WorldWideScience

Sample records for resonant optical rectification

  1. Hydrostatic pressure and temperature effects on nonlinear optical rectification in a lens shape InAs/GaAs quantum dot

    International Nuclear Information System (INIS)

    Bouzaïene, L.; Ben Mahrsia, R.; Baira, M.; Sfaxi, L.; Maaref, H.

    2013-01-01

    We have performed theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot (0D). The combined effects of hydrostatic pressure and temperature on the nonlinear optical rectification in lens-shaped InAs QDs are studied under the compact density matrix formalism and the effective mass approximation. From our calculation, it is found that the subband energies and optical rectification susceptibility are quite sensitive to the applied hydrostatic pressure and temperature. The results show that the resonant peak of the optical rectification can be red-shifted or blue-shifted and their intensity also varied by external probes such as hydrostatic pressure and temperature. In addition, the oscillator strength is strongly affected by these parameters. - Highlights: ► Theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot was performed. ► Optical rectification susceptibility is quite sensitive to the applied hydrostatic pressure and temperature. ► The oscillator strength is strongly affected by the applied hydrostatic pressure and temperature.

  2. Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field

    International Nuclear Information System (INIS)

    Duque, C.A.; Kasapoglu, E.; Sakiroglu, S.; Sari, H.; Soekmen, I.

    2011-01-01

    In this work the effects of intense laser on the electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As quantum wells are studied under, applied electric and magnetic field. The electric field is applied along the growth direction of the quantum well whereas the magnetic field has been considered to be in-plane. The calculations were performed within the density matrix formalism with the use of the effective mass and parabolic band approximations. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Results are presented for the nonlinear optical absorption, the nonlinear optical rectification and the resonant peak of these two optical processes. Several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation have been considered. The outcome of the calculation suggests that the nonlinear optical absorption and optical rectification are non-monotonic functions of the dimensions of the heterostructure and of the external perturbations considered in this work.

  3. Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields

    International Nuclear Information System (INIS)

    Wu, Jinghe; Guo, Kangxian; Liu, Guanghui

    2014-01-01

    Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells are studied by the effective mass approximation and the perturbation theory. The numerical results show that nonlinear optical rectification coefficients are strongly dependent on the barrier hight V 0 of the Gaussian potential quantum wells, the range L of the confinement potential and the electric field F. Besides, the numerical results show that no matter how V 0 , L and F change, taking into consideration polaron effects, the optical rectification coefficients χ 0 (2) get greatly enhanced.

  4. Nonlinear optical rectification in vertically coupled InAs/GaAs quantum dots under electromagnetic fields, pressure and temperature effects

    Energy Technology Data Exchange (ETDEWEB)

    Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Ben Mahrsia, R.; Bouzaiene, L.; Maaref, H.

    2013-12-15

    In this paper we explore the effects of the structural dimensions, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). The analytical expression of the NOR is analyzed by using the density matrix formalism, the effective mass and the Finite Difference Method (FDM). Obtained results show that the NOR obtained with this coupled system is not a monotonic function of the barrier width, electromagnetic fields, pressure and temperature. Also, calculated results reveal that the resonant peaks of the NOR can be blue-shifted or red-shifted energies depending on the energy of the lowest confined states in the VCQDs structure. In addition, this condition can be controlled by changes in the structural dimensions and the external proofs mentioned above. -- Highlights: • In this paper we explore the effects of the barrier width, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). • The calculated results reveal that the resonant peaks of the NOR can be blue-shifted to large photon energies or red-shifted to lower photon energies. • In this paper, all parameters: electromagnetic fields, pressure and temperature effects are introduced and investigated. • The resonant energy and the magnitude of the NOR are controlled and adjusted.

  5. Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation.

    Science.gov (United States)

    Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-12-02

    As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.

  6. Optical rectification, circular photogalvanic effect, and five-wave mixing in optically active liquids

    Science.gov (United States)

    Koroteev, Nikolai I.

    1996-05-01

    A phenomenological analysis is carried out of novel nonlinear optical processes taking place in macroscopically noncentrosymmetric isotropic solutions of chiral (lift-ring mirror asymmetric) macromolecules, which are the primary elements of living organisms and their metabolic products. Among the most interesting and potentially useful for spectroscopic purposes are: optical rectification/photogalvanic effects consisting in electrostatic field/direct electrical current generation in such liquids under irradiation with the intense circularly polarized laser beam and the five-wave mixing phase-matched process of BioCARS to selectively record, background-free, vibrational spectra of chiral molecules.

  7. Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wetting layers under hydrostatic pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mahrsia, R.; Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Bouzaiene, L.; Maaref, H.

    2016-06-25

    In this paper we explore the structure parameters, hydrostatic pressure and temperature effects on Nonlinear optical rectification (NOR) in an asymmetric vertically coupled lens-shaped InAs/GaAs quantum dots. During epitaxial growth, lens-shaped quantum dots (QDs) are formed on the wetting layer (WL). Many theoretical works have neglected WL and its effect on nonlinear optical properties of QD-based systems for sake of simplicity. However, in this work the WL has been shown to be so influential in the intersubband energy and nonlinear optical rectification magnitude. Also, a detailed and comprehensive study of the nonlinear optical rectification is theoretical investigated within the framework of the compact density-matrix approach and finite difference method (FDM). It's found that nonlinear optical rectification coefficient is strongly affected not only by the WL, but also by the pressure, temperature and the coupled width between the QDs. Obtained results revealed that a red or a blue shift cane be observed. This behavior in the NOR gives a new degree of freedom in regions of interest for device applications. - Highlights: • Vertically coupled lens-shaped InAs/GaAs quantum dots is investigated. • Photon energy shifts towards the red with increasing pressure. • Photon energy shifts towards the blue with increasing temperature. • Intersubband energy decreases with increasing the wetting layer width. • Nonlinear optical rectification magnitude is controlled and adjusted.

  8. Toward a nanoimprinted nanoantenna to perform optical rectification through molecular diodes

    Science.gov (United States)

    Reynaud, C. A.; Duché, D.; Ruiz, C. M.; Palanchoke, U.; Patrone, L.; Le Rouzo, J.; Labau, S.; Frolet, N.; Gourgon, C.; Alfonso, C.; Charaï, A.; Lebouin, C.; Simon, J.-J.; Escoubas, L.

    2017-12-01

    This work presents investigations about the realization and modelization of rectenna solar cells. Rectennas are antennas coupled with a rectifier to convert the alternative current originating from the antenna into direct current that can be harvested and stored. By reducing the size of the antennas to the nanoscale, interactions with visible and near-infrared light become possible. If techniques such as nanoimprint lithography make possible the fabrication of sufficiently small plasmonic structures to act as optical antennas, the concept of rectenna still faces several challenges. One of the most critical point is to achieve rectification at optical frequencies. To address this matter, we propose to use molecular diodes (ferrocenyl-alkanethiol) that can be self-assembled on metallic surfaces such as gold or silver. In this paper, we present a basic rectenna theory as well as finite-difference time-domain (FDTD) optical simulations of plasmonic structures and experimental results of both nanoimprint fabrication of samples and characterizations by electron microscopy, Raman spectroscopy, and cyclic voltammetry techniques.

  9. Rapid characterizing of ferromagnetic materials using spin rectification

    International Nuclear Information System (INIS)

    Fan, Xiaolong; Wang, Wei; Wang, Yutian; Zhou, Hengan; Rao, Jinwei; Zhao, Xiaobing; Gao, Cunxu; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-01-01

    Spin rectification is a powerful tool for dc electric detections of spin dynamics and electromagnetic waves. Technically, elaborately designed on-chip microwave devices are needed in order to realize that effect. In this letter, we propose a rapid characterizing approach based on spin rectification. By directly sending dynamic current into ferromagnetic films with stripe shape, resonant dc voltages can be detected along the longitudinal or transversal directions. As an example, Fe (010) films with precise crystalline structure and magnetic parameters were used to testify the reliability of such method. We investigated not only the dynamic parameters and the precise anisotropy constants of the Fe crystals but also the principle of spin rectification in this method

  10. Optical rectification through an Al 2 O 3 based MIM passive rectenna at 28.3 THz

    KAUST Repository

    Jayaswal, Gaurav

    2017-11-21

    Harevesting energy from waste heat which fluctuates between, approximately, 250 K and 1500 K, i.e., peaking at 2–11 μm, could be a game changer in terms of tapping on to renewable energy sources. However, research in this area has remained elusive due to numerous challenges. We consider waste heat to be an electromagnetic (EM) wave in the mid infrared (IR) frequency range, which can be captured through a resonant antenna and rectified into useful DC through a diode, an arrangement typically known as a rectenna. A bowtie antenna has been optimized for IR field capture and enhancement through EM simulations. At the overlap of the bowtie arms, a metal-insulator-metal (MIM) diode has been realized that can operate at such a high frequency (28.3 THz or 10.6 μm). The choice of a low permittivity insulator (Al2O3) helps metigate the RC time constant and the diode\\'s cutoff frequency, whereas the two different work function metals, Au and Ti, facilitate diode operation through tunneling at no applied bias. A custom optical characterization setup employing a 10.6 μm CO2 laser has been used to assess the IR capture and rectification ability of the rectenna device. A polarization dependent voltage output which is well above the noise level and well matched with our calculations, confirms the successful rectenna operation. According to authors\\' best knowledge, this is the first demonstration of rectification at 28.3 THz through a MIM diode based rectenna at zero applied bias.

  11. Nonlinear optical rectification in semiparabolic quantum wells with an applied electric field

    International Nuclear Information System (INIS)

    Karabulut, ibrahim; Safak, Haluk

    2005-01-01

    The optical rectification (OR) in a semiparabolic quantum well with an applied electric field has been theoretically investigated. The electronic states in a semiparabolic quantum well with an applied electric field are calculated exactly, within the envelope function and the displaced harmonic oscillator approach. Numerical results are presented for the typical Al x Ga 1- x As/GaAs quantum well. These results show that the applied electric field and the confining potential frequency of the semiparabolic quantum well have a great influence on the OR coefficient. Moreover, the OR coefficient also depends sensitively on the relaxation rate of the semiparabolic quantum well system

  12. The role of geometry in nanoscale rectennas for rectification and energy conversion

    Science.gov (United States)

    Miskovsky, N. M.; Cutler, P. H.; Mayer, A.; Willis, B. G.; Zimmerman, D. T.; Weisel, G. J.; Chen, James M.; Sullivan, T. E.; Lerner, P. B.

    2013-09-01

    We have previously presented a method for optical rectification that has been demonstrated both theoretically and experimentally and can be used for the development of a practical rectification and energy conversion device for the electromagnetic spectrum including the visible portion. This technique for optical frequency rectification is based, not on conventional material or temperature asymmetry as used in MIM or Schottky diodes, but on a purely geometric property of the antenna tip or other sharp edges that may be incorporated on patch antennas. This "tip" or edge in conjunction with a collector anode providing connection to the external circuit constitutes a tunnel junction. Because such devices act as both the absorber of the incident radiation and the rectifier, they are referred to as "rectennas." Using current nanofabrication techniques and the selective Atomic Layer Deposition (ALD) process, junctions of 1 nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum (see Section 2).

  13. Nonlinear optical rectification and second and third harmonic generation in GaAs δ-FET systems under hydrostatic pressure

    International Nuclear Information System (INIS)

    Martínez-Orozco, J.C.; Mora-Ramos, M.E.; Duque, C.A.

    2012-01-01

    The GaAs n-type delta-doped field effect transistor is proposed as a source for nonlinear optical responses such as second order rectification and second and third harmonic generation. Particular attention is paid to the effect of hydrostatic pressure on these properties, related with the pressure-induced modifications of the energy level spectrum. The description of the one-dimensional potential profile is made including Hartree and exchange and correlation effects via a Thomas–Fermi-based local density approximation. The allowed energy levels are calculated within the effective mass and envelope function approximations by means of an expansion over an orthogonal set of infinite well eigenfunctions. The results for the coefficients of nonlinear optical rectification and second and third harmonic generation are reported for several values of the hydrostatic pressure. - Highlights: ► GaAs n-type delta-doped field effect transistor. ► NOR and SHG are enhanced as a result of the pressure. ► THG is quenched as a result of the pressure. ► The zero pressure situation is the best scenario for the THG.

  14. Nonlinear optical rectification and optical absorption in GaAs-Ga1-xAlxAs asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure

    International Nuclear Information System (INIS)

    Karabulut, I.; Mora-Ramos, M.E.; Duque, C.A.

    2011-01-01

    The intersubband electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As asymmetric double quantum wells are studied, under the influence of combined or independent applied electric and magnetic fields as well as hydrostatic pressure. The outcome of the density matrix formalism and the effective mass, and parabolic-band approximations have been considered as main theoretical tools for the description. It is obtained that under particular geometrical conditions, with or without electric and/or magnetic field strength, the optical rectification is null and, simultaneously, in such circumstances the optical absorption has a relative maximum. It is also detected that the influence of the hydrostatic pressure leads to increasing or decreasing behaviors of the nonlinear optical absorption in dependence of the particular regime of pressure values considered, with significant distinction of the cases of opposite electric field orientations. - Highlights: → Maxima of the NOA correspond to zero in the NOR. → Electric fields can couple the double quantum wells. → Hydrostatic pressure can couple the double quantum wells. → NOA can increase/decrease with hydrostatic pressure. → Overlap between wave functions depends on the magnetic field.

  15. Rectification of light refraction in curved waveguide arrays.

    Science.gov (United States)

    Longhi, Stefano

    2009-02-15

    An "optical ratchet" for discretized light in photonic lattices, which enables observing rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically curved zigzag waveguide arrays is proposed.

  16. Rectification of light refraction in curved waveguide arrays

    OpenAIRE

    Longhi, S.

    2010-01-01

    An 'optical ratchet' for discretized light in photonic lattices, which enables to observe rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically-curved zigzag waveguide arrays is proposed.

  17. Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate.

    Science.gov (United States)

    Weiss, C; Torosyan, G; Meyn, J P; Wallenstein, R; Beigang, R; Avetisyan, Y

    2001-04-23

    The tuning properties of pulsed narrowband THz radiation generated via optical rectification in periodically poled lithium niobate have been investigated. Using a disk-shaped periodically poled crystal tuning was easily accomplished by rotating the crystal around its axis and observing the generated THz radiation in forward direction. In this way no beam deflection during tuning was observed. The total tuning range extended from 180 GHz up to 830 GHz and was limited by the poling period of 127 microm which determines the maximum THz frequency in forward direction.

  18. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.

    Science.gov (United States)

    Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.

  19. Quantum Effects in Nanoantennas and Their Applications in Tunability, Mixing, and Rectification

    KAUST Repository

    Chen, Pai-Yen

    2015-08-04

    It has been recently shown that optical nanoantennas made of single or paired metallic nanoparticles can efficiently couple the propagating light into and from deeply subwavelength volumes. The strong light-matter interaction mediated by surface plasmons in metallic nanostructures allows for localizing optical fields to a subdiffraction-limited region, thereby enhancing emission of nanoemitters and offering the flexible control of nanofocused radiation. Here we theoretically study the nanodipole antennas with submicroscopic gaps, i.e. a few nanometers, for which there exists linear and high-order nonlinear quantum conductivities due to the photon-assisted tunneling effect. Noticeably, these quantum conductivities induced at the nanogap are enhanced by several orders of magnitude, due to the strongly localized optical fields associated with the plasmonic resonance.In this talk, we will show that by tailoring the geometry of nanoantennas and the quantum well structure, a quantum nanodipole antenna with a gap size of few nanometers can induce linear, high-order quantum conductivities that are considerably enhanced by the surface plasmon resonance. We envisage here a number of intriguing nanophotonic applications of these quantum nanoantennas, including (i) modulatable and switchable radiators and metamaterials, with electronic and all-optical tuning (which is related to the two photon absorption), (ii) optical rectification for detection and energy harvesting of infrared and visible light, which are related to the relevant second-order quantum conductivity, (iii) harmonic sensing for the work function and the optical index of nanoparticle, e.g. DNA and molecules, loaded inside the nanogap, and (iv) high harmonic generation and wave mixing with nonlinear quantum conductivities.

  20. Wireless power transfer exploring spin rectification and inverse spin Hall effects

    Science.gov (United States)

    Seeger, R. L.; Garcia, W. J. S.; Dugato, D. A.; da Silva, R. B.; Harres, A.

    2018-04-01

    Devices based on spin rectification effects are of great interest for broadband communication applications, since they allow the rectification of radio frequency signals by simple ferromagnetic materials. The phenomenon is enhanced at ferromagnetic resonance condition, which may be attained when an external magnetic field is applied. The necessity of such field, however, hinders technological applications. Exploring spin rectification and spin Hall effects in exchange-biased samples, we were able to rectify radio frequency signals without an external applied magnetic field. Direct voltages of the order of μV were obtained when Ta/NiFe/FeMn/Ta thin films were exposed to microwaves in a shorted microstrip line for a relatively broad frequency range. Connecting the films to a resistive load, we estimated the fraction of the incident radio frequency power converted into usable dc power.

  1. Investigation of the difference between spin Hall magnetoresistance rectification and spin pumping from the viewpoint of magnetization dynamics

    Science.gov (United States)

    Zhang, Qihan; Fan, Xiaolong; Zhou, Hengan; Kong, Wenwen; Zhou, Shiming; Gui, Y. S.; Hu, C.-M.; Xue, Desheng

    2018-02-01

    Spin pumping (SP) and spin rectification due to spin Hall magnetoresistance (SMR) can result in a dc resonant voltage signal, when magnetization in ferromagnetic insulator/nonmagnetic structures experiences ferromagnetic resonance. Since the two effects are often interrelated, quantitative identification of them is important for studying the dynamic nonlocal spin transport through an interface. In this letter, the key difference between SP and SMR rectification was investigated from the viewpoint of spin dynamics. The phase-dependent nature of SMR rectification, which is the fundamental characteristic distinguishing it from SP, was tested by a well-designed experiment. In this experiment, two identical yttrium iron garnet/Pt strips with a π phase difference in dynamic magnetization show the same SP signals and inverse SMR signals.

  2. Electrical detection of magnetization dynamics via spin rectification effects

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Michael, E-mail: michael.harder@umanitoba.ca; Gui, Yongsheng, E-mail: ysgui@physics.umanitoba.ca; Hu, Can-Ming, E-mail: hu@physics.umanitoba.ca

    2016-11-23

    The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.

  3. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1.

    Science.gov (United States)

    Ruchert, Clemens; Vicario, Carlo; Hauri, Christoph P

    2012-03-01

    We present the generation of high-power single-cycle terahertz (THz) pulses in the organic salt crystal 2-[3-(4-hydroxystyryl)-5.5-dimethylcyclohex-2-enylidene]malononitrile or OH1. Broadband THz radiation with a central frequency of 1.5 THz (λ(c)=200 μm) and high electric field strength of 440 kV/cm is produced by optical rectification driven by the signal of a powerful femtosecond optical parametric amplifier. A 1.5% pump to THz energy conversion efficiency is reported, and pulse energy stability better than 1% RMS is achieved. An approach toward the realization of higher field strength is discussed. © 2012 Optical Society of America

  4. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  5. Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy

    Directory of Open Access Journals (Sweden)

    Shu-huai Zhang

    2018-01-01

    Full Text Available This study presents a new bidirectional multi-resonant DC-DC converter, which is named CLTC. The converter adds an auxiliary transformer and an extra resonant capacitor based on a LLC resonant DC-DC converter, achieving zero-voltage switching (ZVS for the input inverting switches and zero-current switching (ZCS for the output rectifiers in all load range. The converter also has a wide gain range in two directions. When the load is light, a half-bridge configuration is adopted instead of a full-bridge configuration to solve the problem of voltage regulation. By this method, the voltage gain becomes monotonous and controllable. Besides, the digital synchronous rectification strategy is proposed in forward mode without adding any auxiliary circuit. The conduction time of synchronous rectifiers equals the estimation value of body diodes’ conduction time with the lightest load. Power loss analysis is also conducted in different situations. Finally, the theoretical analysis is validated by a 5 kW prototype.

  6. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  7. Optical Microspherical Resonators for Biomedical Sensing

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2011-01-01

    Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  8. Nanoscale rectenna for broadband rectification of light from infrared to visible

    Science.gov (United States)

    Zimmerman, Darin; Chen, James; Phillips, Michael; Rager, Dennis; Sinisi, Zachary; Wambold, Raymond; Weisel, Gary; Weiss, Brock; Willis, Brian; Miskovsky, Nicholas

    2014-03-01

    We describe a novel approach to the efficient collection and rectification of solar radiation in a device designed to operate from the infrared through the visible. Here, a nanoscale, rectenna array acts both as an absorber of incident radiation and as a rectifier. Rectification derives not from temperature or material asymmetry, as with metal-insulator-metal or silicon-based, Schottky diodes. Instead, it derives from the geometric asymmetry of the rectenna, which is composed of a pointed tip and a flat collector anode. In this arrangement, the difference between the potential barriers for forward and reverse bias results in a rectified dc current. To achieve anode-cathode gap distances within the tunneling regime, we employ selective atomic-layer deposition of copper applied to palladium rectenna arrays produced by electron-beam lithography. We present details of device fabrication and preliminary results of computer simulation, optical characterization, and electro-optical response. This work supported in part by the National Science Foundation: ECCS-1231248 and ECCS-1231313.

  9. Resonator memories and optical novelty filters

    Science.gov (United States)

    Anderson, Dana Z.; Erle, Marie C.

    Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive materials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydreaming" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.

  10. Nano scale Devices for Rectification of High Frequency Radiation from the Infrared through the Visible: A New Approach

    International Nuclear Information System (INIS)

    Miskovsky, N.M.; Cutler, P.H.; Miskovsky, N.M.; Cutler, P.H.; Lerne, P.B.; Mayer, A.; Weiss, B.L.; Willis, B.; Sullivan, T.E.

    2012-01-01

    We present a new and viable method for optical rectification. This approach has been demonstrated both theoretically and experimentally and is the basis fot the development of devices to rectify radiation through the visible. This technique for rectification is based not on conventional material or temperature asymmetry as used in MIM (metal/insulator/metal) or Schottky diodes, but on a purely sharp geometric property of the antenna. This sharp tip or edge with a collector anode constitutes a tunnel junction. In these devices the rectenna (consisting of the antenna and the tunnel junction) acts as the absorber of the incident radiation and the rectifier. Using current nano fabrication techniques and the selective atomic layer deposition (ALD) process, junctions of 1?nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum. To assess the viability of our approach, we review the development of nano antenna structures and tunnel junctions capable of operating in the visible region. In addition, we review the detailed process of rectification and present methodologies for analysis of diode data. Finally, we present operational designs for an optical rectenna and its fabrication and discuss outstanding problems and future work.

  11. Pattern formation in optical resonators

    International Nuclear Information System (INIS)

    Weiss, C O; Larionova, Ye

    2007-01-01

    We review pattern formation in optical resonators. The emphasis is on 'particle-like' structures such as vortices or spatial solitons. On the one hand, similarities impose themselves with other fields of physics (condensed matter, phase transitions, particle physics, fluds/super fluids). On the other hand the feedback is led by the resonator mirrors to bi- and multi-stability of the spatial field structure, which is the basic ingredient for optical information processing. The spatial dimension or the 'parallelism' is the strength of optics compared to electronics (and will have to be employed to fully use the advantages optics offers in information processing). But even in the 'serial' processing tasks of telecoms (e.g. information buffering) spatial resonator solitons can do better than the schemes proposed so far-including 'slow light'. Pattern formation in optical resonators will likely be the key to brain-like information processing like cognition, learning and association; to complement the precise but limited algorithmic capabilities of electronic processing. But even in the short term it will be useful for solving serial optical processing problems. The prospects for technical uses of pattern formation in resonators are one motivation for this research. The fundamental similarities with other fields of physics, on the other hand, inspire transfer of concepts between fields; something that has always proven fruitful for gaining deeper insights or for solving technical problems

  12. Nanoscale Devices for Rectification of High Frequency Radiation from the Infrared through the Visible: A New Approach

    Directory of Open Access Journals (Sweden)

    N. M. Miskovsky

    2012-01-01

    Full Text Available We present a new and viable method for optical rectification. This approach has been demonstrated both theoretically and experimentally and is the basis fot the development of devices to rectify radiation through the visible. This technique for rectification is based not on conventional material or temperature asymmetry as used in MIM (metal/insulator/metal or Schottky diodes, but on a purely sharp geometric property of the antenna. This sharp “tip” or edge with a collector anode constitutes a tunnel junction. In these devices the rectenna (consisting of the antenna and the tunnel junction acts as the absorber of the incident radiation and the rectifier. Using current nanofabrication techniques and the selective atomic layer deposition (ALD process, junctions of 1 nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum. To assess the viability of our approach, we review the development of nanoantenna structures and tunnel junctions capable of operating in the visible region. In addition, we review the detailed process of rectification and present methodologies for analysis of diode data. Finally, we present operational designs for an optical rectenna and its fabrication and discuss outstanding problems and future work.

  13. Advances in magnetic and optical resonance

    CERN Document Server

    Warren, Warren S

    1997-01-01

    Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.

  14. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

    Science.gov (United States)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-21

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  15. Optical resonators and neural networks

    Science.gov (United States)

    Anderson, Dana Z.

    1986-08-01

    It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.

  16. Optical resonance and two-level atoms

    CERN Document Server

    Allen, L

    1987-01-01

    ""Coherent and lucid…a valuable summary of a subject to which [the authors] have made significant contributions by their own research."" - Contemporary PhysicsOffering an admirably clear account of the basic principles behind all quantum optical resonance phenomena, and hailed as a valuable contribution to the literature of nonlinear optics, this distinguished work provides graduate students and research physicists probing fields such as laser physics, quantum optics, nonlinear optics, quantum electronics, and resonance optics an ideal introduction to the study of the interaction of electroma

  17. Radiative thermal rectification using superconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Nefzaoui, Elyes, E-mail: elyes.nefzaoui@univ-poitiers.fr; Joulain, Karl, E-mail: karl.joulain@univ-poitiers.fr; Drevillon, Jérémie; Ezzahri, Younès [Institut Pprime, Université de Poitiers-CNRS-ENSMA, 2, Rue Pierre Brousse, Bâtiment B25, TSA 41105, 86073 Poitiers Cedex 9 (France)

    2014-03-10

    Thermal rectification can be defined as an asymmetry in the heat flux when the temperature difference between two interacting thermal reservoirs is reversed. In this Letter, we present a far-field radiative thermal rectifier based on high-temperature superconducting materials with a rectification ratio up to 80%. This value is among the highest reported in literature. Two configurations are examined: a superconductor (Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}) exchanging heat with (1) a black body and (2) another superconductor, YBa{sub 2}Cu{sub 3}O{sub 7} in this case. The first configuration shows a higher maximal rectification ratio. Besides, we show that the two-superconductor rectifier exhibits different rectification regimes depending on the choice of the reference temperature, i.e., the temperature of the thermostat. Presented results might be useful for energy conversion devices, efficient cryogenic radiative insulators engineering, and thermal logical circuits’ development.

  18. Energy-Saving in Brew-Rectification

    Directory of Open Access Journals (Sweden)

    N. I. Ulyanau

    2008-01-01

    Full Text Available The paper investigates dynamics of rectification process on one plate of a column. The basic channels controlling brew-rectification process are described in the paper.The paper also considers problems pertaining to synthesis of an adaptive system that controls non-stationary objects with delay. Synthesis of adaptive systems that automatically control product quality and saving on power resources and productivity with the help of the second method of Lyapunov has been carried out in the paper.Industrial introduction of the given automatic control system of technological process shall permit to increase productivity of a rectification (10–15 %, to decrease specific power consumption by (5–10 % while preserving the specified quality of rectified ethyl alcohol and decrease alcohol losses with luting water and malt-residue.

  19. Current rectification by mediating electroactive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ybarra, Gabriel; Moina, Carlos [Centro de Investigacion sobre Electrodeposicion y Procesos Superficiales, Instituto Nacional de Tecnologia Industrial, CC 157, (1650) San Martin (Argentina); Florit, M. Ines [INIFTA, Facultad de Ciencias Exactas, UNLP, Suc. 4, CC 16, (1900) La Plata (Argentina); Posadas, Dionisio [INIFTA, Facultad de Ciencias Exactas, UNLP, Suc. 4, CC 16, (1900) La Plata (Argentina)], E-mail: dposadas@inifta.unlp.edu.ar

    2008-04-20

    In this work we briefly review the theoretical basis for the electrochemical rectification in mediated redox reactions at redox polymer modified electrodes. Electrochemical rectification may have two distinct origins. It is either caused by a slow kinetics of the reaction between the external redox couple and the mediator or it is originated by a slow electronic transport within the film under an unfavorable thermodynamic condition. We show experimental results for the redox mediation reaction of poly(o-aminophenol) (POAP) on the Fe{sup 2+/3+} and on the Fe(CN){sub 6}{sup 3-/4-} redox couples in solution that prove the proposed mechanisms of electrochemical rectification.

  20. Current rectification by mediating electroactive polymers

    International Nuclear Information System (INIS)

    Ybarra, Gabriel; Moina, Carlos; Florit, M. Ines; Posadas, Dionisio

    2008-01-01

    In this work we briefly review the theoretical basis for the electrochemical rectification in mediated redox reactions at redox polymer modified electrodes. Electrochemical rectification may have two distinct origins. It is either caused by a slow kinetics of the reaction between the external redox couple and the mediator or it is originated by a slow electronic transport within the film under an unfavorable thermodynamic condition. We show experimental results for the redox mediation reaction of poly(o-aminophenol) (POAP) on the Fe 2+/3+ and on the Fe(CN) 6 3-/4- redox couples in solution that prove the proposed mechanisms of electrochemical rectification

  1. Spectral approach to optical resonator theory

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1981-01-01

    A new computational method for unloaded optical resonators is developed based on the discrete Fourier analysis of informaton generated by repated iterations of the optical field corresponding to transits between reflectors. The method is a straightforward extension of the propagating beam method developed earlier for optical fibers for extracting modal properties from numerical solutions to the paraxial scalar wave equation. The method requires computation of a field correlation function, whose Fourier transform reveals the eigenmodes as resonant peaks. Analysis of the location and breadth of these peaks determines the resonator eigenvalues When the eigenvalues are known, additional discrete Fourier transforms of the field are used to generate the mode eigenfunctions. This new method makes possible the unambiguous identification and accurate characterization of the entire spectrum of transverse resonator modes

  2. Chemical Sensors Based on Optical Ring Resonators

    Science.gov (United States)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  3. Modulating optical rectification, second and third harmonic generation of doped quantum dots: Interplay between hydrostatic pressure, temperature and noise

    Science.gov (United States)

    Ganguly, Jayanta; Saha, Surajit; Bera, Aindrila; Ghosh, Manas

    2016-10-01

    We examine the profiles of optical rectification (OR), second harmonic generation (SHG) and third harmonic generation (THG) of impurity doped QDs under the combined influence of hydrostatic pressure (HP) and temperature (T) in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In order to study the above nonlinear optical (NLO) properties the doped dot has been subjected to a polarized monochromatic electromagnetic field. Effect of application of noise is nicely reflected through alteration of peak shift (blue/red) and variation of peak height (increase/decrease) of above NLO properties as temperature and pressure are varied. All such changes again sensitively depends on mode of application (additive/multiplicative) of noise. The remarkable influence of interplay between noise strength and its mode of application on the said profiles has also been addressed. The findings illuminate fascinating role played by noise in tuning above NLO properties of doped QD system under the active presence of both hydrostatic pressure and temperature.

  4. Length dependence of rectification in organic co-oligomer spin rectifiers

    International Nuclear Information System (INIS)

    Hu Gui-Chao; Zhang Zhao; Li Ying; Ren Jun-Feng; Wang Chuan-Kui

    2016-01-01

    The rectification ratio of organic magnetic co-oligomer diodes is investigated theoretically by changing the molecular length. The results reveal two distinct length dependences of the rectification ratio: for a short molecular diode, the charge-current rectification changes little with the increase of molecular length, while the spin-current rectification is weakened sharply by the length; for a long molecular diode, both the charge-current and spin-current rectification ratios increase quickly with the length. The two kinds of dependence switch at a specific length accompanied with an inversion of the rectifying direction. The molecular ortibals and spin-resolved transmission analysis indicate that the dominant mechanism of rectification suffers a change at this specific length, that is, from asymmetric shift of molecular eigenlevels to asymmetric spatial localization of wave functions upon the reversal of bias. This work demonstrates a feasible way to control the rectification in organic co-oligomer spin diodes by adjusting the molecular length. (paper)

  5. Lead-silicate glass optical microbubble resonator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  6. Rectification of aerial images using piecewise linear transformation

    International Nuclear Information System (INIS)

    Liew, L H; Lee, B Y; Wang, Y C; Cheah, W S

    2014-01-01

    Aerial images are widely used in various activities by providing visual records. This type of remotely sensed image is helpful in generating digital maps, managing ecology, monitoring crop growth and region surveying. Such images could provide insight into areas of interest that have lower altitude, particularly in regions where optical satellite imaging is prevented due to cloudiness. Aerial images captured using a non-metric cameras contain real details of the images as well as unexpected distortions. Distortions would affect the actual length, direction and shape of objects in the images. There are many sources that could cause distortions such as lens, earth curvature, topographic relief and the attitude of the aircraft that is used to carry the camera. These distortions occur differently, collectively and irregularly in the entire image. Image rectification is an essential image pre-processing step to eliminate or at least reduce the effect of distortions. In this paper, a non-parametric approach with piecewise linear transformation is investigated in rectifying distorted aerial images. The non-parametric approach requires a set of corresponding control points obtained from a reference image and a distorted image. The corresponding control points are then applied with piecewise linear transformation as geometric transformation. Piecewise linear transformation divides the image into regions by triangulation. Different linear transformations are employed separately to triangular regions instead of using a single transformation as the rectification model for the entire image. The result of rectification is evaluated using total root mean square error (RMSE). Experiments show that piecewise linear transformation could assist in improving the limitation of using global transformation to rectify images

  7. Graphene spin diode: Strain-modulated spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yunhua; Wang, B., E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering and Technology, School of Physics and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yulan, E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-08-04

    Strain effects on spin transport in a ferromagnetic/strained/normal graphene junction are explored theoretically. It is shown that the spin-resolved Fermi energy range can be controlled by the armchair direction strain because the strain-induced pseudomagnetic field suppresses the current. The spin rectification effect for the bias reversal occurs because of a combination of ferromagnetic exchange splitting and the broken spatial symmetry of the junction. In addition, the spin rectification performance can be tuned remarkably by manipulation of the strains. In view of this strain-modulated spin rectification effect, we propose that the graphene-based ferromagnetic/strained/normal junction can be used as a tunable spin diode.

  8. Measurement of optical Feshbach resonances in an ideal gas.

    Science.gov (United States)

    Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J

    2011-08-12

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  9. Measurement of Optical Feshbach Resonances in an Ideal Gas

    International Nuclear Information System (INIS)

    Blatt, S.; Nicholson, T. L.; Bloom, B. J.; Williams, J. R.; Thomsen, J. W.; Ye, J.; Julienne, P. S.

    2011-01-01

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic 88 Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  10. Fabry-Perot confocal resonator optical associative memory

    Science.gov (United States)

    Burns, Thomas J.; Rogers, Steven K.; Vogel, George A.

    1993-03-01

    A unique optical associative memory architecture is presented that combines the optical processing environment of a Fabry-Perot confocal resonator with the dynamic storage and recall properties of volume holograms. The confocal resonator reduces the size and complexity of previous associative memory architectures by folding a large number of discrete optical components into an integrated, compact optical processing environment. Experimental results demonstrate the system is capable of recalling a complete object from memory when presented with partial information about the object. A Fourier optics model of the system's operation shows it implements a spatially continuous version of a discrete, binary Hopfield neural network associative memory.

  11. Room temperature electrically tunable rectification magnetoresistance in Ge-based Schottky devices.

    Science.gov (United States)

    Huang, Qi-Kun; Yan, Yi; Zhang, Kun; Li, Huan-Huan; Kang, Shishou; Tian, Yu-Feng

    2016-11-23

    Electrical control of magnetotransport properties is crucial for device applications in the field of spintronics. In this work, as an extension of our previous observation of rectification magnetoresistance, an innovative technique for electrical control of rectification magnetoresistance has been developed by applying direct current and alternating current simultaneously to the Ge-based Schottky devices, where the rectification magnetoresistance could be remarkably tuned in a wide range. Moreover, the interface and bulk contribution to the magnetotransport properties has been effectively separated based on the rectification magnetoresistance effect. The state-of-the-art electrical manipulation technique could be adapt to other similar heterojunctions, where fascinating rectification magnetoresistance is worthy of expectation.

  12. Desactivation of tritium waters by rectification methods

    International Nuclear Information System (INIS)

    Egorov, A.I.; Tyunis, V.M.

    2002-01-01

    Results of experiments into the basic rectification processes dedicated to tritium separation from reactor, technological and waste waters are presented. Coefficients of separation for rectification of water (1.028), ammonia (1.05), azeotrope H 2 O - HTO - HNO 3 (1.098) and D 2 O - DTO - DNO 3 (1.039) are performed. Operating schemes of tritium separating units are reviewed [ru

  13. Magnetic resonance imaging of radiation optic neuropathy

    International Nuclear Information System (INIS)

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S.

    1990-01-01

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence

  14. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  15. On and off controlled resonant dc-dc power converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter comprising an input side circuit comprising a positive and a negative input terminal for receipt of an input voltage or current and an output side circuit comprising positive and negative output terminals for supply of a converter...... output voltage and connection to a converter load. The resonant DC-DC power converter further comprises a rectification circuit connected between an output of a resonant network and the output side circuit. The resonant network is configured for alternatingly being charged from the input voltage...... or current and discharged through the rectification circuit by a first controllable switch arrangement in accordance with a first switch control signal. A second controllable switch arrangement of the resonant DC-DC power converter is configured to select a first impedance characteristic of the resonant...

  16. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  17. Laterally vibrating resonator based elasto-optic modulation in aluminum nitride

    Directory of Open Access Journals (Sweden)

    Siddhartha Ghosh

    2016-06-01

    Full Text Available An integrated strain-based optical modulator driven by a piezoelectric laterally vibrating resonator is demonstrated. The composite structure consists of an acoustic Lamb wave resonator, in which a photonic racetrack resonator is internally embedded to enable overlap of the guided optical mode with the induced strain field. Both types of resonators are defined in an aluminum nitride (AlN thin film, which rests upon a layer of silicon dioxide in order to simultaneously define optical waveguides, and the structure is released from a silicon substrate. Lateral vibrations produced by the acoustic resonator are transferred through a partially etched layer of AlN, producing a change in the effective index of the guided wave through the interaction of the strain components with the AlN elasto-optic (p coefficients. Optical modulation through the elasto-optic effect is demonstrated at electromechanically actuated frequencies of 173 MHz and 843 MHz. This device geometry further enables the development of MEMS-based optical modulators in addition to studying elasto-optic interactions in suspended piezoelectric thin films.

  18. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator's metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  19. Investigation on dispersion in the active optical waveguide resonator

    Science.gov (United States)

    Qiu, Zihan; Gao, Yining; Xie, Wei

    2018-03-01

    Introducing active gain in the optical waveguide resonator not only compensates the loss, but also can change the dispersion relationship in the ring resonator. It is demonstrated that the group delay time is negative when the resonator is in the undercoupled condition, which also means the resonator exhibits the fast light effect. Theoretical analysis indicates that fast light effect due to anomalous dispersion, would be manipulated by the gain coefficient controlled by the input pump light power and that fast light would enhance scale factor of the optical resonant gyroscope. Resonance optical gyroscope (ROG)'s scale factor for measuring rotation rate is enhanced by anomalous dispersion with superluminal light propagation. The sensitivity of ROG could be enhanced by anomalous dispersion by coupled resonators even considering the effect of anomalous dispersion and propagation gain on broadened linewidth, and this could result in at least two orders of magnitude enhancement in sensitivity.

  20. Resonant inelastic scattering by use of geometrical optics.

    Science.gov (United States)

    Schulte, Jörg; Schweiger, Gustav

    2003-02-01

    We investigate the inelastic scattering on spherical particles that contain one concentric inclusion in the case of input and output resonances, using a geometrical optics method. The excitation of resonances is included in geometrical optics by use of the concept of tunneled rays. To get a quantitative description of optical tunneling on spherical surfaces, we derive appropriate Fresnel-type reflection and transmission coefficients for the tunneled rays. We calculate the inelastic scattering cross section in the case of input and output resonances and investigate the influence of the distribution of the active material in the particle as well as the influence of the inclusion on inelastic scattering.

  1. Geometrical optics model of Mie resonances

    Science.gov (United States)

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  2. All-optical control of microfiber resonator by graphene's photothermal effect

    International Nuclear Information System (INIS)

    Wang, Yadong; Gan, Xuetao; Zhao, Chenyang; Fang, Liang; Mao, Dong; Zhang, Fanlu; Xi, Teli; Zhao, Jianlin; Xu, Yiping; Ren, Liyong

    2016-01-01

    We demonstrate an efficient all-optical control of microfiber resonator assisted by graphene's photothermal effect. Wrapping graphene onto a microfiber resonator, the light-graphene interaction can be strongly enhanced via the resonantly circulating light, which enables a significant modulation of the resonance with a resonant wavelength shift rate of 71 pm/mW when pumped by a 1540 nm laser. The optically controlled resonator enables the implementation of low threshold optical bistability and switching with an extinction ratio exceeding 13 dB. The thin and compact structure promises a fast response speed of the control, with a rise (fall) time of 294.7 μs (212.2 μs) following the 10%–90% rule. The proposed device, with the advantages of compact structure, all-optical control, and low power acquirement, offers great potential in the miniaturization of active in-fiber photonic devices.

  3. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    Science.gov (United States)

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  4. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  5. Optical resonator theory

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaeg Won; Cho, Sunh Oh; Jeong, Young Uk; Lee, Byung Cheol; Lee, Jong Min

    2000-10-01

    In this report we present a theoretical study of bare optical resonators having in mind to extend it to active resonators. To compute diffractional losses, phase shifts, intensity distributions and phases of radiation fields on mirrors, we coded a package of numerical procedures on bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, are programmed for finding numeric solutions to the pair of integral equations. The iterative method had been tried by Fox and Li, but it was not applicable to cases for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this report, we implemented the matrix method to extend the computational limit further. A great deal of case studies are carried out with various configurations of stable and unstable resonators. Our results presented in this report show not only a good agreement with the results previously obtained by Fox and Li, but also a legitimacy of our numerical procedures in high Fresnel numbers.

  6. Resonance spectra of diabolo optical antenna arrays

    Directory of Open Access Journals (Sweden)

    Hong Guo

    2015-10-01

    Full Text Available A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  7. Optical micro-bubble resonators as promising biosensors

    Science.gov (United States)

    Giannetti, A.; Barucci, A.; Berneschi, S.; Cosci, A.; Cosi, F.; Farnesi, D.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Tombelli, S.; Trono, C.; Righini, G. C.; Baldini, F.

    2015-05-01

    Recently, optical micro-bubble resonators (OMBRs) have gained an increasing interest in many fields of photonics thanks to their particular properties. These hollow microstructures can be suitable for the realization of label - free optical biosensors by combining the whispering gallery mode (WGM) resonator properties with the intrinsic capability of integrated microfluidics. In fact, the WGMs are morphology-dependent modes: any change on the OMBR inner surface (due to chemical and/or biochemical binding) causes a shift of the resonance position and reduces the Q factor value of the cavity. By measuring this shift, it is possible to obtain information on the concentration of the analyte to be detected. A crucial step for the development of an OMBR-based biosensor is constituted by the functionalization of its inner surface. In this work we report on the development of a physical and chemical process able to guarantee a good homogeneity of the deposed bio-layer and, contemporary, to preserve a high quality factor Q of the cavity. The OMBR capability of working as bioassay was proved by different optical techniques, such as the real time measurement of the resonance broadening after each functionalization step and fluorescence microscopy.

  8. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.; Pala, Ragip A.; Brongersma, Mark L.

    2011-01-01

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  9. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.

    2011-08-21

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  10. Resonant acoustic radiation force optical coherence elastography

    OpenAIRE

    Qi, Wenjuan; Li, Rui; Ma, Teng; Li, Jiawen; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2013-01-01

    We report on a resonant acoustic radiation force optical coherence elastography (ARF-OCE) technique that uses mechanical resonant frequency to characterize and identify tissues of different types. The linear dependency of the resonant frequency on the square root of Young's modulus was validated on silicone phantoms. Both the frequency response spectrum and the 3D imaging results from the agar phantoms with hard inclusions confirmed the feasibility of deploying the resonant frequency as a mec...

  11. Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions

    Science.gov (United States)

    Englund, Dirk R.; Gan, Xuetao

    2017-03-21

    Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.

  12. Rectification of graphene self-switching diodes: First-principles study

    Science.gov (United States)

    Ghaziasadi, Hassan; Jamasb, Shahriar; Nayebi, Payman; Fouladian, Majid

    2018-05-01

    The first principles calculations based on self-consistent charge density functional tight-binding have performed to investigate the electrical properties and rectification behavior of the graphene self-switching diodes (GSSD). The devices contained two structures called CG-GSSD and DG-GSSD which have metallic or semiconductor gates depending on their side gates have a single or double hydrogen edge functionalized. We have relaxed the devices and calculated I-V curves, transmission spectrums and maximum rectification ratios. We found that the DG-MSM devices are more favorable and more stable. Also, the DG-MSM devices have better maximum rectification ratios and current. Moreover, by changing the side gates widths and behaviors from semiconductor to metal, the threshold voltages under forward bias changed from +1.2 V to +0.3 V. Also, the maximum currents are obtained from 1.12 μA to 10.50 μA. Finally, the MSM and SSS type of all devices have minimum and maximum values of voltage threshold and maximum rectification ratios, but the 769-DG devices don't obey this rule.

  13. Critical Coupling Between Optical Fibers and WGM Resonators

    Science.gov (United States)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy

    2009-01-01

    Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:

  14. Second harmonic generation in resonant optical structures

    Science.gov (United States)

    Eichenfield, Matt; Moore, Jeremy; Friedmann, Thomas A.; Olsson, Roy H.; Wiwi, Michael; Padilla, Camille; Douglas, James Kenneth; Hattar, Khalid Mikhiel

    2018-01-09

    An optical second-harmonic generator (or spontaneous parametric down-converter) includes a microresonator formed of a nonlinear optical medium. The microresonator supports at least two modes that can be phase matched at different frequencies so that light can be converted between them: A first resonant mode having substantially radial polarization and a second resonant mode having substantially vertical polarization. The first and second modes have the same radial order. The thickness of the nonlinear medium is less than one-half the pump wavelength within the medium.

  15. Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures

    OpenAIRE

    Krasnok, Alex; Caldarola, Martin; Bonod, Nicolas; Alú, Andrea

    2017-01-01

    Resonant dielectric nanoparticles (RDNs) made of materials with large positive dielectric permittivity, such as Si, GaP, GaAs, have become a powerful platform for modern light science, enabling various fascinating applications in nanophotonics and quantum optics. In addition to light localization at the nanoscale, dielectric nanostructures provide electric and magnetic resonant responses throughout the visible and infrared spectrum, low dissipative losses and optical heating, low doping effec...

  16. Improving the Optical Quality Factor of the WGM Resonator

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Iltchenko, Vladimir

    2008-01-01

    Resonators usually are characterized with two partially dependent values: finesse (F) and quality factor (Q). The finesse of an empty Fabry-Perot (FP) resonator is defined solely by the quality of its mirrors and is calculated as F=piR(exp 1/2)/(1-R). The maximum up-to-date value of reflectivity R approximately equal to 1 - 1.6 x 10(exp -6) is achieved with dielectric mirrors. An FP resonator made with the mirrors has finesse F=1.9 x 10(exp 6). Further practical increase of the finesse of FP resonators is problematic because of the absorption and the scattering of light in the mirror material through fundamental limit on the reflection losses given by the internal material losses and by thermodynamic density fluctuations on the order of parts in 109. The quality factor of a resonator depends on both its finesse and its geometrical size. A one-dimensional FP resonator has Q=2 F L/lambda, where L is the distance between the mirrors and lambda is the wavelength. It is easy to see that the quality factor of the resonator is unlimited because L is unlimited. F and Q are equally important. In some cases, finesse is technically more valuable than the quality factor. For instance, buildup of the optical power inside the resonator, as well as the Purcell factor, is proportional to finesse. Sometimes, however, the quality factor is more valuable. For example, inverse threshold power of intracavity hyperparametric oscillation is proportional to Q(exp 2) and efficiency of parametric frequency mixing is proportional to Q(exp 3). Therefore, it is important to know both the maximally achievable finesse and quality factor values of a resonator. Whispering gallery mode (WGM) resonators are capable of achieving larger finesse compared to FP resonators. For instance, fused silica resonators with finesse 2.3 x 10(exp 6) and 2.8 x 10(exp 6) have been demonstrated. Crystalline WGM resonators reveal even larger finesse values, F=6.3 x 10(exp 6), because of low attenuation of light in the

  17. On the fundamental mode of the optical resonator with toroidal mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Serednyakov, S.S.; Vinokurov, N.A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1995-12-31

    The fundamental mode of the optical resonator with the toroidal mirrors is investigated. The losses in such resonator with the on-axis holes are low in compare with the case of spherical mirrors. The use of this type of optical resonator is briefly discussed.

  18. Rapid 3D µ-printing of polymer optical whispering-gallery mode resonators.

    Science.gov (United States)

    Wu, Jushuai; Guo, Xin; Zhang, A Ping; Tam, Hwa-Yaw

    2015-11-16

    A novel microfabrication method for rapid printing of polymer optical whispering-gallery mode (WGM) resonators is presented. A 3D micro-printing technology based on high-speed optical spatial modulator (SLM) and high-power UV light source is developed to fabricate suspended-disk WGM resonator array using SU-8 photoresist. The optical spectral responses of the fabricated polymer WGM resonators were measured with a biconically tapered optical fiber. Experimental results reveal that the demonstrated method is very flexible and time-saving for rapid fabrication of complex polymer WGM resonators.

  19. Spatiotemporal optical pulse transformation by a resonant diffraction grating

    Energy Technology Data Exchange (ETDEWEB)

    Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru; Soifer, V. A. [Russian Academy of Sciences, Image Processing Systems Institute (Russian Federation)

    2015-11-15

    The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has been obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.

  20. Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits

    NARCIS (Netherlands)

    Elshaari, A.W.A.; Esmaeil Zadeh, I.; Jöns, K.D.; Zwiller, Val

    2016-01-01

    In this paper, we characterize the Thermo-optic properties of silicon nitride ring resonators between 18 and 300 K. The Thermo-optic coefficients of the silicon nitride core and the oxide cladding are measured by studying the temperature dependence of the resonance wavelengths. The resonant modes

  1. Simulation of optical soliton control in micro- and nanoring resonator systems

    CERN Document Server

    Daud, Suzairi; Ali, Jalil

    2015-01-01

    This book introduces optical soliton control in micro- and nanoring resonator systems. It describes how the ring resonator systems can be optimized as optical tweezers for photodetection by controlling the input power, ring radii and coupling coefficients of the systems. Numerous arrangements and configurations of micro and nanoring resonator systems are explained. The analytical formulation and optical transfer function for each model and the interaction of the optical signals in the systems are discussed. This book shows that the models designed are able to control the dynamical behaviour of generated signals.

  2. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    Science.gov (United States)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  3. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions

    OpenAIRE

    Zhang, Kun; Li, Huan-huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-tao; Tian, Yu-feng; Yan, Shi-shen; Lin, Zhao-jun; Kang, Shi-shou; Chen, Yan-xue; Liu, Guo-lei; Mei, and Liang-mo

    2015-01-01

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current volt...

  4. Resonant Quasi-Optical Systems with Multi-Row Periodic Structures

    DEFF Research Database (Denmark)

    Oleksandr, Rybalko; Rybalko, Yu A.; Buriak, I. A.

    2017-01-01

    Selective properties of resonant quasi-optical systems with periodical multi-row structures in millimeter wavelength range are described. The possibility of selection fluctuations in the volume of open resonator using double-row periodic elements was shown in the experiment at 70-80 GHz. Advantages...... and possibility of control the energy characteristics of such structures are also described. The obtained experimental data is used to confirm the results of computational analysis previously described in the literature. Implementation of resonant quasi-optical systems with multi-row periodic structures...

  5. Towards a fully integrated optical gyroscope using whispering gallery modes resonators

    Science.gov (United States)

    Amrane, T.; Jager, J.-B.; Jager, T.; Calvo, V.; Léger, J.-M.

    2017-11-01

    Since the developments of lasers and the optical fibers in the 70s, the optical gyroscopes have been subject to an intensive research to improve both their resolution and stability performances. However the best optical gyroscopes currently on the market, the ring laser gyroscope and the interferometer fiber optic gyroscope are still macroscopic devices and cannot address specific applications where size and weight constraints are critical. One solution to overcome these limitations could be to use an integrated resonator as a sensitive part to build a fully Integrated Optical Resonant Gyroscope (IORG). To keep a high rotation sensitivity, which is usually degraded when downsizing this kind of optical sensors based on the Sagnac effect, the resonator has to exhibit a very high quality factor (Q): as detailed in equation (1) where the minimum rotation rate resolution for an IORG is given as a function of the resonator characteristics (Q and diameter D) and of the global system optical system characteristics (i.e. SNR and bandwidth B), the higher the Q×D product, the lower the resolution.

  6. Thermal rectification based on phonon hydrodynamics and thermomass theory

    Directory of Open Access Journals (Sweden)

    Dong Yuan

    2016-06-01

    Full Text Available The thermal diode is the fundamental device for phononics. There are various mechanisms for thermal rectification, e.g. different temperature dependent thermal conductivity of two ends, asymmetric interfacial resistance, and nonlocal behavior of phonon transport in asymmetric structures. The phonon hydrodynamics and thermomass theory treat the heat conduction in a fluidic viewpoint. The phonon gas flowing through the media is characterized by the balance equation of momentum, like the Navier-Stokes equation for fluid mechanics. Generalized heat conduction law thereby contains the spatial acceleration (convection term and the viscous (Laplacian term. The viscous term predicts the size dependent thermal conductivity. Rectification appears due to the MFP supersession of phonons. The convection term also predicts rectification because of the inertia effect, like a gas passing through a nozzle or diffuser.

  7. Magnetic resonance imaging of optic nerve

    International Nuclear Information System (INIS)

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies

  8. Ratchet rectification effect on the translocation of a flexible polyelectrolyte chain

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Debasish; Muthukumar, M., E-mail: muthu@polysci.umass.edu [Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003 (United States)

    2016-08-28

    We report a three dimensional Langevin dynamics simulation of a uniformly charged flexible polyelectrolyte chain, translocating through an asymmetric narrow channel with periodically varying cross sections under the influence of a periodic external electric field. When reflection symmetry of the channel is broken, a rectification effect is observed with a favored direction for the chain translocation. For a given volume of the channel unit and polymer length, the rectification occurs below a threshold frequency of the external periodic driving force. We have also observed that the extent of the rectification varies non-monotonically with increasing molecular weight and the strength of geometric asymmetry of the channel. Observed non-monotonicity of the rectification performance has been interpreted in terms of a competition between two effects arising from the channel asymmetry and change in conformational entropy. An analytical model is presented with predictions consistent with the simulation results.

  9. Fractionation and rectification apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Sauerwald, A

    1932-05-25

    Fractionation and rectifying apparatus with a distillation vessel and a stirring tube, drainage tubes leading from its coils to a central collecting tube, the drainage tubes being somewhat parallel and attached to the outer half of the stirring tube and partly on the inner half of the central collecting tube, whereby distillation and rectification can be effected in a single apparatus.

  10. All-optical control of microfiber resonator by graphene's photothermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yadong; Gan, Xuetao; Zhao, Chenyang; Fang, Liang; Mao, Dong; Zhang, Fanlu; Xi, Teli; Zhao, Jianlin, E-mail: jlzhao@nwpu.edu.cn [Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Xu, Yiping; Ren, Liyong [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China)

    2016-04-25

    We demonstrate an efficient all-optical control of microfiber resonator assisted by graphene's photothermal effect. Wrapping graphene onto a microfiber resonator, the light-graphene interaction can be strongly enhanced via the resonantly circulating light, which enables a significant modulation of the resonance with a resonant wavelength shift rate of 71 pm/mW when pumped by a 1540 nm laser. The optically controlled resonator enables the implementation of low threshold optical bistability and switching with an extinction ratio exceeding 13 dB. The thin and compact structure promises a fast response speed of the control, with a rise (fall) time of 294.7 μs (212.2 μs) following the 10%–90% rule. The proposed device, with the advantages of compact structure, all-optical control, and low power acquirement, offers great potential in the miniaturization of active in-fiber photonic devices.

  11. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    Science.gov (United States)

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  12. Entropy production and rectification efficiency in colloid transport along a pulsating channel

    Science.gov (United States)

    Florencia Carusela, M.; Rubi, J. Miguel

    2018-06-01

    We study the current rectification of particles moving in a pulsating channel under the influence of an applied force. We have shown the existence of different rectification scenarios in which entropic and energetic effects compete. The effect can be quantified by means of a rectification coefficient that is analyzed in terms of the force, the frequency and the diffusion coefficient. The energetic cost of the motion of the particles expressed in terms of the entropy production depends on the importance of the entropic contribution to the total force. Rectification is more important at low values of the applied force when entropic effects become dominant. In this regime, the entropy production is not invariant under reversal of the applied force. The phenomenon observed could be used to optimize transport in microfluidic devices or in biological channels.

  13. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    International Nuclear Information System (INIS)

    Dorogush, E S; Afonenko, A A

    2015-01-01

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  14. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dorogush, E S; Afonenko, A A [Belarusian State University, Minsk (Belarus)

    2015-12-31

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  15. Calcium fluoride whispering gallery mode optical resonator with reduced thermal sensitivity

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey

    2018-03-01

    We demonstrate a crystalline CaF2 resonator with thermal sensitivity of the optical modes approaching zero. The resonator is made by laminating a calcium fluoride layer forming an optical monolithic cavity with ceramic compensation layers. The ceramics is characterized with negative thermal expansion coefficient achievable in a certain temperature range. The thermally compensated resonator has a potential application for laser frequency stabilization.

  16. Resonance-enhanced optical forces between coupled photonic crystal slabs.

    Science.gov (United States)

    Liu, Victor; Povinelli, Michelle; Fan, Shanhui

    2009-11-23

    The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.

  17. Thermal conductivity and rectification in asymmetric archaeal lipid membranes

    Science.gov (United States)

    Youssefian, Sina; Rahbar, Nima; Van Dessel, Steven

    2018-05-01

    Nature employs lipids to construct nanostructured membranes that self-assemble in an aqueous environment to separate the cell interior from the exterior environment. Membrane composition changes among species and according to environmental conditions, which allows organisms to occupy a wide variety of different habitats. Lipid bilayers are phase-change materials that exhibit strong thermotropic and lyotropic phase behavior in an aqueous environment, which may also cause thermal rectification. Among different types of lipids, archaeal lipids are of great interest due to their ability to withstand extreme conditions. In this paper, nonequilibrium molecular dynamics simulations were employed to study the nanostructures and thermal properties of different archaeols and to investigate thermal rectification effects in asymmetric archaeal membranes. In particular, we are interested in understanding the role of bridged phytanyl chains and cyclopentane groups in controlling the phase transition temperature and heat flow across the membrane. Our results indicate that the bridged phytanyl chains decrease the molecular packing of lipids, whereas the existence of cyclopentane rings on the tail groups increases the molecular packing by enhancing the interactions between isoprenoid chains. We found that macrocyclic archaeols have the highest thermal conductivity, whereas macrocyclic archaeols with two cyclopentane rings have the lowest. The effect of the temperature on the variation of thermal conductivity was found to be progressive. Our results further indicate that small thermal rectification effects occur in asymmetric archaeol bilayer membranes at around 25 K temperature gradient. The calculated thermal rectification factor was around 0.09 which is in the range of rectification factor obtained experimentally for nanostructures such as carbon nanotubes (0.07). Such phenomena may be of biological significance and could also be optimized for use in various engineering

  18. Manipulation of resonant Auger processes with strong optical fields

    Science.gov (United States)

    Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen

    2013-05-01

    We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

  19. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    Science.gov (United States)

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-04-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  20. Coupling of high-quality-factor optical resonators

    International Nuclear Information System (INIS)

    Salzenstein, Patrice; Henriet, Rémi; Coillet, Aurélien; Chembo, Yanne K; Mortier, Michel; Sérier-Brault, Hélène; Rasoloniaina, Alphonse; Dumeige, Yannick; Féron, Patrice

    2013-01-01

    We improve theoretically and experimentally the problem of the coupling between a high Q-factor resonator and its external coupler. We have observed oscillations of ringing induced by the sweeping of the excitation frequency of an active microsphere. Thanks to this approach, the quality factor of an optical resonator was measured and we obtained Q = 5.8 × 10 8 . (paper)

  1. Cylindrical optical resonators: fundamental properties and bio-sensing characteristics

    Science.gov (United States)

    Khozeymeh, Foroogh; Razaghi, Mohammad

    2018-04-01

    In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).

  2. Optical pulling force and conveyor belt effect in resonator-waveguide system.

    Science.gov (United States)

    Intaraprasonk, Varat; Fan, Shanhui

    2013-09-01

    We present the theoretical condition and actual numerical design that achieves an optical pulling force in resonator-waveguide systems, where the direction of the force on the resonator is in the opposite direction to the input light in the waveguide. We also show that this pulling force can occur in conjunction with the lateral optical equilibrium effect, such that the resonator is maintained at the fixed distance from the waveguide while experiencing the pulling force.

  3. Determination of g-tensors of low-symmetry Nd{sup 3+} centers in LiNbO{sub 3} by rectification of angular dependence of electron paramagnetic resonance spectra

    Energy Technology Data Exchange (ETDEWEB)

    Grachev, V., E-mail: grachev@physics.montana.edu; Malovichko, G. [Physics Department, Montana State University, Bozeman, Montana 59717 (United States); Munro, M. [Quantel Laser, Bozeman, Montana 59715 (United States); Kokanyan, E. [Institute of Physical Researches, Ashtarak (Armenia)

    2015-07-28

    Two procedures for facilitation of line tracing and deciphering of complicated spectra of electron paramagnetic resonance (EPR) were developed: a correction of microwave frequencies for every orientation of external magnetic field on the base of known values of g-tensor components for a reference paramagnetic center and followed rectification of measured angular dependences using plots of effective deviation of g{sup 2}-factors of observed lines from effective g{sup 2}-factors of the reference center versus angles or squared cosines of angles describing magnetic field orientations. Their application to EPR spectra of nearly stoichiometric lithium niobate crystals doped with neodymium allowed identifying two axial and six different low-symmetry Nd{sup 3+} centers, to determine all components of their g-tensors, and to propose common divacancy models for a whole family of Nd{sup 3+} centers.

  4. High rectification ratios of Fe-porphyrin molecules on Au facets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Wang, Gwo-Ching [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110, 8th Street, Troy, NY 12180 (United States); Lewis, Kim M., E-mail: lewisk2@rpi.edu [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110, 8th Street, Troy, NY 12180 (United States)

    2012-09-14

    We report room temperature measurements of current vs. voltage (I-V) from self-assembled Fe porphyrin [Fe(III) 5,15-di[4-(s-acetylthio)phenyl]-10,20-diphenyl porphine] molecular layers formed on annealed gold crystal facets on glass substrates. I-V curves were measured using an atomic force microscope with a conductive platinum tip. We observed a rectifier effect that shows asymmetric I-V curves from a monolayer of molecules. The majority rectification ratios at {+-}1 V obtained from hundreds of I-V lie in between 20 and 200, with the highest up to 9000. This is in contrast to the symmetric I-V curves measured from a few nm thick multilayer molecular islands. We contribute the observed rectification in ultrathin FeP molecular layers from asymmetric Schottky barriers that result from molecules in different bonding strengths to electrodes of gold and platinum. -- Highlights: Black-Right-Pointing-Pointer FeP molecular layers or islands of different thickness were self-assembled on Au. Black-Right-Pointing-Pointer High rectification ratios up to 9000 observed in sub-nm thick FeP molecular layers. Black-Right-Pointing-Pointer Measured current vs. voltage using a conductive AFM tip as one electrode. Black-Right-Pointing-Pointer Observed rectification of symmetric molecules using two different electrodes.

  5. Goal-oriented rectification of camera-based document images.

    Science.gov (United States)

    Stamatopoulos, Nikolaos; Gatos, Basilis; Pratikakis, Ioannis; Perantonis, Stavros J

    2011-04-01

    Document digitization with either flatbed scanners or camera-based systems results in document images which often suffer from warping and perspective distortions that deteriorate the performance of current OCR approaches. In this paper, we present a goal-oriented rectification methodology to compensate for undesirable document image distortions aiming to improve the OCR result. Our approach relies upon a coarse-to-fine strategy. First, a coarse rectification is accomplished with the aid of a computationally low cost transformation which addresses the projection of a curved surface to a 2-D rectangular area. The projection of the curved surface on the plane is guided only by the textual content's appearance in the document image while incorporating a transformation which does not depend on specific model primitives or camera setup parameters. Second, pose normalization is applied on the word level aiming to restore all the local distortions of the document image. Experimental results on various document images with a variety of distortions demonstrate the robustness and effectiveness of the proposed rectification methodology using a consistent evaluation methodology that encounters OCR accuracy and a newly introduced measure using a semi-automatic procedure.

  6. Influence of static and dynamic dipolar fields in bulk YIG/thin film NiFe systems probed via spin rectification effect

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee Tee, E-mail: a0046479@u.nus.edu [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Tay, Z.J. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Yakovlev, N.L. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Ong, C.K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore)

    2017-03-15

    The characteristics of the static and dynamic components of the dipolar fields originating from a bulk polycrystalline yttrium iron garnet (YIG) substrate are probed by depositing a NiFe (Permalloy) layer on it, which acts as a detector. By measuring dc voltages generated via spin rectification effect (SRE) within the NiFe layer under microwave excitation, we characterize the influence of dipolar fields from bulk YIG on the NiFe layer. It is found that the dynamic YIG dipolar fields modify the self-SRE of NiFe, driving its own rectification voltages within the NiFe layer, an effect we term as non-local SRE. This non-local SRE only occurs near the simultaneous resonance of both YIG and NiFe. On the other hand, the static dipolar field from YIG manifests itself as a negative anisotropy in the NiFe layer which shifts the latter’s ferromagnetic resonance frequency. - Highlights: • We demonstrate the quantification of both the static and dynamic components of the dipolar fields due to a YIG slab. • The detection and characterisation of such dipolar fields are important in many magnetic applications such as magnonics. • The dipolar fields can pose potential pitfalls if not properly considered in certain spin-electronics systems.

  7. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.

    2010-01-01

    In whispering gallery mode (WGM) resonator light is guided by continuous total internal reflection along a curved surface. Fabricating such resonators from an optically nonlinear material one takes advantage of their exceptionally high quality factors and small mode volumes to achieve extremely...... efficient optical frequency conversion. Our analysis of the phase-matching conditions for optical parametric down-conversion (PDC) in a spherical WGM resonator shows their direct relation to the sum rules for photons' angular momenta and predicts a very low parametric oscillation threshold. We realized...... such an optical parametric oscillator (OPO) based on naturally phase-matched PDC in lithium niobate. We demonstrated a single-mode, strongly nondegenerate OPO with a threshold of 6.7  μW and linewidth under 10 MHz. This work demonstrates the remarkable capabilities of WGM-based OPOs....

  8. Electro-optic transceivers for terahertz-wave applications

    International Nuclear Information System (INIS)

    Chen, Q.; Tani, M.; Jiang, Zhiping; Zhang, X.-C.

    2001-01-01

    Because of the reciprocal behavior of the optical rectification and the electro-optic effect in a nonlinear optical crystal, an electro-optic transceiver can alternately transmit pulsed electromagnetic radiation (optical rectification) and detect the return signal (electro-optic effect) in the same crystal. However, the optimal condition of the electro-optic transceiver may be very different from that of the spatially separated emitter and receiver. We present a detailed description of the crystal-orientation dependence of the electro-optic terahertz devices (transmitter, receiver, and transceiver). It is found that for a (110) zinc-blende electro-optical crystal, the efficiency of the electro-optic transceiver will be optimized when the angle between the polarization of the optical pump beam and the crystallographic z axis [0,0,1] is 26 degree. Meanwhile, for a (111) crystal, the angle between the optical beam and the crystallographic direction [-1,-1,2] should be 23 degree. The experimental results from a (110) ZnTe transceiver verify theoretical calculations and demonstrate a direct way to optimize the working efficiency of an electro-optic terahertz transceiver. [copyright] 2001 Optical Society of America

  9. Ring resonator systems to perform optical communication enhancement using soliton

    CERN Document Server

    Amiri, Iraj Sadegh

    2014-01-01

    The title explain new technique of secured and high capacity optical communication signals generation by using the micro and nano ring resonators. The pulses are known as soliton pulses which are more secured due to having the properties of chaotic and dark soliton signals with ultra short bandwidth. They have high capacity due to the fact that ring resonators are able to generate pulses in the form of solitons in multiples and train form. These pulses generated by ring resonators are suitable in optical communication due to use the compact and integrated rings system, easy to control, flexibi

  10. Electronic tunneling currents at optical frequencies

    Science.gov (United States)

    Faris, S. M.; Fan, B.; Gustafson, T. K.

    1975-01-01

    Rectification characteristics of nonsuperconducting metal-barrier-metal junctions as deduced from electronic tunneling theory have been observed experimentally for optical frequency irradiation of the junction.

  11. Measurement and understanding of single-molecule break junction rectification caused by asymmetric contacts

    International Nuclear Information System (INIS)

    Wang, Kun; Zhou, Jianfeng; Hamill, Joseph M.; Xu, Bingqian

    2014-01-01

    The contact effects of single-molecule break junctions on rectification behaviors were experimentally explored by a systematic control of anchoring groups of 1,4-disubstituted benzene molecular junctions. Single-molecule conductance and I-V characteristic measurements reveal a strong correlation between rectifying effects and the asymmetry in contacts. Analysis using energy band models and I-V calculations suggested that the rectification behavior is mainly caused by asymmetric coupling strengths at the two contact interfaces. Fitting of the rectification ratio by a modified Simmons model we developed suggests asymmetry in potential drop across the asymmetric anchoring groups as the mechanism of rectifying I-V behavior. This study provides direct experimental evidence and sheds light on the mechanisms of rectification behavior induced simply by contact asymmetry, which serves as an aid to interpret future single-molecule electronic behavior involved with asymmetric contact conformation

  12. Synthesis of coupled resonator optical waveguides by cavity aggregation.

    Science.gov (United States)

    Muñoz, Pascual; Doménech, José David; Capmany, José

    2010-01-18

    In this paper, the layer aggregation method is applied to coupled resonator optical waveguides. Starting from the frequency transfer function, the method yields the coupling constants between the resonators. The convergence of the algorithm developed is examined and the related parameters discussed.

  13. Prediction of the limit of detection of an optical resonant reflection biosensor.

    Science.gov (United States)

    Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong

    2007-07-09

    A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.

  14. Geometric and potential dynamics interpretation of the optic ring resonator bistability

    Science.gov (United States)

    Chiangga, S.; Chittha, T.; Frank, T. D.

    2015-07-01

    The optical bistability is a fundamental nonlinear feature of the ring resonator. A geometric and potential dynamics interpretation of the bistability is given. Accordingly, the bistability of the nonlinear system is shown to be a consequence of geometric laws of vector calculus describing the resonator ring. In contrast, the so-called transcendental relations that have been obtained in the literature in order to describe the optical wave are interpreted in terms of potential dynamical systems. The proposed novel interpretation provides new insights into the nature of the ring resonator optical bistability. The fundamental work by Rukhlenko, Premaratne and Agrawal (2010) as well as a more recent study by Chiangga, Pitakwongsaporn, Frank and Yupapin (2013) are considered.

  15. Optical resonator for a standing wave dipole trap for fermionic lithium atoms

    International Nuclear Information System (INIS)

    Elsaesser, T.

    2000-01-01

    This thesis reports on the the construction of an optical resonator for a new resonator dipole trap to store the fermionic 6 Li-isotope and to investigate its scattering properties. It was demonstrated that the resonator enhances the energy density of a (1064 nm and 40 mW) laser beam by a factor of more than 100. A fused silica vacuum cell is positioned inside the resonator under Brewster's angle. The losses of the resonator depend mainly on the optical quality of the cell. The expected trap depth of the dipole trap is 200 μK and the photon scattering rate is expected to be about 0.4 s -1 . The resonator is stabilized by means of a polarization spectroscopy method. Due to high trap frequencies, which are produced by the tight enclosure of the standing wave in the resonator, the axial motion must be quantized. A simple model to describe this quantization has been developed. A magneto-optical trap, which serves as a source of cold lithium atoms, was put in operation. (orig.)

  16. Thermal rectification in nonlinear quantum circuits

    DEFF Research Database (Denmark)

    Ruokola, T.; Ojanen, T.; Jauho, Antti-Pekka

    2009-01-01

    We present a theoretical study of radiative heat transport in nonlinear solid-state quantum circuits. We give a detailed account of heat rectification effects, i.e., the asymmetry of heat current with respect to a reversal of the thermal gradient, in a system consisting of two reservoirs at finit...

  17. Optical rotation and electron spin resonance of an electro-optically active polythiophene

    International Nuclear Information System (INIS)

    Goto, Hiromasa

    2010-01-01

    Graphical abstract: The electro-chiroptical polythiophene displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. - Abstract: A chiroptical polythiophene, is synthesized by electrolytic polymerization in a cholesteric liquid crystal electrolyte solution. The polymer displays a fingerprint texture similar to that of the cholesteric electrolyte solution. Upon electrochemical doping, the polymer displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. The results demonstrate the intermolecular chirality of polarons in this π-conjugated polymer, indicating continuum delocalized polarons are in a three-dimensional helical environment.

  18. Poly(3-hexylthiophene)/multiwalled carbon hybrid coaxial nanotubes: nanoscale rectification and photovoltaic characteristics.

    Science.gov (United States)

    Kim, Kihyun; Shin, Ji Won; Lee, Yong Baek; Cho, Mi Yeon; Lee, Suk Ho; Park, Dong Hyuk; Jang, Dong Kyu; Lee, Cheol Jin; Joo, Jinsoo

    2010-07-27

    We fabricate hybrid coaxial nanotubes (NTs) of multiwalled carbon nanotubes (MWCNTs) coated with light-emitting poly(3-hexylthiophene) (P3HT). The p-type P3HT material with a thickness of approximately 20 nm is electrochemically deposited onto the surface of the MWCNT. The formation of hybrid coaxial NTs of the P3HT/MWCNT is confirmed by a transmission electron microscope, FT-IR, and Raman spectra. The optical and structural properties of the hybrid NTs are characterized using ultraviolet and visible absorption, Raman, and photoluminescence (PL) spectra where, it is shown that the PL intensity of the P3HT materials decreases after the hybridization with the MWCNTs. The current-voltage (I-V) characteristics of the outer P3HT single NT show the semiconducting behavior, while ohmic behavior is observed for the inner single MWCNT. The I-V characteristics of the hybrid junction between the outer P3HT NT and the inner MWCNT, for the hybrid single NT, exhibit the characteristics of a diode (i.e., rectification), whose efficiency is clearly enhanced with light irradiation. The rectification effect of the hybrid single NT has been analyzed in terms of charge tunneling models. The quasi-photovoltaic effect is also observed at low bias for the P3HT/MWCNT hybrid single NT.

  19. Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells

    Science.gov (United States)

    Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.

    2017-11-01

    In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.

  20. Development of an optical resonator with high-efficient output coupler for the JAERI far-infrared free-electron laser

    International Nuclear Information System (INIS)

    Nagai, Ryoji; Hajima, Ryoichi; Nishimori, Nobuyuki; Sawamura, Masaru; Kikuzawa, Nobuhiro; Shizuma, Toshiyuki; Minehara, Eisuke

    2001-01-01

    An optical resonator with a high-efficient output coupler was developed for the JAERI far-infrared free-electron laser. The optical resonator is symmetrical near-concentric geometry with an insertable scraper output coupler. As a result of the development of the optical resonator, the JAERI-FEL has been successfully, lased with averaged power over 1 kW. Performance of the optical resonator with the output coupler was evaluated at optical wavelength of 22 μm by using an optical mode calculation code. The output coupling and diffractive loss with a dominant eigen-mode of the resonator were calculated using an iterative computation called Fox-Li procedure. An efficiency factor of the optical resonator was introduced for the evaluation of the optical resonator performance. The efficiency factor was derived by the amount of the output coupling and diffractive loss of the optical resonator. It was found that the optical resonator with the insertable scraper coupler was the most suitable to a high-power and high-efficient far-infrared free-electron laser. (author)

  1. Research on geometric rectification of the Large FOV Linear Array Whiskbroom Image

    Science.gov (United States)

    Liu, Dia; Liu, Hui-tong; Dong, Hao; Liu, Xiao-bo

    2015-08-01

    To solve the geometric distortion problem of large FOV linear array whiskbroom image, a model of multi center central projection collinearity equation was founded considering its whiskbroom and linear CCD imaging feature, and the principle of distortion was analyzed. Based on the rectification method with POS, we introduced the angular position sensor data of the servo system, and restored the geometric imaging process exactly. An indirect rectification scheme aiming at linear array imaging with best scanline searching method was adopted, matrixes for calculating the exterior orientation elements was redesigned. We improved two iterative algorithms for this device, and did comparison and analysis. The rectification for the images of airborne imaging experiment showed ideal effect.

  2. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...

  3. Ground-state magneto-optical resonances in cesium vapor confined in an extremely thin cell

    International Nuclear Information System (INIS)

    Andreeva, C.; Cartaleva, S.; Petrov, L.; Slavov, D.; Atvars, A.; Auzinsh, M.; Blush, K.

    2007-01-01

    Experimental and theoretical studies are presented related to the ground-state magneto-optical resonance observed in cesium vapor confined in an extremely thin cell (ETC), with thickness equal to the wavelength of the irradiating light. It is shown that utilization of the ETC allows one to examine the formation of a magneto-optical resonance on the individual hyperfine transitions, thus distinguishing processes resulting in dark (reduced absorption) or bright (enhanced absorption) resonance formation. We report experimental evidence of bright magneto-optical resonance sign reversal in Cs atoms confined in an ETC. A theoretical model is proposed based on the optical Bloch equations that involves the elastic interaction processes of atoms in the ETC with its walls, resulting in depolarization of the Cs excited state, which is polarized by the exciting radiation. This depolarization leads to the sign reversal of the bright resonance. Using the proposed model, the magneto-optical resonance amplitude and width as a function of laser power are calculated and compared with the experimental ones. The numerical results are in good agreement with those of experiment

  4. Dynamic optical bistability in resonantly enhanced Raman generation

    International Nuclear Information System (INIS)

    Novikova, I.; Phillips, D.F.; Zibrov, A.S.; Andre, A.; Walsworth, R.L.

    2004-01-01

    We report observations of novel dynamic behavior in resonantly enhanced stimulated Raman scattering in Rb vapor. In particular, we demonstrate a dynamic hysteresis of the Raman scattered optical field in response to changes of the drive laser field intensity and/or frequency. This effect may be described as a dynamic form of optical bistability resulting from the formation and decay of atomic coherence. We have applied this phenomenon to the realization of an all-optical switch

  5. Geometrical control of ionic current rectification in a configurable nanofluidic diode.

    Science.gov (United States)

    Alibakhshi, Mohammad Amin; Liu, Binqi; Xu, Zhiping; Duan, Chuanhua

    2016-09-01

    Control of ionic current in a nanofluidic system and development of the elements analogous to electrical circuits have been the subject of theoretical and experimental investigations over the past decade. Here, we theoretically and experimentally explore a new technique for rectification of ionic current using asymmetric 2D nanochannels. These nanochannels have a rectangular cross section and a stepped structure consisting of a shallow and a deep side. Control of height and length of each side enables us to obtain optimum rectification at each ionic strength. A 1D model based on the Poisson-Nernst-Planck equation is derived and validated against the full 2D numerical solution, and a nondimensional concentration is presented as a function of nanochannel dimensions, surface charge, and the electrolyte concentration that summarizes the rectification behavior of such geometries. The rectification factor reaches a maximum at certain electrolyte concentration predicted by this nondimensional number and decays away from it. This method of fabrication and control of a nanofluidic diode does not require modification of the surface charge and facilitates the integration with lab-on-a-chip fluidic circuits. Experimental results obtained from the stepped nanochannels are in good agreement with the 1D theoretical model.

  6. Surface plasmon resonance optical cavity enhanced refractive index sensing

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Gagliardi, G.; Casalino, M.; Coppola, G.; Iodice, M.; Adam, Pavel; Chadt, Karel; Homola, Jiří; De Natale, P.

    2013-01-01

    Roč. 38, č. 11 (2013), s. 1951-1953 ISSN 0146-9592 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Resonators * Surface plasmons * Optical sensing and sensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.179, year: 2013

  7. Flexible optical network components based on densely integrated microring resonators

    NARCIS (Netherlands)

    Geuzebroek, D.H.

    2005-01-01

    This thesis addresses the design, realization and characterization of reconfigurable optical network components based on multiple microring resonators. Since thermally tunable microring resonators can be used as wavelength selective space switches, very compact devices with high complexity and

  8. Current rectification in a single molecule diode: the role of electrode coupling.

    Science.gov (United States)

    Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-07-24

    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10(5) A cm(-2). By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.

  9. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  10. Rectification cleaning AsCl3 from the admixture of oxygen

    Directory of Open Access Journals (Sweden)

    Maznitska O. V.

    2008-06-01

    Full Text Available The process of the rectification cleaning of three-chlorous arsenic from the admixtures of products of his hydrolysis in the atmosphere of chlorous hydrogen has been considered in the article. Dependence of coefficient of relative volatility a three-chlorous arsenic from his concentration in muriatic solution is explored. The conduct of coefficient of relative volatility with concentrations of HCl and AsCl3 is compared. Saving of equalization of balance and equalization of working curve of column at such conduct of process of rectification is shown.

  11. Rectification of current responds to incorporation of fullerenes into mixed-monolayers of alkanethiolates in tunneling junctions.

    Science.gov (United States)

    Qiu, Li; Zhang, Yanxi; Krijger, Theodorus L; Qiu, Xinkai; Hof, Patrick Van't; Hummelen, Jan C; Chiechi, Ryan C

    2017-03-01

    This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C 60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga-In (EGaIn) and Au conducting probe AFM (CP-AFM) top-contacts. The degree of rectification increases with increasing exposure of the decanethiolate monolayers to the fullerene moieties, going through a maximum after 24 h. We ascribe this observation to the resulting mixed-monolayer achieving an optimal packing density of fullerene cages sitting above the alkane monolayer. Thus, the degree of rectification is controlled by the amount of fullerene present in the mixed-monolayer. The voltage dependence of R varies with the composition of the top-contact and the force applied to the junction and the energy of the lowest unoccupied π-state determined from photoelectron spectroscopy is consistent with the direction of rectification. The maximum value of rectification R = | J (+)/ J (-)| = 940 at ±1 V or 617 at ±0.95 V is in agreement with previous studies on pure monolayers relating the degree of rectification to the volume of the head-group on which the frontier orbitals are localized.

  12. Integrated optics ring-resonator chemical sensor with polymer transduction layer

    Science.gov (United States)

    Ksendzov, A.; Homer, M. L.; Manfreda, A. M.

    2004-01-01

    An integrated optics chemical sensor based on a ring resonator with an ethyl cellulose polymer coating has been demonstrated. The measured sensitivity to isopropanol in air is 50 ppm-the level immediately useful for health-related air quality monitoring. The resonator was fabricated using SiO2 and SixNy materials. The signal readout is based on tracking the wavelength of a resonance peak. The resonator layout optimisation for sensing applications is discussed.

  13. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  14. Enhancing the resonance stability of a high-Q micro/nanoresonator by an optical means

    Science.gov (United States)

    Sun, Xuan; Luo, Rui; Zhang, Xi-Cheng; Lin, Qiang

    2016-02-01

    High-quality optical resonators underlie many important applications ranging from optical frequency metrology, precision measurement, nonlinear/quantum photonics, to diverse sensing such as detecting single biomolecule, electromagnetic field, mechanical acceleration/rotation, among many others. All these applications rely essentially on the stability of optical resonances, which, however, is ultimately limited by the fundamental thermal fluctuations of the devices. The resulting thermo-refractive and thermo-elastic noises have been widely accepted for nearly two decades as the fundamental thermodynamic limit of an optical resonator, limiting its resonance uncertainty to a magnitude 10-12 at room temperature. Here we report a novel approach that is able to significantly improve the resonance stability of an optical resonator. We show that, in contrast to the common belief, the fundamental temperature fluctuations of a high-Q micro/nanoresonator can be suppressed remarkably by pure optical means without cooling the device temperature, which we term as temperature squeezing. An optical wave with only a fairly moderate power launched into the device is able to produce strong photothermal backaction that dramatically suppresses the spectral intensity of temperature fluctuations by five orders of magnitudes and squeezes the overall level (root-mean-square value) of temperature fluctuations by two orders of magnitude. The proposed approach is universally applicable to various micro/nanoresonator platforms and the optimal temperature squeezing can be achieved with an optical Q around 106-107 that is readily available in various current devices. The proposed photothermal temperature squeezing is expected to have profound impact on broad applications of high-Q cavities in sensing, metrology, and integrated nonlinear/quantum photonics.

  15. All-dielectric resonant cavity-enabled metals with broadband optical transparency

    Science.gov (United States)

    Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang

    2017-06-01

    Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.

  16. Tunable thermal rectification in graphene/hexagonal boron nitride hybrid structures

    Science.gov (United States)

    Chen, Xue-Kun; Hu, Ji-Wen; Wu, Xi-Jun; Jia, Peng; Peng, Zhi-Hua; Chen, Ke-Qiu

    2018-02-01

    Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in graphene/hexagonal boron nitride (h-BN) hybrid structures. Two different structural models, partially substituting graphene into h-BN (CBN) and partially substituting h-BN into graphene (BNC), are considered. It is found that CBN has a significant TR effect while that of BNC is very weak. The observed TR phenomenon can be attributed to the resonance effect between out-of-plane phonons of graphene and h-BN domains in the low-frequency region under negative temperature bias. In addition, the influences of ambient temperature, system size, defect number and substrate interaction are also studied to obtain the optimum conditions for TR. More importantly, the TR ratio could be effectively tuned through chemical and structural diversity. A moderate C/BN ratio and parallel arrangement are found to enhance the TR ratio. Detailed phonon spectra analyses are conducted to understand the thermal transport behavior. This work extends hybrid engineering to 2D materials for achieving TR.

  17. Theoretical Analysis of the Optical Propagation Characteristics in a Fiber-Optic Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Xiaolin Zheng

    2013-06-01

    Full Text Available Surface plasmon resonance (SPR sensor is widely used for its high precision and real-time analysis. Fiber-optic SPR sensor is easy for miniaturization, so it is commonly used in the development of portable detection equipment. It can also be used for remote, real-time, and online detection. In this study, a wavelength modulation fiber-optic SPR sensor is designed, and theoretical analysis of optical propagation in the optical fiber is also done. Compared with existing methods, both the transmission of a skew ray and the influence of the chromatic dispersion are discussed. The resonance wavelength is calculated at two different cases, in which the chromatic dispersion in the fiber core is considered. According to the simulation results, a novel multi-channel fiber-optic SPR sensor is likewise designed to avoid defaults aroused by the complicated computation of the skew ray as well as the chromatic dispersion. Avoiding the impact of skew ray can do much to improve the precision of this kind of sensor.

  18. Excitation of resonances of microspheres on an optical fiber

    Science.gov (United States)

    Serpengüzel, A.; Arnold, S.; Griffel, G.

    1995-04-01

    Morphology-dependent resonances (MDR's) of solid microspheres are excited by using an optical fiber coupler. The narrowest measured MDR linewidths are limited by the excitation laser linewidth ( < 0.025 nm). Only MDR's, with an on-resonance to off-resonance intensity ratio of 104, contribute to scattering. The intensity of various resonance orders is understood by the localization principle and the recently developed generalized Lorentz-Mie theory. The microsphere fiber system has potential for becoming a building block in dispersive microphotonics. The basic physics underlying our approach may be considered a harbinger for the coupling of active photonic microstructures such as microdisk lasers.

  19. Resonant Optical Gradient Force Interaction for Nano-Imaging and-Spectroscopy

    Science.gov (United States)

    2016-07-19

    New J. Phys. 18 (2016) 053042 doi:10.1088/1367-2630/18/5/053042 PAPER Resonant optical gradient force interaction for nano-imaging and -spectroscopy...HonghuaUYang andMarkus BRaschke Department of Physics , Department of Chemistry, and JILA,University of Colorado, Boulder, CO80309,USA E-mail...honghua.yang@colorado.edu andmarkus.raschke@colorado.edu Keywords:nano spectroscopy, optical force, near-field optics Abstract The optical gradient force

  20. Design of all-optical memory cell using EIT and lasing without inversion phenomena in optical micro ring resonators

    Science.gov (United States)

    Pasyar, N.; Yadipour, R.; Baghban, H.

    2017-07-01

    The proposed design of the optical memory unit cell contains dual micro ring resonators in which the effect of lasing without inversion (LWI) in three-level nano particles doped over the optical resonators or integrators as the gain segment is used for loss compensation. Also, an on/off phase shifter based on electromagnetically induced transparency (EIT) in three-level quantum dots (QDs) has been used for data reading at requested time. Device minimizing for integrated purposes and high speed data storage are the main advantages of the optical integrator based memory.

  1. Vibrational spectra and thermal rectification in three-dimensional anharmonic lattices

    International Nuclear Information System (INIS)

    Lan Jinghua; Li Baowen

    2007-01-01

    We study thermal rectification in a three-dimensional model consisting of two segments of anharmonic lattices. One segment consists of layers of harmonic oscillator arrays coupled to a substrate potential, which is a three-dimensional Frenkel-Kontorova model, and the other segment is a three-dimensional Fermi-Pasta-Ulam model. We study the vibrational bands of the two lattices analytically and numerically, and find that, by choosing the system parameters properly, the rectification can be as high as a few thousands, which is high enough to be observed in experiment. Possible experiments in nanostructures are discussed

  2. On-chip optical filter comprising Fabri-Perot resonator structure and spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seunghoon; Horie, Yu; Faraon, Andrei; Arbabi, Amir

    2018-04-10

    An on-chip optical filter having Fabri-Perot resonators and a spectrometer may include a first sub-wavelength grating (SWG) reflecting layer and a second SWG reflecting layer facing each other. A plurality of Fabri-Perot resonators are formed by the first SWG reflecting layer and the second SWG reflecting layer facing each other. Each of the Fabri-Perot resonators may transmit light corresponding to a resonance wavelength of the Fabri-Perot resonator. The resonance wavelengths of the Fabri-Perot resonators may be determined according to duty cycles of grating patterns.

  3. Fano resonance of the ultrasensitve optical force excited by Gaussian evanescent field

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan

    2015-01-01

    In this paper, we study the angle-dependent Fano-like optical force spectra of plasmonic Ag nanoparticles, which exhibit extraordinary transformation from Lorentzian resonance to Fano resonance when excited by a Gaussian evanescent wave. We systematically analyze the behavior of this asymmetric scattering induced optical force under different conditions and find that this Fano interference-induced force is ultrasensitive to the excitation wavelength, incident angle and particle size, as well as the core–shell configuration, which could be useful for wavelength- and angle-dependent size-selective optical manipulation. The origin of this Fano resonance is further identified as the interference between the two adjacent-order multipolar plasmonic modes excited in the Ag particle under the excitation of an inhomogeneously distributed evanescent field. (paper)

  4. Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination

    Directory of Open Access Journals (Sweden)

    V. B. Yurchenko

    2015-08-01

    Full Text Available We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor that makes light-microwave interaction observable with an ordinary light (no laser at conventional brightness (like an office lighting in quasi-optical microwave structures at rather long (centimeter-scale wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel.

  5. Symposium KK, Resonant Optics in Dielectric and Metallic Structures: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Larouche, Stephane [Duke Univ., Durham, NC (United States); Caldwell, Joshua [Naval Research Lab. (NRL), Washington, DC (United States)

    2016-09-06

    Symposium KK focused on the design, fabrication, characterization of novel nanoscale optical resonators and alternative materials for sub-diffraction scale resonant particles. Contributions discussed all aspects of this field, and the organizers had more than 130 contributing participants to this session alone, spanning North America, Europe, Asia and Australia. Participants discussed cutting edge research results focused on the structure, physical and optical properties, and ultrafast dynamic response of nanoscale resonators such as plasmonic and dielectric nanoparticles. A strong focus on state-of-the-art characterization and fabrication approaches, as well as presentations on novel materials for sub-diffraction resonators took place. As expected, the sessions provided strong interdisciplinary interactions and lively debate among presenters and participants.

  6. Enhanced energy storage in chaotic optical resonators

    KAUST Repository

    Liu, Changxu; Di Falco, Andrea; Molinari, Diego P.; Khan, Yasser; Ooi, Boon S.; Krauss, Thomas F.; Fratalocchi, Andrea

    2013-01-01

    Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab initio simulations and experiments in photonic-crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase by considering the equipartition of energy among all degrees of freedom of the chaotic resonator (that is, the cavity modes) and discover a convergence of their lifetimes towards a single value. A compelling illustration of the theory is provided by enhanced absorption in deformed polystyrene microspheres. © 2013 Macmillan Publishers Limited. All rights reserved.

  7. Enhanced energy storage in chaotic optical resonators

    KAUST Repository

    Liu, Changxu

    2013-05-05

    Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab initio simulations and experiments in photonic-crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase by considering the equipartition of energy among all degrees of freedom of the chaotic resonator (that is, the cavity modes) and discover a convergence of their lifetimes towards a single value. A compelling illustration of the theory is provided by enhanced absorption in deformed polystyrene microspheres. © 2013 Macmillan Publishers Limited. All rights reserved.

  8. Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories.

    Science.gov (United States)

    Miyazaki, Hideki T; Miyazaki, Hiroshi; Miyano, Kenjiro

    2003-09-01

    We have recently identified the resonant scattering from dielectric bispheres in the specular direction, which has long been known as the specular resonance, to be a type of rainbow (a caustic) and a general phenomenon for bispheres. We discuss the details of the specular resonance on the basis of systematic calculations. In addition to the rigorous theory, which precisely describes the scattering even in the resonance regime, the ray-tracing method, which gives the scattering in the geometrical-optics limit, is used. Specular resonance is explicitly defined as strong scattering in the direction of the specular reflection from the symmetrical axis of the bisphere whose intensity exceeds that of the scattering from noninteracting bispheres. Then the range of parameters for computing a particular specular resonance is specified. This resonance becomes prominent in a wide range of refractive indices (from 1.2 to 2.2) in a wide range of size parameters (from five to infinity) and for an arbitrarily polarized light incident within an angle of 40 degrees to the symmetrical axis. This particular scattering can stay evident even when the spheres are not in contact or the sizes of the spheres are different. Thus specular resonance is a common and robust phenomenon in dielectric bispheres. Furthermore, we demonstrate that various characteristic features in the scattering from bispheres can be explained successfully by using intuitive and simple representations. Most of the significant scatterings other than the specular resonance are also understandable as caustics in geometrical-optics theory. The specular resonance becomes striking at the smallest size parameter among these caustics because its optical trajectory is composed of only the refractions at the surfaces and has an exceptionally large intensity. However, some characteristics are not accounted for by geometrical optics. In particular, the oscillatory behaviors of their scattering intensity are well described by

  9. Optical rectification in a strained GaAs{sub 0.9}P{sub 0.1}/GaAs{sub 0.6}P{sub 0.4} quantum dot: Simultaneous effects of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Vinolin, Ada [Dept. of Physics, Madurai Kamaraj University College, Alagarkoil Road, Madurai-625002 (India); Peter, A. John, E-mail: a.john.peter@gmail.com [Dept. of Physics, Government Arts College, Melur-625106, Tamilnadu (India)

    2014-04-24

    Simultaneous effects of electric field and magnetic field on exciton binding energy as a function of dot radius in a cylindrical GaAs{sub 0.9}P{sub 0.1}/GaAs{sub 0.6}P{sub 0.4} strained quantum dot are investigated. The strain contribution includes the strong built-in electric field induced by the spontaneous and piezoelectric polarizations. Numerical calculations are performed using variational procedure within the single band effective mass approximation. Optical rectification in the GaAs{sub 0.9}P{sub 0.1}/GaAs{sub 0.6}P{sub 0.4} quantum dot is computed in the presence of electric and magnetic fields.

  10. Resonant power converter with dead-time control of synchronous rectification circuit

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising a synchronous rectifier for supplying a DC output voltage. The synchronous rectifier is configured for alternatingly connecting a resonant output voltage to positive and negative DC output nodes via first and second ...

  11. Phase-sensitive detection of optical resonances by using an acousto-optic modulator in the Raman - Nath diffraction mode

    International Nuclear Information System (INIS)

    Baryshev, V N; Domnin, Yu S; Kopylov, L N

    2007-01-01

    A new method for frequency control of an external cavity diode laser without direct modulation of the injection current is proposed. The Pound - Drever optical heterodyne technique or the method of frequency control by frequency-modulated sidebands, in which an acousto-optic modulator operating in the Raman - Nath diffraction mode is used as an external phase modulator, can be employed to obtain error signals upon automatic frequency locking of the diode laser to the saturated absorption resonances within the D 2 line of cesium atoms or to the optical cavity resonances. (control of laser radiation parameters)

  12. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in trilayers containing magneto-optical metals

    Energy Technology Data Exchange (ETDEWEB)

    Girón-Sedas, J. A. [Departamento de Física, Universidad del Valle, AA 25360, Cali (Colombia); Centro de Investigación e Innovación en Bioinformática y Fotónica - CIBioFI, AA 25360 Cali (Colombia); Mejía-Salazar, J. R., E-mail: jrmejia3146@gmail.com [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP (Brazil); Moncada-Villa, E.; Porras-Montenegro, N. [Departamento de Física, Universidad del Valle, AA 25360, Cali (Colombia)

    2016-07-18

    We propose a way to enhance the transverse magneto-optical Kerr effect, by the excitation of resonant tunneling modes, in subwavelength trilayer structures featuring a dielectric slab sandwiched between two magneto-optical metallic layers. Depending on the magneto-optical layer widths, the proposed system may exhibit an extraordinary transverse magneto-optical Kerr effect, which makes it very attractive for the design and engineering of thin-film magneto-optical-based devices for future photonic circuits or fiber optical-communication systems.

  13. Separation processes, I: Azeotropic rectification

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir

    2005-01-01

    Full Text Available In a series of two articles, the problems of azeotrope separation (part I and the design of separation units (part II were analyzed. The basic definition and equations of vapour-liquid equilibria for ideal and non-ideal systems, the importance of the activity coefficient calculation necessary for the analysis of non-ideal equilibrium systems, as well as theoretical aspects of azeotrope rectification and the determination of the optimal third component (modifier or azeotrope agent are presented in the first part.

  14. Spin microscope based on optically detected magnetic resonance

    Science.gov (United States)

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  15. Black-hole quasinormal resonances: Wave analysis versus a geometric-optics approximation

    International Nuclear Information System (INIS)

    Hod, Shahar

    2009-01-01

    It has long been known that null unstable geodesics are related to the characteristic modes of black holes--the so-called quasinormal resonances. The basic idea is to interpret the free oscillations of a black hole in the eikonal limit in terms of null particles trapped at the unstable circular orbit and slowly leaking out. The real part of the complex quasinormal resonances is related to the angular velocity at the unstable null geodesic. The imaginary part of the resonances is related to the instability time scale (or the inverse Lyapunov exponent) of the orbit. While this geometric-optics description of the black-hole quasinormal resonances in terms of perturbed null rays is very appealing and intuitive, it is still highly important to verify the validity of this approach by directly analyzing the Teukolsky wave equation which governs the dynamics of perturbation waves in the black-hole spacetime. This is the main goal of the present paper. We first use the geometric-optics technique of perturbing a bundle of unstable null rays to calculate the resonances of near-extremal Kerr black holes in the eikonal approximation. We then directly solve the Teukolsky wave equation (supplemented by the appropriate physical boundary conditions) and show that the resultant quasinormal spectrum obtained directly from the wave analysis is in accord with the spectrum obtained from the geometric-optics approximation of perturbed null rays.

  16. Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hoo Min; Yoon, Joon [Dept. of Radiological technology, Dongnam Health University, Suwon (Korea, Republic of); Kim, Hyun Ju [Dept. of Radiology, Soonchunhyang University Hospital Buchen, Bucheon (Korea, Republic of)

    2014-09-15

    The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.

  17. Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus

    International Nuclear Information System (INIS)

    Lee, Hoo Min; Yoon, Joon; Kim, Hyun Ju

    2014-01-01

    The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier

  18. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbaran, M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khalkhali, S.M.H. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2017-02-15

    Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in M{sub x} configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design. - Highlights: • Highly sensitive atomic magnetometers have been used to measure weak magentic filed. • To obtain narrower resonance signal, we impalnted harmonic detection of magnetic resonance. • The nonlinear spin polarization dynamics in detetion of the higher harmonics were imployed.

  19. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling

    Science.gov (United States)

    Ming, Yi; Li, Hui-Min; Ding, Ze-Jun

    2016-03-01

    Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.

  20. Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals

    International Nuclear Information System (INIS)

    Takeuchi, Tsunehiro

    2014-01-01

    The bulk thermal rectifiers usable at a high temperature above 300 K were developed by making full use of the unusual electron thermal conductivity of icosahedral quasicrystals. The unusual electron thermal conductivity was caused by a synergy effect of quasiperiodicity and by a narrow pseudogap at the Fermi level. The rectification ratio, defined by TRR = |J large |/|J small |, reached vary large values exceeding 2.0. This significant thermal rectification would lead to new practical applications for the heat management. (paper)

  1. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations

    Directory of Open Access Journals (Sweden)

    Alessandro Cosci

    2016-08-01

    Full Text Available This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate (PMMA box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system.

  2. Neutron strength functions: the link between resolved resonances and the optical model

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1980-01-01

    Neutron strength functions and scattering radii are useful as energy and channel radius independent parameters that characterize neutron scattering resonances and provide a connection between R-matrix resonance analysis and the optical model. The choice of R-matrix channel radii is discussed, as are limitations on the accuracies of strength functions. New definitions of the p-wave strength function and scattering radius are proposed. For light nuclei, where strength functions display optical model energy variations over the resolved resonances, a doubly reduced partial neutron width is introduced for more meaningful statistical analyses of widths. The systematic behavior of strength functions and scattering radii is discussed

  3. The research on rectification and amplification of the image in mobile large container inspection system

    International Nuclear Information System (INIS)

    Jin Hui; Cheng Jianping; Chen Zhiqiang; Zhang Li

    2001-01-01

    The author introduces a geometrical rectification algorithm of the image in mobile large container inspection system. The comparison and discussion of the image before and after the rectification have been given. Amplification algorithms of the images are discussed. With all the algorithms, the quality of the images has been improved

  4. Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging.

    Science.gov (United States)

    Singh, Arun D; Platt, Sean M; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E; Alzahrani, Yahya; Plesec, Thomas

    2016-04-01

    The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation.

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 5. Rotational Rectification of an Alternating Magnetic Field. N Kumar. Classroom Volume 18 Issue 5 May 2013 pp 458-467. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/018/05/0458-0467 ...

  6. Novel Chiroptical Analysis of Hemoglobin by Surface Enhanced Resonance Raman Optical Activity Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Sosnovtseva, Olga

    2010-01-01

    The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb...

  7. "Cul-de-sac" microstrip resonators for high-speed integrated optical commutator switches

    Science.gov (United States)

    Jaeger, Nicolas A.; Chen, Mingche

    1993-04-01

    A novel microstrip resonator structure for use with integrated Y-branch optical modulators fabricated in Ti:LiNbO3 is proposed. The legs of the structure are intended to act as the electrodes of the modulator, with light being directed into each of the output waveguides of the Y-branch on alternate half-cycles of the standing wave excited in the resonator; forming an optical commutator switch. Such resonators having Al2O3 substrates were designed, fabricated, and tested. Measurements on one such resonator, operating at 7.12 GHz and having an unloaded quality factor of 123, indicating that 50 V should develop across the ends of its legs for 35 mW dissipated power; the corresponding values, from the model used to design the resonator, were 179, 50 V,and 24 mW, respectively. Using the model it is shown that a similar resonator fabricated on LiNbO3 should be able to develop about 50 V for 100 mW dissipated power at 15 GHz.

  8. Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes

    International Nuclear Information System (INIS)

    Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui

    2016-01-01

    By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 10"4 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios. - Highlights: • The rectification properties of triangular Graphene nanoflakes are investigated. • The rectifying performance can be optimized by changing the width of the right arm-chaired GNR electrode. • The rectifying performance can also be tuned by varying the number of anchoring carbon atomic chains.

  9. Integrated polymer micro-ring resonators for optical sensing applications

    OpenAIRE

    Girault , Pauline; Lorrain , Nathalie; Poffo , Luiz; Guendouz , Mohammed; Lemaitre , Jonathan; Carré , Christiane; Gadonna , Michel; Bosc , Dominique; Vignaud , Guillaume

    2015-01-01

    International audience; Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as cor...

  10. Optical model calculation for the unresolved/resolved resonance region of Fe-56

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Froehner, F.H.

    1997-03-01

    We have studied optical model fits to total neutron cross sections of structural materials using the accurate data base for {sup 56}Fe existing in the resolved and unresolved resonance region. Averages over resolved resonances were calculated with Lorentzian weighting in Reich-Moore (reduced R matrix) approximation. Starting from the best available optical potentials we found that adjustment of the real and imaginary well depths does not work satisfactorily with the conventional weak linear energy dependence of the well depths. If, however, the linear dependences are modified towards low energies, the average total cross sections can be fitted quite well, from the resolved resonance region up to 20 MeV and higher. (author)

  11. Rigorous theory of molecular orientational nonlinear optics

    International Nuclear Information System (INIS)

    Kwak, Chong Hoon; Kim, Gun Yeup

    2015-01-01

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented

  12. Optical Resonance of A Three-Level System in Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Nguyen Van Hieu

    2017-11-01

    Full Text Available The optical resonance of a three-level system of the strongly correlated electrons in the twolevel semiconductor quantum dot interacting with the linearly polarized monochromatic electromagnetic radiation is studied. With the application of the Green function method the expressions of the state vectors and the energies of the stationary states of the system in the regime of the optical resonance are derived. The Rabi oscillations of the electron populations at different levels as well as the Rabi splitting of the peaks in the photon emission spectra are investigated. PACS numbers: 71.35.-y, 78.55.-m, 78.67.Hc

  13. Spatial confinement of acoustic and optical waves in stubbed slab structure as optomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changsheng, E-mail: lcs135@163.com; Huang, Dan; Guo, Jierong

    2015-02-20

    We theoretically demonstrate that acoustic waves and optical waves can be spatially confined in the same micro-cavity by specially designed stubbed slab structure. The proposed structure presents both phononic and photonic band gaps from finite element calculation. The creation of cavity mode inside the band gap region provides strong localization of phonon and photon in the defect region. The practical parameters to inject cavity and work experimentally at telecommunication range are discussed. This structure can be precisely fabricated, hold promises to enhance acousto-optical interactions and design new applications as optomechanical resonator. - Highlights: • A resonator simultaneously supports acoustic and optical modes. • Strong spatial confinement and slow group velocity. • Potential to work as active optomechanical resonator.

  14. A study on the test of efficiency of the diagnostic X-ray equipment according to their rectifications

    International Nuclear Information System (INIS)

    Seon, Jong Ryul

    1997-01-01

    For the efficient management of the diagnostic x-ray equipment, a nation-wide inspection of hospitals was performed by an inspection institute in Taejon in the first half of 1997. Among those hospitals inspected, 28 equipments(machines) which were over 500 mA were randomly selected according to their characteristics : 7 condenser type x-ray equipments, 7 three control phase of full wave rectification of type remote control x-ray equipments, 7 single phase of full wave rectification type for general radiography equipments, and 7 single phase of full wave rectification type of R/F equipments. We obtained the following results by conducting the experiment based on the efficiency of the equipments mentioned above. 1) When te equipments are analyzed, 2 out of 7 single phase of full wave rectification type of general radiography equipments(28.6%), 3 out of 7 single phase of full wave rectification type of R/F equipments(42.9%), 5 out of 7 three phase of full wave rectification type remote of control x-ray equipments(71.4%), and 4 out of 7 condenser type of x-ray equipments(57.1%) showed suitability. It proves the superiority of the three phase of full wave rectification type of remote control x-ray equipments. 2) From the overall analysis, only about 50% of the equipments(suitability of 14 out of 28) maintain the efficient management. Therefore, maintenance management of equipments is more necessary. If the efficiency of the x-ray equipment is uniformly maintained and managed to prevent the breakdown(trouble) beforehand especially through the continuous inspection of tube voltage, tube current, exposure time, and collimator, the financial loss and exposure dose to the patient, as well as the workers engaged in radiation, can be reduced for better medical service

  15. Coupled-resonator optical waveguides: Q-factor and disorder influence

    DEFF Research Database (Denmark)

    Grgic, Jure; Campaioli, Enrico; Raza, Søren

    2011-01-01

    Coupled resonator optical waveguides (CROW) can significantly reduce light propagation pulse velocity due to pronounced dispersion properties. A number of interesting applications have been proposed to benefit from such slow-light propagation. Unfortunately, the inevitable presence of disorder...

  16. Reflection-based fibre-optic refractive index sensor using surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Hlubina, P.; Kadulová, M.; Ciprian, D.; Sobota, Jaroslav

    2014-01-01

    Roč. 9, August 19 (2014), 14033:1-5 ISSN 1990-2573 R&D Projects: GA MŠk(CZ) LO1212 Keywords : surface plasmon resonance * fibre-optic sensor * spectral interrogation technique * aqueous solutions of ethanol * refractive index Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.231, year: 2014

  17. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.

    Science.gov (United States)

    Hu, Jiuning; Ruan, Xiulin; Chen, Yong P

    2009-07-01

    We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.

  18. Optically resonant subwavelength films for tamper-indicating tags and seals

    Science.gov (United States)

    Alvine, Kyle J.; Suter, Jonathan D.; Bernacki, Bruce E.; Bennett, Wendy D.

    2015-05-01

    We present the design, modeling and performance of a proof-of-concept tamper indicating approach that exploits newlydeveloped subwavelength-patterned films. These films have a nanostructure-dependent resonant optical reflection that is wavelength, angle, and polarization dependent. As such, they can be tailored to fabricate overlay transparent films for tamper indication and authentication of sensitive or controlled materials not possible with currently-known technologies. An additional advantage is that the unique optical signature is dictated by the geometry and fabrication process of the nanostructures in the film, rather than on the material used. The essential structure unit in the subwavelength resonant coating is a nanoscale Open-Ring Resonator (ORR). This building block is fabricated by coating a dielectric nanoscale template with metal to form a hemispherical shell-like structure. This curved metallic shell structure has a cross-section with an intrinsic capacitance and inductance and is thus the optical equivalent to the well-known "LC" circuit where the capacitance and inductance are determined by the nanoshell dimensions. For structures with sub 100 nm scale, this resonance occurs in the visible electromagnetic spectrum, and in the IR for larger shells. Tampering of the film would be visible though misalignment of the angle-sensitive features in the film. It is additionally possible to add in intrinsic oxidation and strain sensitive matrix materials to further complicate tamper repair and counterfeiting. Cursory standoff readout would be relatively simple using a combination of a near-infrared (or visible) LED flashlight and polarizer or passively using room lighting illumination and a dispersive detector.

  19. Single-chip ring resonator-based 1 x 8 optical beam forming network in CMOS-compatible waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim

    2007-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in optical beam forming networks (OBFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art ring resonator-

  20. Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kusa, F. [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei Tokyo 184-8588 (Japan); Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Echternkamp, K. E.; Herink, G.; Ropers, C. [4th Physical Institute – Solids and Nanostructures, University of Göttingen, 37077 Göttingen (Germany); Ashihara, S., E-mail: ashihara@iis.u-tokyo.ac.jp [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2015-07-15

    We demonstrate strong-field photoelectron emission from gold nanorods driven by femtosecond mid-infrared optical pulses. The maximum photoelectron yield is reached at the localized surface plasmon resonance, indicating that the photoemission is governed by the resonantly-enhanced optical near-field. The wavelength- and field-dependent photoemission yield allows for a noninvasive determination of local field enhancements, and we obtain intensity enhancement factors close to 1300, in good agreement with finite-difference time domain computations.

  1. Electrostatic resonances and optical responses of cylindrical clusters

    International Nuclear Information System (INIS)

    Choy, C W; Xiao, J J; Yu, K W

    2008-01-01

    We developed a Green function formalism (GFF) for computing the electrostatic resonance in clusters of cylindrical particles. In the GFF, we take advantage of a surface integral equation to avoid matching the complicated boundary conditions on the surfaces of the particles. Numerical solutions of the eigenvalue equation yield a pole spectrum in the spectral representation. The pole spectrum can in turn be used to compute the optical response of these particles. For two cylindrical particles, the results are in excellent agreement with the exact results from the multiple image method and the normal mode expansion method. The results of this work can be extended to investigate the enhanced nonlinear optical responses of metal-dielectric composites, as well as optical switching in plasmonic waveguides.

  2. [INVITED] Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures

    Science.gov (United States)

    Gupta, Banshi D.; Kant, Ravi

    2018-05-01

    Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.

  3. Ultrasensitive mass sensing with nonlinear optics in a doubly clamped suspended carbon nanotube resonator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Jun; Zhu, Ka-Di [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 DongChuan Road, Shanghai 2 00240 (China)

    2013-12-07

    Nanomechanical resonator makes itself as an ideal system for ultrasensitive mass sensing due to its ultralow mass and high vibrational frequency. The mass sensing principle is due to the linear relationship of the frequency-shift and mass-variation. In this work, we will propose a nonlinear optical mass sensor based on a doubly clamped suspended carbon nanotube resonator in all-optical domain. The masses of external particles (such as nitric oxide molecules) landing onto the surface of carbon nanotube can be determined directly and accurately via using the nonlinear optical spectroscopy. This mass sensing proposed here may provide a nonlinear optical measurement technique in quantum measurements and environmental science.

  4. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fib...

  5. Significantly High Thermal Rectification in an Asymmetric Polymer Molecule Driven by Diffusive versus Ballistic Transport.

    Science.gov (United States)

    Ma, Hao; Tian, Zhiting

    2018-01-10

    Tapered bottlebrush polymers have novel nanoscale polymer architecture. Using nonequilibrium molecular dynamics simulations, we showed that these polymers have the unique ability to generate thermal rectification in a single polymer molecule and offer an exceptional platform for unveiling different heat conduction regimes. In sharp contrast to all other reported asymmetric nanostructures, we observed that the heat current from the wide end to the narrow end (the forward direction) in tapered bottlebrush polymers is smaller than that in the opposite direction (the backward direction). We found that a more disordered to less disordered structural transition within tapered bottlebrush polymers is essential for generating nonlinearity in heat conduction for thermal rectification. Moreover, the thermal rectification ratio increased with device length, reaching as high as ∼70% with a device length of 28.5 nm. This large thermal rectification with strong length dependence uncovered an unprecedented phenomenon-diffusive thermal transport in the forward direction and ballistic thermal transport in the backward direction. This is the first observation of radically different transport mechanisms when heat flow direction changes in the same system. The fundamentally new knowledge gained from this study can guide exciting research into nanoscale organic thermal diodes.

  6. Induced high-order resonance linewidth shrinking with multiple coupled resonators in silicon-organic hybrid slotted two-dimensional photonic crystals for reduced optical switching power in bistable devices

    Science.gov (United States)

    Hoang, Thu Trang; Ngo, Quang Minh; Vu, Dinh Lam; Le, Khai Q.; Nguyen, Truong Khang; Nguyen, Hieu P. T.

    2018-01-01

    Shrinking the linewidth of resonances induced by multiple coupled resonators is comprehensively analyzed using the coupled-mode theory (CMT) in time. Two types of coupled resonators under investigation are coupled resonator optical waveguides (CROWs) and side-coupled resonators with waveguide (SCREW). We examine the main parameters influencing on the spectral response such as the number of resonators (n) and the phase shift (φ) between two adjacent resonators. For the CROWs geometry consisting of n coupled resonators, we observe the quality (Q) factor of the right- and left-most resonant lineshapes increases n times larger than that of a single resonator. For the SCREW geometry, relying on the phase shift, sharp, and asymmetric resonant lineshape of the high Q factor a narrow linewidth of the spectral response could be achieved. We employ the finite-difference time-domain (FDTD) method to design and simulate two proposed resonators for practical applications. The proposed coupled resonators in silicon-on-insulator (SOI) slotted two-dimensional (2-D) photonic crystals (PhCs) filled and covered with a low refractive index organic material. Slotted PhC waveguides and cavities are designed to enhance the electromagnetic intensity and to confine the light into small cross-sectional area with low refractive index so that efficient optical devices could be achieved. A good agreement between the theoretical CMT analysis and the FDTD simulation is shown as an evidence for our accurate investigation. All-optical switches based on the CROWs in the SOI slotted 2-D PhC waveguide that are filled and covered by a nonlinear organic cladding to overcome the limitations of its well-known intrinsic properties are also presented. From the calculations, we introduce a dependency of the normalized linewidth of the right-most resonance and its switching power of the all-optical switches on number of resonator, n. This result might provide a guideline for all-optical signal processing on

  7. Resonating rays in ion-ion scattering from an optical potential

    International Nuclear Information System (INIS)

    Farhan, A.R.; Stoyanov, B.J.; Nagl, A.; Uberall, H.; de Llano, M.

    1986-01-01

    The amplitude of ion-ion scattering, described, e.g., by an optical potential, separates into a ''surface-wave'' part (which, as shown before, may give rise to resonances) and a ''geometrical-ray'' part. The amplitude as alternately expressed here by the Wentzel-Kramers-Brillouin approximation resolves into an externally reflected ''barrier wave'' and into ''internal'' or ''penetrating rays'' that undergo an internal reflection together with possible additional multiple reflections. Our numerical calculations show that resonances also occur in the penetrating rays, which take place when a characteristic equation is satisfied. The geometrical meaning of the latter is determined by the optical path length of penetration being an integer multiple of π, plus a 1/2π caustic phase jump, and an extra phase shift due to barrier penetration

  8. Micro-resonators based on integrated polymer technology for optical sensing

    OpenAIRE

    Girault , Pauline; Lemaitre , Jonathan; Guendouz , Mohammed; Lorrain , Nathalie; Poffo , Luiz; Gadonna , Michel; Bosc , Dominique

    2014-01-01

    International audience; Research on sensors has experienced a noticeable development over the last decades especially in label free optical biosensors. However, compact sensors without markers for rapid, reliable and inexpensive detection of various substances induces a significant research of new technological solutions. The context of this work is the development of a sensor based on easily integrated and inexpensive micro-resonator (MR) component in integrated optics, highly sensitive and ...

  9. Microwave-optical double resonance spectroscopy. Final report, February 1, 1971-October 31, 1980

    International Nuclear Information System (INIS)

    Pratt, D.W.

    1982-01-01

    Optical, zero-field and high-field optical detection of magnetic resonance, electron-nuclear double resonance, level anticrossing and cross relaxation, and electron paramagnetic resonance experiments have been performed on a variety of chemical systems in order to further basic knowledge of the structure, reactivity, and response to radiation of molecules in their ground and/or excited electronic states. Systems investigated include organic molecules oriented in low temperature crystals, simple free radicals, transition metal complexes, rare earth hydrides, and hemeproteins in biological enzymes. Many of these systems are of potential importance in a number of applied areas including hydrocarbon-based fuel systems, solar energy devices, laser-initiated photochemical reactions, and free radical mechanisms in chemical carcinogenesis

  10. Quantum limits on the time-bandwidth product of an optical resonator.

    Science.gov (United States)

    Tsang, Mankei

    2018-01-01

    A thought-provoking proposal by Tsakmakidis et al. [Science356, 1260 (2017)SCIEAS0036-807510.1126/science.aam6662] suggests that nonreciprocal optics can break a time-bandwidth limit to passive resonators. Here I quantize their resonator model and show that quantum mechanics does impose a limit, or requires extra noise to be added in the same fashion as amplified spontaneous emission in an active resonator. I also use thermodynamics to argue that extra dissipation or noise must be present in their proposed device.

  11. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.; Wang, Song; Liu, Albert Tianxiang; Wang, Wen-Jun; Strano, Michael S.

    2018-01-01

    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

  12. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.

    2018-01-15

    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

  13. Resonance Raman and optical dephasing study of tricarbocyanine dyes

    NARCIS (Netherlands)

    Ashworth, SH; Kummrow, A; Lenz, K

    Fluorescence lineshape analysis based on resonance Raman spectra of the dye HITCI was used to determine the details and magnitude of the vibrational part of the line broadening function, Forced light scattering (FLS) was applied to measure optical dephasing of HITCI in ethylene glycol, pumping at

  14. A scheme to expand the delay-bandwidth product in the resonator-based delay lines by optical OFDM technique

    DEFF Research Database (Denmark)

    Zhu, Jiangbo; Tao, Li; Zhang, Ziran

    2013-01-01

    We propose a novel scheme to expand the inherent limit in the product of the optical delay and the transmission bandwidth in resonator-based delay lines, with the optical orthogonal frequency division multiplexing (OOFDM) technique. The optical group delay properties of a single ring resonator we...

  15. Microwave-optical double resonance spectroscopy. Progress report, February 1, 1975--January 31, 1976

    International Nuclear Information System (INIS)

    Pratt, D.W.

    1975-01-01

    Zero-field and high-field optical detection of magnetic resonance (ODMR), electron paramagnetic resonance (EPR), and optical spectroscopy experiments were performed on several systems in order to further basic knowledge of the structure, reactions, and response to radiation of atoms, molecules, and ions. Results on the following studies are reported: the direct observation of level anticrossing and mixing effects in excited molecular triplet states; anomalous zero-field splittings in the lowest triplet state of 1-iodonaphthalene; evidence for second-order spin-orbit coupling and spin delocalization effects in the lowest triplet state of benzophenone; direct observation of the optical absorption spectra of reactive free radicals at room temperature; measurements of the activation and thermodynamic parameters of several cyclohexenyl and cyclohexanonyl radicals; complete analyses of the level anticrossing and cross relaxation spectra of oriented molecular triplet states; solutions to the spin Hamiltonian for S = 1, I = 5/2 systems in both zero-field and high-field, an improvement by a factor of ten in the resolution of ODMR experiments in high field; and measurements of the optical and magnetic resonance properties of a series of halogenated naphthalenes in their lowest triplet states

  16. Resonant optical transducers for in-situ gas detection

    Science.gov (United States)

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  17. Resonant optical transducers for in-situ gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tiziana C.; Cole, Garrett; Goddard, Lynford

    2018-01-30

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  18. Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Mi Xian-Wu

    2011-01-01

    Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya—Perot optical cavity via radiation—pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Maximizing ion current rectification in a bipolar conical nanopore fluidic diode using optimum junction location.

    Science.gov (United States)

    Singh, Kunwar Pal

    2016-10-12

    The ion current rectification has been obtained as a function of the location of a heterojunction in a bipolar conical nanopore fluidic diode for different parameters to determine the junction location for maximum ion current rectification using numerical simulations. Forward current peaks for a specific location of the junction and reverse current decreases with the junction location due to a change in ion enrichment/depletion in the pore. The optimum location of the heterojunction shifts towards the tip with base/tip diameter and surface charge density, and towards the base with the electrolyte concentration. The optimum location of the heterojunction has been approximated by an equation as a function of pore length, base/tip diameter, surface charge density and electrolyte concentration. The study is useful to design a rectifier with maximum ion current rectification for practical purposes.

  20. Optical bio-chemical sensors on SNOW ring resonators

    Science.gov (United States)

    Khorasaninejad, Mohammadreza; Clarke, Nigel; Anantram, M. P.; Singh Saini, Simarjeet

    2011-08-01

    In this paper, we propose and analyze novel ring resonator based bio-chemical sensors on silicon nanowire optical waveguide (SNOW) and show that the sensitivity of the sensors can be increased by an order of magnitude as compared to silicon-on-insulator based ring resonators while maintaining high index contrast and compact devices. The core of the waveguide is hollow and allows for introduction of biomaterial in the center of the mode, thereby increasing the sensitivity of detection. A sensitivity of 243 nm/refractive index unit (RIU) is achieved for a change in bulk refractive index. For surface attachment, the sensor is able to detect monolayer attachments as small as 1 Å on the surface of the silicon nanowires.

  1. Interband optical absorption in the Wannier-Stark ladder under the electron-LO-phonon resonance condition

    International Nuclear Information System (INIS)

    Govorov, A.O.

    1993-08-01

    Interband optical absorption in the Wannier-Stark ladder in the presence of the electron-LO-phonon resonance is investigated theoretically. The electron-LO-phonon resonance occurs when the energy spacing between adjacent Stark-ladder levels coincides with the LO-phonon energy. We propose a model describing the polaron effect in a superlattice. Calculations show that the absorption line shape is strongly modified due to the polaron effect under the electron-LO-phonon resonance condition. We consider optical phenomena in a normal magnetic field that leads to enhancement of polaron effects. (author). 17 refs, 5 figs

  2. Optically detected cyclotron resonance in a single GaAs/AlGaAs heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Gregor

    2011-09-23

    Optically detected far-infrared cyclotron resonance (FIR-ODCR) in GaAs/AlGaAs HJs is interpreted in the frame of an exciton-dissociation mechanism. It is possible to explain the ODR mechanism by an exciton drag, mediated by ballistically propagating phonons. Furthermore, very narrow resonances are presented and realistic electron mobility values can be calculated. The exceptionally narrow ODCRs allow to measure conduction-band nonparabolicity effects and resolve satellite resonances, close to the main cyclotron resonance line.

  3. Molecular dynamics study on the thermal conductivity and thermal rectification in graphene with geometric variations of doped boron

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qi, E-mail: alfred_02030210@163.com; Wei, Yuan

    2014-03-15

    Thermal conductivity and thermal rectification of graphene with geometric variations have been investigated by using classical non-equilibrium molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification. Two different structural models, triangular single-boron-doped graphene (SBDG) and parallel various-boron-doped graphene (VBDG), were considered. The results indicated that the thermal conductivities of two different models are about 54–63% lower than pristine graphene. And it was also found that the structure of parallel various-boron-doped graphene is inhibited more strongly on the heat transfer than that of triangular single-boron-doped graphene. The reduction in the thermal conductivities of two different models gradually decreases as the temperature rises. The thermal conductivities of triangular boron-doped graphene have a large difference in both directions, and the thermal rectification of this structure shows the downward trend with increasing temperature. However, the thermal conductivities of parallel various-boron-doped graphene are similar in both directions, and the thermal rectification effect is not obvious in this structure. The phenomenon of thermal rectification exits in SBDG. It implies that the SBDG might be a potential promising structure for thermal rectifier by controlling the boron-doped model.

  4. Molecular dynamics study on the thermal conductivity and thermal rectification in graphene with geometric variations of doped boron

    International Nuclear Information System (INIS)

    Liang, Qi; Wei, Yuan

    2014-01-01

    Thermal conductivity and thermal rectification of graphene with geometric variations have been investigated by using classical non-equilibrium molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification. Two different structural models, triangular single-boron-doped graphene (SBDG) and parallel various-boron-doped graphene (VBDG), were considered. The results indicated that the thermal conductivities of two different models are about 54–63% lower than pristine graphene. And it was also found that the structure of parallel various-boron-doped graphene is inhibited more strongly on the heat transfer than that of triangular single-boron-doped graphene. The reduction in the thermal conductivities of two different models gradually decreases as the temperature rises. The thermal conductivities of triangular boron-doped graphene have a large difference in both directions, and the thermal rectification of this structure shows the downward trend with increasing temperature. However, the thermal conductivities of parallel various-boron-doped graphene are similar in both directions, and the thermal rectification effect is not obvious in this structure. The phenomenon of thermal rectification exits in SBDG. It implies that the SBDG might be a potential promising structure for thermal rectifier by controlling the boron-doped model

  5. Microwave-optical double resonance spectroscopy. Progress report, February 1, 1978--January 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, D.W.

    1978-11-01

    Optical, zero-field and high-field optical detection of magnetic resonance, electron-nuclear double resonance, level anticrossing and cross relaxation, and electron paramagnetic resonance experiments have been performed on a variety of chemical systems in order to further basic knowledge of the structure, reactivity, and response to radiation of molecules in their ground and/or excited electronic states. Systems investigated include organic molecules oriented in low temperature crystals, simple free radicals, transition metal complexes, rare earth hydrides, and hemeproteins in biological enzymes. Aside from their intrinsic interest, many of these systems are of potential importance in a number of applied areas including hydrocarbon-based fuel systems, solar energy devices, laser-initiated photochemical reactions, and free radical mechanisms in chemical carcinogenesis.

  6. Microwave-optical double resonance spectroscopy. Progress report, February 1, 1978--January 31, 1979

    International Nuclear Information System (INIS)

    Pratt, D.W.

    1978-01-01

    Optical, zero-field and high-field optical detection of magnetic resonance, electron-nuclear double resonance, level anticrossing and cross relaxation, and electron paramagnetic resonance experiments have been performed on a variety of chemical systems in order to further basic knowledge of the structure, reactivity, and response to radiation of molecules in their ground and/or excited electronic states. Systems investigated include organic molecules oriented in low temperature crystals, simple free radicals, transition metal complexes, rare earth hydrides, and hemeproteins in biological enzymes. Aside from their intrinsic interest, many of these systems are of potential importance in a number of applied areas including hydrocarbon-based fuel systems, solar energy devices, laser-initiated photochemical reactions, and free radical mechanisms in chemical carcinogenesis

  7. Optical pulling and pushing forces exerted on silicon nanospheres with strong coherent interaction between electric and magnetic resonances.

    Science.gov (United States)

    Liu, Hongfeng; Panmai, Mingcheng; Peng, Yuanyuan; Lan, Sheng

    2017-05-29

    We investigated theoretically and numerically the optical pulling and pushing forces acting on silicon (Si) nanospheres (NSs) with strong coherent interaction between electric and magnetic resonances. We examined the optical pulling and pushing forces exerted on Si NSs by two interfering waves and revealed the underlying physical mechanism from the viewpoint of electric- and magnetic-dipole manipulation. As compared with a polystyrene (PS) NS, it was found that the optical pulling force for a Si NS with the same size is enlarged by nearly two orders of magnitude. In addition to the optical pulling force appearing at the long-wavelength side of the magnetic dipole resonance, very large optical pushing force is observed at the magnetic quadrupole resonance. The correlation between the optical pulling/pushing force and the directional scattering characterized by the ratio of the forward to backward scattering was revealed. More interestingly, it was found that the high-order electric and magnetic resonances in large Si NSs play an important role in producing optical pulling force which can be generated by not only s-polarized wave but also p-polarized one. Our finding indicates that the strong coherent interaction between the electric and magnetic resonances existing in nanoparticles with large refractive indices can be exploited to manipulate the optical force acting on them and the correlation between the optical force and the directional scattering can be used as guidance. The engineering and manipulation of optical forces will find potential applications in the trapping, transport and sorting of nanoparticles.

  8. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter.

    Science.gov (United States)

    Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris

    2012-11-19

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

  9. Enhancement of the thermo-optical response of silver nanoparticles due to surface plasmon resonance

    Science.gov (United States)

    Hashemi Zadeh, Sakineh; Rashidi-Huyeh, Majid; Palpant, Bruno

    2017-10-01

    Owing to their remarkable optical properties, noble metals' nanoparticles are proposed for many applications. Controlling the temperature dependence of these properties may then appear to be of great relevance. In this paper, we investigate the thermo-optical properties of silver nanoparticles. Different silver nanocolloids were prepared with different surface plasmon resonance modes. The thermo-extinction spectra of the colloidal solutions were then evaluated by measuring the extinction spectra at different temperatures. This reveals a typical peak-valley profile around each surface plasmon resonance mode. Mie theory was used to study theoretically the impact of nanoparticle size on the thermo-optical properties. The results allow us to interpret properly the experimental findings.

  10. Enhanced heat rectification effect in a quantum dot connected to ferromagnetic leads

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Feng, E-mail: chifeng@semi.ac.cn [School of Physical Science and Technology, Inner Mongolia University, Huhehaote 010023 (China); College of Engineering, Bohai University, Jinzhou 121013 (China); Sun, Lian-Liang [College of Science, North China University of Technology, Beijing 100041 (China); Zheng, Jun; Guo, Yu [College of Engineering, Bohai University, Jinzhou 121013 (China)

    2015-06-15

    We study theoretically the heat generation by electric current in an interacting single level quantum-dot connected to ferromagnetic leads. The heat is transferred between the dot and the lattice vibration of its host material (phonon reservoir). Particular attention is paid on the heat's rectification effect achieved by properly arranging the dot level and the bias voltage. We find that this effect is remarkably enhanced when the two leads' magnetic moments are in antiparallel configuration, i.e., the magnitude of the heat generation is reduced (amplified) in the negative (positive) bias regime as compared to the cases of parallel configuration and nonmagnetic leads. The rectification effect is even enhanced when one of the lead's spin polarization approaches to unit, during which the negative differential of the heat generation is weakened due to the change of the spin-dependent electron occupation numbers on the dot. The found results may be used for thermal transistor in the newly emerged research subject of phononics. - Highlights: • Heat flow between electrons and phonons is controlled by interaction between them. • A thermal diode or rectifier is proposed to work under electrical bias. • The heat rectification effect can be enhanced by the leads' ferromagnetism.

  11. Local rectification of heat flux

    Science.gov (United States)

    Pons, M.; Cui, Y. Y.; Ruschhaupt, A.; Simón, M. A.; Muga, J. G.

    2017-09-01

    We present a chain-of-atoms model where heat is rectified, with different fluxes from the hot to the cold baths located at the chain boundaries when the temperature bias is reversed. The chain is homogeneous except for boundary effects and a local modification of the interactions at one site, the “impurity”. The rectification mechanism is due here to the localized impurity, the only asymmetrical element of the structure, apart from the externally imposed temperature bias, and does not rely on putting in contact different materials or other known mechanisms such as grading or long-range interactions. The effect survives if all interaction forces are linear except the ones for the impurity.

  12. Optically detected magnetic resonance of sulfur doped gallium phosphide

    International Nuclear Information System (INIS)

    Brower, K.L.

    1990-01-01

    The authors have recently extended our magnetic resonance capabilities to include optically detected magnetic resonance (ODMR) for purposes of studying defects in III-V compound semiconductors systems. Some of the systems of particular interest with regard to defect studies are samples implanted with particular isotopes. For example, this technique may allow one to observe the hyperfine structure of impurity donors in GaP. Other interesting material systems are the strained layer superlattices and their interfaces. GaP is one of the III-V compound semiconductors of particular interest for ODMR studies. In this paper the authors report the results of preliminary ODMR observations on as-grown sulfur doped GaP

  13. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging

    Science.gov (United States)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-01

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  14. Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator.

    Science.gov (United States)

    Lydiate, Joseph

    2017-07-01

    This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor.

  15. A carbon nanotube optical rectenna

    Science.gov (United States)

    Sharma, Asha; Singh, Virendra; Bougher, Thomas L.; Cola, Baratunde A.

    2015-12-01

    An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of ˜2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (˜10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna, a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current-voltage scans between 5 and 77 °C, indicating a potential for robust operation.

  16. Capture into resonance and phase space dynamics in optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2016-05-01

    The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.

  17. Protein detection on biotin-derivatized polyallylamine by optical microring resonators

    NARCIS (Netherlands)

    Ullien, D.; Harmsma, P.J.; Chakkalakkal Abdulla, S.M.C.; Boer, B.M. de; Bosma, D.; Sudhölter, E.J.R.; Smet, L.C.P.M. de; Jager, W.F.

    2014-01-01

    Silicon optical microring resonators (MRRs) are sensitive devices that can be used for biosensing. We present a novel biosensing platform based on the application of polyelectrolyte (PE) layers on such MRRs. The top PE layer was covalently labeled with biotin to ensure binding sites for antibodies

  18. Linear all-optical signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2016-01-01

    Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus...

  19. Capture into resonance and phase-space dynamics in an optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2016-04-01

    The process of capture of a molecular ensemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase-space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 ,2 characterizing the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in good agreement with simulations. The existing experiments satisfy the validity conditions of the theory.

  20. Resonant intersubband polariton-LO phonon scattering in an optically pumped polaritonic device

    Science.gov (United States)

    Manceau, J.-M.; Tran, N.-L.; Biasiol, G.; Laurent, T.; Sagnes, I.; Beaudoin, G.; De Liberato, S.; Carusotto, I.; Colombelli, R.

    2018-05-01

    We report experimental evidence of longitudinal optical (LO) phonon-intersubband polariton scattering processes under resonant injection of light. The scattering process is resonant with both the initial (upper polariton) and final (lower polariton) states and is induced by the interaction of confined electrons with longitudinal optical phonons. The system is optically pumped with a mid-IR laser tuned between 1094 cm-1 and 1134 cm-1 (λ = 9.14 μm and λ = 8.82 μm). The demonstration is provided for both GaAs/AlGaAs and InGaAs/AlInAs doped quantum well systems whose intersubband plasmon lies at a wavelength of ≈10 μm. In addition to elucidating the microscopic mechanism of the polariton-phonon scattering, it is found to differ substantially from the standard single particle electron-LO phonon scattering mechanism, and this work constitutes an important step towards the hopefully forthcoming demonstration of an intersubband polariton laser.

  1. Optical resonators for true-time-delay beam steering

    Science.gov (United States)

    Gesell, Leslie H.; Evanko, Stephen M.

    1996-06-01

    Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.

  2. Tuning the Schottky rectification in graphene-hexagonal boron nitride-molybdenum disulfide heterostructure.

    Science.gov (United States)

    Liu, Biao; Zhao, Yu-Qing; Yu, Zhuo-Liang; Wang, Lin-Zhi; Cai, Meng-Qiu

    2018-03-01

    It was still a great challenge to design high performance of rectification characteristic for the rectifier diode. Lately, a new approach was proposed experimentally to tune the Schottky barrier height (SBH) by inserting an ultrathin insulated tunneling layer to form metal-insulator-semiconductor (MIS) heterostructures. However, the electronic properties touching off the high performance of these heterostructures and the possibility of designing more efficient applications for the rectifier diode were not presently clear. In this paper, the structural, electronic and interfacial properties of the novel MIS diode with the graphene/hexagonal boron nitride/monolayer molybdenum disulfide (GBM) heterostructure had been investigated by first-principle calculations. The calculated results showed that the intrinsic properties of graphene and MoS 2 were preserved due to the weak van der Waals contact. The height of interfacial Schottky barrier can be tuned by the different thickness of hBN layers. In addition, the GBM Schottky diode showed more excellent rectification characteristic than that of GM Schottky diode due to the interfacial band bending caused by the epitaxial electric field. Based on the electronic band structure, we analyzed the relationship between the electronic structure and the nature of the Schottky rectifier, and revealed the potential of utilizing GBM Schottky diode for the higher rectification characteristic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators.

    Science.gov (United States)

    Diallo, Souleymane; Lin, Guoping; Chembo, Yanne K

    2015-08-15

    In this Letter, we show that giant thermo-optical oscillations can be triggered in millimeter (mm)-size whispering gallery mode (WGM) disk resonators when they are pumped by a resonant continuous-wave laser. Our resonator is an ultrahigh-Q barium fluoride cavity that features a positive thermo-optic coefficient and a negative thermo-elastic coefficient. We demonstrate for the first time, to our knowledge, that the complex interplay between these two thermic coefficients and the intrinsic Kerr nonlinearity yields very sharp slow-fast relaxation oscillations with a slow timescale that can be exceptionally large, typically of the order of 1 s. We use a time-domain model to gain understanding into this instability, and we find that both the experimental and theoretical results are in excellent agreement. The understanding of these thermal effects is an essential requirement for every WGM-related application and our study demonstrates that even in the case of mm-size resonators, such effects can still be accurately analyzed using nonlinear time-domain models.

  4. Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers.

    Science.gov (United States)

    Verre, R; Yang, Z J; Shegai, T; Käll, M

    2015-03-11

    The possibility of achieving optical magnetism at visible frequencies using plasmonic nanostructures has recently been a subject of great interest. The concept is based on designing structures that support plasmon modes with electron oscillation patterns that imitate current loops, that is, magnetic dipoles. However, the magnetic resonances are typically spectrally narrow, thereby limiting their applicability in, for example, metamaterial designs. We show that a significantly broader magnetic response can be realized in plasmonic pentamers constructed from metal-insulator-metal (MIM) sandwich particles. Each MIM unit acts as a magnetic meta-atom and the optical magnetism is rendered quasi-broadband through hybridization of the in-plane modes. We demonstrate that scattering spectra of individual MIM pentamers exhibit multiple Fano resonances and a broad subradiant spectral window that signals the magnetic interaction and a hierarchy of coupling effects in these intricate three-dimensional nanoparticle oligomers.

  5. Optical phased array using guided resonance with backside reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2018-03-13

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  6. Production and detection of light bosons using optical resonators

    International Nuclear Information System (INIS)

    Hoogeveen, F.; Ziegenhagen, T.

    1990-11-01

    Experiments looking for light spin zero particles using the 'shining light through walls' technique can be improved by enclosing the light in an optical resonator. In this paper we analyze this technique. The effect of using cavities factorizes into a gainfactor for both the emitting and the receiving cavity and a modecoupling constant. The gain factor only depends on the optical quality of the two cavities, whereas the modecoupling constant depends, but not sensitively, in a calculable way on the geometry, axion mass and magnetic fields used. An increase in sensitivity by a factor 10 in the axion photon coupling constant is within reach. (orig.)

  7. Analytical studies on pump-induced optical resonances in an M-type six-level system

    International Nuclear Information System (INIS)

    Ghosh, Saswata; Mandal, Swapan

    2010-01-01

    In the domain of semiclassical formulation and for the Doppler-free atom-field interaction, we construct the optical Bloch equations involving an M-type six-level system coupled to two pump fields and a probe field. The response of the system is probed for different pump-induced transitions in double and triple-resonance situations. In order to obtain the coherent lineshapes (absorptive and dispersive), we use the usual perturbation method for obtaining the approximate analytical solutions to these coupled optical Bloch equations for the density matrix elements. The interferences between the probability amplitudes for different energy levels (dipole allowed and dipole forbidden) are taken care of. For off-resonance pump positions, the linewidths of the three probe transitions are insensitive to the pump Rabi frequencies. On the other hand, the shifts of the three resonance peaks are extremely sensitive to the pump Rabi frequencies. However, for on-resonance pump conditions, the sensitivities of pump Rabi frequencies on the linewidths of the resonance peaks and on the shifts of the resonance peak positions are opposite to those of their off-resonance counterparts. In particular, we have shown the asymmetric and symmetric Rabi splittings under different physical conditions, for non-zero and near-zero probe detuning, respectively. The Rabi splitting under triple-resonance conditions, significantly, modifies the dispersive lineshape at the centre of the absorption line. The two- and three-photon absorptions are also reported for different off-resonant pump positions.

  8. Resonance-inclined optical nuclear spin polarization of liquids in diamond structures

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2016-02-01

    Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners.

  9. Rectangular optical filter based on high-order silicon microring resonators

    Science.gov (United States)

    Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan

    2017-07-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  10. Rectangular optical filter based on high-order silicon microring resonators

    Institute of Scientific and Technical Information of China (English)

    BAO Jia-qi; YU Kan; WANG Li-jun; YIN Juan-juan

    2017-01-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network.The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response.In general,the spectrum response rectangular degree of the single MRR is very low,so it cannot be used in the DWDM system.Using the high-order MRRs,the bandwidth of flat-top pass band,the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously.In this paper,a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated.Using 15 coupled race-track MRRs with 10 μm in radius,the 3 dB flat-top pass band of 2 nm,the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  11. Fiber Laser Pumped Continuous-wave Singly-resonant Optical Parametric Oscillator

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Walde, T.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.; Fejer, Martin M.

    2002-01-01

    We report on the first fiber-pumped CW LiNbO/sub 3/ optical parametric oscillator (OPO). The OPO is singly resonant (SRO) and generates idler wavelengths in the range of 3.0 /spl mu/m to 3.7 /spl mu/m with a maximum output power of 1.9 watt.

  12. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion.

    Science.gov (United States)

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).

  13. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Directory of Open Access Journals (Sweden)

    J. Gabriel Ortega-Mendoza

    2014-10-01

    Full Text Available This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR. We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  14. Folded Fabry-Perot quasi-optical ring resonator diplexer Theory and experiment

    Science.gov (United States)

    Pickett, H. M.; Chiou, A. E. T.

    1983-01-01

    Performance of folded Fabry-Perot quasi-optical ring resonator diplexers with different geometries of reflecting surfaces is investigated both theoretically and experimentally. Design of optimum surface geometry for minimum diffraction, together with the figure of merit indicating improvement in performance, are given.

  15. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  16. Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics.

    Science.gov (United States)

    Rokhsari, H; Vahala, K J

    2004-06-25

    We demonstrate a low-loss, optical four port resonant coupler (add-drop geometry), using ultrahigh Q (>10(8)) toroidal microcavities. Different regimes of operation are investigated by variation of coupling between resonator and fiber taper waveguides. As a result, waveguide-to-waveguide power transfer efficiency of 93% (0.3 dB loss) and nonresonant insertion loss of 0.02% (photonic networks.

  17. All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Chai, Zhen; Hu, Xiaoyong; Gong, Qihuang

    2013-01-01

    A low-power all-optical switching is presented based on the all-optical tunable Fano-like resonance in a two-dimensional nonlinear ferroelectric photonic crystal made of polycrystalline lithium niobate. An asymmetric Fano-like line shape is achieved in the transmission spectrum by using two cascaded and uncoupled photonic crystal microcavities. The physical mechanism underlying the all-optical switching is attributed to the dynamic shift of the Fano-like resonance peak caused by variations in the dispersion relations of the photonic crystal structure induced by pump light. A large switching efficiency of 61% is reached under excitation of a weak pump light with an intensity as low as 1 MW cm −2 . (paper)

  18. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D

    2015-03-21

    A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.

  19. Application of semiclassical and geometrical optics theories to resonant modes of a coated sphere.

    Science.gov (United States)

    Bambino, Túlio M; Breitschaft, Ana Maria S; Barbosa, Valmar C; Guimarães, Luiz G

    2003-03-01

    This work deals with some aspects of the resonant scattering of electromagnetic waves by a metallic sphere covered by a dielectric layer, in the weak-absorption approximation. We carry out a geometrical optics treatment of the scattering and develop semiclassical formulas to determine the positions and widths of the system resonances. In addition, we show that the mean lifetime of broad resonances is strongly dependent on the polarization of the incident light.

  20. Inelastic transport and low-bias rectification in a single-molecule diode.

    Science.gov (United States)

    Hihath, Joshua; Bruot, Christopher; Nakamura, Hisao; Asai, Yoshihiro; Díez-Pérez, Ismael; Lee, Youngu; Yu, Luping; Tao, Nongjian

    2011-10-25

    Designing, controlling, and understanding rectification behavior in molecular-scale devices has been a goal of the molecular electronics community for many years. Here we study the transport behavior of a single molecule diode, and its nonrectifying, symmetric counterpart at low temperatures, and at both low and high biases to help elucidate the electron-phonon interactions and transport mechanisms in the rectifying system. We find that the onset of current rectification occurs at low biases, indicating a significant change in the elastic transport pathway. However, the peaks in the inelastic electron tunneling (IET) spectrum are antisymmetric about zero bias and show no significant changes in energy or intensity in the forward or reverse bias directions, indicating that despite the change in the elastic transmission probability there is little impact on the inelastic pathway. These results agree with first principles calculations performed to evaluate the IETS, which also allow us to identify which modes are active in the single molecule junction.

  1. Optically controlled resonant tunneling in a double-barrier diode

    Science.gov (United States)

    Kan, S. C.; Wu, S.; Sanders, S.; Griffel, G.; Yariv, A.

    1991-03-01

    The resonant tunneling effect is optically enhanced in a GaAs/GaAlAs double-barrier structure that has partial lateral current confinement. The peak current increases and the valley current decreases simultaneously when the device surface is illuminated, due to the increased conductivity of the top layer of the structure. The effect of the lateral current confinement on the current-voltage characteristic of a double-barrier resonant tunneling structure was also studied. With increased lateral current confinement, the peak and valley current decrease at a different rate such that the current peak-to-valley ratio increases up to three times. The experimental results are explained by solving the electrostatic potential distribution in the structure using a simple three-layer model.

  2. Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2015-11-01

    Full Text Available An ultra-high sensitivity double-slot hybrid plasmonic (DSHP ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and plasmonic materials (silver is used in this paper, which leads to high sensitivity to the infiltrating materials. By partial opening of the outer plasmonic circular sheet of the DSHP ring, a conventional side-coupled silicon on insulator (SOI bus waveguide can be used. Experimental results demonstrate ultra-high sensitivity (687.5 nm/RIU of the developed DSHP ring resonator, which is about five-times higher than for the conventional Si ring with the same geometry. Further discussions show that a very low detection limit (5.37 × 10−6 RIU can be achieved after loaded Q factor modifications. In addition, the plasmonic metal structures offer also the way to process optical and electronic signals along the same hybrid plasmonic circuits with small capacitance (~0.275 fF and large electric field, which leads to possible applications in compact high-efficiency electro-optic modulators, where no extra electrodes for electronic signals are required.

  3. All-optical 10 Gb/s AND logic gate in a silicon microring resonator

    DEFF Research Database (Denmark)

    Xiong, Meng; Lei, Lei; Ding, Yunhong

    2013-01-01

    An all-optical AND logic gate in a single silicon microring resonator is experimentally demonstrated at 10 Gb/s with 50% RZ-OOK signals. By setting the wavelengths of two intensity-modulated input pumps on the resonances of the microring resonator, field-enhanced four-wave mixing with a total inp...... power of only 8.5 dBm takes place in the ring, resulting in the generation of an idler whose intensity follows the logic operation between the pumps. Clear and open eye diagrams with a bit-error- ratio below 10−9 are achieved....

  4. Observation of vacuum-enhanced electron spin resonance of optically levitated nanodiamonds

    Science.gov (United States)

    Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potential applications of NV centers in gas sensing.

  5. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Barzanjeh, Sh. [Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, 81746-73441 Isfahan (Iran, Islamic Republic of); School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Vitali, D.; Tombesi, P. [School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Milburn, G. J. [Centre for Engineered Quantum Systems, School of Physical Sciences, University of Queensland, Saint Lucia, Queensland 4072 (Australia)

    2011-10-15

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  6. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    International Nuclear Information System (INIS)

    Barzanjeh, Sh.; Vitali, D.; Tombesi, P.; Milburn, G. J.

    2011-01-01

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  7. Amplification of the Signal Intensity of Fluorescence-Based Fiber-Optic Biosensors Using a Fabry-Perot Resonator Structure

    Directory of Open Access Journals (Sweden)

    Meng-Chang Hsieh

    2015-02-01

    Full Text Available Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector.

  8. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Guy, J.; Mancuso, A.; Beck, R.; Moster, M.L.; Sedwick, L.A.; Quisling, R.G.; Rhoton, A.L. Jr.; Protzko, E.E.; Schiffman, J.

    1991-01-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence of both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain

  9. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    Science.gov (United States)

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  10. Rectification of pulsatile stress on soft tissues: a mechanism for normal-pressure hydrocephalus

    Science.gov (United States)

    Jalikop, Shreyas; Hilgenfeldt, Sascha

    2011-11-01

    Hydrocephalus is a pathological condition of the brain that occurs when cerebrospinal fluid (CSF) accumulates excessively in the brain cavities, resulting in compression of the brain parenchyma. Counter-intuitively, normal-pressure hydrocephalus (NPH) does not show elevated pressure differences across the compressed parenchyma. We investigate the effects of nonlinear tissue mechanics and periodic driving in this system. The latter is due to the cardiac cycle, which provides significant intracranial pressure and volume flow rate fluctuations. Nonlinear rectification of the periodic driving within a model of fluid flow in poroelastic material can lead to compression or expansion of the parenchyma, and this effect does not rely on changes in the mean intracranial pressure. The rectification effects can occur gradually over several days, in agreement with clinical studies of NPH.

  11. Electrically tunable tunneling rectification magnetoresistance in magnetic tunneling junctions with asymmetric barriers.

    Science.gov (United States)

    Wang, Jing; Huang, Qikun; Shi, Peng; Zhang, Kun; Tian, Yufeng; Yan, Shishen; Chen, Yanxue; Liu, Guolei; Kang, Shishou; Mei, Liangmo

    2017-10-26

    The development of multifunctional spintronic devices requires simultaneous control of multiple degrees of freedom of electrons, such as charge, spin and orbit, and especially a new physical functionality can be realized by combining two or more different physical mechanisms in one specific device. Here, we report the realization of novel tunneling rectification magnetoresistance (TRMR), where the charge-related rectification and spin-dependent tunneling magnetoresistance are integrated in Co/CoO-ZnO/Co magnetic tunneling junctions with asymmetric tunneling barriers. Moreover, by simultaneously applying direct current and alternating current to the devices, the TRMR has been remarkably tuned in the range from -300% to 2200% at low temperature. This proof-of-concept investigation provides an unexplored avenue towards electrical and magnetic control of charge and spin, which may apply to other heterojunctions to give rise to more fascinating emergent functionalities for future spintronics applications.

  12. Dynamics of moving interacting atoms in a laser radiation field and optical size resonances

    International Nuclear Information System (INIS)

    Gadomskii, O.N.; Glukhov, A.G.

    2005-01-01

    The forces acting on interacting moving atoms exposed to resonant laser radiation are calculated. It is shown that the forces acting on the atoms include the radiation pressure forces as well as the external and internal bias forces. The dependences of the forces on the atomic spacing, polarization, and laser radiation frequency are given. It is found that the internal bias force associated with the interaction of atomic dipoles via the reemitted field may play an important role in the dynamics of dense atomic ensembles in a light field. It is shown that optical size resonances appear in the system of interacting atoms at frequencies differing substantially from transition frequencies in the spectrum of atoms. It is noted that optical size resonances as well as the Doppler frequency shift in the spectrum of interacting atoms play a significant role in the processes of laser-radiation-controlled motion of the atoms

  13. Waveguide Cavity Resonator as a Source of Optical Squeezing

    Science.gov (United States)

    Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.

    2017-04-01

    We present the generation of continuous-wave optical squeezing from a titanium-in-diffused lithium niobate waveguide resonator. We directly measure 2.9 ±0.1 dB of single-mode squeezing, which equates to a produced level of 4.9 ±0.1 dB after accounting for detection losses. This device showcases the current capabilities of this waveguide architecture and precipitates more complicated integrated continuous-wave quantum devices in the continuous-variable regime.

  14. Transition polarizability model of induced resonance Raman optical activity

    Czech Academy of Sciences Publication Activity Database

    Yamamoto, S.; Bouř, Petr

    2013-01-01

    Roč. 34, č. 25 (2013), s. 2152-2158 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : induced resonance Raman optical activity * europium complexes * density functional computations * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013

  15. Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders

    DEFF Research Database (Denmark)

    Sondergaard, T.; Bozhevolnyi, S. I.; Beermann, J.

    2012-01-01

    Transmission through thin metal films with a periodic arrangement of tapered slits is considered. Transmission maps covering a wide range of periods, film thicknesses, and taper angles are presented. The maps show resonant transmission when fundamental and higher-order slit resonances are excited...... to be in the range of 6 degrees-10 degrees. Both theory and experiments show split-peak spectra and shifted-peak spectra due to interference between a slit resonance and Rayleigh-Wood anomalies. (C) 2011 Optical Society of America...

  16. Physical optics modeling of modal patterns in a crossed porro prism resonator

    CSIR Research Space (South Africa)

    Litvin, IA

    2006-07-01

    Full Text Available A physical optics model is proposed to describe the transverse modal patterns in crossed Porro prism resonators. The model departs from earlier attempts in that the prisms are modeled as non-classical rotating elements with amplitude and phase...

  17. Optical switching at 1.55um in silicon racetrack resonators using phase change materials

    NARCIS (Netherlands)

    Rudé, M.; Pello, J.; Simpson, R.E.; Osmond, J.; Roelkens, G.C.; Tol, van der J.J.G.M.; Pruneri, V.

    2013-01-01

    An optical switch operating at a wavelength of 1.55¿µm and showing a 12 dB modulation depth is introduced. The device is implemented in a silicon racetrack resonator using an overcladding layer of the phase change data storage material Ge2Sb2Te5, which exhibits high contrast in its optical

  18. Scalable nanofabrication of U-shaped nanowire resonators with tunable optical magnetism.

    Science.gov (United States)

    Zhou, Fan; Wang, Chen; Dong, Biqin; Chen, Xiangfan; Zhang, Zhen; Sun, Cheng

    2016-03-21

    Split ring resonators have been studied extensively in reconstituting the diminishing magnetism at high electromagnetic frequencies in nature. However, breakdown in the linear scaling of artificial magnetism is found to occur at the near-infrared frequency mainly due to the increasing contribution of self-inductance while reducing dimensions of the resonators. Although alternative designs have enabled artificial magnetism at optical frequencies, their sophisticated configurations and fabrication procedures do not lend themselves to easy implementation. Here, we report scalable nanofabrication of U-shaped nanowire resonators (UNWRs) using the high-throughput nanotransfer printing method. By providing ample area for conducting oscillating electric current, UNWRs overcome the saturation of the geometric scaling of the artificial magnetism. We experimentally demonstrated coarse and fine tuning of LC resonances over a wide wavelength range from 748 nm to 1600 nm. The added flexibility in transferring to other substrates makes UNWR a versatile building block for creating functional metamaterials in three dimensions.

  19. Radiation necrosis of the optic chiasm, optic tract, hypothalamus, and upper pons after radiotherapy for pituitary adenoma, detected by gadolinium-enhanced, T1-weighted magnetic resonance imaging: Case report

    International Nuclear Information System (INIS)

    Tachibana, O.; Yamaguchi, N.; Yamashima, T.; Yamashita, J.

    1990-01-01

    A 26-year-old woman was treated for a prolactin secreting pituitary adenoma by surgery and radiotherapy (5860 rads). Fourteen months later, she developed right hemiparesis and dysarthria. A T1-weighted magnetic resonance imaging scan using gadolinium contrast showed a small, enhanced lesion in the upper pons. Seven months later, she had a sudden onset of loss of vision, and radiation optic neuropathy was diagnosed. A T1-weighted magnetic resonance imaging scan showed widespread gadolinium-enhanced lesions in the optic chiasm, optic tract, and hypothalamus. Magnetic resonance imaging is indispensable for the early diagnosis of radiation necrosis, which is not visualized by radiography or computed tomography

  20. Novel concept of multi-channel fiber optic surface plasmon resonance sensor

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Piliarik, Marek; Kvasnička, Pavel; Rajarajan, M.; Homola, Jiří

    2009-01-01

    Roč. 139, č. 1 (2009), s. 199-203 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : . Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.083, year: 2009

  1. Compact silicon photonic resonance-sssisted variable optical attenuator.

    Science.gov (United States)

    Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-11-28

    A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.

  2. UV-Vis Ratiometric Resonance Synchronous Spectroscopy for Determination of Nanoparticle and Molecular Optical Cross Sections.

    Science.gov (United States)

    Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-01

    Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.

  3. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, S. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Moradi, M., E-mail: m.moradi@kashanu.ac.ir [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Mohseni, S.M. [Department of Physics, Shahid Beheshti University, Evin, Tehran, 19839 (Iran, Islamic Republic of)

    2016-12-15

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism. - Highlights: • Large magneto-optical response in Cu/NiFe/Cu multilayer nanostructure is achieved. • Layer thickness and sequence are studied to find large transverse Kerr signal. • Hybridization of surface plasmon excitation and cavity resonance were done.

  4. Double closed-loop resonant micro optic gyro using hybrid digital phase modulation.

    Science.gov (United States)

    Ma, Huilian; Zhang, Jianjie; Wang, Linglan; Jin, Zhonghe

    2015-06-15

    It is well-known that the closed-loop operation in optical gyros offers wider dynamic range and better linearity. By adding a stair-like digital serrodyne wave to a phase modulator can be used as a frequency shifter. The width of one stair in this stair-like digital serrodyne wave should be set equal to the optical transmission time in the resonator, which is relaxed in the hybrid digital phase modulation (HDPM) scheme. The physical mechanism for this relaxation is firstly indicated in this paper. Detailed theoretical and experimental investigations are presented for the HDPM. Simulation and experimental results show that the width of one stair is not restricted by the optical transmission time, however, it should be optimized according to the rise time of the output of the digital-to-analogue converter. Based on the optimum parameters of the HDPM, a bias stability of 0.05°/s for the integration time of 400 seconds in 1 h has been carried out in an RMOG with a waveguide ring resonator with a length of 7.9 cm and a diameter of 2.5 cm.

  5. Forward rectification: spatial image normalization for a video from a forward facing vehicle camera

    Science.gov (United States)

    Prun, Viktor; Polevoy, Dmitri; Postnikov, Vassiliy

    2017-03-01

    The work in this paper is focused around visual ADAS (Advanced Driver Assistance Systems). We introduce forward rectification - a technique for making computer vision algorithms more robust against camera mount point and mount angles. Using the technique can increase the quality of recognition as well as lower the dimensionality for algorithm invariance, making it possible to apply simpler affine-invariant algorithms for applications that require projective invariance. Providing useful results this rectification requires thorough calibration of the camera, which can be done automatically or semi-automatically. The technique is of general nature and can be applied to different algorithms, such as pattern matching detectors, convolutional neural networks. The applicability of the technique is demonstrated on HOG-based car detector detection rate.

  6. Controlling the optical bistability beyond the multi-photon resonance condition in a three-level closed-loop atomic system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Nozari, Narges; Vafafard, Azar; Sahrai, Mostafa

    2012-01-01

    We investigate the optical bistability behavior of a three-level closed-loop atomic system beyond the multi-photon resonance condition. Using the Floquet decomposition, we solve the time-dependent equations of motion, beyond the multi-photon resonance condition. By identifying the different scattering processes contributing to the medium response, it is shown that in general the optical bistability behavior of the system is not phase-dependent. The phase dependence is due to the scattering of the driving and coupling fields into the probe field at a frequency, which, in general, differs from the probe field frequency. - Highlights: → We investigate optical bistability of a three-level closed-loop atomic system, beyond the multi-photon resonance condition. → By applying Floquet decomposition to the equation of motion, the different scattering processes contributing to the medium response are determined. → It is shown that the phase dependence of optical bistability arises from the scattering of the driving and coupling fields into the probe field frequency.

  7. Nanolaser spectroscopy and micro-optical resonators for detecting, analyzing, and manipulating bioparticles

    Science.gov (United States)

    Gourley, Paul L

    2012-06-26

    This invention provides a new method for rapidly analyzing single bioparticles to assess their material condition and state of health. The method is enabled by use of a resonant cavity apparatus to measure an optical property related to the bioparticle size and refractive index. Measuring the refractive index is useful for determining material properties of the bioparticle. The material properties depend on the biomolecular composition of the bioparticle. The biomolecular composition is, in turn, dependent on the state of health of the bioparticle. Thus, measured optical properties can be used to differentiate normal (healthy) and abnormal (diseased) states of bioparticles derived from cells or tissues. The method is illustrated with data obtained from a resonator with a gain medium. The invention also provides new methods for making multiple measurements in a single device and detecting, analyzing, and manipulating bioparticles that are much smaller than the wavelength of light.

  8. A precision test of Lorentz invariance using room-temperature high-finesse optical resonators

    International Nuclear Information System (INIS)

    Eisele, Christian

    2009-01-01

    An apparatus for a test of a basic postulate of the theory of Special Relativity, the isotropy of the speed of light, has been developed. Deviations from the isotropy imply a violation of Lorentz invariance, a symmetry assumed by all established theories of the fundamental forces. Such a signal may provide a glimpse on physics beyond our current theories of the fundamental forces, the General Theory of Relativity and the Standard Modell of particle physics. Since long theoreticians try to unify General Relativity and the Standard Modell within one theory, a grand unified theory (GUT). So far they did not succeed, although promising candidate theories have been developed, e.g. string theories or loop quantum gravity. However, there are hints that Lorentz invariance might not be an exact symmetry of nature, but that deviations are to be expected. This is a strong motivation for tests of Lorentz invariance with increased sensitivity as the one presented within this thesis. We employ, for the first time for a test of the isotropy of the speed of light, monolithic optical resonators fabricated from a glass ceramic with ultra low expansion coefficient (ULE). By means of a monolithic Nd:YAG-laser (λ = 1064 nm) we measure the difference between the resonance frequencies of two orthogonally oriented resonators. The low thermal expansion coefficient reduces the influence of thermal fluctuations on the resonance frequencies, which are a function of the mirror spacing and the speed of light inside the resonators only. The complete optical setup has been put on top of active vibration isolation supports, which strongly damp mechanical vibrations. This improves the short-time stability of the resonators resonance frequencies. This technique is used for the first time in a Speed of Light Isotropy Test (SLIT) experiment. Furthermore, a system for the stabilization of the tilt of the optics breadboard is implemented, based on electromagnetic actuators. This stabilization is

  9. A precision test of Lorentz invariance using room-temperature high-finesse optical resonators

    Energy Technology Data Exchange (ETDEWEB)

    Eisele, Christian

    2009-10-28

    An apparatus for a test of a basic postulate of the theory of Special Relativity, the isotropy of the speed of light, has been developed. Deviations from the isotropy imply a violation of Lorentz invariance, a symmetry assumed by all established theories of the fundamental forces. Such a signal may provide a glimpse on physics beyond our current theories of the fundamental forces, the General Theory of Relativity and the Standard Modell of particle physics. Since long theoreticians try to unify General Relativity and the Standard Modell within one theory, a grand unified theory (GUT). So far they did not succeed, although promising candidate theories have been developed, e.g. string theories or loop quantum gravity. However, there are hints that Lorentz invariance might not be an exact symmetry of nature, but that deviations are to be expected. This is a strong motivation for tests of Lorentz invariance with increased sensitivity as the one presented within this thesis. We employ, for the first time for a test of the isotropy of the speed of light, monolithic optical resonators fabricated from a glass ceramic with ultra low expansion coefficient (ULE). By means of a monolithic Nd:YAG-laser ({lambda} = 1064 nm) we measure the difference between the resonance frequencies of two orthogonally oriented resonators. The low thermal expansion coefficient reduces the influence of thermal fluctuations on the resonance frequencies, which are a function of the mirror spacing and the speed of light inside the resonators only. The complete optical setup has been put on top of active vibration isolation supports, which strongly damp mechanical vibrations. This improves the short-time stability of the resonators resonance frequencies. This technique is used for the first time in a Speed of Light Isotropy Test (SLIT) experiment. Furthermore, a system for the stabilization of the tilt of the optics breadboard is implemented, based on electromagnetic actuators. This stabilization is

  10. Optical force rectifiers based on PT-symmetric metasurfaces

    Science.gov (United States)

    Alaee, Rasoul; Gurlek, Burak; Christensen, Johan; Kadic, Muamer

    2018-05-01

    We introduce here the concept of optical force rectifier based on parity-time symmetric metasurfaces. Directly linked to the properties of non-Hermitian systems engineered by balanced loss and gain constituents, we show that light can exert asymmetric pulling or pushing forces on metasurfaces depending on the direction of the impinging light. This generates a complete force rectification in the vicinity of the exceptional point. Our findings have the potential to spark the design of applications in optical manipulation where the forces, strictly speaking, act unidirectionally.

  11. Single exosome detection in serum using microtoroid optical resonators (Conference Presentation)

    Science.gov (United States)

    Su, Judith

    2016-03-01

    Recently exosomes have attracted interest due to their potential as cancer biomarkers. We report the real time, label-free sensing of single exosomes in serum using microtoroid optical resonators. We use this approach to assay the progression of tumors implanted in mice by specifically detecting low concentrations of tumor-derived exosomes. Our approach measures the adsorption of individual exosomes onto a functionalized silica microtoroid by tracking changes in the optical resonant frequency of the microtoroid. When exosomes land on the microtoroid, they perturb its refractive index in the evanescent field and thus shift its resonance frequency. Through digital frequency locking, we are able to rapidly track these shifts with accuracies of better than 10 attometers (one part in 10^11). Samples taken from tumor-implanted mice from later weeks generated larger frequency shifts than those from earlier weeks. Control samples taken from a mouse with no tumor generated no such increase in signal between subsequent weeks. Analysis of shifts from tumor-implanted mouse samples show a distribution of unitary steps, with the maximum step having a height of ~1.2 fm, corresponding to an exosome size of 44 ± 4.8 nm. This size range corresponds to that found by performing nanoparticle tracking analysis on the same samples. Our results demonstrate development towards a minimally-invasive tumor "biopsy" that eliminates the need to find and access a tumor.

  12. Experimental study of neutron-optical potential with absorption using Fabry-Perot magnetic resonator

    International Nuclear Information System (INIS)

    Hino, M.; Tasaki, S.; Ebisawa, T.; Kawai, T.; Achiwa, N.; Yamazaki, D.

    1999-01-01

    Complete text of publication follows. Recently spin precession angles of neutrons tunneling and non-tunneling through [Permalloy45(PA)-germanium(Ge)]-PA Fabry-Perot magnetic resonator have been observed [1]. The spin precession angle is well reproduced by the theoretical phase difference of up and down spin neutron wave function based on one-dimensional Schroedinger equation using optical potential model [2]. Spin precession angle and transmission probability of neutron through PA-(Ge/Gd)-PA Fabry-Perot magnetic resonator are presented, where the gap(Ge/Gd) layer consists of germanium and gadolinium atoms, and the optical potential model for magnetic multilayer system with absorption is discussed. (author) [1] M. Hino, et al., Physica B 241-243, 1083 (1998).; [2] S. Yamada, et al., Annu. Rep. Res. Reactor Inst. Kyoto Univ. 11, 8 (1978)

  13. Development of two U.H.F. band resonators for application to CO2 laser electro-optical modulation

    International Nuclear Information System (INIS)

    Egan, M.G.; Blanc, P.; Sexton, M.C.

    1980-01-01

    The purpose of this report is to describe the design and testing of two U.H.F. band resonators destined for use in the linear electro-optical modulator of the CO 2 Laser Rapid Interferometer diagnostic at present under development for the WEGA Tokamak. The resonators take the form of a re-entrant coaxial line cavity and an interdigital line filter, both of which possess the regions of high electric field necessary to activate the linear electro-optical effect

  14. Significant improvement in the thermal annealing process of optical resonators

    Science.gov (United States)

    Salzenstein, Patrice; Zarubin, Mikhail

    2017-05-01

    Thermal annealing performed during process improves the quality of the roughness of optical resonators reducing stresses at the periphery of their surface thus allowing higher Q-factors. After a preliminary realization, the design of the oven and the electronic method were significantly improved thanks to nichrome resistant alloy wires and chopped basalt fibers for thermal isolation during the annealing process. Q-factors can then be improved.

  15. A high-flux entanglement source based on a doubly resonant optical parametric amplifier

    International Nuclear Information System (INIS)

    Kuklewicz, Christopher E; Keskiner, Eser; Wong, Franco N C; Shapiro, Jeffrey H

    2002-01-01

    A 532 nm pumped type-II phase-matched, doubly resonant KTP optical parametric amplifier (OPA) was operated near frequency degeneracy to yield an inferred downconverted photon pair production rate of 1.7x10 6 s -1 at a pump power of 100 μW. The OPA output consisted of three components: narrowband doubly resonant mode pairs; narrowband singly resonant mode pairs for which either the signal or idler was resonant with the cavity and broadband nonresonant mode pairs. Under frequency-degenerate operation, the broadband nonresonant mode pairs were polarization triplet states. We observed quantum interference between the orthogonally polarized photons of the triplet states when they were analysed with a polarizer set at 45 deg. relative to the OPA's output polarizations, leading to reduced coincidence counts

  16. Optical Properties of Plasmon Resonances with Ag/SiO2/Ag Multi-Layer Composite Nanoparticles

    International Nuclear Information System (INIS)

    Ye-Wan, Ma; Li-Hua, Zhang; Zhao-Wang, Wu; Jie, Zhang

    2010-01-01

    Optical properties of plasmon resonance with Ag/SiO 2 /Ag multi-layer nanoparticles are studied by numerical simulation based on Green's function theory. The results show that compared with single-layer Ag nanoparticles, the multi-layer nanoparticles exhibit several distinctive optical properties, e.g. with increasing the numbers of the multi-layer nanoparticles, the scattering efficiency red shifts, and the intensity of scattering enhances accordingly. It is interesting to find out that slicing an Ag-layer into multi-layers leads to stronger scattering intensity and more 'hot spots' or regions of stronger field enhancement. This property of plasmon resonance of surface Raman scattering has greatly broadened the application scope of Raman spectroscopy. The study of metal surface plasmon resonance characteristics is critical to the further understanding of surface enhanced Raman scattering as well as its applications. (fundamental areas of phenomenology (including applications))

  17. Fiber-Optic Magnetometry and Thermometry Using Optically Detected Magnetic Resonance With Nitrogen-Vacancy Centers in Diamond

    Science.gov (United States)

    Blakley, Sean Michael

    Nitrogen--vacancy diamond (NVD) quantum sensors are an emerging technology that has shown great promise in areas like high-resolution thermometry and magnetometry. Optical fibers provide attractive new application paradigms for NVD technology. A detailed description of the fabrication processes associated with the development of novel fiber-optic NVD probes are presented in this work. The demonstrated probes are tested on paradigmatic model systems designed to ascertain their suitability for use in challenging biological environments. Methods employing optically detected magnetic resonance (ODMR) are used to accurately measure and map temperature distributions of small objects and to demonstrate emergent temperature-dependent phenomena in genetically modified living organisms. These methods are also used to create detailed high resolution spatial maps of both magnetic scalar and magnetic vector field distributions of spatially localized weak field features in the presence of a noisy, high-field background.

  18. Direct measurement for organic solvents diffusion using ultra-sensitive optical resonator

    Science.gov (United States)

    Ali, Amir R.; Elias, Catherine M.

    2017-06-01

    In this paper, novel techniques using ultra-sensitive chemical optical sensor based on whispering gallery modes (WGM) are proposed through two different configurations. The first one will use a composite micro-sphere, when the solvent interacts with the polymeric optical sensors through diffusion the sphere start to swallow that solvent. In turn, that leads to change the morphology and mechanical properties of the polymeric spheres. Also, these changes could be measured by tracking the WGM shifts. Several experiments were carried out to study the solvent induced WGM shift using microsphere immersed in a solvent atmosphere. It can be potentially used for sensing the trace organic solvents like ethanol and methanol. The second configuration will use a composite beam nitrocellulose composite (NC) structure that acts as a sensing element. In this configuration, a beam is anchored to a substrate in one end, and the other end is compressing the polymeric sphere causing a shift in its WGM. When a chemical molecule is attached to the beam, the resonant frequency of the cantilever will be changed for a certain amount. By sensing this certain resonant frequency change, the existence of a single chemical molecule can be detected. A preliminary experimental model is developed to describe the vibration of the beam structure. The resonant frequency change of the cantilever due to attached mass is examined imperially using acetone as an example. Breath diagnosis can use this configuration in diabetic's diagnosis. Since, solvent like acetone concentration in human breath leads to a quick, convenient, accurate and painless breath diagnosis of diabetics. These micro-optical sensors have been examined using preliminary experiments to fully investigate its response. The proposed chemical sensor can achieve extremely high sensitivity in molecular level.

  19. Optical nucleation of bubble clouds in a high pressure spherical resonator.

    Science.gov (United States)

    Anderson, Phillip; Sampathkumar, A; Murray, Todd W; Gaitan, D Felipe; Glynn Holt, R

    2011-11-01

    An experimental setup for nucleating clouds of bubbles in a high-pressure spherical resonator is described. Using nanosecond laser pulses and multiple phase gratings, bubble clouds are optically nucleated in an acoustic field. Dynamics of the clouds are captured using a high-speed CCD camera. The images reveal cloud nucleation, growth, and collapse and the resulting emission of radially expanding shockwaves. These shockwaves are reflected at the interior surface of the resonator and then reconverge to the center of the resonator. As the shocks reconverge upon the center of the resonator, they renucleate and grow the bubble cloud. This process is repeated over many acoustic cycles and with each successive shock reconvergence, the bubble cloud becomes more organized and centralized so that subsequent collapses give rise to stronger, better defined shockwaves. After many acoustic cycles individual bubbles cannot be distinguished and the cloud is then referred to as a cluster. Sustainability of the process is ultimately limited by the detuning of the acoustic field inside the resonator. The nucleation parameter space is studied in terms of laser firing phase, laser energy, and acoustic power used.

  20. Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Quan Haiyong [Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854 (United States); Guo Zhixiong [Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854 (United States)]. E-mail: guo@jove.rutgers.edu

    2005-06-15

    Finite element analyses are made of the shifts of resonance frequencies of whispering-gallery-mode (WGM) for a fiber-microsphere coupling miniature sensor. The time-domain Maxwell's equations were adopted to describe the near-field radiation transport and solved by the in-plane TE waves application mode of the FEMLAB. The electromagnetic fields as well as the radiation energy distributions can be easily obtained by the finite element analysis. The resonance intensity spectrum curves in the frequency range from 213 to 220THz were studied under different biosensing conditions. Emphasis was put on the analyses of resonance shift sensitivity influenced by changes of the effective size of the sensor resonator (i.e., microsphere) and/or the refractive index of the medium surrounding the resonator. It is estimated that the WGM biosensor can distinguish molecular size change to the level of 0.1nm and refractive index change in the magnitude of {approx}10{sup -3} even with the use of a general optical spectrum analyzer of one GHz linewidth. Finally, the potential of the WGM miniature biosensor for monitoring peptide growth is investigated and a linear sensor curve is obtained.

  1. Optical rectification using geometrical field enhancement in gold nano-arrays

    Science.gov (United States)

    Piltan, S.; Sievenpiper, D.

    2017-11-01

    Conversion of photons to electrical energy has a wide variety of applications including imaging, solar energy harvesting, and IR detection. A rectenna device consists of an antenna in addition to a rectifying element to absorb the incident radiation within a certain frequency range. We designed, fabricated, and measured an optical rectifier taking advantage of asymmetrical field enhancement for forward and reverse currents due to geometrical constraints. The gold nano-structures as well as the geometrical parameters offer enhanced light-matter interaction at 382 THz. Using the Taylor expansion of the time-dependent current as a function of the external bias and oscillating optical excitation, we obtained responsivities close to quantum limit of operation. This geometrical approach can offer an efficient, broadband, and scalable solution for energy conversion and detection in the future.

  2. Optical sum-frequency generation in a whispering-gallery-mode resonator

    International Nuclear Information System (INIS)

    Strekalov, Dmitry V; Kowligy, Abijith S; Huang, Yu-Ping; Kumar, Prem

    2014-01-01

    We demonstrate sum-frequency generation between a telecom wavelength and the Rb D2 line, achieved through natural phase matching in a nonlinear whispering gallery mode resonator. Due to the strong optical field confinement and ultra high Q of the cavity, the process saturates already at sub-mW pump peak power, at least two orders of magnitude lower than in existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory based on spherical geometry. Our experimental and theoretical results point toward a new platform for manipulating the color and quantum states of light waves for applications such as atomic memory based quantum networking and logic operations with optical signals. (paper)

  3. Femtosecond terahertz studies of many-body correlations. From ultrafast phonon-plasmon dynamics to an insulator-metal transition

    International Nuclear Information System (INIS)

    Kuebler, C.

    2007-01-01

    Phase-matched optical rectification together with standard EOS methods gives direct access to the real-time evolution of the electric field of ultrashort THz pulses. This opens up a new field of experiments, in which the complex dielectric function or equivalently the frequency-dependent conductivity of solid state systems is monitored resonantly throughout the MIR and FIR with a femtosecond temporal resolution. Optical rectification of amplified laser pulses allows for the generation of electric fields of several 10 kV cm-1 up to 1 MV cm-1, depending on the laser pulse energy. Such highly energetic field transients may be employed to coherently drive low-energy transitions into the nonlinear regime. The problems which are inherent to standard EOS, i.e. a fixed detector response and a limited bandwidth, are absent in phase-matched EOS. If this novel detection technique is combined with phase-matched optical rectification, an extremely versatile multi-THz spectrometer is obtained. The accessible frequency range is extended toward the near infrared. In addition, both the emission spectrum and the detector response may be custom tailored to fit specific spectroscopic requirements. Proper choice of the phasematching geometry eliminates multiple time delayed reflections of the main THz pulse, resulting in an essentially unlimited frequency resolution. In the context of optical pump - multi-THz probe experiments the implementation of a photoelastic modulator results in significant improvement of the signal-to-noise ratio: Balancing of the differential detector is rendered less critical and the measurement time in a 2D time-resolved experiment is reduced by up to two orders of magnitude. Finally, the combination of phase-matched optical rectification and phasematched electro-optic sampling shows great scaling potential with respect to both achieving higher field energies and shorter wavelengths. (orig.)

  4. Femtosecond terahertz studies of many-body correlations. From ultrafast phonon-plasmon dynamics to an insulator-metal transition

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, C.

    2007-07-30

    Phase-matched optical rectification together with standard EOS methods gives direct access to the real-time evolution of the electric field of ultrashort THz pulses. This opens up a new field of experiments, in which the complex dielectric function or equivalently the frequency-dependent conductivity of solid state systems is monitored resonantly throughout the MIR and FIR with a femtosecond temporal resolution. Optical rectification of amplified laser pulses allows for the generation of electric fields of several 10 kV cm-1 up to 1 MV cm-1, depending on the laser pulse energy. Such highly energetic field transients may be employed to coherently drive low-energy transitions into the nonlinear regime. The problems which are inherent to standard EOS, i.e. a fixed detector response and a limited bandwidth, are absent in phase-matched EOS. If this novel detection technique is combined with phase-matched optical rectification, an extremely versatile multi-THz spectrometer is obtained. The accessible frequency range is extended toward the near infrared. In addition, both the emission spectrum and the detector response may be custom tailored to fit specific spectroscopic requirements. Proper choice of the phasematching geometry eliminates multiple time delayed reflections of the main THz pulse, resulting in an essentially unlimited frequency resolution. In the context of optical pump - multi-THz probe experiments the implementation of a photoelastic modulator results in significant improvement of the signal-to-noise ratio: Balancing of the differential detector is rendered less critical and the measurement time in a 2D time-resolved experiment is reduced by up to two orders of magnitude. Finally, the combination of phase-matched optical rectification and phasematched electro-optic sampling shows great scaling potential with respect to both achieving higher field energies and shorter wavelengths. (orig.)

  5. Testing the Foundations of Relativity Using Cryogenic Optical Resonators

    Science.gov (United States)

    Müller, H.; Braxmaier, C.; Herrmann, S.; Pradl, O.; Lämmerzahl, C.; Mlynek, J.; Schiller, S.; Peters, A.

    We present a new generation of experiments using cryogenic optical resonators(COREs) to test the foundations of relativity. The experiments test the isotropy of the speed of light (Michelson-Morley experiment), the independece of the speed of light from the velocity of the laboratory (Kennedy-Thorndike experiments), and the gravitational redshift for clocks based on an electronic transition. Compared with the best previous results, our tests have already yielded improvements up to a factor of three. Future versions promise significant improvements.

  6. Active high-power RF pulse compression using optically switched resonant delay lines

    International Nuclear Information System (INIS)

    Tantawi, S.G.; Ruth, R.D.; Vlieks, A.E.

    1996-11-01

    The authors present the design and a proof of principle experimental results of an optically controlled high power rf pulse compression system. The design should, in principle, handle few hundreds of Megawatts of power at X-band. The system is based on the switched resonant delay line theory. It employs resonant delay lines as a means of storing rf energy. The coupling to the lines is optimized for maximum energy storage during the charging phase. To discharge the lines, a high power microwave switch increases the coupling to the lines just before the start of the output pulse. The high power microwave switch, required for this system, is realized using optical excitation of an electron-hole plasma layer on the surface of a pure silicon wafer. The switch is designed to operate in the TE 01 mode in a circular waveguide to avoid the edge effects present at the interface between the silicon wafer and the supporting waveguide; thus, enhancing its power handling capability

  7. Resonant state expansion applied to three-dimensional open optical systems

    OpenAIRE

    Doost, M. B.; Langbein, W.; Muljarov, E. A.

    2014-01-01

    The resonant-state expansion (RSE), a rigorous perturbative method in electrodynamics, is developed for three-dimensional open optical systems. Results are presented using the analytically solvable homogeneous dielectric sphere as unperturbed system. Since any perturbation which breaks the spherical symmetry mixes transverse electric (TE) and transverse magnetic (TM) modes, the RSE is extended here to include TM modes and a zero-frequency pole of the Green's function. We demonstrate the valid...

  8. Rectification effect about vacuum separating carbon nanotube bundle predicted by first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Min, Y., E-mail: minshiyi@gmail.com [School of Science, Nantong University, Nantong, Jiangsu, 226007 (China); Fang, J.H.; Zhong, C.G. [School of Science, Nantong University, Nantong, Jiangsu, 226007 (China); Yao, K.L. [School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2012-05-07

    For the molecular spintronics transport systems, we propose that the spin current rectifier can be constructed using the nonmagnetic lead. The proposal is confirmed according to the first-principles study of the transport characteristics of a vacuum separating (15,0) carbon nanotube bundle where only one zigzag edge is hydrogenated. The strong rectification effect for spin (charge) current is obtained in the case of the magnetic parallel (anti-parallel) configuration of two zigzag edges. Our investigations indicate that such device can be used as the spin filter and the counterpart of the p–n junction in the field of molecular electronics. -- Highlights: ► We propose that nonmagnetic leads can construct spin current rectifier. ► We propose a spin diode and a filter using CNT. ► The spin and charge current all have the rectification effect in the one-dimensional spin diode.

  9. Microring resonator based modulator made by direct photodefinition of an electro-optic polymer

    Science.gov (United States)

    Balakrishnan, M.; Faccini, M.; Diemeer, M. B. J.; Klein, E. J.; Sengo, G.; Driessen, A.; Verboom, W.; Reinhoudt, D. N.

    2008-04-01

    A laterally coupled microring resonator was fabricated by direct photodefinition of negative photoresist SU8, containing tricyanovinylidenediphenylaminobenzene chromophore, by exploiting the low ultraviolet absorption window of this chromophore. The ring resonator was first photodefined by slight cross-linking. Thereafter, poling (to align the chromophores) and further cross-linking (to increase the glass transition temperature) were simultaneously carried out. The material showed excellent photostability and the electro-optic modulation with an r33 of 11pm/V was demonstrated at 10MHz.

  10. Quantum dynamics of atoms in a resonator-generated optical lattice

    International Nuclear Information System (INIS)

    Maschler, C.; Ritsch, H.

    2005-01-01

    Full text: We investigate the quantum motion of coherently driven ultracold atoms in the field of a damped high-Q optical cavity mode. The laser field is chosen far detuned from the atomic transition but close to a cavity resonance, so that spontaneous emission is strongly suppressed but a coherent field builds up in the resonator by stimulated scattering. On one hand the shape of the atomic wave function determines the field dynamics via the magnitude of the scattering and the effective refractive index the atoms create for the mode. The mode intensity on the other hand determines the optical dipole force on the atoms.The system shows rich atom-field dynamics including self organization, self-trapping, cooling or heating. In the limit of deep trapping we are able to derive a system of closed, coupled equations for a finite set of atomic expectation values and the field. This allows us to determine the self-consistent ground state of the system as well as the eigenfrequencies and damping rates for excitations. To treat several atoms in more detail we introduce the Bose-Hubbard model. This allows us to investigate several aspects of the quantum motion of the atoms inside the cavity. (author)

  11. Optical Microbubble Resonators with High Refractive Index Inner Coating for Bio-Sensing Applications: An Analytical Approach

    Directory of Open Access Journals (Sweden)

    Andrea Barucci

    2016-11-01

    Full Text Available The design of Whispering Gallery Mode Resonators (WGMRs used as an optical transducer for biosensing represents the first and crucial step towards the optimization of the final device performance in terms of sensitivity and Limit of Detection (LoD. Here, we propose an analytical method for the design of an optical microbubble resonator (OMBR-based biosensor. In order to enhance the OMBR sensing performance, we consider a polymeric layer of high refractive index as an inner coating for the OMBR. The effect of this layer and other optical/geometrical parameters on the mode field distribution, sensitivity and LoD of the OMBR is assessed and discussed, both for transverse electric (TE and transverse magnetic (TM polarization. The obtained results do provide physical insights for the development of OMBR-based biosensor.

  12. The Gravity of Photons and the Necessary Rectification of Einstein Equation

    Directory of Open Access Journals (Sweden)

    Lo C. Y.

    2006-01-01

    Full Text Available It is pointed out that Special Relativity together with the principle of causality implies that the gravity of an electromagnetic wave is an accompanying gravitational wave propagating with the same speed. Since a gravitational wave carries energy-momentum, this accompanying wave would make the energy-stress tensor of the light to be different from the electromagnetic energy-stress tensor, and thus can produce a geodesic equation for the photons. Moreover, it is found that the appropriate Einstein equation must additionally have the photonic energy-stress tensor with the antigravity coupling in the source term. This would correct that, in disagreement with the calculations for the bending of light, existing solutions of gravity for an electromagnetic wave, is unbounded. This rectification is confirmed by calculating the gravity of electromagnetic plane-waves. The gravity of an electromagnetic wave is indeed an accompanying gravitational wave. Moreover, these calculations show the first time that Special Relativity and General Relativity are compatible because the physical meaning of coordinates has been clarified. The success of this rectification makes General Relativity standing out further among theories of gravity.

  13. Influence of resonator length on catastrophic optical damage in high-power AlGaInP broad-area lasers

    Science.gov (United States)

    Bou Sanayeh, Marwan

    2017-05-01

    The increasing importance of extracting high optical power out of semiconductor lasers motivated several studies in catastrophic optical damage (COD) level improvement. In this study, the influence of the resonator length in high-power broad-area (BA) AlGaInP lasers on COD is presented. For the analyses, several 638 nm AlGaInP 60 μm BA lasers from the same wafer were used. Resonator lengths of 900, 1200, 1500, and 1800 μm were compared. In order to independently examine the effect of the resonator length on the maximum power reached by the lasers before COD (PCOD), the lasers used are uncoated and unmounted, and PCOD under pulsed mode was determined. It was found that higher output powers and eventually higher PCOD can be achieved using longer resonators; however, it was also found that this is mainly useful when working at high output powers far away from the laser threshold, since the threshold current and slope efficiency worsen when the resonator length increases.

  14. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics.

    Science.gov (United States)

    Wang, Linlin; Zhang, Huacheng; Yang, Zhe; Zhou, Jianjun; Wen, Liping; Li, Lin; Jiang, Lei

    2015-03-07

    Heterogeneous nanochannel materials that endow new functionalities different to the intrinsic properties of two original nanoporous materials have wide potential applications in nanofluidics, energy conversion, and biosensors. Herein, we report novel, interesting hydrogel-composited nanochannel devices with regulatable ion rectification characteristics. The heterogeneous nanochannel devices were constructed by selectively coating the tip side, base side, or both sides of a single conical nanochannel membrane with thin agar hydrogel layers. The tunable ion current rectification of the nanochannels in the three different coating states was systematically demonstrated by current-voltage (I-V) curves. The asymmetric ionic transport property of the conical nanochannel was further strengthened in the tip-coating state and weakened in the base-coating state, whereas the conical nanochannel showed nearly symmetric ionic transport in the dual-coating state. Repeated experiments presented insight into the good stability and reversibility of the three coating states of the hydrogel-nanochannel-integrated systems. This work, as an example, may provide a new strategy to further design and develop multifunctional gel-nanochannel heterogeneous smart porous nanomaterials.

  15. Q-Boosted Optomechanical Resonators

    Science.gov (United States)

    2015-11-18

    type a knob for optical Qo, where the inability to smooth etched nitride sidewall surfaces relegates OMO’s using it to Qo’s on the order of...6: Operation of an RP-OMO. As the ring resonator coupled to tapered fiber in (a) displaces by ∂r, the optical path length change produces the shift...frequency 0, B input pump laser field, tot the total optical resonator damping, ext the coupling between optical resonator and the tapered fiber

  16. Ring resonator-based single-chip 1x8 optical beam forming network in LPCVD waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim; Koonen, A.M.J.; Leijtens, X.J.M.; van den Boom, H.P.A.; Verdurmen, E.J.M.; Molina Vázquez, J.

    2006-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in beam forming networks (BFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art 1×8 OBFN chip has been

  17. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...... of the emerging pulse train. A range of tuning around this frequency allows for effective mode locking. Finally, noise is added to the generalized single-cavity eigenfrequencies in order to evaluate the effects of fabrication imperfections on the cold-cavity transmission properties and consequently on the locking...

  18. The effect of broadened linewidth induced by dispersion on the performance of resonant optical gyroscope

    Science.gov (United States)

    Zhang, Hao; Li, Wenxiu; Han, Peng; Chang, Xiaoyang; Liu, Jiaming; Lin, Jian; Xue, Xia; Zhu, Fang; Yang, Yang; Liu, Xiaojing; Zhang, Xiaofu; Huang, Anping; Xiao, Zhisong; Fang, Jiancheng

    2018-01-01

    Anomalous dispersion enhancement physical mechanism for Sagnac effect is described by special relativity derivation, and three kinds of definitions of minimum detectable angular rate of resonance optical gyroscope (ROG) are compared and the relations among them are investigated. The effect of linewidth broadening induced by anomalous dispersion on the sensitivity of ROG is discussed in this paper. Material dispersion-broadened resonance linewidth deteriorates the performance of a passive ROG and dispersion enhancement effect, while the sensitivity of a structural dispersion ROG is enhanced by two orders of magnitude even considering the dispersion-broadened resonance linewidth.

  19. THz Pyro-Optical Detector Based on LiNbO3 Whispering Gallery Mode Microdisc Resonator

    Science.gov (United States)

    Cosci, Alessandro; Cerminara, Matteo; Nunzi Conti, Gualtiero; Soria, Silvia; Righini, Giancarlo C.; Pelli, Stefano

    2017-01-01

    This study analyzes the capabilities of a LiNbO3 whispering gallery mode microdisc resonator as a potential bolometer detector in the THz range. The resonator is theoretically characterized in the stationary regime by its thermo-optic and thermal coefficients. Considering a Q-factor of 107, a minimum detectable power of 20 μW was evaluated, three orders of magnitude above its noise equivalent power. This value opens up the feasibility of exploiting LiNbO3 disc resonators as sensitive room-temperature detectors in the THz range. PMID:28134857

  20. Spectroscopic studies of resonant coupling of silver optical antenna arrays to a near-surface quantum well

    International Nuclear Information System (INIS)

    Gehl, Michael; Zandbergen, Sander; Gibson, Ricky; Nader, Nima; Sears, Jasmine; Keiffer, Patrick; Khitrova, Galina; Béchu, Muriel; Wegener, Martin; Hendrickson, Joshua

    2014-01-01

    The coupling of radiation emitted on semiconductor inter-band transitions to resonant optical-antenna arrays allows for enhanced light–matter interaction via the Purcell effect. Semiconductor optical gain also potentially allows for loss reduction in metamaterials. Here we extend our previous work on optically pumped individual near-surface InGaAs quantum wells coupled to silver split-ring-resonator arrays to wire and square-antenna arrays. By comparing the transient pump-probe experimental results with the predictions of a simple model, we find that the effective coupling is strongest for the split rings, even though the split rings have the weakest dipole moment. The effect of the latter must thus be overcompensated by a smaller effective mode volume of the split rings. Furthermore, we also present a systematic variation of the pump-pulse energy, which was fixed in our previous experiments. (paper)

  1. Equilateral Triangular Dielectric Resonator Nantenna at Optical Frequencies for Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Waleed Tariq Sethi

    2015-01-01

    Full Text Available The last decade has witnessed a remarkable growth in the telecommunication industry. With the introduction of smart gadgets, the demand for high data rate and bandwidth for wireless applications have increased exponentially at the cost of exponential consumption of energy. The latter is pushing the research and industry communities to devise green communication solutions that require the design of energy saving devices and techniques in one part and ambient energy harvesting techniques in the other part. With the advent of nanocomponents fabrication technology, researchers are now able to tap into the THz frequency regime and fabricate optical low profile antennas at a nanoscale. Optical antennas have proved their potential and are revolutionizing a class of novel optical detectors, interconnectors, sensors, and energy harvesting related fields. Authors in this paper propose an equilateral triangular dielectric resonator nantenna (ETDRNA working at 193.5 THz standard optical frequency. The simulated antenna achieves an impedance bandwidth from 192.3 THz to 197.3 THz with an end-fire directivity of 8.6 dBi, covering the entire standard optical window of C-band. Numerical demonstrations prove the efficiency of the nantenna at the frequencies of interest, making it a viable candidate for future green energy harvesting and high speed optical applications.

  2. Broadband terahertz generation of metamaterials

    Science.gov (United States)

    Luo, Liang; Wang, Jigang; Koschny, Thomas; Wegener, Martin; Soukoulis, Costas M.

    2017-06-20

    Provided are systems and methods to generate single-cycle THz pulses from a few tens of nanometers thin layer of split ring resonators (SRRs) via optical rectification of femtosecond laser pulses. The emitted THz radiation, with a spectrum ranging from about 0.1 to 4 THz, arises exclusively from pumping the magnetic-dipole resonance of SRRs around 200 THz. This resonant enhancement, together with pump polarization dependence and power scaling of the THz emission, underpins the nonlinearity from optically induced circulating currents in SRRs, with a huge effective nonlinear susceptibility of 0.8.times.10.sup.-16 m.sup.2/V that far exceeds surface nonlinearities of both thin films and bulk organic/inorganic crystals and sheet nonlinearities of non-centrosymmetric materials such as ZnTe.

  3. Large-Signal DG-MOSFET Modelling for RFID Rectification

    Directory of Open Access Journals (Sweden)

    R. Rodríguez

    2016-01-01

    Full Text Available This paper analyses the undoped DG-MOSFETs capability for the operation of rectifiers for RFIDs and Wireless Power Transmission (WPT at microwave frequencies. For this purpose, a large-signal compact model has been developed and implemented in Verilog-A. The model has been numerically validated with a device simulator (Sentaurus. It is found that the number of stages to achieve the optimal rectifier performance is inferior to that required with conventional MOSFETs. In addition, the DC output voltage could be incremented with the use of appropriate mid-gap metals for the gate, as TiN. Minor impact of short channel effects (SCEs on rectification is also pointed out.

  4. Magnetic resonance imaging in optic nerve lesions with multiple sclerosis

    International Nuclear Information System (INIS)

    Kojima, Shigeyuki; Hirayama, Keizo; Kakisu, Yonetsugu; Adachi, Emiko

    1990-01-01

    Magnetic resonance imaging (MRI) of the optic nerve was performed in 10 patients with multiple sclerosis (MS) using short inversion time inversion recovery (STIR) pulse sequences, and the results were compared with the visual evoked potentials (VEP). The 10 patients had optic neuritis in the chronic or remitting phase together with additional symptoms or signs allowing a diagnosis of clinically definite or probable MS. Sixteen optic nerves were clinically affected and 4 were unaffected. MRI was performed using a 0.5 tesla supeconducting unit, and multiple continuous 5 mm coronal and axial STIR images were obtained. A lesion was judged to be present if a focal or diffuse area of increased signal intensity was detectd in the optic nerve. In VEP, a delay in peak latency or no P 100 component was judged to be abnormal. With regard to the clinically affected optic nerves, MRI revealed a region of increased signal intensity in 14/16 (88%) and the VEP was abnormal in 16/16 (100%). In the clinically unaffected optic nerves, MRI revealed an increased signal intensity in 2/4 (50%). One of these nerves had an abnormal VEP and the other had a VEP latency at the upper limit of normal. The VEP was abnormal in 1/4 (25%). In the clinically affected optic nerves, the degree of loss of visual acuity was not associated with the longitudinal extent of the lesions shown by MRI. The mean length was 17.5 mm in optic nerves with a slight disturbance of visual acuity and 15.0 mm in nerves with severe visual loss. MRI using STIR pulse sequences was found to be almost as sensitive as VEP in detecting both clinically affected and unaffected optic nerve lesions in patients with MS, and was useful in visualizing the location or size of the lesions. (author)

  5. Precision polarization measurements of atoms in a far-off-resonance optical dipole trap

    International Nuclear Information System (INIS)

    Fang, F.; Vieira, D. J.; Zhao, X.

    2011-01-01

    Precision measurement of atomic and nuclear polarization is an essential step for beta-asymmetry measurement of radioactive atoms. In this paper, we report the polarization measurement of Rb atoms in an yttrium-aluminum-garnet (YAG) far-off-resonance optical dipole trap. We have prepared a cold cloud of polarized Rb atoms in the YAG dipole trap by optical pumping and achieved an initial nuclear polarization of up to 97.2(5)%. The initial atom distribution in different Zeeman levels is measured by using a combination of microwave excitation, laser pushing, and atomic retrap techniques. The nuclear-spin polarization is further purified to 99.2(2)% in 10 s and maintained above 99% because the two-body collision loss rate between atoms in mixed spin states is greater than the one-body trap loss rate. Systematic effects on the nuclear polarization, including the off-resonance Raman scattering, magnetic field gradient, and background gas collisions, are discussed.

  6. Sequential Vapor Infiltration Treatment Enhances the Ionic Current Rectification Performance of Composite Membranes Based on Mesoporous Silica Confined in Anodic Alumina.

    Science.gov (United States)

    Liang, Yanyan; Liu, Zhengping

    2016-12-20

    Ionic current rectification of nanofluidic diode membranes has been studied widely in recent years because it is analogous to the functionality of biological ion channels in principle. We report a new method to fabricate ionic current rectification membranes based on mesoporous silica confined in anodic aluminum oxide (AAO) membranes. Two types of mesostructured silica nanocomposites, hexagonal structure and nanoparticle stacked structure, were used to asymmetrically fill nanochannels of AAO membranes by a vapor-phase synthesis (VPS) method with aspiration approach and were further modified via sequence vapor infiltration (SVI) treatment. The ionic current measurements indicated that SVI treatment can modulate the asymmetric ionic transport in prepared membranes, which exhibited clear ionic current rectification phenomenon under optimal conditions. The ionic current rectifying behavior is derived from the asymmetry of surface conformations, silica species components, and hydrophobic wettability, which are created by the asymmetrical filling type, silica depositions on the heterogeneous membranes, and the condensation of silanol groups. This article provides a considerable strategy to fabricate composite membranes with obvious ionic current rectification performance via the cooperation of the VPS method and SVI treatment and opens up the potential of mesoporous silica confined in AAO membranes to mimic fluid transport in biological processes.

  7. Magnetic resonance imaging (MRI) in the diagnosis of optic neuritis and neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Kakisu, Yonetsugu; Adachi-Usami, Emiko; Kojima, Shigeyuki; Hirayama, Keizo

    1989-02-01

    Magnetic resonance imaging (MRI) was performed in thirty patients who had been suffering from optic neuritis (ON). Twenty-one cases were caused by multiple sclerosis (MS) and in 9 cases the causes been defined. In MRI, abnormalities were found in 17 out of 21 MS cases in several places such as near the ventricles, mid-brain, spinal cord etc. Increased signals from the optic chiasm to optic radiation were found in 5 cases. However, abnormal MRI findings did not always correspond to Goldmann visual field defects. In 3 out of 9 cases of ON with unknown causes, high signals in the white matter of the brain were found, and it was suggested that those may develop to MS. MRI was, thus, proved to be very useful for the diagnois of MS.

  8. Magnetic resonance imaging (MRI) in the diagnosis of optic neuritis and neuropathy

    International Nuclear Information System (INIS)

    Kakisu, Yonetsugu; Adachi-Usami, Emiko; Kojima, Shigeyuki; Hirayama, Keizo

    1989-01-01

    Magnetic resonance imaging (MRI) was performed in thirty patients who had been suffering from optic neuritis (ON). Twenty-one cases were caused by multiple sclerosis (MS) and in 9 cases the causes been defined. In MRI, abnormalities were found in 17 out of 21 MS cases in several places such as near the ventricles, mid-brain, spinal cord etc. Increased signals from the optic chiasm to optic radiation were found in 5 cases. However, abnormal MRI findings did not always correspond to Goldmann visual field defects. In 3 out of 9 cases of ON with unknown causes, high signals in the white matter of the brain were found, and it was suggested that those may develop to MS. MRI was, thus, proved to be very useful for the diagnois of MS. (author)

  9. Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice.

    Science.gov (United States)

    Ma, Jing; Martínez, Luis Javier; Povinelli, Michelle L

    2012-03-12

    A novel photonic crystal lattice is proposed for trapping a two-dimensional array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality factors on the order of 10⁵ are predicted in the lattice. A significant decrease of the optical power required for optical trapping can be achieved compared to our previous design.

  10. An optical nanoantenna made of plasmonic chain resonators

    International Nuclear Information System (INIS)

    Lester, Marcelo; Skigin, Diana C

    2011-01-01

    We propose a novel structure that behaves like an optical antenna and converts evanescent waves into propagating waves. The system comprises metallic subwavelength cylinders distributed in a dual-period array. It is illuminated by an evanescent wave generated by total internal reflection in a close interface. For particular wavelengths, the system exhibits resonances and the inhomogeneous wave is converted into propagating waves that radiate to the far field. This effect can be controlled by varying the geometrical parameters of the structure, such as the period and the inclination angle. Therefore, the transmitted intensity can be sent to a predesigned direction. This structure could be used in highly sensitive detection devices, among other applications

  11. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  12. Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography

    International Nuclear Information System (INIS)

    Oldenburg, Amy L; Boppart, Stephen A

    2010-01-01

    We present a new method for performing dynamic elastography of soft tissue samples. By sensing nanoscale displacements with optical coherence tomography, a chirped, modulated force is applied to acquire the mechanical spectrum of a tissue sample within a few seconds. This modulated force is applied via magnetic nanoparticles, named 'nanotransducers', which are diffused into the tissue, and which contribute negligible inertia to the soft tissue mechanical system. Using this novel system, we observed that excised tissues exhibit mechanical resonance modes which are well described by a linear damped harmonic oscillator. Results are validated by using cylindrical tissue phantoms of agarose in which resonant frequencies (30-400 Hz) are consistent with longitudinal modes and the sample boundary conditions. We furthermore show that the Young's modulus can be computed from their measured resonance frequencies, analogous to resonant ultrasound spectroscopy for stiff material analysis. Using this new technique, named magnetomotive resonant acoustic spectroscopy (MRAS), we monitored the relative stiffening of an excised rat liver during a chemical fixation process.

  13. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    Science.gov (United States)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  14. Detection of Molecular Chirality by Induced Resonance Raman Optical Activity in Europium Complexes

    Czech Academy of Sciences Publication Activity Database

    Yamamoto, Shigeki; Bouř, Petr

    2012-01-01

    Roč. 51, č. 44 (2012), s. 11058-11061 ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Institutional support: RVO:61388963 Keywords : europium * complexes * raman optical activity * resonance Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.734, year: 2012

  15. Iota-dependent resonance absorption in the optical model description of alpha particle elastic scattering

    International Nuclear Information System (INIS)

    Chyla, K.; Jarczyk, L.; Maciuk, B.; Zipper, W.

    1976-01-01

    Alpha particle scattering from 28 Si has been studied at five bombarding energies from 23.5 to 28.5 MeV. iota-dependent resonance absorption has been introduced to the optical model analysis of 28 Si (α,β) 28 Si reaction. (author)

  16. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    International Nuclear Information System (INIS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-01-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply. - Highlights: • Applying SVPWM rectification technology in an accelerator power supply improves its grid-side performance. • New Topology and its control strategies make an accelerator power supply have bidirectional power flow ability. • Hardware and software of controller provide a good reference for design of this new type of power supply.

  17. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengjun, E-mail: wufengjun@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Cui, Yuan [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yan, Hongbin [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Zhang, Huajian [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Bin [University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaohui [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply. - Highlights: • Applying SVPWM rectification technology in an accelerator power supply improves its grid-side performance. • New Topology and its control strategies make an accelerator power supply have bidirectional power flow ability. • Hardware and software of controller provide a good reference for design of this new type of power supply.

  18. Study of thermal conductivity and thermal rectification in exponential mass graded lattices

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Tejal N. [Bhavan' s Sheth R.A. College of Science, Khanpur, Ahmedabad 380 001, Gujarat (India); Gajjar, P.N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380 009, Gujarat (India)

    2012-01-09

    Concept of exponential mass variation of oscillators along the chain length of N oscillators is proposed in the present Letter. The temperature profile and thermal conductivity of one-dimensional (1D) exponential mass graded harmonic and anharmonic lattices are studied on the basis of Fermi–Pasta–Ulam (FPU) β model. Present findings conclude that the exponential mass graded chain provide higher conductivity than that of linear mass graded chain. The exponential mass graded anharmonic chain generates the thermal rectification of 70–75% which is better than linear mass graded materials, so far. Thus instead of using linear mass graded material, the use of exponential mass graded material will be a better and genuine choice for controlling the heat flow at nano-scale. -- Highlights: ► In PRE 82 (2010) 040101, use of mass graded material as a thermal devices is explored. ► Concept of exponential mass graded material is proposed. ► The rectification obtained is about 70–75% which is better than linear mass graded materials. ► The exponential mass graded material will be a better choice for the thermal devices at nano-scale.

  19. Negative differential resistance and rectification effects in zigzag graphene nanoribbon heterojunctions: Induced by edge oxidation and symmetry concept

    Science.gov (United States)

    Nazirfakhr, Maryam; Shahhoseini, Ali

    2018-03-01

    By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of H-terminated zigzag graphene nanoribbon (H/ZGNR) and O-terminated ZGNR/H-terminated ZGNR (O/ZGNR-H/ZGNR) heterostructure under finite bias. Moreover, the effect of width and symmetry on the electronic transport properties of both models is also considered. The results reveal that asymmetric H/ZGNRs have linear I-V characteristics in whole bias range, but symmetric H-ZGNRs show negative differential resistance (NDR) behavior which is inversely proportional to the width of the H/ZGNR. It is also shown that the I-V characteristic of O/ZGNR-H/ZGNR heterostructure shows a rectification effect, whether the geometrical structure is symmetric or asymmetric. The fewer the number of zigzag chains, the bigger the rectification ratio. It should be mentioned that, the rectification ratios of symmetric heterostructures are much bigger than asymmetric one. Transmission spectrum, density of states (DOS), molecular projected self-consistent Hamiltonian (MPSH) and molecular eigenstates are analyzed subsequently to understand the electronic transport properties of these ZGNR devices. Our findings could be used in developing nanoscale rectifiers and NDR devices.

  20. The optical/ultraviolet excess of isolated neutron stars in the resonant cyclotron scattering model

    Science.gov (United States)

    Tong, Hao; Xu, Ren-Xin; Song, Li-Ming

    2011-12-01

    X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.

  1. Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Homola, Jiří

    2009-01-01

    Roč. 17, č. 25 (2009), s. 23254-23264 ISSN 1094-4087 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor * Coupled mode theory Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.278, year: 2009

  2. Micro-resonators based on integrated polymer technology for optical sensing

    Science.gov (United States)

    Girault, Pauline; Lemaitre, Jonathan; Guendouz, Mohammed; Lorrain, Nathalie; Poffo, Luiz; Gadonna, Michel; Bosc, Dominique

    2014-05-01

    Research on sensors has experienced a noticeable development over the last decades especially in label free optical biosensors. However, compact sensors without markers for rapid, reliable and inexpensive detection of various substances induce a significant research of new technological solutions. The context of this work is the development of a sensor based on easily integrated and inexpensive micro-resonator (MR) component in integrated optics, highly sensitive and selective mainly in the areas of health and food. In this work, we take advantage of our previous studies on filters based on micro-resonators (MR) to experiment a new couple of polymers in the objective to use MR as a sensing function. MRs have been fabricated by processing SU8 polymer as core and PMATRIFE polymer as cladding layer of the waveguide. The refractive index contrast reaches 0.16 @ 1550 nm. Sub-micronic ring waveguides gaps from 0.5 to 1 μm have been successfully achieved with UV (i-line) photolithography. This work confirms our forecasts, published earlier, about the resolution that can be achieved. First results show a good extinction coefficient of ~17 dB, a quality factor around 104 and a finesse of 12. These results are in concordance with the theoretical study and they allow us to validate our technology with this couple of polymers. Work is going on with others lower cladding materials that will be used to further increase refractive index contrast for sensing applications.

  3. Optically Detected Magnetic Resonance Studies on π-conjugated semiconductor systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Optically Detected Magnetic Resonance (ODMR) techniques were used to investigate the dynamics of excitons and charge carriers in π-conjugated organic semiconductors. Degradation behavior of the negative spin-1/2 electroluminescence-detected magnetic resonance (ELDMR) was observed in Alq3 devices. The increase in the resonance amplitude implies an increasing bipolaron formation during degradation, which might be the result of growth of charge traps in the device. The same behavior of the negative spin-1/2 ELDMR was observed in 2wt% Rubrene doped Tris(8-hydroxyquinolinato)aluminium (Alq3) devices. However, with increasing injection current, a positive spin-1/2 ELDMR, together with positive spin 1 triplet powder patterns at ΔmS=±1 and ΔmS=±2, emerges. Due to the similarities in the frequency dependences of single and double modulated ELDMR and the photoluminescence-detected magnetic resonance (PLDMR) results in poly[2-methoxy-5-(2 -ethyl-hexyloxy)-1,4-phenyl ene vinylene] (MEH-PPV) films, the mechanism for this positive spin-1/2 ELDMR was assigned to enhanced triplet-polaron quenching under resonance conditions. The ELDMR in rubrene doped Alq3 devices provides a path to investigate charge distribution in the device under operational conditions. Combining the results of several devices with different carrier blocking properties and the results from transient EL, it was concluded trions not only exist near buffer layer but also exist in the electron transport layer. This TPQ model can also be used to explain the positive spin-1/2 PLDMR in poly(3-hexylthiophene) (P3HT) films at low temperature and in MEH-PPV films at various temperatures up to room temperature. Through quantitative analysis, TE-polaron quenching (TPQ) model is shown having the ability to explain most behaviors of the positive spin-1/2 resonance. Photocurrent detected magnetic resonance (PCDMR) studies on MEH-PPV devices revealed a novel transient resonance signal. The signal

  4. Design and implementation of optical switches based on nonlinear plasmonic ring resonators: Circular, square and octagon

    Science.gov (United States)

    Ghadrdan, Majid; Mansouri-Birjandi, Mohammad Ali

    2018-05-01

    In this paper, all-optical plasmonic switches (AOPS) based on various configurations of circular, square and octagon nonlinear plasmonic ring resonators (NPRR) were proposed and numerically investigated. Each of these configurations consisted of two metal-insulator-metal (MIM) waveguides coupled to each other by a ring resonator (RR). Nonlinear Kerr effect was used to show switching performance of the proposed NPRR. The result showed that the octagon switch structure had lower threshold power and higher transmission ratio than square and circular switch structures. The octagon switch structure had a low threshold power equal to 7.77 MW/cm2 and the high transmission ratio of approximately 0.6. Therefore, the octagon switch structure was an appropriate candidate to be applied in optical integration circuits as an AOPS.

  5. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    Science.gov (United States)

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  6. Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette.

    Science.gov (United States)

    Vilozny, Boaz; Wollenberg, Alexander L; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan; Pourmand, Nader

    2013-10-07

    Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.

  7. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bishop, Alan R [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernobrod, Boris M [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hawley, Marilyn E [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, Geoffrey W [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsifrinovich, Vladimir I [Polytechnic University, Brooklyn, NY 11201 (United States)

    2006-05-15

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution.

  8. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Berman, Gennady P; Bishop, Alan R; Chernobrod, Boris M; Hawley, Marilyn E; Brown, Geoffrey W; Tsifrinovich, Vladimir I

    2006-01-01

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution

  9. Theory of triplet-triplet annihilation in optically detected magnetic resonance

    Science.gov (United States)

    Keevers, T. L.; McCamey, D. R.

    2016-01-01

    Triplet-triplet annihilation allows two low-energy photons to be upconverted into a single high-energy photon. By essentially engineering the solar spectrum, this allows solar cells to be made more efficient and even exceed the Shockley-Quiesser limit. Unfortunately, optimizing the reaction pathway is difficult, especially with limited access to the microscopic time scales and states involved in the process. Optical measurements can provide detailed information: triplet-triplet annihilation is intrinsically spin dependent and exhibits substantial magnetoluminescence in the presence of a static magnetic field. Pulsed optically detected magnetic resonance is especially suitable, since it combines high spin sensitivity with coherent manipulation. In this paper, we develop a time-domain theory of triplet-triplet annihilation for complexes with arbitrary spin-spin coupling. We identify unique "Rabi fingerprints" for each coupling regime and show that this can be used to characterize the microscopic Hamiltonian.

  10. HLA typing in acute optic neuritis. Relation to multiple sclerosis and magnetic resonance imaging findings

    DEFF Research Database (Denmark)

    Frederiksen, J.L.; Madsen, H.O.; Ryder, L.P.

    1997-01-01

    OBJECTIVE: To study the association of brain magnetic resonance imaging (MRI) findings and HLA findings to clarify the relationship between monosymptomatic optic neuritis (ON) and ON as part of clinically definite multiple sclerosis (CDMS). DESIGN: Population-based cohort of patients with ON refe......OBJECTIVE: To study the association of brain magnetic resonance imaging (MRI) findings and HLA findings to clarify the relationship between monosymptomatic optic neuritis (ON) and ON as part of clinically definite multiple sclerosis (CDMS). DESIGN: Population-based cohort of patients......: The frequency of HLA-DR15 was significantly increased in patients with ON + CDMS (52%) and ON (47%) compared with control subjects (31%). The frequency of HLA-DR17 was almost equal in the ON + CDMS (18%), ON (23%), and control (23%) groups. The frequencies of HLA-DQA-1B (55% in ON + CDMS, 58% in ON) and HLA...

  11. Optically detected electron spin-flip resonance in CdMnTe

    International Nuclear Information System (INIS)

    Zeng, S.; Smith, L.C.; Davies, J.J.; Wolverson, D.; Bingham, S.J.; Aliev, G.N.

    2006-01-01

    We show that the spin-flip of electrons at neutral donors in a dilute magnetic semiconductor can be observed directly by means of optically-detected magnetic resonance (ODMR). Spectra obtained at 105 GHz for a bulk crystal of Cd 1-x Mn x Te with x = 0.005 showed strong signals with g -values ranging between 12 (at 4.2 K) and 35 (at 1.7 K), with magnetic resonance linewidths ranging from 0.3 Tesla to 0.1 Tesla at the lowest temperature. In energy terms, these linewidths are independent of temperature and agree with those in spin-flip Raman spectra from the same specimen. The line broadening is caused by fluctuations in the number of manganese ions that interact with a particular donor and an analysis of this leads to a value for the donor Bohr radius of 4.5 nm. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications

    Czech Academy of Sciences Publication Activity Database

    De Vos, D.; Girones, J.; Popelka, Štěpán; Schacht, E. H.; Baets, R.; Bienstman, P.

    2009-01-01

    Roč. 24, č. 8 (2009), s. 2528-2533 ISSN 0956-5663 Institutional research plan: CEZ:AV0Z40500505 Keywords : silicon-on-insulator * microring resonator * optical biosensor Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.429, year: 2009

  13. Little bits of diamond: Optically detected magnetic resonance of nitrogen-vacancy centers

    Science.gov (United States)

    Zhang, Haimei; Belvin, Carina; Li, Wanyi; Wang, Jennifer; Wainwright, Julia; Berg, Robbie; Bridger, Joshua

    2018-03-01

    We give instructions for the construction and operation of a simple apparatus for performing optically detected magnetic resonance measurements on diamond samples containing high concentrations of nitrogen-vacancy (NV) centers. Each NV center has a spin degree of freedom that can be manipulated and monitored by a combination of visible and microwave radiation. We observe Zeeman shifts in the presence of small external magnetic fields and describe a simple method to optically measure magnetic field strengths with a spatial resolution of several microns. The activities described are suitable for use in an advanced undergraduate lab course, powerfully connecting core quantum concepts to cutting edge applications. An even simpler setup, appropriate for use in more introductory settings, is also presented.

  14. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    Science.gov (United States)

    Horowitz, Viva R.; Alemán, Benjamín J.; Christle, David J.; Cleland, Andrew N.; Awschalom, David D.

    2012-01-01

    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques. PMID:22869706

  15. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kento; Monnai, Yasuaki; Saijo, Soya; Fujita, Ryushiro; Ishi-Hayase, Junko; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp; Abe, Eisuke, E-mail: e-abe@keio.jp [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Watanabe, Hideyuki [Correlated Electronics Group, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2016-05-15

    We report on a microwave planar ring antenna specifically designed for optically detected magnetic resonance (ODMR) of nitrogen-vacancy (NV) centers in diamond. It has the resonance frequency at around 2.87 GHz with the bandwidth of 400 MHz, ensuring that ODMR can be observed under external magnetic fields up to 100 G without the need of adjustment of the resonance frequency. It is also spatially uniform within the 1-mm-diameter center hole, enabling the magnetic-field imaging in the wide spatial range. These features facilitate the experiments on quantum sensing and imaging using NV centers at room temperature.

  16. Enhancing optical response of graphene through stochastic resonance

    Science.gov (United States)

    Ying, Lei; Huang, Liang; Lai, Ying-Cheng

    2018-04-01

    Enhancing the optical response of graphene is a topic of interest with applications in optoelectronics. Subject to light irradiation, graphene can exhibit nontrivial topologically insulating states, effectively turning itself into a Floquet topological insulator due to the time periodicity of the external driving. We find that, when random disorder is present, its interplay with the topologically insulating states can have a dramatic effect on electronic transport through graphene. In particular, we consider the prototypical setting where a graphene nanoribbon is irradiated by circularly polarized light, where the length of the nanoribbon is sufficiently long so that evanescent states have little effect on transport. We uncover a resonance phenomenon in which the conductance is enhanced as the disorder strength is increased from zero, reaches a maximum value for an optimal level of disorder, and decreases as the disorder is strengthened further. With respect to its value at the zero-disorder strength, the maximum conductance value can be as much as 50 % higher. Qualitatively, this can be understood as a result of the dynamical interplay between disorder and Floquet states (channels) generated by light irradiation. Quantitatively, the resonance phenomenon can be explained in the framework of Born theory, where the disorder reorganizes the Floquet Hamiltonian and enhances the effective coupling between the adjacent Floquet conducting channels. That is, disorder is capable of promoting both photon absorption and emission, leading to significant enhancement of nonequilibrium electronic transport. We demonstrate the robustness of the resonance phenomenon by investigating the effects of spatial symmetry breaking on transport and provide an understanding based on analyzing the behavior of the density of states of the Floquet channels.

  17. Optical and magnetic resonance measurements of a segmented poly(ester urethane)

    International Nuclear Information System (INIS)

    Cooke, D.W.; Muenchausen, R.E.; Bennett, B.L.; Orler, E.B.; Wrobleski, D.A.; Smith, M.E.; Jahan, M.S.; Thomas, D.E.

    1999-01-01

    X-ray-induced damage in Estane(registered trademark)5703 has been studied by luminescence, optical absorption and electron spin resonance techniques in the temperature interval ∼10-300 K. Molecular motion of the polymer soft segment, as determined by viscoelastic measurements, is correlated with features in the glow curve, indicating charge detrapping via thermal destruction of cavity traps. Spectral emission is characterized by four Lorentzian bands with maxima at 2.38, 2.55, 2.74 and 2.93 eV, which are attributed to triplet-to-singlet electronic transitions of the phenyl group in the polymer hard segment. Absorption peaks at 3.97, 4.29 and 4.46 eV are also assigned to transitions within this group. Several radicals with overlapping resonances are induced at 35 K, which, with increasing temperature, evolve into the relatively stable peroxy free-radical at room temperature

  18. Novel microwave photonic fractional hilbert transformer using a ring resonator-based optical all-pass filter

    NARCIS (Netherlands)

    Zhuang, L.; Khan, M.R.H.; Beeker, Willem; Beeker, W.P.; Leinse, Arne; Heideman, Rene; Roeloffzen, C.G.H.

    2012-01-01

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonatorbased optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance

  19. Integrated polymer micro-ring resonators for optical sensing applications

    Science.gov (United States)

    Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume

    2015-03-01

    Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.

  20. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    Science.gov (United States)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  1. Transmission and group-delay characterization of coupled resonator optical waveguides apodized through the longitudinal offset technique.

    Science.gov (United States)

    Doménech, J D; Muñoz, P; Capmany, J

    2011-01-15

    In this Letter, the amplitude and group delay characteristics of coupled resonator optical waveguides apodized through the longitudinal offset technique are presented. The devices have been fabricated in silicon-on-insulator technology employing deep ultraviolet lithography. The structures analyzed consisted of three racetracks resonators uniform (nonapodized) and apodized with the aforementioned technique, showing a delay of 5 ± 3 ps and 4 ± 0.5 ps over 1.6 and 1.4 nm bandwidths, respectively.

  2. Resonant optical tunneling-induced enhancement of the photonic spin Hall effect

    Science.gov (United States)

    Jiang, Xing; Wang, Qingkai; Guo, Jun; Zhang, Jin; Chen, Shuqing; Dai, Xiaoyu; Xiang, Yuanjiang

    2018-04-01

    Due to the quantum analogy with optics, the resonant optical tunneling effect (ROTE) has been proposed to investigate both the fundamental physics and the practical applications of optical switches and liquid refractive index sensors. In this paper, the ROTE is used to enhance the spin Hall effect (SHE) of transmitted light. It is demonstrated that sandwiching a layer of a high-refractive-index medium (boron nitride crystal) between two low-refractive-index layers (silica) can effectively enhance the photonic SHE due to the increased refractive index gradient and an enhanced evanescent field near the interface between silica and boron nitride. A maximum transverse shift of the horizontal polarization state in the ROTE structure of about 22.25 µm has been obtained, which is at least three orders of magnitude greater than the transverse shift in the frustrated total internal reflection structure. Moreover, the SHE can be manipulated by controlling the component materials and the thickness of the ROTE structure. These findings open the possibility for future applications of photonic SHE in precision metrology and spin-based photonics.

  3. Modification of optical properties by adiabatic shifting of resonances in a four-level atom

    Science.gov (United States)

    Dutta, Bibhas Kumar; Panchadhyayee, Pradipta

    2018-04-01

    We describe the linear and nonlinear optical properties of a four-level atomic system, after reducing it to an effective two-level atomic model under the condition of adiabatic shifting of resonances driven by two coherent off-resonant fields. The reduced form of the Hamiltonian corresponding to the two-level system is obtained by employing an adiabatic elimination procedure in the rate equations of the probability amplitudes for the proposed four-level model. For a weak probe field operating in the system, the nonlinear dependence of complex susceptibility on the Rabi frequencies and the detuning parameters of the off-resonant driving fields makes it possible to exhibit coherent control of single-photon and two-photon absorption and transparency, the evolution of enhanced Self-Kerr nonlinearity and noticeable dispersive switching. We have shown how the quantum interference results in the generic four-level model at the adiabatic limit. The present scheme describes the appearance of single-photon transparency without invoking any exact two-photon resonance.

  4. High quality-factor optical resonators

    International Nuclear Information System (INIS)

    Henriet, Rémi; Salzenstein, Patrice; Coillet, Aurélien; Saleh, Khaldoun; Chembo, Yanne K; Ristic, Davor; Ferrari, Maurizio; Mortier, Michel; Rasoloniaina, Alphonse; Dumeige, Yannick; Féron, Patrice; Cibiel, Gilles; Llopis, Olivier

    2014-01-01

    Various resonators are investigated for microwave photonic applications. Micro-sphere, disk and fiber ring resonators were designed, realized and characterized. Obtained quality factors are as high as Q = 10 10 . (paper)

  5. Kir2.1 channels set two levels of resting membrane potential with inward rectification.

    Science.gov (United States)

    Chen, Kuihao; Zuo, Dongchuan; Liu, Zheng; Chen, Haijun

    2018-04-01

    Strong inward rectifier K + channels (Kir2.1) mediate background K + currents primarily responsible for maintenance of resting membrane potential. Multiple types of cells exhibit two levels of resting membrane potential. Kir2.1 and K2P1 currents counterbalance, partially accounting for the phenomenon of human cardiomyocytes in subphysiological extracellular K + concentrations or pathological hypokalemic conditions. The mechanism of how Kir2.1 channels contribute to the two levels of resting membrane potential in different types of cells is not well understood. Here we test the hypothesis that Kir2.1 channels set two levels of resting membrane potential with inward rectification. Under hypokalemic conditions, Kir2.1 currents counterbalance HCN2 or HCN4 cation currents in CHO cells that heterologously express both channels, generating N-shaped current-voltage relationships that cross the voltage axis three times and reconstituting two levels of resting membrane potential. Blockade of HCN channels eliminated the phenomenon in K2P1-deficient Kir2.1-expressing human cardiomyocytes derived from induced pluripotent stem cells or CHO cells expressing both Kir2.1 and HCN2 channels. Weakly inward rectifier Kir4.1 or inward rectification-deficient Kir2.1•E224G mutant channels do not set such two levels of resting membrane potential when co-expressed with HCN2 channels in CHO cells or when overexpressed in human cardiomyocytes derived from induced pluripotent stem cells. These findings demonstrate a common mechanism that Kir2.1 channels set two levels of resting membrane potential with inward rectification by balancing inward currents through different cation channels such as hyperpolarization-activated HCN channels or hypokalemia-induced K2P1 leak channels.

  6. Study of luminescence and optical resonances in Sb{sub 2}O{sub 3} micro- and nanotriangles

    Energy Technology Data Exchange (ETDEWEB)

    Cebriano, Teresa; Mendez, Bianchi, E-mail: bianchi@fis.ucm.es; Piqueras, Javier [Universidad Complutense de Madrid, Departamento de Fisica de Materiales, Facultad de Ciencias Fisicas (Spain)

    2012-10-15

    Luminescence of micro- and nanotriangles of cubic antimony oxide, Sb{sub 2}O{sub 3} has been investigated by cathodoluminescence (CL) in scanning electron microscope and by photoluminescence (PL) in a laser confocal microscope. The triangles were grown by a thermal evaporation-deposition process with pure antimony powders as precursor, and present a self assembled arrangement covering extended areas of the samples. CL spectra of the triangles show bands at 2-2.5 and 3.1 eV, the latter is not observed in the Sb{sub 2}O{sub 3} initial powder. PL excited by 325 nm laser shows a band at 2.4 eV with a shoulder at 2.75 eV, as well as resonance modes suggesting optical cavity behavior of the triangles. The separation between resonant peaks from different triangles has been correlated with the triangle side length and possible optical paths were obtained according to the Fabry-Perot relationship. These results along with the optical images suggest that not only Fabry-Perot cavity modes, but also whispering gallery modes may occur inside the micro- and nanotriangle structures.

  7. Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sikdar, Debabrata, E-mail: debabrata.sikdar@monash.edu; Premaratne, Malin [Advanced Computing and Simulation Laboratory (A chi L), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria (Australia); Cheng, Wenlong [Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria (Australia); The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton 3168, Victoria (Australia)

    2015-02-28

    Cubic dielectric nanoparticles are promising candidates for futuristic low-loss, ultra-compact, nanophotonic applications owing to their larger optical coefficients, greater packing density, and relative ease of fabrication as compared to spherical nanoparticles; besides possessing negligible heating at nanoscale in contrast to their metallic counterparts. Here, we present the first theoretical demonstration of azimuthally symmetric, ultra-directional Kerker's-type scattering of simple dielectric nanocubes in visible and near-infrared regions via simultaneous excitation and interference of optically induced electric- and magnetic-resonances up to quadrupolar modes. Unidirectional forward-scattering by individual nanocubes is observed at the first generalized-Kerker's condition for backward-scattering suppression, having equal electric- and magnetic-dipolar responses. Both directionality and magnitude of these unidirectional-scattering patterns get enhanced where matching electric- and magnetic-quadrupolar responses spectrally overlap. While preserving azimuthal-symmetry and backscattering suppression, a nanocube homodimer provides further directionality improvement for increasing interparticle gap, but with reduced main-lobe magnitude due to emergence of side-scattering lobes from diffraction-grating effect. We thoroughly investigate the influence of interparticle gap on scattering patterns and propose optimal range of gap for minimizing side-scattering lobes. Besides suppressing undesired side-lobes, significant enhancement in scattering magnitude and directionality is attained with increasing number of nanocubes forming a linear chain. Optimal directionality, i.e., the narrowest main-scattering lobe, is found at the wavelength of interfering quadrupolar resonances; whereas the largest main-lobe magnitude is observed at the wavelength satisfying the first Kerker's condition. These unique optical properties of dielectric nanocubes thus can

  8. Cancer cell imaging by stable wet near-field scanning optical microscope with resonance tracking method

    International Nuclear Information System (INIS)

    Park, Kyoung-Duck; Park, Doo-Jae; Jeong, Mun-Seok; Choi, Geun-Chang; Lee, Seung-Gol; Byeon, Clare-Chisu; Choi, Soo-Bong

    2014-01-01

    We report on a successful topographical and optical imaging of various cancer cells in liquid and in air by using a stable wet near-field scanning optical microscope that utilizes a resonance tracking method. We observed a clear dehydration which gives rise to a decrease in the cell volume down to 51%. In addition, a micro-ball lens effect due to the round-shaped young cancer cells was observed from near-field imaging, where the refractive index of young cancer cells was deduced.

  9. Cancer cell imaging by stable wet near-field scanning optical microscope with resonance tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoung-Duck [Sungkyunkwan University, Suwon (Korea, Republic of); Inha University, Incheon (Korea, Republic of); Park, Doo-Jae; Jeong, Mun-Seok [Sungkyunkwan University, Suwon (Korea, Republic of); Choi, Geun-Chang [Seoul National University, Seoul (Korea, Republic of); Lee, Seung-Gol [Inha University, Incheon (Korea, Republic of); Byeon, Clare-Chisu [Kyungpook National University, Daegu (Korea, Republic of); Choi, Soo-Bong [Incheon National University, Incheon (Korea, Republic of)

    2014-05-15

    We report on a successful topographical and optical imaging of various cancer cells in liquid and in air by using a stable wet near-field scanning optical microscope that utilizes a resonance tracking method. We observed a clear dehydration which gives rise to a decrease in the cell volume down to 51%. In addition, a micro-ball lens effect due to the round-shaped young cancer cells was observed from near-field imaging, where the refractive index of young cancer cells was deduced.

  10. Superconducting resonators as beam splitters for linear-optics quantum computation.

    Science.gov (United States)

    Chirolli, Luca; Burkard, Guido; Kumar, Shwetank; Divincenzo, David P

    2010-06-11

    We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.

  11. Conduction and rectification in NbO{sub x}- and NiO-based metal-insulator-metal diodes

    Energy Technology Data Exchange (ETDEWEB)

    Osgood, Richard M., E-mail: richard.m.osgood.civ@mail.mil; Giardini, Stephen; Carlson, Joel [US Army Natick Soldier Research Development and Engineering Center (NSRDEC), 15 General Greene Ave., Natick, Massachusetts 01760 (United States); Periasamy, Prakash; Guthrey, Harvey; O' Hayre, Ryan [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401 (United States); Chin, Matthew; Nichols, Barbara; Dubey, Madan [RF and Electronics Division, US Army Research Laboratory, Adelphi, Maryland 20783 (United States); Fernandes, Gustavo; Kim, Jin Ho; Xu, Jimmy [Division of Engineering, Brown University, Box D, Providence, Rhode Island 02912 (United States); Parilla, Philip; Berry, Joseph; Ginley, David [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2016-09-15

    Conduction and rectification in nanoantenna-coupled NbO{sub x}- and NiO-based metal-insulator-metal (MIM) diodes (“nanorectennas”) are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current–voltage (I–V) curves, over 10 orders of magnitude in current density, from [NbO{sub x}(native)-Nb{sub 2}O{sub 5}]- and NiO-based samples with oxide thicknesses in the range of 5–36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I–V curve, and predicts quantitatively the rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I–V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I–V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I–V curves with our model, the barrier heights in Nb-(NbO{sub x}(native)-Nb{sub 2}O{sub 5})-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbO{sub x} (native)-Nb{sub 2}O{sub 5} dielectric properties improve, and the effective Pt-Nb{sub 2}O{sub 5} barrier height increases as the oxide thickness increases. An observation of direct current of ∼4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports

  12. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection

    Directory of Open Access Journals (Sweden)

    Miguel Hernaez

    2017-12-01

    Full Text Available The influence of graphene oxide (GO over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO2 thin film. Layer by layer (LbL coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  13. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection.

    Science.gov (United States)

    Hernaez, Miguel; Mayes, Andrew G; Melendi-Espina, Sonia

    2017-12-27

    The influence of graphene oxide (GO) over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR) has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO₂ thin film. Layer by layer (LbL) coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI) and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  14. Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films

    International Nuclear Information System (INIS)

    Tracy, C.E.; Benson, D.K.; Haberman, D.P.; Hishmeh, G.A.; Ciszek, P.A.

    1998-01-01

    Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal

  15. Rectification of Current Responds to Incorporation of Fullerenes into Mixed-Monolayers of Alkanethiolates in Tunneling Junctions

    NARCIS (Netherlands)

    Qiu, Li; Zhang, Yanxi; Krijger, Theodorus; Qiu, Xinkai; van 't Hof, Patrick; Hummelen, Jan; Chiechi, Ryan

    2016-01-01

    This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga–In (EGaIn) and Au conducting probe AFM (CP-AFM)

  16. Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor.

    Science.gov (United States)

    Manera, Maria Grazia; Ferreiro-Vila, Elías; Garcia-Martin, José Miguel; Garcia-Martin, Antonio; Rella, Roberto

    2014-08-15

    A comparison between sensing performance of traditional SPR (Surface Plasmon Resonance) and magneto-optic SPR (MOSPR) transducing techniques is presented in this work. MOSPR comes from an evolution of traditional SPR platform aiming at modulating Surface Plasmon wave by the application of an external magnetic field in transverse configuration. Previous work demonstrated that, when the Plasmon resonance is excited in these structures, the external magnetic field induces a modification of the coupling of the incident light with the Surface Plasmon Polaritons (SPP). Besides, these structures can lead to an enhancement in the magneto-optical (MO) activity when the SPP is excited. This phenomenon is exploited in this work to demonstrate the possibility to use the enhanced MO signal as proper transducer signal for investigating biomolecular interactions in liquid phase. To this purpose, the transducer surface was functionalized by thiol chemistry and used for recording the binding between Bovine Serum Albumin molecules immobilized onto the surface and its complementary target. Higher sensing performance in terms of sensitivity and lower limit of detection of the MOSPR biosensor with respect to traditional SPR sensors is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator

    Science.gov (United States)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-03-01

    In this paper, an all-optical plasmonic switch based on metal-insulator-metal (MIM) nanoplasmonic waveguide with a Kerr nonlinear ring resonator is introduced and studied. Two-dimensional simulations utilizing the finite-difference time-domain algorithm are used to demonstrate an apparent optical bistability and significant switching mechanisms (in enabled-low condition: T(ON/OFF) =21.9 and in enabled-high condition: T(ON/OFF) =24.9) of the signal light arisen by altering the pump-light intensity. The proposed all-optical switching demonstrates femtosecond-scale feedback time (90 fs) and then ultra-fast switching can be achieved. The offered all-optical switch may recognize potential significant applications in integrated optical circuits.

  18. Multichannel all–optical switch based on a thin slab of resonant two–level emitters

    Directory of Open Access Journals (Sweden)

    Malikov Ramil

    2017-01-01

    Full Text Available We discuss the possibility of using a thin layer of inhomogeneously broadened resonant emitters as a multichannel all–optical switch. Switching time from the lower stable branch of the system's bistable characteristics to the upper one and vice versa, which determines the speed of operation of a bistable device, is studied.

  19. Design of a ring resonator-based optical beam forming network for phased array receive antennas

    NARCIS (Netherlands)

    van 't Klooster, J.W.J.R.; Roeloffzen, C.G.H.; Meijerink, Arjan; Zhuang, L.; Marpaung, D.A.I.; van Etten, Wim; Heideman, Rene; Leinse, Arne; Schippers, H.; Verpoorte, J.; Wintels, M.

    2008-01-01

    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our

  20. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    International Nuclear Information System (INIS)

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2015-01-01

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array

  1. Synthesis of highly integrated optical network based on microdisk-resonator add-drop filters in silicon-on-insulator technology

    Science.gov (United States)

    Kaźmierczak, Andrzej; Dortu, Fabian; Giannone, Domenico; Bogaerts, Wim; Drouard, Emmanuel; Rojo-Romeo, Pedro; Gaffiot, Frederic

    2009-10-01

    We analyze a highly compact optical add-drop filter topology based on a pair of microdisk resonators and a bus waveguide intersection. The filter is further assessed on an integrated optical 4×4 network for optical on-chip communication. The proposed network structure, as compact as 50×50 μm, is fabricated in a CMOS-compatible process on a silicon-on-insulator (SOI) substrate. Finally, the experimental results demonstrate the proper operation of the fabricated devices.

  2. Novel Electro-Optical Coupling Technique for Magnetic Resonance-Compatible Positron Emission Tomography Detectors

    Directory of Open Access Journals (Sweden)

    Peter D. Olcott

    2009-03-01

    Full Text Available A new magnetic resonance imaging (MRI-compatible positron emission tomography (PET detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  3. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    Science.gov (United States)

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  4. Luminosity optimization schemes in Compton experiments based on Fabry-Perot optical resonators

    Directory of Open Access Journals (Sweden)

    Alessandro Variola

    2011-03-01

    Full Text Available The luminosity of Compton x-ray and γ sources depends on the average current in electron bunches, the energy of the laser pulses, and the geometry of the particle bunch to laser pulse collisions. To obtain high power photon pulses, these can be stacked in a passive optical resonator (Fabry-Perot cavity especially when a high average flux is required. But, in this case, owing to the presence of the optical cavity mirrors, the electron bunches have to collide at an angle with the laser pulses with a consequent luminosity decrease. In this article a crab-crossing scheme is proposed for Compton sources, based on a laser amplified in a Fabry-Perot resonator, to eliminate the luminosity losses given by the crossing angle, taking into account that in laser-electron collisions only the electron bunches can be tilted at the collision point. We report the analytical study on the crab-crossing scheme for Compton gamma sources. The analytical expression for the total yield of photons generated in Compton sources with the crab-crossing scheme of collision is derived. The optimal collision angle of the bunch was found to be equal to half of the collision angle. At this crabbing angle, the maximal yield of scattered off laser photons is attained thanks to the maximization, in the collision process, of the time spent by the laser pulse in the electron bunch. Estimations for some Compton source projects are presented. Furthermore, some schemes of the optical cavities configuration are analyzed and the luminosity calculated. As illustrated, the four-mirror two- or three-dimensional scheme is the most appropriate for Compton sources.

  5. Microwave-optical double resonance spectroscopy. Progress report, February 1, 1976--January 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, D.W.

    1976-11-01

    Zero-field and high-field optical detection of magnetic resonance (ODMR), electron paramagnetic resonance (EPR), and optical spectroscopy experiments have been performed on several systems in order to further basic knowledge of the structure, reactions, and response to radiation of atoms, molecules, and ions in their ground and/or excited electronic states. Particularly noteworthy results for the present contract year include the determination of the complete magnetic and optical properties of the lowest triplet states of 1-chloro, 1-bromo, and 1-iodonaphthalene, the development of a microscopic model for the intramolecular heavy-atom effect in the /sup 3/(..pi..,..pi..*) states of aromatic molecules, a detailed analysis of the angular dependence of the hyperfine and quadrupole structure in triplet 1-bromonaphthalene, observation of proton hyperfine structure in the hf ODMR spectra of short-lived triplet states, a definitive paper on the relative importance of spin delocalization and second-order spin-orbit coupling effects in /sup 3/(n,..pi..*) benzophenone (a phototype photochemical system), a detailed analysis of the level-anticrossing spectra of several triplet state benzophenones which exhibit hyperfine structure in the cross-relaxation region (thus permitting the determination of key magnetic parameters in the complete absence of perturbing microwave or radiofrequency fields), optical detection of ground-state NQR transitions in host crystal molecules, the observation of strong radiofrequency transitions near avoided crossing points in Zeeman energy level diagrams of photoexcited triplet states, the construction of zero-field ODMR, ODENDOR, and hf ODENDOR spectrometers, measurements of the activation parameters for ring interconversions of several free radicals containing five- and six-membered rings, and experimental proof that the triplet state of trimethylenemethane (a key reactive intermediate in organic chemistry) is the ground state.

  6. Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance

    Science.gov (United States)

    Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay

    2009-08-01

    Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.

  7. Heavy water isotopic rectification in the ''ORPHEE'' reactor. SACLAY studies Centre

    International Nuclear Information System (INIS)

    Lejeune, P.; Breant, P.

    1993-01-01

    ORPHEE reactor supplies neutron beams, which are got back in a heavy water reflector. The neutron beams intensity depends on the reflector quality which is determined by the isotopic content of the heavy water. The deuterium submitted to core irradiation changes in radioactive tritium which must be eliminated largely for reasons of safety. The column must keep the heavy water isotopic content of the reflector to a value higher than 99.8% by eliminating light water by fractional distillation or rectification. This column is also used for the tritium elimination of heavy water. 13 figs

  8. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode

    OpenAIRE

    Zhenmin Chen; Xiang Wu; Liying Liu; Lei Xu

    2017-01-01

    In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs). To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE) in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the...

  9. Electron-related nonlinearities in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells under the effects of intense laser field and applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, Mexico (Mexico); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Duque, C.A., E-mail: cduque_echeverri@yahoo.es [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Kasapoglu, E.; Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Soekmen, I. [Dokuz Eyluel University, Physics Department, 35160 Buca, Izmir (Turkey)

    2013-03-15

    The combined effects of intense laser radiation and applied electric fields on the intersubband-related linear and nonlinear optical properties in GaAs-based quantum wells are discussed. It is shown that for asymmetric double quantum well, the increasing laser field intensity causes progressive redshifts in the peak positions of the second and third harmonic coefficients. However, the resonant peaks of the nonlinear optical rectification can suffer a blueshift or a redshift, depending on the laser strengths. The same feature appears in the case of the resonant peaks corresponding to the total coefficients of optical absorption and relative change in the refractive index. - Highlights: Black-Right-Pointing-Pointer Nonlinear optical properties in double quantum wells. Black-Right-Pointing-Pointer Increasing laser field intensity causes redshifts in the peak positions. Black-Right-Pointing-Pointer Resonant peak of second order nonlinearities can be blue-shifted. Black-Right-Pointing-Pointer Relative change in refractive index depends of the applied electric field. Black-Right-Pointing-Pointer The energy position depends of the laser field parameter.

  10. Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, S M; Safari, L; Mahmoudi, M [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Sahrai, M, E-mail: sahrai@tabrizu.ac.i [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2010-08-28

    The effect of quantum interference on the optical properties of a pumped-probe three-level V-type atomic system is investigated. The probe absorption, dispersion, group index and optical bistability beyond the two-photon resonance condition are discussed. It is found that the optical properties of a medium in the frequency of the probe field, in general, are phase independent. The phase dependence arises from a scattering of the coupling field into the probe field at a frequency which in general differs from the probe field frequency. It is demonstrated that beyond the two-photon resonance condition the phase sensitivity of the medium will disappear.

  11. Strain tuneable whispering gallery mode resonators in the estimation of the elasto-optic parameters of soft materials

    Science.gov (United States)

    Pissadakis, Stavros; Milenko, Karolina; Aluculesei, Alina; Fytas, George

    2016-04-01

    In this manuscript we present the fabrication and characterization of a novel, polymer whispering gallery modes (WGMs) spherical micro-resonator, formed around the waist of an optical fiber taper. Fiber taper with well attached spheroid works as a cord, fixed on two ends enabling strain application to the resonator body. Controllable elastic elongation of the encapsulated fiber taper causes a change in the shape of the spheroid, which modifies the diameter and directional refractive index of the cavity. These changes influence the wavelength position of the WGMs resonances with a linear blue shift up to 0.6 nm, with corresponding strains up to 700Μɛ. The strain induced WGMs shift with respect to resonator diameter and annealing process is presented and analyzed.

  12. The interpretation of resonance formation in coupled-channel models of positron scattering by atomic hydrogen using localized optical potentials

    International Nuclear Information System (INIS)

    Bransden, B.H.; Hewitt, R.N.

    1997-01-01

    Above-threshold resonances can occur in coupled-channel models of the e + + H system when Ps formation is taken into account (although it should be pointed out that, in this specific system, resonances do not occur in an exact theory). In general, to understand the mechanism of resonance formation it is useful to obtain the exact optical potential in a given channel in a localized form. The methods of achieving this localization are discussed with reference to a specific application to the resonance found in the two-state approximation for the l = 0 partial wave. (author)

  13. Eu, Gd-Codoped Yttria Nanoprobes for Optical and T1-Weighted Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Timur Sh Atabaev

    2017-02-01

    Full Text Available Nanoprobes with multimodal functionality have attracted significant interest recently because of their potential applications in nanomedicine. This paper reports the successful development of lanthanide-doped Y2O3 nanoprobes for potential applications in optical and magnetic resonance (MR imaging. The morphology, structural, and optical properties of these nanoprobes were characterized by transmission electron microscope (TEM, field emission scanning electron microscope (FESEM, X-ray diffraction (XRD, energy-dispersive X-ray (EDX, and photoluminescence (PL. The cytotoxicity test showed that the prepared lanthanide-doped Y2O3 nanoprobes have good biocompatibility. The obvious contrast enhancement in the T1-weighted MR images suggested that these nanoprobes can be used as a positive contrast agent in MRI. In addition, the clear fluorescence images of the L-929 cells incubated with the nanoprobes highlight their potential for optical imaging. Overall, these results suggest that prepared lanthanide-doped Y2O3 nanoprobes can be used for simultaneous optical and MR imaging.

  14. Observation and resonant x-ray optical interpretation of multi-atom resonant photoemission effects in O 1s emission from NiO

    International Nuclear Information System (INIS)

    Mannella, N.; Yang, S.-H.; Mun, B.S.; Garcia de Abajo, F.J.; Kay, A.W.; Sell, B.C.; Watanabe, M.; Ohldag, H.; Arenholz, E.; Young, A.T.; Hussain, Z.; Van Hove, M.A.; Fadley, C.S.

    2006-01-01

    We present experimental and theoretical results for the variation of the O 1s intensity from a NiO(001) surface as the excitation energy is varied through the Ni 2p1/2,3/2 absorption resonances, and as the incidence angle of the radiation is varied from grazing to larger values. For grazing incidence, a strong multi-atom resonant photoemission(MARPE) effect is seen on the O 1s intensity as the Ni 2p resonances are crossed, but its magnitude decreases rapidly as the incidence angle is increased. Resonant x-ray optical (RXRO) calculations are found to predict these effects very well, although the experimental effects are found to decrease at higher incidence angles faster than those in theory. The potential influence of photoelectron diffraction effects on such measurements are also considered, including experimental data with azimuthal-angle variation and corresponding multiple-scattering-diffraction calculations, but we conclude that they do not vary beyond what is expected on the basis of the change in photoelectron kinetic energy. Varying from linear polarization to circular polarization is found to enhance these effects in NiO considerably, although the reasons are not clear. We also discuss the relationship of these measurements to other related interatomic resonance experiments and theoretical developments, and make some suggestions for future studies in this area

  15. Coherence Phenomena in Coupled Optical Resonators

    Science.gov (United States)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  16. Conduction and rectification in NbO x - and NiO-based metal-insulator-metal diodes

    Energy Technology Data Exchange (ETDEWEB)

    Osgood, Richard M.; Giardini, Stephen; Carlson, Joel; Periasamy, Prakash; Guthrey, Harvey; O' Hayre, Ryan; Chin, Matthew; Nichols, Barbara; Dubey, Madan; Fernandes, Gustavo; Kim, Jin Ho; Xu, Jimmy; Parilla, Philip; Berry, Joseph; Ginley, David

    2016-09-01

    Conduction and rectification in nanoantenna-coupled NbOx- and NiO-based metal-insulator-metal (MIM) diodes ('nanorectennas') are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current-voltage (I-V) curves, over 10 orders of magnitude in current density, from [NbOx(native)-Nb2O5]- and NiO-based samples with oxide thicknesses in the range of 5-36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I-V curve, and predicts quantitatively the rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I-V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I-V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I-V curves with our model, the barrier heights in Nb-(NbOx(native)-Nb2O5)-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbOx (native)-Nb2O5 dielectric properties improve, and the effective Pt-Nb2O5 barrier height increases as the oxide thickness increases. An observation of direct current of ~4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports. This measured direct current is compared to the prediction for rectified direct current

  17. Thermal conductivity and thermal rectification in unzipped carbon nanotubes

    International Nuclear Information System (INIS)

    Ni Xiaoxi; Li Baowen; Zhang Gang

    2011-01-01

    We study the thermal transport in completely unzipped carbon nanotubes, which are called graphene nanoribbons, partially unzipped carbon nanotubes, which can be seen as carbon-nanotube-graphene-nanoribbon junctions, and carbon nanotubes by using molecular dynamics simulations. It is found that the thermal conductivity of a graphene nanoribbon is much less than that of its perfect carbon nanotube counterparts because of the localized phonon modes at the boundary. A partially unzipped carbon nanotube has the lowest thermal conductivity due to additional localized modes at the junction region. More strikingly, a significant thermal rectification effect is observed in both partially unzipped armchair and zigzag carbon nanotubes. Our results suggest that carbon-nanotube-graphene-nanoribbon junctions can be used in thermal energy control.

  18. Scanning Tunneling Optical Resonance Microscopy

    Science.gov (United States)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically tunneling current

  19. Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications

    Science.gov (United States)

    Al-mahmod, Md. Jubayer; Hyder, Rakib; Islam, Md Zahurul

    2017-07-01

    A nanosensor, based on a metal-insulator-metal (MIM) plasmonic ring resonator, is proposed for potential on-chip temperature sensing and its performance is evaluated numerically. The sensor components can be fabricated by using planar processes on a silicon substrate, making its manufacturing compatible to planar electronic fabrication technology. The sensor, constructed using silver as the metal rings and a thermo-optic liquid ethanol film between the metal layers, is capable of sensing temperature with outstanding optical sensitivity, as high as -0.53 nm/°C. The resonance wavelength is found to be highly sensitive to the refractive index of the liquid dielectric film. The resonance peak can be tuned according to the requirement of intended application by changing the radii of the ring resonator geometries in the design phase. The compact size, planar and silicon-based design, and very high resolutions- these characteristics are expected to make this sensor technology a preferred choice for lab-on-a-chip applications, as compared to other contemporary sensors.

  20. Petal–like modes in Porro prism resonators

    CSIR Research Space (South Africa)

    Litvin, IA

    2007-10-01

    Full Text Available , and then proposed in 1962 by Gould et al [1] as a means to overcome misalignment problems in optical resonators employing Fabry–Perot cavities by replacing the end face mirrors with crossed roof prisms. Lasers based on this principle have been developed over... of America OCIS codes: (140.4780) Optical resonators; (260.0260) Physical optics; (140.3410) Laser resonators; (230.5480) Prisms; (140.0140) Lasers and laser optics References and links 1. G. Gould, S. Jacobs, P. Rabinowitz and T. Shultz, “Crossed Roof...

  1. Time-resolved optically-detected magnetic resonance of II-VI diluted-magnetic-semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V.Yu.; Karczewski, G. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Dept. Mathem. and Natural Sci. College of Sci., Card. S. Wyszynski Univ., Warsaw (Poland); Yakovlev, D.R. [Experimental Physics 2, University of Dortmund, 44221 Dortmund (Germany); A. F. Ioffe Physico-Technical Institute, 194017 St. Petersburg (Russian Federation); Ryabchenko, S.M. [Institute of Physics NAS Ukraine, 03028 Kiev (Ukraine); Waag, A. [Institute of Semiconductor Technology, Braunschweig Technical University, 38106 Braunschweig (Germany)

    2007-01-15

    Time-resolved optically-detected magnetic resonance (ODMR) technique was used to study spin dynamics of Mn{sup 2+} ions in (Zn,Mn)Se- and (Cd,Mn)Te-based diluted magnetic semiconductor quantum wells. Times of spin-lattice relaxation have been measured directly from a dynamical shift of exciton luminescence lines after a pulsed impact of 60 GHz microwave radiation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Fano resonances from gradient-index metamaterials.

    Science.gov (United States)

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-27

    Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.

  3. Application of quantum-dot multi-wavelength lasers and silicon photonic ring resonators to data-center optical interconnects

    Science.gov (United States)

    Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.

    2018-02-01

    Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.

  4. Plasmonic nanoparticle chain in a light field: a resonant optical sail.

    Science.gov (United States)

    Albaladejo, Silvia; Sáenz, Juan José; Marqués, Manuel I

    2011-11-09

    Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are theoretically studied as a function of radiation's wavelength and chain's alignments with respect to the direction of radiation. Interestingly, there is a window in the frequency spectrum in which null-torque equilibrium configuration, with minimum geometric cross section, corresponds to a maximum in the driving force.

  5. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    Energy Technology Data Exchange (ETDEWEB)

    Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Moiseyenko, Rayisa [Department of Physics, Technical University of Denmark, DTU Physics, Building 309, DK-2800 Kongens Lyngby (Denmark); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Rouhani, Bahram Djafari [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, l' UNAM, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, P.O. Box 4120, D-39016 Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)

    2016-03-21

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.

  6. Reconfigurable optical-to-optical frequency conversion method and apparatus

    Science.gov (United States)

    Zortman, William A.; Lentine, Anthony L.

    2017-04-18

    A photonic device is provided for impressing a modulation pattern on an optical carrier. The device includes a unit in which a photodetector and an optical microresonator are monolithically integrated. The device further includes an optical waveguide evanescently coupled to the optical microresonator and having at least an upstream portion configured to carry at least one optical carrier toward the microresonator. The optical microresonator is tunable so as to resonate with the optical carrier frequency. The optical microresonator and the photodetector are mutually coupled such that in operation, charge carriers photogenerated in the photodetector are injected into the microresonator, where the photocurrent changes the resonant conditions. In some embodiments the device is operable as an optical-to-optical frequency converter. In other embodiments the device is operable as an oscillator.

  7. Ultrafast all-optical arithmetic logic based on hydrogenated amorphous silicon microring resonators

    Science.gov (United States)

    Gostimirovic, Dusan; Ye, Winnie N.

    2016-03-01

    For decades, the semiconductor industry has been steadily shrinking transistor sizes to fit more performance into a single silicon-based integrated chip. This technology has become the driving force for advances in education, transportation, and health, among others. However, transistor sizes are quickly approaching their physical limits (channel lengths are now only a few silicon atoms in length), and Moore's law will likely soon be brought to a stand-still despite many unique attempts to keep it going (FinFETs, high-k dielectrics, etc.). This technology must then be pushed further by exploring (almost) entirely new methodologies. Given the explosive growth of optical-based long-haul telecommunications, we look to apply the use of high-speed optics as a substitute to the digital model; where slow, lossy, and noisy metal interconnections act as a major bottleneck to performance. We combine the (nonlinear) optical Kerr effect with a single add-drop microring resonator to perform the fundamental AND-XOR logical operations of a half adder, by all-optical means. This process is also applied to subtraction, higher-order addition, and the realization of an all-optical arithmetic logic unit (ALU). The rings use hydrogenated amorphous silicon as a material with superior nonlinear properties to crystalline silicon, while still maintaining CMOS-compatibility and the many benefits that come with it (low cost, ease of fabrication, etc.). Our method allows for multi-gigabit-per-second data rates while maintaining simplicity and spatial minimalism in design for high-capacity manufacturing potential.

  8. Theory of the effect of odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization

    International Nuclear Information System (INIS)

    Payne, M.G.; Deng, L.; Garrett, W.R.

    1998-01-01

    We present a theory for two- and three-photon excitation, optical shifting, and four-wave mixing when a first laser is tuned onto, or near, a two-photon resonance and a second much more intense laser is tuned near or on resonance between the two-photon resonance and a second excited state. When the second excited state has a dipole-allowed transition back to the ground state and the concentration is sufficiently high, a destructive interference is produced between three-photon coupling of the ground state and the second excited state and one-photon coupling between the same states by the internally generated four-wave mixing field. This interference leads to several striking effects. For instance, as the onset of the interference occurs, the optical shifts in the two-photon resonance excitation line shape become smaller in copropagating geometry so that the line shapes for multiphoton ionization enhanced by the two-photon resonance eventually become unaffected by the second laser. In the same range of concentrations the four-wave mixing field evolves to a concentration-independent intensity. With counterpropagating laser beams the line shape exhibits normal optical shifts like those observed for both copropagating and counterpropagating laser beams at very low concentrations. The theoretical work presented here extends our earlier works by including the effect of laser bandwidth and by removing the restriction of having the second laser be tuned far from three-photon resonance. In this way we have now included, as a special case, the effect of both laser bandwidth and interference on laser-induced transparency. Unlike other effects related to odd-photon destructive interference, the effect of a broad bandwidth is to bring about the predicted effects at much lower concentrations. Studies in rubidium show good agreement between theory and experiment for both ionization line shapes and four-wave mixing intensity as a function of concentration. copyright 1998 The

  9. Synaptic excitation in spinal motoneurons alternates with synaptic inhibition and is balanced by outward rectification during rhythmic motor network activity

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jorn

    2017-01-01

    channels. Intrinsic outward rectification facilitates spiking by focusing synaptic depolarization near threshold for action potentials. By direct recording of synaptic currents, we also show that motoneurons are activated by out-of-phase peaks in excitation and inhibition during network activity, whereas......Regular firing in spinal motoneurons of red-eared turtles (Trachemys scripta elegans, either sex) evoked by steady depolarization at rest is replaced by irregular firing during functional network activity. The transition caused by increased input conductance and synaptic fluctuations in membrane...... potential was suggested to originate from intense concurrent inhibition and excitation. We show that the conductance increase in motoneurons during functional network activity is mainly caused by intrinsic outward rectification near threshold for action potentials by activation of voltage and Ca2+ gated K...

  10. Microscopic description and simulation of ultracold atoms in optical resonators

    International Nuclear Information System (INIS)

    Niedenzu, W.

    2012-01-01

    Ultracold atoms in optical resonators are an ideal system to investigate the full quantum regime of light-matter interaction. Microscopic insight into the underlying processes can nowadays easily be obtained from numerical calculations, e.g. with Monte Carlo wave function simulations. In the first part we discuss cold atoms in ring resonators, where the modified boundary conditions significantly alter the dynamics as compared to the standing-wave case. Quantum jumps induce momentum correlations and entanglement between the particles. We observe strong non-classical motional correlations, cooling and entanglement heralded by single photon measurements. For deeply trapped particles the complex system Hamiltonian can be mapped onto a generic optomechanical model, allowing for analytical microscopic insight into the dynamics. The rates of cavity-mediated correlated heating and cooling processes are obtained by adiabatically eliminating the cavity field from the dynamics and can be directly related to the steady-state momentum correlation coefficient. The second part is devoted to cooling and self-organisation of a cold gas in a transversally pumped standing-wave resonator, in which the atoms are directly illuminated by a laser beam. Above a certain critical laser intensity the atoms order in a specific pattern, maximising light scattering into the cavity. The particles thus create and sustain their own trap. We derive a nonlinear Fokker-Planck equation for the one-particle distribution function describing the gas dynamics below and above threshold. This kinetic theory predicts dissipation-induced self-organisation and q-Gaussian velocity distributions in steady state. (author)

  11. RF Rectification on LAPD and NSTX: the relationship between rectified currents and potentials

    Science.gov (United States)

    Perkins, R. J.; Carter, T.; Caughman, J. B.; van Compernolle, B.; Gekelman, W.; Hosea, J. C.; Jaworski, M. A.; Kramer, G. J.; Lau, C.; Martin, E. H.; Pribyl, P.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    RF rectification is a sheath phenomenon important in the fusion community for impurity injection, hot spot formation on plasma-facing components, modifications of the scrape-off layer, and as a far-field sink of wave power. The latter is of particular concern for the National Spherical Torus eXperiment (NSTX), where a substantial fraction of the fast-wave power is lost to the divertor along scrape-off layer field lines. To assess the relationship between rectified currents and rectified voltages, detailed experiments have been performed on the Large Plasma Device (LAPD). An electron current is measured flowing out of the antenna and into the limiters, consistent with RF rectification with a higher RF potential at the antenna. The scaling of this current with RF power will be presented. The limiters are also floated to inhibit this DC current; the impact of this change on plasma-potential and wave-field measurements will be shown. Comparison to data from divertor probes in NSTX will be made. These experiments on a flexible mid-sized experiment will provide insight and guidance into the effects of ICRF on the edge plasma in larger fusion experiments. Funded by the DOE OFES (DE-FC02-07ER54918 and DE-AC02-09CH11466), NSF (NSF- PHY 1036140), and the Univ. of California (12-LR- 237124).

  12. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  13. Pulse advancement and delay in an integrated optical two-port ring-resonator circuit: direct experimental observations

    NARCIS (Netherlands)

    Uranus, H.P.; Zhuang, L.; Roeloffzen, C.G.H.; Hoekstra, Hugo

    We report experimental observations of the negative-group-velocity (v_g) phenomenon in an integrated-optical two-port ring-resonator circuit. We demonstrate that when the v_g is negative, the (main) peak of output pulse appears earlier than the peak of a reference pulse, while for a positive v_g,

  14. Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.

    2004-01-01

    A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved

  15. TiO2 brookite nanostructured thin layer on magneto-optical surface plasmon resonance transductor for gas sensing applications

    Science.gov (United States)

    Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.

    2012-09-01

    The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.

  16. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    International Nuclear Information System (INIS)

    Chang-Hwan Kim

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms

  17. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  18. Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History.

    Directory of Open Access Journals (Sweden)

    Janin Riedelsberger

    Full Text Available Voltage-gated potassium (K+ channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD, this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin and depolarization-activated, outward-rectifying (Kout channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.

  19. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    DEFF Research Database (Denmark)

    Amoudache, Samira; Moiseyenko, Rayisa; Pennec, Yan

    2016-01-01

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defi...... of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.......-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation...

  20. Nano-structured Fabry–Pérot resonators in neutron optics and tunneling of neutron wave-particles

    International Nuclear Information System (INIS)

    Maaza, M.; Hamidi, D.

    2012-01-01

    Correlated to the quantum mechanics wave-particle duality, the optical analogy between electromagnetic waves and cold neutrons manifests itself through several interference phenomena particularly the so called Frustrated Total Reflection i.e., the tunneling process in Fabry–Pérot nano-structured cavities. Prominent resonant situations offered by this configuration allow the attainment of numerous fundamental investigations and surface-interface studies as well as to devise new kinds of neutron optics devices. This review contribution reports such possibilities in addition to the recently observed peculiar Goos–Hänchen longitudinal shift of neutron wave-particles which was predicted by Sir Isaac Newton as early as 1730.

  1. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.

    2011-03-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  2. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.; Melnikov, Vasily; Fedotov, Il'ya V.; Fedotov, Andrei B.; Perova, Tatiana S.; Zheltikov, Aleksei M.

    2011-01-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  3. Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate

    Directory of Open Access Journals (Sweden)

    Antonino Parisi

    2008-11-01

    Full Text Available The surface plasmon resonance (SPR technique is a well-known optical method that can be used to measure the refractive index of organic nano-layers adsorbed on a thin metal film. Although there are many configurations for measuring biomolecular interactions, SPR-based techniques play a central role in many current biosensing experiments, since they are the most suited for sensitive and quantitative kinetic measurements. Here we give some results from the analysis and numerical elaboration of SPR data from integrated optics experiments in a particular borosilicate glass, chosen for its composition offering the rather low refractive index of 1.4701 at 633 nm wavelength. These data regard the flow over the sensing region (metal window of different solutions with refractive indexes in the range of interest (1.3÷1.5 for the detection of contaminants in aqueous solutions. After a discussion of the principles of SPR, of the metal window design optimization by means of optical interaction numerical modeling, and of waveguide fabrication techniques, we give a description of system setup and experimental results. Optimum gold film window thickness and width in this guided-wave configuration has been for the first time derived and implemented on an integrated optic prototype device. Its characterization is given by means of the real time waveguide output intensity measurements, which correspond to the interaction between the sensing gold thin film window and the flowing analyte. The SPR curve was subsequently inferred. Finally, a modified version of the device is reported, with channel waveguides arranged in a Y-junction optical circuit, so that laser source stability requirements are lowered by a factor of 85 dB, making possible the use of low cost sources in practical applications.

  4. The longitudinal offset technique for apodization of coupled resonator optical waveguide devices: concept and fabrication tolerance analysis.

    Science.gov (United States)

    Doménech, José David; Muñoz, Pascual; Capmany, José

    2009-11-09

    In this paper, a novel technique to set the coupling constant between cells of a coupled resonator optical waveguide (CROW) device, in order to tailor the filter response, is presented. The technique is demonstrated by simulation assuming a racetrack ring resonator geometry. It consists on changing the effective length of the coupling section by applying a longitudinal offset between the resonators. On the contrary, the conventional techniques are based in the transversal change of the distance between the ring resonators, in steps that are commonly below the current fabrication resolution step (nm scale), leading to strong restrictions in the designs. The proposed longitudinal offset technique allows a more precise control of the coupling and presents an increased robustness against the fabrication limitations, since the needed resolution step is two orders of magnitude higher. Both techniques are compared in terms of the transmission esponse of CROW devices, under finite fabrication resolution steps.

  5. Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons.

    Science.gov (United States)

    Kerckhoff, Joseph; Mabuchi, Hideo

    2009-08-17

    Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on (39)K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions. (c) 2009 Optical Society of America

  6. An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film.

    Science.gov (United States)

    Yebo, Nebiyu A; Lommens, Petra; Hens, Zeger; Baets, Roel

    2010-05-24

    Optical structures fabricated on silicon-on-insulator technology provide a convenient platform for the implementation of highly compact, versatile and low cost devices. In this work, we demonstrate the promise of this technology for integrated low power and low cost optical gas sensing. A room temperature ethanol vapor sensor is demonstrated using a ZnO nanoparticle film as a coating on an SOI micro-ring resonator of 5 microm in radius. The local coating on the ring resonators is prepared from colloidal suspensions of ZnO nanoparticles of around 3 nm diameter. The porous nature of the coating provides a large surface area for gas adsorption. The ZnO refractive index change upon vapor adsorption shifts the microring resonance through evanescent field interaction. Ethanol vapor concentrations down to 100 ppm are detected with this sensing configuration and a detection limit below 25 ppm is estimated.

  7. Electron paramagnetic resonance and optical absorption of uranium ions diluted in CdF2 single crystals

    International Nuclear Information System (INIS)

    Pereira, J.J.C.R.

    1976-08-01

    The electron paramagnetic resonance (EPR) has been studied in conection with the optical absortion spectra of Uranium ions diluted in CdF 2 single crystals. Analyses of the EPR and optical absorption spectra obtained experimentally, and a comparison with known results in the isomorfic CaF 2 , SrF 2 and BaF 2 , allowed the identification of two paramagnetic centers associated with Uranium ions. These are the U(2+) ion in cubic symmetry having the triplet γ 5 as ground state, and the U(3+) ion in cubic symmetry having the dublet γ 6 as ground state. (Author) [pt

  8. Integrated refractive index optical ring resonator detector for capillary electrophoresis.

    Science.gov (United States)

    Zhu, Hongying; White, Ian M; Suter, Jonathan D; Zourob, Mohammed; Fan, Xudong

    2007-02-01

    We developed a novel miniaturized and multiplexed, on-capillary, refractive index (RI) detector using liquid core optical ring resonators (LCORRs) for future development of capillary electrophoresis (CE) devices. The LCORR employs a glass capillary with a diameter of approximately 100 mum and a wall thickness of a few micrometers. The circular cross section of the capillary forms a ring resonator along which the light circulates in the form of the whispering gallery modes (WGMs). The WGM has an evanescent field extending into the capillary core and responds to the RI change due to the analyte conducted in the capillary, thus permitting label-free measurement. The resonating nature of the WGM enables repetitive light-analyte interaction, significantly enhancing the LCORR sensitivity. This LCORR architecture achieves dual use of the capillary as a sensor head and a CE fluidic channel, allowing for integrated, multiplexed, and noninvasive on-capillary detection at any location along the capillary. In this work, we used electro-osmotic flow and glycerol as a model system to demonstrate the fluid transport capability of the LCORRs. In addition, we performed flow speed measurement on the LCORR to demonstrate its flow analysis capability. Finally, using the LCORR's label-free sensing mechanism, we accurately deduced the analyte concentration in real time at a given point on the capillary. A sensitivity of 20 nm/RIU (refractive index units) was observed, leading to an RI detection limit of 10-6 RIU. The LCORR marries photonic technology with microfluidics and enables rapid on-capillary sample analysis and flow profile monitoring. The investigation in this regard will open a door to novel high-throughput CE devices and lab-on-a-chip sensors in the future.

  9. Role of edge inclination in an optical microdisk resonator for label-free sensing.

    Science.gov (United States)

    Gandolfi, Davide; Ramiro-Manzano, Fernando; Rebollo, Francisco Javier Aparicio; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo

    2015-02-26

    In this paper, we report on the measurement and modeling of enhanced optical refractometric sensors based on whispering gallery modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide, which differ in their sidewall inclination angle. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. Device modeling shows that the optimization of the device is a delicate balance of the resonance quality factor and evanescent field overlap with the surrounding environment to analyze. By numerical simulations, we show that the microdisk thickness is critical to yield a high figure of merit for the sensor and that edge inclination should be kept as high as possible. We also show that bulk-sensing figures of merit as high as 1600 RIU(-1) (refractive index unit) are feasible.

  10. Origin of optical non-linear response in TiN owing to excitation dynamics of surface plasmon resonance electronic oscillations

    Science.gov (United States)

    Divya, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2014-08-01

    TiN nanoparticles of average size 55 nm were investigated for their optical non-linear properties. During the experiment the irradiated laser wavelength coincided with the surface plasmon resonance (SPR) peak of the nanoparticle. The large non-linearity of the nanoparticle was attributed to the plasmon resonance, which largely enhanced the local field within the nanoparticle. Both open and closed aperture Z-scan experiments were performed and the corresponding optical constants were explored. The post-excitation absorption spectra revealed the interesting phenomenon of photo fragmentation leading to the blue shift in band gap and red shift in the SPR. The results are discussed in terms of enhanced interparticle interaction simultaneous with size reduction. Here, the optical constants being intrinsic constants for a particular sample change unusually with laser power intensity. The dependence of χ(3) is discussed in terms of the size variation caused by photo fragmentation. The studies proved that the TiN nanoparticles are potential candidates in photonics technology offering huge scope to study unexplored research for various expedient applications.

  11. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs

    KAUST Repository

    Yue, Weisheng

    2016-01-11

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  12. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Whittaker, John; Schedin, Fredrik; Wu, Zhipeng; Han, Jiaguang

    2016-01-01

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  13. Ultracompact electro-optic phase modulator based on III-V-on-silicon microdisk resonator.

    Science.gov (United States)

    Lloret, J; Kumar, R; Sales, S; Ramos, F; Morthier, G; Mechet, P; Spuesens, T; Van Thourhout, D; Olivier, N; Fédéli, J-M; Capmany, J

    2012-06-15

    A novel ultracompact electro-optic phase modulator based on a single 9 μm-diameter III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic waveguide is presented. Modulation is enabled by effective index modification through carrier injection. Proof-of-concept implementation involving binary phase shift keying modulation format is assembled. A power imbalance of ∼0.6  dB between both symbols and a modulation rate up to 1.8 Gbps are demonstrated without using any special driving technique.

  14. Optically neuronavigated ultrasonography in an intraoperative magnetic resonance imaging environment.

    Science.gov (United States)

    Katisko, Jani P A; Koivukangas, John P

    2007-04-01

    To develop a clinically useful method that shows the corresponding planes of intraoperative two-dimensional ultrasonography and intraoperative magnetic resonance imaging (MRI) scans determined with an optical neuronavigator from an intraoperative three-dimensional MRI scan data set, and to determine the qualitative and the quantitative spatial correspondence between the ultrasonography and MRI scans. An ultrasound probe was interlinked with an ergonomic and MRI scan-compatible ultrasonography probe tracker to the optical neuronavigator used in a low-field intraoperative MRI scan environment for brain surgery. Spatial correspondence measurements were performed using a custom-made ultrasonography/MRI scan phantom. In this work, instruments to combine intraoperatively collected ultrasonography and MRI scan data with an optical localization method in a magnetic environment were developed. The ultrasonography transducer tracker played an important role. Furthermore, a phantom for ultrasonography and MRI scanning was produced. This is the first report, to our knowledge, regarding the possibility of combining the two most important intraoperative imaging modalities used in neurosurgery, ultrasonography and MRI scanning, to guide brain tumor surgery. The method was feasible and, as shown in an illustrative surgical case, has direct clinical impact on image-guided brain surgery. The spatial deviation between the ultrasonography and the MRI scans was, on average, 1.90 +/- 1.30 mm at depths of 0 to 120 mm from the ultrasonography probe. The overall result of this work is a unique method to guide the neurosurgical operation with neuronavigated ultrasonography imaging in an intraoperative MRI scanning environment. The relevance of the method is emphasized in minimally invasive neurosurgery.

  15. Small scale optics

    CERN Document Server

    Yupapin, Preecha

    2013-01-01

    The behavior of light in small scale optics or nano/micro optical devices has shown promising results, which can be used for basic and applied research, especially in nanoelectronics. Small Scale Optics presents the use of optical nonlinear behaviors for spins, antennae, and whispering gallery modes within micro/nano devices and circuits, which can be used in many applications. This book proposes a new design for a small scale optical device-a microring resonator device. Most chapters are based on the proposed device, which uses a configuration know as a PANDA ring resonator. Analytical and nu

  16. High resolution ultrasound and magnetic resonance imaging of the optic nerve and the optic nerve sheath: anatomic correlation and clinical importance.

    Science.gov (United States)

    Steinborn, M; Fiegler, J; Kraus, V; Denne, C; Hapfelmeier, A; Wurzinger, L; Hahn, H

    2011-12-01

    We performed a cadaver study to evaluate the accuracy of measurements of the optic nerve and the optic nerve sheath for high resolution US (HRUS) and magnetic resonance imaging (MRI). Five Thiel-fixated cadaver specimens of the optic nerve were examined with HRUS and MRI. Measurements of the optic nerve and the ONSD were performed before and after the filling of the optic nerve sheath with saline solution. Statistical analysis included the calculation of the agreement of measurements and the evaluation of the intraobserver and interobserver variation. Overall a good correlation of measurement values between HRUS and MRI can be found (mean difference: 0.02-0.97 mm). The repeatability coefficient (RC) and concordance correlation coefficient (CCC) values were good to excellent for most acquisitions (RC 0.2-1.11 mm; CCC 0.684-0.949). The highest variation of measurement values was found for transbulbar sonography (RC 0.58-1.83 mm; CCC 0.615/0.608). If decisive anatomic structures are clearly depicted and the measuring points are set correctly, there is a good correlation between HRUS and MRI measurements of the optic nerve and the ONSD even on transbulbar sonography. As most of the standard and cut-off values that have been published for ultrasound are significantly lower than the results obtained with MRI, a reevaluation of sonographic ONSD measurement with correlation to MRI is necessary. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Enhanced optical transmission through a star-shaped bull's eye at dual resonant-bands in UV and the visible spectral range.

    Science.gov (United States)

    Nazari, Tavakol; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Kong, Byung-Joo; Oh, Kyunghwan

    2015-07-13

    Dual resonant bands in UV and the visible range were simultaneously observed in the enhanced optical transmission (EOT) through star-shaped plasmonic structures. EOTs through four types of polygonal bull's eyes with a star aperture surrounded by the concentric star grooves were analyzed and compared for 3, 4, 5, and 6 corners, using finite difference time domain (FDTD) method. In contrast to plasmonic resonances in the visible range, the UV-band resonance intensity was found to scale with the number of corners, which is related with higher order multipole interactions. Spectral positions and relative intensities of the dual resonances were analyzed parametrically to find optimal conditions to maximize EOT in UV-visible dual bands.

  18. Wireless power transfer system

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  19. Shear force distance control in a scanning near-field optical microscope: in resonance excitation of the fiber probe versus out of resonance excitation

    International Nuclear Information System (INIS)

    Lapshin, D.A.; Letokhov, V.S.; Shubeita, G.T.; Sekatskii, S.K.; Dietler, G.

    2004-01-01

    The experimental results of the direct measurement of the absolute value of interaction force between the fiber probe of a scanning near-field optical microscope (SNOM) operated in shear force mode and a sample, which were performed using combined SNOM-atomic force microscope setup, are discussed for the out-of-resonance fiber probe excitation mode. We demonstrate that the value of the tapping component of the total force for this mode at typical dither amplitudes is of the order of 10 nN and thus is quite comparable with the value of this force for in resonance fiber probe excitation mode. It is also shown that for all modes this force component is essentially smaller than the usually neglected static attraction force, which is of the order of 200 nN. The true contact nature of the tip-sample interaction during the out of resonance mode is proven. From this, we conclude that such a detection mode is very promising for operation in liquids, where other modes encounter great difficulties

  20. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    Science.gov (United States)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  1. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    International Nuclear Information System (INIS)

    Robinson, S.

    2014-01-01

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which is highly suitable of photonic integrated circuits

  2. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  3. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, Alexander G., E-mail: milekhin@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Sveshnikova, Larisa L.; Duda, Tatyana A. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Rodyakina, Ekaterina E. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Dzhagan, Volodymyr M. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Sheremet, Evgeniya [Solid Surfaces Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Gordan, Ovidiu D. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Himcinschi, Cameliu [Institut für Theoretische Physik, TU Bergakademie Freiberg, 09596 Freiberg (Germany); Latyshev, Alexander V. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-05-01

    Highlights: • Regular Au nanocluster and dimer arrays as well as single Au dimers are fabricated. • Resonant SERS by monolayers of CdSe nanocrystals deposited on the Au nanostructures is observed. • LO energy change for CdSe NCs on different single Au dimers indicates SERS by single or a few NCs. - Abstract: Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir–Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 10{sup 3} which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  4. Fused Microknot Optical Resonators in Folded Photonic Tapers for in-Liquid Durable Sensing

    Directory of Open Access Journals (Sweden)

    Alexandra Logvinova

    2018-04-01

    Full Text Available Optical microknot fibers (OMFs serve as localized devices, where photonic resonances (PRs enable self-interfering elements sensitive to their environment. However, typical fragility and drifting of the knot severely limit the performance and durability of microknots as sensors in aqueous settings. Herein we present the fabrication, electrical fusing, preparation, and persistent detection of volatile liquids in multiple wetting–dewetting cycles of volatile compounds and quantify the persistent phase shifts with a simple model relating to the ambient liquid, enabling durable in-liquid sensing employing OMF PRs.

  5. New applications of surface plasmon resonance technology

    International Nuclear Information System (INIS)

    Zhang Tianhao; Yin Meirong; Fang Zheyu; Yang Haidong; Yang Jia; Yang Huizhan; Kang Huizhen; Yang Dapeng; Lu Yanzhen

    2005-01-01

    Surface plasmon resonance technology is reviewed and its new applications in various fields are described. These fields include surface plasmon resonance sensors, near-field scanning optical microscopy, thin film optics and thickness measurement, holography, precise measurement of angles, and Q switching. (authors)

  6. Influence of the Kinetics of Heat and Mass Transfer in a Binary-Rectification Column on the Realizability Range of its Regimes

    Science.gov (United States)

    Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.

    2018-05-01

    The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.

  7. Optical Dependence of Electrically Detected Magnetic Resonance in Lightly Doped Si:P Devices

    Science.gov (United States)

    Zhu, Lihuang; van Schooten, Kipp J.; Guy, Mallory L.; Ramanathan, Chandrasekhar

    2017-06-01

    Using frequency-modulated electrically detected magnetic resonance (EDMR), we show that signals measured from lightly doped (1.2 - 5 ×1 015 cm-3 ) silicon devices vary significantly with the wavelength of the optical excitation used to generate the mobile carriers. We measure EDMR spectra at 4.2 K as a function of modulation frequency and applied microwave power using a 980-nm laser, a 405-nm laser, and a broadband white-light source. EDMR signals are observed from the phosphorus donor and two distinct defect species in all of the experiments. With near-infrared irradiation, we find that the EDMR signal primarily arises from donor-defect pairs, while, at higher photon energies, there are significant additional contributions from defect-defect pairs. The contribution of spins from different spatial regions to the EDMR signal is seen to vary as the optical penetration depth changes from about 120 nm at 405-nm illumination to 100 μ m at 980-nm illumination. The modulation frequency dependence of the EDMR signal shows that the energy of the optical excitation strongly modulates the kinetics of the underlying spin-dependent recombination (SDR) process. Careful tuning of the optical photon energy could therefore be used to control both the subset of spin pairs contributing to the EDMR signal and the dynamics of the SDR process.

  8. Development of an optical surface plasmon resonance biosensor assay for (fluoro) quinolones in egg, fish, and poultry meat

    NARCIS (Netherlands)

    Huet, A.C.; Charlier, C.; Singh, G.; Benrejeb Godefroy, S.; Leivo, J.; Vehniainen, M.; Nielen, M.W.F.; Weigel, S.; Delahaut, P.

    2008-01-01

    The aim of this study was to develop an optical biosensor inhibition immunoassay, based on the surface plasmon resonance (SPR) principle, for use as a screening test for 13 (fluoro)quinolones, including flumequine, used as veterinary drugs in food-producing animals. For this, we immobilised various

  9. Tuning of optical mode magnetic resonance in CoZr/Ru/CoZr synthetic antiferromagnetic trilayers by oblique sputtering

    Science.gov (United States)

    Wang, Wenqiang; Wang, Fenglong; Cao, Cuimei; Li, Pingping; Yao, Jinli; Jiang, Changjun

    2018-04-01

    CoZr/Ru/CoZr synthetic antiferromagnetic trilayers with strong antiferromagnetic interlayer coupling were fabricated by an oblique sputtering method that induced in-plane uniaxial magnetic anisotropy. A microstrip method using a vector network analyzer was applied to investigate the magnetic resonance modes of the trilayers, including the acoustic modes (AMs) and the optical modes (OMs). At zero magnetic field, the CoZr/Ru/CoZr trilayers showed OMs with resonance frequencies of up to 7.1 GHz. By increasing the applied external magnetic field, the magnetic resonance mode can be tuned to various OMs, mixed modes, and AMs. Additionally, the magnetic resonance mode showed an angular dependence between the magnetization and the microwave field, which showed similar switching of the magnetic modes with variation of the angle. Our results provide important information that will be helpful in the design of multifunctional microwave devices.

  10. Band Alignment for Rectification and Tunneling Effects in Al2O3 Atomic-Layer-Deposited on Back Contact for CdTe Solar Cell.

    Science.gov (United States)

    Su, Yantao; Xin, Chao; Feng, Yancong; Lin, Qinxian; Wang, Xinwei; Liang, Jun; Zheng, Jiaxin; Lin, Yuan; Pan, Feng

    2016-10-11

    The present work intends to explain why ultrathin Al 2 O 3 atomic-layer-deposited (ALD) on the back contact with rectification and tunneling effects can significantly improve the performance of CdTe solar cells in our previous work [ Liang , J. ; et al. Appl. Phys. Lett. 2015 , 107 , 013907 ]. Herein, we further study the mechanism through establishing the interfacial energy band diagram configuration of the ALD Al 2 O 3 /Cu x Te by experiment of X-ray photoelectron spectroscopy and first-principles calculations and conclude to find the band alignment with optimized layer thickness (about 1 nm ALD Al 2 O 3 ) as the key factor for rectification and tunneling effects.

  11. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  12. Optical detection of magnetic resonance of the F-centre in CaO in its phosphorescent state

    International Nuclear Information System (INIS)

    Krap, C.J.

    1980-01-01

    The F-centre in CaO consists of two electrons trapped in an oxygen vacancy. The centre possesses bound excited states, of which the phosphorescent 3 Tsub(1u) state is a Jahn-Teller state. Jahn-Teller systems have been of interest in many investigations. However, detailed experimental studies about the relaxation paths for the Jahn-Teller states are relatively few. The author studies by means of optical detection of magnetic resonance (ODMR) and phosphorescence microwave double resonance (PMDR) techniques the relaxation between the components of the 3 Tsub(1u) state, the magnetic properties of the individual spin-vibronic Jahn-Teller states and the inhomogeneous line broadening in the ODMR and PMDR spectra. (Auth.)

  13. Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime.

    Science.gov (United States)

    Liu, Chang-Hua; Kim, In Soo; Lauhon, Lincoln J

    2015-10-14

    Two-dimensional (2-D) materials including graphene and transition metal dichalcogenides (TMDs) are an exciting platform for ultrasensitive force and displacement detection in which the strong light-matter coupling is exploited in the optical control of nanomechanical motion. Here we report the optical excitation and displacement detection of a ∼ 3 nm thick MoS2 resonator in the strong-coupling regime, which has not previously been achieved in 2-D materials. Mechanical mode frequencies can be tuned by more than 12% by optical heating, and they exhibit avoided crossings indicative of strong intermode coupling. When the membrane is optically excited at the frequency difference between vibrational modes, normal mode splitting is observed, and the intermode energy exchange rate exceeds the mode decay rate by a factor of 15. Finite element and analytical modeling quantifies the extent of mode softening necessary to control intermode energy exchange in the strong coupling regime.

  14. Non-reciprocal optical mirrors based on spatio-temporal acousto-optic modulation

    Science.gov (United States)

    Fleury, R.; Sounas, D. L.; Alù, A.

    2018-03-01

    Here, we investigate a scheme to realize free-space isolators and highly non-reciprocal mirrors with weak modulation imparted by an acoustic wave. We propose a strategy to dramatically break time-reversal symmetry by exploiting resonant interactions between a travelling acoustic wave and highly resonant Fabry-Pérot modes, inducing total reflection of an optical beam at a given angle, and no reflection at the negative angle. Different from conventional acousto-optic isolators, which are based on non-resonant frequency conversion and filtering, our proposal operates at the frequency of the optical signal by tailoring the resonant properties of the structure as well as the acoustic wave frequency and intensity, enabling 50 dB isolation with modest modulation requirements. Operation in the reflection mode allows for close-to-zero insertion loss, enabling disruptive opportunities in our ability to control and manipulate photons.

  15. Poly-benzyl domains grown on porous silicon and their I-V rectification

    International Nuclear Information System (INIS)

    Chao Jie; Han Huanmei; Xia Bing; Ba Long; Liu Hongbo; Xiao Shoujun

    2007-01-01

    Microwave-irradiated polymerization of benzyl chloride and triphenyl chloromethane on hydride-terminated porous silicon (PS) was achieved through the use of Zn powder as a catalyst. Transmission infrared Fourier-transform spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses confirmed the poly-benzyl membranes grafted on PS. Topographical images by AFM revealed crystal-like domains rather than homogenous monolayers on the surface. The current-voltage measurements in nano-scale by current sensing atomic force microscopy (CS-AFM) showed the rectification behavior of this polymer membrane. Finally, mechanism of a radical initiation on the surface and a following Friedel-Crafts alkylation was proposed for the covalent assembly of poly-benzyl domains

  16. Rectification of catalyst separation column at HWP, Thal (Paper No. 5.7)

    International Nuclear Information System (INIS)

    Prakash, R.; Bhaskaran, M.

    1992-01-01

    Heavy Water Plant, Thal is based on the monothermal ammonia hydrogen process. Liquid ammonia containing potassium amide catalyst is contacted with the synthesis gas where-in deuterium from hydrogen gets transferred to liquid phase. There are two parallel streams A and B with a common ammonia synthesis unit. The system is provided with an ammonia cracker and ammonia synthesis for providing the reflux gas and liquid for the enrichment process. The parameters such as steam valve opening, column pressure, reflux, condensate valve opening, cooling water valve position, cracking load of the unit before and after the rectification, etc. are discussed. (author). 2 tabs., 2 figs

  17. Zero-field optical magnetic resonance study of phosphorus donors in 28-silicon

    Science.gov (United States)

    Morse, Kevin J.; Dluhy, Phillip; Huber, Julian; Salvail, Jeff Z.; Saeedi, Kamyar; Riemann, Helge; Abrosimov, Nikolay V.; Becker, Peter; Pohl, Hans-Joachim; Simmons, S.; Thewalt, M. L. W.

    2018-03-01

    Donor spins in silicon are some of the most promising qubits for upcoming solid-state quantum technologies. The nuclear spins of phosphorus donors in enriched silicon have among the longest coherence times of any solid-state system as well as simultaneous high fidelity qubit initialization, manipulation, and readout. Here we characterize the phosphorus in silicon system in the regime of "zero" magnetic field, where a singlet-triplet spin clock transition can be accessed, using laser spectroscopy and magnetic resonance methods. We show the system can be optically hyperpolarized and has ˜10 s Hahn echo coherence times, even for applied static magnetic fields below Earth's field.

  18. Room-Temperature Pressure-Induced Optically-Actuated Fabry-Perot Nanomechanical Resonator with Multilayer Graphene Diaphragm in Air

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2017-11-01

    Full Text Available We demonstrated a miniature and in situ ~13-layer graphene nanomechanical resonator by utilizing a simple optical fiber Fabry-Perot (F-P interferometric excitation and detection scheme. The graphene film was transferred onto the endface of a ferrule with a 125-μm inner diameter. In contrast to the pre-tension induced in membrane that increased quality (Q factor to ~18.5 from ~3.23 at room temperature and normal pressure, the limited effects of air damping on resonance behaviors at 10−2 and 105 Pa were demonstrated by characterizing graphene F-P resonators with open and micro-air-gap cavities. Then in terms of optomechanical behaviors of the resonator with an air micro-cavity configuration using a polished ferrule substrate, measured resonance frequencies were increased to the range of 509–542 kHz from several kHz with a maximum Q factor of 16.6 despite the lower Knudsen number ranging from 0.0002 to 0.0006 in damping air over a relative pressure range of 0–199 kPa. However, there was the little dependence of Q on resonance frequency. Note that compared with the inferior F-P cavity length response to applied pressures due to interfacial air leakage, the developed F-P resonator exhibited a consistent fitted pressure sensitivity of 1.18 × 105 kHz3/kPa with a good linearity error of 5.16% in the tested range. These measurements shed light on the pre-stress-dominated pressure-sensitive mechanisms behind air damping in in situ F-P resonant sensors using graphene or other 2D nanomaterials.

  19. Compact 6 dB Two-Color Continuous Variable Entangled Source Based on a Single Ring Optical Resonator

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2018-02-01

    Full Text Available Continuous-variable entangled optical beams at the degenerate wavelength of 0.8 μm or 1.5 μm have been investigated extensively, but separately. The two-color entangled states of these two useful wavelengths, with sufficiently high degrees of entanglement, still lag behind. In this work, we analyze the various limiting factors that affect the entanglement degree. On the basis of this, we successfully achieve 6 dB of two-color quadrature entangled light beams by improving the escape efficiency of the nondegenerate optical amplifier, the stability of the phase-locking servo system, and the detection efficiency. Our entangled source is constructed only from a single ring optical resonator, and thus is highly compact, which is suitable for applications in long-distance quantum communication networks.

  20. [Research on symmetrical optical waveguide based surface plasmon resonance sensing with spectral interrogation].

    Science.gov (United States)

    Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong

    2015-02-01

    Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.

  1. Laser Resonators and Beam Propagation Fundamentals, Advanced Concepts and Applications

    CERN Document Server

    Hodgson, Norman

    2005-01-01

    Optical Resonators provides a detailed discussion of the properties of optical resonators for lasers from basic theory to recent research. In addition to describing the fundamental theories of resonators such as geometrical optics, diffraction, and polarisation the characteristics of all important resonator schemes and their calculation are presented. Experimental examples, practical problems and a collection of measurement techniques support the comprehensive treatment of the subject. Optical Resonators is the only book currently available that provides a comprehensive overview of the the subject. Combined with the structure of the text and the autonomous nature of the chapters this work will be as suitable for those new to the field as it will be invaluable to specialists conducting research. This second edition has been enlarged by new sections on Q-switching and resonators with internal phase/amplitude control. In addition, the whole book has been brought up-to-date.

  2. Optical trapping and binding of particles in an optofluidic stable Fabry-Pérot resonator with single-sided injection.

    Science.gov (United States)

    Gaber, Noha; Malak, Maurine; Marty, Frédéric; Angelescu, Dan E; Richalot, Elodie; Bourouina, Tarik

    2014-07-07

    In this article, microparticles are manipulated inside an optofluidic Fabry-Pérot cylindrical cavity embedding a fluidic capillary tube, taking advantage of field enhancement and multiple reflections within the optically-resonant cavity. This enables trapping of suspended particles with single-side injection of light and with low optical power. A Hermite-Gaussian standing wave is developed inside the cavity, forming trapping spots at the locations of the electromagnetic field maxima with a strong intensity gradient. The particles get arranged in a pattern related to the mechanism affecting them: either optical trapping or optical binding. This is proven to eventually translate into either an axial one dimensional (1D) particle array or a cluster of particles. Numerical simulations are performed to model the field distributions inside the cavity allowing a behavioral understanding of the phenomena involved in each case.

  3. Silicon-Nitride-based Integrated Optofluidic Biochemical Sensors using a Coupled-Resonator Optical Waveguide

    Directory of Open Access Journals (Sweden)

    Jiawei eWANG

    2015-04-01

    Full Text Available Silicon nitride (SiN is a promising material platform for integrating photonic components and microfluidic channels on a chip for label-free, optical biochemical sensing applications in the visible to near-infrared wavelengths. The chip-scale SiN-based optofluidic sensors can be compact due to a relatively high refractive index contrast between SiN and the fluidic medium, and low-cost due to the complementary metal-oxide-semiconductor (CMOS-compatible fabrication process. Here, we demonstrate SiN-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide (CROW in the visible wavelengths. The working principle is based on imaging in the far field the out-of-plane elastic-light-scattering patterns of the CROW sensor at a fixed probe wavelength. We correlate the imaged pattern with reference patterns at the CROW eigenstates. Our sensing algorithm maps the correlation coefficients of the imaged pattern with a library of calibrated correlation coefficients to extract a minute change in the cladding refractive index. Given a calibrated CROW, our sensing mechanism in the spatial domain only requires a fixed-wavelength laser in the visible wavelengths as a light source, with the probe wavelength located within the CROW transmission band, and a silicon digital charge-coupled device (CCD / CMOS camera for recording the light scattering patterns. This is in sharp contrast with the conventional optical microcavity-based sensing methods that impose a strict requirement of spectral alignment with a high-quality cavity resonance using a wavelength-tunable laser. Our experimental results using a SiN CROW sensor with eight coupled microrings in the 680nm wavelength reveal a cladding refractive index change of ~1.3 × 10^-4 refractive index unit (RIU, with an average sensitivity of ~281 ± 271 RIU-1 and a noise-equivalent detection limit (NEDL of 1.8 ×10^-8 RIU ~ 1.0 ×10^-4 RIU across the CROW bandwidth of ~1 nm.

  4. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    International Nuclear Information System (INIS)

    Zhou, Hengan; Fan, Xiaolong; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-01-01

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg 1∕3 Nb 2∕3 )O 3 -PbTiO 3 substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time

  5. Rectification induced in N2AA-doped armchair graphene nanoribbon device

    International Nuclear Information System (INIS)

    Chen, Tong; Wang, Ling-Ling; Luo, Kai-Wu; Xu, Liang; Li, Xiao-Fei

    2014-01-01

    By using non-equilibrium Green function formalism in combination with density functional theory, we investigated the electronic transport properties of armchair graphene nanoribbon devices in which one lead is undoped and the other is N 2 AA -doped with two quasi-adjacent substitutional nitrogen atoms incorporating pairs of neighboring carbon atoms in the same sublattice A. Two kinds of N 2 AA -doped style are considered, for N dopants substitute the center or the edge carbon atoms. Our results show that the rectification behavior with a large rectifying ratio can be found in these devices and the rectifying characteristics can be modulated by changing the width of graphene nanoribbons or the position of the N 2 AA dopant. The mechanisms are revealed to explain the rectifying behaviors.

  6. Field angle dependence of voltage-induced ferromagnetic resonance under DC bias voltage

    International Nuclear Information System (INIS)

    Shiota, Yoichi; Miwa, Shinji; Tamaru, Shingo; Nozaki, Takayuki; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji

    2016-01-01

    We studied the rectification function of microwaves in CoFeB/MgO-based magnetic tunnel junctions using voltage-induced ferromagnetic resonance (FMR). Our findings reveal that the shape of the structure of the spectrum depends on the rotation angle of the external magnetic field, providing clear evidence that FMR dynamics are excited by voltage-induced magnetic anisotropy changes. Further, enhancement of the rectified voltage was demonstrated under a DC bias voltage. In our experiments, the highest microwave detection sensitivity obtained was 350 mV/mW, at an RF frequency of 1.0 GHz and field angle of θ_H=80°, ϕ_H=0°. The experimental results correlated with those obtained via simulation, and the calculated results revealed the magnetization dynamics at the resonance state. - Highlights: • Examined voltage-induced ferromagnetic resonance (FMR) under various field angles. • FMR dynamics are excited by voltage-induced magnetic anisotropy changes. • Microwave detection sensitivity depends on input RF and elevation angle. • Microwave detection sensitivity=350 mV/mW at RF=1.0 GHz, θ_H=80°, ϕ_H=0°.

  7. Feasibility study of an optical resonator for applications in neutral-beam injection systems for the next generation of nuclear fusion reactors

    International Nuclear Information System (INIS)

    Fiorucci, Donatella

    2015-01-01

    This work is part of a larger project called SIPHORE (Single gap Photo-neutralizer energy Recovery injector), which aims to enhance the overall efficiency of one of the mechanisms through which the plasma is heated, in a nuclear fusion reactor, i.e. the Neutral Beam Injection (NBI) system. An important component of a NBI system is the neutralizer of high energetic ion beams. SIPHORE proposes to substitute the gas cell neutralizer, used in the current NBI systems, with a photo-neutralizer exploiting the photo-detachment process within Fabry Perot cavities. This mechanism should allow a relevant NBI global efficiency of η≥ 60%, significantly higher than the one currently possible (η≤25% for ITER). The present work concerns the feasibility study of an optical cavity with suitable properties for applications in NBI systems. Within this context, the issue of the determination of an appropriated optical cavity design has been firstly considered and the theoretical and experimental analysis of a particular optical resonator has been carried on. The problems associated with the high levels of intracavity optical power (∼3 MW) required for an adequate photo-neutralization rate have then been faced. In this respect, we addressed both the problem of the thermal effects on the cavity mirrors due to their absorption of intra-cavity optical power (∼1 W) and the one associated to the necessity of a high powerful input laser beam (∼1 kW) to feed the optical resonator. (author)

  8. Efficient continuous-wave eye-safe region signal output from intra-cavity singly resonant optical parametric oscillator

    International Nuclear Information System (INIS)

    Li Bin; Ding Xin; Sheng Quan; Yin Su-Jia; Shi Chun-Peng; Li Xue; Wen Wu-Qi; Yao Jian-Quan; Yu Xuan-Yi

    2012-01-01

    We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO 4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401–1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Current limiting experiment with 600 V/100A rectification type superconducting fault current limiter; 600 V-100A kyu seiryugata chodendo genryuki no genryu shiken

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, J.; Tsurunaga, K.; Urata, M. [Toshiba Corp., Tokyo (Japan); Okuma, T.; Sato, Y.; Iwata, Y. [Tokyo Electric Power Co., Inc., Tokyo (Japan)

    1999-06-07

    The rectification type current limiter with the current-limiting system of the new type which combined rectifier circuits with the direct current reactor has been proposed until now, and it has succeeded in the current-limiting test by the normal conduction reactor by the 6.6kV class model vessel. Since the loss of the conductor becomes fundamentally the zero, in the same current limiter, by using superconducting wire rod, because direct current always flows in the reactor, making into low-loss becomes possible. In this report, this paper describes cut-off characteristic of 600V/100A rectification type superconductive current limiter using the metal type superconductive conductor. (NEDO)

  10. Musical instrument pickup based on a laser locked to an optical fiber resonator.

    Science.gov (United States)

    Avino, Saverio; Barnes, Jack A; Gagliardi, Gianluca; Gu, Xijia; Gutstein, David; Mester, James R; Nicholaou, Costa; Loock, Hans-Peter

    2011-12-05

    A low-noise transducer based on a fiber Fabry-Perot (FFP) cavity was used as a pickup for an acoustic guitar. A distributed feedback (DFB) laser was locked to a 25 MHz-wide resonance of the FFP cavity using the Pound-Drever-Hall method. The correction signal was used as the audio output and was preamplified and sampled at up to 96 kHz. The pickup system is largely immune against optical noise sources, exhibits a flat frequency response from the infrasound region to about 25 kHz, and has a distortion-free audio output range of about 50 dB.

  11. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez, Patricio [Departament de Fisica Aplicada, Universitat Politecnica de Valencia, E-46022 Valencia (Spain); Apel, Pavel Yu [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie street 6, 141980 Dubna (Russian Federation); Cervera, Javier; Mafe, Salvador [Departament de Fisica de la Terra i Termodinamica, Universitat de Valencia, E-46100 Burjassot (Spain)], E-mail: patraho@fis.upv.es

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  12. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    International Nuclear Information System (INIS)

    RamIrez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafe, Salvador

    2008-01-01

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores

  13. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties.

    Science.gov (United States)

    Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  14. Waveguide-loaded silica fibers for coupling to high-index micro-resonators

    Science.gov (United States)

    Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.

    2016-01-01

    Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.

  15. Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Tabei, Ken-Ichi; Satoh, Masayuki; Kida, Hirotaka; Kizaki, Moeni; Sakuma, Haruno; Sakuma, Hajime; Tomimoto, Hidekazu

    2015-01-01

    Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI), we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions.

  16. Optical programmable metamaterials

    Science.gov (United States)

    Gong, Cheng; Zhang, Nan; Dai, Zijie; Liu, Weiwei

    2018-02-01

    We suggest and demonstrate the concept of optical programmable metamaterials which can configure the device's electromagnetic parameters by the programmable optical stimuli. In such metamaterials, the optical stimuli produced by a FPGA controlled light emitting diode array can switch or combine the resonance modes which are coupled in. As an example, an optical programmable metamaterial terahertz absorber is proposed. Each cell of the absorber integrates four meta-rings (asymmetric 1/4 rings) with photo-resistors connecting the critical gaps. The principle and design of the metamaterials are illustrated and the simulation results demonstrate the functionalities for programming the metamaterial absorber to change its bandwidth and resonance frequency.

  17. Optical feedback structures and methods of making

    Science.gov (United States)

    None

    2014-11-18

    An optical resonator can include an optical feedback structure disposed on a substrate, and a composite including a matrix including a chromophore. The composite disposed on the substrate and in optical communication with the optical feedback structure. The chromophore can be a semiconductor nanocrystal. The resonator can provide laser emission when excited.

  18. Dynamic simulation of a low-temperature rectification Column as part of an IGCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hanke, R. [Leipzig University of Applied Sciences, Department of Mechanical and Energy Engineering, P.O. Box 300066, D-04251 Leipzig (Germany); Hannemann, F. [Siemens AG - Power Generation, PG CTET, P.O. Box 3220, D-91050 Erlangen (Germany); Sundmacher, K. [Max Planck Institute of Dynamics of Complex Technical Systems, Sandtorstrasse 1, D-39106 Magdeburg (Germany); Otto-von-Guericke University Magdeburg, Faculty of Process and Systems Engineering, P.O. Box 4120, D-39106 Magdeburg (Germany)

    2003-11-01

    IGCC plants offer the opportunity to utilize fossil energy sources, like coal or heavy refinery residues, to satisfy increasing energy demand while considering strict environmental constraints. Such a plant consists of a combined power cycle, a fuel gasifier with downstream fuel gas conditioning and an air separation unit (ASU), where the oxygen required for gasification is produced. The low-temperature rectification column as the core of the ASU strongly affects the transient behavior of the system. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  19. Direct current modulation of spin-Hall-induced spin torque ferromagnetic resonance in platinum/permalloy bilayer thin films

    Science.gov (United States)

    Hirayama, Shigeyuki; Mitani, Seiji; Otani, YoshiChika; Kasai, Shinya

    2018-06-01

    We examined the spin-Hall-induced spin torque ferromagnetic resonance (ST-FMR) in platinum/permalloy bilayer thin films under bias direct current (DC). The bias DC modulated the symmetric components of the ST-FMR spectra, while no dominant modulation was found in the antisymmetric components. A detailed analysis in combination with simple model calculations clarified that the major origin of the modulation can be attributed to the DC resistance change under the precessional motion of magnetization. This effect is the second order contribution for the precession angle, even though the contribution can be comparable to the rectification voltage under some specific conditions.

  20. Selective Induction of Optical Magnetism.

    Science.gov (United States)

    Manna, Uttam; Lee, Jung-Hoon; Deng, Tian-Song; Parker, John; Shepherd, Nolan; Weizmann, Yossi; Scherer, Norbert F

    2017-12-13

    An extension of the Maxwell-Faraday law of electromagnetic induction to optical frequencies requires spatially appropriate materials and optical beams to create resonances and excitations with curl. Here we employ cylindrical vector beams with azimuthal polarization to create electric fields that selectively drive magnetic responses in dielectric core-metal nanoparticle "satellite" nanostructures. These optical frequency magnetic resonances are induced in materials that do not possess spin or orbital angular momentum. Multipole expansion analysis of the scattered fields obtained from electrodynamics simulations show that the excitation with azimuthally polarized beams selectively enhances magnetic vs electric dipole resonances by nearly 100-fold in experiments. Multipolar resonances (e.g., quadrupole and octupole) are enhanced 5-fold by focused azimuthally versus linearly polarized beams. We also selectively excite electric multipolar resonances in the same identical nanostructures with radially polarized light. This work opens new opportunities for spectroscopic investigation and control of "dark modes", Fano resonances, and magnetic modes in nanomaterials and engineered metamaterials.

  1. A Low-Cost and Portable Dual-Channel Fiber Optic Surface Plasmon Resonance System.

    Science.gov (United States)

    Liu, Qiang; Liu, Yun; Chen, Shimeng; Wang, Fang; Peng, Wei

    2017-12-04

    A miniaturization and integration dual-channel fiber optic surface plasmon resonance (SPR) system was proposed and demonstrated in this paper. We used a yellow light-emitting diode (LED, peak wavelength 595 nm) and built-in web camera as a light source and detector, respectively. Except for the detection channel, one of the sensors was used as a reference channel to compensate nonspecific binding and physical absorption. We packaged the LED and surface plasmon resonance (SPR) sensors together, which are flexible enough to be applied to mobile devices as a compact and portable system. Experimental results show that the normalized intensity shift and refractive index (RI) of the sample have a good linear relationship in the RI range from 1.328 to 1.348. We used this sensor to monitor the reversible, specific interaction between lectin concanavalin A (Con A) and glycoprotein ribonuclease B (RNase B), which demonstrate its capabilities of specific identification and biochemical samples concentration detection. This sensor system has potential applications in various fields, such as medical diagnosis, public health, food safety, and environment monitoring.

  2. Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms

    Directory of Open Access Journals (Sweden)

    Kazunori Serita

    2018-05-01

    Full Text Available We present a nonlinear optical crystal (NLOC-based terahertz (THz microfluidic chip with a few arrays of split ring resonators (SRRs for ultra-trace and quantitative measurements of liquid solutions. The proposed chip operates on the basis of near-field coupling between the SRRs and a local emission of point like THz source that is generated in the process of optical rectification in NLOCs on a sub-wavelength scale. The liquid solutions flowing inside the microchannel modify the resonance frequency and peak attenuation in the THz transmission spectra. In contrast to conventional bio-sensing with far/near-field THz waves, our technique can be expected to compactify the chip design as well as realize high sensitive near-field measurement of liquid solutions without any high-power optical/THz source, near-field probes, and prisms. Using this chip, we have succeeded in observing the 31.8 fmol of ion concentration in actual amount of 318 pl water solutions from the shift of the resonance frequency. The technique opens the door to microanalysis of biological samples with THz waves and accelerates development of THz lab-on-chip devices.

  3. Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms

    Science.gov (United States)

    Serita, Kazunori; Matsuda, Eiki; Okada, Kosuke; Murakami, Hironaru; Kawayama, Iwao; Tonouchi, Masayoshi

    2018-05-01

    We present a nonlinear optical crystal (NLOC)-based terahertz (THz) microfluidic chip with a few arrays of split ring resonators (SRRs) for ultra-trace and quantitative measurements of liquid solutions. The proposed chip operates on the basis of near-field coupling between the SRRs and a local emission of point like THz source that is generated in the process of optical rectification in NLOCs on a sub-wavelength scale. The liquid solutions flowing inside the microchannel modify the resonance frequency and peak attenuation in the THz transmission spectra. In contrast to conventional bio-sensing with far/near-field THz waves, our technique can be expected to compactify the chip design as well as realize high sensitive near-field measurement of liquid solutions without any high-power optical/THz source, near-field probes, and prisms. Using this chip, we have succeeded in observing the 31.8 fmol of ion concentration in actual amount of 318 pl water solutions from the shift of the resonance frequency. The technique opens the door to microanalysis of biological samples with THz waves and accelerates development of THz lab-on-chip devices.

  4. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    Science.gov (United States)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  5. Interannual variability in the atmospheric CO2 rectification over a boreal forest region

    Science.gov (United States)

    Chen, Baozhang; Chen, Jing M.; Worthy, Douglas E. J.

    2005-08-01

    Ecosystem CO2 exchange with the atmosphere and the planetary boundary layer (PBL) dynamics are correlated diurnally and seasonally. The strength of this kind of covariation is quantified as the rectifier effect, and it affects the vertical gradient of CO2 and thus the global CO2 distribution pattern. An 11-year (1990-1996, 1999-2002), continuous CO2 record from Fraserdale, Ontario (49°52'29.9″N, 81°34'12.3″W), along with a coupled vertical diffusion scheme (VDS) and ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS), are used to investigate the interannual variability of the rectifier effect over a boreal forest region. The coupled model performed well (r2 = 0.70 and 0.87, at 40 m at hourly and daily time steps, respectively) in simulating CO2 vertical diffusion processes. The simulated annual atmospheric rectifier effect varies from 3.99 to 5.52 ppm, while the diurnal rectifying effect accounted for about a quarter of the annual total (22.8˜28.9%).The atmospheric rectification of CO2 is not simply influenced by terrestrial source and sink strengths, but by seasonal and diurnal variations in the land CO2 flux and their interaction with PBL dynamics. Air temperature and moisture are found to be the dominant climatic factors controlling the rectifier effect. The annual rectifier effect is highly correlated with annual mean temperature (r2 = 0.84), while annual mean air relative humidity can explain 51% of the interannual variation in rectification. Seasonal rectifier effect is also found to be more sensitive to climate variability than diurnal rectifier effect.

  6. Present Payments, Past Wrongs: Correcting Loose Talk about Nozick and Rectification

    Directory of Open Access Journals (Sweden)

    Jan Narveson

    2009-01-01

    Full Text Available It is widely thought that Robert Nozick’s views on rectification of past injustices are of critical importance to his theory of distributive justice, even perhaps justifying wholesale redistributive taxes in the present because of the undoubted injustices that have pervaded much past history. This essay undertakes to correct this impression—not mostly by disagreeing with Nozick’s claims, but nevertheless proceeding on basic libertarian theory. Of enormous importance is the role of putative innocents, who are defrauded by miscreants carefully covering their tracks so that these recipients have no reason to think they are buying stolen property. But of equal importance is simply that the duty to rectify past injustices is not comparable to the original duty to respect property rights in the first place.

  7. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hengan; Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Gui, Y. S.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2014-03-10

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg{sub 1∕3}Nb{sub 2∕3})O{sub 3}-PbTiO{sub 3} substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time.

  8. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode

    Directory of Open Access Journals (Sweden)

    Zhenmin Chen

    2017-09-01

    Full Text Available In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs. To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the extraordinary behaviors can be beneficial for applications such as mass sensing. Larger OSE from higher order harmonics of the mechanical modes is also observed. Our work paves a way towards the developing of OSE-based high sensitive mass sensor in MBRs.

  9. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode.

    Science.gov (United States)

    Chen, Zhenmin; Wu, Xiang; Liu, Liying; Xu, Lei

    2017-09-30

    In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs). To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE) in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the extraordinary behaviors can be beneficial for applications such as mass sensing. Larger OSE from higher order harmonics of the mechanical modes is also observed. Our work paves a way towards the developing of OSE-based high sensitive mass sensor in MBRs.

  10. Spin transfer driven resonant expulsion of a magnetic vortex core for efficient rf detector

    Directory of Open Access Journals (Sweden)

    S. Menshawy

    2017-05-01

    Full Text Available Spin transfer magnetization dynamics have led to considerable advances in Spintronics, including opportunities for new nanoscale radiofrequency devices. Among the new functionalities is the radiofrequency (rf detection using the spin diode rectification effect in spin torque nano-oscillators (STNOs. In this study, we focus on a new phenomenon, the resonant expulsion of a magnetic vortex in STNOs. This effect is observed when the excitation vortex radius, due to spin torques associated to rf currents, becomes larger than the actual radius of the STNO. This vortex expulsion is leading to a sharp variation of the voltage at the resonant frequency. Here we show that the detected frequency can be tuned by different parameters; furthermore, a simultaneous detection of different rf signals can be achieved by real time measurements with several STNOs having different diameters. This result constitutes a first proof-of-principle towards the development of a new kind of nanoscale rf threshold detector.

  11. An isolated bridgeless AC-DC PFC converter using a LC resonant voltage doubler rectifier

    Science.gov (United States)

    Lee, Sin-woo; Do, Hyun-Lark

    2016-12-01

    This paper proposed an isolated bridgeless AC-DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input-output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.

  12. Controllable magnetic thermal rectification in a SMM dimmer with the Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Xu, Ai-Hua; Liu, Juan; Luo, Bo

    2016-10-01

    Using the quantum master equation, we studied the thermally driven magnonic spin current in a single-molecule magnet (SMM) dimer with the Dzyaloshinskii-Moriya interaction (DMI). Due to the asymmetric DMI, one can observe the thermal rectifying effect in the case of the spatial symmetry coupling with the thermal reservoirs. The properties of the thermal rectification can be controlled by tuning the angle and intensity of the magnetic field. Specially, when the DM vector and magnetic field point at the specific angles, the thermal rectifying effect disappears. And this phenomenon does not depend on the intensities of DMI and magnetic field, the temperature bias and the magnetic anisotropies of the SMM.

  13. Optic Tract Edema: A Highly Specific Magnetic Resonance Imaging Finding for the Diagnosis of Craniopharyngiomas

    International Nuclear Information System (INIS)

    Hirunpat, S.; Tanomkiat, W.; Sriprung, H.; Chetpaophan, J.

    2005-01-01

    Purpose: To clarify the accuracy, sensitivity, and specificity of optic tract edema in the diagnosis of craniopharyngiomas. Material and Methods: Preoperative magnetic resonance images (MRIs) of 49 patients (between May 1996 and March 2003) who had a diagnosis of parasellar masses were blindly reviewed by two radiologists. The spread of edema surrounding the tumor on the coronal TSE T2-weighted images was analyzed. Sensitivity and specificity were calculated based on the numbers in this series and also pooled numbers from previous known reported series. Results: Edema along the optic tracts was detected in 7 of 1 craniopharyngiomas, giving a sensitivity of 63.6% (95% CI≅30.8-89.1) for our series and 66.7% (95% CI≅47.2-82.7) for the pooled numbers. The specificity was 00% (95% CI≅90.7-100.0) for our series and 93.9% (95% CI≅87.1-97.7) for the pooled numbers. None of the 28 pituitary macroadenomas, 4 meningiomas, 2 hypothalamic astrocytomas, 2 germinomas, mixed-germ cell tumor and arachnoid cyst in our study showed edema of the optic pathways. Conclusion: Optic tract edema, commonly seen in craniopharyngiomas, is a useful MR finding for distinguishing craniopharyngiomas from other parasellar tumors with considerable sensitivity and high specificity

  14. Optic Tract Edema: A Highly Specific Magnetic Resonance Imaging Finding for the Diagnosis of Craniopharyngiomas

    Energy Technology Data Exchange (ETDEWEB)

    Hirunpat, S.; Tanomkiat, W.; Sriprung, H.; Chetpaophan, J. [Prince of Songkla Univ., Hat Yai (Thailand). Dept. of Radiology and Epidemiology Unit

    2005-07-01

    Purpose: To clarify the accuracy, sensitivity, and specificity of optic tract edema in the diagnosis of craniopharyngiomas. Material and Methods: Preoperative magnetic resonance images (MRIs) of 49 patients (between May 1996 and March 2003) who had a diagnosis of parasellar masses were blindly reviewed by two radiologists. The spread of edema surrounding the tumor on the coronal TSE T2-weighted images was analyzed. Sensitivity and specificity were calculated based on the numbers in this series and also pooled numbers from previous known reported series. Results: Edema along the optic tracts was detected in 7 of 1 craniopharyngiomas, giving a sensitivity of 63.6% (95% CI{approx_equal}30.8-89.1) for our series and 66.7% (95% CI{approx_equal}47.2-82.7) for the pooled numbers. The specificity was 00% (95% CI{approx_equal}90.7-100.0) for our series and 93.9% (95% CI{approx_equal}87.1-97.7) for the pooled numbers. None of the 28 pituitary macroadenomas, 4 meningiomas, 2 hypothalamic astrocytomas, 2 germinomas, mixed-germ cell tumor and arachnoid cyst in our study showed edema of the optic pathways. Conclusion: Optic tract edema, commonly seen in craniopharyngiomas, is a useful MR finding for distinguishing craniopharyngiomas from other parasellar tumors with considerable sensitivity and high specificity.

  15. Magnetic resonance imaging at 3.0 tesla detects more lesions in acute optic neuritis than at 1.5 tesla

    DEFF Research Database (Denmark)

    Nielsen, Kirsten; Rostrup, Egill; Frederiksen, Jette L

    2006-01-01

    OBJECTIVE:: We sought to assess whether magnetic resonance imaging (MRI) at 3.0 T detects more brain lesions in acute optic neuritis (ON) than MRI at 1.5 T. MATERIALS AND METHODS:: Twenty-eight patients with acute ON were scanned at both field-strengths using fast-fluid-attenuated inversion recov...

  16. Fiber optic particle plasmon resonance sensor based on plasmonic light scattering interrogation

    International Nuclear Information System (INIS)

    Lin, H.Y.; Huang, C.H.; Chau, L.K.

    2012-01-01

    A highly sensitive fiber optic particle plasmon resonance sensor (FO-PPR) is demonstrated for label-free biochemical detection. The sensing strategy relies on interrogating the plasmonic scattering of light from gold nanoparticles on the optical fiber in response to the surrounding refractive index changes or molecular binding events. The refractive index resolution is estimated to be 3.8 x 10 -5 RIU. The limit of detection for anti-DNP antibody spiked in buffer is 1.2 x 10 -9 g/ml (5.3 pM) by using the DNP-functionalized FO-PPR sensor. The image processing of simultaneously recorded plasmonic scattering photographs at different compartments of the sensor is also demonstrated. Results suggest that the compact sensor can perform multiple independent measurements simultaneously by means of monitoring the plasmonic scattering intensity via photodiodes or a CCD. The potential of using a combination of different kinds of noble metal nanoparticles with different types of functionalized probes in multiple cascaded detection windows on a single fiber to become an inexpensive and ultrasensitive linear-array sensing platform for higher-throughput biochemical detection is provided. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Tabei

    Full Text Available Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI, we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions.

  18. Nested trampoline resonators for optomechanics

    International Nuclear Information System (INIS)

    Weaver, M. J.; Pepper, B.; Luna, F.; Perock, B.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si 3 N 4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators

  19. Nested trampoline resonators for optomechanics

    Science.gov (United States)

    Weaver, M. J.; Pepper, B.; Luna, F.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Perock, B.; Heeck, K.; de Man, S.; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si3N4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  20. Synthesis and characterization of oligobenzimidazoles: Electrochemical, electrical, optical, thermal and rectification properties

    Science.gov (United States)

    Anand, Siddeswaran; Muthusamy, Athianna

    2018-03-01

    A series of benzimidazole monomers, (2-(2, 4-dihydroxyphenyl)-1H-benzimidazol-5-yl)(phenyl) methanone (BIKH), 2-(3-ethoxy-2-hydroxyphenyl)-1H-benzo [d]imidazole-5-yl) (phenyl) methanone (BIKE) and 2-(5-bromo-2-hydroxyphenyl)-1H-benzo [d]imidazole-5-yl) (phenyl) methanone (BIKB) were prepared by condensing three substituted aromatic aldehydes with 3, 4-diaminobenzophenone. In aqueous alkaline medium the benzimidazoles were converted in to oligomers by oxidative polycondensation using NaOCl as oxidant. The formation of monomers and oligomers were confirmed with 1H, 13C NMR, FT-IR, and UV-visible spectroscopic techniques. The oligomers were investigated for their optical, electrical, electrochemical and thermal properties. The electrochemical and optical band gaps of monomers and oligomers were calculated using both UV-visible spectroscopy and cyclic voltametry respectively. The band gap values of monomers are compared with band gap values obtained from quantum theoretical calculations with DFT. The electrical conductivity studies of iodine doped and undoped oligomers were done using two point probe technique. It is found that these values are showing good correlation with the charge densities on imidazole nitrogen obtained from Huckel method. The conductivity of oligomers increases with increase in iodine vapour contact time. The dielectric properties of oligomers have been investigated at different temperature and frequency. The dielectric measurement data were used to calculate the AC conductivity and activation energy of oligomers. Oligomer OBIKH is having greater thermal stability due to its number of chain propagation sites than other oligomers and is shown by its high carbines residue of around 60% at 600 °C in thermogravimetric analysis. I-V characteristics of oligobenzimidazole p-n diodes have shown good rectifying nature in the range -4 to 4 V.

  1. Finite gratings of many thin silver nanostrips: Optical resonances and role of periodicity

    Directory of Open Access Journals (Sweden)

    Olga V. Shapoval

    2013-04-01

    Full Text Available We study numerically the optical properties of the periodic in one dimension flat gratings made of multiple thin silver nanostrips suspended in free space. Unlike other publications, we consider the gratings that are finite however made of many strips that are well thinner than the wavelength. Our analysis is based on the combined use of two techniques earlier verified by us in the scattering by a single thin strip of conventional dielectric: the generalized (effective boundary conditions (GBCs imposed on the strip median lines and the Nystrom-type discretization of the associated singular and hyper-singular integral equations (IEs. The first point means that in the case of the metal strip thickness being only a small fraction of the free-space wavelength (typically 5 nm to 50 nm versus 300 nm to 1 μm we can neglect the internal field and consider only the field limit values. In its turn, this enables reduction of the integration contour in the associated IEs to the strip median lines. This brings significant simplification of the scattering analysis while preserving a reasonably adequate modeling. The second point guarantees fast convergence and controlled accuracy of computations that enables us to compute the gratings consisting of hundreds of thin strips, with total size in hundreds of wavelengths. Thanks to this, in the H-polarization case we demonstrate the build-up of sharp grating resonances (a.k.a. as collective or lattice resonances in the scattering and absorption cross-sections of sparse multi-strip gratings, in addition to better known localized surface-plasmon resonances on each strip. The grating modes, which are responsible for these resonances, have characteristic near-field patterns that are distinctively different from the plasmons as can be seen if the strip number gets larger. In the E-polarization case, no such resonances are detectable however the build-up of Rayleigh anomalies is observed, accompanied by the reduced

  2. On-Chip All-Optical Passive 3.55 Gbit/s NRZ-to-PRZ Format Conversion Using a High-Q Silicon-Based Microring Resonator

    International Nuclear Information System (INIS)

    Yao, Zhai; Shao-Wu, Chen; Guang-Hui, Ren

    2010-01-01

    We report the experimental result of all-optical passive 3.55 Gbit/s non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) format conversion using a high-quality-factor (Q-factor) silicon-based microring resonator notch filter on chip. The silicon-based microring resonator has 23800 Q-factor and 22 dB extinction ratio (ER), and the PRZ signals has about 108ps width and 4.98 dB ER

  3. Optical characterization of broad plasmon resonances of Pd/Pt nanoparticles

    Science.gov (United States)

    Valizade-Shahmirzadi, N.; Pakizeh, T.

    2018-04-01

    In this paper, optical properties of nanoparticles (nanodisks and nanospheres) composed of photofunctional metals like palladium (Pd) and platinum (Pt) over a large dimension range are investigated using the electromagnetic simulation and quasi-static theory. These characteristics are compared with their counterparts in plasmonic gold (Au) nanoparticles. Pd/Pt-nanodisks with larger dimension have higher absorption and lower scattering efficiencies than Au-nanodisks that accompany with lower extinction efficiencies and broader resonances. Although an increment in the dimension (diameter and height) of Au/Pd/Pt-nanoparticles decreases the absorption-to-scattering ratios, these ratios are less sensitive to the height size in Au-nanodisks, which causes their LSPR spectra become much broader. It is noteworthy that the LSPR quality factor of Pd nanoparticles is improved by considering the radiative damping and depolarization in quasi-static method unlike the Au nanoparticles. The importance of the highly absorptive Pd/Pt nanoparticles can be traced in the photo-functionalized and energy applications.

  4. Resonator-Based Silicon Electro-Optic Modulator with Low Power Consumption

    Science.gov (United States)

    Xin, Maoqing; Danner, Aaron J.; Eng Png, Ching; Thor Lim, Soon

    2009-04-01

    This paper demonstrates, via simulation, an electro-optic modulator based on a subwavelength Fabry-Perot resonator cavity with low power consumption of 86 µW/µm. This is, to the best of our knowledge, the lowest power reported for silicon photonic bandgap modulators. The device is modulated at a doped p-i-n junction overlapping the cavity in a silicon waveguide perforated with etched holes, with the doping area optimized for minimum power consumption. The surface area of the entire device is only 2.1 µm2, which compares favorably to other silicon-based modulators. A modulation speed of at least 300 MHz is detected from the electrical simulator after sidewall doping is introduced which is suitable for sensing or fiber to the home (FTTH) technologies, where speed can be traded for low cost and power consumption. The device does not rely on ultra-high Q, and could serve as a sensor, modulator, or passive filter with built-in calibration.

  5. THE ANGULAR DISTRIBUTION OF Lyα RESONANT PHOTONS EMERGING FROM AN OPTICALLY THICK MEDIUM

    International Nuclear Information System (INIS)

    Yang Yang; Shu Chiwang; Roy, Ishani; Fang Lizhi

    2013-01-01

    We investigate the angular distribution of Lyα photons scattering or emerging from an optically thick medium. Since the evolution of specific intensity I in frequency space and angular space are coupled with each other, we first develop the WENO numerical solver to find the time-dependent solutions of the integro-differential equation of I in frequency and angular space simultaneously. We first show that the solutions with the Eddington approximation, which assume that I is linearly dependent on the angular variable μ, yield similar frequency profiles of the photon flux as those without the Eddington approximation. However, the solutions of the μ distribution evolution are significantly different from those given by the Eddington approximation. First, the angular distribution of I is found to be substantially dependent on the frequency of the photons. For photons with the resonant frequency ν 0 , I contains only a linear term of μ. For photons with frequencies at the double peaks of the flux, the μ-distribution is highly anisotropic; most photons are emitted radially forward. Moreover, either at ν 0 or at the double peaks, the μ distributions actually are independent of the initial μ distribution of photons of the source. This is because the photons with frequencies either at ν 0 or the double peaks undergo the process of forgetting their initial conditions due to resonant scattering. We also show that the optically thick medium is a collimator of photons at the double peaks. Photons from the double peaks form a forward beam with a very small opening angle.

  6. Resonant optical alignment and orientation of Mn2+ spins in CdMnTe crystals

    Science.gov (United States)

    Baryshnikov, K. A.; Langer, L.; Akimov, I. A.; Korenev, V. L.; Kusrayev, Yu. G.; Averkiev, N. S.; Yakovlev, D. R.; Bayer, M.

    2015-11-01

    We report on spin orientation and alignment of Mn2 + ions in (Cd,Mn)Te diluted magnetic semiconductor crystals using resonant intracenter excitation with circular- and linear-polarized light. The resulting polarized emission of the magnetic ions is observed at low temperatures when the spin relaxation time of the Mn2 + ions is in the order of 1 ms , which considerably exceeds the photoluminescence decay time of 23 μ s . We demonstrate that the experimental data on optical orientation and alignment of Mn2 + ions can be explained using a phenomenological model that is based on the approximation of isolated centers.

  7. Ring resonator optical modes in InGaN/GaN structures grown on micro-cone-patterned sapphire substrates

    Science.gov (United States)

    Kazanov, D. R.; Pozina, G.; Jmerik, V. N.; Shubina, T. V.

    2018-03-01

    Molecular beam epitaxy (MBE) of III-nitride compounds on specially prepared cone-shaped patterned substrates is being actively developed nowadays, especially for nanophotonic applications. This type of substrates enables the successful growth of hexagonal nanorods (NRs). The insertion of an active quantum-sized region of InGaN inside a GaN NR allows us to enhance the rate of optical transitions by coupling them with resonant optical modes in the NR. However, we have observed the enhancement of emission not only from the NR but also around the circumference region of the cone-shaped base. We have studied this specific feature and demonstrated its impact on the output signal.

  8. Nested trampoline resonators for optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, M. J., E-mail: mweaver@physics.ucsb.edu; Pepper, B.; Luna, F.; Perock, B. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de [Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands); Bouwmeester, D. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands)

    2016-01-18

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si{sub 3}N{sub 4} with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  9. Optical Backplane Based on Ring-Resonators: Scalability and Performance Analysis for 10 Gb/s OOK-NRZ

    Directory of Open Access Journals (Sweden)

    Giuseppe Rizzelli

    2014-05-01

    Full Text Available The use of architectures that implement optical switching without any need of optoelectronic conversion allows us to overcome the limits imposed by today’s electronic backplane, such as power consumption and dissipation, as well as power supply and footprint requirements. We propose a ring-resonator based optical backplane for router line-card interconnection. In particular we investigate how the scalability of the architecture is affected by the following parameters: number of line cards, switching-element round-trip losses, frequency drifting due to thermal variations, and waveguide-crossing effects. Moreover, to quantify the signal distortions introduced by filtering operations, the bit error rate for the different parameter conditions are shown in case of an on-off keying non-return-to-zero (OOK-NRZ input signal at 10 Gb/s.

  10. Scaling effects in resonant coupling phenomena between fundamental and cladding modes in twisted microstructured optical fibers.

    Science.gov (United States)

    Napiorkowski, Maciej; Urbanczyk, Waclaw

    2018-04-30

    We show that in twisted microstructured optical fibers (MOFs) the coupling between the core and cladding modes can be obtained for helix pitch much greater than previously considered. We provide an analytical model describing scaling properties of the twisted MOFs, which relates coupling conditions to dimensionless ratios between the wavelength, the lattice pitch and the helix pitch of the twisted fiber. Furthermore, we verify our model using a rigorous numerical method based on the transformation optics formalism and study its limitations. The obtained results show that for appropriately designed twisted MOFs, distinct, high loss resonance peaks can be obtained in a broad wavelength range already for the fiber with 9 mm helix pitch, thus allowing for fabrication of coupling based devices using a less demanding method involving preform spinning.

  11. Near resonant and nonresonant third-order optical nonlinearities of colloidal InP/ZnS quantum dots

    Science.gov (United States)

    Wang, Y.; Yang, X.; He, T. C.; Gao, Y.; Demir, H. V.; Sun, X. W.; Sun, H. D.

    2013-01-01

    We have investigated the third-order optical nonlinearities of high-quality colloidal InP/ZnS core-shell quantum dots (QDs) using Z-scan technique with femtosecond pulses. The two-photon absorption cross-sections as high as 6.2 × 103 GM are observed at 800 nm (non-resonant regime) in InP/ZnS QDs with diameter of 2.8 nm, which is even larger than those of CdSe, CdS, and CdTe QDs at similar sizes. Furthermore, both of the 2.2 nm and 2.8 nm-sized InP/ZnS QDs exhibit strong saturable absorption in near resonant regime, which is attributed to large exciton Bohr radius in this material. These results strongly suggest the promising potential of InP/ZnS QDs for widespread applications, especially in two-photon excited bio-imaging and saturable absorbing.

  12. Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels.

    Science.gov (United States)

    Bai, Jing; Citrin, D S

    2008-08-18

    In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency chi(3)( omega; omega, omega,-omega). Resonant two-photon processes are found to have almost equal contributions to chi(3)( omega; omega, omega,-omega) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2 approximately 10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change (delta)n of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.

  13. Guided-Wave Optical Biosensors

    Science.gov (United States)

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  14. Integration of an Optical Ring Resonator Biosensor into a Self-Contained Microfluidic Cartridge with Active, Single-Shot Micropumps

    Directory of Open Access Journals (Sweden)

    Sascha Geidel

    2016-09-01

    Full Text Available While there have been huge advances in the field of biosensors during the last decade, their integration into a microfluidic environment avoiding external tubing and pumping is still neglected. Herein, we show a new microfluidic design that integrates multiple reservoirs for reagent storage and single-use electrochemical pumps for time-controlled delivery of the liquids. The cartridge has been tested and validated with a silicon nitride-based photonic biosensor incorporating multiple optical ring resonators as sensing elements and an immunoassay as a potential target application. Based on experimental results obtained with a demonstration model, subcomponents were designed and existing protocols were adapted. The newly-designed microfluidic cartridges and photonic sensors were separately characterized on a technical basis and performed well. Afterwards, the sensor was functionalized for a protein detection. The microfluidic cartridge was loaded with the necessary assay reagents. The integrated pumps were programmed to drive the single process steps of an immunoassay. The prototype worked selectively, but only with a low sensitivity. Further work must be carried out to optimize biofunctionalization of the optical ring resonators and to have a more suitable flow velocity progression to enhance the system’s reproducibility.

  15. Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique

    Science.gov (United States)

    Kosiel, Kamil; Koba, Marcin; Masiewicz, Marcin; Śmietana, Mateusz

    2018-06-01

    The paper shows application of atomic layer deposition (ALD) technique as a tool for tailoring sensorial properties of lossy-mode-resonance (LMR)-based optical fiber sensors. Hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and tantalum oxide (TaxOy), as high-refractive-index dielectrics that are particularly convenient for LMR-sensor fabrication, were deposited by low-temperature (100 °C) ALD ensuring safe conditions for thermally vulnerable fibers. Applicability of HfO2 and ZrO2 overlays, deposited with ALD-related atomic level thickness accuracy for fabrication of LMR-sensors with controlled sensorial properties was presented. Additionally, for the first time according to our best knowledge, the double-layer overlay composed of two different materials - silicon nitride (SixNy) and TaxOy - is presented for the LMR fiber sensors. The thin films of such overlay were deposited by two different techniques - PECVD (the SixNy) and ALD (the TaxOy). Such approach ensures fast overlay fabrication and at the same time facility for resonant wavelength tuning, yielding devices with satisfactory sensorial properties.

  16. Surface plasmon resonance based optical fiber riboflavin sensor by using molecularly imprinted gel

    Science.gov (United States)

    Verma, Roli; Gupta, Banshi D.

    2013-05-01

    We report the fabrication and characterization of surface plasmon resonance (SPR) based optical fiber riboflavin/vitamin B2 sensor using combination of colloidal crystal templating and molecularly imprinted gel. The sensor works on spectral interrogation method. The operating range of the sensor lies from 0 μg/ml to 320 μg/ml, the suitable amount of intakes of riboflavin recommended for different age group. The SPR spectra show blue shift with increasing concentration of riboflavin, which is due to the interaction of riboflavin molecule over specific binding sites caused by molecular imprinting. The present sensor has many advantageous features such as fast response, small probe size, low cost and can be used for remote/online monitoring.

  17. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  18. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  19. Single spin stochastic optical reconstruction microscopy

    OpenAIRE

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Wrachtrup, Jörg

    2014-01-01

    We experimentally demonstrate precision addressing of single quantum emitters by combined optical microscopy and spin resonance techniques. To this end we utilize nitrogen-vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers we are able to simultaneously perform sub diffraction-limit imaging and optically detected spin resonance (ODMR)...

  20. Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: a theoretical study

    International Nuclear Information System (INIS)

    Dwivedi, Yogendra S.; Sharma, Anuj K.; Gupta, Banshi D.

    2007-01-01

    We have theoretically analyzed the influence of skew rays on the performance of a fiber-optic sensor based on surface plasmon resonance. The performance of the sensor has been evaluated in terms of its sensitivity and signal-to-noise ratio (SNR). The theoretical model for skewness dependence includes the material dispersion in fiber cores and metal layers, simultaneous excitation of skew rays, and meridional rays in the fiber core along with all guided rays launching from a collimated light source. The effect of skew rays on the SNR and the sensitivity of the sensor with two different metals has been compared. The same comparison is carried out for the different values of design parameters such as numerical aperture, fiber core diameter, and the length of the surface-plasmon-resonance (SPR)active sensing region. This detailed analysis for the effect of skewness on the SNR and the sensitivity of the sensor leads us to achieve the best possible performance from a fiber-optic SPR sensor against the skewness in the optical fiber