, the profile of the attractor is uniquely dependent on the kernel alone. Hamiltonian equations are obtained for both the linear and nonlinear equations with the condition that the resonant kernel must

  12. Genesis and bifurcations of unstable periodic orbits in a jet flow

    International Nuclear Information System (INIS)

    Uleysky, M Yu; Budyansky, M V; Prants, S V

    2008-01-01

    We study the origin and bifurcations of typical classes of unstable periodic orbits in a jet flow that was introduced before as a kinematic model of chaotic advection, transport and mixing of passive scalars in meandering oceanic and atmospheric currents. A method to detect and locate the unstable periodic orbits and classify them by the origin and bifurcations is developed. We consider in detail period-1 and period-4 orbits playing an important role in chaotic advection. We introduce five classes of period-4 orbits: western and eastern ballistic ones, whose origin is associated with ballistic resonances of the fourth-order, rotational ones, associated with rotational resonances of the second and fourth orders and rotational-ballistic ones associated with a rotational-ballistic resonance. It is a new kind of unstable periodic orbits that may appear in a chaotic flow with jets and/or circulation cells. Varying the perturbation amplitude, we track out the origin and bifurcations of the orbits for each class

  13. Loading Effects on Resolution in Thin Layer Chromatography and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Loading Effects on Resolution in Thin Layer Chromatography and Paper Chromatography. K Girigowda V H Mulimani. Classroom Volume 10 Issue 11 November 2005 pp 79-84 ...

  14. Pay for load demand - electricity pricing with load demand component

    International Nuclear Information System (INIS)

    Pyrko, Jurek; Sernhed, Kerstin; Abaravicius, Juozas

    2003-01-01

    This publication is part of a project called Direct and Indirect Load Control in Buildings. Peak load problems have attracted considerable attention in Sweden during last three winters, caused by a significant decrease in available reserve power, which is a consequence of political decisions and liberalisation of the electricity market. A possible way to lower peak loads, avoiding electricity shortages and reducing electricity costs both for users and utilities, is to make customers experience the price difference during peak load periods and, in this way, become more aware of their energy consumption pattern and load demand. As of January 1st 2001, one of the Swedish energy utilities - Sollentuna Energi - operating in the Stockholm area, introduced a new electricity tariff with differentiated grid fees based on a mean value of the peak load every month. This tariff was introduced for all residential customers in the service area. The objective of this study is to investigate the extent to which a Load Demand Component, included in electricity pricing, can influence energy use and load demand in residential buildings. What are the benefits and disadvantages for customers and utilities? This paper investigates the impact of the new tariff on the utility and different types of typical residential customers, making comparisons with previous tariff. Keywords Load demand, electricity pricing, tariff, residential customers, energy behaviour

  15. Resonant enhanced parallel-T topology for weak coupling wireless power transfer pickup applications

    Directory of Open Access Journals (Sweden)

    Yao Guo

    2015-07-01

    Full Text Available For the wireless power transfer (WPT system, the transfer performance and the coupling coefficient are contradictory. In this paper, a novel parallel-T resonant topology consists of a traditional parallel circuit and a T-matching network for secondary side is proposed. With this method, a boosted voltage can be output to the load, since this topology has a resonant enhancement effect, and high Q value can be obtained at a low resonant frequency and low coil inductance. This feature makes it more suitable for weak coupling WPT applications. Besides, the proposed topology shows good frequency stability and adaptability to variations of load. Experimental results show that the output voltage gain improves by 757% compared with traditional series circuit, and reaches 85% total efficiency when the coupling coefficient is 0.046.

  16. Resonance spectra of diabolo optical antenna arrays

    Directory of Open Access Journals (Sweden)

    Hong Guo

    2015-10-01

    Full Text Available A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  17. Load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Aalborg Nielsen, Henrik

    This report presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. The load for refrigeration is the sum of all cabinets in the supermarket, both low and medium temperature cabinets, and spans a period of one year. As input to the forecasting models the ambient temperature observed near the supermarket together with weather forecasts are used. Every hour...

  18. Highly Tunable Electrothermally Actuated Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated MEMS arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and results of a multi-physics finite-element model. A good agreement is found among all the results. The electrothermal voltage is applied between the anchors of the clamped-clamped MEMS arch beam, generating a current that passes through the MEMS arch beam and controls its axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to increase in its curvature, thereby increases the resonance frequencies of the structure. We show here that the first resonance frequency can increase up to twice its initial value. We show also that after some electro-thermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators.

  19. Appropriate uptake period for myocardial PET imaging with 18F-FDG after oral glucose loading

    International Nuclear Information System (INIS)

    Brink, I.; Hentschell, M.; Hoegerle, S.; Moser, E.; Nitzsche, E.U.; Mix, M.; Schindler, T.

    2003-01-01

    Aim: Identification of a rationale for the appropriate uptake period for myocardial 18 F-FDG-PET imaging of patients with and without diabetes mellitus. Methods: In a subset of 27 patients, static 2D-PET examination was performed of patients with chronic coronary artery disease and known myocardial infarction. The patients fasted (at least 4 h) before examination. 18 F-FDG (330 ± 20 MBq) was injected intravenously. The image quality was semiquantitativly determined by ROI-analysis and the myocardium-to-blood pool activity ratio (M/B) was calculated. I.) Scans 30, 60, and 90 min p. i. of 10 non-diabetic patients (60 g oral glucose loading one hour before FDG-injection, low-dose intravenous insulin bolus if necessary). II.) Scans 30, 60, and 90 min p. i. of 10 patients with known non-insulin dependent diabetes (20 g glucose, insulin bolus). III.) Scans 90 min p. i. of 7 patients with known non-insulin dependent diabetes and elevated fasting serum glucose level (140-200 mg/dl; insulin bolus, no glucose). Results: I.) The M/B ratio significantly increases in non-diabetic patients with the uptake time (30 min 1.95 ± 0.20; 60 min 2.96 ± 0.36; 90 min 3.78 ± 0.43). II.) In patients with non-insulin dependent diabetes the M/B ratio also significantly increases with uptake time. Compared to non-diabetic patients group II reached smaller M/B values (30 min 1.56 ± 0.10; 60 min 2.15 ± 0.14; 90 min 2.71 ± 0.19). III.) In the group of patients with elevated fasting serum glucose level (who only got insulin but no glucose loading) the M/B activity ratio 90 min p. i. was clearly inferior compared with diabetic patients after oral glucose loading and insulin administration (M/B 2.71 ± 0.19 versus 2.16 ± 0.07). Conclusions: In static myocardial viability PET studies with 18 F-FDG an uptake time of 90 min yields image quality superior to that obtained after shorter uptake time. (orig.) [de

  20. Investigation of a Resonant dc–dc Converter for Light Rail Transportation Applications

    Directory of Open Access Journals (Sweden)

    Bor-Ren Lin

    2018-04-01

    Full Text Available A high efficiency dc–dc converter is studied for light rail transportation applications on DC microgrid systems. The adopted structure includes two series-connected resonant circuits with single isolated transformer from input 750 V to output 48 V. Two half-bridge resonant circuits and one voltage balance capacitor are used to reduce voltage rating of active devices and to realize split voltages balance. Two series resonant circuits are connected with input-series by single transformer to reduce primary root-mean-square currents. Therefore, power devices with low voltage rating are selected in studied circuit to reduce power loss on sower devices and transformer winding of the isolated transformer. Frequency control approach is adopted to adjust load voltage under different voltage condition and current variations. Since the equivalent resonant tank of the studied circuit is activated under inductive load, active devices are easily operated at zero-voltage switching over wide voltage and current operation range. The feasibility of the studied circuit has been verified with a 1 kW prototype.

  1. The reliability of the Extra Load Index as a measure of relative load carriage economy.

    Science.gov (United States)

    Hudson, Sean; Cooke, Carlton; Lloyd, Ray

    2017-09-01

    The aim of this study was to measure the reliability of the extra load index (ELI) as a method for assessing relative load carriage economy. Seventeen volunteers (12 males, 5 females) performed walking trials at 3 km·h -1 , 6 km·h -1 and a self-selected speed. Trial conditions were repeated 7 days later to assess test-retest reliability. Trials involved four 4-minute periods of walking, each separated by 5 min of rest. The initial stage was performed unloaded followed in a randomised order by a second unloaded period and walking with backpacks of 7 and 20 kg. Results show ELI values did not differ significantly between trials for any of the speeds (p = 0.46) with either of the additional loads (p = 0.297). The systematic bias, limits of agreement and coefficients of variation were small in all trial conditions. We conclude the ELI appears to be a reliable measure of relative load carriage economy. Practitioner Summary: This paper demonstrates that the ELI is a reliable measure of load carriage economy at a range of walking speeds with both a light and heavy load. The ELI, therefore, represents a useful tool for comparing the relative economy associated with different load carriage systems.

  2. Ferrite-guided cyclotron-resonance maser

    International Nuclear Information System (INIS)

    Jerby, Eli; Kesar, A.; Aharony, A.; Breitmeier, G.

    2002-01-01

    The concept of a cyclotron-resonance maser (CRM) with a ferrite loading incorporated in its waveguide is proposed. The CRM interaction occurs between the rotating electron beam and the em wave propagating along a longitudinally magnetized ferrite medium. The ferrite anisotropic permeability resembles the CRM susceptibility in many aspects, and particularly in their similar response to the axial magnetic field (the ferrite susceptibility can be regarded as a passive analog of the active CRM interaction). The ferrite loading slows down the phase velocity of the em wave and thus the axial (Weibel) mechanism of the CRM interaction dominates. The ferrite loading enables also a mechanism of spectral tunability for CRM's. The ferrite loading is proposed, therefore, as a useful ingredient for high-power CRM devices. A linear model of the combined ferrite-guided CRM interaction reveals its useful features. Future schemes may also incorporate ferrite sections functioning as isolators, gyrators, or phase shifters within the CRM device itself for selective suppression of backward waves and spurious oscillations, and for gain and efficiency enhancement

  3. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza

    2018-02-01

    This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton's principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy's third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.

  4. On the Stability of Periodic Mercury-type Rotations

    Science.gov (United States)

    Churkina, Tatyana E.; Stepanov, Sergey Y.

    2017-12-01

    We consider the stability of planar periodic Mercury-type rotations of a rigid body around its center of mass in an elliptical orbit in a central Newtonian field of forces. Mercurytype rotations mean that the body makes 3 turns around its center of mass during 2 revolutions of the center of mass in its orbit (resonance 3:2). These rotations can be 1) symmetrical 2π- periodic, 2) symmetrical 4π-periodic and 3) asymmetrical 4π-periodic. The stability of rotations of type 1) was investigated by A.P.Markeev. In our paper we present a nonlinear stability analysis for some rotations of types 2) and 3) in 3rd- and 4th-order resonant cases, in the nonresonant case and at the boundaries of regions of linear stability.

  5. Axial loaded MRI of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Saifuddin, A. E-mail: asaifuddin@aol.com; Blease, S.; MacSweeney, E

    2003-09-01

    Magnetic resonance imaging is established as the technique of choice for assessment of degenerative disorders of the lumbar spine. However, it is routinely performed with the patient supine and the hips and knees flexed. The absence of axial loading and lumbar extension results in a maximization of spinal canal dimensions, which may in some cases, result in failure to demonstrate nerve root compression. Attempts have been made to image the lumbar spine in a more physiological state, either by imaging with flexion-extension, in the erect position or by using axial loading. This article reviews the literature relating to the above techniques.

  6. Stateful load balancing for parallel stream processing

    DEFF Research Database (Denmark)

    Guo, Qingsong; Zhou, Yongluan

    2018-01-01

    -objective optimization problem, namely Minimum-Cost-Load-Balance (MCLB). We address MCLB with two approximate algorithms by a certain relaxation of the objectives: (1) a greedy algorithm ELB performs load balancing eagerly but relaxes the objective of load imbalance to a range; and (2) a periodic algorithm CLB aims...

  7. Triply coupled vibrational band gap in a periodic and nonsymmetrical axially loaded thin-walled Bernoulli-Euler beam including the warping effect

    International Nuclear Information System (INIS)

    Yu Dianlong; Fang Jianyu; Cai Li; Han Xiaoyun; Wen Jihong

    2009-01-01

    The propagation of triply coupled vibrations in a periodic, nonsymmetrical and axially loaded thin-walled Bernoulli-Euler beam composed of two kinds of materials is investigated with the transfer matrix method. The cross-section of the beam lacks symmetrical axes, and bending vibrations in the two perpendicular directions are coupled with torsional vibrations. Furthermore, the effect of warping stiffness is included. The band structures of the periodic beam, both including and excluding the warping effect, are obtained. The frequency response function of the finite periodic beam is simulated with the finite element method. These simulations show large vibration-based attenuation in the frequency range of the gap, as expected. By comparing the band structure of the beam with plane wave expansion method calculations that are available in the literature, one finds that including the warping effect leads to a more accurate simulation. The effects of warping stiffness and axial force on the band structure are also discussed.

  8. Inclined asymmetric librations in exterior resonances

    Science.gov (United States)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  9. Evaluation of load rejection to house load test at 50% power for UCN 3

    International Nuclear Information System (INIS)

    Lee, Chang Gyun; Sohn, Suk Whun; Sohn, Jong Joo; Seo, Jong Tae; Lee, Sang Keun; Kim, Yong Sung; Nam, Kyu Won; Jung, Yang Mook; Chae, Kyeong Sik; Koh, Bum Jae; Oh, Chul Sung; Park, Hee Chool

    1998-01-01

    The Load Rejection to House Load test at 50% power was successfully performed during the UCN 3 PAT period. In this test, all plant control systems automatically controlled the plant from 50% power to house load operation mode. The KISPAC code, which was used in the performance analysis during the design process of UCN 3 and 4, predictions of the test agreed with the measured data demonstrating the validity of the code as well as completeness of the plant design

  10. RPE vs. Percentage 1RM Loading in Periodized Programs Matched for Sets and Repetitions

    Science.gov (United States)

    Helms, Eric R.; Byrnes, Ryan K.; Cooke, Daniel M.; Haischer, Michael H.; Carzoli, Joseph P.; Johnson, Trevor K.; Cross, Matthew R.; Cronin, John B.; Storey, Adam G.; Zourdos, Michael C.

    2018-01-01

    Purpose: To investigate differences between rating of perceived exertion (RPE) and percentage one-repetition maximum (1RM) load assignment in resistance-trained males (19–35 years) performing protocols with matched sets and repetitions differentiated by load-assignment. Methods: Participants performed squats then bench press 3x/weeks in a daily undulating format over 8-weeks. Participants were counterbalanced by pre-test 1RM then assigned to percentage 1RM (1RMG, n = 11); load-assignment via percentage 1RMs, or RPE groups (RPEG, n = 10); participant-selected loads to reach target RPE ranges. Ultrasonography determined pre and post-test pectoralis (PMT), and vastus lateralis muscle thickness at 50 (VLMT50) and 70% (VLMT70) femur-length. Results: Bench press (1RMG +9.64 ± 5.36; RPEG + 10.70 ± 3.30 kg), squat (1RMG + 13.91 ± 5.89; RPEG + 17.05 ± 5.44 kg) and their combined-total 1RMs (1RMG + 23.55 ± 10.38; RPEG + 27.75 ± 7.94 kg) increased (p 0.05). Magnitude-based inferences revealed 79, 57, and 72% chances of mean small effect size (ES) advantages for squat; ES 90% confidence limits (CL) = 0.50 ± 0.63, bench press; ES 90% CL = 0.28 ± 0.73, and combined-total; ES 90% CL = 0.48 ± 0.68 respectively, in RPEG. There were 4, 14, and 6% chances 1RMG had a strength advantage of the same magnitude, and 18, 29, and 22% chances, respectively of trivial differences between groups. Conclusions: Both loading-types are effective. However, RPE-based loading may provide a small 1RM strength advantage in a majority of individuals. PMID:29628895

  11. Non-monotonic resonance in a spatially forced Lengyel-Epstein model

    Energy Technology Data Exchange (ETDEWEB)

    Haim, Lev [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Oncology, Soroka University Medical Center, Beer-Sheva 84101 (Israel); Hagberg, Aric [Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Meron, Ehud [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990 (Israel)

    2015-06-15

    We study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. We further show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcation can be reversed. We attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.

  12. LDV survey of cavitation and resonance effect on the precessing vortex rope dynamics in the draft tube of Francis turbines

    Science.gov (United States)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2016-11-01

    The large-scale penetration of the electrical grid by intermittent renewable energy sources requires a continuous operating range extension of hydropower plants. This causes the formation of unfavourable flow patterns in the draft tube of turbines and pump-turbines. At partial load operation, a precessing cavitation vortex rope is formed at the Francis turbine runner outlet, acting as an excitation source for the hydraulic system. In case of resonance, the resulting high-amplitude pressure pulsations can put at risk the stability of the machine and of the electrical grid to which it is connected. It is therefore crucial to understand and accurately simulate the underlying physical mechanisms in such conditions. However, the exact impact of cavitation and hydro-acoustic resonance on the flow velocity fluctuations in the draft tube remains to be established. The flow discharge pulsations expected to occur in the draft tube in resonance conditions have for instance never been verified experimentally. In this study, two-component Laser Doppler Velocimetry is used to investigate the axial and tangential velocity fluctuations at the runner outlet of a reduced scale physical model of a Francis turbine. The investigation is performed for a discharge equal to 64 % of the nominal value and three different pressure levels in the draft tube, including resonance and cavitation-free conditions. Based on the convective pressure fluctuations induced by the vortex precession, the periodical velocity fluctuations over one typical precession period are recovered by phase averaging. The impact of cavitation and hydro-acoustic resonance on both axial and tangential velocity fluctuations in terms of amplitude and phase shift is highlighted for the first time. It is shown that the occurrence of resonance does not have significant effects on the draft tube velocity fields, suggesting that the synchronous axial velocity fluctuations are surprisingly negligible compared to the velocity

  13. Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons

    Science.gov (United States)

    Nikitin, A. Yu.; Guinea, F.; Garcia-Vidal, F. J.; Martin-Moreno, L.

    2012-02-01

    Resonance diffraction in the periodic array of graphene microribbons is theoretically studied following a recent experiment [L. Ju , Nature Nanotech.1748-338710.1038/nnano.2011.146 6, 630 (2011)]. Systematic studies over a wide range of parameters are presented. It is shown that a much richer resonant picture would be observable for higher relaxation times of charge carriers: More resonances appear and transmission can be totally suppressed. The comparison with the absorption cross-section of a single ribbon shows that the resonant features of the periodic array are associated with leaky plasmonic modes. The longest-wavelength resonance provides the highest visibility of the transmission dip and has the strongest spectral shift and broadening with respect to the single-ribbon resonance, due to collective effects.

  14. dc analysis and design of zero-voltage-switched multi-resonant converters

    Science.gov (United States)

    Tabisz, Wojciech A.; Lee, Fred C.

    Recently introduced multiresonant converters (MRCs) provide zero-voltage switching (ZVS) of both active and passive switches and offer a substantial reduction of transistor voltage stress and an increase of load range, compared to their quasi-resonant converter counterparts. Using the resonant switch concept, a simple, generalized analysis of ZVS MRCs is presented. The conversion ratio and voltage stress characteristics are derived for basic ZVS MRCs, including buck, boost, and buck/boost converters. Based on the analysis, a design procedure that optimizes the selection of resonant elements for maximum conversion efficiency is proposed.

  15. The investigations of nanoclusters and micron-sized periodic structures created at the surface of the crystal and amorphous silica by resonant CO2 laser irradiation

    Directory of Open Access Journals (Sweden)

    Mukhamedgalieva A.F.

    2017-01-01

    Full Text Available The creation of nanoclasters and micrometer sized periodical structures at the surface of silica (crystal quartz and fused quartz by action of pulsed CO2 laser radiation (pulse energy of 1 J, pulse time of 70 ns have been investigated. The laser action on the surface of samples lead to appearance of two kind of structures – periodical micron-sized structures with the period length close to wave length of CO2 laser irradiation and nanoclusters with size close to 50-100 nanometers. This creation connects with the intensive ablation of matter at the maxima of standing waves which are a results of the interference of falling and surfaces waves. This connects with the resonant absorption of infrared laser radiation by silicate minerals.

  16. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators.

    Science.gov (United States)

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano

    2016-04-08

    We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.

  17. How periodic are terahertz quantum cascade lasers?

    International Nuclear Information System (INIS)

    Kubis, T; Vogl, P

    2009-01-01

    We apply a novel non-equilibrium Green's function method for open quantum devices to analyze quantum cascade lasers. We find the carrier distribution in typical resonant phonon THz-QCLs to develop a periodicity that differs from the geometric periodicity of the QCL. We propose a design improvement that thermalizes electrons at threshold bias and thereby pins the electron density to the QCL periodicity.

  18. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators

    Directory of Open Access Journals (Sweden)

    Sadeque Reza Khan

    2016-08-01

    Full Text Available High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8% than circular resonators (78.43% when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW to the load than the square coils (396 mW under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  19. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.

    Science.gov (United States)

    Khan, Sadeque Reza; Choi, GoangSeog

    2016-08-03

    High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  20. Double Fano resonances in plasmon coupling nanorods

    International Nuclear Information System (INIS)

    Liu, Fei; Jin, Jie

    2015-01-01

    Fano resonances are investigated in nanorods with symmetric lengths and side-by-side assembly. Single Fano resonance can be obtained by a nanorod dimer, and double Fano resonances are shown in nanorod trimers with side-by-side assembly. With transverse plasmon excitation, Fano resonances are caused by the destructive interference between a bright superradiant mode and dark subradiant modes. The bright mode originates from the electric plasmon resonance, and the dark modes originate from the magnetic resonances induced by near-field inter-rod coupling. Double Fano resonances result from double dark modes at different wavelengths, which are induced and tuned by the asymmetric gaps between the adjacent nanorods. Fano resonances show a high figure of merit and large light extinction in the periodic array of assembled nanorods, which can potentially be used in multiwavelength sensing in the visible and near-infrared regions. (paper)

  1. Evaluation of nuclear magnetic resonance spectroscopy variability

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Felipe Rodrigues; Salmon, Carlos Ernesto Garrido, E-mail: garrido@ffclrp.usp.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filisofia, Ciencias e Letras; Otaduy, Maria Concepcion Garcia [Universidade de Sao Paulo (FAMUS/USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Departamento de Radiologia

    2014-11-01

    Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)

  2. SEASONAL CHANGES IN PHOSPHORUS LOAD FLOWING OUT OF SMALL AGRICULTURAL CATCHMENTS

    Directory of Open Access Journals (Sweden)

    Krzysztof Pulikowski

    2014-12-01

    Full Text Available In this article distribution of monthly phosphorus loads flowing out of two agricultural catchments which are located in different physiographic conditions of Lower Silesia was analysed. Loads of phosphorus runoff from the catchment located in the piedmont part of Lower Silesia in each month rarely exceed 0.10 kg P ∙ ha-1. The size of annual load is determined by loads obtained in two months of early spring. Much lower loads obtained for lowland catchment, located near Wroclaw. Values ​​calculated for each month rarely exceed the value of 0.01 kg P ∙ ha-1. Culmination of loads bringing away is a bit more extended in a time compared to the catchment located on Sudety Mts. Foreland. Much higher loads are observed during the period from January to April – this period has a major impact on the size of phosphorus load that flows out from this catchment during whole hydrological year. The obtained results clearly indicate that the threat of watercourses and water reservoirs supply in phosphorus compounds from agricultural land is periodic and it is particularly high during early spring. Phosphorus load flowing out from the analyzed catchments is very diverse. From facility located on Sudety Foothill in hydrological year, during research period, flowed away average 0.81 kg P ∙ ha-1. Significantly lower values were obtained for second facility and it was average 0.15 kg P ∙ ha-1 during a year. The size of load discharged during a year is largely determined by amount of phosphorus load flowing out during winter half of the year (from XI to IV. In case of foothill catchment in this period flowed out average 0.56 kg P ∙ ha-1, which presents 69% of annual load and in lowland catchment this percentage was even slightly higher and was 73%.

  3. Timber joints under long-term loading

    DEFF Research Database (Denmark)

    Feldborg, T.; Johansen, M.

    This report describes tests and results from stiffness and strength testing of splice joints under long-term loading. During two years of loading the spicimens were exposed to cyclically changing relative humidity. After the loading period the specimens were short-term tested. The connectors were...... integral nail-plates and nailed steel and plywood gussets. The report is intended for designers and researchers in timber engineering....

  4. Using periodic orbits to compute chaotic transport rates between resonance zones

    Science.gov (United States)

    Sattari, Sulimon; Mitchell, Kevin A.

    2017-11-01

    Transport properties of chaotic systems are computable from data extracted from periodic orbits. Given a sufficient number of periodic orbits, the escape rate can be computed using the spectral determinant, a function that incorporates the eigenvalues and periods of periodic orbits. The escape rate computed from periodic orbits converges to the true value as more and more periodic orbits are included. Escape from a given region of phase space can be computed by considering only periodic orbits that lie within the region. An accurate symbolic dynamics along with a corresponding partitioning of phase space is useful for systematically obtaining all periodic orbits up to a given period, to ensure that no important periodic orbits are missing in the computation. Homotopic lobe dynamics (HLD) is an automated technique for computing accurate partitions and symbolic dynamics for maps using the topological forcing of intersections of stable and unstable manifolds of a few periodic anchor orbits. In this study, we apply the HLD technique to compute symbolic dynamics and periodic orbits, which are then used to find escape rates from different regions of phase space for the Hénon map. We focus on computing escape rates in parameter ranges spanning hyperbolic plateaus, which are parameter intervals where the dynamics is hyperbolic and the symbolic dynamics does not change. After the periodic orbits are computed for a single parameter value within a hyperbolic plateau, periodic orbit continuation is used to compute periodic orbits over an interval that spans the hyperbolic plateau. The escape rates computed from a few thousand periodic orbits agree with escape rates computed from Monte Carlo simulations requiring hundreds of billions of orbits.

  5. A numerical model for the determination of periodic solutions of pipes subjected to non-conservative loads

    International Nuclear Information System (INIS)

    Velloso, P.A.; Galeao, A.C.

    1989-05-01

    This paper deals with nonlinear vibrations of pipes subjected to non-conservative loads. Periodic solutions of these problems are determined using a variational approach based on Hamilton's Principle combined with a Fourier series expansion to describe the displacement field time dependence. A finite element model which utilizes Hemite's cubic interpolation for both axial and transversal displacement amplitudes is used. This model is applied to the problem of a pipe subjected to a tangential and a normal follower force. The numerical results obtained with this model are compared with the corespondent solutions determined using a total lagrangian description for the Principle of Virtual Work, coupled with Newmark's step-by-step integration procedure. It is shown that for small to moderate displacement amplitudes the one-term Fourier series approximation compares fairly well with the predicted solution. For large displacements as least a two-term approximation should be utilized [pt

  6. Design guidelines for flexural wave attenuation of slender beams with local resonators

    International Nuclear Information System (INIS)

    Liu, Yaozong; Yu, Dianlong; Li, Li; Zhao, Honggang; Wen, Jihong; Wen, Xisen

    2007-01-01

    The complex band structures and attenuation spectra of flexural waves in slender beams with periodically mounted local resonators are investigated with transfer matrix method. It is noteworthy that the frequency range and attenuation coefficient of the locally resonant gap become larger in complex band structures if larger resonators were used. But given the total add-on mass of resonators, the attenuation spectra of finite beams with large but few resonators do not demonstrate such phenomena because the attenuation needs several periods to establish. So with the view of application, a large number of small local resonators widely spread along the beam are preferred given the total add-on mass to the beam

  7. Soft switching resonant converter with duty-cycle control in DC micro-grid system

    Science.gov (United States)

    Lin, Bor-Ren

    2018-01-01

    Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.

  8. Solidly mounted resonators aging under harsh environmental conditions

    International Nuclear Information System (INIS)

    Ivira, B; Fillit, R Y; Ndagijimana, F; Benech, Ph; Boussey, J; Parat, G; Ancey, P

    2006-01-01

    A contribution to reliability studies of Solidly Mounted Resonators (SMR) submitted to harsh environments such as temperature and humidity is presented. Electrical, structural and chemical monitoring of representative parameters is performed by means of RF, DC characterizations and also X-ray diffraction coupled to X-fluorescence to assess aging in microstructures. Results indicate that humidity affects samples stronger than high temperature. From viewpoint of robustness, non-negligible effects of SiO 2 mass-loading on antiresonance and resonance frequencies are reported. Drifts of parameters for a lonely resonator and filter transmission are both in good accordance. Finally, the need of a full sheet passivation layer is demonstrated in order to protect metals and Aluminum Nitride (AlN) against oxidation and pollutant compounds respectively

  9. Quantum heat engine with coupled superconducting resonators

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.

    2017-01-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....

  10. Probabilistic model of bridge vehicle loads in port area based on in-situ load testing

    Science.gov (United States)

    Deng, Ming; Wang, Lei; Zhang, Jianren; Wang, Rei; Yan, Yanhong

    2017-11-01

    Vehicle load is an important factor affecting the safety and usability of bridges. An statistical analysis is carried out in this paper to investigate the vehicle load data of Tianjin Haibin highway in Tianjin port of China, which are collected by the Weigh-in- Motion (WIM) system. Following this, the effect of the vehicle load on test bridge is calculated, and then compared with the calculation result according to HL-93(AASHTO LRFD). Results show that the overall vehicle load follows a distribution with a weighted sum of four normal distributions. The maximum vehicle load during the design reference period follows a type I extremum distribution. The vehicle load effect also follows a weighted sum of four normal distributions, and the standard value of the vehicle load is recommended as 1.8 times that of the calculated value according to HL-93.

  11. Beam loading effects in a standing wave accelerator structure

    International Nuclear Information System (INIS)

    Arai, Shigeaki; Katayama, Takeshi; Tojyo, Eiki; Yoshida, Katsuhide.

    1978-11-01

    The steady-state beam loading effects on the accelerating field in the disk-loaded structure of a standing wave type have been systematically studied. The electron bunch from a 15 MeV electron linac is injected at arbitrary phase of the external driving field in the test structure. The change of the phase shift of the accelerating field and that of the stored energy are measured as a function of the phase on which the bunch rides. The former shows drastic change when the bunch is around the crest of the driving field and when the beam loading is heavy, whereas the latter varies sinusoidally for any beam loading. The resonant frequency shift of the structure due to beam loading is estimated by using the measured results. All the experimental results are well explained by the normal mode analysis of the microwave cavity theory. (author)

  12. Combined resonant tank capacitance and pulse frequency modulation control for ZCS-SR inverter-fed high voltage DC power supply

    International Nuclear Information System (INIS)

    Lee, S S; Iqbal, S; Kamarol, M

    2011-01-01

    Conventional pulse frequency modulated (PFM) zero current switching (ZCS) series resonant (SR) inverter fed high voltage dc power supplies have nearly zero switching loss. However, they have limitations of poor controllability at light loads and large output voltage ripple at low switching frequencies. To address these problems, this paper proposes a combined resonant tank capacitance and pulse frequency modulation based control approach. For the realization of the proposed control approach, the tank circuit of the resonant inverter is made up of several resonant capacitors that are switched into or out of the tank circuit by electromechanical switches. The output voltage of the converter is regulated by digitally modulating the resonant tank capacitance and narrowly varying the switching frequency. The proposed control scheme has several features, namely a wide range of controllability even at light loads, less output voltage ripple, and less current stress on the inverter's power switches at light loads. Therefore, the proposed control approach alleviates most of the problems associated with conventional PFM. Experimental results obtained from a scaled down laboratory prototype are presented to verify the effectiveness of the proposed system.

  13. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    Science.gov (United States)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  14. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  15. Simultaneous measurement of temperature and tensile loading using superstructure FBGs developed by laser direct writing of periodic on-fiber metallic films

    International Nuclear Information System (INIS)

    Alemohammad, Hamidreza; Toyserkani, Ehsan

    2009-01-01

    This paper addresses the development of superstructure fiber Bragg gratings (FBGs) by laser-assisted direct writing of on-fiber metallic films. A novel laser direct write method is characterized to fabricate periodic films of silver nanoparticles on the non-planar surface of as-fabricated FBGs. Silver films with a thickness of 9 µm are fabricated around a Bragg grating optical fiber. The performance of the superstructure FBG is studied by applying temperature and tensile stress on the fiber. An opto-mechanical model is also developed to predict the optical response of the synthesized superstructure FBG under thermal and structural loadings. The results show that the reflectivity of sidebands in the reflection spectrum can be tuned up to 20% and 37% under thermal and structural loadings, respectively. In addition, the developed superstructure FBG is used for simultaneous measurement of force and temperature to eliminate the inherent limitation of regular FBGs in multi-parameter sensing

  16. The ferro-resonance, a phenomenon sometimes chaotic

    Energy Technology Data Exchange (ETDEWEB)

    Grison, P; Kieny, J C; Riouai, M [Electricite de France (EDF), 92 - Clamart (France)

    1996-04-01

    The ferro-resonance is a resonance phenomenon involving the saturation of the magnetic core in transformers; in particular, it is generated by the energization of that equipment during a power system restoration. It exhibits classical periodic regimes, but also more complex ones, as harmonic, pseudo-periodic, even chaotic, which have been measured on site or during laboratory tests. The mathematical analysis of this phenomenon belongs to the theory of bifurcations; the use of a program solving non linear systems may lead to a better understanding of the observed overvoltages. (authors). 14 figs., 2 photos.

  17. How periodic are terahertz quantum cascade lasers?

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, T; Vogl, P, E-mail: tillmann.kubis@wsi.tum.d [Walter Schottky Institute, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany)

    2009-11-15

    We apply a novel non-equilibrium Green's function method for open quantum devices to analyze quantum cascade lasers. We find the carrier distribution in typical resonant phonon THz-QCLs to develop a periodicity that differs from the geometric periodicity of the QCL. We propose a design improvement that thermalizes electrons at threshold bias and thereby pins the electron density to the QCL periodicity.

  18. Nuclear magnetic resonance method and apparatus

    International Nuclear Information System (INIS)

    Burl, M.; Young, I.R.

    1984-01-01

    A method and apparatus for determining the rate of flow of a liquid in a selected region of a body by nuclear magnetic resonance techniques are described. The method includes a sequence of applying a first magnetic pulse effective to excite nuclear magnetic resonance of a chosen nucleus within the liquid preferentially in a slice of the body which includes the selected region. A period of time (tsub(D)) is waited and then a second magnetic pulse is applied which is effective to excite nuclear magnetic resonance of the nuclei preferentially in the slice, and the free induction decay signal is measured. The whole sequence is repeated for different values of the period of time (tsub(D)). The variation in the value of the measured signal with tsub(D) is then related to the rate of flow of the liquid through the slice. (author)

  19. Evaluation of Load Rejection to house load test at 50% power for UCN 3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Gyun; Sohn, Suk Whun; Sohn, Jong Joo; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Kim, Yong Sung; Nam, Kyu Won; Jung, Yang Mook; Chae, Kyeong Sik; Koh, Bum Jae; Oh, Chul Sung; Park, Hee Chool [Korea Electric Power Corporation, Taejon (Korea, Republic of)

    1999-12-31

    The Load Rejection to House Load test at 50% power was successfully performed during the UCN 3 PAT period. In this test, all plant control systems automatically controlled the plant from 50% power to house load operation mode. The KISPAC code, which was used in the performance analysis during the design process of UCN 3 and 4, predictions of the test agreed with the measured data demonstrating the validity of the code as well as the completeness of the plant design. 3 refs., 8 figs., 1 tab. (Author)

  20. Evaluation of Load Rejection to house load test at 50% power for UCN 3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Gyun; Sohn, Suk Whun; Sohn, Jong Joo; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Kim, Yong Sung; Nam, Kyu Won; Jung, Yang Mook; Chae, Kyeong Sik; Koh, Bum Jae; Oh, Chul Sung; Park, Hee Chool [Korea Electric Power Corporation, Taejon (Korea, Republic of)

    1998-12-31

    The Load Rejection to House Load test at 50% power was successfully performed during the UCN 3 PAT period. In this test, all plant control systems automatically controlled the plant from 50% power to house load operation mode. The KISPAC code, which was used in the performance analysis during the design process of UCN 3 and 4, predictions of the test agreed with the measured data demonstrating the validity of the code as well as the completeness of the plant design. 3 refs., 8 figs., 1 tab. (Author)

  1. Formation and coupling of band gaps in a locally resonant elastic system comprising a string with attached resonators

    International Nuclear Information System (INIS)

    Xiao Yong; Mace, Brian R.; Wen Jihong; Wen Xisen

    2011-01-01

    A uniform string with periodically attached spring-mass resonators represents a simple locally resonant continuous elastic system whose band gap mechanisms are basic to more general and complicated problems. In this Letter, analytical models with explicit formulations are provided to understand the band gap mechanisms of such a system. Some interesting phenomena are demonstrated and discussed, such as asymmetric/symmetric attenuation behavior within a resonance gap, and the realization of a super-wide gap due to exact coupling between Bragg and resonance gaps. In addition, some approximate formulas for the evaluation of low frequency resonance gaps are derived using an approach different from existing investigations. - Research highlights: → We examine band gaps in a special one-dimensional locally resonant system. → Bragg and resonance gaps co-exist. → Explicit formulas for locating band edges are derived. → Exact physical models are used to clarify the band gap formation mechanisms. → Coupling between Bragg and resonance gaps leads to a super-wide gap.

  2. Chaos-induced resonant effects and its control

    International Nuclear Information System (INIS)

    Zambrano, Samuel; Casado, Jose M.; Sanjuan, Miguel A.F.

    2007-01-01

    This Letter shows that a suitable chaotic signal can induce resonant effects analogous to those observed in presence of noise in a bistable system under periodic forcing. By constructing groups of chaotic and random perturbations with similar one-time statistics we show that in some cases chaos and noise induce indistinguishable resonant effects. This reinforces the conjecture by which in some situations where noise is supposed to play a key role maybe chaos is the key ingredient. Here we also show that the presence of a chaotic signal as the perturbation leading to a resonance opens new control perspectives based on our ability to stabilize chaos in different periodic orbits. A discussion of the possible implications of these facts is also presented at the end of the Letter

  3. Dynamic control of a bistable wing under aerodynamic loading

    International Nuclear Information System (INIS)

    Bilgen, Onur; Arrieta, Andres F; Friswell, Michael I; Hagedorn, Peter

    2013-01-01

    The aerodynamic evaluation of a dynamic control technique applied to a bistable unsymmetrical cross-ply composite plate with surface bonded piezoelectric actuators is presented. The plate is clamped on one end to form a low-aspect-ratio wing. A previously proposed dynamic control method, utilizing bending resonance in different stable equilibrium positions, is used to induce snap-through between the two equilibrium states. Compared to quasi-static actuation, driving the bistable plate near resonance using surface bonded piezoelectric materials requires, theoretically, a lower peak excitation voltage to achieve snap-through. First, a set of extensive wind tunnel experiments are conducted on the passive bistable wing to understand the change in the dynamic behavior under various aerodynamic conditions. The passive wing demonstrated sufficient bending stiffness to sustain its shape under aerodynamic loading while preserving the desired bistable behavior. Next, by the use of the resonant control technique, the plate is turned into an effectively monostable structure, or alternatively, both stable equilibrium positions can be reached actively from the other stable equilibrium. Dynamic forward and reverse snap-through is demonstrated in the wind tunnel which shows both the effectiveness of the piezoelectric actuation as well as the load carrying capability of both states of the bistable wing. (paper)

  4. Novel composite resonance DC-DC converter with voltage doubler rectifier

    OpenAIRE

    Kato, Hisatsugu; Matsuo, Hirohumi; Eguchi, Masaki; Sakamoto, Yukitaka; Nakaishi, Masaki

    2009-01-01

    This paper deals with a novel composite resonance DC-DC converter with the voltage doubler rectifier, which is developed to be applied to the power conditioner of the photovoltaic generation system. The proposed DC-DC converter has the current and voltage resonance functions. Therefore, the output voltage regulation can be achieved for the large variations of the input voltage and load. Also, this converter has the high power efficiency. The maximum power efficiency 96.1% can be realized.

  5. Resonance in a Cone-Topped Tube

    Directory of Open Access Journals (Sweden)

    Angus Cheng-Huan Chia

    2011-06-01

    Full Text Available The relationship between ratio of the upper opening diameter of a cone-topped cylinder to the cylinder diameter,and the ratio of the length of the air column to resonant period was examined. Plastic cones with upper openings ranging from 1.3 cm to 3.6 cm and tuning forks with frequencies ranging from 261.6 Hz to 523.3 Hz were used. The transition from a standing wave in a cylindrical column to a Helmholtz-type resonance in a resonant cavity with a narrow opening was observed.

  6. Memory effects on stochastic resonance

    Science.gov (United States)

    Neiman, Alexander; Sung, Wokyung

    1996-02-01

    We study the phenomenon of stochastic resonance (SR) in a bistable system with internal colored noise. In this situation the system possesses time-dependent memory friction connected with noise via the fluctuation-dissipation theorem, so that in the absence of periodic driving the system approaches the thermodynamic equilibrium state. For this non-Markovian case we find that memory usually suppresses stochastic resonance. However, for a large memory time SR can be enhanced by the memory.

  7. Analysis and development of fourth order LCLC resonant based capacitor charging power supply for pulse power applications.

    Science.gov (United States)

    Naresh, P; Hitesh, C; Patel, A; Kolge, T; Sharma, Archana; Mittal, K C

    2013-08-01

    A fourth order (LCLC) resonant converter based capacitor charging power supply (CCPS) is designed and developed for pulse power applications. Resonant converters are preferred t utilize soft switching techniques such as zero current switching (ZCS) and zero voltage switching (ZVS). An attempt has been made to overcome the disadvantages in 2nd and 3rd resonant converter topologies; hence a fourth order resonant topology is used in this paper for CCPS application. In this paper a novel fourth order LCLC based resonant converter has been explored and mathematical analysis carried out to calculate load independent constant current. This topology provides load independent constant current at switching frequency (fs) equal to resonant frequency (fr). By changing switching condition (on time and dead time) this topology has both soft switching techniques such as ZCS and ZVS for better switching action to improve the converter efficiency. This novel technique has special features such as low peak current through switches, DC blocking for transformer, utilizing transformer leakage inductance as resonant component. A prototype has been developed and tested successfully to charge a 100 μF capacitor to 200 V.

  8. Design of Asymmetrical Relay Resonators for Maximum Efficiency of Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Bo-Hee Choi

    2016-01-01

    Full Text Available This paper presents a new design method of asymmetrical relay resonators for maximum wireless power transfer. A new design method for relay resonators is demanded because maximum power transfer efficiency (PTE is not obtained at the resonant frequency of unit resonator. The maximum PTE for relay resonators is obtained at the different resonances of unit resonator. The optimum design of asymmetrical relay is conducted by both the optimum placement and the optimum capacitance of resonators. The optimum placement is found by scanning the positions of the relays and optimum capacitance can be found by using genetic algorithm (GA. The PTEs are enhanced when capacitance is optimally designed by GA according to the position of relays, respectively, and then maximum efficiency is obtained at the optimum placement of relays. The capacitance of the second resonator to nth resonator and the load resistance should be determined for maximum efficiency while the capacitance of the first resonator and the source resistance are obtained for the impedance matching. The simulated and measured results are in good agreement.

  9. Investigation of a delayed feedback controller of MEMS resonators

    KAUST Repository

    Masri, Karim M.

    2013-08-04

    Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller on stabilizing MEMS resonators. A delayed feedback velocity controller is implemented through modifying the parallel plate electrostatic force used to excite the resonator into motion. A nonlinear single degree of freedom model is used to simulate the resonator response. Long time integration is used first. Then, a finite deference technique to capture periodic motion combined with the Floquet theory is used to capture the stable and unstable periodic responses. We show that applying a suitable positive gain can stabilize the MEMS resonator near or inside the instability dynamic pull in band. We also study the stability of the resonator by tracking its basins of attraction while sweeping the controller gain and the frequency of excitations. For positive delayed gains, we notice significant enhancement in the safe area of the basins of attraction. Copyright © 2013 by ASME.

  10. Oscillations of a Beam on a Non-Linear Elastic Foundation under Periodic Loads

    Directory of Open Access Journals (Sweden)

    Donald Mark Santee

    2006-01-01

    Full Text Available The complexity of the response of a beam resting on a nonlinear elastic foundation makes the design of this structural element rather challenging. Particularly because, apparently, there is no algebraic relation for its load bearing capacity as a function of the problem parameters. Such an algebraic relation would be desirable for design purposes. Our aim is to obtain this relation explicitly. Initially, a mathematical model of a flexible beam resting on a non-linear elastic foundation is presented, and its non-linear vibrations and instabilities are investigated using several numerical methods. At a second stage, a parametric study is carried out, using analytical and semi-analytical perturbation methods. So, the influence of the various physical and geometrical parameters of the mathematical model on the non-linear response of the beam is evaluated, in particular, the relation between the natural frequency and the vibration amplitude and the first period doubling and saddle-node bifurcations. These two instability phenomena are the two basic mechanisms associated with the loss of stability of the beam. Finally Melnikov's method is used to determine an algebraic expression for the boundary that separates a safe from an unsafe region in the force parameters space. It is shown that this can be used as a basis for a reliable engineering design criterion.

  11. In vivo tibiofemoral cartilage-to-cartilage contact area of females with medial osteoarthritis under acute loading using MRI.

    Science.gov (United States)

    Shin, Choongsoo S; Souza, Richard B; Kumar, Deepak; Link, Thomas M; Wyman, Bradley T; Majumdar, Sharmila

    2011-12-01

    To investigate the effect of acute loading on in vivo tibiofemoral contact area changes in both compartments, and to determine whether in vivo tibiofemoral contact area differs between subjects with medial knee osteoarthritis (OA) and healthy controls. Ten subjects with medial knee OA (KL3) and 11 control subjects (KL0) were tested. Coronal three-dimensional spoiled gradient-recalled (3D-SPGR) and T(2) -weighted fast spin-echo FSE magnetic resonance imaging (MRI) of the knee were acquired under both unloaded and loaded conditions. Tibiofemoral cartilage contact areas were measured using image-based 3D models. Tibiofemoral contact areas in both compartments significantly increased under loading (P contact area in the medial compartment was significantly larger than in the lateral compartment (P contact area was significantly larger in KL3 subjects than KL0 subjects, both at unloaded and loaded conditions (P Contact areas measured from 3D-SPGR and T(2) -weighted FSE images were strongly correlated (r = 0.904). Females with medial OA increased tibiofemoral contact area in the medial compartment compared to healthy subjects under both unloaded and loaded conditions. The contact area data presented in this study may provide a quantitative reference for further cartilage contact biomechanics such as contact stress analysis and cartilage biomechanical function difference between osteoarthritic and healthy knees. Copyright © 2011 Wiley Periodicals, Inc.

  12. Resonant count diagram and solar g mode oscillations

    International Nuclear Information System (INIS)

    Guenther, D.B.; Demarque, P.

    1984-01-01

    Evidence is provided to support the hypothesis that, because of the particular frequency separations of the solar g modes, resonant three-wave interactions stimulate only a selected few g modes. A resonant count diagram was obtained by plotting the total number of possible resonant three-wave interactions or a given beat frequency against the inverse of the beat frequency (the beat period), within a given frequency tolerance. The 1 = 1, 2, 3, 4 g modes calculated by Christensen-Dalsgaard, Gough and Morgan (1979) for a standard model of the Sun were used. The diagram has a significant peak at 160 minutes as well as other peaks at longer periods. The g modes that Delache and Scherrer (1983) tentatively identified from the Crimea-Stanford data were also plotted. These modes were found to correspond with the other peaks in the diagram. This coincidence between the observed g modes and the peaks in the resonant count diagram suggest that the observed g modes do owe their observability to resonant three-wave interactions

  13. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Montanini, Roberto, E-mail: rmontanini@unime.it; Quattrocchi, Antonino, E-mail: aquattrocchi@unime.it [University of Messina, Dept. of Engineering, Contrada di Dio, Messina (Italy)

    2016-06-28

    A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d{sub 31} mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.

  14. The Combined Internal and Principal Parametric Resonances on Continuum Stator System of Asynchronous Machine

    Directory of Open Access Journals (Sweden)

    Baizhou Li

    2014-01-01

    Full Text Available With the increasing requirement of quiet electrical machines in the civil and defense industry, it is very significant and necessary to predict the vibration and noise characteristics of stator and rotor in the early conceptual phase. Therefore, the combined internal and principal parametric resonances of a stator system excited by radial electromagnetic force are presented in this paper. The stator structure is modeled as a continuum double-shell system which is loaded by a varying distributed electromagnetic load. The nonlinear dynamic equations are derived and solved by the method of multiple scales. The influences of mechanical and electromagnetic parameters on resonance characteristics are illustrated by the frequency-response curves. Furthermore, the Runge-Kutta method is adopted to numerically analyze steady-state response for the further understanding of the resonance characteristics with different parameters.

  15. Relative merits of travelling-wave and resonant operation of linac

    International Nuclear Information System (INIS)

    Shoffstall, D.R.; Gallagher, W.J.

    1985-01-01

    Discussion of the relative merits of so-called standing wave vis-a-vis travelling wave operation of linear accelerator waveguides is complicated by various considerations. In the first instance, standing wave should be distinguished from resonant operation. Standing wave operation is exactly the same as travelling wave, excepting that the waveguide is terminated by a total reflection of power instead of a matched load. In resonant operation a length of slow wave structure is terminated, theoretically at reflection planes of symmetry; the discrete modes of resonance consist of two oppositely directed travelling wave ensembles, one of which will provide a space harmonic of an intended phase velocity

  16. Resonators for magnetohydrodynamic waves in the solar corona: radioemission modulation effect

    International Nuclear Information System (INIS)

    Zajtsev, V.V.; Stepanov, A.V.

    1982-01-01

    Data on type 2 solar radio bursts are analyzed in the framework of a model of radio emission production by shock waves. Type 2 solar radio bursts data are shown to suggest the existence of Alfven velocity minimum at a height of the one solar radius in the corona. The domain of a low Alfven velocity is a resonator for the fast magnetosonic waves. The eigenmodes of the resonator are determined. The main mode period is about a few minutes. Fast modes in the resonator can be amplified by energetic ion beams at the Cherenkov resonance. The modulation of meter solar radio emission with a period of about a few minutes can be explained by radiowave propagation through the MHD-resonator

  17. RPE vs. Percentage 1RM Loading in Periodized Programs Matched for Sets and Repetitions

    Directory of Open Access Journals (Sweden)

    Eric R. Helms

    2018-03-01

    Full Text Available Purpose: To investigate differences between rating of perceived exertion (RPE and percentage one-repetition maximum (1RM load assignment in resistance-trained males (19–35 years performing protocols with matched sets and repetitions differentiated by load-assignment.Methods: Participants performed squats then bench press 3x/weeks in a daily undulating format over 8-weeks. Participants were counterbalanced by pre-test 1RM then assigned to percentage 1RM (1RMG, n = 11; load-assignment via percentage 1RMs, or RPE groups (RPEG, n = 10; participant-selected loads to reach target RPE ranges. Ultrasonography determined pre and post-test pectoralis (PMT, and vastus lateralis muscle thickness at 50 (VLMT50 and 70% (VLMT70 femur-length.Results: Bench press (1RMG +9.64 ± 5.36; RPEG + 10.70 ± 3.30 kg, squat (1RMG + 13.91 ± 5.89; RPEG + 17.05 ± 5.44 kg and their combined-total 1RMs (1RMG + 23.55 ± 10.38; RPEG + 27.75 ± 7.94 kg increased (p < 0.05 in both groups as did PMT (1RMG + 1.59 ± 1.33; RPEG +1.90 ± 1.91 mm, VLMT50 (1RMG +2.13 ± 1.95; RPEG + 1.85 ± 1.97 mm and VLMT70 (1RMG + 2.40 ± 2.22; RPEG + 2.31 ± 2.27 mm. Between-group differences were non-significant (p > 0.05. Magnitude-based inferences revealed 79, 57, and 72% chances of mean small effect size (ES advantages for squat; ES 90% confidence limits (CL = 0.50 ± 0.63, bench press; ES 90% CL = 0.28 ± 0.73, and combined-total; ES 90% CL = 0.48 ± 0.68 respectively, in RPEG. There were 4, 14, and 6% chances 1RMG had a strength advantage of the same magnitude, and 18, 29, and 22% chances, respectively of trivial differences between groups.Conclusions: Both loading-types are effective. However, RPE-based loading may provide a small 1RM strength advantage in a majority of individuals.

  18. Coupled-resonator-induced plasmonic bandgaps.

    Science.gov (United States)

    Wang, Yujia; Sun, Chengwei; Gong, Qihuang; Chen, Jianjun

    2017-10-15

    By drawing an analogy with the conventional photonic crystals, the plasmonic bandgaps have mainly employed the periodic metallic structures, named as plasmonic crystals. However, the sizes of the plasmonic crystals are much larger than the wavelengths, and the large sizes considerably decrease the density of the photonic integration circuits. Here, based on the coupled-resonator effect, the plasmonic bandgaps are experimentally realized in the subwavelength waveguide-resonator structure, which considerably decreases the structure size to subwavelength scales. An analytic model and the phase analysis are established to explain this phenomenon. Both the experiment and simulation show that the plasmonic bandgap structure has large fabrication tolerances (>20%). Instead of the periodic metallic structures in the bulky plasmonic crystals, the utilization of the subwavelength plasmonic waveguide-resonator structure not only significantly shrinks the bandgap structure to be about λ 2 /13, but also expands the physics of the plasmonic bandgaps. The subwavelength dimension, together with the waveguide configuration and robust realization, makes the bandgap structure easy to be highly integrated on chips.

  19. The effects of initial rise and axial loads on MEMS arches

    KAUST Repository

    Tella, Sherif Adekunle; Hajjaj, Amal Z.; Younis, Mohammad I.

    2017-01-01

    . This paper aims to investigate in depth the influence of the competing effects of initial rise and axial loads on the mechanical behavior of micromachined arches; mainly their static deflection and resonant frequencies. Based on analytical solutions

  20. Study on efficiency of different topologies of magnetic coupled resonant wireless charging system

    Science.gov (United States)

    Cui, S.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Liang, L. H.

    2017-11-01

    This paper analyses the relationship between the output power, the transmission efficiency and the frequency, load and coupling coefficient of the four kinds of magnetic coupled resonant wireless charging system topologies. Based on mutual inductance principle, four kinds of circuit models are established, and the expressions of output power and transmission efficiency of different structures are calculated. The difference between the two power characteristics and efficiency characteristics is compared by simulating the SS (series-series) and SP (series-parallel) type wireless charging systems. With the same parameters of circuit components, the SS structure is usually suitable for small load resistance. The SP structure can be applied to large load resistors, when the transmission efficiency of the system is required to keep high. If the operating frequency deviates from the system resonance frequency, the SS type system has higher transmission efficiency than the SP type system.

  1. Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise

    Science.gov (United States)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.

    2017-01-01

    INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include

  2. Load mitigation of unbalanced wind turbines using PI-R individual pitch control

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Cheng, Ming; Chen, Zhe

    2015-01-01

    This study discusses the load mitigation of unbalanced wind turbines, including balanced and unbalanced loads. Regarding the wind turbine load reduction, it has been shown that individual pitch control (IPC) is more promising in comparison with collective pitch control. However, wind turbine......) controller and two resonant (R) compensators is presented. The PI-R regulator is implemented in the hub reference frame to reduce both the balanced and unbalanced loads of the turbine. The wind turbine code FAST (fatigue, aerodynamics, structures and turbulence) is used for the wind turbine load modelling....... The simulations are conducted on the NREL upwind 1.5 MW wind turbine model. Elimination of both the balanced and unbalanced loads of the wind turbine has been achieved, so that PI-R IPC is demonstrated as an effective means for load mitigation of unbalanced wind turbines....

  3. The analysis of loading losses from tank trucks

    Directory of Open Access Journals (Sweden)

    Jovanović Ana P.

    2006-01-01

    Full Text Available The quantity of loading losses, which are the primary source of evaporative emissions from tank cars and trucks was analyzed in this paper. Loading losses occur as organic vapors in "empty" cargo tanks are displaced to the atmosphere by the liquid being loaded into the tanks. Emissions from loading petroleum liquid were estimated using three methods: the API (American Petroleum Institute method, the VDI (Verein Deutscher Ingenieure -Association of German Engineers method and the Yugoslav Standard JUS B.HO.531 method. The mass of evaporative losses from loading operations is a function of the following parameters: the method of loading the cargo, the physical and chemical characteristics of the cargo and the ambient temperature during loading. Evaporation losses from the loading of motor gasoline (MB-95, BMB-95, MB-98 and MB-86 and diesel fuels (D-2, Euro D-2 were calculated. Losses on a monthly and annual basis were presented for an assumed amount of loaded cargo. It was estimated that the highest loading losses occur in the summer period because of high ambient daily temperatures and in the period of higher transporting levels. It should be pointed out that the loading losses of diesel fuel calculated using an empirical coefficient according to JUS B.HO.531 are significantly higher in comparison with the loading losses calculated using emission factors from the EPA and the VDI method. The gasoline loading losses calculated using emission factors derived from the three methods are similar.

  4. Antenna–load interactions at optical frequencies: impedance matching to quantum systems

    International Nuclear Information System (INIS)

    Olmon, R L; Raschke, M B

    2012-01-01

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light–matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna–load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna–load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an

  5. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.

    Science.gov (United States)

    Olmon, R L; Raschke, M B

    2012-11-09

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light-matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna-load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna-load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an antenna

  6. Characterization and Analysis of Viscoelastically Loaded Thin Film Piezoelectric Resonators Incorporated in AN Oscillator Microsensing System.

    Science.gov (United States)

    O'Toole, Ronald Patrick

    1994-01-01

    In the recent advancement of piezoelectric resonator technology, there has been a large growth in the application of these devices for chemical sensing. These sensors operate by detecting changes in their environment which perturb the electrical - acoustic operation and in turn can be harnessed by means of supporting electronics and signal processing to monitor various processes. Examples include remote environmental monitoring, chemical process control, and commercial gas phase detectors. In this dissertation, the chemical sensing theory and properties of piezoelectric resonators such as the bulk-acoustic wave thin-film resonator (TFR) and the quartz crystal microbalance (QCM) are developed. This analysis concentrates on characterizing the resonance behavior of thickness mode resonators based upon the physical properties at the electrode interface which include interfacial mass density, elasticity, viscosity, and thickness of the composite device consisting of the piezoelectric material, the electrodes, and any deposited layer on the electrode surface in contact with the surrounding medium. In this work, no approximation is made as to the stress or particle displacement variation across the visco-elastic film which allows a complete study of the perturbational mechanical variations on the electrical and resonance properties of the composite resonator. The derivation and verification of equivalent circuit models based on the physical properties of the piezoelectric resonator and visco-elastic sensing film are presented. The results and models from this research will be beneficial to surface chemistry studies and also have application to fabrication techniques and electrical modeling. The use of this theory is employed in a study of a QCM coated with a commercially developed negative resist. Photo-polymerization of the resist results in induced visco-elastic structural changes which can be monitored and characterized using the full admittance theory of the composite

  7. Reliability analysis of structures under periodic proof tests in service

    Science.gov (United States)

    Yang, J.-N.

    1976-01-01

    A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.

  8. Multi-band Monopole Antennas Loaded with Metamaterial TL

    Science.gov (United States)

    Song, Zhi-jie; Liang, Jian-gang

    2015-05-01

    A novel metamaterial transmission line (TL) by loading complementary single Archimedean spiral resonator pair (CSASRP) is investigated and used to design a set of multi-frequency monopole antennas. The particularity is that the CSASRP which features dual-shunt branches in the equivalent circuit model is directly etched in the signal strip. By smartly controlling the element parameters, three antennas are designed and one of them covering UMTS and Bluetooth bands is fabricated and measured. The antenna exhibits impedance matching better than -10 dB and normal monopolar radiation patterns at working bands of 1.9-2.22 and 2.38-2.5 GHz. Moreover, the loaded element also contributes to the radiation, which is the major advantage of this prescription over previous lumped-element loadings. The proposed antenna is also more compact over previous designs.

  9. Battery charger with a capacitor-diode clamped LLC resonant converter

    OpenAIRE

    Tsang, C.; Bingham, C.; Foster, M. P.; Stone, D.; Leech, J.

    2016-01-01

    The paper proposes a novel battery charger through use of\\ud two serially-connected LLC resonant converters. The first\\ud stage utilises a capacitor-diode clamped LLC resonant\\ud converter which allows operation in both constant voltage\\ud (CV) and constant current (CC) modes, as found in most\\ud battery chargers, to be realised, whilst the second stage\\ud provides the necessary gain and line and load regulation. A\\ud design example is included that demonstrates the resulting\\ud converter top...

  10. Biochemical and physiological parameters and estimated work output in draught horses pulling loads for long periods.

    Science.gov (United States)

    Perez, R; Recabarren, S E; Valdes, P; Hetz, E

    1992-01-01

    A study was undertaken in five draught horses of 648 +/- 33 kg body weight to find the effects of continuously pulling loads on their cardiovascular, respiratory and metabolic responses. A cart equipped with an odometer, for measuring distance, and a hydraulic dynamometer, for measuring draught force, was used. Heart and respiration rates and rectal temperatures were recorded. Blood samples for measuring arterial and venous pH and blood gases, haemoglobin, glucose and lactic acid concentrations and the serum activity of the enzymes creatine phosphokinase (CK), lactate dehydrogenase, aspartate aminotransferase and alkaline phosphatase were taken before exercise and immediately after each journey (morning and afternoon) of the daily work. Draught exercise, with loads which generated forces of between 0.57 and 0.59 kN, at speeds of 1.60 to 2.11 m/s, for 8 h daily for five consecutive days, with resting intervals of 10 min each hour, was well tolerated. Exercise tolerance was evaluated from the recovery from the changes observed in the biochemical and physiological parameters induced by the work. The analysis of these showed that, when the horses were subjected to prolonged periods of resting, their loss of fitness for work was shown by significant increases in the serum activity of muscle-derived enzymes and in blood lactate concentrations during the first day of work. However, over the following days the horses adapted to the work, so that the decreases in serum enzyme activities and blood lactate concentrations were reduced. Since similar observations have been described for racehorses, the determination of blood lactate concentrations and the serum activities of muscle-derived enzymes, specifically CK, seem to be good indicators of fitness in draught horses.

  11. Time-delayed feedback control of coherence resonance chimeras

    Science.gov (United States)

    Zakharova, Anna; Semenova, Nadezhda; Anishchenko, Vadim; Schöll, Eckehard

    2017-11-01

    Using the model of a FitzHugh-Nagumo system in the excitable regime, we investigate the influence of time-delayed feedback on noise-induced chimera states in a network with nonlocal coupling, i.e., coherence resonance chimeras. It is shown that time-delayed feedback allows for the control of the range of parameter values where these chimera states occur. Moreover, for the feedback delay close to the intrinsic period of the system, we find a novel regime which we call period-two coherence resonance chimera.

  12. Development of procedures for calculating stiffness and damping properties of elastomers in engineering applications. Part 4: Testing of elastomers under a rotating load. [resonance testing

    Science.gov (United States)

    Darlow, M. S.; Smalley, A. J.

    1977-01-01

    A test rig designed to measure stiffness and damping of elastomer cartridges under a rotating load excitation is described. The test rig employs rotating unbalance in a rotor which runs to 60,000 RPM as the excitation mechanism. A variable resonant mass is supported on elastomer elements and the dynamic characteristics are determined from measurements of input and output acceleration. Five different cartridges are considered: three of these are buttons cartridges having buttons located in pairs, with 120 between each pair. Two of the cartridges consist of 360 elastomer rings with rectangular cross-sections. Dynamic stiffness and damping are measured for each cartridge and compared with predictions at different frequencies and different strains.

  13. Microwave oscillator with 'whispering gallery' resonator

    International Nuclear Information System (INIS)

    Kirichenko, A.Ya.; Prokopenko, Yu.V.; Filippov, Yu.F.; Lonin, Yu.F.; Papkovich, V.G.; Ponomarev, A.G.; Prokopenko, Yu.V.; Uvarov, V.T.

    2010-01-01

    It was presented researches of a generation of microwave radiation into system with azimuthally periodical relativistic electron beam current that excites a high-Q quasi-optical dielectric resonator. The Eigen parameters of cylindrical Teflon resonator were determined by numerical computation. Registration of the microwave radiation realizes by a crystal set of 8-mm wavelength range. Research projects of microwave oscillators with high-Q resonators, in which 'whispering gallery' oscillations are excited by an electron flow, are presented. Multiresonator oscillators ideology is based on principles of microwave generation in klystrons with both subcritical and supercritical electron beams currents.

  14. Periodical rocking long period gratings in PANDA fibers for high temperature and refractive index sensing

    Science.gov (United States)

    Jin, Wa; Bi, Wei-hong; Fu, Xing-hu; Fu, Guang-wei

    2017-09-01

    We report periodical rocking long period gratings (PR-LPGs) in PANDA fibers fabricated with CO2 laser. The PR-LPGs achieve very high coupling efficiency of 19 dB with 12 periods and a 3.5° twist angle in just one scanning cycle, which is much more effective than the conventional CO2 laser fabrication technique. This type of LPGs exhibits polarization-selective resonance dips which demonstrate different sensitivities to environmental parameters. The high temperature and external refractive index sensitivities are measured simultaneously, so it can be used as a wavelength-selective polarization filter and sensor.

  15. Equivalent Circuit Modeling of the Dielectric Loaded Microwave Biosensor

    Directory of Open Access Journals (Sweden)

    M. T. Jilani

    2014-12-01

    Full Text Available This article describes the modeling of biological tissues at microwave frequency using equivalent lumped elements. A microwave biosensor based on microstrip ring resonator (MRR, that has been utilized previously for meat quality evaluation is used for this purpose. For the first time, the ring-resonator loaded with the lossy and high permittivity dielectric material, such as; biological tissue, in a partial overlay configuration is analyzed. The equivalent circuit modeling of the structure is then performed to identify the effect of overlay thickness on the resonance frequency. Finally, the relationship of an overlay thickness with the corresponding RC values of the meat equivalent circuit is established. Simulated, calculated and measured results are then compared for validation. Results are well agreed while the observed discrepancy is in acceptable limit.

  16. Spectral signature barcodes based on S-shaped Split Ring Resonators (S-SRRs

    Directory of Open Access Journals (Sweden)

    Herrojo Cristian

    2016-01-01

    Full Text Available In this paper, it is shown that S-shaped split ring resonators (S-SRRs are useful particles for the implementation of spectral signature (i.e., a class of radiofrequency barcodes based on coplanar waveguide (CPW transmission lines loaded with such resonant elements. By virtue of its S shape, these resonators are electrically small. Hence S-SRRs are of interest for the miniaturization of the barcodes, since multiple resonators, each tuned at a different frequency, are used for encoding purposes. In particular, a 10-bit barcode occupying 1 GHz spectral bandwidth centered at 2.5 GHz, with dimensions of 9 cm2, is presented in this paper.

  17. Suppressing nonlinear resonances in an impact oscillator using SMAs

    International Nuclear Information System (INIS)

    Sitnikova, Elena; Pavlovskaia, Ekaterina; Ing, James; Wiercigroch, Marian

    2012-01-01

    In this paper, we study the resonant responses of an impact oscillator with a one sided SMA motion constraint operating in the pseudoelastic regime. The effectiveness of the SMA restraint in suppressing nonlinear resonances of the impact oscillator is assessed by comparing the dynamic responses of the impact oscillator with SMA and elastic restraints. It is shown that the hysteretic behaviour of the SMA restraint provides an overall vibration reduction in the resonant frequency ranges. Due to the softening behaviour of the SMA element, the resonant frequencies for the SMA oscillator were found to be lower than for the oscillator with an elastic restraint. At each resonance, a single periodic response for the oscillator with the elastic restraint corresponds to two co-existing periodic responses of the SMA oscillator. While at the first resonance peak the emergence of one of the co-existing responses is associated with the hardening effect of the SMA restraint when the pseudoelastic force varies over a complete transformation cycle, at higher frequency resonances incomplete phase transformations in the SMA were detected for both responses. The experimental study undertaken verified the response-modification effects predicted by the numerical analysis conducted under the isothermal approximation. The experimental results showed a good quantitative correspondence with the mathematical modelling. (paper)

  18. Research on the Transient Characteristics of Microgrid with Pulsed Load

    Directory of Open Access Journals (Sweden)

    Jianke Li

    2015-01-01

    Full Text Available Unlike traditional load, pulsed load typically features small average power and large peak power. In this paper, the mathematic models of microgrid consisting of synchronous generator and pulsed load are established. Average Magnitude Difference Compensate Function (AMDCF is proposed to calculate the frequency of synchronous generator, and, based on AMDCF, relative deviation rate (RDR which characterizes the impact of pulsed load on the AC side of grid is firstly defined and this paper describes calculation process in detail. Insulated Gate Bipolar Transistor (IGBT is used as DC switch to control the on/off state of resistive load for simulating pulsed load, the period and duty-cycle of the pulsed load are simulated by setting the gate signal of IGBT, and the peak power of the pulsed load is simulated by setting the resistance. The system dynamic characteristics under pulsed load are analyzed in detail, and the influence of duty-cycle, period, peak power, and filter capacitance of the pulsed load on system dynamic indicators is studied and validated experimentally.

  19. Effects of periods of nonuse and fluctuating ammonia concentration on biofilter performance.

    Science.gov (United States)

    Chen, Ying-Xu; Yin, Jun; Wang, Kai-Xiong; Fang, Shi

    2004-01-01

    A systematic study on the transient behavior of odor treatment using biofilters is described. The biofilters were exposed to variations in contaminant loading and periods of nonuse. Two bench-scale biofilters with different filter media were used. Mixtures of compost/perlite (5:1) and dry sludge/granular active carbon (5:1) were used as filter media. Ammonia (NH3), one of the main malodorous gases, was used as the target compound. The response of each biofilter to variations in contaminant mass loading, periodic nonuse, water content, and inlet concentration pulse was studied. The nonuse period comprised of two stages: the "idle phase" when no air was passing through the biofilters, and the "no-contaminant-loading phase" when only humidified air was passing through the biofilters. Concentration spike was applied to study the effects of shock loading on the biofilter performance. Biofilters responded effectively to NH3 concentration variations and shock loading by rapidly recovering to the original removal rates within 6-12h. The results indicated re-acclimation times ranged from several hours to longer than a day. Longer idle phase produced longer re-acclimation periods than periods of no contaminant loading. When the media was dried during the biofiltration process, elimination capacity dropped accordingly for both biofilters. After 24 h of drying, the biofilter experiment could be restarted and run for a few days for recovering.

  20. Genealogy and stability of periodic orbit families around uniformly rotating asteroids

    Science.gov (United States)

    Hou, Xiyun; Xin, Xiaosheng; Feng, Jinglang

    2018-03-01

    Resonance orbits around a uniformly rotating asteroid are studied from the approach of periodic orbits in this work. Three periodic families (denoted as I, II, and III in the paper) are fundamental in organizing the resonance families. For the planar case: (1) Genealogy and stability of Families I, II and the prograde resonance families are studied. For extremely irregular asteroids, family genealogy close to the asteroid is greatly distorted from that of the two body-problem (2BP), indicating that it is inappropriate to treat the orbital motions as perturbed Keplerian orbits. (2) Genealogy and stability of Family III are also studied. Stability of this family may be destroyed by the secular resonance between the orbital ascending node's precession and the asteroid's rotation. For the spatial case: (1) Genealogy of the near circular three-dimensional periodic families are studied. The genealogy may be broken apart by families of eccentric frozen orbits whose argument of perigee is ;frozen; in space. (2) The joint effects between the secular resonance and the orbital resonances may cause instability to three-dimensional orbital motion with orbit inclinations close to the critical values. Applying the general methodology to a case study - the asteroid Eros and also considering higher order non-spherical terms, some extraordinary orbits are found, such as the ones with orbital plane co-rotating with the asteroid, and the stable frozen orbits with argument of perigee librating around values different from 0°, 90°, 180°, 270°.

  1. Enhanced THz extinction in arrays of resonant semiconductor particles

    NARCIS (Netherlands)

    Schaafsma, M. C.; Georgiou, G.; J. Gomez Rivas,

    2015-01-01

    We demonstrate experimentally the enhanced THz extinction by periodic arrays of resonant semiconductor particles. This phenomenon is explained in terms of the radiative coupling of localized resonances with diffractive orders in the plane of the array (Rayleigh anomalies). The experimental results

  2. Magnetic resonance imaging in low back pain and sciatica with special emphasis on the postdiskectomy period

    International Nuclear Information System (INIS)

    Annertz, M.

    1994-01-01

    The diagnostic capability of magnetic resonance (MR) imaging at 0.3 T was evaluated and compared with other modalities in patients with previous disk surgery and remaining or recurrent sciatica, and in patients with spondylolisthesis and sciatica. In the early postoperative period after successful lumbar diskectomy, MR showed a large amount of abnormal soft tissue in the anterior epidural space, without correlation with clinical symptoms. In the late postoperative period, contrast-enhanced MR provided the best correlation with surgical findings, compared with CT and myelography, in discriminating recurrent/remaining disk herniation from epidural fibrosis in patients with the lumbar postdiskectomy syndrome. Contrast-enhanced MR could not demonstrate any differences regarding presence and extent of epidural fibrosis between symptomatic and asymptomatic patients. In spondylolisthesis, MR gave excellent information about the root canals and the degree of nerve root stretching and compression, which was not possible to evaluate with myelography. MR at 0.3 T provided information comparable to that reported from examinations performed with superconducting MR scanners, and is well suited as the imaging modality in the evaluation of lumbar spine disorders. After introducing MR at 0.2 and 0.3 T with vertical magnetic fields as the first neuroradiological modality, instead of myelography or CT, in the evaluation of the soft tissues of the lumbar spine in patients with low back pain and sciatica, a significant increase in the number of patients examined, a moderate increase in the total cost of investigations, and a significant decrease in the cost per investigated and per operated patient was noted

  3. Ferrite Film Loaded Frequency Selective Metamaterials for Sub-GHz Applications

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2016-12-01

    Full Text Available Electromagnetic metamaterials are constructed with sub-wavelength structures that exhibit particular electromagnetic properties under a certain frequency range. Because the form-factor of the substructures has to be comparable to the wavelength of the operating frequency, few papers have discussed the metamaterials under GHz frequency. In this paper, we developed an innovative method to reduce the resonant frequency of metamaterals. By integrating the meta-structures with ferrite materials of higher permeability, the cell size of the meta-structure can be scaled down. This paper describes the methodology, design, and development of low-profile GHz ferrite loaded metamaterials. A ferrite film with a permeability of 20 could reduce the resonant frequency of metamaterials by up to 50%. A prototype has been fabricated and the measurement data align well with the simulation results. Because of the lowered operational frequency, the proposed ferrite loaded metamaterials offer more flexibility for various sub-GHz microwave applications, such as cloaks, absorbers, and frequency selective surfaces.

  4. Interaction of magnetic resonators studied by the magnetic field enhancement

    Directory of Open Access Journals (Sweden)

    Yumin Hou

    2013-12-01

    Full Text Available It is the first time that the magnetic field enhancement (MFE is used to study the interaction of magnetic resonators (MRs, which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  5. Broadband Transmission Loss Using the Overlap of Resonances in 3D Sonic Crystals

    Directory of Open Access Journals (Sweden)

    Alexandre Lardeau

    2016-05-01

    Full Text Available The acoustic properties of a three-dimensional sonic crystal made of square-rod rigid scatterers incorporating a periodic arrangement of quarter wavelength resonators are theoretically and experimentally reported in this work. The periodicity of the system produces Bragg band gaps that can be tuned in frequency by modifying the orientation of the square-rod scatterers with respect to the incident wave. In addition, the quarter wavelength resonators introduce resonant band gaps that can be tuned by coupling the neighbor resonators. Bragg and resonant band gaps can overlap allowing the wave propagation control inside the periodic resonant medium. In particular, we show theoretically and experimentally that this system can produce a broad frequency band gap exceeding two and a half octaves (from 590 Hz to 3220 Hz with transmission lower than 3%. Finite element methods were used to calculate the dispersion relation of the locally resonant system. The visco-thermal losses were accounted for in the quarter wavelength resonators to simulate the wave propagation in the semi-infinite structures and to compare the numerical results with the experiments performed in an echo-free chamber. The simulations and the experimental results are in good agreement. This work motivates interesting applications of this system as acoustic audible filters.

  6. Perceptual load-dependent neural correlates of distractor interference inhibition.

    Directory of Open Access Journals (Sweden)

    Jiansong Xu

    2011-01-01

    Full Text Available The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits is also smaller at high rather than low perceptual load, as might be predicted based on the load theory.We studied 24 healthy participants using functional magnetic resonance imaging (fMRI during a visual target identification task with two perceptual loads (low vs. high. Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN, striatum, thalamus, and extensive sensory cortices at high load.Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.

  7. Perceptual load-dependent neural correlates of distractor interference inhibition.

    Science.gov (United States)

    Xu, Jiansong; Monterosso, John; Kober, Hedy; Balodis, Iris M; Potenza, Marc N

    2011-01-18

    The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory. We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load. Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.

  8. Schedule and complex motion of shuttle bus induced by periodic inflow of passengers

    International Nuclear Information System (INIS)

    Nagatani, Takashi; Naito, Yuichi

    2011-01-01

    We have studied the dynamic behavior of a bus in the shuttle bus transportation with a periodic inflow. A bus schedule is closely related to the dynamics. We present the modified circle map model for the dynamics of the shuttle bus. The motion of the shuttle bus depends on the loading parameter and the inflow period. The shuttle bus displays the periodic, quasi-periodic, and chaotic motions with varying both loading parameter and inflow rate. -- Highlights: → We studied the dynamic behavior of a bus in the shuttle bus transportation. → We presented the modified circle map model for the bus schedule. → We clarified the dependence of the tour time on both loading parameter and inflow period.

  9. Monitoring the ammonia loading of zeolite-based ammonia SCR catalysts by a microwave method

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, S.; Schoenauer, D.; Hagen, G.; Moos, R. [University of Bayreuth, Department of Functional Materials, Bayreuth (Germany); Fischerauer, G. [University of Bayreuth, Department of Metrology and Control, Bayreuth (Germany)

    2011-05-15

    Exhaust gas aftertreatment systems, which reduce nitrogen oxide emissions of heavy-duty diesel engines, commonly use a selective catalytic reduction (SCR) catalyst. Currently, emissions are controlled by evaluating NO{sub x} or NH{sub 3} in the gas phase downstream the catalyst and calculating the NH{sub 3} loading via a chemical storage model. Here, a microwave-cavity perturbation method is proposed in which electromagnetic waves are excited by probe feeds and the reflected signals are measured. At distinct resonance frequencies, the reflection coefficient shows a pronounced minimum. These resonance frequencies depend almost linearly on the NH{sub 3} loading of a zeolite-based SCR catalyst. Since the NH{sub 3} loading-dependent electrical properties of the catalyst material itself are measured, the amount of stored ammonia can be determined directly and in situ. The cross-sensitivity towards water can be reduced almost completely by selecting an appropriate frequency range. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Inelastic spectra to predict period elongation of structures under earthquake loading

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Sextos, A.G.

    2015-01-01

    Period lengthening, exhibited by structures when subjected to strong ground motions, constitutes an implicit proxy of structural inelasticity and associated damage. However, the reliable prediction of the inelastic period is tedious and a multi-parametric task, which is related to both epistemic ...... for period lengthening as a function of Ry and Tel. These equations may be used in the framework of the earthquake record selection and scaling....

  11. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  12. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    Science.gov (United States)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  13. Atomic spin resonance in a rubidium beam obliquely incident to a transmission magnetic grating

    International Nuclear Information System (INIS)

    Hatakeyama, A; Goto, K

    2016-01-01

    We studied atomic spin resonance induced by atomic motion in a spatially periodic magnetostatic field. A rubidium atomic beam, with a velocity of about 400 m s −1 , was obliquely incident to a transmission magnetic grating that produced a spatially periodic magnetic field. The magnetic grating was formed by a magnetic thin film on a polyimide substrate that had multiple slits at 150 μm intervals. The atoms experienced field oscillation, depending on their velocity and the field period when passing through the grating, and underwent magnetic resonance. Resonance spectra obtained with a perpendicular magnetization film were in clear contrast to ones obtained with an in-plane magnetization film. The former exhibited resonance peaks at odd multiples of the frequency, determined by the velocity over the period, while the latter had dips at the same frequencies. (paper)

  14. Stochastic resonance in underdamped periodic potential systems with alpha stable Lévy noise

    Science.gov (United States)

    Liu, Ruo-Nan; Kang, Yan-Mei

    2018-06-01

    In this paper, we investigate the effect of alpha stable Lévy noise with alpha stability index α (0 noise (0 noise has a more notable impact on the resonant effect of the asymmetric ratchet potential than that of the symmetric sinusoidal potential because of symmetry breaking.

  15. Modeling and understanding of effects of randomness in arrays of resonant meta-atoms

    DEFF Research Database (Denmark)

    Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka

    2013-01-01

    In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations....... We show how the electromagnetic response of metasurfaces is related to the statistical parameters of the structure. Furthermore, we will discuss the phenomenon of anti-resonance in extracted effective parameters of metamaterials and clarify its relation to the periodicity (or amorphous nature...

  16. Resonance test system

    Science.gov (United States)

    Musial, Walter [Boulder, CO; White, Darris [Superior, CO

    2011-05-31

    An apparatus (10) for applying at least one load to a specimen (12) according to one embodiment of the invention may comprise a mass (18). An actuator (20) mounted to the specimen (12) and operatively associated with the mass (18) moves the mass (18) along a linear displacement path (22) that is perpendicular to a longitudinal axis of the specimen (12). A control system (26) operatively associated with the actuator (20) operates the actuator (20) to reciprocate the mass (18) along the linear displacement path (22) at a reciprocating frequency, the reciprocating frequency being about equal to a resonance frequency of the specimen (12) in a test configuration.

  17. Evidence for infragravity wave-tide resonance in deep oceans.

    Science.gov (United States)

    Sugioka, Hiroko; Fukao, Yoshio; Kanazawa, Toshihiko

    2010-10-05

    Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.

  18. Gait alterations can reduce the risk of edge loading.

    Science.gov (United States)

    Wesseling, Mariska; Meyer, Christophe; De Groote, Friedl; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2016-06-01

    Following metal-on-metal hip arthroplasty, edge loading (i.e., loading near the edge of a prosthesis cup) can increase wear and lead to early revision. The position and coverage angle of the prosthesis cup influence the risk of edge loading. This study investigates the effect of altered gait patterns, more specific hip, and pelvis kinematics, on the orientation of hip contact force and the consequent risk of antero-superior edge loading using muscle driven simulations of gait. With a cup orientation of 25° anteversion and 50° inclination and a coverage angle of 168°, many gait patterns presented risk of edge loading. Specifically at terminal double support, 189 out of 405 gait patterns indicated a risk of edge loading. At this time instant, the high hip contact forces and the proximity of the hip contact force to the edge of the cup indicated the likelihood of the occurrence of edge loading. Although the cup position contributed most to edge loading, altering kinematics considerably influenced the risk of edge loading. Increased hip abduction, resulting in decreasing hip contact force magnitude, and decreased hip extension, resulting in decreased risk on edge loading, are gait strategies that could prevent edge loading. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1069-1076, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Poroelastic behaviour of the degenerating human intervertebral disc: a ten-day study in a loaded disc culture system

    Directory of Open Access Journals (Sweden)

    KS Emanuel

    2015-06-01

    Full Text Available The intervertebral disc (IVD allows flexibility to the vertebral column, and transfers the predominant axial loads during daily activities. Its axial biomechanical behaviour is poroelastic, due to the water-binding and releasing capacity of the nucleus pulposus. Degeneration of the intervertebral disc presumably affects both the instantaneous elastic response to the load on the IVD and the subsequent interstitial flow of fluid. This study aims to quantify the poroelastic behaviour of the IVD and its change with degeneration, as defined by the magnetic resonance imaging-based Pfirrmann Score (PS. For a period of ten days, 36 human lumbar IVDs were loaded with a simulated physiological axial loading regime, while deformation was monitored. The IVDs responded to the loads with instantaneous elastic and slow poroelastic axial deformation. Several mechanical parameters changed throughout the first five days of the experiment, until the IVDs settled into a dynamic equilibrium. In this equilibrium, degeneration was significantly related to a decrease in disc height loss during the daytime high load phase (ρ = -0.49, and to a decrease in the rate of this deformation during the final half hour of each day (ρ = -0.53. These properties were related to the nucleus glycosaminoglycan/hydroxyproline (GAG/HYP ratio, rather than GAG content alone, indicating that remodelling of the extracellular matrix reduces poroelastic properties of the IVD. This implies that the degenerated discs have a reduced capacity to bind water and/or a reduced resistance against fluid flow. The resulting loss in hydrostatic pressure may further change cell behaviour in the nucleus pulposus.

  20. ENERGY GAIN BY MEANS OF RESONANCE IN THE TESLA COIL

    Directory of Open Access Journals (Sweden)

    Yu. Batygin

    2016-12-01

    Full Text Available An analytical review of publications on the problem, first formulated by Nikola Tesla, generating «free» energy from the air in the surrounding space has been presented. The hypothesis of the resonance phenomenon as a «key» to the air energy has been advanced. The main unsolved problem is the extrac-tion of «free» energy (proposed to call it «resonance» and its supply to the electrical load have been noted. It is expected that the quality factor of the secondary circuit must be large enough.

  1. Exploiting nonlinearities of micro-machined resonators for filtering applications

    KAUST Repository

    Ilyas, Saad

    2017-06-21

    We demonstrate the exploitation of the nonlinear behavior of two electrically coupled microbeam resonators to realize a band-pass filter. More specifically, we combine their nonlinear hardening and softening responses to realize a near flat pass band filter with sharp roll-off characteristics. The device is composed of two near identical doubly clamped and electrostatically actuated microbeams made of silicon. One of the resonators is buckled via thermal loading to produce a softening frequency response. It is then further tuned to create the desired overlap with the second resonator response of hardening behavior. This overlapping improves the pass band flatness. Also, the sudden jumps due to the softening and hardening behaviors create sharp roll-off characteristics. This approach can be promising for the future generation of filters with superior characteristics.

  2. Exploiting nonlinearities of micro-machined resonators for filtering applications

    KAUST Repository

    Ilyas, Saad; Chappanda, K. N.; Younis, Mohammad I.

    2017-01-01

    We demonstrate the exploitation of the nonlinear behavior of two electrically coupled microbeam resonators to realize a band-pass filter. More specifically, we combine their nonlinear hardening and softening responses to realize a near flat pass band filter with sharp roll-off characteristics. The device is composed of two near identical doubly clamped and electrostatically actuated microbeams made of silicon. One of the resonators is buckled via thermal loading to produce a softening frequency response. It is then further tuned to create the desired overlap with the second resonator response of hardening behavior. This overlapping improves the pass band flatness. Also, the sudden jumps due to the softening and hardening behaviors create sharp roll-off characteristics. This approach can be promising for the future generation of filters with superior characteristics.

  3. Stability Analysis and Trigger Control of LLC Resonant Converter for a Wide Operational Range

    Directory of Open Access Journals (Sweden)

    Zhijian Fang

    2017-09-01

    Full Text Available The gain of a LLC resonant converter can vary with the loads that can be used to improve the efficiency and power density for some special applications, where the maximum gain does not apply at the heaviest loads. However, nonlinear gain characteristics can make the converters unstable during a major disturbance. In this paper, the stability of an LLC resonant converter during a major disturbance is studied and a trigger control scheme is proposed to improve the converter’s stability by extending the converter’s operational range. Through in-depth analysis of the gain curve of the LLC resonant converter, we find that the switching frequency range is one of the key factors determining the system’s stability performance. The same result is also obtained from a mathematical point of view by utilizing the mixed potential function method. Then a trigger control method is proposed to make the LLC resonant converter stable even during a major disturbance, which can be used to extend the converter’s operational range. Finally, experimental results are given to verify the analysis and proposed control scheme.

  4. Banking and back-loading emission permits

    International Nuclear Information System (INIS)

    Chaton, Corinne; Creti, Anna; Peluchon, Benoît

    2015-01-01

    In this article we focus on the so-called back-loading policy adopted by the European Commission to increase the carbon market price. This environmental measure consists of removing a share of the allowances allocated for a given period in order to reallocate some or all of them later on. To analyze the impact of the permits back-loading, we determine the CO 2 price equilibrium with and without the policy measure, considering not only the market for permits but also the output market of regulated sectors. We propose a two-period model, where the market for permits is perfectly competitive, and the output market can be either competitive or oligopolistic. First, we define the condition under which banking from one period to another is optimal. This condition, that is the absence of arbitrage opportunities (AOA), depends not only from the period initial allocation but also on production market fundamentals. When this condition is satisfied, the market for emission is shown intertemporally efficient. Second, we point out that the back-loading measure may create inefficiencies or leave unaffected the permits price, if it alters the AOA. -- Highlights: •Relationship between the market for permits and the output market of regulated sectors. •Analysis of CO 2 prices and banking. •Impact of a recent environmental policy measure (backloading) on CO 2 prices

  5. Perceptual load interacts with stimulus processing across sensory modalities.

    Science.gov (United States)

    Klemen, J; Büchel, C; Rose, M

    2009-06-01

    According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.

  6. Loads and loads and loads: The influence of prospective load, retrospective load, and ongoing task load in prospective memory

    Directory of Open Access Journals (Sweden)

    Beat eMeier

    2015-06-01

    Full Text Available In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load can affect prospective memory performance. The existence of multiple target events increases prospective load and adding complexity to the to-be-remembered action increases retrospective load. In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of prospective load on costs in the ongoing task for categorical targets (Experiment 2, but not for specific targets (Experiment 1. Retrospective load and ongoing task load both affected remembering the retrospective component of the prospective memory task. We suggest that prospective load can enhance costs in the ongoing task due to additional monitoring requirements. Retrospective load and ongoing task load seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  7. Resonant frequency analysis on an electrostatically actuated microplate under uniform hydrostatic pressure

    International Nuclear Information System (INIS)

    Li Zhikang; Zhao Libo; Ye Zhiying; Zhao Yulong; Jiang Zhuangde; Wang Hongyan

    2013-01-01

    The resonant frequency of a microplate is influenced by various physical parameters such as mass, surface stress, hydrostatic pressure and electrostatic force. In this paper, the effects of both electrostatic force and uniform hydrostatic pressure on the resonant frequency of a clamped circular microplate are investigated. An approximate solution is derived for the fundamental resonance frequency of the mciroplate under both types of loads using an energy equivalent method. It is found that both electrostatic force and uniform hydrostatic pressure decrease the resonant frequency of the microplate under small deflections. Additionally, the linearized expression of this solution shows that the resonant frequency varies linearly with pressure in the low and ultra-low range, and the corresponding pressure sensitivity depends on the voltage applied to the microplate. The analytical results are well validated by the finite element method. This study may be helpful for the design and optimization of electrostatically actuated resonance devices based on microplates, especially electrostatically actuated low- or ultra-low-pressure sensors. (paper)

  8. Cascaded resonant bridge converters

    Science.gov (United States)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  9. Stochastic resonance during a polymer translocation process

    International Nuclear Information System (INIS)

    Mondal, Debasish; Muthukumar, M.

    2016-01-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  10. Bandwidth of reactor internals vibration resonance with coolant pressure oscillations

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Novikov, K.S.; Galivec, E.Yu.

    2009-01-01

    In a few decades a significant increase in a part of an electricity development on the NPP will require NPP to be operated in non full capacity modes and increase in operation time in transitive modes. Operating in such conditions as compared to the operation on a constant mode will lead to the increase in cyclic dynamical loading. In water cooled water moderated reactors these loading are realized as low-cyclic and high-cyclic loadings. High-cyclic loadings increases are caused by a raised vibration in non stationary modes of operation. It is known, that in some modes of a non full capacity reactor high-cyclic dynamic loadings can increase. It is obvious, that the development of management technologies is necessary for the life time management operation. In the context of this problem one of the main tasks are revealing and the prevention of the conditions of the occurrence of the operation leading to the resonant interaction of the coolant fluctuations and the equipment, reactor vessel (RV), fuel assemblies (FA) and reactor internals (RI) vibration. To prevent the appearance of the conditions for resonance interaction between the fluid flow and the equipments, it is necessary to provide the different frequencies for the self oscillations in the separated elements of the circulating system and also in the parts of the system formed by the comprising of these elements. While solving these problems it is necessary to have a theoretical and settlement substantiation of an oscillation frequency band of coolant outside of which there is no resonant interaction. The presented work is devoted to finding the solution of this problem. There are results of theoretical an estimation of width of such band as well as the examples of a preliminary quantitative estimation of Q - factors of coolant acoustic oscillatory circuit formed by the equipment of the NPP. The accordance of results had been calculated with had been measured are satisfied for practical purposes. These

  11. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  12. A Microring Resonator Based Negative Permeability Metamaterial Sensor

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Lan

    2011-08-01

    Full Text Available Metamaterials are artificial multifunctional materials that acquire their material properties from their structure, rather than inheriting them directly from the materials they are composed of, and they may provide novel tools to significantly enhance the sensitivity and resolution of sensors. In this paper, we derive the dispersion relation of a cylindrical dielectric waveguide loaded on a negative permeability metamaterial (NPM layer, and compute the resonant frequencies and electric field distribution of the corresponding Whispering-Gallery-Modes (WGMs. The theoretical resonant frequency and electric field distribution results are in good agreement with the full wave simulation results. We show that the NPM sensor based on a microring resonator possesses higher sensitivity than the traditional microring sensor since with the evanescent wave amplification and the increase of NPM layer thickness, the sensitivity will be greatly increased. This may open a door for designing sensors with specified sensitivity.

  13. Advantage of resonant power conversion in aerospace applications

    Science.gov (United States)

    Hansen, I. G.

    1983-01-01

    An ultrasonic, sinusoidal aerospace power distribution system is shown to have many advantages over other candidate power systems. These advantages include light weight, ease of fault clearing, versatility in handling many loads including motors, and the capability of production within the limits of present technology. References are cited that demonstrate the state of resonant converter technology and support these conclusions.

  14. Extreme Wave-Induced Oscillation in Paradip Port Under the Resonance Conditions

    Science.gov (United States)

    Kumar, Prashant; Gulshan

    2017-12-01

    A mathematical model is constructed to analyze the long wave-induced oscillation in Paradip Port, Odisha, India under the resonance conditions to avert any extreme wave hazards. Boundary element method (BEM) with corner contribution is utilized to solve the Helmholtz equation under the partial reflection boundary conditions. Furthermore, convergence analysis is also performed for the boundary element scheme with uniform and non-uniform discretization of the boundary. The numerical scheme is also validated with analytic approximation and existing studies based on harbor resonance. Then, the amplification factor is estimated at six key record stations in the Paradip Port with multidirectional incident waves and resonance modes are also estimated at the boundary of the port. Ocean surface wave field is predicted in the interior of Paradip Port for the different directional incident wave at various resonance modes. Moreover, the safe locations in the port have been identified for loading and unloading of moored ship with different resonance modes and directional incident waves.

  15. Schedule and complex motion of shuttle bus induced by periodic inflow of passengers

    Science.gov (United States)

    Nagatani, Takashi; Naito, Yuichi

    2011-09-01

    We have studied the dynamic behavior of a bus in the shuttle bus transportation with a periodic inflow. A bus schedule is closely related to the dynamics. We present the modified circle map model for the dynamics of the shuttle bus. The motion of the shuttle bus depends on the loading parameter and the inflow period. The shuttle bus displays the periodic, quasi-periodic, and chaotic motions with varying both loading parameter and inflow rate.

  16. Stochasticity of the energy absorption in the electron cyclotron resonance

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Hernandez A, O.

    1998-01-01

    The energy absorption mechanism in cyclotron resonance of the electrons is a present problem, since it could be considered from the stochastic point of view or this related with a non-homogeneous but periodical of plasma spatial structure. In this work using the Bogoliubov average method for a multi periodical system in presence of resonances, the drift equations were obtained in presence of a RF field for the case of electron cyclotron resonance until first order terms with respect to inverse of its cyclotron frequency. The absorbed energy equation is obtained on part of electrons in a simple model and by drift method. It is showed the stochastic character of the energy absorption. (Author)

  17. A Miniaturize Bandpass Filter with Harmonic Suppression Using Meandered Quarter-Wavelength Resonators

    Directory of Open Access Journals (Sweden)

    Yun-Long Lu

    2014-01-01

    Full Text Available A miniaturized bandpass filter with harmonics suppression is presented. The proposed filter consists of two quarter-wavelength microstrip resonators, which are meandered for circuit size reduction. An interdigital capacitor, loading at zero-voltage point, is employed to provide the desired coupling between the resonators at operating frequency, whereas the coupling coefficient at the third harmonic is realized to be zero. Besides, the second and fourth harmonics are suppressed since λ/4 resonators are adopted. Benefiting from these properties, a miniaturized bandpass filter with the second, third, and fourth harmonics suppression was designed and implemented. The final measured and simulated results show good consistence with the theoretical counterparts.

  18. Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water

    Directory of Open Access Journals (Sweden)

    ANDRÉ G. SIMÃO

    2016-06-01

    Full Text Available Abstract The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert’s period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium.

  19. Trampoline metamaterial: Local resonance enhancement by springboards

    Science.gov (United States)

    Bilal, Osama R.; Hussein, Mahmoud I.

    2013-09-01

    We investigate the dispersion characteristics of locally resonant elastic metamaterials formed by the erection of pillars on the solid regions in a plate patterned by a periodic array of holes. We show that these solid regions effectively act as springboards leading to an enhanced resonance behavior by the pillars when compared to the nominal case of pillars with no holes. This local resonance amplification phenomenon, which we define as the trampoline effect, is shown to cause subwavelength bandgaps to increase in size by up to a factor of 4. This outcome facilitates the utilization of subwavelength metamaterial properties over exceedingly broad frequency ranges.

  20. On effect of stability of magnetic resonance position by harmonized field

    International Nuclear Information System (INIS)

    Ivanchenko, E.A.; Tolstoluzhsky, A.P.

    2006-01-01

    The formalism of density matrix in a two level system is used to study the time-periodic modulation of the magnetic field stabilizating the magnetic resonance position. An exact solution for density matrix at resonance is found. It is shown that the fundamental resonance is stable with respect to consistent variations of longitudinal and transversal magnetic fields. A differential equation for the transition probability is obtained. The dependence of time-averaged spin flip probability on the normalized Larmor frequency was numerically researched in different parameter regimes with account of dissipation and decoherence. It is shown that the position of the main resonance is independent of field deformation and dissipation; only the width of resonance line changes upon field deformation and dissipation. The odd parametric (multi-photon) resonance transitions is studied. Static magnetization induced by time-periodic modulated magnetic field is considered. The results of the investigation may be useful for analysis of interference experiments, improvement of magnetic spectrometers and in the field of quantum computing manipulation of q-bits

  1. Toward an MRI-based method to measure non-uniform cartilage deformation: an MRI-cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading.

    Science.gov (United States)

    Neu, C P; Hull, M L

    2003-04-01

    Recent magnetic resonance imaging (MRI) techniques have shown potential for measuring non-uniform deformations throughout the volume (i.e. three-dimensional (3D) deformations) in small orthopedic tissues such as articular cartilage. However, to analyze cartilage deformation using MRI techniques, a system is required which can construct images from multiple acquisitions of MRI signals from the cartilage in both the underformed and deformed states. The objectives of the work reported in this article were to 1) design an apparatus that could apply highly repeatable cyclic compressive loads of 400 N and operate in the bore of an MRI scanner, 2) demonstrate that the apparatus and MRI scanner can be successfully integrated to observe 3D deformations in a phantom material, 3) use the apparatus to determine the load cycle necessary to achieve a steady-state deformation response in normal bovine articular cartilage samples using a flat-surfaced and nonporous indentor in unconfined compression. Composed of electronic and pneumatic components, the apparatus regulated pressure to a double-acting pneumatic cylinder so that (1) load-controlled compression cycles were applied to cartilage samples immersed in a saline bath, (2) loading and recovery periods within a cycle varied in time duration, and (3) load magnitude varied so that the stress applied to cartilage samples was within typical physiological ranges. In addition the apparatus allowed gating for MR image acquisition, and operation within the bore of an MRI scanner without creating image artifacts. The apparatus demonstrated high repeatability in load application with a standard deviation of 1.8% of the mean 400 N load applied. When the apparatus was integrated with an MRI scanner programmed with appropriate pulse sequences, images of a phantom material in both the underformed and deformed states were constructed by assembling data acquired through multiple signal acquisitions. Additionally, the number of cycles to reach

  2. Existence of the Stark-Wannier quantum resonances

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, Andrea, E-mail: andrea.sacchetti@unimore.it [Department of Physics, Computer Sciences and Mathematics, University of Modena e Reggio Emilia, Modena (Italy)

    2014-12-15

    In this paper, we prove the existence of the Stark-Wannier quantum resonances for one-dimensional Schrödinger operators with smooth periodic potential and small external homogeneous electric field. Such a result extends the existence result previously obtained in the case of periodic potentials with a finite number of open gaps.

  3. A packaged, low-cost, robust optical fiber strain sensor based on small cladding fiber sandwiched within periodic polymer grating.

    Science.gov (United States)

    Chiang, Chia-Chin; Li, Chein-Hsing

    2014-06-02

    In the present study, a novel packaged long-period fiber grating (PLPFG) strain sensor is first presented. The MEMS process was utilized to fabricate the packaged optical fiber strain sensor. The sensor structure consisted of etched optical fiber sandwiched between two layers of thick photoresist SU-8 3050 and then packaged with poly (dimethylsiloxane) (PDMS) polymer material to construct the PLPFG strain sensor. The PDMS packaging material was used to prevent the glue effect, wherein glue flows into the LPFG structure and reduces coupling strength, in the surface bonding process. Because the fiber grating was packaged with PDMS material, it was effectively protected and made robust. The resonance attenuation dip of PLPFG grows when it is loading. This study explored the size effect of the grating period and fiber diameter of PLPFG via tensile testing. The experimental results found that the best strain sensitivity of the PLPFG strain sensor was -0.0342 dB/με, and that an R2 value of 0.963 was reached.

  4. Nonlinear response of a forced van der Pol-Duffing oscillator at non-resonant bifurcations of codimension two

    International Nuclear Information System (INIS)

    Ji, J.C.; Zhang, N.

    2009-01-01

    Non-resonant bifurcations of codimension two may appear in the controlled van der Pol-Duffing oscillator when two critical time delays corresponding to a double Hopf bifurcation have the same value. With the aid of centre manifold theorem and the method of multiple scales, the non-resonant response and two types of primary resonances of the forced van der Pol-Duffing oscillator at non-resonant bifurcations of codimension two are investigated by studying the possible solutions and their stability of the four-dimensional ordinary differential equations on the centre manifold. It is shown that the non-resonant response of the forced oscillator may exhibit quasi-periodic motions on a two- or three-dimensional (2D or 3D) torus. The primary resonant responses admit single and mixed solutions and may exhibit periodic motions or quasi-periodic motions on a 2D torus. Illustrative examples are presented to interpret the dynamics of the controlled system in terms of two dummy unfolding parameters and exemplify the periodic and quasi-periodic motions. The analytical predictions are found to be in good agreement with the results of numerical integration of the original delay differential equation.

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. S Vatsala. Articles written in Resonance – Journal of Science Education. Volume 3 Issue 11 November 1998 pp 75-81 General Article. There is Much More to Mendeleev's Periodic Table Than Meets the Eye · S Vatsala · More Details Fulltext PDF ...

  6. Construction training process of highly skilled players in mini-football for competition period

    Directory of Open Access Journals (Sweden)

    Stasiuk I.I.

    2013-08-01

    Full Text Available Analyzed the structure and content of the competition period in mini-football. It was determined that the structure of the competition period consists of 4 competitive mesocycles. In each mesocycle includes various types of micro-cycles (competitive, cross-game and rehabilitation. Reflects the ratio of specific and non-specific (general preparations means training work. So in the competitive period for competitive mesocycles general preparations exercises ranged from 38.3 to 42.4%, special-preparation - from 29.9 to 32.6%, competitive - from 20.9 to 23.3%. The intensity of the training load in intergame microcycles less than competitive. This corresponds to the strategy of building the training process in the competitive period. During the competition period the ratio of the training load was: aerobic focus - 49.2%, mixed - 46.1%, anaerobic alactate - 2.4%, anaerobic glycolytic - 2.3%. Defines the scope and focus of the training load: longer the aerobic work, then - mixed, anaerobic- alactate and anaerobic-glycolytic. The comparative characteristics of the intensity of the training load in competitive and intergame microcycles.

  7. Alfven wave resonances and flow induced by nonlinear Alfven waves in a stratified atmosphere

    International Nuclear Information System (INIS)

    Stark, B. A.; Musielak, Z. E.; Suess, S. T.

    1996-01-01

    A nonlinear, time-dependent, ideal MHD code has been developed and used to compute the flow induced by nonlinear Alfven waves propagating in an isothermal, stratified, plane-parallel atmosphere. The code is based on characteristic equations solved in a Lagrangian frame. Results show that resonance behavior of Alfven waves exists in the presence of a continuous density gradient and that the waves with periods corresponding to resonant peaks exert considerably more force on the medium than off-resonance periods. If only off-peak periods are considered, the relationship between the wave period and induced longitudinal velocity shows that short period WKB waves push more on the background medium than longer period, non-WKB, waves. The results also show the development of the longitudinal waves induced by finite amplitude Alfven waves. Wave energy transferred to the longitudinal mode may provide a source of localized heating

  8. Daily Nigerian peak load forecasting using artificial neural network ...

    African Journals Online (AJOL)

    A daily peak load forecasting technique that uses artificial neural network with seasonal indices is presented in this paper. A neural network of relatively smaller size than the main prediction network is used to predict the daily peak load for a period of one year over which the actual daily load data are available using one ...

  9. A resonant chain of four transiting, sub-Neptune planets.

    Science.gov (United States)

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  10. A statistical model for combustion resonance from a DI diesel engine with applications

    Science.gov (United States)

    Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.

    2015-08-01

    Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.

  11. Intra- and inter-annual trends in phosphorus loads and comparison with nitrogen loads to Rehoboth Bay, Delaware (USA)

    Science.gov (United States)

    Volk, J.A.; Scudlark, J.R.; Savidge, K.B.; Andres, A.S.; Stenger, R.J.; Ullman, W.J.

    2012-01-01

    Monthly phosphorus loads from uplands, atmospheric deposition, and wastewater to Rehoboth Bay (Delaware) were determined from October 1998 to April 2002 to evaluate the relative importance of these three sources of P to the Bay. Loads from a representative subwatershed were determined and used in an areal extrapolation to estimate the upland load from the entire watershed. Soluble reactive phosphorus (SRP) and dissolved organic P (DOP) are the predominant forms of P in baseflow and P loads from the watershed are highest during the summer months. Particulate phosphorus (PP) becomes more significant in stormflow and during periods with more frequent or larger storms. Atmospheric deposition of P is only a minor source of P to Rehoboth Bay. During the period of 1998-2002, wastewater was the dominant external source of P to Rehoboth Bay, often exceeding all other P sources combined. Since 2002, however, due to technical improvements to the sole wastewater plant discharging directly to the Bay, the wastewater contribution of P has been significantly reduced and upland waters are now the principal source of P on an annualized basis. Based on comparison of N and P loads, primary productivity and biomass carrying capacity in Rehoboth Bay should be limited by P availability. However, due to the contrasting spatial and temporal patterns of N and P loading and perhaps internal cycling within the ecosystem, spatial and temporal variations in N and P-limitation within Rehoboth Bay are likely. ?? 2011 Elsevier Ltd.

  12. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    International Nuclear Information System (INIS)

    Prabhu Gaunkar, N.; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-01-01

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors

  13. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  14. Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy

    Directory of Open Access Journals (Sweden)

    Shu-huai Zhang

    2018-01-01

    Full Text Available This study presents a new bidirectional multi-resonant DC-DC converter, which is named CLTC. The converter adds an auxiliary transformer and an extra resonant capacitor based on a LLC resonant DC-DC converter, achieving zero-voltage switching (ZVS for the input inverting switches and zero-current switching (ZCS for the output rectifiers in all load range. The converter also has a wide gain range in two directions. When the load is light, a half-bridge configuration is adopted instead of a full-bridge configuration to solve the problem of voltage regulation. By this method, the voltage gain becomes monotonous and controllable. Besides, the digital synchronous rectification strategy is proposed in forward mode without adding any auxiliary circuit. The conduction time of synchronous rectifiers equals the estimation value of body diodes’ conduction time with the lightest load. Power loss analysis is also conducted in different situations. Finally, the theoretical analysis is validated by a 5 kW prototype.

  15. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy

    2012-08-01

    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  16. Tunable High Q Superconducting Microwave Resonator for Hybrid System with ^87Rb atoms

    Science.gov (United States)

    Kim, Zaeill; Voigt, K. D.; Lee, Jongmin; Hoffman, J. E.; Grover, J. A.; Ravets, S.; Zaretskey, V.; Palmer, B. S.; Hafezi, M.; Taylor, J. M.; Anderson, J. R.; Dragt, A. J.; Lobb, C. J.; Orozco, L. A.; Rolston, S. L.; Wellstood, F. C.

    2012-02-01

    We have developed a frequency tuning system for a ``lumped-element'' thin-film superconducting Al microwave resonator [1] on sapphire intended for coupling to hyperfine ground states of cold trapped ^87Rb atoms, which are separated by about fRb=6.83 GHz. At T=12 mK and on resonance at 6.81 GHz, the loaded quality factor was 120,000. By moving a carefully machined Al pin towards the inductor of the resonator using a piezo stage, we were able to tune the resonance frequency over a range of 35 MHz and within a few kHz of fRb. While measuring the power dependent response of the resonator at each tuned frequency, we observed anomalous decreases in the quality factor at several frequencies. These drops were more pronounced at lower power. We discuss our results, which suggest these resonances are attributable to discrete two-level systems.[4pt] [1] Z. Kim et al., AIP ADVANCES 1, 042107 (2011).

  17. A normalized model for the half-bridge series resonant converter

    Science.gov (United States)

    King, R.; Stuart, T. A.

    1981-01-01

    Closed-form steady-state equations are derived for the half-bridge series resonant converter with a rectified (dc) load. Normalized curves for various currents and voltages are then plotted as a function of the circuit parameters. Experimental results based on a 10-kHz converter are presented for comparison with the calculations.

  18. Quantitative analysis of impact measurements using dynamic load cells

    Directory of Open Access Journals (Sweden)

    Brent J. Maranzano

    2016-03-01

    Full Text Available A mathematical model is used to estimate material properties from a short duration transient impact force measured by dropping spheres onto rectangular coupons fixed to a dynamic load cell. The contact stress between the dynamic load cell surface and the projectile are modeled using Hertzian contact mechanics. Due to the short impact time relative to the load cell dynamics, an additional Kelvin–Voigt element is included in the model to account for the finite response time of the piezoelectric crystal. Calculations with and without the Kelvin–Voigt element are compared to experimental data collected from combinations of polymeric spheres and polymeric and metallic surfaces. The results illustrate that the inclusion of the Kelvin–Voigt element qualitatively captures the post impact resonance and non-linear behavior of the load cell signal and quantitatively improves the estimation of the Young's elastic modulus and Poisson's ratio. Mathematically, the additional KV element couples one additional differential equation to the Hertzian spring-dashpot equation. The model can be numerically integrated in seconds using standard numerical techniques allowing for its use as a rapid technique for the estimation of material properties. Keywords: Young's modulus, Poisson's ratio, Dynamic load cell

  19. Stochastic resonance a mathematical approach in the small noise limit

    CERN Document Server

    Herrmann, Samuel; Pavlyukevich, Ilya; Peithmann, Dierk

    2013-01-01

    Stochastic resonance is a phenomenon arising in a wide spectrum of areas in the sciences ranging from physics through neuroscience to chemistry and biology. This book presents a mathematical approach to stochastic resonance which is based on a large deviations principle (LDP) for randomly perturbed dynamical systems with a weak inhomogeneity given by an exogenous periodicity of small frequency. Resonance, the optimal tuning between period length and noise amplitude, is explained by optimizing the LDP's rate function. The authors show that not all physical measures of tuning quality are robust with respect to dimension reduction. They propose measures of tuning quality based on exponential transition rates explained by large deviations techniques and show that these measures are robust. The book sheds some light on the shortcomings and strengths of different concepts used in the theory and applications of stochastic resonance without attempting to give a comprehensive overview of the many facets of stochastic ...

  20. Resonant forcing of multidimensional chaotic map dynamics.

    Science.gov (United States)

    Foster, Glenn; Hübler, Alfred W; Dahmen, Karin

    2007-03-01

    We study resonances of chaotic map dynamics. We use the calculus of variations to determine the additive forcing function that induces the largest response. We find that resonant forcing functions complement the separation of nearby trajectories, in that the product of the displacement of nearby trajectories and the resonant forcing is a conserved quantity. As a consequence, the resonant function will have the same periodicity as the displacement dynamics, and if the displacement dynamics is irregular, then the resonant forcing function will be irregular as well. Furthermore, we show that resonant forcing functions of chaotic systems decrease exponentially, where the rate equals the negative of the largest Lyapunov exponent of the unperturbed system. We compare the response to optimal forcing with random forcing and find that the optimal forcing is particularly effective if the largest Lyapunov exponent is significantly larger than the other Lyapunov exponents. However, if the largest Lyapunov exponent is much larger than unity, then the optimal forcing decreases rapidly and is only as effective as a single-push forcing.

  1. Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders

    DEFF Research Database (Denmark)

    Sondergaard, T.; Bozhevolnyi, S. I.; Beermann, J.

    2012-01-01

    Transmission through thin metal films with a periodic arrangement of tapered slits is considered. Transmission maps covering a wide range of periods, film thicknesses, and taper angles are presented. The maps show resonant transmission when fundamental and higher-order slit resonances are excited...... to be in the range of 6 degrees-10 degrees. Both theory and experiments show split-peak spectra and shifted-peak spectra due to interference between a slit resonance and Rayleigh-Wood anomalies. (C) 2011 Optical Society of America...

  2. N ecklaces~ Periodic Points and Permutation Representations

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 11. Necklaces, Periodic Points and Permutation Representations - Fermat's Little Theorem. Somnath Basu Anindita Bose Sumit Kumar Sinha Pankaj Vishe. General Article Volume 6 Issue 11 November 2001 pp 18-26 ...

  3. Electro-Mechanical Resonance Curves

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2018-01-01

    Recently I have been investigating the frequency response of galvanometers. These are direct-current devices used to measure small currents. By using a low-frequency function generator to supply the alternating-current signal and a stopwatch smartphone app to measure the period, I was able to take data to allow a resonance curve to be drawn. This…

  4. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    . The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes.......The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element...... formulation accounts for arbitrary mass density distributions, general elastic crosssection properties and geometric stiffness effects due to internal stresses. A compact, linear formulation for aerodynamic forces with associated stiffness and damping terms is established and added to the structural model...

  5. Influence of the snubbers and matching transformer on an optimal trajectory controlled resonant transistor DC/DC converter

    Directory of Open Access Journals (Sweden)

    Bankov Dimitrov Nikolay

    2012-01-01

    Full Text Available This work examines a series resonant DC/DC optimal trajectory controlled converter during operation above resonant frequency, taking into account the influence of the snubbers and matching transformer. We obtain expressions for the load characteristics, boundary curves between possible modes and limits of the soft commutation area. Computer simulation and experimental observation confirm the theoretical results.

  6. Partially Loaded Cavity Analysis by Using the 2-D FDTD Method

    International Nuclear Information System (INIS)

    Yao Bin; Zheng Qin-Hong; Peng Jin-Hui; Zhong Ru-Neng; Xiang Tai; Xu Wan-Song

    2011-01-01

    A compact two-dimensional (2-D) finite-difference time-domain (FDTD) method is proposed to calculate the resonant frequencies and quality factors of a partially loaded cavity that is uniform in the z-direction and has an arbitrary cross section in the x—y plane. With the description of z dependence by k z , the three-dimensional (3-D) problem can be transformed into a 2-D problem. Therefore, less memory and CPU time are required as compared to the conventional 3-D FDTD method. Three representative examples, a half-loaded rectangular cavity, an inhomogeneous cylindrical cavity and a cubic cavity loaded with dielectric post, are presented to validate the utility and efficiency of the proposed method. (cross-disciplinary physics and related areas of science and technology)

  7. Measurements of Bremsstrahlung radiation and X-ray heat load to cryostat on SECRAL

    International Nuclear Information System (INIS)

    Zhao, H.Y.; Cao, Y.; Lu, W.; Zhang, W.H.; Zhao, H.W.; Zhang, X.Z.; Zhu, Y.H.; Li, X.X.; Xie, D.Z.

    2012-01-01

    The measurement of Bremsstrahlung radiation from ECR (Electron Cyclotron Resonance) plasma can yield certain information about the ECR heating process and the plasma confinement, and more important it can give a plausible estimate of the X-ray heat load to the cryostat of a superconducting ECR source. To better understand the additional heat load to the cryostat due to Bremsstrahlung radiation, the axial Bremsstrahlung measurements have been conducted on SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) with different source parameters. In addition, the heat load induced by intense X-ray or even γ-ray was estimated in terms of liquid helium consumption. The relationship between these two parameters is presented here. Thick-target Bremsstrahlung, induced by the collision of hot electrons with the wall or the source electrode, is much more intensive compared with the radiation produced in the plasma and, consequently, much more difficult to shield off. In this paper the presence of the thick-target Bremsstrahlung is correlated with the magnetic confinement configuration, specifically, the ratio of B(last) to B(ext). And possible solutions to reduce the X-ray heat load induced by Bremsstrahlung radiation are proposed and discussed. It appears that by choosing an appropriate ratio of B(last) to B(ext) the thick-target Bremsstrahlung radiation can be avoided effectively. The paper is followed by the associated poster

  8. Neural effects of cognitive control load on auditory selective attention.

    Science.gov (United States)

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R; Mangalathu, Jain; Desai, Anjali

    2014-08-01

    Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210ms, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. DISK-PLANETS INTERACTIONS AND THE DIVERSITY OF PERIOD RATIOS IN KEPLER'S MULTI-PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Baruteau, Clement; Papaloizou, John C. B.

    2013-01-01

    The Kepler mission is dramatically increasing the number of planets known in multi-planetary systems. Many adjacent planets have orbital period ratios near resonant values, with a tendency to be larger than required for exact first-order mean-motion resonances. This feature has been shown to be a natural outcome of orbital circularization of resonant planetary pairs due to star-planet tidal interactions. However, this feature holds in multi-planetary systems with periods longer than 10 days, in which tidal circularization is unlikely to provide efficient divergent evolution of the planets' orbits to explain these orbital period ratios. Gravitational interactions between planets and their parent protoplanetary disk may instead provide efficient divergent evolution. For a planet pair embedded in a disk, we show that interactions between a planet and the wake of its companion can reverse convergent migration and significantly increase the period ratio from a near-resonant value. Divergent evolution due to wake-planet interactions is particularly efficient when at least one of the planets opens a partial gap around its orbit. This mechanism could help account for the diversity of period ratios in Kepler's multiple systems from super-Earth to sub-Jovian planets with periods greater than about 10 days. Diversity is also expected for pairs of planets massive enough to merge their gap. The efficiency of wake-planet interactions is then much reduced, but convergent migration may stall with a variety of period ratios depending on the density structure in the common gap. This is illustrated for the Kepler-46 system, for which we reproduce the period ratio of Kepler-46b and c

  10. Resonators for magnetohydrodynamic waves in the solar corona: The effect of modulation of radio emission

    International Nuclear Information System (INIS)

    Zaitsev, V.V.; Stepanov, A.V.

    1982-01-01

    It is shown that the existence of a minimum of the Alfven speed in the corona at a height of approx.1R/sub sun/ follows from the characteristics of type II radio bursts. The region of a reduced Alfven speed is a resonator for a fast magnetosonic (FMS) waves. The eigenmodes of the resonator are determined. The period of the fundamental mode has the order of several minutes. In the resonator FMS waves can be excited at the Cherenkov resonance by streams of energetic ions. Modulations of metal solar radio emission with a period of several minutes is explained by the effect of the propagation of radio waves through an oscillating magnetohydrodynamic (MHD) resonator

  11. Isolating Age-Group Differences in Working Memory Load-Related Neural Activity: Assessing the Contribution of Working Memory Capacity Using a Partial-Trial fMRI Method

    Science.gov (United States)

    Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart

    2013-01-01

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076

  12. Isolating age-group differences in working memory load-related neural activity: assessing the contribution of working memory capacity using a partial-trial fMRI method.

    Science.gov (United States)

    Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart

    2013-05-15

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy.

    Science.gov (United States)

    Li, Lele; Tong, Rong; Li, Mengyuan; Kohane, Daniel S

    2016-03-01

    Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities. Published by Elsevier Ltd.

  14. Experimental investigation of ultimate loads

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, S M; Larsen, G C; Antoniou, I; Lind, S O; Courtney, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    Verification of the structural integrity of a wind turbine involves analysis of fatigue loading as well as ultimate loading. With the trend of persistently growing turbines, the ultimate loading seems to become relatively more important. For wind turbines designed according to the wind conditions prescribed in the IEC-61400 code, the ultimate load is often identified as the leading load parameter. Exemplified by the use of an extensive measurement campaign a procedure for evaluation of the extreme flap-wise bending moments, occurring during normal operating of a wind turbine, is presented. The structural measurements are made on a NEG Micon 650 kW wind turbine erected at a complex high wind site in Oak Creek, California. The turbine is located on the top of a ridge. The prevailing wind direction is perpendicular to the ridge, and the annual mean wind speed is 9.5 m/s. The associated wind field measurement, are taken from two instrumented masts erected less than one rotor diameter in front of the turbine in direction of the prevailing wind direction. Both masts are instrumented at different heights in order to gain insight of the 3D-wind speed structure over the entire rotor plane. Extreme distributions, associated with a recurrence period of 10 minutes, conditioned on the mean wind speed and the turbulence intensity are derived. Combined with the wind climate model proposed in the IEC standard, these distributions are used to predict extreme distributions with recurrence periods equal to one and fifty years, respectively. The synthesis of the conditioned PDF`s and the wind climate model is performed by means of Monte Carlo simulation. (au)

  15. Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme

    Science.gov (United States)

    Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi

    2015-10-01

    This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.

  16. Spiral waves in excitable media due to noise and periodic forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Guoyong, E-mail: g-y-yuan@sohu.com [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016 (China); Xu Lin [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Xu Aiguo; Wang Guangrui [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Yang Shiping [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016 (China)

    2011-09-15

    Highlights: > Excitable media jointly driven by periodic forcing and Gaussian white noise. > The joint driving leads to many unique tip motions. > New type of spiral wave breakup occurs between entrainment bands with 1:1 and 2:1. > Arnold tongues for different noise intensities exhibit stochastic resonance. > Fourier spectrum analysis can interpret tip motions and formation of entrainments. - Abstract: We investigate the jointly driven effects of external periodic forcing and Gaussian white noise on meandering spiral waves in excitable media with FitzHugh-Nagumo local dynamics. Interesting phenomena resulted from various forcing periods are found, for example, piece-wise line drift, intermittent straight-line drift and so on. We also observe new type of breakup of spiral wave between entrainment bands with 1:1 and 2:1. It is believed that the occurrence of the new type is relevant to the appearance of local bidirectional propagation window. There exist optimized noise intensities which can induce the broadest entrainments and Arnold tongues. Such a phenomenon is referred to as stochastic resonance. It is also observed that the noise makes significant effects on the spiral wave with straight-line drift. Via the tip Fourier spectrum, the varying of tip motion with external periods on the resonance band is interpreted.

  17. Resonances for coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Haroutyunyan, H.L.; Nienhuis, G.

    2004-01-01

    The properties of a Bose-Einstein condensate in a two-well potential can be manipulated by periodic modulation of the potential parameters. We study the effects arising from modulating the barrier height and the difference in well depth. At certain modulation frequencies the system exhibits resonances, which may show up in an enhancement of the tunneling rate between the wells. Resonances can be used to control the particle distribution over the wells. Some of the effects occurring in the two-well system also arise for a Bose-Einstein condensate in an optical lattice

  18. The effect of rehearsal rate and memory load on verbal working memory.

    Science.gov (United States)

    Fegen, David; Buchsbaum, Bradley R; D'Esposito, Mark

    2015-01-15

    While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-s delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A vibration energy harvesting device with bidirectional resonance frequency tunability

    International Nuclear Information System (INIS)

    Challa, Vinod R; Prasad, M G; Shi Yong; Fisher, Frank T

    2008-01-01

    Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22–32 Hz to enable a continuous power output 240–280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined

  20. Liquid-Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Ch.; Michaelis, V.K.; Kroeker, S. [Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2 (Canada); Schuller, S. [CEA Valrho Marcoule, LDMC, SECM, DTCD, DEN, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    Double-resonance nuclear magnetic resonance (NMR) techniques are used in addition to single-resonance NMR experiments to probe the degree of mixing between network-forming cations Si and B, along with the modifier cations Cs{sup +} and Na{sup +} in two molybdenum-bearing model nuclear waste glasses. The double-resonance experiments involving {sup 29}Si in natural abundance are made possible by the implementation of a CPMG pulse-train during the acquisition period of the usual REDOR experiments. For the glass with lower Mo content, the NMR results show a high degree of Si-B mixing, as well as an homogeneous distribution of the cations within the borosilicate network, characteristic of a non-phase-separated glass. For the higher-Mo glass, a decrease of B-Si(Q{sup 4}) mixing is observed, indicating phase separation. {sup 23}Na and {sup 133}Cs NMR results show that although the Cs{sup +} cations, which do not seem to be influenced by the molybdenum content, are spread within the borate network, there is a clustering of the Na{sup +} cations, very likely around the molybdate units. The segregation of a Mo-rich region with Na{sup +} cations appears to shift the bulk borosilicate glass composition toward the metastable liquid liquid immiscibility region and induce additional phase separation. Although no crystallization is observed in the present case, this liquid liquid phase separation is likely to be the first stage of crystallization that can occur at higher Mo loadings or be driven by heat treatment. From this study emerges a consistent picture of the nature and extent of such phase separation phenomena in Mo-bearing glasses, and demonstrates the potential of double-resonance NMR methods for the investigation of phase separation in amorphous materials. (authors)

  1. Conductance oscillation in graphene-nanoribbon-based electronic Fabry-Perot resonators

    International Nuclear Information System (INIS)

    Zhang Yong; Han Mei; Shen Linjiang

    2010-01-01

    By using the tight-binding approximation and the Green's function method, the quantum conductance of the Fabry-Perot-like electronic resonators composed of zigzag and metallic armchair edge graphene nanoribbons (GNRs) was studied numerically. Obtained results show that due to Fabry-Perot-like electronic interference, the conductance of the GNR resonators oscillates periodically with the Fermi energy. The effects of disorders and coupling between the electrodes and the GNR on conductance oscillations were explored. It is found that the conductance oscillations appear at the strong coupling and become resonant peaks as the coupling is very weak. It is also found that the strong disorders in the GNR can smear the conductance oscillation periods. In other words, the weak coupling and the strong disorders all can blur the conductance oscillations, making them unclearly distinguished.

  2. A High-Efficiency Isolated LCLC Multi-Resonant Three-Port Bidirectional DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Cheng-Shan Wang

    2017-07-01

    Full Text Available In this paper, an isolated multi-resonant three-port bidirectional direct current-direct current (DC-DC converter is proposed, which is composed of three full bridges, two inductor-capacitor-inductor-capacitor (LCLC multi-resonant tanks and a three-winding transformer. The phase shift control method is employed to manage the power transmission among three ports. Relying on the appropriate parameter selection, both of the fundamental and the third order power can be delivered through the multi-element LCLC resonant tanks, and consequently, it contributes to restrained circulating energy and the desirable promoted efficiency. Besides, by adjusting the driving frequency under different load conditions, zero-voltage-switching (ZVS characteristics of all the switches of three ports are guaranteed. Therefore, lower switching loss and higher efficiency are achieved in full load range. In order to verify the feasibility of the proposed topology, a 1.5 kW prototype is established, of which the maximum efficiencies under forward and reverse operating conditions are 96.7% and 96.9% respectively. In addition, both of the bidirectional efficiencies maintain higher than 95.5% when the power level is above 0.5 kW.

  3. Load factors to end March 1989

    International Nuclear Information System (INIS)

    Howles, L.

    1989-01-01

    Load factors for nuclear reactors of 150MWe gross and above for the 12 month period up to the end of March 1989, and over their lifetimes, are tabulated. Units which have been in operation for more than one year as of end March 1989 are ranked in order of annual load factor; cumulative load factors are also shown, measured from first synchronization to the grid not from start of commercial operation. New reactors which had operated for less than 12 months as of end of March 1989 are listed separately. With the exception of the four Paks units in Hungary, Comecon reactors are excluded due to lack of data. (author)

  4. Enhanced sensitivity fibre Bragg grating (FBG) load sensor

    International Nuclear Information System (INIS)

    Correia, Ricardo; Chehura, Edmon; Li, Jin; James, Stephen W; Tatam, Ralph P

    2010-01-01

    The characterization of a load sensor based on the transverse loading of a subsection of a fibre Bragg grating (FBG) embedded within a cube of epoxy resin is presented. When the epoxy resin cube is loaded transverse to the axis of the fibre, its deformation transduces the load to a strain along the axis of the optical fibre, which changes the period of the embedded section of the FBG. This creates a spectral dropout within the bandwidth of the FBG, with an absolute wavelength that is linearly dependent on the applied load. This technique enhances the sensitivity of the FBG to transverse loading by a factor of 15, to 2.9 × 10 −2 ± 0.01 nm N −1 , when compared to the direct transverse loading of a bare fibre, and also protects the fibre from mechanical damage at the loading point

  5. Resonance reduction for AC drives with small capacitance in the DC link

    DEFF Research Database (Denmark)

    Máthé, Lászlo; Török, Lajos; Wang, Dong

    2016-01-01

    Pulse Width Modulated AC drives equipped with small DC-link capacitor are becoming an attractive solution for electric drive applications with moderate requirements for shaft dynamic performance. However, when these drives are fed from a weak grid a resonance between the line side impedance...... and the DC-link capacitor appears. Due to this resonance, the THD and the partially weighted harmonic distortion of the line currents are increased, which may rise compatibility problems with the AC line harmonic standards. By using vector control the motor drive is transformed into a constant power load...

  6. Analysis of series resonant converter with series-parallel connection

    Science.gov (United States)

    Lin, Bor-Ren; Huang, Chien-Lan

    2011-02-01

    In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.

  7. Quantum heat engine with coupled superconducting resonators

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.

    2017-01-01

    the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal......We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....

  8. Multimachine subsynchronous resonance: Pt. 2

    International Nuclear Information System (INIS)

    Lahoud, M.A.; Harley, R.G.; Levy, D.C.

    1984-01-01

    This paper describes a theoretical investigation into the subsynchronous resonance (SSR) behaviour of a power system containing synchronous generators, induction motors and series capacitors. By applying eigenvalue techniques, attention is paid to the effect of replacing the induction motor by an equivalent fixed resistor-inductor (R-L) load. Nonlinear transient simulations and their Fast Fourier Transforms (FFT's) are also used to investigate the effects of the complexity of the mechanical model of the generator on the SSR predictions. The results show that the model used for the induction motor has a significant effect on the SSR behaviour of a multimachine system

  9. The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture

    Science.gov (United States)

    Reeder, James R.

    2014-01-01

    Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.

  10. Considerations preliminary to the application of early and immediate loading protocols in dental implantology.

    Science.gov (United States)

    Szmukler-Moncler, S; Piattelli, A; Favero, G A; Dubruille, J H

    2000-02-01

    In oral implantology, a 3-6 month stress-free healing period is presently accepted as a prerequisite to achieve bone apposition without interposition of a fibrous scar tissue. This protocol was introduced by Brånemark and co-workers in 1977. The aim of the present paper is to review the reasons that led Brånemark and collaborators to require long delayed loading periods. It is shown that the requirement for long delayed loading periods was drawn from the initiation and development periods of their original clinical trial. Demanding conditions were met involving simultaneously: 1) patients with poor bone quality and quantity, 2) non-optimized implant design, 3) short implants, 4) non-optimized surgical placement, 5) non-optimized surgical protocol and 6) biomechanically non-optimized prosthesis. Extrapolation of the requirement for long healing periods from these particular conditions to more standard situations involving refined surgical protocols and careful patient selection might be questioned. Albeit premature loading has been interpreted as inducing fibrous tissue interposition, immediate loading per se is not responsible for fibrous encapsulation. It is the excess of micromotion during the healing phase that interferes with bone repair. A threshold of tolerated micromotion exists, that is somewhere between 50 microns and 150 microns. It is suggested that loading protocols might be shortened through 2 different approaches. The first way would be to decrease stepwise the delayed loading period for free-standing implants below the presently accepted 3-6 months of healing. The second way would be to identify immediate loading protocols that are capable of keeping the amount of micromotion beneath the threshold of deleterious micromotion. Immediate loading protocols for implants-retained overdentures and fixed bridges are reviewed. It is shown that successful premature loading protocols require a careful and strict patient selection aimed to achieve the best

  11. An electromagnetic induced transparency-like scheme for wireless power transfer using dielectric resonators

    Science.gov (United States)

    Elnaggar, Sameh Y.

    2017-02-01

    Similar to the hybridization of three atoms, three coupled resonators interact to form bonding, anti-bonding, and non-bonding modes. The non-bonding mode enables an electromagnetic induced transparency like transfer of energy. Here, the non-bonding mode, resulting from the strong electric coupling of two dielectric resonators and an enclosure, is exploited to show that it is feasible to transfer power over a distance comparable to the operating wavelength. In this scheme, the enclosure acts as a mediator. The strong coupling permits the excitation of the non-bonding mode with high purity. This approach is different from resonant inductive coupling, which works in the sub-wavelength regime. Optimal loads and the corresponding maximum efficiency are determined using two independent methods: Coupled Mode Theory and Circuit modelling. It is shown that, unlike resonant inductive coupling, the figure of merit depends on the enclosure quality and not on the load, which emphasizes the role of the enclosure as a mediator. Briefly after the input excitation is turned on, the energy in the receiver builds up via all coupled and spurious modes. As time elapses, all modes except the non-bonding cease to sustain. Due to the strong coupling between the dielectrics and the enclosure, such systems have unique properties such as high and uniform efficiency over large distances and minimal fringing fields. These properties suggest that electromagnetic induced transparency like schemes that rely on the use of dielectric resonators can be used to power autonomous systems inside an enclosure or find applications when exposure to the fields needs to be minimal. Finite Element computations are used to verify the theoretical predictions by determining the transfer efficiency, field profile, and coupling coefficients for two different systems. It is shown that the three resonators must be present for efficient power transfer; if one or more are removed, the transfer efficiency reduces

  12. A process for detecting the foundation/floor interaction from the effect of periodic loads

    International Nuclear Information System (INIS)

    Mueller, G.

    1989-01-01

    The work is concerned with the vibration response of the ground under harmonically loaded foundations, whose stiffness and mass are taken into account. This is considered for the plane state of change of shape. The found is assumed to be an elastic isotropic, hysteretically damped horizontally layered semi-space and the foundation is assumed to be an EULER-BERNOULLI beam. The investigation is preceded by a survey of the basis of wave propagation in elastic isotropically layered spaces. The problem is solved for the state free of swelling or turbulence in the space of co-ordinates transformed by a FOURIER transformation. The method of solution of various questions, such as wave reflection at the semi-space surface or spread of vibration under harmonic loads affecting the ground is shown. (orig.HP) [de

  13. Resonant Orbital Dynamics in LEO Region: Space Debris in Focus

    Directory of Open Access Journals (Sweden)

    J. C. Sampaio

    2014-01-01

    Full Text Available The increasing number of objects orbiting the earth justifies the great attention and interest in the observation, spacecraft protection, and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, objects in resonant orbital motions are studied in low earth orbits. Using the two-line elements (TLE of the NORAD, resonant angles and resonant periods associated with real motions are described, providing more accurate information to develop an analytical model that describes a certain resonance. The time behaviors of the semimajor axis, eccentricity, and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.

  14. Optimal resonance configuration for ultrasonic wireless power transmission to millimeter-sized biomedical implants.

    Science.gov (United States)

    Miao Meng; Kiani, Mehdi

    2016-08-01

    In order to achieve efficient wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions, ultrasonic WPT links have recently been proposed. Operating both transmitter (Tx) and receiver (Rx) ultrasonic transducers at their resonance frequency (fr) is key in improving power transmission efficiency (PTE). In this paper, different resonance configurations for Tx and Rx transducers, including series and parallel resonance, have been studied to help the designers of ultrasonic WPT links to choose the optimal resonance configuration for Tx and Rx that maximizes PTE. The geometries for disk-shaped transducers of four different sets of links, operating at series-series, series-parallel, parallel-series, and parallel-parallel resonance configurations in Tx and Rx, have been found through finite-element method (FEM) simulation tools for operation at fr of 1.4 MHz. Our simulation results suggest that operating the Tx transducer with parallel resonance increases PTE, while the resonance configuration of the mm-sized Rx transducer highly depends on the load resistance, Rl. For applications that involve large Rl in the order of tens of kΩ, a parallel resonance for a mm-sized Rx leads to higher PTE, while series resonance is preferred for Rl in the order of several kΩ and below.

  15. Capacitive top-loading of a mobile phone antenna for size reduction

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2004-01-01

    Capacitive top loading for size reduction of the Planar Inverted F Antenna (PIFA) is presented in this paper. A measured 39% reduction from 1.8 to 1.22 GHz of the resonant frequency is accomplished by using a 1.1 pF distributed capacitor. The simulated –6 dB bandwidth is 9% with a peak radiation ...

  16. Small-Scale Testing Rig for Long-Term Cyclically Loaded Monopiles in Cohesionless Soil

    DEFF Research Database (Denmark)

    Roesen, Hanne Ravn; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2012-01-01

    , and the period of the cyclic loading. However, the design guidance on these issues is limited. Thus, in order to investigate the pile behaviour for cyclically long-term loaded monopiles, a test setup for small-scale tests in saturated dense cohesionless soil is constructed and presented in here. The cyclic...... loading is applied mechanically by means of a testing rig, where the important input parameters: mean level, amplitude, number of cycles, and period of the loading can be varied. The results from a monotonic and a cyclic loading test on an open-ended aluminium pile with diameter = 100 mm and embedded...... length = 600 mm proves that the test setup is capable of applying the cyclic long-term loading. The plastic deformations during loading depend not only on the loading applied but also of the relative density of the soil and, thus, the tests are carried out with relative densities of 77-88%, i.e. similar...

  17. Probabilistic model for multi-axial load combinations for wind turbines

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    2016-01-01

    into a periodic part and a perturbation term, where each part has a known probability distribution. The proposed model shows good agreement with simulated data under stationary conditions, and a design load envelope based on this model is comparable to the load envelope estimated using the standard procedure...... for determining contemporaneous loads. Using examples with simulated loads on a 10 MW wind turbine,the behavior of the bending moments acting on a blade section is illustrated under different conditions.The loading direction most critical for material failure is determined using a finite-element model...

  18. Multicomponent long-wave-short-wave resonance interaction system: Bright solitons, energy-sharing collisions, and resonant solitons.

    Science.gov (United States)

    Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M

    2014-11-01

    We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.

  19. Orbital Resonances in the Vinti Solution

    Science.gov (United States)

    Zurita, L. D.

    As space becomes more congested, contested, and competitive, high-accuracy orbital predictions become critical for space operations. Current orbit propagators use the two-body solution with perturbations added, which have significant error growth when numerically integrated for long time periods. The Vinti Solution is a more accurate model than the two-body problem because it also accounts for the equatorial bulge of the Earth. Unfortunately, the Vinti solution contains small divisors near orbital resonances in the perturbative terms of the Hamiltonian, which lead to inaccurate orbital predictions. One approach to avoid the small divisors is to apply transformation theory, which is presented in this research. The methodology of this research is to identify the perturbative terms of the Vinti Solution, perform a coordinate transformation, and derive the new equations of motion for the Vinti system near orbital resonances. An analysis of these equations of motion offers insight into the dynamics found near orbital resonances. The analysis in this research focuses on the 2:1 resonance, which includes the Global Positioning System. The phase portrait of a nominal Global Positioning System satellite orbit is found to contain a libration region and a chaotic region. Further analysis shows that the dynamics of the 2:1 resonance affects orbits with semi-major axes ranging from -5.0 to +5.4 kilometers from an exactly 2:1 resonant orbit. Truth orbits of seven Global Positioning System satellites are produced for 10 years. Two of the satellites are found to be outside of the resonance region and three are found to be influenced by the libration dynamics of the resonance. The final satellite is found to be influenced by the chaotic dynamics of the resonance. This research provides a method of avoiding the small divisors found in the perturbative terms of the Vinti Solution near orbital resonances.

  20. Regulation of the output power at the resonant converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefanov, Goce G.; Sarac, Vasilija J. [University Goce Delecev-Stip, Faculty of Electrical Engineering, Radovis (Macedonia, The Former Yugoslav Republic of); Karadzinov, Ljupco V., E-mail: goce.stefanov@ugd.edu.mk [University Kiril and Methodyus-Skopje, FEIT Skopje(Macedonia, The Former Yugoslav Republic of)

    2011-07-01

    In this paper a method for regulating an alternating current voltage source with pair of IGBT transistor’s modules, in a full bridge configuration with series resonant converter is given. With the developed method a solution is obtained which can regulate the phase difference between output voltage and current through the inductor, in order to maintain maximum output power. Control electronic via feedback signals regulates the energy transfer to the tank by changing the pulse width of signals which are used as inputs to the gates of the IGBTs. By increasing or decreasing the pulse width transmitted to the various gates of the IGBT the energy transfer to the tank is increased or decreased . PowerSim simulations program is used for development of controlling methodology. Developed method is practically implemented in a prototype of the device for phase control of resonant converter with variable the resonant load. Key words: pulse width method, phase regulation , power converter.

  1. Test of the periodic-orbit approximation in n-disk systems

    International Nuclear Information System (INIS)

    Wirzba, A.

    1993-01-01

    The scattering of a point particle in two dimensions from two (or three) equally-sized (and spaced) circular hard disks is one of the simplest classically hyperbolic scattering problems. Because of this simplicity such systems are well suited for the study of the semiclassical periodic-orbit approximation in the cycle expansion of the dynamical zeta function applied to a quantum-mechanical scattering problem. Especially the predictions of the semiclassical cycle expansion for the quantum-mechanical resonances can be tested in these n-disk systems. Whereas for high wave numbers the cycle expansion gives quite accurate results, there are systematic deviations for low wave numbers from the exact quantum-mechanical values. The low-lying quantum-mechanical resonance poles of the 2- and 3-disk problem are constructed and compared to the cycle-expansion results. The characteristic determinant of the scattering matrix is expanded in terms of simple traces which in turn are related to the classical periodic orbits and possible creeping contributions. It will be shown that for large separations of the disks the correct resonance-pole positions can be extracted just from the knowledge of the lowest traces whose semiclassical limit are the fundamental periodic orbits. Creeping-orbit corrections are shown to be small. (orig.)

  2. Successful testing of an emergency diesel generator engine at very low load

    International Nuclear Information System (INIS)

    Killinger, A.; Loeper, St.

    2001-01-01

    For more than 30 years, the nuclear power industry has been concerned about the ability of emergency diesel generator sets (EDGs) to operate for extended periods of time at low loads (typically less than 33% of design rating) and still be capable of meeting their design safety requirement. Most diesel engine manufacturers today still caution owners and operators to avoid running their diesel engines for extended periods of time at low loads. At one nuclear power plant, the emergency electrical bus arrangement only required approximately 25% of the EDG's design rating, which necessitated that the plant operators monitor EDG operating hours and periodically increase electrical load. In order to eliminate the plant operations burden of periodically loading the EDGs, the nuclear power plant decided to conduct a low-load test of a ''spare'' diesel engine. A SACM Model UD45V16S5D diesel engine was returned to the factory in Mulhouse, France where the week long testing at rated speed and 3% of design rating was completed. The test demonstrated that the engine was capable of operating for seven days (168 hours) at very low loads, with no loss of performance and no unusual internal wear or degradation. The planning and inspections associated with preparing the diesel engine for the test, the engine monitoring performed during the test, the final test results, and the results and material condition of the engine following the test are described. The successful diesel engine low-load test resulted in the elimination of unnecessary nuclear power plant operation restrictions that were based on old concerns about long-term, low-load operation of diesel engines. The paper describes the significance of this diesel engine test to the nuclear power plant and the entire nuclear power industry. (author)

  3. Quantifying suspended sediment loads delivered to Cheney Reservoir, Kansas: Temporal patterns and management implications

    Science.gov (United States)

    Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy

    2015-01-01

    Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on

  4. Multivariate Modelling of Extreme Load Combinations for Wind Turbines

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    2015-01-01

    into a periodic part and a perturbation term, where each part has a known probability distribution. The proposed model shows good agreement with simulated data under stationary conditions, and a design load envelope based on this model is comparable to the load envelope estimated using the standard procedure...

  5. Optimal Load Response to Time-of-Use Power Price for Demand Side Management in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    -of-use power price for demand side management in order to save the energy costs as much as possible. 3 typical different kinds of loads (industrial load, residential load and commercial load) in Denmark are chosen as study cases. The energy costs decrease up to 9.6% with optimal load response to time......-of-use power price for different loads. Simulation results show that the optimal load response to time-of-use power price for demand side management generates different load profiles and reduces the load peaks. This kind of load patterns may also have significant effects on the power system normal operation.......Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift their loads from high price periods to the low price periods in order to save their energy costs. This paper presents a load optimization method to time...

  6. Adaptive logical stochastic resonance in time-delayed synthetic genetic networks

    Science.gov (United States)

    Zhang, Lei; Zheng, Wenbin; Song, Aiguo

    2018-04-01

    In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.

  7. Concentration: The Neural Underpinnings of How Cognitive Load Shields Against Distraction.

    Science.gov (United States)

    Sörqvist, Patrik; Dahlström, Örjan; Karlsson, Thomas; Rönnberg, Jerker

    2016-01-01

    Whether cognitive load-and other aspects of task difficulty-increases or decreases distractibility is subject of much debate in contemporary psychology. One camp argues that cognitive load usurps executive resources, which otherwise could be used for attentional control, and therefore cognitive load increases distraction. The other camp argues that cognitive load demands high levels of concentration (focal-task engagement), which suppresses peripheral processing and therefore decreases distraction. In this article, we employed an functional magnetic resonance imaging (fMRI) protocol to explore whether higher cognitive load in a visually-presented task suppresses task-irrelevant auditory processing in cortical and subcortical areas. The results show that selectively attending to an auditory stimulus facilitates its neural processing in the auditory cortex, and switching the locus-of-attention to the visual modality decreases the neural response in the auditory cortex. When the cognitive load of the task presented in the visual modality increases, the neural response to the auditory stimulus is further suppressed, along with increased activity in networks related to effortful attention. Taken together, the results suggest that higher cognitive load decreases peripheral processing of task-irrelevant information-which decreases distractibility-as a side effect of the increased activity in a focused-attention network.

  8. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  9. Properties of regular polygons of coupled microring resonators.

    Science.gov (United States)

    Chremmos, Ioannis; Uzunoglu, Nikolaos

    2007-11-01

    The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1+N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed.

  10. Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement

    International Nuclear Information System (INIS)

    Yu Haitao; Li Xinxin; Gan Xiaohua; Liu Yongjing; Liu Xiang; Xu Pengcheng; Li Jungang; Liu Min

    2009-01-01

    With an integrated resonance exciting heater and a self-sensing piezoresistor, resonant micro-cantilever bio/chemical sensors are optimally designed and fabricated by micromachining techniques. This study is emphasized on the optimization of the integrated heating resistor. Previous research has put the heater at either the cantilever clamp end, the midpoint or the free end. Aiming at sufficiently high and stable resonant amplitude, our research indicates that the optimized location of the thermal-electric exciting resistor is the clamp end instead of other positions. By both theoretical analysis and resonance experiments where three heating resistors are placed at the three locations of the fabricated cantilever, it is clarified that the clamp end heating provides the most efficient resonance excitation in terms of resonant amplitude, Q-factor and resonance stability. Besides, the optimized combination of dc bias and ac voltage is determined by both analysis and experimental verification. With the optimized heating excitation, the resonant cantilever is used for biotin–avidin-specific detection, resulting in a ±0.1 Hz ultra-low noise floor of the frequency signal and a 130 fg mass resolution. In addition to resonance excitation, the heater is used to heat up the cantilever for speed-up desorption after detection that helps rapid and repeated sensing to chemical vapor. The clamp end is determined (by simulation) as the optimal heating location for uniform temperature distribution on the cantilever. Using the resonant cantilever, a rapid and repeated sensing experiment on dimethyl methylphosphonate (DMMP) vapor shows that a short-period heating at the detection interval significantly quickens the signal recovery and enhances the sensing repeatability

  11. Mode-coupling of interaction quenched ultracold bosons in periodically driven lattices

    Science.gov (United States)

    Mistakidis, Simeon; Schmelcher, Peter

    2016-05-01

    The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. As a first attempt a brief analysis of the dynamics caused exclusively by the periodically driven lattice is presented and the induced low-lying modes are introduced. It is shown that the periodic driving enforces the bosons in the outer wells to exhibit out-of-phase dipole-like modes, while in the central well the cloud experiences a local-breathing mode. The dynamical behavior of the system is investigated with respect to the driving frequency, revealing a resonant-like behavior of the intra-well dynamics. Subsequently, we drive the system to a highly non-equilibrium state by performing an interaction quench upon the periodically driven lattice. This protocol gives rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result (of the quench) the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Finally, our study reveals that the position of the resonances can be adjusted e.g. via the driving frequency or the atom number manifesting their many-body nature. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  12. Continuous vacuum processing system for quartz crystal resonators

    International Nuclear Information System (INIS)

    Ney, R.J.; Hafner, E.

    1979-01-01

    An ultrahigh vacuum continuous cycle quartz crystal fabrication facility has been developed that assures an essentially contamination-free environment throughout the final manufacturing steps of the crystal unit. The system consists of five essentially tubular vacuum chambers that are interconnected through gate valves. The unplated crystal resonators, mounted in ceramic flatback frames and loaded on carrier trays, enter the vacuum system through an entrance air lock, are UV/ozone cleaned, baked at 300 0 C, plated to frequency, thermocompression sealed, and exit as completed crystal units through an exit air lock, while the bake, plate and seal chambers remain under continuous vacuum permanently. In-line conveyor belts are used, in conjunction with balanced vacuum manipulators, to move the resonator components to the various work stations. Unique high density, highly directional nozzle beam evaporation sources, capable of long term operation without reloading, are used for electroding the resonators simultaneously on both sides. The design goal for the system is a production rate of 200 units per 8 hour day; it is adaptable to automatic operation

  13. Application of SVM methods for mid-term load forecasting

    Directory of Open Access Journals (Sweden)

    Božić Miloš

    2011-01-01

    Full Text Available This paper presents an approach for the medium-term load forecasting using Support Vector Machines (SVMs. The proposed SVM model was employed to predict the maximum daily load demand for the period of a month. Analyses of available data were performed and the most important features for the construction of SVM model are selected. It was shown that the size and the structure of the training set may significantly affect the accuracy of predictions. The presented model was tested by applying it on real-life load data obtained from distribution company 'ED Jugoistok' for the territory of city Niš and its surroundings. Experimental results show that the proposed approach gives acceptable results for the entire period of prediction, which are in range with other solutions in this area.

  14. Measurements of diffusion resonances for the atom optics quantum kicked rotor

    International Nuclear Information System (INIS)

    Williams, M E K; Sadgrove, M P; Daley, A J; Gray, R N C; Tan, S M; Parkins, A S; Christensen, N; Leonhardt, R

    2004-01-01

    We present experimental observations of diffusion resonances for the quantum kicked rotor with weak decoherence. Cold caesium atoms are subject to a pulsed standing wave of near-resonant light, with spontaneous emission providing environmental coupling. The mean energy as a function of the pulse period is determined during the late-time diffusion period for a constant probability of spontaneous emission. Structure in the late-time energy is seen to increase with physical kicking strength. The observed structure is related to Shepelyansky's predictions for the initial quantum diffusion rates

  15. Calculations of the resonant response of carbon nanotubes to binding of DNA

    International Nuclear Information System (INIS)

    Zheng Meng; Ke Changhong; Eom, Kilho

    2009-01-01

    We theoretically study the dynamical response of carbon nanotubes (CNTs) to the binding of DNA in an aqueous environment by considering two major interactions in DNA helical binding to the CNT side surface: adhesion between DNA nucleobases and CNT surfaces and electrostatic interactions between negative charges on DNA backbones. The equilibrium DNA helical wrapping angle is obtained using the minimum potential energy method. Our results show that the preferred DNA wrapping angle in the equilibrium binding to CNT is dependent on both DNA length and DNA base. The equilibrium wrapping angle for a poly(dT) chain is larger than a comparable poly(dA) chain as a result of dT in a homopolymer chain having a higher effective binding energy to CNT than dA. Our results also interestingly reveal a sharp transition in the wrapping angle-DNA length profile for both homopolymers, implying that the equilibrium helical wrapping configuration does not exist for a certain range of wrapping angles. Furthermore, the resonant response of the DNA-CNT complex is analysed based on the variational method with a Hamiltonian which takes into account the CNT bending energy as well as DNA-CNT interactions. The closed-form analytical solution for predicting the resonant frequency of the DNA-CNT complex is presented. Our results show that the hydrodynamic loading on the oscillating CNT in aqueous environments has profound impacts on the resonance behaviour of DNA-CNT complexes. Our results suggest that detection of DNA molecules using CNT resonators based on DNA-CNT interactions through frequency measurements should be conducted in media with low hydrodynamic loading on CNTs. Our theoretical framework provides a fundamental principle for label-free detection using CNT resonators based on DNA-CNT interactions.

  16. Elastic Nonlinear Response in Granular Media Under Resonance Conditions

    Science.gov (United States)

    Jia, X.; Johnson, P. A.

    2004-12-01

    We are studying the elastic linear and nonlinear behavior of granular media using dynamic wave methods. In the work presented here, our goal is to quantify the elastic nonlinear response by applying wave resonance. Resonance studies are desirable because they provide the means to easily study amplitude dependencies of elastic nonlinear behavior and thus to characterize the physical nature of the elastic nonlinearity. This work has implications for a variety of topics, in particular, the in situ nonlinear response of surface sediments. For this work we constructed an experimental cell in which high sensitivity dynamic resonance studies were conducted using granular media under controlled effective pressure. We limit our studies here to bulk modes but have the capability to employ shear waves as well. The granular media are composed of glass beads held under pressure by a piston, while applying resonance waves from transducers as both the excitation and the material probe. The container is closed with two fitted pistons and a normal load is applied to the granular sample across the top piston. Force and displacement are measured directly. Resonant frequency sweeps with frequencies corresponding to the fundamental bulk mode are applied to the longitudinal source transducer. The pore pressure in the system is 1 atm. The glass beads used in our experiments are of diameter 0.5 mm, randomly deposited in a duralumin cylinder of diameter 30 mm and height of 15 mm. This corresponds to a granular skeleton acoustic wave velocity of v ª 750m/s under 50 N of force [0.07 Mpa]. The loaded system gives fundamental mode resonances in the audio frequency band at half a wavelength where resonance frequency is effective-pressure dependent. The volume fraction of glass beads thus obtained is found to be 0.63 ± 0.01. Plane-wave generating and detecting transducers of diameter 30 mm are placed on axis at the top and bottom of the cylindrical container in direct contact with the glass

  17. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory

    Science.gov (United States)

    Meier, Beat; Zimmermann, Thomas D.

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially. PMID:26082709

  18. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory.

    Science.gov (United States)

    Meier, Beat; Zimmermann, Thomas D

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  19. SPEAR 2 RF SYSTEM LOADS

    International Nuclear Information System (INIS)

    2002-01-01

    The design and performance of higher order mode (HOM) dampers for the SPEAR 2 RF system is presented. The SPEAR beam had experienced occasional periods of instability due to transverse oscillations which were driven by HOMs in the RF cavities. A substantial fraction of this RF energy was coupled out of the cavity into the waveguide connecting the cavity to the klystron. This waveguide was modified by adding a stub of smaller cross section, terminated by a ferrite tile load, to the system. Design considerations of the load, and its effect on HOMs and beam stability will be discussed

  20. Multifunctional reduction-responsive SPIO and DOX-loaded PEGylated polymeric lipid vesicles for magnetic resonance imaging-guided drug delivery

    International Nuclear Information System (INIS)

    Wang, Sheng; Yang, Weitao; Wang, Hanjie; Chang, Jin; Gong, Xiaoqun; Du, Hongli; Guo, Fangfang; Zhang, Bingbo

    2016-01-01

    Multifunctional superparamagnetic iron-oxide (SPIO)-based nanoparticles have been emerging as candidate nanosystems for cancer diagnosis and therapy. Here, we report the use of reduction- responsive SPIO/doxorubicin (DOX)-loaded poly(ethylene glycol) monomethyl ether (PEG)ylated polymeric lipid vesicles (SPIO and DOX-PPLVs) as a novel theranostic system for tumor magnetic resonance imaging (MRI) diagnosis and controlled drug delivery. These SPIO and DOX-PPLVs are composed of SPIOs that function as MR contrast agents for tumor enhancement and PPLVs as polymer matrices for encapsulating SPIO and antitumor drugs. The in vitro characterizations show that the SPIO and DOX-PPLVs have nanosized structures (∼80 nm), excellent colloidal stability,  good biocompatibility, as well as T _2-weighted MRI capability with a relatively high T _2 relaxivity (r _2 = 213.82 mM"−"1 s"−"1). In vitro drug release studies reveal that the release rate of DOX from the SPIO and DOX-PPLVs is accelerated in the reduction environment. An in vitro cellular uptake study and an antitumor study show that the SPIO and DOX-PPLVs have magnetic targeting properties and effective antitumor activity. In vivo studies show the SPIO and DOX-PPLVs have excellent T _2-weighted tumor targeted MRI capability, image-guided drug delivery capability, and high antitumor effects. These results suggest that the SPIO and DOX-PPLVs are promising nanocarriers for MRI diagnosis and cancer therapy applications. (paper)

  1. Mathematics of Periodic Tables for Benzenoid Hydrocarbons.

    Science.gov (United States)

    Dias, Jerry Ray

    2007-01-01

    The upper and lower bounds for invariants of polyhex systems based on the Harary and Harborth inequalities are studied. It is shown that these invariants are uniquely correlated by the Periodic Table for Benzenoid Hydrocarbons. A modified periodic table for total resonant sextet (TRS) benzenoids based on the invariants of Ds and r(empty) is presented; Ds is the number of disconnections among the empty rings for fused TRS benzenoid hydrocarbons. This work represents a contribution toward deciphering the topological information content of benzenoid formulas.

  2. Handbook of five methodologies for the assessment of load management

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    This report provides a summary description and evaluation of five methodologies that have been developed for the assessment of utility costs and benefits of load-management programs, including marginal-costing methodologies and an integrated set of utility-system planning and production costing models. Of the two basic methods, the first uses marginal-cost data to compute the cumulative reduction in utility-system costs realized in moving units of load from periods of high marginal cost to periods of low marginal cost. The present value of these cost savings may be compared directly with the costs of implementing the load-management program. The second method relies on an evaluation of future total-system costs. System planning and production-costing models are used to calculate the total fixed and variable costs of meeting baseline and alternative-load configurations. The difference between baseline system costs and the costs with load management may then be compared to the costs of implementing the program. The advantages and disadvantages of each method are summarized briefly.

  3. Parameters optimization for magnetic resonance coupling wireless power transmission.

    Science.gov (United States)

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  4. Biomechanical and magnetic resonance imaging evaluation of a single- and double-row rotator cuff repair in an in vivo sheep model.

    Science.gov (United States)

    Baums, Mike H; Spahn, Gunter; Buchhorn, Gottfried H; Schultz, Wolfgang; Hofmann, Lars; Klinger, Hans-Michael

    2012-06-01

    To investigate the biomechanical and magnetic resonance imaging (MRI)-derived morphologic changes between single- and double-row rotator cuff repair at different time points after fixation. Eighteen mature female sheep were randomly assigned to either a single-row treatment group using arthroscopic Mason-Allen stitches or a double-row treatment group using a combination of arthroscopic Mason-Allen and mattress stitches. Each group was analyzed at 1 of 3 survival points (6 weeks, 12 weeks, and 26 weeks). We evaluated the integrity of the cuff repair using MRI and biomechanical properties using a mechanical testing machine. The mean load to failure was significantly higher in the double-row group compared with the single-row group at 6 and 12 weeks (P = .018 and P = .002, respectively). At 26 weeks, the differences were not statistically significant (P = .080). However, the double-row group achieved a mean load to failure similar to that of a healthy infraspinatus tendon, whereas the single-row group reached only 70% of the load of a healthy infraspinatus tendon. No significant morphologic differences were observed based on the MRI results. This study confirms that in an acute repair model, double-row repair may enhance the speed of mechanical recovery of the tendon-bone complex when compared with single-row repair in the early postoperative period. Double-row rotator cuff repair enables higher mechanical strength that is especially sustained during the early recovery period and may therefore improve clinical outcome. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  5. The economics of using prophylactic antibiotic-loaded bone cement in total knee replacement.

    Science.gov (United States)

    Gutowski, C J; Zmistowski, B M; Clyde, C T; Parvizi, J

    2014-01-01

    The rate of peri-prosthetic infection following total joint replacement continues to rise, and attempts to curb this trend have included the use of antibiotic-loaded bone cement at the time of primary surgery. We have investigated the clinical- and cost-effectiveness of the use of antibiotic-loaded cement for primary total knee replacement (TKR) by comparing the rate of infection in 3048 TKRs performed without loaded cement over a three-year period versus the incidence of infection after 4830 TKRs performed with tobramycin-loaded cement over a later period of time of a similar duration. In order to adjust for confounding factors, the rate of infection in 3347 and 4702 uncemented total hip replacements (THR) performed during the same time periods, respectively, was also examined. There were no significant differences in the characteristics of the patients in the different cohorts. The absolute rate of infection increased when antibiotic-loaded cement was used in TKR. However, this rate of increase was less than the rate of increase in infection following uncemented THR during the same period. If the rise in the rate of infection observed in THR were extrapolated to the TKR cohort, 18 additional cases of infection would have been expected to occur in the cohort receiving antibiotic-loaded cement, compared with the number observed. Depending on the type of antibiotic-loaded cement that is used, its cost in all primary TKRs ranges between USD $2112.72 and USD $112 606.67 per case of infection that is prevented.

  6. Analytic model for ultrasound energy receivers and their optimal electric loads

    Science.gov (United States)

    Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.

    2017-08-01

    In this paper, we present an analytic model for thickness resonating plate ultrasound energy receivers, which we have derived from the piezoelectric and the wave equations and, in which we have included dielectric, viscosity and acoustic attenuation losses. Afterwards, we explore the optimal electric load predictions by the zero reflection and power maximization approaches present in the literature with different acoustic boundary conditions, and discuss their limitations. To validate our model, we compared our expressions with the KLM model solved numerically with very good agreement. Finally, we discuss the differences between the zero reflection and power maximization optimal electric loads, which start to differ as losses in the receiver increase.

  7. Study on guided-mode resonance characteristic of multilayer dielectric grating with broadband and wide using-angle

    International Nuclear Information System (INIS)

    Jian-Peng, Wang; Yun-Xia, Jin; Jian-Yong, Ma; Jian-Da, Shao; Zheng-Xiu, Fan

    2010-01-01

    Guided-mode resonance in a diffraction band of multilayer dielectric gratings may lead to a catastrophic result in laser system, especially in the ultrashort pulse laser system, so the inhibition of guided-mode resonance is very important. In this paper the characteristics of guided-mode resonance in multilayer dielectric grating are studied with the aim of better understanding the physical process of guided-mode resonance and designing a broadband multilayer dielectric grating with no guided-mode resonance. By employing waveguide theory, all guided-wave modes appearing in multilayer dielectric grating are found, and the incident conditions, separately, corresponding to each guided-wave mode are also obtained. The electric field enhancement in multilayer dielectric grating is shown obviously. Furthermore, from the detailed analyses on the guided-mode resonance conditions, it is found that the reduction of the grating period would effectively avoid the appearing of guided-mode resonance. And the expressions for calculating maximum periods, which ensure that no guided-mode resonance occurs in the requiring broad angle or wavelength range, are first reported. The above results calculated by waveguide theory and Fourier mode method are compared with each other, and they are coincident completely. Moreover, the method that relies on waveguide theory is more helpful for understanding the guided-mode resonance excited process and analyzing how each parameter affects the characteristic of guided-mode resonance. Therefore, the effects of multilayer dielectric grating parameters, such as period, fill factor, thickness of grating layer, et al., on the guided-mode resonance characteristic are discussed in detail based on waveguide theory, and some meaningful results are obtained. (classical areas of phenomenology)

  8. A methodology for Electric Power Load Forecasting

    Directory of Open Access Journals (Sweden)

    Eisa Almeshaiei

    2011-06-01

    Full Text Available Electricity demand forecasting is a central and integral process for planning periodical operations and facility expansion in the electricity sector. Demand pattern is almost very complex due to the deregulation of energy markets. Therefore, finding an appropriate forecasting model for a specific electricity network is not an easy task. Although many forecasting methods were developed, none can be generalized for all demand patterns. Therefore, this paper presents a pragmatic methodology that can be used as a guide to construct Electric Power Load Forecasting models. This methodology is mainly based on decomposition and segmentation of the load time series. Several statistical analyses are involved to study the load features and forecasting precision such as moving average and probability plots of load noise. Real daily load data from Kuwaiti electric network are used as a case study. Some results are reported to guide forecasting future needs of this network.

  9. Optical Analysis of Grazing Incidence Ring Resonators for Free-Electron Lasers

    Science.gov (United States)

    Gabardi, David Richard

    1990-08-01

    The design of resonators for free-electron lasers (FELs) which are to operate in the soft x-ray/vacuum ultraviolet (XUV) region of the spectrum is complicated by the fact that, in this wavelength regime, normal incidence mirrors, which would otherwise be used for the construction of the resonators, generally have insufficient reflectivities for this purpose. However, the use of grazing incidence mirrors in XUV resonators offers the possibility of (1) providing sufficient reflectivity, (2) a lessening of the mirrors' thermal loads due to the projection of the laser beam onto an oblique surface, and (3) the preservation of the FEL's tunability. In this work, the behavior of resonators employing grazing incidence mirrors in ring type configurations is explored. In particular, two designs, each utilizing four off-axis conic mirrors and a number of flats, are examined. In order to specify the location, orientation, and surface parameters for the mirrors in these resonators, a design algorithm has been developed based upon the properties of Gaussian beam propagation. Two computer simulation methods are used to perform a vacuum stability analysis of the two resonator designs. The first method uses paraxial ray trace techniques with the resonators' thin lens analogues while the second uses the diffraction-based computer simulation code GLAD (General Laser Analysis and Design). The effects of mirror tilts and deviations in the mirror surface parameters are investigated for a number of resonators designed to propagate laser beams of various Rayleigh ranges. It will be shown that resonator stability decreases as the laser wavelength for which the resonator was designed is made smaller. In addition, resonator stability will also be seen to decrease as the amount of magnification the laser beam receives as it travels around the resonator is increased.

  10. Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Zhang, Z.; Roukes, M.L.; Hammel, P.C.

    1996-01-01

    The signal intensity of electron spin resonance in magnetic resonance force microscopy (MRFM) experiments employing periodic saturation of the electron spin magnetization is determined by four parameters: the rf field H 1 , the modulation level of the bias field H m , the spin relaxation time τ 1 , and the magnetic size R(∂H/∂z) of the sample. Calculations of the MRFM spectra obtained from a 2,2-diphenyl-1-picrylhydrazyl particle have been performed for various conditions. The results are compared with experimental data and excellent agreement is found. The systematic variation of the signal intensity as a function of H 1 and H m provides a powerful tool to characterize the MRFM apparatus. copyright 1996 American Institute of Physics

  11. Mechanical stability of immediately loaded implants with various surfaces and designs: a pilot study in dogs.

    Science.gov (United States)

    Neugebauer, Jörg; Weinländer, Michael; Lekovic, Vojislav; von Berg, Karl-Heinz Linne; Zoeller, Joachim E

    2009-01-01

    Immediate loading is among the most innovative techniques in implant therapy today. This pilot study investigates the biomechanical outcome of various designs and surfaces that claim to shorten implant treatment. In each quadrant of two mongrel dogs, four different implants were used for immediate loading. The following implants were placed 3 months after tooth extraction: screw with low thread profile and anodic oxidized surface (LPAOS), solid screw with wide thread profile and titanium plasma spray coating (WPTPS), screw with low profile and hybrid design of double-etched and machined surface (LPHES), and screw with two thread profiles and a sandblasted and acid-etched surface (DTSAE). The insertion torque of each implant was above 35 Ncm. Resonance frequency analysis was performed after implant placement and again after sacrifice. Additionally, the removal torque and the amount of embedded titanium particles in the peri-implant bone were measured. All 16 prostheses were functional after a 5-month loading period. The highest mean removal torque values were recorded with WPTPS implants (24.4 Ncm/mm), followed by DTSAE implants (22.3 Ncm/mm) and LPAOS implants (18.7 Ncm/mm); the lowest score was obtained by LPHES (12.0 Ncm/mm). The ISQ values increased between the time of surgery and recall for all systems on average, but a significant positive correlation was found for DTSAE only. Significantly higher amounts of titanium were found in the surrounding bone with WPTPS (0.76%) and LPAOS (0.41%) in comparison with DTSAE (0.10%) and LPHES (0.03%). Immediate loading is possible with various designs and surfaces if high primary stability can be achieved during implant placement.

  12. Control of Resonances and Optical Properties of Plasmonic-Patch Metamaterials

    Science.gov (United States)

    2012-08-01

    nanostructures made of plasmonic materials like gold and silver can resonantly interact with radiation over a range of wavelengths from micro...specific metal nanostructures, such as nanorods, hemispheres, nanocrescent arrays, nanorings , dimers, nanoprisms, nanocrystals, nanoparticles in a periodic...known that nanostructures made of plasmonic materials like gold and silver can resonantly interact with radiation over a range of wavelengths from micro

  13. DEVELOPMENT OF LOW POWER WIRELESS POWER TRANSFER SYSTEM USING RESONANCE PRINCIPLE WITH SECURITY FEATURES

    Directory of Open Access Journals (Sweden)

    Chandrasekharan Nataraj

    2017-12-01

    Full Text Available This research describes a resonance principle-based low power Wireless Power Transfer (WPT system. The reflective impedance model is derived to evaluate the resonance coupling between coils. Additionally, Cockroft Walton voltage boosting circuit is incorporated to boost up the received voltage to the appropriate level, instead of using traditional conditioning circuits. The prototype model, operating at 130 kHz, is demonstrated experimentally and analysed graphically to validate the performance of designed circuit. For an overall span of 100 mm coil separation distance, the maximum efficiency of 60% with no load and 36% loaded system, is observed at a distance of 55 mm with the approximate (e.g., manual axial orientation of coils. It can be supported widely for the portable electronic products and biomedical devices. As an added contribution, the WPT circuit were enabled by a password security feature using an arduino nicrocontroller.

  14. Numerical solution of the Maxwell-Vlasov equations in the periodic regime. Application to the study of isotope separation by ion cyclotron resonance

    International Nuclear Information System (INIS)

    Omnes, P.

    1999-01-01

    This work is dedicated to the study of the behaviour of a magnetic confined plasma that is excited by a purely sinusoidal electric current delivered by an antenna. The response of the electrons to the electromagnetic field is considered as linear, whereas the ions of the plasma are represented by a non-relativistic Vlasov equation. In order to avoid transients, the coupled Maxwell-Vlasov equations are solved in a periodic mode and in a bounded domain. An equivalent electric conductivity tensor has been defined, this tensor is a linear operator that links the electric current generated by the movement of the particles to the electromagnetic field. Theoretical considerations can assure the existence and uniqueness of a periodical solution to Vlasov equations and of a solution to Maxwell equations in harmonic mode. The system of equations is periodical and has been solved by using an iterative method. The application of this method to the simulation of a isotopic separation device based on ionic cyclotron resonance has shown that the convergence is reached in a few iterations and that the solution is valid. Furthermore a method based on a finite-volume formulation of Maxwell equations in the time domain is presented. 2 new variables are defined in order to better take into account the Gauss' law and the conservation of the magnetic flux, the new system is still hyperbolic. The parallelization of the process has been successfully realized. (A.C.)

  15. Quasi-periodicity and chaos in a differentially heated cavity

    Energy Technology Data Exchange (ETDEWEB)

    Mercader, Isabel; Batiste, Oriol [Universitat Politecnica de Catalunya, Dep. Fisica Aplicada, Barcelona (Spain); Ruiz, Xavier [Univesitat Rovira i Virgili, Lab. Fisica Aplicada, Facultat de Ciencies Quimiques, Tarragona (Spain)

    2004-11-01

    Convective flows of a small Prandtl number fluid contained in a two-dimensional vertical cavity subject to a lateral thermal gradient are studied numerically. The chosen geometry and the values of the material parameters are relevant to semiconductor crystal growth experiments in the horizontal configuration of the Bridgman method. For increasing Rayleigh numbers we find a transition from a steady flow to periodic solutions through a supercritical Hopf bifurcation that maintains the centro-symmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation, the periodic solution loses stability in a subcritical Neimark-Sacker bifurcation, which gives rise to a branch of quasiperiodic states. In this branch, several intervals of frequency locking have been identified. Inside the resonance horns the stable limit cycles lose and gain stability via some typical scenarios in the bifurcation of periodic solutions. After a complicated bifurcation diagram of the stable limit cycle of the 1:10 resonance horn, a soft transition to chaos is obtained. (orig.)

  16. Directional bending wave propagation in periodically perforated plates

    DEFF Research Database (Denmark)

    Andreassen, Erik; Manktelow, Kevin; Ruzzene, Massimo

    2015-01-01

    We report on the investigation of wave propagation in a periodically perforated plate. A unit cell with double-C perforations is selected as a test article suitable to investigate two-dimensional dispersion characteristics, group velocities, and internal resonances. A numerical model, formulated...... using Mindlin plate elements, is developed to predict relevant wave characteristics such as dispersion, and group velocity variation as a function of frequency and direction of propagation. Experimental tests are conducted through a scanning laser vibrometer, which provides full wave field information...... for the design of phononic waveguides with directional and internal resonant characteristics....

  17. Parametrically tunable soliton-induced resonant radiation by three-wave mixing

    DEFF Research Database (Denmark)

    Zhou, Binbin; Liu, Xing; Guo, Hairun

    2017-01-01

    We show that a temporal soliton can induce resonant radiation by three-wave mixing nonlinearities. This constitutes a new class of resonant radiation whose spectral positions are parametrically tunable. The experimental verification is done in a periodically poled lithium niobate crystal, where...... a femtosecond near-IR soliton is excited and resonant radiation waves are observed exactly at the calculated soliton phasematching wavelengths via the sum- and difference-frequency generation nonlinearities. This extends the supercontinuum bandwidth well into the mid IR to span 550–5000 nm, and the mid-IR edge...

  18. Reliability of mechanisms with periodic random modal frequencies using an extreme value-based approach

    International Nuclear Information System (INIS)

    Savage, Gordon J.; Zhang, Xufang; Son, Young Kap; Pandey, Mahesh D.

    2016-01-01

    Resonance in a dynamic system is to be avoided since it often leads to impaired performance, overstressing, fatigue fracture and adverse human reactions. Thus, it is necessary to know the modal frequencies and ensure they do not coincide with any applied periodic loadings. For a rotating planar mechanism, the coefficients in the mass and stiffness matrices are periodically varying, and if the underlying geometry and material properties are treated as random variables then the modal frequencies are both position-dependent and probabilistic. The avoidance of resonance is now a complex problem. Herein, free vibration analysis helps determine ranges of modal frequencies that in turn, identify the running speeds of the mechanism to be avoided. This paper presents an efficient and accurate sample-based approach to determine probabilistic minimum and maximum extremes of the fundamental frequencies and the angular positions of their occurrence. Then, given critical lower and upper frequency constraints it is straightforward to determine reliability in terms of probability of exceedance. The novelty of the proposed approach is that the original expensive and implicit mechanistic model is replaced by an explicit meta-model that captures the tolerances of the design variables over the entire range of angular positions: position-dependent eigenvalues can be found easily and quickly. Extreme-value statistics of the modal frequencies and extreme-value statistics of the angular positions are readily computed through MCS. Limit-state surfaces that connect the frequencies to the design variables may be easily constructed. Error analysis identifies three errors and the paper presents ways to control them so the methodology can be sufficiently accurate. A numerical example of a flexible four-bar linkage shows the proposed methodology has engineering applications. The impact of the proposed methodology is two-fold: it presents a safe-side analysis based on free vibration methods to

  19. Prediction method for cavitation erosion based on measurement of bubble collapse impact loads

    International Nuclear Information System (INIS)

    Hattori, S; Hirose, T; Sugiyama, K

    2009-01-01

    The prediction of cavitation erosion rates is important in order to evaluate the exact life of components. The measurement of impact loads in bubble collapses helps to predict the life under cavitation erosion. In this study, we carried out erosion tests and the measurements of impact loads in bubble collapses with a vibratory apparatus. We evaluated the incubation period based on a cumulative damage rule by measuring the impact loads of cavitation acting on the specimen surface and by using the 'constant impact load - number of impact loads curve' similar to the modified Miner's rule which is employed for fatigue life prediction. We found that the parameter Σ(F i α xn i ) (F i : impact load, n i : number of impacts and α: constant) is suitable for the evaluation of the erosion life. Moreover, we propose a new method that can predict the incubation period under various cavitation conditions.

  20. Effects of time delay on stochastic resonance of the stock prices in financial system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiang-Cheng [Department of Physics, Yunnan University, Kunming, 650091 (China); Li, Chun [Department of Computer Science, Puer Teachers' College, Puer 665000 (China); Mei, Dong-Cheng, E-mail: meidch@ynu.edu.cn [Department of Physics, Yunnan University, Kunming, 650091 (China)

    2014-06-13

    The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing. - Highlights: • The effects of delay time on stochastic resonance of the stock prices was investigated. • There is an optimal critical value of delay time maximally enhances the reverse-resonance • The reverse-resonance increases with the delay time increasing as the delay time takes value below the critical value • The reverse-resonance decrease with the delay time increasing as the delay time takes value above the critical value.

  1. Effects of time delay on stochastic resonance of the stock prices in financial system

    International Nuclear Information System (INIS)

    Li, Jiang-Cheng; Li, Chun; Mei, Dong-Cheng

    2014-01-01

    The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing. - Highlights: • The effects of delay time on stochastic resonance of the stock prices was investigated. • There is an optimal critical value of delay time maximally enhances the reverse-resonance • The reverse-resonance increases with the delay time increasing as the delay time takes value below the critical value • The reverse-resonance decrease with the delay time increasing as the delay time takes value above the critical value

  2. Automated prescription of oblique brain 3D magnetic resonance spectroscopic imaging.

    Science.gov (United States)

    Ozhinsky, Eugene; Vigneron, Daniel B; Chang, Susan M; Nelson, Sarah J

    2013-04-01

    Two major difficulties encountered in implementing Magnetic Resonance Spectroscopic Imaging (MRSI) in a clinical setting are limited coverage and difficulty in prescription. The goal of this project was to automate completely the process of 3D PRESS MRSI prescription, including placement of the selection box, saturation bands and shim volume, while maximizing the coverage of the brain. The automated prescription technique included acquisition of an anatomical MRI image, optimization of the oblique selection box parameters, optimization of the placement of outer-volume suppression saturation bands, and loading of the calculated parameters into a customized 3D MRSI pulse sequence. To validate the technique and compare its performance with existing protocols, 3D MRSI data were acquired from six exams from three healthy volunteers. To assess the performance of the automated 3D MRSI prescription for patients with brain tumors, the data were collected from 16 exams from 8 subjects with gliomas. This technique demonstrated robust coverage of the tumor, high consistency of prescription and very good data quality within the T2 lesion. Copyright © 2012 Wiley Periodicals, Inc.

  3. Heavy-Load Lifting

    DEFF Research Database (Denmark)

    Bloomquist, Kira; Oturai, Peter; Steele, Megan L

    2018-01-01

    of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal....... repetition maximum (RM), two sets of 15-20 repetitions) and heavy-load (85-90% 1RM, three sets of 5-8 repetition) upper-extremity resistance exercise separated by a one-week wash-out period. Swelling was determined by bioimpedance spectroscopy and dual energy x-ray absorptiometry, with breast cancer......-related lymphedema symptoms (heaviness, swelling, pain, tightness) reported using a numeric rating scale (0-10). Order of low- versus heavy-load was randomized. All outcomes were assessed pre-, immediately post-, and 24- and 72-hours post-exercise. Generalized estimating equations were used to evaluate changes over...

  4. Adjustable static and dynamic actuation of clamped-guided beams using electrothermal axial loads

    KAUST Repository

    Alcheikh, Nouha

    2018-02-14

    The paper presents adjustable static and dynamic actuations of in-plane clamped-guided beams. The structures, of variable stiffness, can be used as highly tunable resonators and actuators. Axial loads are applied through electrothermal U-shaped and flexure beams actuators stacked near the edges of curved (arch) beams. The electrothermal actuators can be configurred in various ways to adjust as desired the mechanical stiffness of the structures; thereby controlling their deformation stroke as actuators and their operating resonance frequency as resonators. The experimental and finite element results demonstrate the flexibility of the designs in terms of static displacements and resonance frequencies of the first and second symmetric modes of the arches. The results show considerable increase in the resonance frequency and deflection of the microbeam upon changing end actuation conditions, which can be promising for low voltage actuation and tunable resonators applications, such as filters and memory devices. As case studies of potential device configurations of the proposed design, we demonstrate eight possibilities of achieving new static and dynamic behaviors, which produce various resonance frequencies and static displacement curves. The ability to actively shift the entire frequency response curve of a device is desirable for several applications to compensate for in-use anchor degradations and deformations. As an example, we experimentally demonstrate using the device as a resonant logic gate, with active resonance tuning, showing fundamental 2-bit logic functions, such as AND,XOR, and NOR.

  5. Adjustable static and dynamic actuation of clamped-guided beams using electrothermal axial loads

    KAUST Repository

    Alcheikh, Nouha; Tella, Sherif Adekunle; Younis, Mohammad I.

    2018-01-01

    The paper presents adjustable static and dynamic actuations of in-plane clamped-guided beams. The structures, of variable stiffness, can be used as highly tunable resonators and actuators. Axial loads are applied through electrothermal U-shaped and flexure beams actuators stacked near the edges of curved (arch) beams. The electrothermal actuators can be configurred in various ways to adjust as desired the mechanical stiffness of the structures; thereby controlling their deformation stroke as actuators and their operating resonance frequency as resonators. The experimental and finite element results demonstrate the flexibility of the designs in terms of static displacements and resonance frequencies of the first and second symmetric modes of the arches. The results show considerable increase in the resonance frequency and deflection of the microbeam upon changing end actuation conditions, which can be promising for low voltage actuation and tunable resonators applications, such as filters and memory devices. As case studies of potential device configurations of the proposed design, we demonstrate eight possibilities of achieving new static and dynamic behaviors, which produce various resonance frequencies and static displacement curves. The ability to actively shift the entire frequency response curve of a device is desirable for several applications to compensate for in-use anchor degradations and deformations. As an example, we experimentally demonstrate using the device as a resonant logic gate, with active resonance tuning, showing fundamental 2-bit logic functions, such as AND,XOR, and NOR.

  6. Numerical Simulation of Liquid Sloshing Problem under Resonant Excitation

    Directory of Open Access Journals (Sweden)

    Fu-kun Gui

    2014-04-01

    Full Text Available Numerical simulations were conducted to investigate the fluid resonance in partially filled rectangular tank based on the OpenFOAM package of viscous fluid model. The numerical model was validated by the available theoretical, numerical, and experimental data. The study was mainly focused on the large amplitude sloshing motion and the corresponding impact force around the resonant condition. It was found that, for the 2D situation, the double pressure peaks happened near to the side walls around the still water level. And they were corresponding to the local free surface rising up and set-down, respectively. The impulsive loads on the tank corner with extreme magnitudes were observed as the free surface impacted the ceiling. The 3D numerical results showed that the free surface amplitudes along the side walls varied diversely, depending on the direction and frequency of the external excitation. The characteristics of the pressure around the still water level and tank ceiling were also presented. According to the computational results, it was found that the 2D numerical model can predict the impact loads near the still water level as accurately as 3D model. However, the impulsive pressure near the tank ceiling corner was remarkably underestimated.

  7. Streptavidin Modified ZnO Film Bulk Acoustic Resonator for Detection of Tumor Marker Mucin 1

    Science.gov (United States)

    Zheng, Dan; Guo, Peng; Xiong, Juan; Wang, Shengfu

    2016-09-01

    A ZnO-based film bulk acoustic resonator has been fabricated using a magnetron sputtering technology, which was employed as a biosensor for detection of mucin 1. The resonant frequency of the thin-film bulk acoustic resonator was located near at 1503.3 MHz. The average electromechanical coupling factor {K}_{eff}^2 and quality factor Q were 2.39 % and 224, respectively. Using the specific binding system of avidin-biotin, the streptavidin was self-assembled on the top gold electrode as the sensitive layer to indirectly test the MUC1 molecules. The resonant frequency of the biosensor decreases in response to the mass loading in range of 20-500 nM. The sensor modified with the streptavidin exhibits a high sensitivity of 4642.6 Hz/nM and a good selectivity.

  8. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    International Nuclear Information System (INIS)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-01-01

    Topics covered are: anomalous transport and E f- B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies

  9. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-07-19

    Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

  10. 50 W Resonant SMPS with coreless transformer for AM radio application

    DEFF Research Database (Denmark)

    Nakhost, Pezhman; Munk-Nielsen, Stig

    2006-01-01

    Resonant converters are attractive in some applications, because of their soft-switching behaviour. The very low switching losses make them superior compared to traditional hard-switching converters. The present paper considers a 50 W resonant SMPS with coreless transformer for AM radio applicati......Resonant converters are attractive in some applications, because of their soft-switching behaviour. The very low switching losses make them superior compared to traditional hard-switching converters. The present paper considers a 50 W resonant SMPS with coreless transformer for AM radio...... percent deviation. The experimental tests show that the realized converter has a high performance and efficiency up to 87.6%. It is shown that with a DC input voltage range of 276-375 V, the output voltage is 15 V from 10 W to 50 W output power, except in no load. The output voltage ripple is 84 m......Vppand 114 mVppat 15 W and 50 W output power, respectively. In addition, ra switching frequency from 1.9 MHz up to around 4 MHz is possible....

  11. Bifurcation of forced periodic oscillations for equations with Preisach hysteresis

    International Nuclear Information System (INIS)

    Krasnosel'skii, A; Rachinskii, D

    2005-01-01

    We study oscillations in resonant systems under periodic forcing. The systems depend on a scalar parameter and have the form of simple pendulum type equations with ferromagnetic friction represented by the Preisach hysteresis nonlinearity. If for some parameter value the period of free oscillations of the principal linear part of the system coincides with the period of the forcing term, then one may expect the existence of unbounded branches of periodic solutions for nearby parameter values. We present conditions for the existence and nonexistence of such branches and estimates of their number

  12. Multi-mode excitation of a clamped–clamped microbeam resonator

    KAUST Repository

    Younis, Mohammad I.

    2015-02-18

    We present modeling and simulation of the nonlinear dynamics of a microresonator subjected to two-source electrostatic excitation. The resonator is composed of a clamped–clamped beam excited by a DC voltage load superimposed to two AC voltage loads of different frequencies. One frequency is tuned close to the first natural frequency of the beam and the other is close to the third (second symmetric) natural frequency. A multi-mode Galerkin procedure is applied to extract a reduced-order model, which forms the basis of the numerical simulations. Time history response, Poincare’ sections, Fast Fourier Transforms FFT, and bifurcation diagrams are used to reveal the dynamics of the system. The results indicate complex nonlinear phenomena, which include quasiperiodic motion, torus bifurcations, and modulated chaotic attractors.

  13. 18 CFR 301.4 - Exchange Period Average System Cost determination.

    Science.gov (United States)

    2010-04-01

    ... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE... Period and extend through four (4) years after the Exchange Period. The load forecast for Contract System... Utility's ASC until the change in service territory takes place. (g) ASC determination for Consumer-owned...

  14. Resonating Statements: Discursive acts in IT projects

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Jensen, Tina Blegind

    2015-01-01

    IT projects are often complex arrangements of technological components, social actions, and organizational transformation that are difficult to manage in practice. This paper takes an analytical discourse perspective to explore the process of legitimizing IT projects. We introduce the concept...... of resonating statements to highlight how central actors navigate in various discourses over time. Particularly, the statements and actions of an IT project manager are portrayed to show how individuals can legitimize actions by connecting statements to historically produced discourses. The case study...... of an IT project in a Danish local government spans a two-year time period and demonstrates a double-loop legitimization process. First, resonating statements are produced to localize a national IT initiative to support the specificity of a local government discourse. Second, the resonating statements are used...

  15. Magnetic resonance imaging of breast implants.

    Science.gov (United States)

    Shah, Mala; Tanna, Neil; Margolies, Laurie

    2014-12-01

    Silicone breast implants have significantly evolved since their introduction half a century ago, yet implant rupture remains a common and expected complication, especially in patients with earlier-generation implants. Magnetic resonance imaging is the primary modality for assessing the integrity of silicone implants and has excellent sensitivity and specificity, and the Food and Drug Administration currently recommends periodic magnetic resonance imaging screening for silent silicone breast implant rupture. Familiarity with the types of silicone implants and potential complications is essential for the radiologist. Signs of intracapsular rupture include the noose, droplet, subcapsular line, and linguine signs. Signs of extracapsular rupture include herniation of silicone with a capsular defect and extruded silicone material. Specific sequences including water and silicone suppression are essential for distinguishing rupture from other pathologies and artifacts. Magnetic resonance imaging provides valuable information about the integrity of silicone implants and associated complications.

  16. Semiclassical description of resonant tunnel effect: bifurcations and periodic orbits in the resonant current; Description semiclassique de l`effet tunnel resonant: bifurcations et orbites periodiques dans le courant resonant

    Energy Technology Data Exchange (ETDEWEB)

    Rouben, D C

    1997-11-28

    A semiclassical method for resonant tunneling in a quantum well in the presence of a magnetic field tilted with regard to an electric field is developed. In particular a semiclassical formula is derived for the total current of electrons after the second barrier of the quantum well. The contribution of the stable and unstable orbits is studied. It appears that the parameters which describe the classical chaos in the quantum well have an important effect on the tunneling current. A numerical experiment is led, the contributions to the current of some particular orbits are evaluated and the results are compared with those given by the quantum theory. (A.C.) 70 refs.

  17. Experimental Testing of Monopiles in Sand Subjected to One-Way Long-Term Cyclic Lateral Loading

    DEFF Research Database (Denmark)

    Roesen, Hanne Ravn; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2013-01-01

    In the offshore wind turbine industry the most widely used foundation type is the monopile. Due to the wave and wind forces the monopile is subjected to a strong cyclic loading with varying amplitude, maximum loading level, and varying loading period. In this paper the soil–pile interaction...... of a monopile in sand subjected to a long-term cyclic lateral loading is investigated by means of small scale tests. The tests are conducted with a mechanical loading rig capable of applying the cyclic loading as a sine signal with varying amplitude, mean loading level, and loading period for more than 60 000...... cycles. The tests are conducted in dense saturated sand. The maximum moment applied in the cyclic tests is varied from 18% to 36% of the ultimate lateral resistance found in a static loading test. The tests reveal that the accumulated rotation can be expressed by use of a power function. Further, static...

  18. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rabenstein, D.L.; Guo, W.

    1988-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most widely used instrumental methods, with applications ranging from the characterization of pure compounds by high-resolution NMR to the diagnosis of disease by magnetic resonance imaging (MRI). To give some idea of the wide-spread use of NMR, a computer search for the period 1985-1987 turned up over 500 books and review articles and over 7000 literature citations, not including papers in which NMR was used together with other spectroscopic methods for the routine identification of organic compounds. Consequently, they have by necessity been somewhat selective in the topics they have chosen to cover and in the articles they have cited. In this review, which covers the published literature for the approximate period Sept 1985-Aug 1987, they have focused on new developments and applications of interest to the chemist. First they review recent developments in instrumentation and techniques. Although there have not been any major break-throughs in NMR instrumentation during the past two years, significant refinements have been reported which optimize instrumentation for the demanding multiple pulse experiments in routine use today. Next they review new developments in methods for processing NMR data, followed by reviews of one-dimensional and two-dimensional NMR experiments

  19. Reconstructions of information in visual spatial working memory degrade with memory load.

    Science.gov (United States)

    Sprague, Thomas C; Ester, Edward F; Serences, John T

    2014-09-22

    Working memory (WM) enables the maintenance and manipulation of information relevant to behavioral goals. Variability in WM ability is strongly correlated with IQ [1], and WM function is impaired in many neurological and psychiatric disorders [2, 3], suggesting that this system is a core component of higher cognition. WM storage is thought to be mediated by patterns of activity in neural populations selective for specific properties (e.g., color, orientation, location, and motion direction) of memoranda [4-13]. Accordingly, many models propose that differences in the amplitude of these population responses should be related to differences in memory performance [14, 15]. Here, we used functional magnetic resonance imaging and an image reconstruction technique based on a spatial encoding model [16] to visualize and quantify population-level memory representations supported by multivoxel patterns of activation within regions of occipital, parietal and frontal cortex while participants precisely remembered the location(s) of zero, one, or two small stimuli. We successfully reconstructed images containing representations of the remembered-but not forgotten-locations within regions of occipital, parietal, and frontal cortex using delay-period activation patterns. Critically, the amplitude of representations of remembered locations and behavioral performance both decreased with increasing memory load. These results suggest that differences in visual WM performance between memory load conditions are mediated by changes in the fidelity of large-scale population response profiles distributed across multiple areas of human cortex. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A theoretical interpretation of the antibody-antigen interactions between Salmonella and a thickness shear mode (TSM) quartz resonator

    Science.gov (United States)

    Bailey, Claude Albert

    temperature (0 to 50°C). Kinematic viscosity test were performed with buffer solutions and fat free milk with varying quantities of Salmonella bacteria. The response of the TSM quartz resonator is examined theoretically by modeling the sensor load as a viscoelastic film with a semi-infinite Newtonian liquid overlayer. This study analyzes the surface mechanical impedance of the TSM resonator using a Butterworth Van-Dyke equivalent circuit model [4, 5], modified to describe the surface load as lumped circuit elements [6, 7]. The sensor's impedance parameters are first modeled as a generic surface load, and then decomposed into individual impedance parameters that describe the films viscoelastic properties and liquid overlayer behavior [7]. This document describes investigations of TSM resonator surface acoustic interactions---mass, fluid viscosity, and viscoelasticity---that affect the sensor. (Abstract shortened by UMI.)

  1. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones.

    Science.gov (United States)

    Sample, Susannah J; Behan, Mary; Smith, Lesley; Oldenhoff, William E; Markel, Mark D; Kalscheur, Vicki L; Hao, Zhengling; Miletic, Vjekoslav; Muir, Peter

    2008-09-01

    Regulation of load-induced bone formation is considered a local phenomenon controlled by osteocytes, although it has also been hypothesized that functional adaptation may be neuronally regulated. The aim of this study was to examine bone formation in multiple bones, in response to loading of a single bone, and to determine whether adaptation may be neuronally regulated. Load-induced responses in the left and right ulnas and humeri were determined after loading of the right ulna in male Sprague-Dawley rats (69 +/- 16 days of age). After a single period of loading at -760-, -2000-, or -3750-microepsilon initial peak strain, rats were given calcein to label new bone formation. Bone formation and bone neuropeptide concentrations were determined at 10 days. In one group, temporary neuronal blocking was achieved by perineural anesthesia of the brachial plexus with bupivicaine during loading. We found right ulna loading induces adaptive responses in other bones in both thoracic limbs compared with Sham controls and that neuronal blocking during loading abrogated bone formation in the loaded ulna and other thoracic limb bones. Skeletal adaptation was more evident in distal long bones compared with proximal long bones. We also found that the single period of loading modulated bone neuropeptide concentrations persistently for 10 days. We conclude that functional adaptation to loading of a single bone in young rapidly growing rats is neuronally regulated and involves multiple bones. Persistent changes in bone neuropeptide concentrations after a single loading period suggest that plasticity exists in the innervation of bone.

  2. Two-stub quarter wave superconducting resonator design

    Directory of Open Access Journals (Sweden)

    N. R. Lobanov

    2006-04-01

    Full Text Available This paper describes the electromagnetic and mechanical properties of a 150 MHz λ/4, 3-gap structure with two loading elements, for the velocity range β=0.04–0.12 in the context of TEM-like λ/4 and λ/2 structures with multiple loading elements. A simple transmission lines model is presented and the results of Micro Wave Studio and simulations are discussed. The column of the multistub structures opens the opportunity to minimize current in locations allowing the exploitation of demountable joints and control the frequency splitting between the accelerating and other modes. These resonators are appropriate for the upgrade of the medium- and high-velocity sections of the ANU Heavy-Ion Accelerator Facility. Because of the broad velocity range for which such structures can be tailored, they can also be used in spallation neutron sources and rare isotope accelerators.

  3. Periodic and stochastic thermal modulation of protein folding kinetics.

    Science.gov (United States)

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  4. Transport properties of graphene under periodic and quasiperiodic magnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Tao, E-mail: luweitao@lyu.edu.cn [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Wang, Shun-Jin [Department of Physics, Sichuan University, 610064 Chengdu (China); Wang, Yong-Long; Jiang, Hua [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Li, Wen [School of Science, Linyi University, 276005 Linyi (China)

    2013-08-15

    We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue–Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in certain sequences in graphene. The numerical results show that the transmission as a function of incident energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum. For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity, while the transmission in Thue–Morse MS presents more perfect resonant peaks which are related to the completely transparent states. Furthermore, these interesting properties are robust against the profile of MS, but dependent on the magnetic structure parameters and the transverse wave vector.

  5. Fatigue of 1 {mu}m-scale gold by vibration with reduced resonant frequency

    Energy Technology Data Exchange (ETDEWEB)

    Sumigawa, Takashi, E-mail: sumigawa@cyber.kues.kyoto-u.ac.jp [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Matsumoto, Kenta [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Tsuchiya, Toshiyuki [Department of Micro Engineering, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Kitamura, Takayuki [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2012-10-30

    In order to investigate the fatigue strength of micro-metal (1 {mu}m-scale), a testing method using resonant vibration is developed. Although the loading by vibration can solve the difficulties associated with the fatigue experiment of micro-specimen (e.g., specimen gripping and high-cycle loading under tension-compression), it inherently has an excessively high resonance frequency (more than several GHz at least) in a 1 {mu}m-scale metal specimen. For control of the fatigue cycle, the resonance frequency must be reduced to several hundreds of kHz by tuning the specimen shape. We design a cantilever specimen of 1 {mu}m scale gold with a weight at the tip, which reduces the resonant frequency to about 330 kHz. The unique specimen with the test section of 1.26 {mu}m Multiplication-Sign 0.94 {mu}m Multiplication-Sign 1.52 {mu}m is successfully fabricated by a novel technique using a focused ion beam and the tension-compression fatigue cycle is applied to it by means of a piezoelectric actuator. The test section breaks at about 1.6 Multiplication-Sign 10{sup 6} cycles under {Delta}{sigma}/2=230 MPa, which is within the targeted range of this project. It is easy to extend this method to high-cycle fatigue for actual use (including the failure cycles of over 10{sup 8} cycles). The slip bands observed on the surface, which have concavity and convexity similar to the intrusions/extrusions of PSBs, indicate that the failure is induced by the fatigue.

  6. Greywater pollution variability and loadings

    DEFF Research Database (Denmark)

    Eriksson, Eva; Andersen, Henrik Rasmus; Madsen, Toke S.

    2009-01-01

    Small on-site greywater treatment and reuse plants are susceptible to high short-term variation in flow and pollutant concentrations. As demonstrated in this study of a bathroom greywater plant in Copenhagen, Denmark, the flow ranges from no-flow periods to high-flow periods reaching 34 l min−1...... per day, whereas the paraben loadings were below 1 mg per person per day. These data are highly relevant for comparing decentralised treatment options with existing end-of-pipe treatments, for feeding into risk assessments and for design purposes....

  7. The Statistical Properties of Host Load

    Directory of Open Access Journals (Sweden)

    Peter A. Dinda

    1999-01-01

    Full Text Available Understanding how host load changes over time is instrumental in predicting the execution time of tasks or jobs, such as in dynamic load balancing and distributed soft real‐time systems. To improve this understanding, we collected week‐long, 1 Hz resolution traces of the Digital Unix 5 second exponential load average on over 35 different machines including production and research cluster machines, compute servers, and desktop workstations. Separate sets of traces were collected at two different times of the year. The traces capture all of the dynamic load information available to user‐level programs on these machines. We present a detailed statistical analysis of these traces here, including summary statistics, distributions, and time series analysis results. Two significant new results are that load is self‐similar and that it displays epochal behavior. All of the traces exhibit a high degree of self‐similarity with Hurst parameters ranging from 0.73 to 0.99, strongly biased toward the top of that range. The traces also display epochal behavior in that the local frequency content of the load signal remains quite stable for long periods of time (150–450 s mean and changes abruptly at epoch boundaries. Despite these complex behaviors, we have found that relatively simple linear models are sufficient for short‐range host load prediction.

  8. Heliospheric MeV energization due to resonant interaction

    International Nuclear Information System (INIS)

    Roth, Ilan

    2001-01-01

    The prompt enhancement of relativistic electron flux during active geomagnetic periods, and the impulsive increase in the flux of the heliospheric energetic heavy ions during active solar periods are of major importance with respect to the proper operation of electronics on space-borne spacecraft and the safety of interplanetary human travel, respectively. Both enhancements may be caused by resonant wave-particle interaction with oblique electromagnetic waves on the terrestrial and coronal field lines. Whistler waves, which are enhanced significantly during substorms and which propagate obliquely to the magnetic field, can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative) integer multiple of the local relativistic gyrofrequency. This interaction occurs over a broad spatial region when a relativistic electron is bouncing in the terrestrial magnetic field. Coronal ions interact selectively with electromagnetic ion-cyclotron (emic) waves which are correlated with impulsive flares. This interaction occurs over a small spatial region when the Doppler-shifted frequency matches the first or higher harmonic of the ion gyrofrequency. Recent new observations of terrestrial MeV X-rays are interpreted as a resonant loss of the radiation belt electrons

  9. Temporal Variation in Oscillatory Characteristics of Long-period Tremor at Aso Volcano, Japan.

    Science.gov (United States)

    Yamamoto, M.; Ohkura, T.; Kaneshima, S.; Kawakatsu, H.

    2017-12-01

    At Aso volcano, Japan, various kinds of volcanic signals with broad frequency contents have been observed since 1930s. One of these signals is long-period tremor (LPT) with a dominant period of around 15 s, which is intermittently emitted from the volcano regardless of the surface activity. Our broadband seismic observations have revealed that LPTs are a kind of resonance oscillation of a crack-like conduit beneath the crater. In this study, aiming to detect a temporal variation of volcanic system, we analyze the long-term variation of LPTs from 1994 to the present.We first examine the temporal variation of dominant periods of LPTs (fundamental mode of around 15 s and the first overtone of around 7 s) using the continuous data recorded at broadband stations close to the active crater. The result shows a clear temporal change in the dominant periods of LPTs in 2003-2005 and 2014-2015. In 2003-2005, the periods of the two modes show correlated temporal change, and it can be interpreted as compositional and/or thermal change of hydrothermal fluids. On the other hand, in 2014-2015, the period of first overtone is almost constant at around 8 s, while that of the fundamental mode shows relatively large temporal fluctuations between 16 s and 12 s. To explain the different behavior among the two resonant modes, we examine the oscillatory characteristics of a fluid-filled crack having linearly varying thickness. With this model, we find that the ratio between resonance periods becomes smaller than that in the case of a flat crack having constant thickness. This behavior can be understood by considering the effective thickness of the crack depends on the wavelength of each resonant mode. Based on these results, the different temporal variation of dominant periods can be interpreted by depth-dependent thickness of the crack-like conduit which may be caused by pressurization and/or intrusion of magma at deeper portion of the conduit. These results suggest the importance of

  10. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    Science.gov (United States)

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc

  11. Determining the Frequency for Load-Independent Output Current in Three-Coil Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Longzhao Sun

    2015-09-01

    Full Text Available Conditions for load-independent output voltage or current in two-coil wireless power transfer (WPT systems have been studied. However, analysis of load-independent output current in three-coil WPT system is still lacking in previous studies. This paper investigates the output current characteristics of a three-coil WPT system against load variations, and determines the operating frequency to achieve a constant output current. First, a three-coil WPT system is modeled by circuit theory, and the analytical expression of the root-mean-square of the output current is derived. By substituting the coupling coefficients, the quality factor, and the resonant frequency of each coil, we propose a method of calculating the frequency for load-independent output current in a three-coil WPT system, which indicates that there are two frequencies that can achieve load-independent output current. Experiments are conducted to validate these analytical results.

  12. Magnetic Resonance Imaging-Based Radiation-Absorbed Dose Estimation of Ho-166 Microspheres in Liver Radioembolization

    NARCIS (Netherlands)

    Seevinck, Peter R.; van de Maat, Gerrit H.; de Wit, Tim C.; Vente, Maarten A. D.; Nijsen, Johannes F. W.; Bakker, Chris J. G.

    2012-01-01

    Purpose: To investigate the potential of magnetic resonance imaging (MRI) for accurate assessment of the three-dimensional Ho-166 activity distribution to estimate radiation-absorbed dose distributions in Ho-166-loaded poly (L-lactic acid) microsphere (Ho-166-PLLA-MS) liver radioembolization.

  13. Magnetic resonance of rubidium atoms passing through a multi-layered transmission magnetic grating

    International Nuclear Information System (INIS)

    Nagata, Y; Kurokawa, S; Hatakeyama, A

    2017-01-01

    We measured the magnetic resonance of rubidium atoms passing through periodic magnetic fields generated by two types of multi-layered transmission magnetic grating. One of the gratings reported here was assembled by stacking four layers of magnetic films so that the direction of magnetization alternated at each level. The other grating was assembled so that the magnetization at each level was aligned. For both types of grating, the experimental results were in good agreement with our calculations. We studied the feasibility of extending the frequency band of the grating and narrowing its resonance linewidth by performing calculations. For magnetic resonance precision spectroscopy, we conclude that the multi-layered transmission magnetic grating can generate periodic fields with narrower linewidths at higher frequencies when a larger number of layers are assembled at a shorter period length. Moreover, the frequency band of this type of grating can potentially achieve frequencies of up to hundreds of PHz. (paper)

  14. Exponential and nonexponential localization of the one-dimensional periodically kicked Rydberg atom

    International Nuclear Information System (INIS)

    Yoshida, S.; Reinhold, C. O.; Kristoefel, P.; Burgdoerfer, J.

    2000-01-01

    We investigate the quantum localization of the one-dimensional Rydberg atom subject to a unidirectional periodic train of impulses. For high frequencies of the train the classical system becomes chaotic and leads to fast ionization. By contrast, the quantum system is found to be remarkably stable. We identify for this system the coexistence of different localization mechanisms associated with resonant and nonresonant diffusion. We find for the suppression of nonresonant diffusion an exponential localization whose localization length can be related to the classical dynamics in terms of the ''scars'' of the unstable periodic orbits. We show that the localization length is determined by the energy excursion along the periodic orbits. The suppression of resonant diffusion along the sequence of photonic peaks is found to be nonexponential due to the presence of high harmonics in the driving force. (c) 2000 The American Physical Society

  15. Resonant Homoclinic Flips Bifurcation in Principal Eigendirections

    Directory of Open Access Journals (Sweden)

    Tiansi Zhang

    2013-01-01

    Full Text Available A codimension-4 homoclinic bifurcation with one orbit flip and one inclination flip at principal eigenvalue direction resonance is considered. By introducing a local active coordinate system in some small neighborhood of homoclinic orbit, we get the Poincaré return map and the bifurcation equation. A detailed investigation produces the number and the existence of 1-homoclinic orbit, 1-periodic orbit, and double 1-periodic orbits. We also locate their bifurcation surfaces in certain regions.

  16. Polariton condensation, superradiance and difference combination parametric resonance in mode-locked laser

    Science.gov (United States)

    Bagayev, S. N.; Arkhipov, R. M.; Arkhipov, M. V.; Egorov, V. S.; Chekhonin, I. A.; Chekhonin, M. A.

    2017-11-01

    The generation of the ring mode-locked laser containing resonant absorption medium in the cavity was investigated. It is shown that near the strong resonant absorption lines a condensation of polaritons arises. Intensive radiation looks like as superradiance in a medium without population inversion. We studied theoretically the microscopic mechanism of these phenomena. It was shown that in this system in absorbing medium a strong self-induced difference combination parametric resonance exists. Superradiance on polaritonic modes in the absorbing medium are due to the emergence of light-induced resonant polarization as a result of fast periodic nonadiabatic quantum jumps in the absorber.

  17. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    Science.gov (United States)

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  18. Cognitive Load Alters Neuronal Processing of Food Odors.

    Science.gov (United States)

    Hoffmann-Hensel, Sonja Maria; Sijben, Rik; Rodriguez-Raecke, Rea; Freiherr, Jessica

    2017-10-31

    Obesity is a major health concern in modern societies. Although decreased physical activity and enhanced intake of high-caloric foods are important risk factors for developing obesity, human behavior during eating also plays a role. Previous studies have shown that distraction while eating increases food intake and leads to impaired processing of food stimuli. As olfaction is the most important sense involved in flavor perception, we used functional magnetic resonance imaging techniques to investigate the influence of cognitive memory load on olfactory perception and processing. Low- and high-caloric food odors were presented in combination with either low or high cognitive loads utilizing a memory task. The efficacy of the memory task was verified by a decrease in participant recall accuracy and an increase in skin conductance response during high cognitive load. Our behavioral data reveal a diminished perceived intensity for low- but not high-caloric food odors during high cognitive load. For low-caloric food odors, bilateral orbitofrontal (OFC) and piriform cortices (pirC) showed significantly lower activity during high compared with low cognitive load. For high-caloric food odors, a similar effect was established in pirC, but not in OFC. Insula activity correlates with higher intensity ratings found during the low cognitive load condition. We conclude lower activity in pirC and OFC to be responsible for diminished intensity perception, comparable to results in olfactory impaired patients and elderly. Further studies should investigate the influence of olfactory/gustatory intensities on food choices under distraction with special regards to low-caloric food. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Broadband locally resonant metamaterials with graded hierarchical architecture

    Science.gov (United States)

    Liu, Chenchen; Reina, Celia

    2018-03-01

    We investigate the effect of hierarchical designs on the bandgap structure of periodic lattice systems with inner resonators. A detailed parameter study reveals various interesting features of structures with two levels of hierarchy as compared with one level systems with identical static mass. In particular: (i) their overall bandwidth is approximately equal, yet bounded above by the bandwidth of the single-resonator system; (ii) the number of bandgaps increases with the level of hierarchy; and (iii) the spectrum of bandgap frequencies is also enlarged. Taking advantage of these features, we propose graded hierarchical structures with ultra-broadband properties. These designs are validated over analogous continuum models via finite element simulations, demonstrating their capability to overcome the bandwidth narrowness that is typical of resonant metamaterials.

  20. Quantifying uncertainty on sediment loads using bootstrap confidence intervals

    Science.gov (United States)

    Slaets, Johanna I. F.; Piepho, Hans-Peter; Schmitter, Petra; Hilger, Thomas; Cadisch, Georg

    2017-01-01

    Load estimates are more informative than constituent concentrations alone, as they allow quantification of on- and off-site impacts of environmental processes concerning pollutants, nutrients and sediment, such as soil fertility loss, reservoir sedimentation and irrigation channel siltation. While statistical models used to predict constituent concentrations have been developed considerably over the last few years, measures of uncertainty on constituent loads are rarely reported. Loads are the product of two predictions, constituent concentration and discharge, integrated over a time period, which does not make it straightforward to produce a standard error or a confidence interval. In this paper, a linear mixed model is used to estimate sediment concentrations. A bootstrap method is then developed that accounts for the uncertainty in the concentration and discharge predictions, allowing temporal correlation in the constituent data, and can be used when data transformations are required. The method was tested for a small watershed in Northwest Vietnam for the period 2010-2011. The results showed that confidence intervals were asymmetric, with the highest uncertainty in the upper limit, and that a load of 6262 Mg year-1 had a 95 % confidence interval of (4331, 12 267) in 2010 and a load of 5543 Mg an interval of (3593, 8975) in 2011. Additionally, the approach demonstrated that direct estimates from the data were biased downwards compared to bootstrap median estimates. These results imply that constituent loads predicted from regression-type water quality models could frequently be underestimating sediment yields and their environmental impact.

  1. Role of phase breaking processes on resonant spin transfer torque nano-oscillators

    Science.gov (United States)

    Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2018-05-01

    Spin transfer torque nano-oscillators (STNOs) based on magnetoresistance and spin transfer torque effects find potential applications in miniaturized wireless communication devices. Using the non-coherent non-equilibrium Green's function spin transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski's equation and the Poisson's equation, we elucidate the role of elastic phase breaking on the proposed STNO design featuring double barrier resonant tunneling. Demonstrating the immunity of our proposed design, we predict that despite the presence of elastic dephasing, the resonant tunneling magnetic tunnel junction structures facilitate oscillator designs featuring a large enhancement in microwave power up to 8μW delivered to a 50Ω load.

  2. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading.

    Science.gov (United States)

    Loerakker, S; Manders, E; Strijkers, G J; Nicolay, K; Baaijens, F P T; Bader, D L; Oomens, C W J

    2011-10-01

    Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. In the present study, the contributions of deformation, ischemia, and reperfusion to skeletal muscle damage development were examined in a rat model during a 6-h period. Magnetic resonance imaging (MRI) was used to study perfusion (contrast-enhanced MRI) and tissue integrity (T2-weighted MRI). The levels of tissue deformation were estimated using finite element models. Complete ischemia caused a gradual homogeneous increase in T2 (∼20% during the 6-h period). The effect of reperfusion on T2 was highly variable, depending on the anatomical location. In experiments involving deformation, inevitably associated with partial ischemia, a variable T2 increase (17-66% during the 6-h period) was observed reflecting the significant variation in deformation (with two-dimensional strain energies of 0.60-1.51 J/mm) and ischemia (50.8-99.8% of the leg) between experiments. These results imply that deformation, ischemia, and reperfusion all contribute to the damage process during prolonged loading, although their importance varies with time. The critical deformation threshold and period of ischemia that cause muscle damage will certainly vary between individuals. These variations are related to intrinsic factors, such as pathological state, which partly explain the individual susceptibility to the development of DTI and highlight the need for regular assessments of individual subjects.

  3. Scattering processes and resonances from lattice QCD

    Science.gov (United States)

    Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.

    2018-04-01

    The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.

  4. Stochastic resonance in models of neuronal ensembles

    International Nuclear Information System (INIS)

    Chialvo, D.R.; Longtin, A.; Mueller-Gerkin, J.

    1997-01-01

    Two recently suggested mechanisms for the neuronal encoding of sensory information involving the effect of stochastic resonance with aperiodic time-varying inputs are considered. It is shown, using theoretical arguments and numerical simulations, that the nonmonotonic behavior with increasing noise of the correlation measures used for the so-called aperiodic stochastic resonance (ASR) scenario does not rely on the cooperative effect typical of stochastic resonance in bistable and excitable systems. Rather, ASR with slowly varying signals is more properly interpreted as linearization by noise. Consequently, the broadening of the open-quotes resonance curveclose quotes in the multineuron stochastic resonance without tuning scenario can also be explained by this linearization. Computation of the input-output correlation as a function of both signal frequency and noise for the model system further reveals conditions where noise-induced firing with aperiodic inputs will benefit from stochastic resonance rather than linearization by noise. Thus, our study clarifies the tuning requirements for the optimal transduction of subthreshold aperiodic signals. It also shows that a single deterministic neuron can perform as well as a network when biased into a suprathreshold regime. Finally, we show that the inclusion of a refractory period in the spike-detection scheme produces a better correlation between instantaneous firing rate and input signal. copyright 1997 The American Physical Society

  5. Stochastic resonance and vibrational resonance in an excitable system: The golden mean barrier

    International Nuclear Information System (INIS)

    Stan, Cristina; Cristescu, C.P.; Alexandroaei, D.; Agop, M.

    2009-01-01

    We report on stochastic resonance and vibrational resonance in an electric charge double layer configuration as usually found in electrical discharges, biological cell membranes, chemical systems and nanostructures. The experiment and numerical computation show the existence of a barrier expressible in terms of the golden mean above which the two phenomena do not take place. We consider this as new evidence for the importance of the golden mean criticality in the oscillatory dynamics, in agreement with El Naschie's E-infinity theory. In our experiment, the dynamics of a charge double layer generated in the inter-anode space of a twin electrical discharge is investigated under noise-harmonic and harmonic-harmonic perturbations. In the first case, a Gaussian noise can enhance the response of the system to a weak injected periodic signal, a clear mark of stochastic resonance. In the second case, similar enhancement can appear if the noise is replaced by a harmonic perturbation with a frequency much higher than the frequency of the weak oscillation. The amplitude of the low frequency oscillation shows a maximum versus the amplitude of the high frequency perturbation demonstrating vibrational resonance. In order to model these dynamics, we derived an excitable system by modifying a biased van der Pol oscillator. The computational study considers the behaviour of this system under the same types of perturbation as in the experimental investigations and is found to give consistent results in both situations.

  6. A Bivariate return period for levee failure monitoring

    Science.gov (United States)

    Isola, M.; Caporali, E.

    2017-12-01

    Levee breaches are strongly linked with the interaction processes among water, soil and structure, thus many are the factors that affect the breach development. One of the main is the hydraulic load, characterized by intensity and duration, i.e. by the flood event hydrograph. On the magnitude of the hydraulic load is based the levee design, generally without considering the fatigue failure due to the load duration. Moreover, many are the cases in which the levee breach are characterized by flood of magnitude lower than the design one. In order to implement the strategies of flood risk management, we built here a procedure based on a multivariate statistical analysis of flood peak and volume together with the analysis of the past levee failure events. Particularly, in order to define the probability of occurrence of the hydraulic load on a levee, a bivariate copula model is used to obtain the bivariate joint distribution of flood peak and volume. Flood peak is the expression of the load magnitude, while the volume is the expression of the stress over time. We consider the annual flood peak and the relative volume. The volume is given by the hydrograph area between the beginning and the end of event. The beginning of the event is identified as an abrupt rise of the discharge by more than 20%. The end is identified as the point from which the receding limb is characterized by the baseflow, using a nonlinear reservoir algorithm as baseflow separation technique. By this, with the aim to define warning thresholds we consider the past levee failure events and the relative bivariate return period (BTr) compared with the estimation of a traditional univariate model. The discharge data of 30 hydrometric stations of Arno River in Tuscany, Italy, in the period 1995-2016 are analysed. The database of levee failure events, considering for each event the location as well as the failure mode, is also created. The events were registered in the period 2000-2014 by EEA

  7. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron

    2015-01-01

    Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by cove......Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown...... that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can...... perform measurements at arbitrary number of wavelengths, and requires only a minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications. © 2015 AIP Publishing LLC....

  8. Finite amplitude, horizontal motion of a load symmetrically supported between isotropic hyperelastic springs.

    Science.gov (United States)

    Beatty, Millard F; Young, Todd R

    2012-03-01

    The undamped, finite amplitude horizontal motion of a load supported symmetrically between identical incompressible, isotropic hyperelastic springs, each subjected to an initial finite uniaxial static stretch, is formulated in general terms. The small amplitude motion of the load about the deformed static state is discussed; and the periodicity of the arbitrary finite amplitude motion is established for all such elastic materials for which certain conditions on the engineering stress and the strain energy function hold. The exact solution for the finite vibration of the load is then derived for the classical neo-Hookean model. The vibrational period is obtained in terms of the complete Heuman lambda-function whose properties are well-known. Dependence of the period and hence the frequency on the physical parameters of the system is investigated and the results are displayed graphically.

  9. One More Tool for Understanding Resonance and the Way for a New Definition

    Directory of Open Access Journals (Sweden)

    Emanuel Gluskin

    2013-01-01

    Full Text Available We propose the application of graphical convolution to the analysis of the resonance phenomenon. This time-domain approach encompasses both the finally attained periodic oscillations and the initial transient period. It also provides interesting discussion concerning the analysis of nonsinusoidal waves, based not on frequency analysis but on direct consideration of waveforms, and thus presenting an introduction to Fourier series. Further developing the point of view of graphical convolution, we arrive at a new definition of resonance in terms of time domain.

  10. Treatment efficiency of patients with shin fracture after intraosseous blocked osteosynthesis by using the load dispenser

    Directory of Open Access Journals (Sweden)

    Yu. V. Sukhin

    2017-08-01

    Full Text Available The purpose of research: еvaluation of the effectiveness of the device for determining the value of the load on the lower extremity while walking in real time with controlling and signalization of excessive and insufficient load. Materials and methods. Еlaborated and applied device, that allows to determine the load magnitude on the lower extremity in real time, and also to signal about excessive or weak load. The sensory block with the insole and the sensor is located in shoes, under patient's heel, and the main block is fixed on the shin with the help of the strap. Current value of the load on the leg is registered in real time. Received data is recorded in non-volatile memory. The system provides an opportunity to notify patient or doctor by email about the presence of a strong or weak load on the lower extremity, and also about the absence of load for a long period. Results. We used the loading batcher in 38 patients with the shin bones fractures, who were on inpatient treatment at the traumatology and orthopedics center in Odessa in the period from 1.5 to 12 months. The main group included patients, who used the load batcher on the lower extremity in rehabilitation period (transversal fracture of the shin bones diaphysis – 9 patients, oblique fracture – 11 patients. The control group consisted of patients, who didn't use the load batcher (10 patients with oblique fracture of the shin bones in the middle third, 8 patients with transversal fracture of both shin bones in the middle third. As a result of applying the device we succeeded to reduce the fracture fusion period for two weeks and avoid such complications as contracture of joint and fracture non-union. Conclusions. The device allows patients with traumatic consequences reaching the optimal load in rehabilitation period, avoiding excessive load on the lower extremity. The elaboration provides an opportunity to determine the statistics of the load and its transfer to the server

  11. Impact of Load Behavior on Transient Stability and Power Transfer Limitations

    DEFF Research Database (Denmark)

    Gordon, Mark

    2009-01-01

    This paper presents utility based load modeling practices and explores the interaction between loads and the power system and the effect of the interaction on transient stability and power transfer limitations. The effect of load composition is investigated at major load centers together with the......This paper presents utility based load modeling practices and explores the interaction between loads and the power system and the effect of the interaction on transient stability and power transfer limitations. The effect of load composition is investigated at major load centers together...... with the impact on rotor angle excursions of large scale generators during the transient and post-transient period. Responses of multi-induction motor stalling are also considered for different fault clearances in the system. Findings of the investigations carried out on the Eastern Australian interconnected...

  12. The Fermi-Pasta-Ulam Model Periodic Solutions

    CERN Document Server

    Arioli, G; Terracini, S

    2003-01-01

    We introduce two novel methods for studying periodic solutions of the FPU beta-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.

  13. On the Nonlinear Dynamics of a Doubly Clamped Microbeam near Primary Resonance

    KAUST Repository

    Jaber, Nizar; Masri, Karim M.; Younis, Mohammad I.

    2017-01-01

    This work aims to investigate theoretically and experimentally various nonlinear dynamic behaviors of a doubly clamped microbeam near its primary resonance. Mainly, we investigate the transition behavior from hardening, mixed, and then softening behavior. We show in a single frequency-response curve, under a constant voltage load, the transition from hardening to softening behavior demonstrating the dominance of the quadratic electrostatic nonlinearity over the cubic geometric nonlinearity of the beam as the motion amplitudes becomes large, which may lead eventually to dynamic pull-in. The microbeam is fabricated using polyimide as a structural layer coated with nickel from top and chromium and gold layers from the bottom. Frequency sweep tests are conducted for different values of DC bias revealing hardening, mixed, and softening behavior of the microbeam. A multi-mode Galerkin model combined with a shooting technique are implemented to generate the frequency response curves and to analyze the stability of the periodic motions using the Floquet theory. The simulated curves show good agreement with the experimental data.

  14. On the Nonlinear Dynamics of a Doubly Clamped Microbeam near Primary Resonance

    KAUST Repository

    Jaber, Nizar

    2017-04-07

    This work aims to investigate theoretically and experimentally various nonlinear dynamic behaviors of a doubly clamped microbeam near its primary resonance. Mainly, we investigate the transition behavior from hardening, mixed, and then softening behavior. We show in a single frequency-response curve, under a constant voltage load, the transition from hardening to softening behavior demonstrating the dominance of the quadratic electrostatic nonlinearity over the cubic geometric nonlinearity of the beam as the motion amplitudes becomes large, which may lead eventually to dynamic pull-in. The microbeam is fabricated using polyimide as a structural layer coated with nickel from top and chromium and gold layers from the bottom. Frequency sweep tests are conducted for different values of DC bias revealing hardening, mixed, and softening behavior of the microbeam. A multi-mode Galerkin model combined with a shooting technique are implemented to generate the frequency response curves and to analyze the stability of the periodic motions using the Floquet theory. The simulated curves show good agreement with the experimental data.

  15. Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ding, Fei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-23

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operator can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.

  16. Dual-axis resonance testing of wind turbine blades

    Science.gov (United States)

    Hughes, Scott; Musial, Walter; White, Darris

    2014-01-07

    An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

  17. Development of a vehicle load control strategy for Malawi for the period 2016 to 2020

    CSIR Research Space (South Africa)

    Roux, MP

    2016-07-01

    Full Text Available Strategy and development of a five-year implementation plan for significantly improving the Directorate’s current capacity to effectively manage and enforce axle load control. Specific objectives were to: a) Assist the DRTSS to undertake an extensive...

  18. Stochastic resonance and stability for a stochastic metapopulation system subjected to non-Gaussian noise and multiplicative periodic signal

    International Nuclear Information System (INIS)

    Kang-Kang, Wang; Xian-Bin, Liu; Yu, Zhou

    2015-01-01

    In this paper, the stability and stochastic resonance (SR) phenomenon induced by the multiplicative periodic signal for a metapopulation system driven by the additive Gaussian noise, multiplicative non-Gaussian noise and noise correlation time is investigated. By using the fast descent method, unified colored noise approximation and McNamara and Wiesenfeld’s SR theory, the analytical expressions of the stationary probability distribution function and signal-to-noise ratio (SNR) are derived in the adiabatic limit. Via numerical calculations, each effect of the addictive noise intensity, the multiplicative noise intensity and the correlation time upon the steady state probability distribution function and the SNR is discussed, respectively. It is shown that multiplicative, additive noises and the departure parameter from the Gaussian noise can all destroy the stability of the population system. However, the noise correlation time can consolidate the stability of the system. On the other hand, the correlation time always plays an important role in motivating the SR and enhancing the SNR. Under different parameter conditions of the system, the multiplicative, additive noises and the departure parameter can not only excite SR phenomenon, but also restrain the SR phenomenon, which demonstrates the complexity of different noises upon the nonlinear system. (paper)

  19. Drift resonance and stability of the Io plasma torus

    Science.gov (United States)

    Zhan, Jie; Hill, T. W.

    2000-03-01

    The observed local time asymmetry of the Io plasma torus is generally attributed to the presence of a persistent dawn-to-dusk electric field in the Jovian magnetosphere. The local time asymmetry is modulated at the System 3 rotation period of Jupiter's magnetic field, suggesting that the dawn-to-dusk electric field may be similarly modulated. We argue that such a System 3 modulation would have a profound disruptive effect on the observed torus structure if the torus were to corotate at exactly the System 3 rate: the torus would be a resonantly forced harmonic oscillator, and would disintegrate in a few rotation periods, contrary to observations. This destabilizing effect is independent of, and in addition to, the more familiar effect of the centrifugal interchange instability, which is also capable of disrupting the torus in a few rotation periods in the absence of other effects. We conclude that the observed (few percent) corotation lag of the torus is essential to preserving the observed long-lived torus structure by detuning the resonant frequency (the torus drift frequency) relative to the forcing frequency (System 3). A possible outcome of this confinement mechanism is a residual radial oscillation of the torus at the beat period (~10 days) between System 3 and the torus drift period.

  20. Endogenous fields enhanced stochastic resonance in a randomly coupled neuronal network

    International Nuclear Information System (INIS)

    Deng, Bin; Wang, Lin; Wang, Jiang; Wei, Xi-le; Yu, Hai-tao

    2014-01-01

    Highlights: • We study effects of endogenous fields on stochastic resonance in a neural network. • Stochastic resonance can be notably enhanced by endogenous field feedback. • Endogenous field feedback delay plays a vital role in stochastic resonance. • The parameters of low-passed filter play a subtle role in SR. - Abstract: Endogenous field, evoked by structured neuronal network activity in vivo, is correlated with many vital neuronal processes. In this paper, the effects of endogenous fields on stochastic resonance (SR) in a randomly connected neuronal network are investigated. The network consists of excitatory and inhibitory neurons and the axonal conduction delays between neurons are also considered. Numerical results elucidate that endogenous field feedback results in more rhythmic macroscope activation of the network for proper time delay and feedback coefficient. The response of the network to the weak periodic stimulation can be notably enhanced by endogenous field feedback. Moreover, the endogenous field feedback delay plays a vital role in SR. We reveal that appropriately tuned delays of the feedback can either induce the enhancement of SR, appearing at every integer multiple of the weak input signal’s oscillation period, or the depression of SR, appearing at every integer multiple of half the weak input signal’s oscillation period for the same feedback coefficient. Interestingly, the parameters of low-passed filter which is used in obtaining the endogenous field feedback signal play a subtle role in SR