Dynamic nonlinear thermal optical effects in coupled ring resonators
Directory of Open Access Journals (Sweden)
Chenguang Huang
2012-09-01
Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.
Nonlinear and quantum optics with whispering gallery resonators
Strekalov, Dmitry V.; Marquardt, Christoph; Matsko, Andrey B.; Schwefel, Harald G. L.; Leuchs, Gerd
2016-12-01
Optical whispering gallery modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
Nonlinear and Quantum Optics with Whispering Gallery Resonators
Strekalov, Dmitry V; Matsko, Andrey B; Schwefel, Harald G L; Leuchs, Gerd
2016-01-01
Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon was later realized to have a rather general nature, equally applicable to sound and all other waves, but in particular also to electromagnetic waves ranging from radio frequencies to ultraviolet light. Very high quality factors of optical WGM resonators persisting in a wide wavelength range, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya
2011-10-10
We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.
E Heebner, John; Boyd, Robert W; Park, Q-Han
2002-03-01
We describe an optical transmission line that consists of an array of wavelength-scale optical disk resonators coupled to an optical waveguide. Such a structure leads to exotic optical characteristics, including ultraslow group velocities of propagation, enhanced optical nonlinearities, and large dispersion with a controllable magnitude and sign. This device supports soliton propagation, which can be described by a generalized nonlinear Schrodinger equation.
A nonlinear plasmonic resonator for three-state all-optical switching
Amin, Muhammad
2014-01-01
A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.
Laser-Machined Ultra-High-Q Microrod Resonators for Nonlinear Optics
Del'Haye, Pascal; Papp, Scott B
2013-01-01
Optical whispering-gallery microresonators are useful tools in microphotonics, and nonlinear optics at very low threshold powers. Here, we present details about the fabrication of ultra-high-Q whispering-gallery-mode resonators made by CO2-laser lathe machining of fused-quartz rods. The resonators can be fabricated in less than one minute and the obtained optical quality factors exceed Q = 10^9. Demonstrated resonator diameters are in the range between 170 {\\mu}m and 8 mm (free spectral ranges between 390 GHz and 8 GHz). Using these microresonators, a variety of optical nonlinearities are observed, including Raman scattering, Brillouin scattering and four-wave mixing.
Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators.
Heebner, John E; Lepeshkin, Nick N; Schweinsberg, Aaron; Wicks, G W; Boyd, Robert W; Grover, Rohit; Ho, P T
2004-04-01
We have constructed and characterized several optical microring resonators with scale sizes of the order of 10 microm. These devices are intended to serve as building blocks for engineerable linear and nonlinear photonic media. Light is guided vertically by an epitaxially grown structure and transversely by deeply etched air-clad sidewalls. We report on the spectral phase transfer characteristics of such resonators. We also report the observation of a pi-rad Kerr nonlinear phase shift accumulated in a single compact ring resonator evidenced by all-optical switching between output ports of a resonator-enhanced Mach-Zehnder interferometer.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Enhanced all-optical switching by use of a nonlinear fiber ring resonator.
Heebner, J E; Boyd, R W
1999-06-15
We predict dramatically reduced switching thresholds for nonlinear optical devices incorporating fiber ring resonators. The circulating power in such a resonator is much larger than the incident power; also, the phase of the transmitted light varies rapidly with the single-pass phase shift. The combined action of these effects leads to a finesse-squared reduction in the switching threshold, allowing for photonic switching devices that operate at milliwatt power levels in ordinary optical fibers.
Vukovic, N.; Healy, N.; Suhailin, F. H.; Mehta, P.; Day, T. D.; Badding, J. V.; Peacock, A. C.
2013-10-01
Microresonators are ideal systems for probing nonlinear phenomena at low thresholds due to their small mode volumes and high quality (Q) factors. As such, they have found use both for fundamental studies of light-matter interactions as well as for applications in areas ranging from telecommunications to medicine. In particular, semiconductor-based resonators with large Kerr nonlinearities have great potential for high speed, low power all-optical processing. Here we present experiments to characterize the size of the Kerr induced resonance wavelength shifting in a hydrogenated amorphous silicon resonator and demonstrate its potential for ultrafast all-optical modulation and switching. Large wavelength shifts are observed for low pump powers due to the high nonlinearity of the amorphous silicon material and the strong mode confinement in the microcylindrical resonator. The threshold energy for switching is less than a picojoule, representing a significant step towards advantageous low power silicon-based photonic technologies.
Strongly driven nonlinear quantum optics in microring resonators
Vernon, Z
2015-01-01
We present a detailed analysis of strongly driven spontaneous four-wave mixing in a lossy integrated microring resonator side-coupled to a channel waveguide. A nonperturbative, analytic solution within the undepleted pump approximation is developed for a cw pump input of arbitrary intensity. In the strongly driven regime self- and cross-phase modulation, as well as multi-pair generation, lead to a rich variety of power-dependent effects; the results are markedly different than in the low power limit. The photon pair generation rate, single photon spectrum, and joint spectral intensity (JSI) distribution are calculated. Splitting of the generated single photon spectrum into a doublet structure associated with both pump detuning and cross-phase modulation is predicted, as well as substantial narrowing of the generated signal and idler bandwidths associated with the onset of optical parametric oscillation at intermediate powers. Both the correlated and uncorrelated contributions to the JSI are calculated, and fo...
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Budker, D
2003-01-01
Recent work on Lambda-resonances in alkali metal vapors (E. Mikhailov, I. Novikova, Yu. V. Rostovtsev, and G. R. Welch, quant-ph/0309171, and references therein) has revealed a novel type of electromagnetically induced absorption resonance that occurs in three-level systems under specific conditions normally associated with electromagnetically induced transparency. In this note, we show that these resonances have a direct analog in nonlinear magneto-optics, and support this conclusion with a calculation for a J=1->J'=0 system interacting with a single nearly circularly polarized light field in the presence of a weak longitudinal magnetic field.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Rabi oscillations of two-photon states in nonlinear optical resonators
Sherkunov, Y.; Whittaker, David M.; Fal'ko, Vladimir
2016-02-01
We demonstrate that four-wave mixing processes in high-quality nonlinear resonators can lead to Rabi-like oscillations in photon occupation numbers and second-order correlation functions, being a characteristic feature of the presence of entangled photon pairs in the optical signal. In the case of a system driven by a continuous coherent pump, the oscillations occur in the transient regime. We show that driving the system with pulsed coherent pumping would generate strongly antibunched photon states.
All optical NAND gate based on nonlinear photonic crystal ring resonator
Directory of Open Access Journals (Sweden)
Somaye Serajmohammadi
2016-06-01
Full Text Available In this paper we proposed a new design for all optical NAND gate. By combining nonlinear Kerr effect with photonic crystal ring resonators, we designed an all optical NAND gate. A typical NAND gate is a logic device with one bias and two logic input and one output ports. It has four different combinations for its logic input ports. The output port of the NAND gate is OFF, when both logic ports are ON, otherwise the output port will be ON. The switching power threshold obtained for this structure equals to 1.5 kW/μm2. For designing the proposed optical logic gate we employed one resonant ring whose resonant wavelength is at 1554 nm. The functionality of the proposed NAND gate depends on the operation of this resonant ring. When the power intensity of optical waves is less than the switching threshold the ring will couple optical waves into drop waveguide otherwise the optical waves will propagate on the bus waveguide.
Nonlinear Optical Terahertz Technology Project
National Aeronautics and Space Administration — Our approach is based on high-Q optical WGM resonators made with a nonlinear crystal. Such resonators have been demonstrated to dramatically enhance nonlinear...
Tsutsui, Yushi; Hayakawa, Tomokatsu; Kawamura, Go; Nogami, Masayuki
2011-07-08
In order to elucidate the relationship for third-order nonlinear optical properties of anisotropic metal nanoparticles between the incident laser wavelength and surface plasmon resonance (SPR) wavelength, gold nanorods (GNRs) with a tuned longitudinal SPR mode in frequency were prepared by seed-mediated methods with two different surfactants, cetyltrimethylammonium bromide (CTAB) and benzyldimethylammonium chloride (BDAC). The real and imaginary parts of the third-order nonlinear optical susceptibilities χ(3) were examined by near-infrared (800 nm) femtosecond Z-scan and I-scan techniques for various gold sols with SPR wavelengths of 530 nm (spheres), 800 nm (nanorods) and 1000 nm (nanorods), named as 530GNSs, 800GNRs and 1000GNRs, respectively. All the samples showed intrinsically third-order nonlinear optical refractive responses. However, as for the real part of χ(3) for one particle, 800GNRs whose plasmon peak was tuned to the incident laser wavelength exhibited a Reχ(3) value 45 times stronger than 530GNSs. More interestingly, the imaginary part of χ(3) was more greatly influenced at the tuned SPR wavelength. Here we first demonstrate that 800GNRs showed plasmon-enhanced saturable absorption (SA) due to a longitudinal SPR tuned to the incident laser wavelength.
Institute of Scientific and Technical Information of China (English)
WANG Kai; LONG Hua; FU Ming; YANG Guang; LU Pei-Xiang
2010-01-01
@@ A periodic triangular-shaped Au nanoparticle array is fabricated on a quartz substrate using nanosphere lithography and pulled laser deposition,and the linear and nonlinear optical properties of metal particles are studied.The morphology of the polystyrene nanosphere mask(D=820 nm)and the A u nanoparticle array are investigated by scanning electron microscopy.The surface plasmon resonance absorption peak is observed at 606 nm,which is in good agreement with the calculated result using the discrete dipole approximation method.By performing the Z-scan method with femtosecond laser(800nm,50fs),the optical nonlinearities of Au nanoparticle array are determined.The results show that the Au particles exhibit negative nonlinear absorption and positive nonlinear refractive index with the effective third-order optical nonlinear susceptibility Xeff(3)can be up to(8.8±1.0)×10-10 esu under non-resonant femtosecond laser excitation.
Off-Resonant Third-Order Optical Nonlinearity of an Ag:TiO2 Composite Film
Institute of Scientific and Technical Information of China (English)
ZHANG Chun-Feng; YOU Guan-Jun; DONG Zhi-Wei; LIU Ye; MA Guo-Hong; QIAN Shi-Xiong
2005-01-01
@@ Using the femtosecond time-resolved optical Kerr effect technique, we investigate the off-resonant nonlinear optical response of an Ag:TiO2 composite film prepared by a vacuum magnetron sputtering method. The third-order nonlinear optical susceptibility of the composite film with silver nanoparticle size of about 30 nm is estimated to be 1.9×10-10 esu at the incident laser wavelength of 800nm. When the photon energy of the incident beam is lower than that for surface plasmon or the interband transition of silver nanoparticles, the observed third-order optical nonlinearity is attributed to the intraband transition of the free electrons. Based on the linear limit of the electric field within micro-spherical model, we assign this large optical nonlinearity to the local field enhancement of the third-order nonlinearity.
Zinc Oxide Nanocrystals for Non-resonant Nonlinear Optical Microscopy in Biology and Medicine.
Kachynski, Aliaksandr V; Kuzmin, Andrey N; Nyk, Marcin; Roy, Indrajit; Prasad, Paras N
2008-07-24
In this paper we show that biocompatible zinc oxide (ZnO) nanocrystals (NCs) having non-centrosymmetric structure can be used as non-resonant nonlinear optical probes for targeting in bioimaging applications in vitro by use of the second order processes of second harmonic and sum frequency generation, as well as the third order process of four wave mixing. These non-resonant processes provide advantages above and beyond traditional two-photon bioimaging: (i) the probes do not photo-bleach; (ii) the input wavelength can be judiciously selected; and (iii) no heat is dissipated into the cells, ensuring longer cell viability and ultimately longer imaging times. ZnO NCs have been synthesized in organic media by using a non-hydrolytic sol-gel process, and subsequently dispersed in aqueous media using phospholipid micelles, and incorporated with the biotargeting molecule folic acid (FA). Sum Frequency, Second Harmonic and non-resonant four wave mixing non-linear signals from this stable dispersion of ZnO NCs, targeted to the live tumor (KB) cells were used for imaging. Robust intracellular accumulation of the targeted (FA incorporated) ZnO nanocrystals could be observed, without any indication of cytotoxicity.
Energy Technology Data Exchange (ETDEWEB)
Stefszky, Michael; Buchler, Ben C; Symul, Thomas; Lam, Ping Koy [Quantum Optics Group, Department of Quantum Science, The Australian National University, ACT 0200 (Australia); Mow-Lowry, Conor M; McKenzie, Kirk; Chua, Sheon; McClelland, David E, E-mail: michael.stefszky@anu.edu.au [Centre for Gravitational Physics, Department of Quantum Science, The Australian National University, ACT 0200 (Australia)
2011-01-14
A squeezed light source requires properties such as high squeezing amplitude, high bandwidth and stability over time, ideally using as few resources, such as laser power, as possible. We compare three nonlinear materials, two of which have not been well characterized for squeezed state production, and also investigate the viability of doubly-resonant optical parametric oscillator cavities in achieving these requirements. A model is produced that provides a new way of looking at the construction of an optical parametric oscillator/optical parametric amplifier setup where second harmonic power is treated as a limited resource. The well-characterized periodically poled potassium titanyl phosphate (PPKTP) is compared in an essentially identical setup to two relatively new materials, periodically poled stoichiometric lithium tantalate (PPSLT) and 1.7% magnesium oxide doped periodically poled stoichiometric lithium niobate (PPSLN). Although from the literature PPSLT and PPSLN present advantages such as a higher damage threshold and a higher nonlinearity, respectively, PPKTP was still found to have the most desirable properties. With PPKTP, 5.8 dB of squeezing below the shot noise limit was achieved. With PPSLT, 5.0 dB of squeezing was observed but the power required to see this squeezing was much higher than expected. A technical problem with the PPSLN limited the observed squeezing to around 1.0 dB. This problem is discussed.
A Novel All-Optical Switch in a Double-Loop Sagnac Ring Coupled with a Nonlinear Ring Resonator
Institute of Scientific and Technical Information of China (English)
LI Jun-Qing; LI Li; ZHAO Jia-Qun; LI Chun-Fei
2004-01-01
@@ We propose a novel configuration of all-optical switch based on a double-loop Sagnac ring coupled with a nonlinear ring resonator. In the case of self-phase modulation, the reducing switching threshold power down to mW is predicted, which is the improvement of earlier works on all-optical switches. The switch optimization is analysed.A way to increase the response speed of all-optical switches is suggested.
Nonlinear magneto-optical resonances for systems with J~100 observed in K2 molecules
Auzinsh, M; Fescenko, I; Kalvans, L; Tamanis, M
2012-01-01
We present the results of an experimental as well as theoretical study of nonlinear magneto-optical resonances in diatomic potassium molecules in the electronic ground state with large values of the angular momentum quantum number J~100. At zero magnetic field, the absorption transitions are suppressed because of population trapping in the ground state due to Zeeman coherences between magnetic sublevels of this state along with depopulation pumping. The destruction of such coherences in an external magnetic field was used to study the resonances in this work. K2 molecules were formed in a glass cell filled with potassium metal at a temperature above 150^{\\circ}C. The cell was placed in an oven and was located in a homogeneous magnetic field B, which was scanned from zero to 0.7 T. Q-type and R-type transitions were excited with a tunable, single-mode diode laser at a wavelength of 661 nm. Well pronounced nonlinear Hanle effect signals were observed in the intensities of the linearly polarized components of th...
Optical solitons in resonant and nonresonant nonlinear media in the presence of perturbations.
Piscureanu, M; Manaila-Maximean, D
2000-01-01
We studied the optical solitons in nonlinear resonant and nonresonant media in the presence of perturbations, assuming that the transient effects are stimulated by the light scanning beam. We treated a slight deviation from the exact necessary condition for the soliton existence (2betanu=1), as a small perturbation for the integrable system, studying its influence upon the soliton propagation conditions. The approximation is constructed by the help of an algebraic version of the soliton perturbation theory using a Riemann boundary problem in connection with the inverse scattering method. We have obtained the soliton equation and we have solved it in the presence of a small perturbation in the adiabatic approximation. In this case we have demonstrated that for a Lorentz profile line the amplitude of the soliton remains unchanged, the only effect of the perturbation results in a phase shift.
Li, Qiliang; Zhang, Zhen; Li, Dongqiang; Zhu, Mengyun; Tang, Xianghong; Li, Shuqin
2014-12-01
In this paper, we theoretically investigate all-optical logical gates based on the pump-induced resonant nonlinearity in an erbium-doped fiber coupler. The resonant nonlinearity yielded by the optical transitions between the (4)I(15/2) states and (4)I(13/2) states in Er(3+) induces the refractive index to change, which leads to switching between two output ports. First, we do a study on the switching performance, and calculate the extinction ratio (Xratio) of the device. Second, using the Xratio, we obtain the truth tables of the device. The results reveal that compared with other undoped nonlinear couplers, the erbium-doped fiber coupler can drop the switching threshold power. We also obtain different logic gates and logic operations in the cases of the same phase and different phase of two initial signals by changing the pump power.
Nonlinear optical detection of terahertz-wave radiation from resonant tunneling diodes.
Takida, Yuma; Nawata, Kouji; Suzuki, Safumi; Asada, Masahiro; Minamide, Hiroaki
2017-03-06
The sensitive detection of terahertz (THz)-wave radiation from compact sources at room temperature is crucial for real-world THz-wave applications. Here, we demonstrate the nonlinear optical detection of THz-wave radiation from continuous-wave (CW) resonant tunneling diodes (RTDs) at 0.58, 0.78, and 1.14 THz. The up-conversion process in a MgO:LiNbO3 crystal under the noncollinear phase-matching condition offers efficient wavelength conversion from a THz wave to a near-infrared (NIR) wave that is detected using a commercial NIR photodetector. The minimum detection limit of CW THz-wave power is as low as 5 nW at 1.14 THz, corresponding to 2-aJ energy and 2.7 × 103 photons within the time window of a 0.31-ns pump pulse. Our results show that the input frequency and power of RTD devices can be calibrated by measuring the output wavelength and energy of up-converted waves, respectively. This optical detection technique for compact electronic THz-wave sources will open up a new opportunity for the realization of real-world THz-wave applications.
Ju, Seongmin; Watekar, Pramod R; Jeong, Seongmook; Kim, Youngwoong; Han, Won-Taek
2012-01-01
Cu/Zn-codoped germano-silicate optical glass fiber was manufactured by using the modified chemical vapor deposition (MCVD) process and solution doping process. To investigate the reduction effect of Zn addition on Cu metal formation in the core of the Cu/Zn-codoped germano-silicate optical glass fiber, the optical absorption property and the non-resonant third-order optical nonlinearity were measured. Absorption peaks at 435 nm and 469 nm in the Cu/Zn-codoped germano-silicate optical glass fiber were contributed to Cu metal particles and ZnO semiconductor particles, respectively. The effective non-resonant optical nonlinearity, gamma, of the Cu/Zn-codoped germano-silicate optical glass fiber was measured to be 1.5097 W(-1) x km(-1) by using the continuous-wave self-phase modulation method. The gamma of the Cu/Zn-codoped germano-silicate optical glass fiber was about four times larger than that of the reference germano-silicate optical glass fiber without any dopants. The increase of the effective non-resonant optical nonlinearity, gamma, of the Cu/Zn-codoped germano-silicate optical glass fiber, can be attributed to the enhanced nonlinear polarization due to incorporated ZnO semiconductor particles and Cu metal ions in the glass network. The Cu/Zn-codoped germano-silicate optical glass fiber showed high nonlinearity and low transmission loss at the optical communication wavelength, which makes it suitable for high-speed-high-capacity optical communication systems.
Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition
Malakyan, Y P; Budker, D; Kimball, D F; Yashchuk, V V; Malakyan, Yu. P.
2003-01-01
A low-light-power theory of nonlinear magneto-optical rotation of frequency-modulated light resonant with a J=1->J'=0 transition is presented. The theory is developed for a Doppler-free transition, and then modified to account for Doppler broadening and velocity mixing due to collisions. The results of the theory are shown to be in qualitative agreement with experimental data obtained for the rubidium D1 line.
Nanoscale nonlinear PANDA ring resonator
Yupapin, Preecha
2012-01-01
Microring/nanoring resonator is an interesting device that has been widely studied and investigated by researchers from a variety of specializations. This book begins with the basic background of linear and nonlinear ring resonators. A novel design of nano device known as a PANDA ring resonator is proposed. The use of the device in the form of a PANDA in applications such as nanoelectronics, measurement, communication, sensors, optical and quantum computing, drug delivery, hybrid transistor and a new concept of electron-hole pair is discussed in detail.
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
Dawson, Nathan J; Crescimanno, Michael
2013-01-01
We develop a model for off-resonant microscopic cascading of scalar polarizabilities using a self-consistent field approach, and use it to study the effects of boundaries on mesoscopic systems of nonlinear polarizable atoms and molecules. We find that higher-ordered susceptibilities can be enhanced by increasing the surface-to-volume ratio through reducing the distance between boundaries perpendicular to the linear polarization. We also show lattice scaling effects on the effective nonlinear refractive indices for Gaussian beams, and illustrate finite size effects on dipole field distributions in films subject to long-wavelength propagating fields. We derive simplified expressions for the microscopic cascading of the nonlinear optical response in guest-host systems.
Enhancement of surface plasmon resonances on the nonlinear optical properties in a GaAs quantum dot
Jiang, Xiancong; Guo, Kangxian; Liu, Guanghui; Yang, Tao; Yang, Yanlian
2017-05-01
In this paper, the nonlinear optical properties of a metallic nanoparticle (MNP)-semiconductor quantum dot (SQD) hybrid nanosystem with the hybrid exciton effect have been studied. Considering the influence of quantum-size effect to the dielectric function of MNP, the quantum corrected dielectric function was applied to our calculation. By using the compact-density-matrix method, the interaction between MNP and SQD has been studied theoretically. The results show that the surface plasmon resonances (SPRs) of MNP enhance indeed the nonlinear optical properties of SQD. Further more, the enhancement depends on two factors: (a) the center-to-center 7distance between MNP and SQD; (b) the radius ratio between MNP and SQD.
Nonlinear optical sub-bandgap excitation of ZnO-based photonic resonators
Energy Technology Data Exchange (ETDEWEB)
Bader, Christina A.; Zeuner, Franziska; Bader, Manuel H. W.; Zentgraf, Thomas; Meier, Cedrik [Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Universität Paderborn, Warburger Str. 100, 33098 Paderborn (Germany)
2015-12-07
Zinc oxide (ZnO) is a versatile candidate for photonic devices due to its highly efficient optical emission. However, for pumping of ZnO photonic devices UV-sources are required. Here, we investigate the alternative usage of widely available pulsed near-infrared (NIR)-sources and compare the efficiency of linear and nonlinear excitation processes. We found that bulk ZnO, ZnO thin films grown by molecular beam epitaxy, and ZnO/SiO{sub 2} microdisk devices exhibit strong nonlinear response when excited with NIR pulses (λ ≈ 1060 nm). In addition, we show that the ZnO/SiO{sub 2} microdisks exhibit sharp whispering gallery modes over the blue-yellow part of the visible spectrum for both excitation conditions and high Q-factors up to Q = 4700. The results demonstrate that nonlinear excitation is an efficient way to pump ZnO photonic devices.
Organic nonlinear optical materials
Umegaki, S.
1987-01-01
Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.
Makovetskii, D N
2011-01-01
This is a part of an overview of my early studies on nonlinear spin-phonon dynamics in solid state optical-wavelength phonon lasers (phasers) started in 1984. The main goal of this work is a short description and a qualitative analysis of experimental data on low-frequency nonlinear resonances revealed in a nonautonomous ruby phaser. Under phaser pumping modulation near these resonances, an unusual kind of self-organized motions in the ruby spin-phonon system was observed by me in 1984 for the first time. The original technique of optical-wavelength microwave-frequency acoustic stimulated emission (SE) detection and microwave-frequency power spectra (MFPS) analysis was used in these experiments (description of the technique see: D.N.Makovetskii, Cand. Sci. Diss., Kharkov, 1983). The real time evolution of MFPS was studied using this technique at scales up to several hours. The phenomenon of the self-organized periodic alternation of SE phonon modes was experimentally revealed at hyperlow frequencies from abou...
Nonlinear Thermal Compensators for WGM Resonators
Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute; Yu, Nan; Iltchenko, Vladimir
2009-01-01
In an alternative version of a proposed bimaterial thermal compensator for a whispering-gallery-mode (WGM) optical resonator, a mechanical element having nonlinear stiffness would be added to enable stabilization of a desired resonance frequency at a suitable fixed working temperature. The previous version was described in "Bimaterial Thermal Compensators for WGM Resonators." Both versions are intended to serve as inexpensive means of preventing (to first order) or reducing temperature-related changes in resonance frequencies.
Agrawal, Govind P
2001-01-01
The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Mani, S.; Jang, J. I.; Ketterson, J. B.
2010-09-01
Employing a modified Z-scan technique at 2 K, we monitor not only the fundamental (ω) but also the frequency-doubled (2ω) and tripled (3ω) Z-scan responses in Cu2O when the input laser frequency ω is tuned to the two-photon quadrupole polariton resonance. The Z-scan response at ω allows us to accurately estimate the absolute number of polaritons generated via two-photon absorption. A striking dip is observed near the 2ω Z-scan focus which basically arises from Auger-type recombination of polaritons. Under high excitation levels, the 3ω Z-scan shows strong third harmonic generation. Based on the nonlinear optical parameters determined, we estimate the experimental polariton density achievable and propose a direction for polariton-based Bose-Einstein condensation in Cu2O .
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...
Eaton, D F
1991-07-19
The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.
Nonlinear optics and photonics
He, Guang S
2015-01-01
This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...
Resonance modes in optical fibres
Institute of Scientific and Technical Information of China (English)
余寿绵; 余恬
2002-01-01
The weakly nonlinear boundary value problem of wave propagation in an optical fibre (for the transverse electric mode, for example) is formulated and a modified linear solution is obtained. It is shown that a self-consistent theory of fibre optics should be weakly nonlinear. The mode of critical refraction that does not exist in the linear theory is obtained, showing that it is a mode consisting of resonance modes. It is shown that the signal carriers in a long fibre are of resonance modes, not normal modes. Some experimental data are given for comparison with the theoretical predictions, and the agreement seems satisfactory.
Impact of third-order dispersion on nonlinear bifurcations in optical resonators
Energy Technology Data Exchange (ETDEWEB)
Leo, François [Service OPERA-photonique, Université libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, CP 194/5, B-1050 Bruxelles (Belgium); Photonics Research Group, Department of Information Technology, Ghent University–IMEC, Ghent B-9000 (Belgium); Coen, Stéphane [Department of Physics, c, Private Bag, 92019, Auckland (New Zealand); Kockaert, Pascal; Emplit, Philippe; Haelterman, Marc [Service OPERA-photonique, Université libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, CP 194/5, B-1050 Bruxelles (Belgium); Mussot, Arnaud [PhLAM, Université de Lille 1, Bât. P5-bis, UMR CNRS/USTL 8523, F-59655 Villeneuve d' Ascq (France); Taki, Majid, E-mail: abdelmajid.taki@univ-lille1.fr [PhLAM, Université de Lille 1, Bât. P5-bis, UMR CNRS/USTL 8523, F-59655 Villeneuve d' Ascq (France)
2015-09-18
It is analytically shown that symmetry breaking, in dissipative systems, affects the nature of the bifurcation at onset of instability resulting in transitions from super to subcritical bifurcations. In the case of a nonlinear fiber cavity, we have derived an amplitude equation to describe the nonlinear dynamics above threshold. An analytical expression of the critical transition curve is obtained and the predictions are in excellent agreement with the numerical solutions of the full dynamical model.
Stolz, A; Markey, L; Francs, G Colas des; Bouhelier, A
2013-01-01
We introduce strongly-coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion and demonstrate that a two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.
Sukharev, Maxim; Pachter, Ruth
2015-01-01
We consider a hybrid plasmon-exciton system comprised of a resonant molecular subsystem and three Au wires supporting a dipole mode which can be coupled to a dark mode in controllable fashion by variation of a symmetry parameter. The physics of such a system under strong coupling conditions is examined in detail. It is shown that if two wires supporting the dark mode are covered with molecular layers the system exhibits four resonant modes for a strong coupling regime due to asymmetry and lifted degeneracy of the molecular state in this case, while upon having molecular aggregates covering the top wire with dipolar mode, three resonant modes appear. Pump-probe simulations are performed to scrutinize the quantum dynamics and find possible ways to control plasmon-exciton materials. It is demonstrated that one can design hybrid nanomaterials with highly pronounced Fano-type resonances when excited by femtosecond lasers.
Energy Technology Data Exchange (ETDEWEB)
Narayanan, M. [Department of Physics, Yadava College Govindarajan Campus, Thiruppalai, Madurai-625 014 (India); John Peter, A., E-mail: a.john.peter@gmail.com [Center for Environmental Studies/Green Energy Center, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701 (Korea, Republic of); Yoo, Chang Kyoo [Center for Environmental Studies/Green Energy Center, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701 (Korea, Republic of)
2012-02-01
Binding energy, interband emission energy and the non-linear optical properties of exciton in an InSb/InGa{sub x}Sb{sub 1-x} quantum dot are computed as functions of dot radius and the Ga content. Optical properties are obtained using the compact density matrix approach. The dependence of non-linear optical processes on the dot sizes is investigated for different Ga concentrations. The linear, third order non-linear optical absorption coefficients, susceptibility values and the refractive index changes of the exciton are calculated for different concentrations of gallium content. It is found that gallium concentration has great influence on the optical properties of InSb/InGa{sub x}Sb{sub 1-x} dots.
Stefszky, Michael; Mow-Lowry, Conor M.; McKenzie, Kirk; Chua, Sheon; Buchler, Ben C.; Symul, Thomas; McClelland, David E.; Lam, Ping Koy
2011-01-01
A squeezed light source requires properties such as high squeezing amplitude, high bandwidth and stability over time, ideally using as few resources, such as laser power, as possible. We compare three nonlinear materials, two of which have not been well characterized for squeezed state production,
Stefszky, Michael; Mow-Lowry, Conor M.; McKenzie, Kirk; Chua, Sheon; Buchler, Ben C.; Symul, Thomas; McClelland, David E.; Lam, Ping Koy
2011-01-01
A squeezed light source requires properties such as high squeezing amplitude, high bandwidth and stability over time, ideally using as few resources, such as laser power, as possible. We compare three nonlinear materials, two of which have not been well characterized for squeezed state production, a
Galaĭchuk, Yu A.; Yashkir, Yu N.
1989-12-01
A theory is developed for the calculation of the gain g due to stimulated resonant hyper-Raman scattering of light by polaritons in gaseous media. It is shown that throughout the tuning range of the pump frequency (including one- and two-photon resonances) a maximum of g corresponds to a dispersion curve of polaritons plotted ignoring attenuation. Theoretical results are used to analyze characteristics of hyper-Raman scattering in sodium vapor. It is shown that under normal experimental conditions the splitting of polariton branches is considerable (amounting to tens of reciprocal centimeters on the frequency scale and several angular degrees). The value of g is estimated for two-photon resonances in the case when the pump frequency is tunable in a wide range. The optimal conditions for stimulated hyper-Raman scattering are identified.
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...
Energy Technology Data Exchange (ETDEWEB)
Sentman, L.H.; Nayfeh, M.H.
1983-12-01
This research is an integrated theoretical and experimental investigation of the nonlinear interactions which may occur between the chemical kinetics, the fluid dynamics and the unstable resonator of a continuous wave fluid flow laser. The objectives of this grant were to measure the frequency and amplitude of the time dependent pulsations in the power spectral output which have been predicted to occur in cw chemical lasers employing unstable resonators to extract power.
Nonlinear effects in optical fibers
Ferreira, Mario F
2011-01-01
Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Electrifying photonic metamaterials for tunable nonlinear optics.
Kang, Lei; Cui, Yonghao; Lan, Shoufeng; Rodrigues, Sean P; Brongersma, Mark L; Cai, Wenshan
2014-08-11
Metamaterials have not only enabled unprecedented flexibility in producing unconventional optical properties that are not found in nature, they have also provided exciting potential to create customized nonlinear media with high-order properties correlated to linear behaviour. Two particularly compelling directions are active metamaterials, whose optical properties can be purposely tailored by external stimuli in a reversible manner, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light waves. Here, by exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically controlled nonlinear optical processes from a metamaterial. Both second harmonic generation and optical rectification, enhanced by the resonance behaviour in the metamaterial absorber, are modulated externally with applied voltage signals. Our results reveal an opportunity to exploit optical metamaterials as self-contained, dynamic electro-optic systems with intrinsically embedded electrical functions and optical nonlinearities.
Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois
2016-01-01
In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...
Fundamentals of nonlinear optics
Powers, Peter E
2011-01-01
Peter Powers's rigorous but simple description of a difficult field keeps the reader's attention throughout. … All chapters contain a list of references and large numbers of practice examples to be worked through. … By carefully working through the proposed problems, students will develop a sound understanding of the fundamental principles and applications. … the book serves perfectly for an introductory-level course for second- and third-order nonlinear optical phenomena. The author's writing style is refreshing and original. I expect that Fundamentals of Nonlinear Optics will fast become pop
Nonlinear fibre optics overview
DEFF Research Database (Denmark)
Travers, J. C.; Frosz, Michael Henoch; Dudley, J. M.
2010-01-01
, provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers...
Energy Technology Data Exchange (ETDEWEB)
Wei, Jingsong [Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Shanghai (China); Zhejiang University, State Key Lab of Silicon Materials, Hangzhou (China); Liu, Jing [Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Shanghai (China); Xiao, Mufei [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Apartado Postal 365, Ensenada, Baja California (Mexico)
2011-09-15
Silver-doped silicon thin films were deposited on glass substrate in a co-sputtering procedure. Silver nanoparticles were segregatedly distributed. The nonlinear properties were extracted by z-scan measurements at low laser input power. For about 50% silver density, the nonlinear absorption and refraction coefficients peaked, respectively, at -8.086 x 10{sup -2} m/W and 1.47 x 10{sup -9} m{sup 2}/W, which, with respect to the input intensity, are several orders higher than reported data. The sudden surge of nonlinear responses was explained satisfactorily based on a self-consistent microscopic model calculation for silver clusters. Resonances exist and depend apparently on the laser-modified local cluster concentration. (orig.)
Handbook of nonlinear optical crystals
Dmitriev, Valentin G; Nikogosyan, David N
1991-01-01
This Handbook of Nonlinear Optical Crystals provides a complete description of the properties and applications of nonlinear crystals In addition, it presents the most important equations for calculating the main parameters of nonlinear frequency converters This comprehensive reference work will be of great value to all scientists and engineers working in nonlinear optics, quantum electronics and laser physics
Metamaterials with tailored nonlinear optical response.
Husu, Hannu; Siikanen, Roope; Mäkitalo, Jouni; Lehtolahti, Joonas; Laukkanen, Janne; Kuittinen, Markku; Kauranen, Martti
2012-02-08
We demonstrate that the second-order nonlinear optical response of noncentrosymmetric metal nanoparticles (metamolecules) can be efficiently controlled by their mutual ordering in an array. Two samples with minor change in ordering have nonlinear responses differing by a factor of up to 50. The results arise from polarization-dependent plasmonic resonances modified by long-range coupling associated with metamolecular ordering. The approach opens new ways for tailoring the nonlinear responses of metamaterials and their tensorial properties.
Optical resonance and two-level atoms
Allen, L
1987-01-01
""Coherent and lucid…a valuable summary of a subject to which [the authors] have made significant contributions by their own research."" - Contemporary PhysicsOffering an admirably clear account of the basic principles behind all quantum optical resonance phenomena, and hailed as a valuable contribution to the literature of nonlinear optics, this distinguished work provides graduate students and research physicists probing fields such as laser physics, quantum optics, nonlinear optics, quantum electronics, and resonance optics an ideal introduction to the study of the interaction of electroma
Nonlinear behavior of Helmholtz resonators
Hersh, A. S.
1990-10-01
A semi-empirical fluid mechanical model has been derived to predict the nonlinear acoustic behavior of thin-walled, single-orifice Helmholtz resonators. The model assumed that the sound particle velocity field approaches the resonator in a spherically symmetric manner. The incident and cavity sound pressure fields are connected in terms of an orifice discharge coefficient and an end correction parameter whose values are determined empirically. The accuracy of the model was verified by comparing predicted with measured impedance over a wide range of sound amplitudes and frequencies for two different resonator geometries and with measurements conducted by Ingard and Ising.
Indian Academy of Sciences (India)
Zhongyu Li; Song Xu; Lin Zhu; Kazuo Kasatani
2012-12-01
The third-order optical nonlinearity and response of thin film containing J-like aggregates of a bis[4-(-dibutylamino)phenyl]squarylium dye were measured by degenerate four-wave mixing (DFWM) technique under resonant conditions. The temporal profile of DFWM signal was obtained with a time resolution of 0.3 ps (FWHM), and was found to consist of at least two components, i.e. the coherent instantaneous nonlinear response (electronic response) and the slow response due to the excited state population grating. The effective (3) value of thin squarylium dye film was evaluated to be as high as 1.1 × 10-7 esu, and the figure of merit of third-order nonlinearity ( = (3)/), was calculated to be about 2.1 × 10-13 esu cm.
Agrawal, Govind
2012-01-01
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o
Nonlinear plasmonic resonances in graphene nanostructures
You, Jian Wei; Weismann, Martin; Panoiu, Nicolae C.
2016-09-01
Peculiar physical properties of graphene offer remarkable potential for advanced photonics, particularly in the area of nonlinear optics at deep-subwavelength scale. In this article, we use a theoretical and computational analysis to demonstrate an efficient mechanism for enhancing the third-harmonic generation in graphene diffraction gratings. By taking advantage of the relation between the resonance wavelength of localized surface-plasmon polaritons of graphene ribbons and disks their specific geometry, we can engineer the spectral response of graphene gratings so as strong plasmonic resonances exist at both the fundamental frequency and third-harmonic (TH). As a result of this dual resonance mechanism for optical near-field enhancement, the intensity of the TH can be increased greatly.
Essentials of nonlinear optics
Murti, Y V G S
2014-01-01
Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.
Quarterman, A. H.; Mirkhanov, S.; Smyth, C. J. C.; Wilcox, K. G.
2016-09-01
Accurate characterizations of the nonlinear refractive index of semiconductor disk laser (SDL) gain samples are of critical importance for understanding the behavior of self-mode-locked SDLs. Here we describe measurements of nonlinear lensing in an SDL gain sample for a wide range of optical pump intensities and using a probe which is on resonance with the quantum wells in the SDL gain sample and whose intensity, pulse duration, and spot size are chosen to be similar to those reported in self-mode-locked SDLs. Under these conditions, we determine an effective value of the nonlinear refractive index, n2 = -6.5 × 10-13 cm2/W at zero pump intensity, and find that the value of n2 changes by less than 25% over the range of pump intensities studied. The nonlinear refractive index is measured using a variation on the well-established z-scan technique, which was modified to make it better suited to the measurement of optically pumped samples.
Remote Atmospheric Nonlinear Optical Magnetometry
2014-04-28
Boyd , Nonlinear Optics (Elsevier, Burlington, MA, 2008). [13] M. Scully and S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6703--14-9548 Remote Atmospheric Nonlinear Optical Magnetometry PhilliP SPrangle...b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Remote Atmospheric Nonlinear Optical Magnetometry Phillip Sprangle, Luke
Nonlinear nanomechanical resonators for quantum optoelectromechanics
Rips, S; Hartmann, M J
2012-01-01
We present a scheme for enhancing the anharmonicity of nanomechanical resonators by subjecting them to inhomogenous electrostatic fields. We show that this approach enables access to a novel regime of optomechanics, where the nonlinearity per quanta of the mechanical motion becomes comparable to the linewidth of the optical cavities employed. In this "resolved nonlinearity regime" transitions between phonon Fock states of the mechanical resonator can be selectively addressed. As one application we show that our approach would allow to prepare stationary phonon Fock states in experimentally realistic devices. Such states are manifestly non-classical as they show pronounced negative Wigner functions. We calculate the mechanical steady state by tracing out the cavity modes in the weak optomechanical coupling limit and corroborate our results by a numerical analysis of the full dynamics including the cavity modes. Finally, we show how the negativity of the stationary states' Wigner function can be read off the ou...
Terahertz Nonlinear Optics in Semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.
2013-01-01
We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...
Nonlinear optics with stationary pulses of light
Andre, A.; Bajcsy, M.; Zibrov, A. S.; Lukin, M. D.
2004-01-01
We show that the recently demonstrated technique for generating stationary pulses of light [Nature {\\bf 426}, 638 (2003)] can be extended to localize optical pulses in all three spatial dimensions in a resonant atomic medium. This method can be used to dramatically enhance the nonlinear interaction between weak optical pulses. In particular, we show that an efficient Kerr-like interaction between two pulses can be implemented as a sequence of several purely linear optical processes. The resul...
Leslie, Thomas M.
1993-01-01
A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film
Focus issue introduction: nonlinear optics.
Boulanger, Benoît; Cundiff, Steven T; Gauthier, Daniel J; Karlsson, Magnus; Lu, Yan-Qing; Norwood, Robert A; Skryabin, Dmitry; Taira, Takunori
2011-11-07
It is now fifty years since the original observation of second harmonic generation ushered in the field of nonlinear optics, close on the heels of the invention of the laser. This feature issue celebrates this anniversary with papers that span the range from new nonlinear optical materials, through the increasingly novel methods that have been developed for phase matching, to emerging areas such as nonlinear metamaterials and plasmonic enhancement of optical properties. It is clear that the next fifty years of nonlinear optics will witness a proliferation of new applications with increasing technological impact.
Optomechanical response of a nonlinear mechanical resonator
Shevchuk, Olga; Singh, Vibhor; Steele, Gary A.; Blanter, Ya. M.
2015-11-01
We investigate theoretically in detail the nonlinear effects in the response of an optical/microwave cavity coupled to a Duffing mechanical resonator. The cavity is driven by a laser at a red or blue mechanical subband, and a probe laser measures the reflection close to the cavity resonance. Under these conditions, we find that the cavity exhibits optomechanically induced reflection (OMIR) or absorption (OMIA) and investigate the optomechanical response in the limit of nonlinear driving of the mechanics. Similar to linear mechanical drive, in an overcoupled cavity the red sideband drive may lead to both OMIA and OMIR depending on the strength of the drive, whereas the blue sideband drive only leads to OMIR. The dynamics of the phase of the mechanical resonator leads to the difference between the shapes of the response of the cavity and the amplitude response of the driven Duffing oscillator, for example, at weak red sideband drive the OMIA dip has no inflection point. We also verify that mechanical nonlinearities beyond Duffing model have little effect on the size of the OMIA dip though they affect the width of the dip.
Hossain, M. M.; Mitra, S.; Poddar, P.; Chaudhuri, C.; Ray, B.; Ghosh, P. N.
2011-06-01
Atomic coherence resonances such as electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) signals are observed in a Doppler broadened multi-level system for the D2 line of 85Rb atoms in a vapour cell considering different types of atom-laser coupling schemes. Besides the coherence resonances, the nonlinear resonances like velocity selective optical pumping (VSOP) dips and velocity selective resonances (VSR) are also observed for the non-zero velocity selective groups of atoms. In the presence of pump, control and probe laser fields, we observe two EIT signals in a double Λ-type system and two EIA signals in a double V-type system. We are able to see the EIA signal for the non-zero velocity group of atoms when the pump laser is locked with an open transition by a small red detuning. We also report the experimental observation of simultaneous EIT and EIA signals in a (Λ+V)-type system. The effect of frequency tuning of the control laser is also studied in the presence of the frequency locked pump laser. A simple theoretical analysis explains the experimental results.
Energy Technology Data Exchange (ETDEWEB)
Hossain, M M; Mitra, S; Poddar, P; Chaudhuri, C; Ray, B [Department of Physics, University of Calcutta, 92 A P C Road, Kolkata 700 009 (India); Ghosh, P N, E-mail: brphy@caluniv.ac.in [Jadavpur University, 188 Raja S C Mallik Road, Kolkata 700 032 (India)
2011-06-14
Atomic coherence resonances such as electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) signals are observed in a Doppler broadened multi-level system for the D{sub 2} line of {sup 85}Rb atoms in a vapour cell considering different types of atom-laser coupling schemes. Besides the coherence resonances, the nonlinear resonances like velocity selective optical pumping (VSOP) dips and velocity selective resonances (VSR) are also observed for the non-zero velocity selective groups of atoms. In the presence of pump, control and probe laser fields, we observe two EIT signals in a double {Lambda}-type system and two EIA signals in a double V-type system. We are able to see the EIA signal for the non-zero velocity group of atoms when the pump laser is locked with an open transition by a small red detuning. We also report the experimental observation of simultaneous EIT and EIA signals in a ({Lambda}+V)-type system. The effect of frequency tuning of the control laser is also studied in the presence of the frequency locked pump laser. A simple theoretical analysis explains the experimental results.
Applications of nonlinear fiber optics
Agrawal, Govind
2008-01-01
* The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo
Focus issue introduction: nonlinear optics 2013.
Dadap, Jerry I; Karlsson, Magnus; Panoiu, Nicolae C
2013-12-16
Nonlinear Optics has continued to develop over the last few years at an extremely fast pace, with significant advances being reported in nonlinear optical metamaterials, optical signal processing, quantum optics, nonlinear optics at subwavelength scale, and biophotonics. These exciting new developments have generated significant potential for a broad spectrum of technological applications in which nonlinear-optical processes play a central role.
Nonlinear Optics: Principles and Applications
DEFF Research Database (Denmark)
Rottwitt, Karsten; Tidemand-Lichtenberg, Peter
As nonlinear optics further develops as a field of research in electromagnetic wave propagation, its state-of-the-art technologies will continue to strongly impact real-world applications in a variety of fields useful to the practicing scientist and engineer. From basic principles to examples...... of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....
Field guide to nonlinear optics
Powers, Peter E
2013-01-01
Optomechanics is a field of mechanics that addresses the specific design challenges associated with optical systems. This [i]Field Guide [/i]describes how to mount optical components, as well as how to analyze a given design. It is intended for practicing optical and mechanical engineers whose work requires knowledge in both optics and mechanics. This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Topics covered include technologically important effects, recent developments in nonlinear optics
Nonlinearity and nonclassicality in a nanomechanical resonator
Energy Technology Data Exchange (ETDEWEB)
Teklu, Berihu [Clermont Universite, Blaise Pascal University, CNRS, PHOTON-N2, Institut Pascal, Aubiere Cedex (France); Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Paris, Matteo G.A. [Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy)
2015-12-15
We address quantitatively the relationship between the nonlinearity of a mechanical resonator and the nonclassicality of its ground state. In particular, we analyze the nonclassical properties of the nonlinear Duffing oscillator (being driven or not) as a paradigmatic example of a nonlinear nanomechanical resonator. We first discuss how to quantify the nonlinearity of this system and then show that the nonclassicality of the ground state, as measured by the volume occupied by the negative part of the Wigner function, monotonically increases with the nonlinearity in all the working regimes addressed in our study. Our results show quantitatively that nonlinearity is a resource to create nonclassical states in mechanical systems. (orig.)
Karni, Ouri; Eisenstein, Gad; Reithmaier, Johann Peter
2014-01-01
We study the interplay between coherent light-matter interactions and non-resonant pulse propagation effects when ultra-short pulses propagate in room-temperature quantum-dot (QD) semiconductor optical amplifiers (SOAs). The signatures observed on a pulse envelope after propagating in a transparent SOA, when coherent Rabi-oscillations are absent, highlight the contribution of two-photon absorption (TPA), and its accompanying Kerr-like effect, as well as of linear dispersion, to the modification of the pulse complex electric field profile. These effects are incorporated into our previously developed finite-difference time-domain comprehensive model that describes the interaction between the pulses and the QD SOA. The present, generalized, model is used to investigate the combined effect of coherent and non-resonant phenomena in the gain and absorption regimes of the QD SOA. It confirms that in the QD SOA we examined, linear dispersion in the presence of the Kerr-like effect causes pulse compression, which coun...
Khoa, Doan Quoc; Phuong, Le Thi Thu; Hoi, Bui Dinh
2017-03-01
A quantum kinetic equation for electrons interacting with confined phonons is used to investigate the nonlinear absorption of an intense electromagnetic wave by electrons in cylindrical GaAs/AlAs quantum wires. The analytic expression for absorption coefficient is calculated for three models of confined optical phonons: the dielectric continuum (DC), hydrodynamic continuum (HC), and Huang-Zhu (HZ) models. The absorption coefficient depends on the square of the electromagnetic wave amplitude. The electrophonon resonance and optically detected electrophonon resonance (ODEPR) are observed through the absorption spectrum. The full width at half maximum (the line-width) of the ODEPR peaks is obtained by a computational method. The line-width is found to increase with increasing temperature and decrease with increasing the quantum wire radius. In particular, numerical results show that the DC and HZ models lead to a similar behaviour of electron - confined phonon interaction whereas the HC model results in a quite different one, especially at small quantum wire radius. For large quantum wire radii, above mentioned phonon models have equivalent contributions to the ODEPR line-width.
Cui, Fangming; Feng, Chude; Xie, Rongjun; Hua, Zile; Ohtsuka, Hideyuki; Sakka, Yoshio; Shi, Jianlin
2010-02-01
Highly dispersed and uniform Fe(2)O(3) nanoparticles (NPs) have been incorporated into the pore channels of SBA-15 mesoporous silica thin films (MSTFs). And such Fe(2)O(3) NPs incorporated MSTFs did not show detectable nonlinear optical (NLO) signals at off-resonance wavelength 1064 nm by Z-scan technique. However after a vacuum heat treatment at 800 degrees C for 1 h under 6 T magnetic field, the Fe(2)O(3) NPs incorporated MSTFs with very low Fe content (0.8 approximately 1.5 at.%) presented distinctive NLO signals with chi(3) value in an order of 10(-10) esu. We proposed the physical reason for the NLO property generation to be the magnetic domain orientation of the iron oxide NPs incorporated within the pore channels of the MSTFs by the magnetic field heat treatment.
Nonlinear optics principles and applications
Li, Chunfei
2017-01-01
This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...
Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.
2010-08-01
We introduce a self-consistent theory for the description of the optical linear and nonlinear response of molecules that is based strictly on the results of the experimental characterization. We show how the Thomas-Kuhn sum-rules can be used to eliminate the dependence of the nonlinear response on parameters that are not directly measurable. Our approach leads to the successful modeling of the dispersion of the nonlinear response of complex molecular structures with different geometries (dipolar and octupolar), and can be used as a guide towards the modeling in terms of fundamental physical parameters.
Nonlinear optical properties of semiconductor nanocrystals
Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel
1998-05-01
nanocrystals can be tailored by controlling the temperature or time of the treatment. The major problem is the size dispersion of the crystallites, which is intrinsic to the diffusion process. At present, this is the major source of the undesired inhomogeneous broadening of the optical transition lines of the SDGs. Efforts are at present being made to fabricate materials, SDGs included, which embed nanocrystals with a reduced spread of sizes. The interest in the nonlinear optical properties is due not only to fundamental reasons but also to possible applications for optical devices. Generally speaking, resonant nonlinearities are much larger than non-resonant nonlinearities, but they are not necessarily the most interesting for applications because materials at resonance absorb the incident radiation and also present long response times. The studies below the bandgap seem to indicate that the values of the intrinsic nonlinearities of nanocrystals in the structures which are at present available are similar to those of the bulk. New and better controlled structures are now under development and have to be tested from the viewpoint of optical nonlinearities. In several situations SDGs cannot be modelled as an ensemble of freely standing nanocrystals, with the glass matrix playing the role of an inert support. Phenomena such as trapping and darkening, which are very probably connected with electronic states at the glasssemiconductor interface, may play a role in determining the optical response. They might give rise to an extrinsic optical nonlinearity which can be even larger than the intrinsic nonlinearity. The physical processes which are involved in these extrinsic nonlinearities are poorly understood and at present being investigated.
Whittam, A J
2001-01-01
susceptibility from 26 pm/V (same film without octadecanoic acid) to 40 pm/V. This increase in the second-order susceptibility occurred even though the amount of NLO-active dye was effectively diluted by the addition of the inactive octadecanoic acid. The wavelength of the absorption maximum ranged from 346-440 nm and there was direct correlation between the susceptibilities and the transparency of the films at the harmonic wavelength. Hemicyanine dyes were synthesised, with the general formulae: - (a) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH-C sub 6 H sub 4] sub x -N(CH sub 3) sub 2 I (b) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH] sub y -C sub 6 H sub 4 -N(CH sub 3) sub 2 I where A sup + is a pyridinium or isoquinolinium acceptor, and x = 1 or 2, and y = 1 or 2. The optically nonlinear dyes were investigated via the Langmuir-Blodgett (LB) technique. The dyes all produced isotherm data, with molecular areas of 22-60 A sup 2 per molecule, which are consistent with the cross-sectional areas of the chromo...
Cross resonant optical antenna.
Biagioni, P; Huang, J S; Duò, L; Finazzi, M; Hecht, B
2009-06-26
We propose a novel cross resonant optical antenna consisting of two perpendicular nanosized gold dipole antennas with a common feed gap. We demonstrate that the cross antenna is able to convert propagating fields of any polarization state into correspondingly polarized, localized, and enhanced fields and vice versa. The cross antenna structure therefore opens the road towards the control of light-matter interactions based on polarized light as well as the analysis of polarized fields on the nanometer scale.
Cross Resonant Optical Antenna
Biagioni, P.; Huang, J. S.; Duò, L.; Finazzi, M.; Hecht, B.
2009-06-01
We propose a novel cross resonant optical antenna consisting of two perpendicular nanosized gold dipole antennas with a common feed gap. We demonstrate that the cross antenna is able to convert propagating fields of any polarization state into correspondingly polarized, localized, and enhanced fields and vice versa. The cross antenna structure therefore opens the road towards the control of light-matter interactions based on polarized light as well as the analysis of polarized fields on the nanometer scale.
Energy Technology Data Exchange (ETDEWEB)
Ge Jianfeng [Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, Suzhou 215123 (China); Key Laboratory for Carbon-Based Functional Material and Device of Jiangsu Province, Soochow University, Suzhou 215123 (China); Lu Yueting; Xu Qingfeng; Liu Wu; Li Najun [Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, Suzhou 215123 (China); Sun Ru, E-mail: sunru924@suda.edu.cn [Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, Suzhou 215123 (China); Song Yinglin [School of Physical Science and Technology, Soochow University, Suzhou 215006 (China); Lu Jianmei, E-mail: lujm@suda.edu.cn [Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, Suzhou 215123 (China)
2011-04-28
Graphical abstract: A series of unsymmetrical phenoxazinium chlorides, which have good solubility and thermal stability, were evaluated for third-order nonlinear optical properties. They exhibit strong reverse saturable absorption and nonlinear refraction at 532 nm. Research highlights: {yields} Strong reverse saturable absorption and nonlinear refraction at 532 nm. {yields} Excited-state nonlinear mechanism implied by pump-probe response. {yields} Good solubility in polar solvents and good thermal stability. - Abstract: A new series of unsymmetrical phenoxazinium chlorides, featuring a heterocyclic aromatic {pi}-bridge with dialkylamino donors, were evaluated in acetonitrile solution for third-order nonlinear optical properties at 532 nm using a Z-scan technique. The title compounds exhibit strong reverse saturable absorption and nonlinear refraction. The third-order nonlinear optical properties were obtained under nanosecond and picosecond laser beams. The nonlinear mechanism is revealed by the excited-state nonlinearity, as observed from a picosecond pump-probe response experiment for one of the compounds. They are potential nonlinear optical materials because they also have good solubility in polar solvents and good thermal stability.
Nonlinear optics: the next decade.
Kivshar, Yuri S
2008-12-22
This paper concludes the Focus Serial assembled of invited papers in key areas of nonlinear optics (Editors: J.M. Dudley and R.W. Boyd), and it discusses new directions for future research in this field.
Nonlinear interaction of meta-atoms through optical coupling
Energy Technology Data Exchange (ETDEWEB)
Slobozhanyuk, A. P.; Kapitanova, P. V.; Filonov, D. S.; Belov, P. A. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Powell, D. A. [Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Shadrivov, I. V.; Kivshar, Yu. S. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Lapine, M., E-mail: mlapine@physics.usyd.edu.au [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia); McPhedran, R. C. [Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia)
2014-01-06
We propose and experimentally demonstrate a multi-frequency nonlinear coupling mechanism between split-ring resonators. We engineer the coupling between two microwave resonators through optical interaction, whilst suppressing the direct electromagnetic coupling. This allows for a power-dependent interaction between the otherwise independent resonators, opening interesting opportunities to address applications in signal processing, filtering, directional coupling, and electromagnetic compatibility.
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
Lin Xiao-Gang; Liu Wen-Jun; Lei Ming
2016-03-01
Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic soliton solutions are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Nonlinear optics and organic materials
Energy Technology Data Exchange (ETDEWEB)
Shen, Y.R.
1994-07-01
We shall consider an interesting topic relating nonlinear optics and organic materials: how nonlinear optics can be used to study organic materials. One of the main differences between linear and nonlinear responses of a medium to incoming radiation is in their symmetries. It leads to the possibility that some properties of the medium could be more sensitively probed by nonlinear, rather than linear, optical means, or vise versa. A well-known example is that some vibrational modes of a medium could be Raman-active but infrared-inactive, and would be more readily observed by Raman scattering, which is a two-photon transition process. In this paper, we shall discuss, with the help of three examples, how we can use second harmonic generation (SHG) and sum frequency generation (SFG) to obtain unique information about a material. We shall focus on thin films, surfaces, and interfaces.
Faccinetto, Alessandro; Mazzucato, Simone; Pedron, Danilo; Bozio, Renato; Destri, Silvia; Porzio, William
2008-10-06
The nonlinear optical properties of a functionalized poly(thiophene azine), namely, poly(3,4-didodecylthiophene azine), PAZ, at the optical telecommunication wavelength of 1550 nm are investigated by means of the closed-aperture z-scan technique in both thin films and solutions. Values of chi((3))=(2.4+/-0.4)x10(-13) esu, n(2)=(4.0+/-0.7)x10(-15) cm(2) W(-1), and gamma=(4.5+/-0.7)x10(-34) esu are estimated for the third-order (Kerr) susceptibility, the intensity-dependent refractive index, and the molecular second hyperpolarizability of solution samples, respectively. A very small dependence on the polymer chain length is found. Markedly higher values of (4.4+/-1.1)x10(-11) esu, (6.6+/-1.0)x10(-13) cm(2) W(-1), and (5.0+/-0.8)x10(-33) esu are measured for the corresponding quantities in thick (up to 20 mum) polymer films cast on quartz plates. The enhancement of the NLO responses on going from solution to solid samples is attributed to a partially ordered structure and to the presence of interchain interactions leading to greater pi-electron delocalization in the cast polymer films. The results are compared with those previously obtained by using third-harmonic generation (THG), taking into account that those data were measured under conditions of three-photon resonance, whereas our z-scan measurements are fully off-resonance.
Nonlinear Optics and Turbulence
1992-10-01
currently at Queen Mary College, London Patrick Dunne, (Ph.D., 1987, M.I.T., Hydrodynamic Stability, Nonlinear Waves), 1987-1988. Alecsander Dyachenko...U I I I U I I 3 9 3 V. BIOGRAPHIES A. FACULTY BRUCE BAYLY, 31, Ph.D. 1986, Princeton University. Postdoctoral visiting member 1986-88 at Courant...Caputo, A. C. Newell, and M. Shelley , "Nonlinear Wave Propagation Through a Random Medium and Soliton Tunneling", Integrable Systems and
Composite structures for the enhancement of nonlinear optical materials.
Neeves, A E; Birnboim, M H
1988-12-01
Calculations of the nonlinear optical behavior are developed for model composites consisting of nanospheres with a metallic core and a nonlinear shell suspended in a nonlinear medium. The concept for the enhancement of optical phase conjugation from all these nonlinear regions is that the optical field can be concentrated both inside and in the neighborhood of the metallic core, aided by surface-mediated plasmon resonance. Calculations for gold cores and aluminum cores indicate that phase-conjugate reflectivity enhancements of 10(8) may be possible.
Nonlinear optical properties of Au/PVP composite thin films
Institute of Scientific and Technical Information of China (English)
Shen Hong; Cheng Bo-Lin; Lu Guo-Wei; Wang Wei-Tian; Guan Dong-Yi; Chen Zheng-Hao; Yang Guo-Zhen
2005-01-01
Colloidal Au and poly(vinylpyrrolidone) (PVP) composite thin films are fabricated by spin-coating method. Linear optical absorption measurements of the Au/PVP composite films indicate an absorption peak around 530 nm due to the surface plasmon resonance of gold nanoparticles. Nonlinear optical properties are studied using standard Z-scan technique, and experimental results show large optical nonlinearities of the Au/PVP composite films. A large value of films.
Energy Technology Data Exchange (ETDEWEB)
Yoo, Jaeg Won; Cho, Sunh Oh; Jeong, Young Uk; Lee, Byung Cheol; Lee, Jong Min
2000-10-01
In this report we present a theoretical study of bare optical resonators having in mind to extend it to active resonators. To compute diffractional losses, phase shifts, intensity distributions and phases of radiation fields on mirrors, we coded a package of numerical procedures on bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, are programmed for finding numeric solutions to the pair of integral equations. The iterative method had been tried by Fox and Li, but it was not applicable to cases for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this report, we implemented the matrix method to extend the computational limit further. A great deal of case studies are carried out with various configurations of stable and unstable resonators. Our results presented in this report show not only a good agreement with the results previously obtained by Fox and Li, but also a legitimacy of our numerical procedures in high Fresnel numbers.
New nonlinear optical materials based on ferrofluids
Energy Technology Data Exchange (ETDEWEB)
Huang, J P [Department of Physics, Fudan University, Shanghai 200433 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, K W [Department of Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)
2006-01-01
We exploit theoretically a new class of magneto-controlled nonlinear optical material based on ferrofluids in which ferromagnetic nanoparticles are coated with a nonmagnetic metallic nonlinear shell. Such an optical material can have anisotropic nonlinear optical properties and a giant enhancement of nonlinearity, as well as an attractive figure of merit.
Nonlinear optics at low powers: new mechanism of on-chip optical frequency comb generation
Rogov, Andrei
2016-01-01
Nonlinear optical effects provide a natural way of light manipulation and interaction, and form the foundation of applied photonics -- from high-speed signal processing and telecommunication, to ultra-high bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers, or boosting efficiency of nonlinear parametric processes by enhancing local field intensity with high quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multi-photon absorption. Here, we present an alternative to this conventional approach, with strong nonlinear optical effects at substantially lower local intensities, based on period-doubling bifurcations near nonlinear cavity anti-resonance, and apply it to low-power optical comb generation in a silicon chip.
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...
Resource Letter NO-1: Nonlinear Optics
Garmire, Elsa
2011-03-01
This Resource Letter provides a guide to the literature on nonlinear optics. Books, journals, and websites are introduced that cover the general subject. Journal articles and websites are cited covering the following topics: second-order nonlinearities in transparent media including second-harmonic generation and optical parametric oscillation, third-order and higher nonlinearities, nonlinear refractive index, absorptive nonlinearities such as saturable absorption and multiphoton absorption, and scattering nonlinearities such as stimulated Raman scattering and stimulated Brillouin scattering. Steady-state and transient phenomena, fiber optics, solitons, nonlinear wave mixing, optical phase conjugation, nonlinear spectroscopy, and multiphoton microscopy are all outlined.
HTS nonlinearities in microwave disk resonators
Collado, Carlos; Mateu, Jordi; Shaw, Timothy J.; O'Callaghan, Juan M.
2002-08-01
This article describes a procedure for the calculation of the intermodulation behavior of the TM0 1 0 mode in high temperature superconducting (HTS) disk resonators from a description of the local HTS nonlinearities. Successful cross-checks are performed by comparing the theoretical results with experimental measurements and simulations based on the multiport harmonic balance algorithm for a specific model of HTS nonlinearity. The application of this procedure to the determination of nonlinear material parameters from disk resonator measurements is illustrated and compared to theoretical predictions.
Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response
Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C
2011-01-01
We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.
All-optical gates based on photonic crystal resonators
Moille, Grégory; De Rossi, Alfredo; Combrié, Sylvain
2016-04-01
We briefly review the technology of advanced nonlinear resonators for all-optical gating with a specific focus on the application of high-performance signal sampling and on the properties of III-V semiconductor photonic crystals
Nonlinear optics of astaxanthin thin films
Esser, A.; Fisch, Herbert; Haas, Karl-Heinz; Haedicke, E.; Paust, J.; Schrof, Wolfgang; Ticktin, Anton
1993-02-01
Carotinoids exhibit large nonlinear optical properties due to their extended (pi) -electron system. Compared to other polyenes which show a broad distribution of conjugation lengths, carotinoids exhibit a well defined molecular structure, i.e. a well defined conjugation length. Therefore the carotinoid molecules can serve as model compounds to study the relationship between structure and nonlinear optical properties. In this paper the synthesis of four astaxanthins with C-numbers ranging from 30 to 60, their preparation into thin films, wavelength dispersive Third Harmonic Generation (THG) measurements and some molecular modelling calculations will be presented. Resonant (chi) (3) values reach 1.2(DOT)10-10 esu for C60 astaxanthin. In the nonresonant regime a figure of merit (chi) (3)/(alpha) of several 10-13 esu-cm is demonstrated.
Zhai, Wu-Chao; Qiao, Tie-Zhu; Cai, Dong-Jin; Wang, Wen-Jie; Chen, Jing-Dong; Chen, Zhi-Hui; Liu, Shao-Ding
2016-11-28
Third-harmonic generation with metallic or dielectric nanoparticles often suffer from, respectively, small modal volumes and weak near-field enhancements. This study propose and demonstrate that a metallic/dielectric hybrid nanostructure composed of a silver double rectangular nanoring and a silicon square nanoplate can be used to overcome these obstacles for enhanced third-harmonic generation. It is shown that the nonradiative anapole mode of the Si plate can be used as a localized source to excite the dark subradiant octupole mode of the Ag ring, and the mode hybridization leads to the formation of an antibonding and a bonding subradiant collective mode, thereby forming anticrossing double Fano resonances. With the strong coupling between individual particles and the effectively suppressed radiative losses of the Fano resonances, several strong hot spots are generated around the Ag ring due to the excitation of the octupole mode, and electromagnetic fields within the Si plate are also strongly amplified, making it possible to confine more incident energy inside the dielectric nanoparticle. Calculation results reveal that the confined energy inside the Si plate and the Ag ring for the hybrid structures can be about, respectively, more than three times and four orders stronger than that of the corresponding isolated nanoparticles, which makes the designed hybrid nanostructure a promising platform for enhanced third-harmonic generation.
Nonlinear Optics of Hexaphenyl Nanofibers
DEFF Research Database (Denmark)
Balzer, Frank; Al-Shamery, Katharina; Neuendorf, Rolf
2003-01-01
measurements reveal that the nonlinear optical transition dipole moment is oriented with an angle of 75° with respect to the needles long axes. The absolute value of the macroscopic second-order susceptibility, averaged over a size distribution of p-6P nanoaggregates, is estimated to be of the order of 6...
Tunable Resonators for Nonlinear Modal Interactions
Ramini, Abdallah
2016-10-04
Understanding the various mechanisms of nonlinear mode coupling in micro and nano resonators has become an imminent necessity for their successful implementation in practical applications. However, consistent, repeatable, and flexible experimental procedures to produce nonlinear mode coupling are lacking, and hence research into well-controlled experimental conditions is crucial. Here, we demonstrate well-controlled and repeatable experiments to study nonlinear mode coupling among micro and nano beam resonators. Such experimental approach can be applied to other micro and nano structures to help study their nonlinear interactions and exploit them for higher sensitive and less noisy responses. Using electrothermal tuning and electrostatic excitation, we demonstrate three different kinds of nonlinear interactions among the first and third bending modes of vibrations of slightly curved beams (arches): two-one internal resonance, three-one internal resonance, and mode veering (near crossing). The experimental procedure is repeatable, highly flexible, do not require special or precise fabrication, and is conducted in air and at room temperature. This approach can be applied to other micro and nano structures, which come naturally curved due to fabrication imperfections, such as CNTs, and hence lays the foundation to deeply investigate the nonlinear mode coupling in these structures in a consistent way.
Tunable Resonators for Nonlinear Modal Interactions
Ramini, Abdallah H.; Hajjaj, Amal Z.; Younis, Mohammad I.
2016-10-01
Understanding the various mechanisms of nonlinear mode coupling in micro and nano resonators has become an imminent necessity for their successful implementation in practical applications. However, consistent, repeatable, and flexible experimental procedures to produce nonlinear mode coupling are lacking, and hence research into well-controlled experimental conditions is crucial. Here, we demonstrate well-controlled and repeatable experiments to study nonlinear mode coupling among micro and nano beam resonators. Such experimental approach can be applied to other micro and nano structures to help study their nonlinear interactions and exploit them for higher sensitive and less noisy responses. Using electrothermal tuning and electrostatic excitation, we demonstrate three different kinds of nonlinear interactions among the first and third bending modes of vibrations of slightly curved beams (arches): two-one internal resonance, three-one internal resonance, and mode veering (near crossing). The experimental procedure is repeatable, highly flexible, do not require special or precise fabrication, and is conducted in air and at room temperature. This approach can be applied to other micro and nano structures, which come naturally curved due to fabrication imperfections, such as CNTs, and hence lays the foundation to deeply investigate the nonlinear mode coupling in these structures in a consistent way.
Nonlinear fiber optics formerly quantum electronics
Agrawal, Govind
1995-01-01
The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is
Nonlinear optics at low powers: Alternative mechanism of on-chip optical frequency comb generation
Rogov, Andrei S.; Narimanov, Evgenii E.
2016-12-01
Nonlinear optical effects provide a natural way of light manipulation and interaction and form the foundation of applied photonics, from high-speed signal processing and telecommunication to ultrahigh-bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers or boosting efficiency of nonlinear parametric processes by enhancing local-field intensity with high-quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multiphoton absorption. We present an alternative to this conventional approach, with strong nonlinear optical effects at low local intensities, based on period-doubling bifurcations near nonlinear cavity antiresonance and apply it to low-power optical frequency comb generation in a silicon chip.
Advances in chemical physics modern nonlinear optics, pt.1
Rice, Stuart A
2009-01-01
Partial table of contents: Hyper-Rayleigh and Hyper-Raman Rotational and Vibrational Spectroscopy (T. Bancewicz & Z. Ożgo). Polarization Properties of Hyper-Rayleigh and Hyper-Raman Scatterings (M. Kozierowski). Fast Molecular Reorientation in Liquid Crystals Probed by Nonlinear Optics (J. Lalanne, et al.). Nonlinear Propagation of Laser Light of Different Polarizations (G. Rivoire). Nonlinear Magneto-Optics of Magnetically Ordered Crystals (R. Zawodny). Dynamical Questions in Quantum Optics (A. Shumovsky). Quantum Resonance Fluorescence from Mutually Correlated Atoms (Z. Fi
Unsymmetrical squaraines for nonlinear optical materials
Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)
1996-01-01
Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.
Nonlinear Quantum Optics in Artificially Structured Media
Helt, Lukas Gordon
This thesis presents an analysis of photon pairs generated via either spontaneous parametric downconversion or spontaneous four-wave mixing in channel waveguides as well as in microring resonators side-coupled to channel waveguides. The state of photons exiting a particular device is calculated within a general Hamiltonian formalism that simplifies the link between quantum nonlinear optics experiments and classical nonlinear optics experiments. This state contains information regarding photon pair production efficiency as well as modal and spectral correlations between the two photons, characterized by a two-dimensional spectral distribution function called the biphoton wave function. In the limit of a low probability of pair production, photon pair production efficiencies are cast into forms resembling corresponding well-known classical nonlinear optical frequency conversion efficiencies, making it easy to see what plays the role of a classical "seed" field in an un-seeded (quantum) process. This also allows photon pair production efficiencies to be calculated based on the results of classical nonlinear optical experiments. It is further calculated that, unless generated photons are collected over a very narrow frequency range, their generation efficiency does not scale the same way with device length in a channel waveguide, or resonance quality factor in a microring resonator, as might be expected from the corresponding classical frequency conversion efficiency. Although calculations do not include self- or cross-phase modulation, nor two-photon absorption or free-carrier absorption, it is calculated that their neglect is justified in the low pair production probability limit. Linear (scattering) loss is also neglected, though partially addressed in the final chapter of this thesis. Biphoton wave functions are calculated explicitly, such that their shape and orientation, including approximate analytic expressions for their widths, can easily be determined. This
Sensitivity of nonlinear photoionization to resonance substructure in collective excitation
Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O'Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.
2015-04-01
Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.
Energy Technology Data Exchange (ETDEWEB)
Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.
2008-11-05
Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).
Quantum Computation with Nonlinear Optics
Liu, Yang; Zhang, Wen-Hong; Zhang, Cun-Lin; Long, Gui-Lu
2008-01-01
We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the course of the computation; (3) It is resource efficient and conceptually simple.
Quantum Computation with Nonlinear Optics
Institute of Scientific and Technical Information of China (English)
LU Ke; LIU Yang; LIN Zhen-Quan; ZHANG Wen-Hong; SUN Yun-Fei; ZHANG Cun-Lin; LONG Gui-Lu
2008-01-01
We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the courseof the computation; (3) It is resource efficient and conceptually simple.
Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation
1994-02-28
Organosilicon Polymeric Nonlinear Optical Materials for Optical C: F49620-93-C-0039 Switching and Modulation 6. AUTHOR(S) Mr. Sandip K. Sengupta, Dr...D FINAL REPORT for Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation Prepared for: USAF, AFMC (AFOSR) Air Force...34Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation," contract number F49620-93-C-0039. The work has been performed by Dr
Nonlinear Optical Absorption of Organic Molecules for Applications in Optical Devices
Boni, Leonardo De; Daniel S. Correa; Mendonca, Cleber R.
2010-01-01
This chapter aimed to describe the resonant nonlinear optical properties of four important organic molecules: Chlorophyll A, Indocyanine Green, Ytterbium Bisphthalocyanine and Cytochrome C, which are materials that present interesting optical nonlinearities for applications in optical devices. It was shown that Chlorophyll A solution exhibits a RSA process for Q-switched and mode-locked laser pulses, with an intersystem-crossing time relatively fast and a triplet state cross section value twi...
Nonlinearity and hysteresis of resonant strain gauges
Gui, Chengqun; Legtenberg, Rob; Tilmans, Harrie A.C.; Fluitman, Jan H.J; Elwenspoek, Miko
1995-01-01
Nonlinearity and hysteresis effects of electrostatically activated, voltage driven resonant microbridges have been studied theoretically and experimentally. It is shown, that, in order to avoid vibration instability and hysteresis to occur, the choices of the ax. and d.c. driving voltages and of the
Nonlinearity and hysteresis of resonant strain gauges
Gui, Chengqun; Legtenberg, Rob; Tilmans, Harrie A.C.; Fluitman, Jan H.J; Elwenspoek, Miko
1998-01-01
The nonlinearity and hysteresis effects of the electrostatically activated voltage-driven resonant microbridges have been studied theoretically and experimentally. It is shown that in order to avoid vibration instability and hysteresis to occur, the choices of the ac and dc driving voltages and of t
Tavousi, Alireza; Mansouri-Birjandi, Mohammad Ali; Saffari, Mehdi
2016-09-01
Implementing of photonic sampling and quantizing analog-to-digital converters (ADCs) enable us to extract a single binary word from optical signals without need for extra electronic assisting parts. This would enormously increase the sampling and quantizing time as well as decreasing the consumed power. To this end, based on the concept of successive approximation method, a 4-bit full-optical ADC that operates using the intensity-dependent Kerr-like nonlinearity in a two dimensional photonic crystal (2DPhC) platform is proposed. The Silicon (Si) nanocrystal is chosen because of the suitable nonlinear material characteristic. An optical limiter is used for the clamping and quantization of each successive levels that represent the ADC bits. In the proposal, an energy efficient optical ADC circuit is implemented by controlling the system parameters such as ring-to-waveguide coupling coefficients, the ring's nonlinear refractive index, and the ring's length. The performance of the ADC structure is verified by the simulation using finite difference time domain (FDTD) method.
Nonlinear optical interactions in silicon waveguides
Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.
2017-03-01
The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
Coupled-resonator optical waveguides
DEFF Research Database (Denmark)
Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor
2010-01-01
Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet...
Pellat, D.; Azoulay, R.; Leroux, G.; Dugrand, L.; Raffle, Y.; Kuszelewicz, R.; Oudar, J. L.
1993-05-01
We report on a novel monolithic all-optical bistable device operating at 980 nm, based on the dispersive optical nonlinearity of strained InGaAs/GaAs quantum wells located at the antinodes of the microcavity optical field. This design maximizes the interaction with the intracavity field, and allowed the use of only twelve quantum wells of 10 nm thickness. The first observation of all-optical bistability with strained InGaAs/GaAs quantum wells is reported, with a contrast ratio of 7:1 and a threshold intensity of 1 kW/sq cm. The operating wavelength offers such key advantages as substrate transparency and compatibility with vertical cavity surface emitting lasers.
Graphene - a rather ordinary nonlinear optical material
khurgin, Jacob B
2014-01-01
An analytical expression for the nonlinear refractive index of graphene has been derived and used to obtain the performance metrics of third order nonlinear devices using graphene as a nonlinear medium. None of the metrics is found to be superior to the existing nonlinear optical materials.
Nonlinear optical crystals a complete survey
Nikogosyan, David N
2005-01-01
Nonlinear optical crystals are widely used in modern optical science and technology for frequency conversion of laser light, i.e. to generate laser radiation at any specific wavelength in visible, UV or IR spectral regions. This unrivalled reference book contains the most complete and up-to-date information on properties of nonlinear optical crystals. It includes: * Database of 63 common and novel nonlinear optical crystals * Periodically-poled and self-frequency-doubling materials * Full description of linear and nonlinear optical properties * Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information * 7 mini-reviews on novel applications, such as deep-UV light generation, terahertz-wave generation, ultrashort laser pulse compression, photonic band-gap crystals, x3 nonlinearity, etc. * More than 1500 different references with full titles It is a vital source of information for scientists and engineers dealing with modern applications of nonlinear opti...
Quantum nonlinear optics without photons
Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco
2017-08-01
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.
The quantum theory of nonlinear optics
Drummond, Peter D
2014-01-01
Playing a prominent role in communications, quantum science and laser physics, quantum nonlinear optics is an increasingly important field. This book presents a self-contained treatment of field quantization and covers topics such as the canonical formalism for fields, phase-space representations and the encompassing problem of quantization of electrodynamics in linear and nonlinear media. Starting with a summary of classical nonlinear optics, it then explains in detail the calculation techniques for quantum nonlinear optical systems and their applications, quantum and classical noise sources in optical fibers and applications of nonlinear optics to quantum information science. Supplemented by end-of-chapter exercises and detailed examples of calculation techniques in different systems, this book is a valuable resource for graduate students and researchers in nonlinear optics, condensed matter physics, quantum information and atomic physics. A solid foundation in quantum mechanics and classical electrodynamic...
Optical antennas as nanoscale resonators
Agio, Mario
2011-01-01
Recent progress in nanotechnology has enabled us to fabricate subwavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interaction, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.
Optical antennas as nanoscale resonators.
Agio, Mario
2012-02-07
Recent progress in nanotechnology has enabled us to fabricate sub-wavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review the designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interactions, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.
Nonlinear Resonance of Mechanically Excited Sessile Drops
Chang, Chun-Ti; Daniel, Susan; Steen, Paul
2013-11-01
The spectrum of frequencies and mode shapes for an inviscid drop on a planar substrate have recently been documented. For vertical excitation, zonal modes respond to the driving frequency harmonically and non-zonal modes subharmonically, consistent with the prior literature. In this study, we report observations from the regime of nonlinear response. Here, zonals can respond non-harmonically, both sub- and super-harmonic responses are reported. The principal challenge to generating and observing superharmonic resonances of higher zonal modes is a mode-mixing behavior. However, using a simple visual simulation based on the ray-tracing technique, the individual contributions to the mixed resonance behavior can be extracted. In summary, results from experiment and theory show that the zonal modes, which respond harmonically and can mix with non-zonal modes without interfering with one another in the linear regime, tend to respond sub- or superharmonically and compete with non-zonal modes in the nonlinear regime.
Nonlinear Photonics and Novel Optical Phenomena
Morandotti, Roberto
2012-01-01
Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.
Nonlinear Oscillations of Microscale Piezoelectric Resonators and Resonator Arrays
2006-06-30
linear characteristics [2-5]. These characteristics include DUffing oscillator like response during resonance excitations [6], temporal harmonics in the...model is used with a single-mode approximation to produce a forced Duffing oscillator . Nonlinear analysis is used to obtain the frequency-response...backward this procedure, the simplified model takes the form of a forced frequency sweeps, only the forward sweep data are used in Duffing oscillator , shown
Fibre-optic nonlinear optical microscopy and endoscopy.
Fu, L; Gu, M
2007-06-01
Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
Nonlinearly Coupled Superconducting Lumped Element Resonators
Collodo, Michele C.; Potočnik, Anton; Rubio Abadal, Antonio; Mondal, Mintu; Oppliger, Markus; Wallraff, Andreas
We study SQUID-mediated tunable coupling between two superconducting on-chip resonators in the microwave frequency range. In this circuit QED implementation, we employ lumped-element type resonators, which consist of Nb thin film structured into interdigitated finger shunt capacitors and meander inductors. A SQUID, functioning as flux dependent and intrinsically nonlinear inductor, is placed as a coupling element together with an interdigitated capacitor between the two resonators (cf. A. Baust et al., Phys Rev. B 91 014515 (2015)). We perform a spectroscopic measurement in a dilution refrigerator and find the linear photon hopping rate between the resonators to be widely tunable as well as suppressible for an appropriate choice of parameters, which is made possible due to the interplay of inductively and capacitively mediated coupling. Vanishing linear coupling promotes nonlinear effects ranging from onsite- to cross-Kerr interaction. A dominating cross-Kerr interaction related to this configuration is notable, as it induces a unique quantum state. In the course of analog quantum simulations, such elementary building blocks can serve as a precursor for more complex geometries and thus pave the way to a number of novel quantum phases of light
Optical wavelength conversion via optomechanical coupling in a silica resonator
Dong, Chunhua; Kuzyk, Mark C; Tian, Lin; Wang, Hailin
2012-01-01
We report the experimental demonstration of converting coherent optical fields between two different optical wavelengths by coupling two optical modes to a mechanical breathing mode in a silica resonator. The experiment is based on an itinerant approach, in which state-mapping from optical to mechanical and from mechanical to another optical state takes place simultaneously. In contrast to conventional nonlinear optical processes, optomechanical impedance matching as well as efficient optical input-output coupling, instead of phase-matching, plays a crucial role in optomechanics-based wavelength conversion.
The optical nonlinearity of gold nanoparticles prepared by bioreduction method
Balbuena Ortega, A.; Arroyo Carrasco, M. L.; Gayou, V. L.; Orduña Díaz, A.; Delgado Macuil, R.; Rojas López, Marlon
2013-11-01
Nonlinear optical and electronic properties of nanosized metal particles have drawn considerable attention because of their strong and size-dependent plasmon resonance absorption. In a metal nanoparticle system such as gold dispersed in a transparent matrix, an absorption peak due to surface plasmon resonance is usually observed in the visible spectral region. Metal nanoparticles are of special interest as nonlinear materials for optical switching and computing because of their relatively large third-order nonlinearity (χ3) and ultrafast response time. The purpose of this study was to analyze the nonlinear optical properties of biosynthesized gold nanoparticles. The samples were prepared by biosynthesis method using yeast extract as reducing agent and the nonlinear optical properties of the nanoparticles were investigated using a single beam Z-scan technique with a beam power of 20 mW and operated at wavelength of 514 nm. The reaction between metal ions and yeast extracts were monitored by UV-visible spectra of Au nanoparticles in aqueous solution with different pH (3-6). The surface plasmon peak position was shifted from 528 nm to 573 nm, according to of pH variation 4 to 6. The average particle size was calculated by the absorption peak position using the Fernig method, from 42 to 103 nm. The z-scan curves showed a negative nonlocal nonlinear refractive index with a magnitude dependent on the nanoparticle size.
Nonlinear Optical Properties and Femtosecond Laser Micromachining of Special Glasses
Almeida,Juliana M. P.; Gustavo F. B. Almeida; Boni, Leonardo De; Cleber R. Mendonça
2015-01-01
Materials specially designed for photonics have been at the vanguard of chemistry, physics and materials science, driven by the development of new technologies. One particular class of materials investigated in this context are glasses, that in principle should exhibit high third order optical nonlinearities and fast response time, whose optical properties can be tailored by compositional changes, such as, for instance, the incorporation of metallic nanoparticles to explore plasmon resonances...
Design of Organic Nonlinear Optical Materials
1990-06-01
This project deals with a new approach to designing organic nonlinear optical materials for second harmonic generation based on the use of hydrogen...patterns for even simple organic molecules. For organic nonlinear optical materials this dilemma means that even the most promising organic molecule may
Microwave-to-Optical Conversion in WGM Resonators
Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute
2008-01-01
Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.
From Ewald sphere to Ewald shell in nonlinear optics
Huang, Huang; Huang, Cheng-Ping; Zhang, Chao; Hong, Xu-Hao; Zhang, Xue-Jin; Qin, Yi-Qiang; Zhu, Yong-Yuan
2016-07-01
Ewald sphere is a simple vector scheme to depict the X-ray Bragg diffraction in a crystal. A similar method, known as the nonlinear Ewald sphere, was employed to illustrate optical frequency conversion processes. We extend the nonlinear Ewald sphere to the Ewald shell construction. With the Ewald shell, a variety of quasi-phase-matching (QPM) effects, such as the collective envelope effect associated with multiple QPM resonances, the enhanced second- harmonic generation due to multiple reciprocal vectors etc., are suggested theoretically and verified experimentally. By rotating the nonlinear photonic crystal sample, the dynamic evolution of these QPM effects has also been observed, which agreed well with the Ewald shell model.
Mukai, Y; Yamamoto, T; Kageyama, H; Tanaka, K
2016-01-01
We report on the nonlinear magnetization dynamics of a HoFeO3 crystal induced by a strong terahertz magnetic field resonantly enhanced with a split ring resonator and measured with magneto-optical Kerr effect microscopy. The terahertz magnetic field induces a large change (~40%) in the spontaneous magnetization. The frequency of the antiferromagnetic resonance decreases in proportion to the square of the magnetization change. A modified Landau-Lifshitz-Gilbert equation with a phenomenological nonlinear damping term quantitatively reproduced the nonlinear dynamics.
Advances in magnetic and optical resonance
Warren, Warren S
1997-01-01
Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.
Multipolar third-harmonic generation driven by optically-induced magnetic resonances
Smirnova, Daria A; Smirnov, Lev A; Kivshar, Yuri S
2016-01-01
We analyze the third-harmonic generation from high-index dielectric nanoparticles and discuss the basic features and multipolar nature of the parametrically generated electromagnetic fields near the Mie-type optical resonances in silicon particles. By combining both analytical and numerical methods, we study the nonlinear scattering from simple nanoparticle geometries such as spheres and disks driven by the magnetic dipole resonance. We reveal the approaches for manipulating and directing the resonantly enhanced nonlinear emission with subwavelength all-dielectric structures that can be of a particular interest for a design of nonlinear optical antennas and engineering the magnetic optical nonlinear response at nanoscale.
Nonlinear optical properties of ultrathin metal layers
DEFF Research Database (Denmark)
Lysenko, Oleg
2016-01-01
. The optical characterization of the plasmonic waveguides is performed using femtosecond and picosecond optical pulses. Two nonlinear optical effects in the strip plasmonic waveguides are experimentally observed and reported. The first effect is the nonlinear power transmission of the plasmonic mode......-order nonlinear susceptibility of the plasmonic mode in the gold strip waveguides significantly depends on the metal layer thickness and laser pulse duration. This dependence is explained in detail in terms of the free-electron temporal dynamics in gold. The third-order nonlinear susceptibility of the gold layer...... duration dependence of the third-order nonlinear susceptibility of gold is calculated in the broad range from tens of femtoseconds to tens of picoseconds using the two-temperature model of the free-electron temporal dynamics of gold, and shows the saturation of the thirdorder nonlinear susceptibility...
1992-02-13
niobate and absolute measurements of nonlinear optical coefficients of six different commonly used nonlinear optical materials. The refractometry data for...applied radiation and is now an established technology for Nd:YAG lasers. Optical parametric oscillation and amplification provide a method of generating...continuously tunable output -3- The relative advantages of nonlinear optical frequency conversion compared to other methods for the generation of near
Long wave-short wave resonance in nonlinear negative refractive index media.
Chowdhury, Aref; Tataronis, John A
2008-04-18
We show that long wave-short wave resonance can be achieved in a second-order nonlinear negative refractive index medium when the short wave lies on the negative index branch. With the medium exhibiting a second-order nonlinear susceptibility, a number of nonlinear phenomena such as solitary waves, paired solitons, and periodic wave trains are possible or enhanced through the cascaded second-order effect. Potential applications include the generation of terahertz waves from optical pulses.
Multi-bi- and tri-stability using nonlinear plasmonic Fano resonators
Amin, Muhammad
2013-09-01
A plasmonic Fano resonator embedding Kerr nonlinearity is used to achieve multi-bi- and tri-stability. Fano resonance is obtained by inducing higher-order plasmon modes on metallic surfaces via geometrical symmetry breaking. The presence of the multiple higher order plasmon modes provides the means for producing multi-bi- or tri-stability in the response of the resonator when it is loaded with a material with Kerr nonlinearity. The multi-stability in the response of the proposed resonator enables its use in three-state all optical memory and switching applications. © 2013 IEEE.
Distributed optical fiber surface plasmon resonance sensors
Institute of Scientific and Technical Information of China (English)
Zhenxin Cao; Lenan Wu; Dayong Li
2006-01-01
@@ The relationships of the resonant wavelength of optical fiber surface plasmon resonance (SPR) sensors to the modulation layer refractive index, thickness and the refractive index of the bulk medium are obtained by using theoretical calculation model of optical fiber SPR sensors under certain conditions, which indicates that resonant wavelength of the sensors is approximately linear with modulation layer thickness. Based on the linear relationship, multiple SPR sensors with different resonant wavelengths can be fabricated in a single optical fiber named as distributed optical fiber surface plasmon resonance sensors (DOFSPRSs).Experimental results are presented, showing that it is practical to fabricate more than one SPR sensors in a single optical fiber.
Indian Academy of Sciences (India)
A Ghosh; B K Goswami; R Vijaya
2010-11-01
Our experiments with an erbium-doped fibre ring laser (CW, single transverse mode and multiaxial mode) with an intracavity LiNbO3 electro-optic modulator (EOM) display the characteristic features of a nonlinear oscillator (e.g., harmonic and period-2 sub-harmonic resonances) when the EOM driver voltage is modulated periodically. Harmonic resonance leads to period-1 bistability and hysteresis. Inside the period-2 sub-harmonic resonance region, the laser exhibits Feigenbaum sequence and generalized bistability.
Nonlinear soliton matching between optical fibers
DEFF Research Database (Denmark)
Agger, Christian; Sørensen, Simon Toft; Thomsen, Carsten L.
2011-01-01
In this Letter, we propose a generic nonlinear coupling coefficient, η2 NL ¼ ηjγ=β2jfiber2=jγ=β2jfiber1, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η...
All-optical switching in optically induced nonlinear waveguide couplers
Energy Technology Data Exchange (ETDEWEB)
Diebel, Falko, E-mail: falko.diebel@uni-muenster.de; Boguslawski, Martin; Rose, Patrick; Denz, Cornelia [Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149 Münster (Germany); Leykam, Daniel; Desyatnikov, Anton S. [Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2014-06-30
We experimentally demonstrate all-optical vortex switching in nonlinear coupled waveguide arrays optically induced in photorefractive media. Our technique is based on multiplexing of nondiffracting Bessel beams to induce various types of waveguide configurations. Using double- and quadruple-well potentials, we demonstrate precise control over the coupling strength between waveguides, the linear and nonlinear dynamics and symmetry-breaking bifurcations of guided light, and a power-controlled optical vortex switch.
Development of Organic Nonlinear Optical Materials
1992-10-22
10 SOVRCE Of FUNO#NG NUM#E*S DM J .j PROGRAM PR0jECT TA5. ~ *0. I1I TITLE &Vila* So.Ivety ClaUMC400NJ Development of Organic NonLinear Optical Materials (U...0102-LF-014-6603 UNCLASSIFIED (U) AFOSR Contract: F4962040-C 0097 FINAL REPORT Development of Organic Nonlinear Optical Materials by J. Sounnk IL
Numerical study of transient nonlinear harbor resonance
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
It is generally accepted that nonlinear wave-wave interactions play an important role in harbor resonance. Nevertheless it is not clear how waves take part in those interactions. The aim of this paper is to investigate those processes for a rectangular harbor at transient phases. Long-period oscillations excited by bichromatic waves are simulated by the Boussinesq model. The simulations start from calm conditions for the purpose of studying the response process. The internal wavemaker stops working after the oscillations have reached a quasi-steady state, and it is used to simulate the damp process. In order to analyze temporary features of wave-wave interactions in different states, the wavelet-based bispectrum is employed. The influence of the short wave frequencies on long-period oscillations is investigated, and reasons are tried to be given from nonlinear triad interactions between different wave components and the interaction of short waves and the bay entrance. Finally, the response time and the damp time are estimated by a simple method.
Sudarshanam, V. S.; Claus, Richard O.
1993-03-01
A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.
Parametric Symmetry Breaking in a Nonlinear Resonator
Leuch, Anina; Papariello, Luca; Zilberberg, Oded; Degen, Christian L.; Chitra, R.; Eichler, Alexander
2016-11-01
Much of the physical world around us can be described in terms of harmonic oscillators in thermodynamic equilibrium. At the same time, the far-from-equilibrium behavior of oscillators is important in many aspects of modern physics. Here, we investigate a resonating system subject to a fundamental interplay between intrinsic nonlinearities and a combination of several driving forces. We have constructed a controllable and robust realization of such a system using a macroscopic doubly clamped string. We experimentally observe a hitherto unseen double hysteresis in both the amplitude and the phase of the resonator's response function and present a theoretical model that is in excellent agreement with the experiment. Our work unveils that the double hysteresis is a manifestation of an out-of-equilibrium symmetry breaking between parametric phase states. Such a fundamental phenomenon, in the most ubiquitous building block of nature, paves the way for the investigation of new dynamical phases of matter in parametrically driven many-body systems and motivates applications ranging from ultrasensitive force detection to low-energy computing memory units.
Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties
Institute of Scientific and Technical Information of China (English)
LONG Hua; YANG Guang; CHEN Ai-Ping; LI Yu-Hua; LU Pei-Xiang
2008-01-01
We report on the ultrafast third-order optical nonlinearity in multilayer Au/TiO2 composite films fabricated on quartz substrates by pulsed laser deposition technique. The linear optical properties of the films are determined and optical absorption peaks due to surface plasmon resonance of Au particles are observed at about 59Onm.The third-order optical nonlinearities of the films are investigated by z-scan method using a femtosecond laser(50 fs) at the wavelength of 800 nm. The sample showed fast nonlinear optical responses with nonlinear absorption coefficient and nonlinear refractive index being -3.66×10-10 m/W and -2.95×10-17 m2/W, respectively. The results also show that the nonlinear optical effects increase with the increasing Au concentration in the composite films.
Demonstration of a Chip-based Nonlinear Optical Isolator
Hua, Shiyue; Jiang, Xiaoshun; Hua, Qian; Jiang, Liang; Xiao, Min
2016-01-01
Despite fundamentally challenging in integrated (nano)photonics, achieving chip-based light nonreciprocity becomes increasingly urgent in signal processing and optical communications. Because of material incompatibilities in conventional approaches based on Faraday effects, alternative solutions have resorted to nonlinear processes to obtain one-way transmission. However, revealed dynamic reciprocity in a recent theoretical analysis has pinned down the functionalities of these nonlinear isolators. To overcome this dynamic reciprocity, we here report the first demonstration of a nonlinear optical isolator on a silicon chip enforced by phase-matched parametric amplification. Using a high-Q microtoroid resonator, we realize highly nonreciprocal transport at the 1,550 nm wavelength when waves are simultaneously launched in both forward and backward directions. Our design, compatible with current CMOS technique, yields convincing isolation performance with sufficiently low insertion loss for a wide range of input ...
Completely integrable models of nonlinear optics
Indian Academy of Sciences (India)
Andrey I Maimistov
2001-11-01
The models of the nonlinear optics in which solitons appeared are considered. These models are of paramount importance in studies of nonlinear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency and parametric interaction of three waves. At present there are a number of theories based on completely integrable systems of equations, which are, both, generations of the original known models and new ones. The modiﬁed Korteweg-de Vries equation, the nonlinear Schrödinger equation, the derivative nonlinear Schrödinger equation, Sine–Gordon equation, the reduced Maxwell–Bloch equation, Hirota equation, the principal chiral ﬁeld equations, and the equations of massive Thirring model are some soliton equations, which are usually to be found in nonlinear optics theory.
Scale-invariant nonlinear optics in gases
Heyl, C M; Miranda, M; Louisy, M; Kovacs, K; Tosa, V; Balogh, E; Varjú, K; L'Huillier, A; Couairon, A; Arnold, C L
2015-01-01
Nonlinear optical methods are becoming ubiquitous in many areas of modern photonics. They are, however, often limited to a certain range of input parameters, such as pulse energy and average power, since restrictions arise from, for example, parasitic nonlinear effects, damage problems and geometrical considerations. Here, we show that many nonlinear optics phenomena in gaseous media are scale-invariant if spatial coordinates, gas density and laser pulse energy are scaled appropriately. We develop a general scaling model for (3+1)-dimensional wave equations, demonstrating the invariant scaling of nonlinear pulse propagation in gases. Our model is numerically applied to high-order harmonic generation and filamentation as well as experimentally verified using the example of pulse post-compression via filamentation. Our results provide a simple recipe for up-or downscaling of nonlinear processes in gases with numerous applications in many areas of science.
Nonlinear interaction of two trapped-mode resonances in a bilayer "fish-scale" metamaterial
Tuz, Vladimir R; Mladyonov, Pavel L; Prosvirnin, Sergey L; Novitsky, Andrey V
2014-01-01
We report on a bistable light transmission through a bilayer "fish-scale" (meander-line) metamaterial. It is demonstrated that an all-optical switching may be achieved nearly the frequency of the high-quality-factor Fano-shaped trapped-mode resonance excitation. The nonlinear interaction of two closely spaced trapped-mode resonances in the bilayer structure composed with a Kerr-type nonlinear dielectric slab is analyzed in both frequency and time domains. It is demonstrated that these two resonances react differently on the applied intense light which leads to destination of a multistable transmission.
Few-photon coherent nonlinear optics with a single molecule
Maser, Andreas; Utikal, Tobias; Götzinger, Stephan; Sandoghdar, Vahid
2015-01-01
The pioneering experiments of linear spectroscopy were performed using flames in the 1800s, but nonlinear optical measurements had to wait until lasers became available in the twentieth century. Because the nonlinear cross section of materials is very small, usually macroscopic bulk samples and pulsed lasers are used. Numerous efforts have explored coherent nonlinear signal generation from individual nanoparticles or small atomic ensembles with millions of atoms. Experiments on a single semiconductor quantum dot have also been reported, albeit with a very small yield. Here, we report on coherent nonlinear spectroscopy of a single molecule under continuous-wave single-pass illumination, where efficient photon-molecule coupling in a tight focus allows switching of a laser beam by less than a handful of pump photons nearly resonant with the sharp molecular transition. Aside from their fundamental importance, our results emphasize the potential of organic molecules for applications such as quantum information pro...
Investigation of Optical Fibers for Nonlinear Optics.
1984-04-17
Northwestern University, 1970. Experience Dr. Harrington has 13 years of research experi- ence in the area of optical properties of solids . Since joining...dynamics, and optical properties of solids . 34 34I ANTONIO C. PASTOR, Member of the Technical Staff, Optical Physics Department, Hughes Research
Nonlinear Integrated Optical Waveguides in Chalcogenide Glasses
Institute of Scientific and Technical Information of China (English)
Yinlan; Ruan; Barry; Luther-Davies; Weitang; Li; Andrei; Rode; Marek; Samoc
2003-01-01
This paper reports on the study and measurement of the third order optical nonlinearity in bulk sulfide-based chalcogenide glasses; The fabrication process of the ultrafast laser deposited As-S-(Se)-based chalcogenide films and optical waveguides using two techniques: wet chemistry etching and plasma etching.
Optical Microspherical Resonators for Biomedical Sensing
Directory of Open Access Journals (Sweden)
Giancarlo C. Righini
2011-01-01
Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.
Optical sum-frequency generation in whispering gallery mode resonators
Strekalov, Dmitry V; Huang, Yu-Ping; Kumar, Prem
2013-01-01
We demonstrate sum-frequency generation in a nonlinear whispering gallery mode resonator between a telecom wavelength and the Rb D2 line, achieved through natural phase matching. Due to the strong optical field confinement and ultra high Q of the cavity, we achieve a 1000-fold enhancement in the conversion efficiency compared to existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory in the spherical geometry employed. The experimental and theoretical results point to a new platform to manipulate the color and quantum states of light waves toward applications such as atomic memory based quantum networking and logic operations with optical signals.
Towards chains of tunable and nonlinear superconducting microwave resonators
Energy Technology Data Exchange (ETDEWEB)
Fischer, Michael; Wulschner, Friedrich; Schaumburger, Udo; Haeberlein, Max; Fedorov, Kirill; Goetz, Jan; Xie, Edwar [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Schwarz, Manuel; Eder, Peter; Menzel, Edwin; Zhong, Ling; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)
2015-07-01
We present an experimental feasibility study of chains of tunable and nonlinear superconducting microwave resonators within the realm of circuit QED. We describe the fabrication and experimental characterization of the components required to realize nonlinear resonators with tunable anharmonicity, capacitively coupled resonator chains and on-chip parallel plate capacitors. We discuss possible error sources in the fabrication and characterization processes. Furthermore, simulations based on existing theories are performed to identify accessible parameter ranges.
Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae
Maksymov, Ivan S
2015-01-01
Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...
Silicon Photonics Research in Hong Kong: Microresonator Devices and Optical Nonlinearities
Poon, Andrew W.; Zhou, Linjie; Xu, Fang; Li, Chao; Chen, Hui; Liang, Tak-Keung; Liu, Yang; Tsang, Hon K.
In this review paper we showcase recent activities on silicon photonics science and technology research in Hong Kong regarding two important topical areas-microresonator devices and optical nonlinearities. Our work on silicon microresonator filters, switches and modulators have shown promise for the nascent development of on-chip optoelectronic signal processing systems, while our studies on optical nonlinearities have contributed to basic understanding of silicon-based optically-pumped light sources and helium-implanted detectors. Here, we review our various passive and electro-optic active microresonator devices including (i) cascaded microring resonator cross-connect filters, (ii) NRZ-to-PRZ data format converters using a microring resonator notch filter, (iii) GHz-speed carrier-injection-based microring resonator modulators and 0.5-GHz-speed carrier-injection-based microdisk resonator modulators, and (iv) electrically reconfigurable microring resonator add-drop filters and electro-optic logic switches using interferometric resonance control. On the nonlinear waveguide front, we review the main nonlinear optical effects in silicon, and show that even at fairly modest average powers two-photon absorption and the accompanied free-carrier linear absorption could lead to optical limiting and a dramatic reduction in the effective lengths of nonlinear devices.
Double-dark-resonance-enhanced Kerr nonlinearity in a single layer of graphene nanostructure
Solookinejad, Gh.; Panahi, M.; Ahmadi Sangachin, E.; Hossein Asadpour, Seyyed
2016-08-01
In this paper, a novel scheme is proposed for the giant enhanced Kerr nonlinearity in a single layer of graphene nanostructure based on quantum optics and nonlinear optical sciences. The linear and the nonlinear susceptibility of the monolayer graphene system are presented in details by using the density matrix method and perturbation theory. After deriving the equations of motion in the steady-state regime, we analytically solve the linear and nonlinear susceptibility of the system. Our numerical results show that the giant enhanced Kerr nonlinearity can be obtained in the double-dark-resonance condition with zero linear and nonlinear absorption. Our results may have potential applications in quantum information science in infrared and terahertz regimes.
Forbidden second order optical nonlinearity of graphene
Cheng, J L; Sipe, J E
2016-01-01
We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllablity of these responses by tuning the chemical potential, where the interband optical transitions play a dominant role.
Nonlinear microstructured polymer optical fibres
DEFF Research Database (Denmark)
Frosz, Michael Henoch
. The combination of a small core size and zero-dispersion wavelength at the operating wavelength of widely available femtosecond Ti:sapphire lasers led to an extensive research in supercontinuum generation and other nonlinear effects in PCFs. It is crucial for the efficiency of many nonlinear mechanisms...... that the pump laser wavelength is close to the zero-dispersion wavelength and that the core size is small. Recently, work in fabricating PCFs from materials other than silica has intensified. One of the advantages of using alternative materials can be a higher inherent material nonlinearity, which...... to accurately obtain a small core size while maintaining small structural variations during fibre drawing. This talk will give a presentation of how the mPOFs are fabricated and the route to obtaining nonlinear effects in them....
Mesoscale Engineering of Nanocomposite Nonlinear Optical Materials
Energy Technology Data Exchange (ETDEWEB)
Afonso, C.N.; Feldman, L.C.; Gonella, F.; Haglund, R.F.; Luepke, G.; Magruder, R.H.; Mazzoldi, P.; Osborne, D.H.; Solis, J.; Zuhr, R.A.
1999-11-01
Complex nonlinear optical materials comprising elemental, compound or alloy quantum dots embedded in appropriate dielectric or semiconducting hosts may be suitable for deployment in photonic devices. Ion implantation, ion exchange followed by ion implantation, and pulsed laser deposition have ail been used to synthesize these materials. However, the correlation between the parameters of energetic-beam synthesis and the nonlinear optical properties is still very rudimentary when one starts to ask what is happening at nanoscale dimensions. Systems integration of complex nonlinear optical materials requires that the mesoscale materials science be well understood within the context of device structures. We discuss the effects of beam energy and energy density on quantum-dot size and spatial distribution, thermal conductivity, quantum-dot composition, crystallinity and defects - and, in turn, on the third-order optical susceptibility of the composite material. Examples from recent work in our laboratories are used to illustrate these effects.
Nonlinear dynamics in atom optics
Energy Technology Data Exchange (ETDEWEB)
Chen Wenyu; Dyrting, S.; Milburn, G.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Physics
1996-12-31
In this paper theoretical work on classical and quantum nonlinear dynamics of cold atoms is reported. The basic concepts in nonlinear dynamics are reviewed and then applied to the motion of atoms in time-dependent standing waves and to the atomic bouncer. The quantum dynamics for the cases of regular and chaotic classical dynamics is described. The effect of spontaneous emission and external noise is also discussed. 104 refs., 1 tab., 21 figs.
Nonlinear optical properties of metal nanoparticle composites for optical applications
Energy Technology Data Exchange (ETDEWEB)
Takeda, Y. E-mail: takeda.yoshihiko@nims.go.jp; Kishimoto, N
2003-05-01
Optical absorption and nonlinear optical response were investigated for nanoparticle composites in amorphous SiO{sub 2} fabricated by negative Ta ion implantation at 60 keV. X-ray photoelectron spectroscopy was used to identify Ta and the oxide formation in the matrix. Optical absorption clearly indicated a surface plasmon peak at 2.2 eV and the peak resulted from formation of nanoparticles embedded in the matrix. The measured absorption was compared with calculated ones, evaluated by Maxwell-Garnett theory. Nonlinear absorption was measured with a pump-probe method using a femtosecond laser system. The pumping laser transiently bleached the surface plasmon band and lead to the nonlinearity. The transient response recovered in several picoseconds and behaved in terms of electron dynamics in metallic nanoparticles. The Ta nanoparticle composite is one of the promising candidates for nonlinear optical materials with good thermal stability.
Third-order optical nonlinearities of PVP/Pd nanohybrids
Papagiannouli, I.; Potamianos, D.; Krasia-Christoforou, T.; Couris, S.
2017-10-01
Pd nanoparticles stabilized by polyvinylpyrrolidone were synthesized following mild reduction of palladium ion complexes. Their morphology and optical properties were characterized using Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis absorption spectroscopy to confirm the existence of monodispersed, low-dimensional single nanoparticles. Furthermore, their third-order nonlinear optical properties were investigated by means of the Z-scan technique, using 35 ps and 4 ns laser pulses, both in the visible (532 nm) and in the infrared (1064 nm). These results denote that the surface plasmon resonance is not significantly contributing to the nonlinear optical response of Pd nanoparticles. In contrast, a two photon absorption process was found to contribute to the observed response. The present results are discussed and compared with previous literature findings.
Linear and nonlinear optical response of spherical anisotropic semiconductor microcrystallites
Ramaniah, Lavanya M.; Nair, Selvakumar V.; Rustagi, Kailash C.
1989-12-01
We present a phenomenological theory of the linear and nonlinear optical properties associated with the Fröhlich resonances of an optically anisotropic, spherical semiconductor crystallite. Using the Maxwell-Garnett approach, we calculate the effective dielectric function of a composite medium containing such crystallites. To study the effect of anisotropy, we take CdS and CdSe quantum dots as examples for the inclusions, and use a two-resonance model for the dielectric function. Even for randomly oriented inclusions, the Fröhlich resonances split as a result of anisotropic local-field corrections. At higher laser intensities, absorption saturation leads to bistability or tristability in the optical response of individual crystallites, while the response of the composite medium with randomly oriented inclusions shows multistability, with many intermediate branches. The nonlinear response of such a composite medium also exhibits a new kind of orientation-induced broadening of resonances. We also find that tristability is possible in another kind of inhomogeneous material, viz., a composite medium containing two types of isotropic spherical crystallites.
Optical Kerr Frequency Comb Generation in Overmoded Resonators
Matsko, A B; Liang, W; Ilchenko, V S; Seidel, D; Maleki, L
2012-01-01
We show that scattering-based interaction among nearly degenerate optical modes is the key factor in low threshold generation of Kerr frequency combs in nonlinear optical resonators possessing small group velocity dispersion (GVD). The mode interaction is capable of producing drastic change in the local GVD, resulting in either a significant reduction or increase of the oscillation threshold. It is also responsible for the majority of observed combs in resonators characterized with large normal GVD. We present results of our numerical simulations as well as supporting experimental data.
Optical rogue waves and soliton turbulence in nonlinear fibre optics
DEFF Research Database (Denmark)
Genty, G.; Dudley, J. M.; de Sterke, C. M.
2009-01-01
We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....
Capture into resonance and phase space dynamics in optical centrifuge
Armon, Tsafrir
2016-01-01
The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1,P2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory.
Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals.
Lepeshkin, Nick N; Schweinsberg, Aaron; Piredda, Giovanni; Bennink, Ryan S; Boyd, Robert W
2004-09-17
We describe a new type of artificial nonlinear optical material composed of a one-dimensional metal-dielectric photonic crystal. Because of the resonant nature of multiple Bragg reflections, the transmission within the transmission band can be quite large, even though the transmission through the same total thickness of bulk metal would be very small. This procedure allows light to penetrate into the highly nonlinear metallic layers, leading to a large nonlinear optical response. We present experimental results for a Cu/SiO(2) crystal which displays a strongly enhanced nonlinear optical response (up to 12X) in transmission.
Reconfigurable optical routers based on Coupled Resonator Induced Transparency resonances.
Mancinelli, M; Bettotti, P; Fedeli, J M; Pavesi, L
2012-10-08
The interferometric coupling of pairs of resonators in a resonator sequence generates coupled ring induced transparency (CRIT) resonances. These have quality factors an order of magnitude greater than those of single resonators. We show that it is possible to engineer CRIT resonances in tapered SCISSOR (Side Coupled Integrated Space Sequence of Resonator) to realize fast and efficient reconfigurable optical switches and routers handling several channels while keeping single channel addressing capabilities. Tapered SCISSORs are fabricated in silicon-on-insulator technology. Furthermore, tapered SCISSORs show multiple-channel switching behavior that can be exploited in DWDM applications.
Castro-Lopez, Marta; Brinks, Daan; Sapienza, Riccardo; van Hulst, Niek F
2011-11-09
Resonant optical antennas are ideal for nanoscale nonlinear optical interactions due to their inherent strong local field enhancement. Indeed second- and third-order nonlinear response of gold nanoparticles has been reported. Here we compare the on- and off-resonance properties of aluminum, silver, and gold nanoantennas, by measuring two-photon photoluminescence. Remarkably, aluminum shows 2 orders of magnitude higher luminescence efficiency than silver or gold. Moreover, in striking contrast to gold, the aluminum emission largely preserves the linear incident polarization. Finally, we show the systematic resonance control of two-photon excitation and luminescence polarization by tuning the antenna width and length independently. Our findings point to aluminum as a promising metal for nonlinear plasmonics.
Loop coupled resonator optical waveguides.
Song, Junfeng; Luo, Lian-Wee; Luo, Xianshu; Zhou, Haifeng; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Lo, Guo-Qiang
2014-10-06
We propose a novel coupled resonator optical waveguide (CROW) structure that is made up of a waveguide loop. We theoretically investigate the forbidden band and conduction band conditions in an infinite periodic lattice. We also discuss the reflection- and transmission- spectra, group delay in finite periodic structures. Light has a larger group delay at the band edge in a periodic structure. The flat band pass filter and flat-top group delay can be realized in a non-periodic structure. Scattering matrix method is used to calculate the effects of waveguide loss on the optical characteristics of these structures. We also introduce a tunable coupling loop waveguide to compensate for the fabrication variations since the coupling coefficient of the directional coupler in the loop waveguide is a critical factor in determining the characteristics of a loop CROW. The loop CROW structure is suitable for a wide range of applications such as band pass filters, high Q microcavity, and optical buffers and so on.
Third-order optical nonlinearities of Cu and Tb nanoparticles in SrTiO{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Cetin, A.; Kibar, R. [Department of Physics, Faculty of Arts and Sciences Celal Bayar University, 45040 Manisa Turkey (Turkey); Hatipoglu, M. [Dokuz Eyluel University, IMYO, Izmir Multidisciplinary Vocational School, Gemmology and Jewelry Program, 35140 Buca-Izmir Turkey (Turkey); Karabulut, Y. [Department of Physics, Faculty of Arts and Sciences Celal Bayar University, 45040 Manisa Turkey (Turkey); Can, N., E-mail: cannurdogan@yahoo.co [Department of Physics, Faculty of Arts and Sciences Celal Bayar University, 45040 Manisa Turkey (Turkey)
2010-05-01
Some results of optical and nonlinear-optical properties of Cu and Tb nanoparticles implanted in SrTiO{sub 3} (STO) crystal are presented. The non-resonant third-order optical nonlinearities have been investigated by degenerate four wave mixing (DFWM), pump-probe and Z-scan techniques using femtosecond laser pulses.
Nonlinear optical model for strip plasmonic waveguides
DEFF Research Database (Denmark)
Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei
2016-01-01
This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016......)]. The first effect is the nonlinear power saturation of the plasmonic mode, and the second effect is the spectral broadening of the plasmonic mode. Both nonlinear plasmonic effects can be used for practical applications and their appropriate model will be important for further developments in communication...
Nonlinear spectroscopy of superconducting anharmonic resonators
DiVincenzo, David P
2011-01-01
We formulate a model for the steady state response of a nonlinear quantum oscillator structure, such as those used in a variety of superconducting qubit experiments, when excited by a steady, but not necessarily small, ac tone. We show that this model can be derived directly from a circuit description of some recent qubit experiments in which the state of the qubit is read out directly, without a SQUID magnetometer. The excitation profile has a rich structure depending on the detuning of the tone from the small-signal resonant frequency, on the degree of damping, and on the excitation amplitude. We explore two regions in detail: First, at high damping there is a trough in the excitation response as a function of detuning, near where the classical Duffing bifurcation occurs. This trough has been understood as a classical interference between two metastable responses with opposite phase. We use Wigner function studies to show that while this picture is roughly correct, there are also more quantum mechanical asp...
Tailoring the nonlinear response of MEMS resonators using shape optimization
DEFF Research Database (Denmark)
Li, Lily L.; Polunin, Pavel M.; Dou, Suguang
2017-01-01
We demonstrate systematic control of mechanical nonlinearities in micro-electromechanical (MEMS) resonators using shape optimization methods. This approach generates beams with non-uniform profiles, which have nonlinearities and frequencies that differ from uniform beams. A set of bridge-type mic......We demonstrate systematic control of mechanical nonlinearities in micro-electromechanical (MEMS) resonators using shape optimization methods. This approach generates beams with non-uniform profiles, which have nonlinearities and frequencies that differ from uniform beams. A set of bridge...
Ablation and optical third-order nonlinearities in Ag nanoparticles
Directory of Open Access Journals (Sweden)
Carlos Torres-Torres
2010-11-01
Full Text Available Carlos Torres-Torres1, Néstor Peréa-López2, Jorge Alejandro Reyes-Esqueda3, Luis Rodríguez-Fernández3, Alejandro Crespo-Sosa3, Juan Carlos Cheang-Wong3, Alicia Oliver31Section of Graduate Studies and Research, School of Mechanical and Electrical Engineering, National Polytechnic Institute, Zacatenco, Distrito Federal, Mexico; 2Laboratory for Nanoscience and Nanotechnology Research and Advanced Materials Department, IPICYT, Camino a la Presa San Jose, San Luis Potosi, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000, MéxicoAbstract: The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but nonlinearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser
Three-Wave Resonant Interactions in Self-Defocusing Optical Media
Institute of Scientific and Technical Information of China (English)
崔维娜; 黄国翔; 孙春柳
2003-01-01
A three-wave resonant interaction for nonlinear excitations created from a continuous-wave background is shown to be possible in an isotropic optical medium with a self-defocusing cubic nonlinearity. Under suitable phasematching conditions the nonlinear envelope equations for the resonant interaction are derived by using a method of multiple-scales. Some explicit three-wave solitary wave and lump solutions are discussed.
Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator
Del Bino, Leonardo; Silver, Jonathan M.; Stebbings, Sarah L.; Del'Haye, Pascal
2017-01-01
Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors. PMID:28220865
Single-photon all-optical switching using coupled microring resonators
Indian Academy of Sciences (India)
Wenge Yang; Amitabh Joshi; Min Xiao
2007-08-01
We study the nonlinear phase response of a microring resonator coupled to a bus waveguide and the use of this nonlinear phase shift to store information in the microring resonator and enhance the switching characteristics of a Mach–Zehnder interferometer (MZI). By introducing coupling between adjacent microring resonators, the switching characteristics of the MZI can be exponentially enhanced as a function of the number of microring resonators, when compared to the linear enhancement for uncoupled resonators. With only a few moderate-finesse microring resonators, the switching power can be reduced to attowatt level, allowing for photonic switching devices that operate at single-photon level in ordinary optical waveguides.
Micro--structured crystalline resonators for optical frequency comb generation
Grudinin, Ivan S
2014-01-01
Optical frequency combs have recently been demonstrated in micro--resonators through nonlinear Kerr processes. Investigations in the past few years provided better understanding of micro--combs and showed that spectral span and mode locking are governed by cavity spectrum and dispersion. While various cavities provide unique advantages, dispersion engineering has been reported only for planar waveguides. In this Letter, we report a resonator design that combines dispersion control, mode crossing free spectrum, and ultra--high quality factor. We experimentally show that as the dispersion of a MgF2 resonator is flattened, the comb span increases reaching 700 nm with as low as 60 mW pump power at 1560 nm wavelength, corresponding to nearly 2000 lines separated by 46 GHz. The new resonator design may enable efficient low repetition rate coherent octave spanning frequency combs without the need for external broadening, ideal for applications in optical frequency synthesis, metrology, spectroscopy, and communicatio...
Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing
Zhang, Yu; Wen, Fangfang; Zhen, Yu-Rong; Nordlander, Peter; Halas, Naomi J.
2013-01-01
Plasmonic nanoclusters, an ordered assembly of coupled metallic nanoparticles, support unique spectral features known as Fano resonances due to the coupling between their subradiant and superradiant plasmon modes. Within the Fano resonance, absorption is significantly enhanced, giving rise to highly localized, intense near fields with the potential to enhance nonlinear optical processes. Here, we report a structure supporting the coherent oscillation of two distinct Fano resonances within an individual plasmonic nanocluster. We show how this coherence enhances the optical four-wave mixing process in comparison with other double-resonant plasmonic clusters that lack this property. A model that explains the observed four-wave mixing features is proposed, which is generally applicable to any third-order process in plasmonic nanostructures. With a larger effective susceptibility χ(3) relative to existing nonlinear optical materials, this coherent double-resonant nanocluster offers a strategy for designing high-performance third-order nonlinear optical media. PMID:23690571
Rotational Doppler effect in nonlinear optics
Li, Guixin; Zentgraf, Thomas; Zhang, Shuang
2016-08-01
The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.
Iorsh, Ivan; Alodjants, Alexander; Shelykh, Ivan A
2016-05-30
We studied optical response of microcavity non-equilibrium exciton-polariton Bose-Einstein condensate with saturable nonlinearity under simultaneous resonant and non-resonant pumping. We demonstrated the emergence of multistabile behavior due to the saturation of the excitonic absorption. Stable periodic Rabi-type oscillations of the excitonic and photonic condensate components in the regime of the stationary pump and their transition to the chaotic dynamics through the cascade of Hopf bifurcations by tuning of the electrical pump are revealed.
Iorsh, Ivan; Shelykh, Ivan
2016-01-01
We studied optical response of microcavity non-equilibrium exciton-polariton Bose-Einstein condensate with saturable nonlinearity under simultaneous resonant and non-resonant pumping. We demonstrated the emergence of multistabile behavior due to the satutration of the excitonic absorbtion. Stable periodic Rabi- type oscillations of the excitonic and photonic condensate components in the regime of the stationary pump and their transition to the chaotic dynamics through the cascade of Hopf bifurcations by tuning of the electrical pump are revealed.
Saturating optical resonances in quantum dots
Nair, Selvakumar V.; Rustagi, K. C.
Optical bistability in quantum dots, recently proposed by Chemla and Miller, is studied in a two-resonance model. We show that for such classical electromagnetic resonances the applicability of a two-resonance model is far more restrictive than for those in atoms.
Tunable nanowire nonlinear optical probe
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Yuri; Pauzauskie, Peter J.; Radenovic, Aleksandra; Onorato, Robert M.; Saykally, Richard J.; Liphardt, Jan; Yang, Peidong
2008-02-18
One crucial challenge for subwavelength optics has been thedevelopment of a tunable source of coherent laser radiation for use inthe physical, information, and biological sciences that is stable at roomtemperature and physiological conditions. Current advanced near-fieldimaging techniques using fiber-optic scattering probes1,2 have alreadyachieved spatial resolution down to the 20-nm range. Recently reportedfar-field approaches for optical microscopy, including stimulatedemission depletion (STED)3, structured illumination4, and photoactivatedlocalization microscopy (PALM)5, have also enabled impressive,theoretically-unlimited spatial resolution of fluorescent biomolecularcomplexes. Previous work with laser tweezers6-8 has suggested the promiseof using optical traps to create novel spatial probes and sensors.Inorganic nanowires have diameters substantially below the wavelength ofvisible light and have unique electronic and optical properties9,10 thatmake them prime candidates for subwavelength laser and imagingtechnology. Here we report the development of an electrode-free,continuously-tunable coherent visible light source compatible withphysiological environments, from individual potassium niobate (KNbO3)nanowires. These wires exhibit efficient second harmonic generation(SHG), and act as frequency converters, allowing the local synthesis of awide range of colors via sum and difference frequency generation (SFG,DFG). We use this tunable nanometric light source to implement a novelform of subwavelength microscopy, in which an infrared (IR) laser is usedto optically trap and scan a nanowire over a sample, suggesting a widerange of potential applications in physics, chemistry, materials science,and biology.
Resonant Meta-atoms with Nonlinearities on Demand
Filonov, Dmitry; Kozlov, Vitali; Malomed, Boris A; Ginzburg, Pavel
2016-01-01
Nonlinear light-matter interactions and their applications are constrained by properties of available materials. The use of metamaterials opens the way to achieve precise control over electromagnetic properties at a microscopic level, providing new tools for experimental studies of complex nonlinear phenomena in photonics. Here a doubly resonant nonlinear meta-atom is proposed, analyzed and characterized in the GHz spectral range. The underlying structure is composed of a pair of split rings, resonant at both fundamental and nonlinear frequencies. The rings share a varactor diode, which serves as a microscopic source of nonlinearity. Flexible control over the coupling and near- and far-field patterns are reported, favoring the doubly resonant structure over other realizations. Relative efficiencies of the second and third harmonics, generated by the diode, are tailored by dint of the double-ring geometry, providing a guideline for selecting one frequency against another, using the design of the auxiliary stru...
Nonlinear plasmonic amplification via dissipative soliton-plasmon resonances
Ferrando, Albert
2017-01-01
In this contribution we introduce a strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasiparticle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a mechanism of quasiresonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling, and gain give rise to a scenario for the excitation of long-range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.
Towards multimodal nonlinear optical tomography - experimental methodology
Vogler, N.; Medyukhina, A.; Latka, I.; Kemper, S.; Böhm, M.; Dietzek, B.; Popp, J.
2011-08-01
All-optical microspectroscopic and tomographic tools reveal great potential for clinical dermatologic diagnostics, i.e., investigation of human skin and skin diseases. While optical-coherence tomography has been complemented by two-photon fluorescence tomography and second-harmonic generation tomography, a joint study of various nonlinear optical microspectroscopies, i.e., application of the recently developed multimodal imaging approach, to sizable human-tissue samples has not been evaluated up to now. Here, we present such multimodal approach combining different nonlinear optical contrast mechanisms for imaging, namely two-photon excited fluorescence (TPF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) into a joint microscopic experiment. We show the potential of imaging large skin areas and discuss the information obtained in a case study comparing normal skin and keloid tissue.
Quantum nonlinear optics: nonlinear optics meets the quantum world (Conference Presentation)
Boyd, Robert W.
2016-02-01
This presentation first reviews the historical development of the field of nonlinear optics, starting from its inception in 1961. It then reviews some of its more recent developments, including especially how nonlinear optics has become a crucial tool for the developing field of quantum technologies. Fundamental quantum processes enabled by nonlinear optics, such as the creation of squeezed and entangled light states, are reviewed. We then illustrate these concepts by means of specific applications, such as the development of secure communication systems based on the quantum states of light.
Mohan, Sabitha; Lange, Jens; Graener, Heinrich; Seifert, Gerhard
2012-12-17
The nonlinear optical properties of nanocomposites consisting of non-spherical silver nanoparticles in glass matrix have been studied using the femtosecond Z-scan technique. The spheroidal nanoparticles were uniformly oriented along a common direction. By polarization sensitive studies, longitudinal and transverse plasmon resonances can be addressed separately. A sign reversal in optical nonlinearity from negative to positive is observed while switching the light interaction from near to non-resonant regime, which can be done by simply rotating the light polarization by 90°. Studying samples with different aspect ratio, we obtained the dispersion of third-order nonlinearity in the near-resonant regime, showing an enhancement of the nonlinear processes by more than two orders of magnitude due to the electric field enhancement at the surface plasmon resonance.
Harmonic nanoparticles: noncentrosymmetric metal oxides for nonlinear optics
Rogov, Andrii; Mugnier, Yannick; Bonacina, Luigi
2015-03-01
The combination of nonlinear optics and nanotechnology is an extremely rich scientific domain yet widely unexplored. We present here a review of recent optical investigations on noncentrosymmetric oxide nanoparticles with a large {{χ }(2)} response, often referred to as harmonic nanoparticles (HNPs). HNPs feature a series of properties which distinguish them from other photonics nanoprobes (quantum dots, up-conversion nanoparticles, noble metal particles). HNPs emission is inherently nonlinear and based on the efficient generation of harmonics as opposed to fluorescence or surface plasmon scattering. In addition, the fully coherent signal emitted by HNPs together with their polarization sensitive response and absence of resonant interaction make them appealing for several applications ranging from multi-photon (infrared) microscopy and holography, to cell tracking and sensing.
Nonlinear Optical Parameters of Magnetoactive Semiconductor-Plasmas
Singh, M.; Joseph, D.; Duhan, S.
The nonlinear optical parameters (absorption coefficient and refractive index) of semiconductor-plasmas subjected to a transverse magnetic field have been investigated analytically. By employing the coupled-mode scheme, an expression of third-order optical susceptibility and resultant nonlinear absorption and refractive index of the medium are obtained. The analysis has been applied to both cases, viz., centrosymmetric (β = 0) and noncentrosymmetric (β ≠ 0) in the presence of magnetic field. The numerical estimates are made for InSb crystal at liquid nitrogen temperature duly irradiated by a 10-nanosecond pulsed 10.6 μm CO2 laser. The influence of doping concentration and magnetic field on both the nonlinear absorption and refractive index has been explored, and the results are found to be well in agreement with theory and experiment. Analysis further establishes that absorption coefficient and refractive index can be controlled with precision in semiconductors by the proper selection of doping concentration and an external magnetic field, and hence these media may be used for fabrication of fast cubic nonlinear optical devices under off-resonant transition regime.
Deterministic quantum nonlinear optics with single atoms and virtual photons
Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco
2017-06-01
We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.
Nonlinear Fano Profiles in the Optical Second-Harmonic Generation from Silver Nanoparticles
Butet, J; Russier-Antoine, I; Bertorelle, F; Mosset, A; Lascoux, N; Jonin, C; Benichou, E; Brevet, P -F
2012-01-01
The resonance effects on the optical second harmonic generation from 140 nm silver nanoparticles is studied experimentally by hyper-Rayleigh scattering and numerically by finite element method calculations. We find that the interferences between the broad dipolar and narrow octupolar surface plasmon resonances leads to nonlinear Fano profiles that can be externally controlled by the incident polarization angle. These profiles are responsible for the nonlinear plasmon-induced transparency in the second harmonic generation.
Recent Issues on Nonlinear Effects in Optical Fibers
Institute of Scientific and Technical Information of China (English)
Takashi; Inoue; Osamu; Aso; Shu; Namiki
2003-01-01
This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and their applications to nonlinear signal processing.
Villanueva, Guillermo E; Jakubinek, Michael B; Simard, Benoit; Oton, Claudio J; Matres, Joaquín; Shao, Li-Yang; Pérez-Millán, Pere; Albert, Jacques
2011-06-01
Single-wall carbon nanotube deposition on the cladding of optical fibers has been carried out to fabricate an all-fiber nonlinear device. Two different nanotube deposition techniques were studied. The first consisted of repeatedly immersing the optical fiber into a nanotube supension, increasing the thickness of the coating in each step. The second deposition involved wrapping a thin film of nanotubes around the optical fiber. For both cases, interaction of transmitted light through the fiber core with the external coating was assisted by the cladding mode resonances of a tilted fiber Bragg grating. Ultrafast nonlinear effects of the nanotube-coated fiber were measured by means of a pump-probe pulses experiment. © 2011 Optical Society of America
Nonlinear microstructured polymer optical fibres
DEFF Research Database (Denmark)
Frosz, Michael Henoch
is potentially the case for microstructured polymer optical fibres (mPOFs). Another advantage is that polymer materials have a higher biocompatibility than silica, meaning that it is easier to bond certain types of biosensor materials to a polymer surface than to silica. As with silica PCFs, it is difficult...
Localized Turing patterns in nonlinear optical cavities
Kozyreff, G.
2012-05-01
The subcritical Turing instability is studied in two classes of models for laser-driven nonlinear optical cavities. In the first class of models, the nonlinearity is purely absorptive, with arbitrary intensity-dependent losses. In the second class, the refractive index is real and is an arbitrary function of the intracavity intensity. Through a weakly nonlinear analysis, a Ginzburg-Landau equation with quintic nonlinearity is derived. Thus, the Maxwell curve, which marks the existence of localized patterns in parameter space, is determined. In the particular case of the Lugiato-Lefever model, the analysis is continued to seventh order, yielding a refined formula for the Maxwell curve and the theoretical curve is compared with recent numerical simulation by Gomila et al. [D. Gomila, A. Scroggie, W. Firth, Bifurcation structure of dissipative solitons, Physica D 227 (2007) 70-77.
Infiltrated microstructured fibers as tunable and nonlinear optical devices
DEFF Research Database (Denmark)
Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.;
We study the light guiding properties of microstructured optical fibers infiltrated with nonlinear liquids and demonstrate their applicability for spatial beam control in novel type tunable and nonlinear optical devices....
Laser and nonlinear optical materials: SPIE volume 681
Energy Technology Data Exchange (ETDEWEB)
De Shazer, L.G.
1987-01-01
This book contains papers arranged under the following session headings: Nonlinear optical crystals; Laser host crystals; Electro-optic and magneto-optic materials; and Characterization of optical materials.
Nonlinear compression of optical solitons
Indian Academy of Sciences (India)
M N Vinoj; V C Kuriakose
2001-11-01
In this paper, we consider nonlinear Schrödinger (NLS) equations, both in the anomalous and normal dispersive regimes, which govern the propagation of a single ﬁeld in a ﬁber medium with phase modulation and ﬁbre gain (or loss). The integrability conditions are arrived from linear eigen value problem. The variable transformations which connect the integrable form of modiﬁed NLS equations are presented. We succeed in Hirota bilinearzing the equations and on solving, exact bright and dark soliton solutions are obtained. From the results, we show that the soliton is alive, i.e. pulse area can be conserved by the inclusion of gain (or loss) and phase modulation effects.
Yashkir, O. V.; Yashkir, Yu N.
1987-11-01
An investigation is made of nonlinear optical interaction of light propagating in a planar waveguide with surface polaritons. Reduced wave equations for the amplitudes of the waveguide modes and surface polaritons are used to study the characteristics of generation of surface polaritons of difference frequency, parametric frequency up-conversion of the polaritons, and stimulated Raman scattering by the polaritons. An analysis is made of the characteristic properties of the investigated nonlinear optical processes.
Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator
Del Bino, Leonardo; Stebbings, Sarah L; Del'Haye, Pascal
2016-01-01
Light is generally expected to travel through isotropic media independent of its direction. This makes it challenging to develop non-reciprocal optical elements like optical diodes or circulators, which currently rely on magneto-optical effects and birefringent materials. Here we present measurements of non-reciprocal transmission and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) light waves to circulate in the resonator. Equivalently, the symmetry breaking can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. This effect is expected to take place in any dielectric ring-resonator and might constitute one of the m...
All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator
Perron, David; Wu, Marcelo; Horvath, Cameron; Bachman, Daniel; van, Vien
2011-07-01
We experimentally investigated thermal nonlinear effects in a hybrid Au/SiO2/SU-8 plasmonic microring resonator for nonlinear switching. Large ohmic loss in the metal layer gave rise to a high rate of light-to-heat conversion in the plasmonic waveguide, causing an intensity-dependent thermo-optic shift in the microring resonance. We obtained 30 times larger resonance shift in the plasmonic microring than in a similar SU-8 dielectric microring. Using an in-plane pump-and-probe configuration, we also demonstrated all-plasmonic nonlinear switching in the plasmonic microring with an on--off switching contrast of 4dB over 50mW input power.
Directory of Open Access Journals (Sweden)
Renlong Zhou
2014-01-01
Full Text Available We have studied the excitation second-order nonlinearity through a triangular lattice perforated gold film instead of square lattice in many papers. Under the excitation of surface plasmas resonance effect, the second order nonlinearity exists in the noncentrosymmetric split-ring resonators arrays. Reflection of fundamental frequency wave through a triangular lattice perforated gold film is obtained. We also described the second harmonic conversion efficiencies in the second order nonlinear optical process with the spectra. Moreover, the electric field distributions of fundamental frequency above the gold film region are calculated. The light propagation through the holes results in the enhancement of the second order nonlinearity including second harmonic generation as well as the sum (difference frequency generation.
Observation of nonlinear thermal optical dynamics in a chalcogenide nanobeam cavity
Sun, Yue; Choi, Duk-Yong; Sukhorukov, Andrey A
2016-01-01
We present a theoretical and experimental analysis of nonlinear thermo-optic effects in suspended chalcogenide glass nanobeam cavities. We measure the power dependent resonance peaks and characterise the dynamic nonlinear thermo-optic response of the cavity under modulated light input. Several distinct nonlinear characteristics are identified, including a modified spectral response containing periodic fringes, a critical wavelength jump and saturated time delay for modulation frequency faster than the thermal characteristic time. We reveal that the coupling to a parasitic Fabry-Perot cavity enables isolated thermal equilibrium states resulting in the discontinuous thermo-optic critical point.
Third-order nonlinear optical characterization of side-chain copolymers
Norwood, Robert A.; Sounik, James R.; Popolo, J.; Holcomb, Douglas P.
1991-12-01
Third order nonlinear optical properties of side-chain methacrylate copolymers incorporating 4-amino-4'-nitrostilbene, 4-oxy-4'nitrostilbene, and functionalized silicon phthalocyanine chromophores are measured by picosecond degenerate four wave mixing at 598 nm. The nonresonant stilbene system exhibits a pulse limited ultrafast response, while the resonant phthalocyanine system has a large excited state nonlinearity. Comparison of silicon phthalocyanine copolymers with solubilized guest/host systems dispersed in polymethylmethacrylate illustrate the importance of aggregation and phthalocyanine ring interaction in determining the linear optical properties and the magnitude and speed of the nonlinear optical response.
Anisotropic and nonlinear optical waveguides
Someda, CG
1992-01-01
Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an
Free-vibration acoustic resonance of a nonlinear elastic bar
Tarumi, Ryuichi; Oshita, Yoshihito
2011-02-01
Free-vibration acoustic resonance of a one-dimensional nonlinear elastic bar was investigated by direct analysis in the calculus of variations. The Lagrangian density of the bar includes a cubic term of the deformation gradient, which is responsible for both geometric and constitutive nonlinearities. By expanding the deformation function into a complex Fourier series, we derived the action integral in an analytic form and evaluated its stationary conditions numerically with the Ritz method for the first three resonant vibration modes. This revealed that the bar shows the following prominent nonlinear features: (i) amplitude dependence of the resonance frequency; (ii) symmetry breaking in the vibration pattern; and (iii) excitation of the high-frequency mode around nodal-like points. Stability of the resonant vibrations was also addressed in terms of a convex condition on the strain energy density.
Analysis of nonlinear transient responses of piezoelectric resonators.
Hagiwara, Manabu; Takahashi, Seita; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki
2011-09-01
The electric transient response method is an effective technique to evaluate material constants of piezoelectric ceramics under high-power driving. In this study, we tried to incorporate nonlinear piezoelectric behaviors in the analysis of transient responses. As a base for handling the nonlinear piezoelectric responses, we proposed an assumption that the electric displacement is proportional to the strain without phase lag, which could be described by a real and constant piezoelectric e-coefficient. Piezoelectric constitutive equations including nonlinear responses were proposed to calculate transient responses of a piezoelectric resonator. The envelopes and waveforms of current and vibration velocity in transient responses observed in some piezoelectric ceramics could be fitted with the calculation including nonlinear responses. The procedure for calculation of mechanical quality factor Q(m) for piezoelectric resonators with nonlinear behaviors was also proposed.
Thermo-optically tunable switching in an electro-microtube ring resonator
Zeng, Jing; Zhu, Tao; Deng, Ming
2015-07-01
We propose a tunable optical switching based on thermo-optic nonlinear effect in an electro-microtube ring resonator (EMRR) made by a capillary embedded with a heating wire. The significant modes shift in the EMRR for nonlinear switching are attributed to a huge joule heat generated by the heating wire, leading to the resonant wavelength shifts over 0.9nm when using 250mA current. In our viewpoints, with such a significant performance, the EMRR may be practically applied to switching, optical filter, sensing and optical network process.
Nonlinear optical studies of relaxation in semiconductor microstructures
Remillard, Jeffrey Thomas
1990-11-01
Exposing a semiconductor to optical radiation near the fundamental band gap results in the creation of populations or elementary excitations including electrons, holes, and excitons, and also results in the creation of a superposition state between the ground and excited state of the solid. The relaxation of optically generated excitons and carriers in semiconductor microstructures was studied using four wave mixing (FWM) spectroscopy. The systems studied include CdSSe microcrystallite doped glasses and GaA/AlGaAs multiple quantum well structures (MQWS). First, the nonlinear optical response of simple two level systems is examined in order to provide insight into the types of line shapes expected from semiconductors. It is shown that the line shape is strongly dependent on how the system is coupled to the reservoir and the consequences of coupling to a reservoir are examined in a FWM measurement made in atomic sodium. The first semiconductor system studied is CdSSe microcrystallite doped glass. This system is shown to have a very slow component to the nonlinear response which has an optical intensity dependence and temperature dependence which suggests that the FWM response in these materials is trap mediated. Room temperature FWM measurements in GaAs MQWS enables the measurement of the carrier recombination time and the ambipolar diffusion coefficient. Using the technique of correlated optical fields, a slow component to the nonlinear response was measured showing an interference profile which suggests a possible shift of the exciton resonance due to the optically generated carriers. At low temperatures, measurements of the exciton line shape and relaxation time were made and evidence for exciton spectral diffusion was found. The low temperature line shapes can be qualitatively reproduced using Modified Optical Bloch equations which include the effects of spectral diffusion.
Nonlinear Resonance Islands and Modulational Effects in a Proton Synchrotron
Energy Technology Data Exchange (ETDEWEB)
Satogata, Todd Jeffrey [Northwestern Univ., Evanston, IL (United States)
1993-01-01
We examine both one-dimensional and two-dimensional nonlinear resonance islands created in the transverse phase space of a proton synchrotron by nonlinear magnets. We also examine application of the theoretical framework constructed to the phenomenon of modulational diffusion in a collider model of the Fermilab Tevatron. For the one-dimensional resonance island system, we examine the effects of two types of modulational perturbations on the stability of these resonance islands: tune modulation and beta function modulation. Hamiltonian models are presented which predict stability boundaries that depend on only three paramders: the strength and frequency of the modulation and the frequency of small oscillations inside the resonance island. These. models are compared to particle tracking with excellent agreement. The tune modulation model is also successfully tested in experiment, where frequency domain analysis coupled with tune modulation is demonstrated to be useful in measuring the strength of a nonlinear resonance. Nonlinear resonance islands are also examined in two transverse dimensions in the presence of coupling and linearly independent crossing resonances. We present a first-order Hamiltonian model which predicts fixed point locations, but does not reproduce small oscillation frequencies seen in tracking; therefore in this circumstance such a model is inadequate. Particle tracking is presented which shows evidence of two-dimensional persistent signals, and we make suggestions on methods for observing such signals in future experiment.
Polarimetric Properties of Optically Resonant Nanostructures
Theisen, Michael John
Optically resonant nanostructures have been incorporated into a variety of devices used in a number of different fields. In this thesis, we explore optically resonant nanostructures in two forms. First we investigate a relatively new material, gallium implanted silicon (Si:Ga). We cover the fabrication process and experimentally find the optical properties as a function of both dose and wavelength. We then use the properties of this new material to create suspended arrays of Si:Ga nanowires, and determine their optical characteristics. In the second part of this thesis, we use more conventional materials and fabrication procedures to investigate the phase effects of guided mode resonators. We look at the spectral phase effects for a grating coupled silicon-on-insulator based guided mode resonator. We also look the angular phase effects of a surface plasmon polariton based guided mode resonator, comparing experimental results to theory calculated with rigorous coupled wave analysis for both cases. In addition, the guided mode resonance is modeled as a Fano resonance to gain insight into the functional form of the phase. Knowing the phase response of guided mode resonances may allow the creation of guided mode resonance based devices with higher sensitivity than traditional reflectance based devices.
Extreme nonlinear optics and laser damage
Maldutis, Evaldas
2010-11-01
The study of laser induced damage threshold caused by series of identical laser pulses (LID-T-N) on gamma radiation resistant glasses and their analogs is performed applying know-how ultra stable laser radiation. The presented results and analysis of earlier received results show that nonlinear optical phenomena in extreme conditions of interaction are different from the traditional nonlinear optical processes, because they depend not only on intensity of electromagnetic field of laser radiation, but also on the pulse number in series of identical laser pulses. This range of laser intensities is not wide; it is different for each material and determines the range of Extreme Nonlinear Optics. The dependence of LID-T-N on pulse number N for different kinds of high quality transparent glasses was observed. The study of dynamics of these processes (i.e. the study of dependence on N) at different intensities in series of incident laser pulses provides new information about properties of the materials useful for studying laser damage fundamentals and their application. The expectation that gamma radiation resistant glasses could give useful information for technology of resistant optics for high power lasers has not proved. The received results well correspond with the earlier proposed model of laser damage.
Rigorous theory of molecular orientational nonlinear optics
Directory of Open Access Journals (Sweden)
Chong Hoon Kwak
2015-01-01
Full Text Available Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1 the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2 the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect, optical Kerr effect (OKE, dc electric field induced second harmonic generation (EFISH, degenerate four wave mixing (DFWM and third harmonic generation (THG. We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR, Pockels effect and difference frequency generation (DFG are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR, dc electric field induced difference frequency generation (EFIDFG and pump-probe transmission are presented.
Resonant optical device with a microheater
Energy Technology Data Exchange (ETDEWEB)
Lentine, Anthony L.; DeRose, Christopher
2017-04-04
A resonant photonic device is provided. The device comprises an optical waveguiding element, such as an optical resonator, that includes a diode junction region, two signal terminals configured to apply a bias voltage across the junction region, and a heater laterally separated from the optical waveguiding element. A semiconductor electrical barrier element is juxtaposed to the heater. A metallic strip is electrically and thermally connected at one end to a signal terminal of the optical waveguiding element and thermally connected at another end to the barrier element.
Linear and nonlinear magneto-optical properties of monolayer phosphorene
Nguyen, Chuong V.; Ngoc Hieu, Nguyen; Duque, C. A.; Quoc Khoa, Doan; Van Hieu, Nguyen; Van Tung, Luong; Vinh Phuc, Huynh
2017-01-01
We theoretically study the magneto-optical properties of monolayer phosphorene under a perpendicular magnetic field. We evaluate linear, third-order nonlinear, and total absorption coefficients and relative refractive index changes as functions of the photon energy and the magnetic field, and show that they are strongly influenced by the magnetic field. The magneto-optical absorption coefficients and relative refractive index changes appear in two different regimes: the microwave to THz and the visible frequency. The amplitude of intra-band transition peaks is larger than that of the inter-band transitions. The resonant peaks are blue-shifted with the magnetic field. Our results demonstrate the potential of monolayer phosphorene as a new two-dimensional material for applications in nano-electronic and optical devices as a promising alternative to graphene.
Optical resonance of metal-coated nanoshell
Institute of Scientific and Technical Information of China (English)
Diao Jia-Jie(刁佳杰); Chen Guang-De(陈光德); Xi Cong(席聪); Z Y Fan; Yuan Jin-She(苑进社)
2003-01-01
Metal-coated nanoshell, the nanoparticle consisting of a nanometre-scale dielectric core coated with a thin metallic shell, exhibits three distinct optical resonant forms, the sphere cavity resonance (SCR), plasmon resonance (PR), and concentric dielectric sphere resonance (CDSR). The SCR, PR and CDSR of the metal-coated nanoshell reveal a geometric tunability controlled by the core radius and by the ratio of the core radius to the total radius. Classical electrodynamics and Mie scattering theory are used to treat the resonant forms and the transition state between the resonant forms. Based on previous experimental research, we present a group of resonant equations for all the resonant forms, which depend on the geometric structure of the metal-coated nanoshell.
Nonlinear optical properties of atomic vapor and semiconductors
Energy Technology Data Exchange (ETDEWEB)
Kim, Doseok [Univ. of California, Berkeley, CA (United States). Dept. of Physics
1997-05-01
This thesis contains the study of highly forbidden resonant second harmonic generation (SHG) in atomic potassium vapor using tunable picosecond pulses. Various output characteristics of vapor SHG have been investigated including the input intensity dependence, potassium vapor density dependence, buffer gas pressure dependence, and spatial profile. Recently, the discovery of new nonlinear optical crystals such as barium borate (β-BaB_{2}O_{4}, BBO) and lithium borate (LiB_{3}O_{5}, LBO) has greatly improved the performance of a tunable coherent optical devices based on optical parametric generation and amplification. In the second part of this thesis, a homebuilt picosecond optical parametric generator/amplifier (OPG/OPA) system is described in detail, including its construction details and output characteristics. This laser device has found many useful applications in spectroscopic studies including surface nonlinear optical spectroscopy via sum-frequency generation (SFG). The last part of this thesis reports studies on multiphoton-excited photoluminescence from porous silicon and GaN. Multiphoton excitation and photoluminescence can give numerous complementary information about semiconductors not obtainable with one-photon, above-bandgap excitation.
Optimization of optical nonlinearities in quantum cascade lasers
Bai, Jing
Nonlinearities in quantum cascade lasers (QCL's) have wide applications in wavelength tunability and ultra-short pulse generation. In this thesis, optical nonlinearities in InGaAs/AlInAs-based mid-infrared (MIR) QCL's with quadruple resonant levels are investigated. Design optimization for the second-harmonic generation (SHG) of the device is presented. Performance characteristics associated with the third-order nonlinearities are also analyzed. The design optimization for SHG efficiency is obtained utilizing techniques from supersymmetric quantum mechanics (SUSYQM) with both material-dependent effective mass and band nonparabolicity. Current flow and power output of the structure are analyzed by self-consistently solving rate equations for the carriers and photons. Nonunity pumping efficiency from one period of the QCL to the next is taken into account by including all relevant electron-electron (e-e) and longitudinal (LO) phonon scattering mechanisms between the injector/collector and active regions. Two-photon absorption processes are analyzed for the resonant cascading triple levels designed for enhancing SHG. Both sequential and simultaneous two-photon absorption processes are included in the rate-equation model. The current output characteristics for both the original and optimized structures are analyzed and compared. Stronger resonant tunneling in the optimized structure is manifested by enhanced negative differential resistance. Current-dependent linear optical output power is derived based on the steady-state photon populations in the active region. The second-harmonic (SH) power is derived from the Maxwell equations with the phase mismatch included. Due to stronger coupling between lasing levels, the optimized structure has both higher linear and nonlinear output powers. Phase mismatch effects are significant for both structures leading to a substantial reduction of the linear-to-nonlinear conversion efficiency. The optimized structure can be fabricated
Nonlinear Mixing in Optical Multicarrier Systems
Hameed, Mahmood Abdul
Although optical fiber has a vast spectral bandwidth, efficient use of this bandwidth is still important in order to meet the ever increased capacity demand of optical networks. In addition to wavelength division multiplexing, it is possible to partition multiple low-rate subcarriers into each high speed wavelength channel. Multicarrier systems not only ensure efficient use of optical and electrical components, but also tolerate transmission impairments. The purpose of this research is to understand the impact of mixing among subcarriers in Radio-Over-Fiber (RoF) and high speed optical transmission systems, and experimentally demonstrate techniques to minimize this impact. We also analyze impact of clipping and quantization on multicarrier signals and compare bandwidth efficiency of two popular multiplexing techniques, namely, orthogonal frequency division multiplexing (OFDM) and Nyquist modulation. For an OFDM-RoF system, we present a novel technique that minimizes the RF domain signal-signal beat interference (SSBI), relaxes the phase noise limit on the RF carrier, realizes the full potential of optical heterodyne-based RF carrier generation, and increases the performance-to-cost ratio of RoF systems. We demonstrate a RoF network that shares the same RF carrier for both downlink and uplink, avoiding the need of an additional RF oscillator in the customer unit. For multi-carrier optical transmission, we first experimentally compare performance degradations of coherent optical OFDM and single-carrier Nyquist pulse modulated systems in a nonlinear environment. We then experimentally evaluate SSBI compensation techniques in the presence of semiconductor optical amplifier (SOA) induced nonlinearities for a multicarrier optical system with direct detection. We show that SSBI contamination can be significantly reduced from the data signal when the carrier-to-signal power ratio is sufficiently low.
Nonlinear mechanical resonators for ultra-sensitive mass detection
Energy Technology Data Exchange (ETDEWEB)
Datskos, Panos G [ORNL; Lavrik, Nickolay V [ORNL
2014-01-01
The fundamental sensitivity limit of an appropriately scaled down mechanical resonator can approach one atomic mass unit when only thermal noise is present in the system. However, operation of such nanoscale mechanical resonators is very challenging due to minuteness of their oscillation amplitudes and presence of multiple noise sources in real experimental environments. In order to surmount these challenges, we use microscale cantilever resonators driven to large amplitudes, far beyond their nonlinear instability onset. Our experiments show that such a nonlinear cantilever resonator, described analytically as a Duffing oscillator, has mass sensing performance comparable to that of much smaller resonators operating in a linear regime. We demonstrate femtogram level mass sensing that relies on a bifurcation point tracking that does not require any complex readout means. Our approaches enable straightforward detection of mass changes that are near the fundamental limit imposed by thermo-mechanical fluctuations.
Quantum Information Processing using Nonlinear Optical Effects
DEFF Research Database (Denmark)
Andersen, Lasse Mejling
of the converted idler depends on the other pump. This allows for temporal-mode-multiplexing. When the effects of nonlinear phase modulation (NPM) are included, the phases of the natural input and output modes are changed, reducing the separability. These effects are to some degree mediated by pre......This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear...... to obtain a 100 % conversion efficiency is to use multiple stages of frequency conversion, but this setup suffers from the combined effects of NPM. This problem is circumvented by using asymmetrically pumped BS, where one pump is continuous wave. For this setup, NPM is found to only lead to linear phase...
Optically nonlinear Langmuir Blodgett films
Amiri, M A
2003-01-01
A series of novel amphiphilic molecules plus a new class of chevron-shaped materials, without aliphatic tails, were designed, synthesised and non-centrosymmetrically aligned by the Langmuir-Blodgett technique. Their LB films exhibited optical second-harmonic generation (SHG). The chevron-shaped molecules have a central cationic acceptor and two pi-bridged donor groups with an angle of ca. 120 deg between the charge-transfer axes of the D-pi-(A sup +)-pi-D unit. A monolayer LB film of a representative example, 1-butyl-2,6-bis[2- (4-dibutylaminophenyl)vinyl]pyridinium iodide, has an effective susceptibility, chi sup ( sup 2 sup ) sub e sub f sub f , of 120 pm V sup - sup 1 at 1064 nm, a thickness of 1.16 nm and an area in contact with the substrate of 0.91 nm sup 2 molecule sup - sup 1. The second-harmonic intensity (1.6 x 10 sup - sup 4 versus quartz) is similar to those of the extensively studied conventional amphiphilic hemicyanines but as a result of non-centrosymmetric alignment, without the need for long ...
Time-reversed wave mixing in nonlinear optics.
Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng
2013-11-19
Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing.
Fermi resonance in optical microcavities
Yi, Chang-Hwan; Yu, Hyeon-Hye; Lee, Ji-Won; Kim, Chil-Min
2015-04-01
Fermi resonance is a phenomenon of quantum mechanical superposition, which most often occurs between normal and overtone modes in molecular systems that are nearly coincident in energy. We find that scarred resonances in deformed dielectric microcavities are the very phenomenon of Fermi resonance, that is, a pair of quasinormal modes interact with each other due to coupling and a pair of resonances are generated through an avoided resonance crossing. Then the quantum number difference of a pair of quasinormal modes, which is a consequence of quantum mechanical superposition, equals periodic orbits, whereby the resonances are localized on the periodic orbits. We derive the relation between the quantum number difference and the periodic orbits and confirm it in an elliptic, a rectangular, and a stadium-shaped dielectric microcavity.
Making of a nonlinear optical cavity
Martínez-Lorente, R; Esteban-Martín, A; García-Monreal, J; Roldán, E; Silva, F
2016-01-01
In the article we explain in detail how to build a photorefractive oscillator (PRO), which is a laser-pumped nonlinear optical cavity containing a photorefractive crystal. The specific PRO whose construction we describe systematically, is based on a Fabry-Perot optical cavity working in a non-degenerate four wave-mixing configuration. This particular PRO has the property that the generated beam exhibits laser-like phase invariance and, as an application, we show how a suitably modulated injected beam converts the output field from phase-invariant into phase-bistable. While the emphasis is made on the making of the experimental device and on the way measurements are implemented, some introduction to the photorefractive effect as well as to the necessary concepts of nonlinear dynamics are also given, so that the article is reasonably self-contained.
Impact of nonlinearities on fiber optic communications
2011-01-01
This book covers the recent progress in fiber-optic communication systems with a main focus on the impact of fiber nonlinearities on system performance. There has been significant progress in coherent communication systems in the past few years due to the advances in digital signal processing techniques. This has led to renewed interest in fiber linear and nonlinear impairments as well as techniques to mitigate them in the electrical domain. In this book, the reader will find all the important topics of fiber optic communication systems in one place, with in-depth coverage by the experts of each sub-topic. Pioneers from each of the sub-topics have been invited to contribute. Each chapter will have a section on fundamentals as well as reviews of literature and of recent developments. Readers will benefit from this approach since many of the conference proceedings and journal articles mainly focus on the authors’ research, without spending space on preliminaries.
Nanofiber Fabry-Perot microresonator for non-linear optics and cavity quantum electrodynamics
Wuttke, C; Brückner, S; Rothhardt, M; Rauschenbeutel, A
2012-01-01
We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F = 86 while the on-resonance transmission is T = 11 %. The characteristics of our resonator fulfill the requirements of non-linear optics and cavity quantum electrodynamics in the strong coupling regime. In combination with its demonstrated ease of use and its advantageous mode geometry, it thus opens a realm of applications.
Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.
Wuttke, C; Becker, M; Brückner, S; Rothhardt, M; Rauschenbeutel, A
2012-06-01
We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings that enclose a subwavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F=86 while the on-resonance transmission is T=11%. The characteristics of our resonator fulfill the requirements of nonlinear optics and cavity quantum electrodynamics in the strong coupling regime. These characteristics, combined with the demonstrated ease of use and advantageous mode geometry, open a realm of applications.
Nonlinear optical studies of organic monolayers
Energy Technology Data Exchange (ETDEWEB)
Shen, Y.R.
1988-02-01
Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs.
Observation of nonlinear resonances in the advanced light source
Robin, D.; Collins, H.; Decking, W.; Portmann, G.; Schachinger, L.; Zholents, A.
1995-09-01
Observations of nonlinear resonances in the Advanced Light Source have been made by scanning betatron tunes and observing count rates in a beam-loss radiation monitor placed down stream of a beam scraper. We have found that it is possible to see structural resonances which are unallowed as well as those which are allowed by the ring's natural 12-fold symmetry. By systematically breaking the amount of symmetry we see that the widths of the unallowed resonances grow while the widths of the allowed resonances do not. In this paper we briefly discuss the importance of symmetry and its effect on resonances in the design of the ALS. Next we describe our experimental setup and discuss the performance of the beam loss monitor which we used to view the resonances. We then present scans of the tune space where one can see the presence of the structural resonances and their evolution when the lattice symmetry is systematically broken.
Topological nature of nonlinear optical effects in solids
Morimoto, Takahiro; Nagaosa, Naoto
2015-01-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by the strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by the nonlinear suscepti...
Optical bistability in a high-Q racetrack resonator based on small SU-8 ridge waveguides.
Jin, Li; Fu, Xin; Yang, Bo; Shi, Yaocheng; Dai, Daoxin
2013-06-15
A racetrack resonator with a high Q value (~34,000) is demonstrated experimentally based on small SU-8 optical ridge waveguides, which were fabricated with an improved etchless process. Optical bistability is observed in the present racetrack resonator even with a low input optical power (5.6-7.3 mW), which is attributed to the significant thermal nonlinear optical effect due to the high Q value and the large negative thermo-optical coefficient of SU-8. Theoretical modeling for the optical bistability is also given, and it agrees well with the experimental result.
Enhanced optical nonlinearities in air-cladding silicon pedestal waveguides
Zhang, Yaojing; Yao, Yifei; Tsang, Hon Ki
2016-01-01
The third-order optical nonlinearity in optical waveguides has found applications in optical switching, optical wavelength conversion, optical frequency comb generation, and ultrafast optical signal processing. The development of an integrated waveguide platform with a high nonlinearity is therefore important for nonlinear integrated photonics. Here, we report the observation of an enhancement in the nonlinearity of an air-cladding silicon pedestal waveguide. We observe enhanced nonlinear spectral broadening compared to a conventional silicon-on-insulator waveguide. At the center wavelength of 1555 nm, the nonlinear-index coefficient of air-cladding silicon pedestal waveguide is measured to be about 5% larger than that of a conventional silicon-on-insulator waveguide. We observe enhanced spectral broadening from self-phase modulation of an optical pulse in the pedestal waveguide. The interaction of light with the confined acoustic phonons in the pedestal structure gives rise to a larger nonlinear-index coeffi...
Nonlinear inversion schemes for fluorescence optical tomography.
Freiberger, Manuel; Egger, Herbert; Scharfetter, Hermann
2010-11-01
Fluorescence optical tomography is a non-invasive imaging modality that employs the absorption and re-emission of light by fluorescent dyes. The aim is to reconstruct the fluorophore distribution in a body from measurements of light intensities at the boundary. Due to the diffusive nature of light propagation in tissue, fluorescence tomography is a nonlinear and severely ill-posed problem, and some sort of regularization is required for a stable solution. In this paper we investigate reconstruction methods based on Tikhonov regularization with nonlinear penalty terms, namely total-variation regularization and a levelset-type method using a nonlinear parameterization of the unknown function. Moreover, we use the full threedimensional nonlinear forward model, which arises from the governing system of partial differential equations. We discuss the numerical realization of the regularization schemes by Newtontype iterations, present some details of the discretization by finite element methods, and outline the efficient implementation of sensitivity systems via adjoint methods. As we will demonstrate in numerical tests, the proposed nonlinear methods provide better reconstructions than standard methods based on linearized forward models and linear penalty terms. We will additionally illustrate, that the careful discretization of the methods derived on the continuous level allows to obtain reliable, mesh independent reconstruction algorithms.
Resonance spectra of diabolo optical antenna arrays
Guo, Hong; Simpkins, Blake; Caldwell, Joshua D.; Guo, Junpeng
2015-10-01
A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.
Resonance spectra of diabolo optical antenna arrays
Energy Technology Data Exchange (ETDEWEB)
Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Simpkins, Blake; Caldwell, Joshua D. [Naval Research Laboratory, 4555 Overlook Ave., SW Washington, DC 20375 (United States)
2015-10-15
A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.
Savchenkov, Anatoliy A. (Inventor); Strekalov, Dmitry V. (Inventor); Maleki, Lute (Inventor); Matsko, Andrey B. (Inventor); Iltchenko, Vladimir S. (Inventor); Martin, Jan M. (Inventor)
2010-01-01
A method of shifting and fixing an optical frequency of an optical resonator to a desired optical frequency, and an optical resonator made by such a method are provided. The method includes providing an optical resonator having a surface and a refractive index, and obtaining a coating composition having a predetermined concentration of a substance and having a refractive index that is substantially similar to the refractive index of the optical resonator. The coating composition inherently possesses a thickness when it is applied as a coating. The method further includes determining a coating ratio for the surface of the optical resonator and applying the coating composition onto a portion of the surface of the optical resonator based upon the determined coating ratio.
All-optical Photonic Oscillator with High-Q Whispering Gallery Mode Resonators
Savchenkov, Anatoliy A.; Matsko, Andrey B.; Strekalov, Dmitry; Mohageg, Makan; Iltchenko, Vladimir S.; Maleki, Lute
2004-01-01
We demonstrated low threshold optical photonic hyper-parametric oscillator in a high-Q 10(exp 10) CaF2 whispering gallery mode resonator which generates stable 8.5 GHz signal. The oscillations result from the resonantly enhanced four wave mixing occurring due to Kerr nonlinearity of the material.
Spectroscopy of laser-induced autoionizing nonlinear resonances in atomic systems
Pavlov, L. I.; Kovachev, V. V.
2015-03-01
Efficient harmonic generation at laser-induced autoionizing state in continuum, were observed for the first time by our laboratory [1,2,3]. In this paper, nonlinear frequency mixing in alkali metal vapors at induced continuum structure in Na, are studied in detail. Besides, measurement of nonlinear optical susceptibility at induced autoionizing resonance, is performed. Tunable ultraviolet radiations by four-photon processes near induced resonances are obtained. Estimations of the real and imaginary parts of the nonlinearities, are estimated. We will specially note, that the resonant photoabsorption of ions is experimentally investigated since it gives information about the autoionizing states, which is impossible to obtain on the base only of the emission spectra. We use also laser inducing for obtaining of powerful radiation source in VUV. Thus, many actual problems as the selective impact on matter, laser photochemistry and laser isotope separation are connected directly with the induced autoionizing nonlinear resonances. The main interest is to control the spectral characteristics of continuum. The discrete level from the continuum structure leads to appearance of asymmetrical autoionizing resonance onto the background of the broad-band absorption line.
Sinha, Raju; Karabiyik, Mustafa; Ahmadivand, Arash; Al-Amin, Chowdhury; Vabbina, Phani Kiran; Shur, Michael; Pala, Nezih
2016-03-01
We propose and investigate in detail a novel tunable, compact, room temperature terahertz (THz) emitter using individual microdisk resonators for both optical and THz waves with the capability of radiating THz field in 0.5-10 THz range with tuning frequency resolution of 0.05 THz. Enhanced THz generation is achieved by employing a nonlinear optical disk resonator with a high value of second-order nonlinearity ( χ (2)) in order to facilitate the difference-frequency generation (DFG) via nonlinear mixing with the choice of two appropriate input infrared optical waves. Efficient coupling of infrared waves from bus to the nonlinear disk is ensured by satisfying critical coupling condition. Phase matching condition for efficient DFG process is also met by employing modal phase matching technique. Our simulations show that THz output power can be reached up to milliwatt (mW) level with high optical to THz conversion efficiency. The proposed source is Silicon on Insulator (SoI) technology compatible enabling the monolithic integration with Si complementary metal-oxide-semiconductor (CMOS) electronics including plasmonic THz detectors.
Advances in magnetic and optical resonance
Warren, Warren S
2013-01-01
Advances in Magnetic and Optical Resonance contains three articles which review quite fundamentally different aspects of coherent spectroscopy. An enormous variety of effects can be observed when optical and spin resonances are coupled, usually by a combination of radio frequency and laser irradiation. The first article reviews these effects and pays particular attention to developing a theoretical framework which is as similar as possible for the optical and spin cases. Subsequent articles examine deuterium relaxation in molecular solids, and the spatiotemporal growth of multiple spin coheren
Third-Order Nonlinear Optical Susceptibility of Indium Phosphide Nanocrystals
Institute of Scientific and Technical Information of China (English)
WANG Hong-Li; WANG Dong; CHEN Guang-De; LIU Hui
2007-01-01
InP nanocrystals synthesized by refluxing and annealing of organic solvent are determined from XRD measurements to have an average granularity of 25 nm. The nonlinear optical properties of the InP nanocrystals studied by using laser Z-scan technique with 50ps pulses at 532nm are found to reveal strong nonlinear optical properties and two-photon absorption phenomenon. Also, the nonlinear absorption coefficient, the nonlinear refractive index and the third-order nonlinear optical susceptibility are determined by experiments, in which the nonlinear refractive index is three orders of magnitude larger than that of bulk InP.
Optical ballast and adaptive dynamic stable resonator
Institute of Scientific and Technical Information of China (English)
Zhang Guang-Yin; Jiao Zhi-Yong; Guo Shu-Guang; Zhang Xiao-Hua; Gu Xue-Wen; Yan Cai-Fan; Wu Ding-Er; Song Feng
2004-01-01
In this paper a new concept of ‘optical ballast' is put forward. Optical ballast is a kind of device that can be used to decrease the variation and fluctuation of the propagation characteristics of light beams caused by the disturbance of refractive index of the medium. To illustrate the idea clearly and concretely, a fully adaptive dynamic stable solid-state laser resonator is presented as application example of optical ballast.
Label-free imaging through nonlinear optical signals
Directory of Open Access Journals (Sweden)
Ling Tong
2011-06-01
Full Text Available Strong intrinsic nonlinear optical (NLO signals not only make nanostructures promising agents for bio-imaging, but also advance NLO microscopy for the study of interactions between nanomaterials and live cells. Single beam modalities such as multiphoton luminescence, second harmonic generation, and third harmonic generation provide a simple way to probe many types of nanostructures. As for more advanced modalities, photothermal heterodyne imaging provides improved detection sensitivity for smaller objects, and transient absorption microscopy provides structural information to distinguish metal from semiconducting carbon nanotubes, and eumelanin from pheomelanin. The four-wave mixing signal achieves chemical selectivity in the presence of either vibrational or electronic resonance, as used in coherent Raman scattering imaging of molecules and in electronically resonance enhanced four-wave mixing imaging of nanostructures.
DSP Approach to the Design of Nonlinear Optical Devices
Directory of Open Access Journals (Sweden)
Steve Blair
2005-06-01
Full Text Available Discrete-time signal processing (DSP tools have been used to analyze numerous optical filter configurations in order to optimize their linear response. In this paper, we propose a DSP approach to design nonlinear optical devices by treating the desired nonlinear response in the weak perturbation limit as a discrete-time filter. Optimized discrete-time filters can be designed and then mapped onto a specific optical architecture to obtain the desired nonlinear response. This approach is systematic and intuitive for the design of nonlinear optical devices. We demonstrate this approach by designing autoregressive (AR and autoregressive moving average (ARMA lattice filters to obtain a nonlinear phase shift response.
Nonlinear optical studies in semiconductor-doped glasses under femtosecond pulse excitation
Indian Academy of Sciences (India)
C P Singh; K S Bindra; S M Oak
2010-12-01
Nonlinear optical studies in semiconductor-doped glasses (SDGs) are performed under femtosecond laser pulse excitation. Z-scan experiments with 800 nm wave- length pulses are used to excite SDG samples in the resonance and non-resonance regimes. Schott colour glass filter OG 515 shows stronger two-photon absorption than GG 420 and both the samples exhibit positive nonlinearity. However, in resonantly excited RG 850 the intensity-dependent Z-scan shows transition from saturable to reverse saturable absorption behaviour with the increase in intensity.
Improving the Optical Quality Factor of the WGM Resonator
Savchenkov, Anatoliy; Matsko, Andrey; Iltchenko, Vladimir
2008-01-01
transparent optical crystals. The larger values of F and Q result in the enhancement of various nonlinear processes. Low-threshold Raman lasing, optomechanical oscillations, frequency doubling, and hyperparametric oscillations based on these resonators have been recently demonstrated. Theory predicts a possibility of nearly 10(exp 14) room-temperature optical Q-factors of optical crystalline WGM resonators, which correspond to finesse levels higher than 10(exp 9). Experiments have shown numbers a thousand times lower than that. The difference occurs due to media imperfections. To substantially reduce the optical losses caused by the imperfections, a specific, multi-step, asymptotic processing of the resonator is implemented. The technique has been initially developed to reduce microwave absorption in dielectric resonators. One step of the process consists of mechanical polishing performed after high temperature annealing. Several steps repeat one after another to lead to significant reduction in optical attenuation and, as a result, to the increase of Q-factor as well as finesse of the resonator which demonstrates a CaF2 WGM resonator with F greater than 10(exp 7) and Q greater than 10(exp 11).
Chip scale low dimensional materials: optoelectronics & nonlinear optics
Gu, Tingyi
The CMOS foundry infrastructure enables integration of high density, high performance optical transceivers. We developed integrated devices that assemble resonators, waveguide, tapered couplers, pn junction and electrodes. Not only the volume standard manufacture in silicon foundry is promising to low-lost optical components operating at IR and mid-IR range, it also provides a robust platform for revealing new physical phenomenon. The thesis starts from comparison between photonic crystal and micro-ring resonators based on chip routers, showing photonic crystal switches have small footprint, consume low operation power, but its higher linear loss may require extra energy for signal amplification. Different designs are employed in their implementation in optical signal routing on chip. The second part of chapter 2 reviews the graphene based optoelectronic devices, such as modulators, lasers, switches and detectors, potential for group IV optoelectronic integrated circuits (OEIC). In chapter 3, the highly efficient thermal optic control could act as on-chip switches and (transmittance) tunable filters. Local temperature tuning compensates the wavelength differences between two resonances, and separate electrode is used for fine tuning of optical pathways between two resonators. In frequency domain, the two cavity system also serves as an optical analogue of Autler-Towns splitting, where the cavity-cavity resonance detuning is controlled by the length of pathway (phase) between them. The high thermal sensitivity of cavity resonance also effectively reflects the heat distribution around the nanoheaters, and thus derives the thermal conductivity in the planar porous suspended silicon membrane. Chapter 4 & 5 analyze graphene-silicon photonic crystal cavities with high Q and small mode volume. With negligible nonlinear response to the milliwatt laser excitation, the monolithic silicon PhC turns into highly nonlinear after transferring the single layer graphene with
Limiting effects of geometrical and optical nonlinearities on the squeezing in optomechanics
Energy Technology Data Exchange (ETDEWEB)
Djorwé, P. [Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Faculty of Science, University of Yaoundé I (Cameroon); Nana Engo, S.G., E-mail: nanaengo@gmail.com [Laboratory of Photonics, Faculty of Science, University of Ngaoundéré (Cameroon); Talla Mbé, J.H.; Woafo, P. [Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Faculty of Science, University of Yaoundé I (Cameroon)
2013-08-01
In recent experiments, the re-thermalization time of the mechanical resonator is stated as the limiting factor for quantum applications of optomechanical systems. To explain the origin of this limitation, an analytical nonlinear investigation supported by the recent successful experimental laser cooling parameters is carried out in this work. To this end, the effects of geometrical and the optical nonlinearities on the squeezing are studied and are in a good agreement with the experimental results. It appears that highly squeezed state are generated where these nonlinearities are minimized and that high nonlinearities are limiting factors to reach the quantum ground state.
Progress in nonlinear nano-optics
Lienau, Christoph; Grunwald, Rüdiger
2015-01-01
This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.
Optical transistor action by nonlinear coupling of stimulated emission and coherent scattering
Andrews, David L.; Bradshaw, David S.
2010-08-01
In the pursuit of improved platforms for computing, communications and internet connectivity, all-optical systems offer excellent prospects for a speed and fidelity of data transmission that will greatly surpass conventional electronics, alongside the anticipated benefits of reduced energy loss. With a diverse range of sources and fiber optical connections already in production, much current effort is being devoted towards forging optical components for signal switching, such as an all-optical transistor. Achievement of the desired characteristics for any practicable device can be expected to depend crucially on the engagement of a strongly nonlinear optical response. The innovative scheme proposed in the present work is based upon a third-order nonlinearity - its effect enhanced by stimulated emission - operating within a system designed to exploit the highly nonlinear response observed at the threshold for laser emission. Here, stimulated emission is strongly driven by coupling to the coherent scattering of a signal input beam whose optical frequency is purposely off-set from resonance. An electrodynamical analysis of the all-optical coupling process shows that the signal beam can significantly modify the kinetics of emission, and so lead to a dramatically enhanced output of resonant radiation. The underlying nonlinear optical mechanism is analyzed, model calculations are performed for realizable three-level laser systems, and the results exhibited graphically. The advantages of implementing this all-optical transistor scheme, compared to several previously envisaged proposals, are then outlined.
Resonance phenomena for asymmetric weakly nonlinear oscillator
Institute of Scientific and Technical Information of China (English)
钱定边
2002-01-01
We establish the coexistence of periodic solution and unbounded solution, the infinity of largeamplitude subharmonics for asymmetric weakly nonlinear oscillator x" + a2x+ - b2x- + h(x) = p(t) with h(±∞) - 0 and xh(x) → +∞(x →∞), assuming that M(τ ) has zeros which are all simple and M(τ ) 0respectively, where M(τ ) is a function related to the piecewise linear equation x" + a2x+ - b2x- = p(t).``
Nonlinear optical properties of Au-Ag core-shell nanorods for all-optical switching
Zhang, Luman; Dai, Hongwei; Wang, Xia; Yao, Linhua; Ma, Zongwei; Han, Jun-Bo
2017-09-01
Au-Ag core-shell nanorods with surface plasmon resonance wavelengths of 760-840 nm were prepared. Wavelength-dependent nonlinear absorption coefficients (β) and nonlinear refractive indices (γ) of the nanorods were measured by using Z-scan techniques. The corresponding one-photon and two-photon figures of merit (W and T) were calculated from β and γ. The results show that the requirements of W > 1 and T < 1 for the application of all-optical switching could be achieved for all the samples over a broad wavelength range. These observations make the Au-Ag core-shell nanorods a good candidate for all-optical switching devices.
Nonlinear Response of Cantilever Beams to Combination and Subcombination Resonances
Directory of Open Access Journals (Sweden)
Ali H. Nayfeh
1998-01-01
Full Text Available The nonlinear planar response of cantilever metallic beams to combination parametric and external subcombination resonances is investigated, taking into account the effects of cubic geometric and inertia nonlinearities. The beams considered here are assumed to have large length-to-width aspect ratios and thin rectangular cross sections. Hence, the effects of shear deformations and rotatory inertia are neglected. For the case of combination parametric resonance, a two-mode Galerkin discretization along with Hamilton’s extended principle is used to obtain two second-order nonlinear ordinary-differential equations of motion and associated boundary conditions. Then, the method of multiple scales is applied to obtain a set of four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two excited modes. For the case of subcombination resonance, the method of multiple scales is applied directly to the Lagrangian and virtual-work term. Then using Hamilton’s extended principle, we obtain a set of four first-order nonlinear ordinary-differential equations governing the amplitudes and phases of the two excited modes. In both cases, the modulation equations are used to generate frequency- and force-response curves. We found that the trivial solution exhibits a jump as it undergoes a subcritical pitchfork bifurcation. Similarly, the nontrivial solutions also exhibit jumps as they undergo saddle-node bifurcations.
Nonlinear resonances of a single-wall carbon nanotube cantilever
Kim, I. K.; Lee, S. I.
2015-03-01
The dynamics of an electrostatically actuated carbon nanotube (CNT) cantilever are discussed by theoretical and numerical approaches. Electrostatic and intermolecular forces between the single-walled CNT and a graphene electrode are considered. The CNT cantilever is analyzed by the Euler-Bernoulli beam theory, including its geometric and inertial nonlinearities, and a one-mode projection based on the Galerkin approximation and numerical integration. Static pull-in and pull-out behaviors are adequately represented by an asymmetric two-well potential with the total potential energy consisting of the CNT elastic energy, electrostatic energy, and the Lennard-Jones potential energy. Nonlinear dynamics of the cantilever are simulated under DC and AC voltage excitations and examined in the frequency and time domains. Under AC-only excitation, a superharmonic resonance of order 2 occurs near half of the primary frequency. Under both DC and AC loads, the cantilever exhibits linear and nonlinear primary and secondary resonances depending on the strength of the excitation voltages. In addition, the cantilever has dynamic instabilities such as periodic or chaotic tapping motions, with a variation of excitation frequency at the resonance branches. High electrostatic excitation leads to complex nonlinear responses such as softening, multiple stability changes at saddle nodes, or period-doubling bifurcation points in the primary and secondary resonance branches.
Werchner, M; Schafer, M; Kira, M; Koch, S W; Sweet, J; Olitzky, J D; Hendrickson, J; Richards, B C; Khitrova, G; Gibbs, H M; Poddubny, A N; Ivchenko, E L; Voronov, M; Wegener, M
2009-04-13
A detailed experimental and theoretical study of the linear and nonlinear optical properties of different Fibonacci-spaced multiple-quantum-well structures is presented. Systematic numerical studies are performed for different average spacing and geometrical arrangement of the quantum wells. Measurements of the linear and nonlinear (carrier density dependent) reflectivity are shown to be in good agreement with the computational results. As the pump pulse energy increases, the excitation-induced dephasing broadens the exciton resonances resulting in a disappearance of sharp features and reduction in peak reflectivity.
Velocity selective optical pumping resonance sign reversal
Krasteva, A.; Slavov, D.; Todorov, G.; Cartaleva, S.
2013-03-01
We report experimental and theoretical examinations of the peculiarities in Velocity Selective Optical Pumping (VSOP) resonance behavior at open and closed hyperfine transition spectra of Cs atoms (on the D2 line), confined in optical cell with thickness L = 6λ, where λ = 852 nm. For linear and circular polarizations of the irradiating light, open transitions exhibit reduced absorption (fluorescence) VSOP resonances whose contrast increases with atomic concentration and light intensity. However, in case of closed transition the situation is different, the enhanced absorption (fluorescence) VSOP resonance reverses its sign with the atomic concentration and light intensity. Theoretical analysis based on the density matrix formalism, taking into account the statistical tensors describing atomic population and longitudinal alignment, shows that the VSOP resonance sign reversal at the closed transition can be attributed to the efficiency reduction of population transfer by the spontaneous decay with atomic source temperature.
Nonlinear optical properties of induced transmission filters.
Owens, Daniel T; Fuentes-Hernandez, Canek; Hales, Joel M; Perry, Joseph W; Kippelen, Bernard
2010-08-30
The nonlinear optical (NLO) properties of induced transmission filters (ITFs) based on Ag are experimentally determined using white light continuum pump-probe measurements. The experimental results are supported using simulations based on the matrix transfer method. The magnitude of the NLO response is shown to be 30 times that of an isolated Ag film of comparable thickness. The impacts of design variations on the linear and NLO response are simulated. It is shown that the design can be modified to enhance the NLO response of an ITF by a factor of 2 or more over a perfectly matched ITF structure.
Nonlinear Optics in AlGaAs on Insulator
DEFF Research Database (Denmark)
Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta;
2016-01-01
AlGaAs on insulator is a powerful nonlinear platform sporting a high effective nonlinearity and the possibility to fabricate complex designs. We will present low loss waveguides enabling efficient optical signal processing and Kerr comb generation.......AlGaAs on insulator is a powerful nonlinear platform sporting a high effective nonlinearity and the possibility to fabricate complex designs. We will present low loss waveguides enabling efficient optical signal processing and Kerr comb generation....
Exploiting nonlinearities of micro-machined resonators for filtering applications
Ilyas, Saad
2017-06-21
We demonstrate the exploitation of the nonlinear behavior of two electrically coupled microbeam resonators to realize a band-pass filter. More specifically, we combine their nonlinear hardening and softening responses to realize a near flat pass band filter with sharp roll-off characteristics. The device is composed of two near identical doubly clamped and electrostatically actuated microbeams made of silicon. One of the resonators is buckled via thermal loading to produce a softening frequency response. It is then further tuned to create the desired overlap with the second resonator response of hardening behavior. This overlapping improves the pass band flatness. Also, the sudden jumps due to the softening and hardening behaviors create sharp roll-off characteristics. This approach can be promising for the future generation of filters with superior characteristics.
Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators
Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)
2006-01-01
Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.
Thermodynamics of the Optical Feshbach Resonance Effect
Blatt, S; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J
2011-01-01
Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the Optical Feshbach Resonance effect in an ultracold gas of bosonic $^{88}$Sr. A systematic measurement of several resonances allows precise determinations of the OFR strength and scaling law, in agreement with coupled-channels theory. Resonant enhancement of the complex scattering length leads to thermodynamic behavior mediated by elastic and inelastic collisions in an otherwise ideal gas. OFR could be used to control atomic interactions with high spatial and time resolution.
Resonant superfluidity in an optical lattice
Energy Technology Data Exchange (ETDEWEB)
Titvinidze, Irakli; Hofstetter, Walter [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, 60438 Frankfurt am Main (Germany); Snoek, Michiel [Institute for Theoretical Physics, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)
2010-07-01
We study a system of ultracold fermionic Potassium ({sup 40}K) atoms in a three-dimensional optical lattice in the neighborhood of an s-wave Feshbach resonance. Close to resonance, the system is described by a multi-band Bose-Fermi Hubbard Hamiltonian. We derive an effective lowest-band Hamiltonian in which the effect of the higher band is incorporated by a self-consistent mean-field approximation. The resulting model is solved by means of Generalized Dynamical Mean-Field Theory. In addition to the BEC/BCS crossover we find on the BCS side of the resonance a phase transition to a fermionic Mott insulator at half filling, induced by the repulsive fermionic background scattering length. We also calculate the critical temperature of the BEC/BCS-state across the resonance and find it to be minimal at resonance.
Nonlinear response of an ultracompact waveguide Fabry-Pérot resonator
Sederberg, S.; Elezzabi, A. Y.
2013-01-01
We experimentally demonstrate active tuning of an ultracompact silicon-on-insulator trapezoid Fabry-Pérot resonator having a volume of 5.31 μm3. We show that the ultrafast nonlinear dynamics arising from two-photon and free-carrier absorption can be used to achieve a signal attenuation of 66% in the device, and the changes in the steady-state resonant properties of the device resulting from the thermo-optic effect induce a large red-shift in its resonance of Δλ = 7.57 nm. It is envisaged that the insight gained from this class of device will be valuable in the integrated optics community as ultrafast modulators, and switches are designed to occupy smaller volumes.
Bhowmick, Arup; Sahoo, Sushree S.; Mohapatra, Ashok K.
2016-08-01
We discuss the optical-heterodyne-detection technique to study the absorption and dispersion of a probe beam propagating through a medium with a narrow resonance. The technique has been demonstrated for Rydberg electromagnetically induced transparency in rubidium thermal vapor and the optical nonlinearity of a probe beam with variable intensity has been studied. A quantitative comparison of the experimental result with a suitable theoretical model is presented. The limitations and the working regime of the technique are discussed.
Optical resonances in multilayer structures
Maksimovic, Milan
2008-01-01
Theoretical research in optics may be divided in two distinctive but well connected general directions. The first deals with developing new or improving existing mathematical models to describe relevant physics. The second aims to predict new phenomena or applications using established models and te
Optical resonances in multilayer structures
Maksimovic, Milan
2008-01-01
Theoretical research in optics may be divided in two distinctive but well connected general directions. The first deals with developing new or improving existing mathematical models to describe relevant physics. The second aims to predict new phenomena or applications using established models and
Tuning of optical resonances of a microsphere with liquid crystal
Yilmaz, Hasan; Tamer, Mehmet Selman; Gürlü, Oguzhan; Serpengüzel, Ali
2011-05-01
Optical resonances are observed in the elastic light scattering form high refractive index glass microspheres placed on a single mode optical fiber coupler and in a liquid crystal. Placing the liquid crystal on the optical fiber coupler increases the non-resonant scattering, whereas placing the liquid crystal away from the optical coupler increases the resonant scattering. Optical resonances blue and red shift due to the placement and removal of the liquid crystal.
Tuning of optical resonances of a microsphere with liquid crystal
Serpengüzel, Ali; Yılmaz, Huzeyfe; Tamer, Mehmet Selman; Gürlü, Oğuzhan
2011-01-01
Optical resonances are observed in the elastic light scattering form high refractive index glass microspheres placed on a single mode optical fiber coupler and in a liquid crystal. Placing the liquid crystal on the optical fiber coupler increases the non-resonant scattering, whereas placing the liquid crystal away from the optical coupler increases the resonant scattering. Optical resonances blue and red shift due to the placement and removal of the liquid crystal.
Passive ring resonator micro-optical gyroscopes
Venediktov, V. Yu; Filatov, Yu V.; Shalymov, E. V.
2016-05-01
This paper reviews recent advances in passive micro-optical gyroscopes. In the last decade, most research effort in the area of micro-optical gyros has been concentrated on a configuration that takes advantage of a single-mode passive ring resonator, which is usually fabricated using integrated optical technologies. The dimensions of such micro-optical gyros are comparable to those of micromechanical gyroscopes (area of 10 to 100 mm2) and their sensitivity is considerably better than the sensitivity of the latter, approaching that of fibre-optic and laser gyros. Moreover, microoptical gyros can be made as a single integrated circuit, like the micromechanical gyros, but they have no movable parts, in contrast to their micromechanical counterparts. We also describe the development and investigation of micro-optical gyros produced in our studies.
Electrostatic resonances and optical responses of cylindrical clusters
Choy, C. W.; Xiao, J. J.; Yu, K. W.
2008-12-01
We developed a Green function formalism (GFF) for computing the electrostatic resonance in clusters of cylindrical particles. In the GFF, we take advantage of a surface integral equation to avoid matching the complicated boundary conditions on the surfaces of the particles. Numerical solutions of the eigenvalue equation yield a pole spectrum in the spectral representation. The pole spectrum can in turn be used to compute the optical response of these particles. For two cylindrical particles, the results are in excellent agreement with the exact results from the multiple image method and the normal mode expansion method. The results of this work can be extended to investigate the enhanced nonlinear optical responses of metal-dielectric composites, as well as optical switching in plasmonic waveguides.
Modeling of Self-Pumped Singly Resonant Optical Parametric Oscillator
Deng, Chengxian
2016-01-01
A model of the steady-state operating, self-pumped singly resonant optical parametric oscillator (SPSRO) has been developed. The characteristics of quasi three-level laser gain medium pumped longitudinally have been taken into account. The characteristics of standing wave cavity, reabsorption losses, focusing Gaussian beams of the pump laser, fundamental laser and signal wave have been considered in the analyses. Furthermore, The power characteristics of threshold and efficiency have been analyzed, employing a Yb3+-doped periodically poled lithium niobate co-doped with MgO (Yb3+:MgO:PPLN) as the medium of laser gain and second-order nonlinear crystal.
Enhanced Kerr electro-optic nonlinearity through cascaded Pockels effects
Li, Guang-Zhen; Jiang, Hao-Wei; Chen, Xian-Feng
2015-01-01
We demonstrated a large enhancement of Kerr electro-optic nonlinearity through cascaded Pockels effects in a domain inversion ferroelectric crystal. We designed a structure that can implement the cascaded Pockels effects and second-harmonic generation simultaneously. The energy coupling between the fundamental lights of different polarizations led to a large nonlinear phase shift, and thus an effective electro-optic nonlinear refractive index. The effective nonlinearity can be either positive or negative, causing the second-harmonic spectra to move towards the coupling center, which in turn, offered us a way to measure the effective electro-optic nonlinear refractive index. The corresponding enhanced Kerr electro-optic nonlinearity is more than three orders of magnitude higher than the intrinsic value. These results open a door to manipulate the nonlinear phase by applying external electric field instead of light intensity in noncentrosymmetric crystals.
Resonating properties of passive spherical optical microcavities
Institute of Scientific and Technical Information of China (English)
Wen Li(李文); Ruopeng Wang(王若鹏)
2004-01-01
As an optically pumped device, the lasing characteristics of a spherical microcavity laser depend on the optical pumping processes. These characteristics can be described in term of the Q factor and the optical field distribution in a microsphere. We derived analytical expressions and carried out numerical calculation for Q factor and optical field. The Q factor is found to be oscillatory functions of the radius of a microsphere and the pumping wavelength, and the pumping efficiency for a resonating microsphere is much higher than that for an anti-resonating microsphere. Using tunable lasers as pumping sources is suggested in order to achieve a higher pumping efficiency. Numerical calculation on optical field distribution in spherical microcavities shows that a well focused Gaussian beam is a suitable incident wave for cavity quantum electrodynamics experiments in which strong confinement of optical field in the center of a microsphere is requested, but higher order spherical wave should be used instead for exciting whispering-gallery-mode (WGM) microsphere lasers, for the purpose of favoring optical energy transferring to WGM in optical microspheres.
On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators
Alsaleem, Fadi M.; Younis, Mohammad I.; Ouakad, Hassen M.
2009-04-01
We present modeling, analysis and experimental investigation for nonlinear resonances and the dynamic pull-in instability in electrostatically actuated resonators. These phenomena are induced by exciting a microstructure with nonlinear forcing composed of a dc parallel-plate electrostatic load superimposed on an ac harmonic load. Nonlinear phenomena are investigated experimentally and theoretically including primary resonance, superharmonic and subharmonic resonances, dynamic pull-in and the escape-from-potential-well phenomenon. As a case study, a capacitive sensor made up of two cantilever beams with a proof mass attached to their tips is studied. A nonlinear spring-mass-damper model is utilized accounting for squeeze-film damping and the parallel-plate electrostatic force. Long-time integration and a global dynamic analysis are conducted using a finite-difference method combined with the Floquet theory to capture periodic orbits and analyze their stability. The domains of attraction (basins of attraction) for data points on the frequency-response curve are calculated numerically. Dover cliff integrity curves are calculated and the erosion of the safe basin of attraction is investigated as the frequency of excitation is swept passing primary resonance and dynamic pull-in. Conclusions are presented regarding the safety and integrity of MEMS resonators based on the simulated basin of attraction and the observed experimental data.
Nonlinear optical response of C60 in solvents: picosecond transient grating experiments
Khudyakov, Dmitriy V.; Rubtsov, Igor V.; Lobach, Anatolii S.; Nadtochenko, Victor A.
1996-05-01
Time-resolved resonant nonlinear optical response of C60 in a chlorobenzene solution was measured for 528 nm excitation and 1055, 528, and 351 nm probing for zzzz and zzyy configurations. The slow part of the signal (8 +/- 2 ps) was attributed to the orientational motion of C60 excited molecules.
Zhang, Bo
The past decade has witnessed astounding boom in telecommunication network traffic. With the emergence of multimedia over Internet, the high-capacity optical transport systems have started to shift focus from the core network towards the end users. This trend leads to diverse optical networks with transparency and reconfigurability requirement. As single channel data rate continues to increase and channel spacing continues to shrink for high capacity, high spectral efficiency, the workload on conventional electronic signal processing elements in the router nodes continues to build up. Performing signal processing functions in the optical domain can potentially alleviate the speed bottleneck if the unique optical properties are efficiently leveraged to assist electronic processing methodologies. Ultra-high bandwidth capability along with the promise for multi-channel and format-transparent operation make optical signal processing an attractive technology which is expected to have great impact on future optical networks. For optical signal processing applications in fiber-optic network and systems, a laudable goal would be to explore the unique nonlinear optical processes in novel photonic devices. This dissertation investigates novel optical signal processing techniques through simulations and experimental demonstrations, analyzes limitations of these nonlinear processing elements and proposes techniques to enhance the system performance or designs for functional photonic modules. Two key signal-processing building blocks for future optical networks, namely slow-light-based tunable optical delay lines and SOA-based high-speed wavelength converters, are presented in the first part of the dissertation. Phase preserving and spectrally efficient slow light are experimentally demonstrated using advanced modulation formats. Functional and novel photonic modules, such as multi-channel synchronizer and variable-bit-rate optical time division multiplexer are designed and
Monolithic resonant optical reflector laser diodes
Hirata, T.; Suehiro, M.; Maeda, M.; Hihara, M.; Hosomatsu, H.
1991-10-01
The first monolithic resonant optical reflector laser diode that has a waveguide directional coupler and two DBR reflectors integrated by compositional disordering of quantum-well heterostructures is described. A linewidth of 440 kHz was obtained, and this value is expected to be greatly decreased by reducing the propagation loss in the integrated waveguide.
Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures
Ferrera, M.; Razzari, L.; Duchesne, D.; Morandotti, R.; Yang, Z.; Liscidini, M.; Sipe, J. E.; Chu, S.; Little, B. E.; Moss, D. J.
2008-12-01
Photonic integrated circuits are a key component of future telecommunication networks, where demands for greater bandwidth, network flexibility, and low energy consumption and cost must all be met. The quest for all-optical components has naturally targeted materials with extremely large nonlinearity, including chalcogenide glasses and semiconductors, such as silicon and AlGaAs (ref. 4). However, issues such as immature fabrication technology for chalcogenide glass and high linear and nonlinear losses for semiconductors motivate the search for other materials. Here we present the first demonstration of nonlinear optics in integrated silica-based glass waveguides using continuous-wave light. We demonstrate four-wave mixing, with low (5 mW) continuous-wave pump power at λ = 1,550 nm, in high-index, doped silica glass ring resonators. The low loss, design flexibility and manufacturability of our device are important attributes for low-cost, high-performance, nonlinear all-optical photonic integrated circuits.
Yu, Weiguo; Jia, Jianhong; Gao, Jianrong; Han, Liang; Li, Yujin
2015-03-01
Six symmetrical ferrocenyl Schiff base materials were synthesized and characterized by UV, 1H NMR, mass spectrometry (MS) and elemental analysis. Their off-resonant third-order nonlinear optical properties were measured using femtosecond laser and degenerate four-wave mixing (DFWM) technique. The third-order nonlinear optical susceptibilities χ(3) were 1.961-6.363 × 10-13 esu. The nonlinear refractive indexes n2 were 3.609-11.716 × 10-12 esu. The second-order hyperpolarizabilities γ of these molecules were 1.967-6.388 × 10-31 esu. The response time were 45.759-73.079 fs. The results indicate that these materials have potential nonlinear optical applications.
Ciattoni, Alessandro
2014-01-01
Strong nonlinear optical mechanisms operating in a miniaturized environment have a key role in photonics since they allow complex and versatile light manipulation within subwavelength devices. On the other hand, due to its two-dimensional planar geometry, graphene can easily be embedded within miniaturized structures and has fascinating linear and nonlinear optical properties arising from its relativistic electron dynamics. However, very few light steering graphene-based setups with a strong nonlinear behavior have been proposed since, due to its intrinsic planar localization, graphene nonlinearity has to be exploited through novel schemes not available in standard bulk nonlinear optics. Here we show that an active cavity hosting a graphene sheet, when tuned near its lasing threshold, is able to isolate the spatially localized graphene nonlinearity thus producing a very strong nonlinear device response with multi-valued features. The proposed strategy for exploiting graphene nonlinearity through its baring co...
Resonance spectra of diabolo optical antenna arrays
Directory of Open Access Journals (Sweden)
Hong Guo
2015-10-01
Full Text Available A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.
Temperature Sensors Based on WGM Optical Resonators
Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute; Itchenko, Vladimir; Matsko, Andrey; Strekalov, Dmitry
2008-01-01
A proposed technique for measuring temperature would exploit differences between the temperature dependences of the frequencies of two different electromagnetic modes of a whispering gallery-mode (WGM) optical resonator. An apparatus based on this technique was originally intended to be part of a control system for stabilizing a laser frequency in the face of temperature fluctuations. When suitably calibrated, apparatuses based on this technique could also serve as precise temperature sensors for purposes other than stabilization of lasers. A sensor according to the proposal would include (1) a transparent WGM dielectric resonator having at least two different sets of modes characterized by different thermo-optical constants and (2) optoelectronic instrumentation for measuring the difference between the temperature-dependent shifts of the resonance frequencies of the two sets of modes.
Nonlinear optical spectroscopy of isotropic and anisotropic metallic nanocomposites
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Hernandez, R C; Gleason-Villagran, R; Cheang-Wong, J C; Crespo-Sosa, A; Rodriguez-Fernandez, L; Lopez-Suarez, A; Oliver, A; Reyes-Esqueda, J A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D. F. 04510 (Mexico); Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Zacatenco, Instituto Politecnico Nacional, Mexico, D. F. 07338 (Mexico); Rangel-Rojo, R, E-mail: reyes@fisica.unam.mx [CICESE/Depto. de Optica, A.P. 360, Ensenada, B. C. 22860 (Mexico)
2011-01-01
In this work, we studied the nonlinear absorption and refraction of isotropic and anisotropic metallic nanocomposites, which consist of Au and Ag nanoparticles (NPs) embedded in matrices of SiO{sub 2}. We performed this study at different wavelengths using the Z-scan technique in the picosecond regime. The wavelengths were selected accordingly to the absorption spectra of the nanocomposites, choosing wavelengths into the inter- and intra-band transitions regions, including the surface plasmon (SP) resonance, as well as in the transparent region. For the anisotropic nanocomposites, the polarization and the incident angle were varied in order to evaluate the different components of the third order susceptibility tensor, {chi}{sup (3)}. We observed dramatic changes of sign for both, nonlinear refraction and absorption, when passing from Au to Ag and/or varying the wave length. The results accentuate the importance of the hot-electrons contribution to the nonlinear optical response at this temporal regime, when compared to inter-band and intra-band transitions contributions.
Modeling of the nonlinear resonant response in sedimentary rocks
Energy Technology Data Exchange (ETDEWEB)
Ten Cate, James A [Los Alamos National Laboratory; Shankland, Thomas J [Los Alamos National Laboratory; Vakhnenko, Vyacheslav O [NON LANL; Vakhnenko, Oleksiy [NON LANL
2009-04-03
We suggest a model for describing a wide class of nonlinear and hysteretic effects in sedimentary rocks at longitudinal bar resonance. In particular, we explain: hysteretic behaviour of a resonance curve on both its upward and downward slopes; linear softening of resonant frequency with increase of driving level; gradual (almost logarithmic) recovery of resonant frequency after large dynamical strains; and temporal relaxation of response amplitude at fixed frequency. Starting with a suggested model, we predict the dynamical realization of end-point memory in resonating bar experiments with a cyclic frequency protocol. These theoretical findings were confirmed experimentally at Los Alamos National Laboratory. Sedimentary rocks, particularly sandstones, are distinguished by their grain structure in which each grain is much harder than the intergrain cementation material. The peculiarities of grain and pore structures give rise to a variety of remarkable nonlinear mechanical properties demonstrated by rocks, both at quasistatic and alternating dynamic loading. Thus, the hysteresis earlier established for the stress-strain relation in samples subjected to quasistatic loading-unloading cycles has also been discovered for the relation between acceleration amplitude and driving frequency in bar-shaped samples subjected to an alternating external drive that is frequency-swept through resonance. At strong drive levels there is an unusual, almost linear decrease of resonant frequency with strain amplitude, and there are long-term relaxation phenomena such as nearly logarithmic recovery (increase) of resonant frequency after the large conditioning drive has been removed. In this report we present a short sketch of a model for explaining numerous experimental observations seen in forced longitudinal oscillations of sandstone bars. According to our theory a broad set of experimental data can be understood as various aspects of the same internally consistent pattern. Furthermore
Optical bistability effect in plasmonic racetrack resonator with high extinction ratio.
Wang, Xiaolei; Jiang, Houqiang; Chen, Junxue; Wang, Pei; Lu, Yonghua; Ming, Hai
2011-09-26
In this paper, optical bistability effect in an ultracompact plasmonic racetrack resonator with nonlinear optical Kerr medium is investigated both analytically and numerically. The properties of optical bistability and pump threshold are studied at 1.55 µm with various detuning parameters by an analytical model. The transmission switch from the upper branch to the lower branch with a pulse is also demonstrated by a finite-difference time-domain method. An extinction ratio of 97.8% and a switching time of 0.38 ps can be achieved with proper detuning parameter. Such a plasmonic resonator design provides a promising realization for highly effective optical modulators and switch.
DEFF Research Database (Denmark)
Ghasemi, Negareh; Zare, Firuz; Davari, Pooya
2017-01-01
Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectri...... receiver is a function of a voltage across the resistor in the RLC branches and is related to the resonance frequencies of the ultrasound transducer....
DEFF Research Database (Denmark)
Johannessen, Christian; Abdali, Salim; White, Peter C.
2007-01-01
High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...
Nonlinear dynamics of giant resonances in atomic nuclei
Vretenar, D; Ring, P; Lalazissis, G A
1999-01-01
The dynamics of monopole giant resonances in nuclei is analyzed in the time-dependent relativistic mean-field model. The phase spaces of isoscalar and isovector collective oscillations are reconstructed from the time-series of dynamical variables that characterize the proton and neutron density distributions. The analysis of the resulting recurrence plots and correlation dimensions indicate regular motion for the isoscalar mode, and chaotic dynamics for the isovector oscillations. Information-theoretic functionals identify and quantify the nonlinear dynamics of giant resonances in quantum systems that have spatial as well as temporal structure.
Magnetic resonance imaging of optic nerve
Directory of Open Access Journals (Sweden)
Foram Gala
2015-01-01
Full Text Available Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI, plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies.
Enhanced energy storage in chaotic optical resonators
Liu, Changxu
2013-05-05
Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab initio simulations and experiments in photonic-crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase by considering the equipartition of energy among all degrees of freedom of the chaotic resonator (that is, the cavity modes) and discover a convergence of their lifetimes towards a single value. A compelling illustration of the theory is provided by enhanced absorption in deformed polystyrene microspheres. © 2013 Macmillan Publishers Limited. All rights reserved.
Integrated optic devices based on nonlinear optical polymers
van Tomme, Emmanuel; van Daele, Peter P.; Baets, Roel G.; Lagasse, Paul E.
1991-03-01
An examination is made of the state of the art of nonlinear optical polymeric materials in view of their potential advantages. It is shown that these organic materials have many attractive features compared to LiNbO3 and III-V semiconductors with regard to their use in integrated optic circuits, especially since the level of integration is ever increasing. Considering more specifically electro-optic devices, a description is given of some of the theoretical background and basic properties. These polymers have already demonstrated a very high and extremely fast electro-optic effect compared to LiNbO3. It is also shown how low-loss waveguides can be fabricated by using easy techniques such as direct UV bleaching. The performance of phase modulators, Mach-Zehnder interferometers, and 2 x 2 space switches built with such polymers is already very promising. The results described in this study indicate a rapid rate of progress made by this technology, and one can expect that polymers in general and NLO polymers in particular will play an increasingly important role in integrated optics.
Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite
Energy Technology Data Exchange (ETDEWEB)
Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)
2015-09-15
Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10{sup -5} cm{sup 2}/W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)
Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks.
Mangussi, Franco; Zanette, Damián H
2016-01-01
In oscillating mechanical systems, nonlinearity is responsible for the departure from proportionality between the forces that sustain their motion and the resulting vibration amplitude. Such effect may have both beneficial and harmful effects in a broad class of technological applications, ranging from microelectromechanical devices to edifice structures. The dependence of the oscillation frequency on the amplitude, in particular, jeopardizes the use of nonlinear oscillators in the design of time-keeping electronic components. Nonlinearity, however, can itself counteract this adverse response by triggering a resonant interaction between different oscillation modes, which transfers the excess of energy in the main oscillation to higher harmonics, and thus stabilizes its frequency. In this paper, we examine a model for internal resonance in a vibrating elastic beam clamped at its two ends. In this case, nonlinearity occurs in the form of a restoring force proportional to the cube of the oscillation amplitude, which induces resonance between modes whose frequencies are in a ratio close to 1:3. The model is based on a representation of the resonant modes as two Duffing oscillators, coupled through cubic interactions. Our focus is put on illustrating the diversity of behavior that internal resonance brings about in the dynamical response of the system, depending on the detailed form of the coupling forces. The mathematical treatment of the model is developed at several approximation levels. A qualitative comparison of our results with previous experiments and numerical calculations on elastic beams is outlined.
Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks
Mangussi, Franco
2016-01-01
In oscillating mechanical systems, nonlinearity is responsible for the departure from proportionality between the forces that sustain their motion and the resulting vibration amplitude. Such effect may have both beneficial and harmful effects in a broad class of technological applications, ranging from microelectromechanical devices to edifice structures. The dependence of the oscillation frequency on the amplitude, in particular, jeopardizes the use of nonlinear oscillators in the design of time-keeping electronic components. Nonlinearity, however, can itself counteract this adverse response by triggering a resonant interaction between different oscillation modes, which transfers the excess of energy in the main oscillation to higher harmonics, and thus stabilizes its frequency. In this paper, we examine a model for internal resonance in a vibrating elastic beam clamped at its two ends. In this case, nonlinearity occurs in the form of a restoring force proportional to the cube of the oscillation amplitude, which induces resonance between modes whose frequencies are in a ratio close to 1:3. The model is based on a representation of the resonant modes as two Duffing oscillators, coupled through cubic interactions. Our focus is put on illustrating the diversity of behavior that internal resonance brings about in the dynamical response of the system, depending on the detailed form of the coupling forces. The mathematical treatment of the model is developed at several approximation levels. A qualitative comparison of our results with previous experiments and numerical calculations on elastic beams is outlined. PMID:27648829
Liu, Sheng; Reno, John L; Sinclair, Michael B; Brener, Igal
2016-01-01
Metamaterials comprising assemblies of dielectric resonators have attracted much attention due to their low intrinsic loss and isotropic optical response. In particular, metasurfaces made from silicon dielectric resonators have shown desirable behaviors such as efficient nonlinear optical conversion, spectral filtering and advanced wave-front engineering. To further explore the potential of dielectric metamaterials, we present all-dielectric metamaterials fabricated from epitaxially grown III-V semiconductors that can exploit the high second-order optical susceptibilities of III-V semiconductors, as well as the ease of monolithically integrating active/gain media. Specifically, we create GaAs nano-resonators using a selective wet oxidation process that forms a low refractive index AlGaO (n~1.6) under layer similar to silicon dielectric resonators formed using silicon-on-insulator wafers. We further use the same fabrication processes to demonstrate multilayer III-V dielectric resonator arrays that provide us w...
Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes
Kirkendall, Christopher R.; Kwon, Jae W.
2016-03-01
Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion.
Frequency-tunable superconducting resonators via nonlinear kinetic inductance
Energy Technology Data Exchange (ETDEWEB)
Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Chaudhuri, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Bockstiegel, C. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)
2015-08-10
We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.
Large nonlocal nonlinear optical response of castor oil
Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.
2009-09-01
The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.
Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles
Pinchuk, A
2003-01-01
Nonlinear composite structures show great promise for use in optical switching, signal processing, etc. We derive an effective nonlinear dielectric permittivity of composite structures where coated ellipsoidal nonlinear particles are imbedded in a linear host medium. The derived expression for the effective dielectric permittivity tensor follows the Clasius-Mossotti approximation. We observe conditions for the existence of the optical bistability effect in a coated ellipsoidal particle with a nonlinear core and a metallic shell. Our numerical results show stronger bistability effects in more dense suspensions of nonlinear heterogeneous ellipsoids.
Non-equilibrium many-body effects in driven nonlinear resonator arrays
Grujic, T; Angelakis, D G; Jaksch, D
2012-01-01
We study the non-equilibrium behavior of optically driven dissipative coupled resonator arrays. Assuming each resonator is coupled with a two-level system via a Jaynes-Cummings interaction, we calculate the many-body steady state behavior of the system under coherent pumping and dissipation. We propose and analyze the many-body phases using experimentally accessible quantities such as the total excitation number, the emitted photon spectra and photon coherence functions for different parameter regimes. In parallel, we also compare and contrast the expected behavior of this system assuming the local nonlinearity in the cavities is generated by a generic Kerr effect rather than a Jaynes-Cummings interaction. We find that the behavior of the experimentally accessible observables produced by the two models differs for realistic regimes of interactions even when the corresponding nonlinearities are of similar strength. We analyze in detail the extra features available in the Jaynes-Cummings-Hubbard (JCH) model ori...
Double resonant processes in $\\chi^{(2)}$ nonlinear periodic media
Konotop, V. V.; Kuzmiak, V.
2000-01-01
In a one-dimensional periodic nonlinear $\\chi^{(2)}$ medium, by choosing a proper material and geometrical parameters of the structure, it is possible to obtain two matching conditions for simultaneous generation of second and third harmonics. This leads to new diversity of the processes of the resonant three-wave interactions, which are discussed within the framework of slowly varying envelope approach. In particular, we concentrate on the fractional conversion of the frequency $\\omega \\to (...
Analysis and design of nonlinear resonances via singularity theory
Cirillo, G I; Kerschen, G; Sepulchre, R
2016-01-01
Bifurcation theory and continuation methods are well-established tools for the analysis of nonlinear mechanical systems subject to periodic forcing. We illustrate the added value and the complementary information provided by singularity theory with one distinguished parameter. While tracking bifurcations reveals the qualitative changes in the behaviour, tracking singularities reveals how structural changes are themselves organised in parameter space. The complementarity of that information is demonstrated in the analysis of detached resonance curves in a two-degree-of-freedom system.
Analysis and design of nonlinear resonances via singularity theory
Cirillo, G. I.; Habib, G.; Kerschen, G.; Sepulchre, R.
2017-03-01
Bifurcation theory and continuation methods are well-established tools for the analysis of nonlinear mechanical systems subject to periodic forcing. We illustrate the added value and the complementary information provided by singularity theory with one distinguished parameter. While tracking bifurcations reveals the qualitative changes in the behaviour, tracking singularities reveals how structural changes are themselves organised in parameter space. The complementarity of that information is demonstrated in the analysis of detached resonance curves in a two-degree-of-freedom system.
Doubly Resonant Optical Periodic Structure.
Alagappan, G; Png, C E
2016-02-08
Periodic structures are well known in various branches of physics for their ability to provide a stopband. In this article, using optical periodic structures we showed that, when a second periodicity--very closed to the original periodicity is introduced, large number of states appears in the stopband corresponding to the first periodicity. In the limit where the two periods matches, we have a continuum of states, and the original stopband completely disappears. This intriguing phenomena is uncovered by noticing that, regardless of the proximities of the two periodicities, there is an array of spatial points where the dielectric functions corresponding to the two periodicities interfere destructively. These spatial points mimic photonic atoms by satisfying the standards equations of quantum harmonic oscillators, and exhibit lossless, atom-like dispersions.
Ultrafast third-order nonlinear optical response of pyrene derivatives
Shi, Yufang; Li, Zhongguo; Fang, Yu; Sun, Jinyu; Zhao, Minggen; Song, Yinglin
2017-05-01
Two mono-substituted pyrene derivatives with delocalized electron system 1-(pyren-1-yl)-3-(4-Methyl thiophene-2-yl) acrylic ketone (13#) and 1-(pyren-1-yl)-3-(4-bromo thiophene-2-yl) acrylic ketone (15#) were successfully synthesized. The resultant compounds were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR), high resolution mass spectrum (HR-MS), and UV-vis spectra. The third-order nonlinear optical properties of the compounds were investigated using Z-scan technique with femtosecond laser pulses at 500 nm and 700 nm, respectively. Both of the compounds showed a decrease in transmittance about the focus, which are typical of two-photon absorption. It was found that the two-photon absorption behavior of the pyrene derivatives were modified by substituents on thiophene ring. These results indicate that both compounds can be promising candidates for future optoelectronic and bio-imaging applications.
Characterizaticr of Solid State Laser and Nonlinear Optical Materials.
1995-02-02
materials useful in the different methods for obtaining frequency agility: narrow line emitters with multiple lasing channels and nonlinear optical materials . In...codoped with two or more rare earth ions were studied and computers models developed to explain their spectral dynamics. The nonlinear optical materials investigated
A Photonic Basis for Deriving Nonlinear Optical Response
Andrews, David L.; Bradshaw, David S.
2009-01-01
Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…
Coupled Optical Resonance Laser Lockin
Burd, Shaun
2013-01-01
We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to the same spectroscopic sample, by monitoring only the absorption of the UV laser. For trapping and cooling Yb$^{+}$ ions, a frequency stabilized laser is required at 369.95nm to drive the $^{2}S_{1/2}$ $ \\rightarrow $ $ ^{2}P_{1/2}$ cooling transition. Since the cycle is not closed, a 935.18nm laser is needed to drive the $^{2}D_{3/2}$ $\\rightarrow$ $^{3}D_{[3/2]1/2}$ transition which is followed by rapid decay to the $^{2}S_{1/2}$ state. Our 369nm laser is locked to Yb$^{+}$ ions generated in a hollow cathode discharge lamp using saturated absorption spectroscopy. Without pumping, the metastable $^{2}D_{3/2}$ level is only sparsely populated and direct absorption of 935nm light is difficult to detect. A resonant 369nm laser is able to significantly populate the $^{2}D_{3/2}$ state due to the coupling between the levels. Fast re-pumping to the $^{2}S_{1/2}$ state, by 935nm light, can be detected by observing the change in...
Nonlinear refractive index of optical crystals
Adair, Robert; Chase, L. L.; Payne, Stephen A.
1989-02-01
The nonlinear refractive indices (n2) of a large number of optical crystals have been measured at a wavelength near one micrometer with use of nearly degenerate three-wave mixing. The measurements are compared with the predictions of an empirical formula derived by Boling, Glass, and Owyoung. This formula, which relates n2 to the linear refractive index and its dispersion, is shown to be accurate to within about 30% for materials with nonlinear indices ranging over 3 orders of magnitude. Measurements for a number of binary oxide and fluoride crystals have been analyzed under the assumption that the hyperpolarizability of the anion is much larger than that of the cation. It is found that the hyperpolarizability of oxygen varies by a factor of 10, and that of fluorine varies by a factor of 7, depending on the size of the coordinating cation. This behavior is similar to that of the linear polarizability, although the hyperpolarizability is much more sensitive than the linear polarizability to the identity of the cation. The measured halide ion hyperpolarizabilities for several alkali-halide crystals are in reasonable agreement with recent self-consistent calculations. A semiempirical model was proposed by Wilson and Curtis to account for the dependence of the linear anionic polarizability on the radius of the cation. This model also accounts quite well for the variation of the hyperpolarizability of both fluorine and oxygen, except for cation partners that have filled or unfilled d-electron shells. The nonlinear indices of a number of complex oxides (i.e., those with more than one cation) have been calculated from the partial hyperpolarizabilities deduced from the data for the binary oxides. The calculated and measured values of n2 agree to within an average error of 13%.
High nonlinear optical anisotropy of urea nanofibers
Isakov, D.; de Matos Gomes, E.; Belsley, M.; Almeida, B.; Martins, A.; Neves, N.; Reis, R.
2010-07-01
Nanofibers consisting of the optically nonlinear organic molecule urea embedded in both poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) polymers were produced by the electrospinning technique. The second-harmonic generation produced by aligned fiber mats of these materials displays a strong dependence on the polarization of the incident light. In PVA-urea nanofibers the effectiveness in generating of the second-harmonic light is as high as that of a pure urea powder with an average grain size of 110 μm. The results suggest that single crystalline urea nanofibers were achieved with a long-range crystalline order extending into the range of 2-4 μm with PVA as the host polymer.
Kinetic equation for nonlinear resonant wave-particle interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
Optical bistability in a nonlinear-shell-coated metallic nanoparticle
Chen, Hongli; Zhang, Youming; Zhang, Baile; Gao, Lei
2016-01-01
We provide a self-consistent mean field approximation in the framework of Mie scattering theory to study the optical bistability of a metallic nanoparticle coated with a nonlinear shell. We demonstrate that the nanoparticle coated with a weakly nonlinear shell exhibits optical bistability in a broad range of incident optical intensity. This optical bistability critically relies on the geometry of the shell-coated nanoparticle, especially the fractional volume of the metallic core. The incident wavelength can also affect the optical bistability. Through an optimization-like process, we find a design with broader bistable region and lower threshold field by adjusting the size of the nonlinear shell, the fractional volume of the metallic core, and the incident wavelength. These results may find potential applications in optical bistable devices such as all-optical switches, optical transistors and optical memories. PMID:26907967
Resonances in nonlinear structure vibrations under multifrequency excitations
Energy Technology Data Exchange (ETDEWEB)
El-Bassiouny, A F [Faculty of Science, Mathematics Department, Benha University, Benha 1358 (Egypt); El-Latif, G M Abd [Faculty of Science, Mathematics Department, Sohag University, Sohag (Egypt)
2006-10-15
The response of a single-degree-of-freedom system with quadratic, cubic and quartic nonlinearities subjected to a sinusoidal excitation that involves multiple frequencies is considered. The method of multiple scales is used to construct a first order uniform expansion yielding two first-order nonlinear ordinary differential equations that are derived for the evolution of the amplitude and phase. These oscillations involve a subharmonic oscillation of order one-fourth and superharmonic oscillation of order two. Steady state responses and their stability are computed for selected values of the system parameters. The effects of these (quadratic, cubic, and quartic) nonlinearities on these oscillations are specifically investigated. With this study, it has been verified that the qualitative effects of these nonlinearities are different. Regions of hardening (softening) behaviour of the system exist for the case of subharmonic resonance. The response curve is not affected by decreasing the damping factor for the case of superharmonic resonance. It is shown that the response curve contracts or expands as the parameters vary. The multivalued region increases or decreases when some parameters vary.
Nonlinear dynamic response of an electrically actuated imperfect microbeam resonator
Ruzziconi, Laura
2013-08-04
We present a study of the dynamic behavior of a MEMS device constituted of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. The nonlinear behavior is highlighted, which includes ranges of multistability, where the non-resonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is capable also to capture the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. Copyright © 2013 by ASME.
Laser And Nonlinear Optical Materials For Laser Remote Sensing
Barnes, Norman P.
2005-01-01
NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.
Bidirectional all-optical switches based on highly nonlinear optical fibers
Liu, Wenjun; Yang, Chunyu; Liu, Mengli; Yu, Weitian; Zhang, Yujia; Lei, Ming; Wei, Zhiyi
2017-05-01
All-optical switches have become one of the research focuses of nonlinear optics due to their fast switching speed. They have been applied in such fields as ultrafast optics, all-optical communication and all-optical networks. In this paper, based on symbolic computation, bidirectional all-optical switches are presented using analytic two-soliton solutions. Various types of soliton interactions are analyzed through choosing the different parameters of high-order dispersion and nonlinearity. Results indicate that bidirectional all-optical switches can be effectively achieved using highly nonlinear optical fibers.
Extraordinary transmission in optical Helmholtz resonators.
Chevalier, Paul; Bouchon, Patrick; Sakat, Emilie; Pelouard, Jean-Luc; Pardo, Fabrice; Haïdar, Riad
2015-06-15
Optical Helmholtz resonators (OHRs) have been adapted from acoustics designs for light absorbing structures, exhibiting extreme light confinement. Here, extraordinary transmission of light is theoretically demonstrated through symmetric OHRs, comprising a cavity with two λ/500 narrow slits on either side. This device has appealing features to act as a spectral bandpass filter in the context of multispectral imaging, in particular its high angular tolerance because of the localized nature of the resonance. Besides, the cavity can be modeled as an inductor and the two slits can be modeled as capacitors, the whole design acting as a LC circuit thus preventing any harmonic features.
Optical limiter based on two-dimensional nonlinear photonic crystals
Belabbas, Amirouche; Lazoul, Mohamed
2016-04-01
The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.
Nonlinear Resonance Benchmarking Experiment at the CERN Proton Synchrotron
Hofmann, I; Giovannozzi, Massimo; Martini, M; Métral, Elias
2003-01-01
As a first step of a space charge - nonlinear resonance benchmarking experiment over a large number of turns, beam loss and emittance evolution were measured over 1 s on a 1.4 GeV kinetic energy flat-bottom in the presence of a single octupole. By lowering the working point towards the resonance a gradual transition from a loss-free core emittance blow-up to a regime dominated by continuous loss was found. Our 3D simulations with analytical space charge show that trapping on the resonance due to synchrotron oscillation causes the observed core emittance growth as well as halo formation, where the latter is explained as the source of the observed loss.
Quantized amplitudes in a nonlinear resonant electrical circuit
Cretin, B
2008-01-01
We present a simple nonlinear resonant analog circuit which demonstrates quantization of resonating amplitudes, for a given excitation level. The system is a simple RLC resonator where C is an active capacitor whose value is related to the current in the circuit. This variation is energetically equivalent to a variation of the potential energy and the circuit acts as a pendulum in the gravitational field. The excitation voltage, synchronously switched at the current frequency, enables electrical supply and keeping the oscillation of the system. The excitation frequency has been set to high harmonic of the fundamental oscillation so that anisochronicity can keep constant the amplitude of the circuit voltage and current. The behavior of the circuit is unusual: different stable amplitudes have been measured depending on initial conditions and excitation frequency, for the same amplitude of the excitation. The excitation frequency is naturally divided by the circuit and the ratio is kept constant without external...
Linear and nonlinear optics of surface plasmon toy-models of black holes and wormholes
Smolyaninov, I I
2003-01-01
Experimental and theoretical studies of linear and nonlinear optics of surface plasmon toy wormholes and black holes have been performed. These models are based on dielectric microdroplets on the metal surfaces and on nanoholes drilled in thin metal films. Toy surface plasmon black holes and wormholes are shown to exhibit strongly enhanced nonlinear optical behavior in the frequency range near the surface plasmon resonance of a metal-liquid interface. Various possibilities to emulate such nontrivial gravitation theory effects as Hawking radiation and Cauchy horizons are discussed.
Yuan, Jian-Hui; Chen, Ni; Zhang, Yan; Mo, Hua; Zhang, Zhi-Hai
2016-03-01
Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells are studied theoretically. Both the second-harmonic generation susceptibility and nonlinear optical rectification depend dramatically on the direction and the strength of the electric field. Numerical results show that both the second-harmonic generation susceptibility and nonlinear optical rectification are always weakened as the electric field increases where the direction of the electric field is along the growth direction of the quantum wells, which is in contrast to the conventional case. However, the second-harmonic generation susceptibility is weakened, but the nonlinear optical rectification is strengthened as the electric field increases where the direction of the electric field is against the growth direction of the quantum wells. Also it is the blue (or red) shift of the resonance that is induced by increasing of the electric field when the direction of the electric field is along (or against) the growth direction of the quantum wells. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.
Tadesse, Semere Ayalew
2014-01-01
Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct...
Nonlinear super-resolution nano-optics and applications
Wei, Jingsong
2015-01-01
This book covers many advances in the subjects of nano-optics and nano photonics. The author describes the principle and technical schematics of common methods for breaking through the optical diffraction limit and focuses on realizing optical super-resolution with nonlinear effects of thin film materials. The applications of nonlinear optical super-resolution effects in nano-data storage, nanolithography, and nano-imaging are also presented. This book is useful to graduate students majoring in optics and nano science and also serves as a reference book for academic researchers, engineers, technical professionals in the fields of super-resolution optics and laser techniques, nano-optics and nano photonics, nano-data storage, nano imaging, micro/nanofabrication and nanolithography and nonlinear optics.
Nonlinear optical response in doped conjugated polymers
Harigaya, K
1995-01-01
Exciton effects on conjugated polymers are investigated in soliton lattice states. We use the Su-Schrieffer-Heeger model with long-range Coulomb interactions. The Hartree-Fock (HF) approximation and the single-excitation configuration- interaction (single-CI) method are used to obtain optical absorption spectra. The third-harmonic generation (THG) at off-resonant frequencies is calculated as functions of the soliton concentration and the chain length of the polymer. The magnitude of the THG at the 10 percent doping increases by the factor about 10^2 from that of the neutral system. This is owing to the accumulation of the oscillator strengths at the lowest exciton with increasing the soliton concentration. The increase by the order two is common for several choices of Coulomb interaction strengths.
Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene.
Wu, Sanfeng; Mao, Li; Jones, Aaron M; Yao, Wang; Zhang, Chuanwei; Xu, Xiaodong
2012-04-11
Second order optical nonlinear processes involve the coherent mixing of two electromagnetic waves to generate a new optical frequency, which plays a central role in a variety of applications, such as ultrafast laser systems, rectifiers, modulators, and optical imaging. However, progress is limited in the mid-infrared (MIR) region due to the lack of suitable nonlinear materials. It is desirable to develop a robust system with a strong, electrically tunable second order optical nonlinearity. Here, we demonstrate theoretically that AB-stacked bilayer graphene (BLG) can exhibit a giant and tunable second order nonlinear susceptibility χ((2)) once an in-plane electric field is applied. χ((2)) can be electrically tuned from 0 to ~10(5) pm/V, 3 orders of magnitude larger than the widely used nonlinear crystal AgGaSe(2). We show that the unusually large χ((2)) arise from two different quantum enhanced two-photon processes thanks to the unique electronic spectrum of BLG. The tunable electronic bandgap of BLG adds additional tunability on the resonance of χ((2)), which corresponds to a tunable wavelength ranging from ~2.6 to ~3.1 μm for the up-converted photon. Combined with the high electron mobility and optical transparency of the atomically thin BLG, our scheme suggests a new regime of nonlinear photonics based on BLG. © 2012 American Chemical Society
Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters
Hajjaj, Amal Z.
2017-01-30
We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage.
Optical isolation via unidirectional resonant photon tunneling
Moccia, Massimo; Galdi, Vincenzo; Alu', Andrea; Engheta, Nader
2013-01-01
We show that tri-layer structures combining epsilon-negative and magneto-optical material layers can exhibit unidirectional resonant photon tunneling phenomena that can discriminate between circularly-polarized (CP) waves of given handedness impinging from opposite directions, or between CP waves with different handedness impinging from the same direction. This physical principle may be utilized to design compact optical isolators for CP waves. Within this framework, we derive simple analytical conditions and design formulae, and quantitatively assess the isolation performance, also taking into account the unavoidable imperfections and nonidealities.
Improved fiber nonlinearity mitigation in dispersion managed optical OFDM links
Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi
2017-02-01
Fiber nonlinearity is seen as a capacity limiting factor in OFDM based dispersion managed links since the Four Wave Mixing effects become enhanced due to the high PAPR. In this paper, the authors have compared the linear and nonlinear PAPR reduction techniques for fiber nonlinearity mitigation in OFDM based dispersion managed links. In the existing optical systems, linear transform techniques such as SLM and PTS have been implemented to reduce nonlinear effects. In the proposed study, superior performance of the L2-by-3 nonlinear transform technique is demonstrated for PAPR reduction to mitigate fiber nonlinearities. The performance evaluation is carried out by interfacing multiple simulators. The results of both linear and nonlinear transform techniques have been compared and the results show that nonlinear transform technique outperforms the linear transform in terms of nonlinearity mitigation and improved BER performance.
Passive optical resonator for OSQAR LSW experiment
Kunc, Š.; Messineo, G.; Schott, M.; Šulc, M.
2016-11-01
This paper treats the issue of locking a solid state laser, pumped by high power diodes (Verdi V5), to a twenty meter long optical resonator for OSQAR LSW - light shining through the wall, dark matter search experiment. In this paper the optical design and a possible locking scheme are presented. The environmental conditions in SM18 testing hall at CERN, where OSQAR experiment is based, are discussed. The main focus is put on the vibration analysis, cavity transversal modes behaviour, possible clipping in the anticryostat of LHC - Large Hadron Collider magnet bore and locking loop parameters required for future experimental testing. The expected finesse of resonator will be presented and discussed in the sense of OSQAR LSW; its impact on possible new exclusion limits is discussed.
Rydberg optical Feshbach resonances in cold gases
Sándor, Nóra; Julienne, Paul S; Pupillo, Guido
2016-01-01
We propose a novel scheme to efficiently tune the scattering length of two colliding ground-state atoms by off-resonantly coupling the scattering-state to an excited Rydberg-molecular state using laser light. For the s-wave scattering of two colliding ${^{87}}\\mathrm{Rb}$ atoms, we demonstrate that the effective optical length and pole strength of this Rydberg optical Feshbach resonance can be tuned over several orders of magnitude, while incoherent processes and losses are minimised. Given the ubiquity of Rydberg molecular states, this technique should be generally applicable to homo-nuclear atomic pairs as well as to atomic mixtures with s-wave (or even p-wave) scattering.
Resonant Optical Absorption in Semiconductor Quantum Wells
Institute of Scientific and Technical Information of China (English)
YU Li-Yuan; CAO Jun-Cheng
2004-01-01
@@ We have calculated the intraband photon absorption coefficients of hot two-dimensional electrons interacting with polar-optical phonon modes in quantum wells. The dependence of the photon absorption coefficients on the photon wavelength λ is obtained both by using the quantum mechanical theory and by the balance-equation theory. It is found that the photon absorption spectrum displays a local resonant maximum, corresponding to LO energy, and the absorption peak vanishes with increasing the electronic temperature.
Optical microfiber coil resonator refractometric sensor.
Xu, Fei; Horak, Peter; Brambilla, Gilberto
2007-06-11
We present a novel refractometric sensor based on a coated all-coupling optical-fiber-nanowire microcoil resonator which is robust, compact, and comprises an intrinsic fluidic channel. We calculate the device sensitivity and find its dependence on the nanowire diameter and coating thickness. A sensitivity as high as 700 nm/RIU and a refractive index resolution as low as 10(-10) are predicted.
Ammonia Optical Sensing by Microring Resonators
Passaro, Vittorio M. N.; Dell'Olio, Francesco; De Leonardis, Francesco
2007-01-01
A very compact (device area around 40 μm2) optical ammonia sensor based on a microring resonator is presented in this work. Silicon-on-insulator technology is used in sensor design and a dye doped polymer is adopted as sensing material. The sensor exhibits a very good linearity and a minimum detectable refractive index shift of sensing material as low as 8×10-5, with a detection limit around 4 ‰.
Ding, Yi S.; Wang, Ruo-Peng
2011-01-01
We investigate the modulational instability and time-domain dynamics of nonlinear magnetic metamaterials composed of coupled split-ring resonators loaded by Kerr nonlinearity. Our results indicate that the recently proposed optical switching of local optical index based on uniform-response assumption seems fragile. We conceive two alternative schemes to utilize the valuable enhanced non- linearity, one is to focus on few-body systems and directly make use of the modulational instability (e.g....
{open_quotes}Quadrupoled{close_quotes} materials for second-order nonlinear optics
Energy Technology Data Exchange (ETDEWEB)
Hubbard, S.F.; Petschek, R.G.; Singer, K.D. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics] [and others
1997-10-01
We describe a new approach to second-order nonlinear optical materials, namely quadrupoling. This approach is valid in the regime of Kleinman (full permutation) symmetry breaking, and thus requires a two- or three dimensional microscopic nonlinearity at wavelengths away from material resonances. This {open_quotes}quadrupolar{close_quotes} nonlinearity arises from the second rank pseudotensor of the rotationally invariant representation of the second-order nonlinear optical tensor. We have experimentally investigated candidate molecules comprised of chiral camphorquinone derivatives by measuring the scalar invariant associated with the rank two pseudotensor using hyper-Rayleigh scattering. We have found sizable scalar figures of merit for several compounds using light for which the second harmonic wavelengths are greater than 100 nm longer than the absorption peak location. At these wavelengths, the quadrupolar scalar is as large as the polar (EFISH) scalar of p-nitroaniline. Prospects for applications are discussed.
Kohlgraf-Owens, Dana C; Kik, Pieter G
2009-08-17
The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite chi((3))(omega) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.
Nonlinear Optical Materials for the Smart Filtering of Optical Radiation.
Dini, Danilo; Calvete, Mário J F; Hanack, Michael
2016-11-23
The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting. All known mechanisms of optical limiting have been analyzed and discussed for the different types of materials.
Optical and Nonlinear Optical Response of Light Sensor Thin Films
Directory of Open Access Journals (Sweden)
S. Z. Weisz
2005-04-01
Full Text Available For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD and RF co-sputteringtechniques. In photoluminescence (PL measurement c-Si/SiO2 film containsnanoparticles of crystal Si exhibits strong red emission with the band maximum rangingfrom 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremelyintense and ultrafast nonlinear optical (NLO response. The recorded holography fromall these thin films in a degenerate-four-wave-mixing configuration shows extremelylarge third-order response. For VO2 thin films, an optically induced semiconductor-tometalphase transition (PT immediately occurred upon laser excitation. it accompanied.It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created bylaser excitation in conduction band of the c-Si nanoparticles. It was verified byintroducing Eu3+ which is often used as a probe sensing the environment variations. Itturns out that the entire excited state dynamical process associated with the creation,movement and trapping of the charge carriers has a characteristic 500 ps duration.
Topology optimization of nonlinear optical devices
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2011-01-01
This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation and an incremen......This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation...
Optical trapping apparatus, methods and applications using photonic crystal resonators
Erickson, David; Chen, Yih-Fan
2015-06-16
A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.
Ultrafast all-optical switching using signal flow graph for PANDA resonator.
Bahadoran, Mahdi; Ali, Jalil; Yupapin, Preecha P
2013-04-20
In this paper, the bifurcation behavior of light in the PANDA ring resonator is investigated using the signal flow graph (SFG) method, where the optical transfer function for the through and drop ports of the PANDA Vernier system are derived. The optical nonlinear phenomena, such as bistability, Ikeda instability, and dynamics of light in the silicon-on-insulator (SOI) PANDA ring resonator with four couplers are studied. The transmission curves for bistability and instability as a function of the resonant mode numbers and coupling coefficients for the coupler are derived by the SFG method and simulated. The proposed system has an advantage as no optical pumping component is required. Simulated results show that closed-loop bistable switching can be generated and achieved by varying mode resonant numbers in the SOI-PANDA Vernier resonator, where a smooth and closed-loop bistable switching with low relative output/input power can be obtained and realized. The minimum through-port switching time of 1.1 ps for resonant mode numbers of 5;4;4 and minimum drop port switching time of 1.96 ps for resonant mode numbers of 9;7;7 of the PANDA Vernier resonator are achieved, which makes the PANDA Vernier resonator an operative component for optical applications, such as optical signal processing and a fast switching key in photonics integrated circuits.
Nonlinear Optical Response of Conjugated Polymer to Electric Field
Institute of Scientific and Technical Information of China (English)
ZHOU Yu-fang; ZHUANG De-xin; CUI Bin
2005-01-01
The organic π-conjugated polymers are of major interest materials for the use in electro-optical and nonlinear optical devices. In this work, for a selected polyacetylene chain, the optical absorption spectra in UV/Vis regime as well as the linear polarizabilitiy and nonlinear hyperpolarizability are calculated by using quantum chemical ab initio and semiempirical methods. The relationship of its optical property to electric field is obtained. Some physical mechanism of electric field effect on molecular optical property is discussed by means of electron distribution and intramolecular charge transfer.
Sato, Rodrigo; Ohnuma, Masato; Oyoshi, Keiji; Takeda, Yoshihiko
2014-09-01
The effects of size quantization on the nonlinear optical response of Ag nanoparticles are experimentally studied by spectroscopic ellipsometry and femtosecond spectroscopic pump-and-probe techniques. In the vicinity of a localized surface-plasmon resonance (2.0-3.5 eV), we have investigated the optical nonlinearity of Ag particles embedded in silica glass for particle diameters ranging from 3.0 to 16 nm. The intrinsic third-order optical susceptibility χm(3) of Ag particles exhibited significant spectral and size dependences. These results are explained as quantum and dielectric confinements and are compared to the results of theoretical quantum finite-size effects calculation for metallic particles. In light of these results, we discuss the contribution of interband transitions to the size dependence of χm(3). Quantum size effects lead to an increase in nonlinearity in small Ag particles.
Baranov, Denis G; Milichko, Valentin A; Kudryashov, Sergey I; Krasnok, Alexander E; Belov, Pavel A
2016-01-01
Optically generated electron-hole plasma in high-index dielectric nanostructures was demonstrated as a means of tuning of their optical properties. However, until now an ultrafast operation regime of such plasma driven nanostructures has not been attained. Here, we perform pump-probe experiments with resonant silicon nanoparticles and report on dense optical plasma generation near the magnetic dipole resonance with ultrafast (about 2.5 ps) relaxation rate. Basing on experimental results, we develop an analytical model describing transient response of a nanocrystalline silicon nanoparticle to an intense laser pulse and show theoretically that plasma induced optical nonlinearity leads to ultrafast reconfiguration of the scattering power pattern. We demonstrate 100 fs switching to unidirectional scattering regime upon irradiation of the nanoparticle by an intense femtosecond pulse. Our work lays the foundation for developing ultracompact and ultrafast all-optical signal processing devices.
Nonlinear fiber applications for ultrafast all-optical signal processing
Kravtsov, Konstantin
In the present dissertation different aspects of all-optical signal processing, enabled by the use of nonlinear fibers, are studied. In particular, we focus on applications of a novel heavily GeO2-doped (HD) nonlinear fiber, that appears to be superior to many other types of nonlinear fibers because of its high nonlinearity and suitability for the use in nonlinear optical loop mirrors (NOLMs). Different functions, such as all-optical switching, thresholding, and wavelength conversion, are demonstrated with the HD fibers in the NOLM configuration. These basic functions are later used for realization of ultrafast time-domain demultiplexers, clock recovery, detectors of short pulses in stealth communications, and primitive elements for analog computations. Another important technology that benefits from the use of nonlinear fiber-based signal processing is optical code-division multiple access (CDMA). It is shown in both theory and experiment that all-optical thresholding is a unique way of improving existing detection methods for optical CDMA. Also, it is the way of implementation of true asynchronous optical spread-spectrum networks, which allows full realization of optical CDMA potential. Some aspects of quantum signal processing and manipulation of quantum states are also studied in this work. It is shown that propagation and collisions of Thirring solitons lead to a substantial squeezing of quantum states, which may find applications for generation of squeezed light.
Optical racetrack resonator transduction of nanomechanical cantilevers.
Sauer, V T K; Diao, Z; Freeman, M R; Hiebert, W K
2014-02-07
Optomechanical transduction has demonstrated its supremacy in probing nanomechanical displacements. In order to apply nano-optomechanical systems (NOMS) as force and mass sensors, knowledge about the transduction responsivity (i.e. the change in measured optical transmission with nanomechanical displacement) and its tradeoffs with system design is paramount. We compare the measured responsivities of NOMS devices with varying length, optomechanical coupling strength gom, and optical cavity properties. Cantilever beams 1.5 to 5 μm long are fabricated 70 to 160 nm from a racetrack resonator optical cavity and their thermomechanical (TM) noise signals are measured. We derive a generic expression for the transduction responsivity of the NOMS in terms of optical and mechanical system parameters such as finesse, optomechanical coupling constant, and interaction length. The form of the expression holds direct insight as to how these parameters affect the responsivity. With this expression, we obtain the optomechanical coupling constants using only measurements of the TM noise power spectra and optical cavity transmission slopes. All optical pump/probe operation is also demonstrated in our side-coupled cantilever-racetrack NOMS. Finally, to assess potential operation in a gas sensing environment, the TM noise signal of a device is measured at atmospheric pressure.
Nonlinear and Dispersive Optical Pulse Propagation
Dijaili, Sol Peter
In this dissertation, there are basically four novel contributions to the field of picosecond pulse propagation and measurement. The first contribution is the temporal ABCD matrix which is an analog of the traditional ABCD ray matrices used in Gaussian beam propagation. The temporal ABCD matrix allows for the easy calculation of the effects of linear chirp or group velocity dispersion in the time domain. As with Gaussian beams in space, there also exists a complete Hermite-Gaussian basis in time whose propagation can be tracked with the temporal ABCD matrices. The second contribution is the timing synchronization between a colliding pulse mode-locked dye laser and a gain-switched Fabry-Perot type AlGaAs laser diode that has achieved less than 40 femtoseconds of relative timing jitter by using a pulsed optical phase lock loop (POPLL). The relative timing jitter was measured using the error voltage of the feedback loop. This method of measurement is accurate since the frequencies of all the timing fluctuations fall within the loop bandwidth. The novel element is a broad band optical cross-correlator that can resolve femtosecond time delay errors between two pulse trains. The third contribution is a novel dispersive technique of determining the nonlinear frequency sweep of a picosecond pulse with relatively good accuracy. All the measurements are made in the time domain and hence there is no time-bandwidth limitation to the accuracy. The fourth contribution is the first demonstration of cross -phase modulation in a semiconductor laser amplifier where a variable chirp was observed. A simple expression for the chirp imparted on a weak signal pulse by the action of a strong pump pulse is derived. A maximum frequency excursion of 16 GHz due to the cross-phase modulation was measured. A value of 5 was found for alpha _{xpm} which is a factor for characterizing the cross-phase modulation in a similar manner to the conventional linewidth enhancement factor, alpha.
Linear and nonlinear optical properties of chalcogenide microstructured optical fibers
Trolès, Johann; Brilland, Laurent; Caillaud, Celine; Renversez, Gilles; Mechin, David; Adam, Jean-Luc
2015-03-01
Chalcogenide glasses are known for their large transparency in the mid-infrared and their high linear refractive index (>2). They present also a high non-linear coefficient (n2), 100 to 1000 times larger than for silica, depending on the composition. we have developed a casting method to prepare the microstructured chalcogenide preform. This method allows optical losses as low as 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various chalcogenide MOFs operating in the IR range has been fabricated in order to associate the high non-linear properties of these glasses and the original MOF properties. For example, small core fibers have been drawn to enhance the non linearities for telecom applications such as signal regeneration and generation of supercontinuum sources. On another hand, in the 3-12 µm window, single mode fibers and exposed core fibers have been realized for Gaussian beams propagation and sensors applications respectively.
Nonlinear optical properties of manganese porphyrin-incorporated PVC film
Directory of Open Access Journals (Sweden)
Jeong-Hyon Ha
2010-12-01
Full Text Available We measured thermally originated solid phase nonlinear optical properties of manganese porphyrin-incorporated PVC polymer film using CW low-power Z-scan and optical power limiting methods. The nonlinear refractive index (n2 of this porphyrin film is estimated to have a negative value of 7.2 ⅹ10-5 cm2/W at 632.8 nm and to be larger than that of ZnTPP in the Nafion film. The photodegradation effect common in the solution phase appears to be minor in this solid phase system. The large nonlinear effect is thought to limit the optical power due to the aperture effect.
Nonlinear optical microscopy for imaging thin films and surfaces
Energy Technology Data Exchange (ETDEWEB)
Smilowitz, L.B.; McBranch, D.W.; Robinson, J.M.
1995-03-01
We have used the inherent surface sensitivity of second harmonic generation to develop an instrument for nonlinear optical microscopy of surfaces and interfaces. We have demonstrated the use of several nonlinear optical responses for imaging thin films. The second harmonic response of a thin film of C{sub 60} has been used to image patterned films. Two photon absorption light induced fluorescence has been used to image patterned thin films of Rhodamine 6G. Applications of nonlinear optical microscopy include the imaging of charge injection and photoinduced charge transfer between layers in semiconductor heterojunction devices as well as across membranes in biological systems.
The inherent complexity in nonlinear business cycle model in resonance
Energy Technology Data Exchange (ETDEWEB)
Ma Junhai [School of Management, Tianjin University, Tianjin 300072 (China) and Tianjin University of Finance and Economics, Tianjin 300222 (China)], E-mail: lzqsly@126.com; Sun Tao; Liu Lixia [School of Management, Tianjin University, Tianjin 300072 (China)
2008-08-15
Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future.
Modeling and compensation of transmitter nonlinearity in coherent optical OFDM.
Amiralizadeh, Siamak; Nguyen, An T; Rusch, Leslie A
2015-10-05
We present a comprehensive study of nonlinear distortions from an optical OFDM transmitter. Nonlinearities are introduced by the combination of effects from the digital-to-analog converter (DAC), electrical power amplifier (PA) and optical modulator in the presence of high peak-to-average power ratio (PAPR). We introduce parameters to quantify the transmitter nonlinearity. High input backoff avoids OFDM signal compression from the PA, but incurs high penalties in power efficiency. At low input backoff, common PAPR reduction techniques are not effective in suppressing the PA nonlinear distortion. A bit error distribution investigation shows a technique combining nonlinear predistortion with PAPR mitigation could achieve good power efficiency by allowing low input backoff. We use training symbols to extract the transmitter nonlinear function. We show that piecewise linear interpolation (PLI) leads to an accurate transmitter nonlinearity characterization. We derive a semi-analytical solution for bit error rate (BER) that validates the PLI approximation accurately captures transmitter nonlinearity. The inverse of the PLI estimate of the nonlinear function is used as a predistorter to suppress transmitter nonlinearity. We investigate performance of the proposed scheme by Monte Carlo simulations. Our simulations show that when DAC resolution is more than 4 bits, BER below forward error correction limit of 3.8 × 10(-3) can be achieved by using predistortion with very low input power backoff for electrical PA and optical modulator.
Advances in nonlinear optical materials and devices
Byer, Robert L.
1991-01-01
The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.
Probabilistic approach to nonlinear wave-particle resonant interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2017-02-01
In this paper we provide a theoretical model describing the evolution of the charged-particle distribution function in a system with nonlinear wave-particle interactions. Considering a system with strong electrostatic waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic equation (or generalized Fokker-Planck equation) modeling the long-term evolution of the particle distribution. In this equation, effects of charged-particle trapping and transport in phase space are simulated with a nonlocal operator. We demonstrate that solutions of the derived kinetic equations agree with results of test-particle tracing. The applicability of the proposed approach for the description of space and laboratory plasma systems is also discussed.
Resonant optical devices for IR lasers
Johnson, Eric G.; Li, Yuan; Raghu Srimathi, Indumathi; Woodward, Ryan H.; Poutous, Menelaos K.; Pung, Aaron J.; Richardson, Martin; Shah, Lawrence; Shori, Ramesh; Magnusson, Robert
2013-03-01
This paper highlights recent developments in resonant optical devices for infrared (IR) and mid-infrared (mid- IR) lasers. Sub-wavelength grating based resonant optical filters are introduced and their application in 2 μm thulium fiber laser and amplifier systems has been discussed. The paper focuses on applying such filtering techniques to 2.8 μm mid-IR fiber laser systems. A narrowband mid-IR Guided-Mode Resonance Filter (GMRF) was designed and fabricated using Hafnium(IV) Oxide film/quartz wafer material system. The fabricated GMRF was then integrated into an Erbium (Er)-doped Zr-Ba-La-Al-Na (ZBLAN) fluoride glass fiber laser as a wavelength selective feedback element. The laser operated at 2782 nm with a linewidth less than 2 nm demonstrating the viability of GMRF's for wavelength selection in the mid-IR. Furthermore, a GMRF of narrower linewidth based on Aluminum Oxide/quartz wafer material system is fabricated and tested in the same setup. The potentials and challenges with GMRFs will be discussed and summarized.
Pakhomov, A V; Babushkin, I V; Arkhipov, M V; Tolmachev, Yu A; Rosanov, N N
2016-01-01
We study the optical response of a resonant medium possessing the nonlinear coupling to external field under excitation by few-cycle pump pulses. A theoretical approach is developed, allowing to analyze unipolar half-cycle pulse generation in such a geometry. Our approach is applicable for the arbitrary coupling functions as well as arbitrarily curved pump pulse wavefronts and defines a general framework to produce unipolar pulses of desired form.
Nonlinear all-optical switch based on a white-light cavity
Li, Na; Xu, Jingping; Song, Ge; Zhu, Chengjie; Xie, Shuangyuan; Yang, Yaping; Zubairy, M. Suhail; Zhu, Shi-Yao
2016-04-01
It is well known that there is a bottleneck for nonlinear all-optical switching, namely, the switching power and the switching time cannot be lowered simultaneously. A lower switching power requires a resonator with a high quality (Q ) factor, but leads to a longer switching time. We propose to overcome this bottleneck by replacing the nonlinear cavity in such an all-optical switch by a white-light cavity. This can be done by doping three-level atoms in the ring resonator and applying incoherent pump and coherent driving fields on it. The white-light cavity possesses broadband resonance in a linear region. Therefore, for the incident pulse, a broad range of frequency components can take part in the nonlinear process, and so it requires lower power to achieve switching compared to the conventional ring resonator. On the other hand, the refractive index of a white-light cavity has negative dispersion, leading to a fast group velocity. This results in a shorter time to build up the resonant response, yielding a short switching time.
Nonlinear photon-assisted tunneling transport in optical gap antennas.
Stolz, Arnaud; Berthelot, Johann; Mennemanteuil, Marie-Maxime; Colas des Francs, Gérard; Markey, Laurent; Meunier, Vincent; Bouhelier, Alexandre
2014-05-14
We introduce strongly coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical gap antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion involving d-band electrons and demonstrate that a simple two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.
Nonlinear dynamic modeling and resonance tuning of Galfenol vibration absorbers
Scheidler, Justin J.; Dapino, Marcelo J.
2013-08-01
This paper investigates the semi-active control of a magnetically-tunable vibration absorber’s resonance frequency. The vibration absorber that is considered is a metal-matrix composite containing the magnetostrictive material Galfenol (FeGa). A single degree of freedom model for the nonlinear vibration of the absorber is presented. The model is valid under arbitrary stress and magnetic field, and incorporates the variation in Galfenol’s elastic modulus throughout the composite as well as Galfenol’s asymmetric tension-compression behavior. Two boundary conditions—cantilevered and clamped-clamped—are imposed on the composite. The frequency response of the absorber to harmonic base excitation is calculated as a function of the operating conditions to determine the composite’s capacity for resonance tuning. The results show that nearly uniform controllability of the vibration absorber’s resonance frequency is possible below a threshold of the input power amplitude using weak magnetic fields of 0-8 kA m-1. Parametric studies are presented to characterize the effect on resonance tunability of Galfenol volume fraction and Galfenol location within the composite. The applicability of the results to composites of varying geometry and containing different Galfenol materials is discussed.
Strong nonlinear harmonic generation in a PZT/Aluminum resonator
Energy Technology Data Exchange (ETDEWEB)
Parenthoine, D; Haumesser, L; Meulen, F Vander; Tran-Huu-Hue, L-P, E-mail: parenthoine@univ-tours.f [University Francois Rabelais of Tours, U 930 Imagerie et Cerveau, CNRS 2448, ENIVL, rue de la Chocolaterie, BP 3410, 41034 Blois (France)
2009-11-01
In this work, the extentional vibration mode of a coupled PZT/ Aluminum rod resonator is studied experimentally. Geometrical characteristics of the PZT are its 27 mm length and its 4x4 mm{sup 2} cross section area. The excitation voltage consists in sinusoidal bursts in the frequency range (20-80 kHz). Velocity measurements are performed at both ends of this system, using a laser probe. Strong harmonic distortions in the mechanical response (up to -20 dB with respect to the primary wave amplitude) have been observed. The corresponding input levels are far lower than those which are necessary to observe quadratic second harmonic generation in a free PZT resonator. The strong nonlinear effect can be explained as a super-harmonic resonance of the system due to a specific ratio between the eigen frequencies of the two parts of the resonator. Evolution of fundamental and harmonic responses are observed as a function of input levels, highlighting hysteretic behavior.
Silicon single-crystal cryogenic optical resonator.
Wiens, Eugen; Chen, Qun-Feng; Ernsting, Ingo; Luckmann, Heiko; Rosowski, Ulrich; Nevsky, Alexander; Schiller, Stephan
2014-06-01
We report on the demonstration and characterization of a silicon optical resonator for laser frequency stabilization, operating in the deep cryogenic regime at temperatures as low as 1.5 K. Robust operation was achieved, with absolute frequency drift less than 20 Hz over 1 h. This stability allowed sensitive measurements of the resonator thermal expansion coefficient (α). We found that α=4.6×10(-13) K(-1) at 1.6 K. At 16.8 K α vanishes, with a derivative equal to -6×10(-10) K(-2). The temperature of the resonator was stabilized to a level below 10 μK for averaging times longer than 20 s. The sensitivity of the resonator frequency to a variation of the laser power was also studied. The corresponding sensitivities and the expected Brownian noise indicate that this system should enable frequency stabilization of lasers at the low-10(-17) level.
Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2015-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952
Extremely nonlocal optical nonlinearities in atoms trapped near a waveguide
Shahmoon, Ephraim; Stimming, Hans Peter; Mazets, Igor; Kurizki, Gershon
2014-01-01
Nonlinear optical phenomena are typically local. Here we predict the possibility of highly nonlocal optical nonlinearities for light propagating in atomic media trapped near a nano-waveguide, where long-range interactions between the atoms can be tailored. When the atoms are in an electromagnetically-induced transparency configuration, the atomic interactions are translated to long-range interactions between photons and thus to highly nonlocal optical nonlinearities. We derive and analyze the governing nonlinear propagation equation, finding a roton-like excitation spectrum for light and the emergence of long-range order in its output intensity. These predictions open the door to studies of unexplored wave dynamics and many-body physics with highly-nonlocal interactions of optical fields in one dimension.
Dielectric Optical-Controlled Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Zheng, Yuanlin; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2014-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive index. Recent advancements in nanotechnology enable novel lenses, such as, superlens, hyperlens, Luneburg lens, with sub-wavelength resolution capabilities by specially designing materials' refractive indices with meta-materials and transformation optics. However, these artificially nano/micro engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here we experimentally demonstrate for the first time a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applicat...
Intra-Channel Nonlinear Effect on Optical PPM Pulse Transmission
Institute of Scientific and Technical Information of China (English)
Sun; Linghao; Jarmo; Takala
2003-01-01
PPM encoded Gaussian pulse sequence shows more immunity than non-PPM schemes on optical fiber intra-channel nonlinearity and demonstrated by a numerical study of IXPM and IFWM effects deploying on 100Gb/s single channelsystem.
Optical Nonlinearities in Chalcogenide Glasses and their Applications
Zakery, A
2007-01-01
Photonics, which uses photons for information and image processing, has been labeled the technology of the 21st century, for which non-linear optical processes provide the key functions of frequency conversion and optical switching. Chalcogenide glass fiber is one of the most promising candidates for use as a non-linear optical medium because of its high optical nonlinearity and long interaction length. Since the chalcogenide glass fibers transmit into the IR, there are numerous potential applications in the civil, medical and military areas. One of the most exciting developments in the future is going to be in the area of rare-earth ion doping of chalcogenide fibers for IR fluorescence emission. The IR light sources, lasers and amplifiers developed using this phenomena will be very useful in civil, medical and military applications. Remote IR spectroscopy and imaging using flexible fibers will be realized for applications. Other future research areas which will inevitably be explored includes non-linear opti...
Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.
Saurabh, Prasoon; Mukamel, Shaul
2014-04-28
Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).
Smith, David D.
2002-01-01
This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.
Topological nature of nonlinear optical effects in solids.
Morimoto, Takahiro; Nagaosa, Naoto
2016-05-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.
Merging Nonlinear Optics and Negative-Index Metamaterials
Popov, Alexander K
2011-01-01
The extraordinary properties of nonlinear optical propagation processes in double-domain positive/negative index metamaterials are reviewed. These processes include second harmonic generation, three- and four-wave frequency mixing, and optical parametric amplification. Striking contrasts with the properties of the counterparts in ordinary materials are shown. We also discuss the possibilities for compensating strong losses inherent to plasmonic metamaterials, which present a major obstacle in numerous exciting applications, and the possibilities for creation of unique ultracompact photonic devices such as data processing chips and nonlinear-optical sensors. Finally, we propose similar extraordinary three-wave mixing processes in crystals based on optical phonons with negative dispersion.
NERO a code for evaluation of nonlinear resonances in 4D symplectic mappings
Todesco, Ezio; Giovannozzi, Massimo
1998-01-01
A code to evaluate the stability, the position and the width of nonlinear resonances in four-dimensional symplectic mappings is described. NERO is based on the computation of the resonant perturbative series through the use of Lie transformation implemented in the code ARES, and on the analysis of the resonant orbits of the interpolating Hamiltonian. The code is aimed at studying the nonlinear moti on of a charged particle moving in a circular accelerator under the influence of nonlinear forces.
Molecular and crystal design of nonlinear optical organic materials
Energy Technology Data Exchange (ETDEWEB)
Suponitsky, Kirill Yu; Antipin, Mikhail Yu [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation); Timofeeva, Tatiana V [Department of Chemistry, New Mexico Highlands University (United States)
2006-06-30
The results of theoretical and experimental studies on the second-order molecular and crystal nonlinear optical susceptibilities of organic and several classes of organoelement compounds are summarised. Modern methods used in these studies are briefly characterised, their advantages and drawbacks are outlined as regards their application to the systematic search for efficient nonlinear optical materials. Recent achievements and the main challenges in the field are thoroughly discussed and an optimum algorithm of the design of such materials is proposed.
Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates
Institute of Scientific and Technical Information of China (English)
LIU Xiao-Lan; PENG Xiao-Niu; YANG Zhong-Jian; LI Min; ZHOU Li
2011-01-01
Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process.The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized.These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region.The linear optical properties of gold nanoplates are also investigated by theoretical calculations.We further investigate the nonlinear opticai properties of the gold nanoplates in solution by Z-scan technique.The nonlinear absorption (NLA )coefficient and nonlinear refraction (NLR) index are measured to be 1.18 × 102 cm/GW and - 1.04 × 10-3 cm2/GW,respectively.%@@ Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process.The morphology,crystal structure and linear optical extinction of the gold nanoplates have been characterized.These gold nanoplates are single-crystalline with triangular,truncated triangular and hexagonal shapes,exhibiting strong surface plasmon resonance(SPR) extinction in the visible and near-infrared(NIR) region.The linear optical properties of gold nanoplates are also investigated by theoretical calculations.We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique.The nonlinear absorption(NLA)coefficient and nonlinear refraction(NLR) index are measured to be 1.18 × 102 cm/GW and - 1.04 × 10-3 cm2/GW,respectively.
Grieco, Andrew Lewis
Precise characterization of waveguide parameters is necessary for the successful design of nonlinear photonic devices. This dissertation contains a description of methods for the experimental characterization of distributed Bragg reflectors for use in nonlinear optics and other applications. The general coupled-mode theory of Bragg reflection arising from a periodic dielectric perturbation is developed from Maxwell's equations. This theory is then applied to develop a method of characterizing the fundamental parameters that describe Bragg reflection by comparing the spectral response of Bragg reflector resonators. This method is also extended to characterize linear loss in waveguides. A model of nonlinear effects in Bragg reflector resonators manifesting in bistability is also developed, as this phenomenon can be detrimental to the characterization method. Specific recommendations are made regarding waveguide fabrication and experimental design to reduce sources of experimental error.
Optical computation based on nonlinear total reflectional optical switch at the interface
Indian Academy of Sciences (India)
Jianqi Zhang; Huan Xu
2009-03-01
A new scheme of binary half adder and full adder is proposed. It realizes a kind of all-optical computation which is based on the polarization coding technique and the nonlinear total reflectional optical switches.
New CMOS Compatible Platforms for Integrated Nonlinear Optical Signal Processing
Moss, D J
2014-01-01
Nonlinear photonic chips have succeeded in generating and processing signals all-optically with performance far superior to that possible electronically - particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. This paper reviews some of the recent achievements in CMOS-compatible platforms for nonlinear optics, focusing on amorphous silicon and Hydex glass, highlighting their potential future impact as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement.
Platforms for integrated nonlinear optics compatible with silicon integrated circuits
Moss, David J
2014-01-01
Nonlinear photonic chips are capable of generating and processing signals all-optically with performance far superior to that possible electronically - particularly with respect to speed. Although silicon has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. We review recent progress in CMOS-compatible platforms for nonlinear optics, focusing on Hydex glass and silicon nitride and briefly discuss the promising new platform of amorphous silicon. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation, ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications.
Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers
Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.
2017-02-01
Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in Mx configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design.
Soliton models in resonant and nonresonant optical ﬁbers
Indian Academy of Sciences (India)
K Porsezian
2001-11-01
In this review, considering the important linear and nonlinear optical effects like group velocity dispersion, higher order dispersion, Kerr nonlinearity, self-steepening, stimulated Raman scattering, birefringence, self-induced transparency and various inhomogeneous effects in ﬁbers, the completely integrable concept and bright, dark and self-induced transparency soliton models in nonlinear ﬁber optics are discussed. Considering the above important optical effects, the different completely integrable soliton models in the form of nonlinear Schrödinger (NLS), NLS-MaxwellBloch (MB) type equations reported in the literature are discussed. Finally, solitons in stimulated Raman scattering (SRS) system is brieﬂy discussed.
Optomechanically induced stochastic resonance and chaos transfer between optical fields
Monifi, Faraz; Zhang, Jing; Özdemir, Şahin Kaya; Peng, Bo; Liu, Yu-Xi; Bo, Fang; Nori, Franco; Yang, Lan
2016-06-01
Chaotic dynamics has been reported in many physical systems and has affected almost every field of science. Chaos involves hypersensitivity to the initial conditions of a system and introduces unpredictability into its output. Thus, it is often unwanted. Interestingly, the very same features make chaos a powerful tool to suppress decoherence, achieve secure communication and replace background noise in stochastic resonance—a counterintuitive concept that a system's ability to transfer information can be coherently amplified by adding noise. Here, we report the first demonstration of chaos-induced stochastic resonance in an optomechanical system, as well as the optomechanically mediated chaos transfer between two optical fields such that they follow the same route to chaos. These results will contribute to the understanding of nonlinear phenomena and chaos in optomechanical systems, and may find applications in the chaotic transfer of information and for improving the detection of otherwise undetectable signals in optomechanical systems.
Lifetime of the Nonlinear Geometric Optics Approximation
DEFF Research Database (Denmark)
Binzer, Knud Andreas
The subject of the thesis is to study acertain approximation method for highly oscillatory solutions to nonlinear partial differential equations.......The subject of the thesis is to study acertain approximation method for highly oscillatory solutions to nonlinear partial differential equations....
Prediction of nonlinear optical properties of large organic molecules
Cardelino, Beatriz H.
1992-01-01
The preparation of materials with large nonlinear responses usually requires involved synthetic processes. Thus, it is very advantageous for materials scientists to have a means of predicting nonlinear optical properties. The prediction of nonlinear optical properties has to be addressed first at the molecular level and then as bulk material. For relatively large molecules, two types of calculations may be used, which are the sum-over-states and the finite-field approach. The finite-field method was selected for this research, because this approach is better suited for larger molecules.
Shocks, singularities and oscillations in nonlinear optics and fluid mechanics
Santo, Daniele; Lannes, David
2017-01-01
The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .
Extra phase noise from thermal fluctuations in nonlinear optical crystals
DEFF Research Database (Denmark)
César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.
2009-01-01
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...... the direct production of multipartite entanglement in a single nonlinear optical system. We cooled the nonlinear crystal and observed a reduction in the extra noise. Our treatment of this noise can be successfully applied to different systems in the literature....
Indumathi, C.; T. C., Sabari Girisun; Anitha, K.; Alfred Cecil Raj, S.
2017-07-01
A new organic optical limiting material, ethylenediaminium picrate (EDAPA) was synthesized through acid base reaction and grown as single crystals by solvent evaporation method. Single crystal XRD analysis showed that EDAPA crystallizes in orthorhombic system with Cmca as space group. The formation of charge transfer complex during the reaction of ethylenediamine and picric acid was strongly evident through the recorded Fourier Transform Infra Red (FTIR), Raman and Nuclear Magnetic Resonance (NMR) spectrum. Thermal (TG-DTA and DSC) curves indicated that the material possesses high thermal stability with decomposition temperature at 243 °C. Optical (UV-Visible-NIR) analysis showed that the grown crystal was found to be transparent in the entire visible and NIR region. Z-scan studies with intense short pulse (532 nm, 5 ns, 100 μJ) excitations, revealed that EDAPA exhibited two photon absorption behaviour and the nonlinear absorption coefficient was found to be two orders of magnitude higher than some of the known optical limiter like Cu nano glasses. EDAPA exhibited a strong optical limiting action with low limiting threshold which make them a potential candidate for eye and photosensitive component protection against intense short pulse lasers.
Coupled-channels optical calculation of positron-hydrogen resonances
Institute of Scientific and Technical Information of China (English)
Yu Rong-Mei; Zhou Ya-Jun; Jiao Li-Guang; Cheng Yong-Jun
2012-01-01
An application of the coupled-channels optical method is given for the energy-dependent phenomena of positronhydrogen resonances below the n =2 excitation threshold.The equivalent local optical potential is used to account for the target polarization and positronium formation.The calculation includes 9 explicitly physical coupled channels.The lowest S-wave resonance energy position and new resonances are found.Angular dependence of the cross section in the resonance region are investigated.
Ray and wave chaos in asymmetric resonant optical cavities
Nöckel, J U; Noeckel, Jens U.
1998-01-01
Optical resonators are essential components of lasers and other wavelength-sensitive optical devices. A resonator is characterized by a set of modes, each with a resonant frequency omega and resonance width Delta omega=1/tau, where tau is the lifetime of a photon in the mode. In a cylindrical or spherical dielectric resonator, extremely long-lived resonances are due to `whispering gallery' modes in which light circulates around the perimeter trapped by total internal reflection. These resonators emit light isotropically. Recently, a new category of asymmetric resonant cavities (ARCs) has been proposed in which substantial shape deformation leads to partially chaotic ray dynamics. This has been predicted to give rise to a universal, frequency-independent broadening of the whispering-gallery resonances, and highly anisotropic emission. Here we present solutions of the wave equation for ARCs which confirm many aspects of the earlier ray-optics model, but also reveal interesting frequency-dependent effects charac...
Surpassing Fundamental Limits of Oscillators Using Nonlinear Resonators
Villanueva, L. G.; Kenig, E.; Karabalin, R. B.; Matheny, M. H.; Lifshitz, Ron; Cross, M. C.; Roukes, M. L.
2013-01-01
In its most basic form an oscillator consists of a resonator driven on resonance, through feedback, to create a periodic signal sustained by a static energy source. The generation of a stable frequency, the basic function of oscillators, is typically achieved by increasing the amplitude of motion of the resonator while remaining within its linear, harmonic regime. Contrary to this conventional paradigm, in this Letter we show that by operating the oscillator at special points in the resonator’s anharmonic regime we can overcome fundamental limitations of oscillator performance due to thermodynamic noise as well as practical limitations due to noise from the sustaining circuit. We develop a comprehensive model that accounts for the major contributions to the phase noise of the nonlinear oscillator. Using a nano-electromechanical system based oscillator, we experimentally verify the existence of a special region in the operational parameter space that enables suppressing the most significant contributions to the oscillator’s phase noise, as predicted by our model. PMID:23679770
Delocalization of nonlinear optical responses in plasmonic nanoantennas
Viarbitskaya, Sviatlana; Cluzel, Benoit; Francs, Gérard Colas des; Bouhelier, Alexandre
2015-01-01
Remote excitation and emission of two-photon luminescence and second-harmonic generation are observed in micrometer long gold rod optical antennas upon local illumination with a tightly focused near-infrared femtosecond laser beam. We show that the nonlinear radiations can be emitted from the entire antenna and the measured far-field angular patterns bear the information regarding the nature and origins of the respective nonlinear processes. We demonstrate that the nonlinear responses are transported by the propagating surface plasmon at excitation frequency, enabling thereby polariton-mediated tailoring and design of nonlinear responses.
Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip.
Soltani, Mohammad; Ilchenko, Vladimir; Matsko, Andrey; Savchenkov, Anatoliy; Schlafer, John; Ryan, Colm; Maleki, Lute
2016-09-15
Crystalline whispering gallery mode (WGM) electro-optic resonators made of LiNbO3 and LiTaO3 are critical for a wide range of applications in nonlinear and quantum optics, as well as RF photonics, due to their remarkably ultrahigh Q(>108) and large electro-optic coefficient. Achieving efficient coupling of these resonators to planar on-chip optical waveguides is essential for any high-yield and robust practical applications. However, it has been very challenging to demonstrate such coupling while preserving the ultrahigh Q properties of the resonators. Here, we show how the silicon photonic platform can overcome this long-standing challenge. Silicon waveguides with appropriate designs enable efficient and strong coupling to these WGM electro-optic resonators. We discuss various integration architectures of these resonators onto a silicon chip and experimentally demonstrate critical coupling of a planar Si waveguide and an ultrahigh QLiTaO3 resonator (Q∼108). Our results show a promising path for widespread and practical applications of these resonators on a silicon photonic platform.
Measurement of optical Feshbach resonances in an ideal gas.
Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J
2011-08-12
Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.
Intensity-Dependent Optical Nonlinear Absorption and Refraction of Gold Nanorods
Institute of Scientific and Technical Information of China (English)
GONG Hong-Mei; ZHOU zhang-Kai; XIAO Si; SONG Hao; SU xiong-Rui; LI Min; WANG Qu-Quan
2007-01-01
Au nanorods dispersed in aqueous solution were prepared with the electrochemical method.The absorption spectrum shows two absorption peaks corresponding to the perpendicular and transverse surface plasma resonance absorption of the nanorods.The third-order optical nonlinear properties are investigated by Z-scans.The signs of the nonlinear absorption coefficient and refractive index are reversed as the intensity of incident laser increases,which is due to the shape change of the gold nanoparticles melted by the intense laser pulses.
Nonlinear limits to the information capacity of optical fiber communications
Mitra, P P; Mitra, Partha P.; Stark, Jason B.
2000-01-01
The exponential growth in the rate at which information can be communicated through an optical fiber is a key element in the so called information revolution. However, like all exponential growth laws, there are physical limits to be considered. The nonlinear nature of the propagation of light in optical fiber has made these limits difficult to elucidate. Here we obtain basic insights into the limits to the information capacity of an optical fiber arising from these nonlinearities. The key simplification lies in relating the nonlinear channel to a linear channel with multiplicative noise, for which we are able to obtain analytical results. In fundamental distinction to the linear additive noise case, the capacity does not grow indefinitely with increasing signal power, but has a maximal value. The ideas presented here have broader implications for other nonlinear information channels, such as those involved in sensory transduction in neurobiology. These have been often examined using additive noise linear cha...
Ageing of the nonlinear optical susceptibility in soft matter
Energy Technology Data Exchange (ETDEWEB)
Ghofraniha, N [SMC-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Conti, C [Research Centre ' Enrico Fermi' , Via Panisperna 89/A, 00184 Rome (Italy); Leonardo, R Di [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Ruzicka, B [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Ruocco, G [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy)
2007-05-23
We investigate the nonlinear optics response of a colloidal dispersion undergoing dynamics slowing down with age, by using Z-scan and dynamic light scattering measurements. We study the high optical nonlinearity of an organic dye (rhodamine B) dispersed in a water-clay (laponite) suspension. We consider different clay concentrations (2.0-2.6 wt%) experiencing dynamics arrest. We find that (i) the concentration dependent exponential growth of both mean relaxation time and nonlinear absorption coefficient can be individually scaled to a master curve and (ii) the scaling times are the same for the two physical quantities. These findings indicate that the optical nonlinear susceptibility exhibits the same ageing universal scaling behaviour, typical of disordered out of equilibrium systems.
Third Order Nonlinear Optical Effects in Conjugated Polymers
Halvorson, Craig Steven
Third order nonlinear optical effects in conjugated materials were studied using two different spectroscopic methods, third harmonic generation and two photon absorption. The third harmonic generation spectra of cis-polyacetylene, trans-polyacetylene, oriented trans-polyacetylene, three isomers of polyaniline, cis and trans-polyacetylene in polyvinyl butyral, polyheptdadiester, polyheptadiketone, and MEH-PPV/polyethylene blends were measured. The nonlinear optical susceptibility increases with structural order, and is enhanced by the presence of a degenerate ground state. The magnitude of the susceptibility reaches as high as 10^{-7} esu, which is sufficient for the creation of all-optical nonlinear devices. The two photon absorption spectrum of oriented transpolyacetylene was measured using nonlinear photothermal deflection. The spectrum reveals directly the Ag state at 1.1 eV in trans-polyacetylene, and reveals another Ag state at higher energy. The magnitude of the two photon absorption is large enough to rule out using trans-polyacetylene in serial all-optical nonlinear devices; all-optical devices made from conjugated polymers must be parallel, not serial. A new figure of merit for nonlinear devices was proposed.
Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA.
Kravtsov, Konstantin; Prucnal, Paul R; Bubnov, Mikhail M
2007-10-01
We present an experimental demonstration of an ultrafast all-optical thresholder based on a nonlinear Sagnac interferometer. The proposed design is intended for operation at very small nonlinear phase shifts. Therefore, it requires an in-loop nonlinearity lower than for the classical nonlinear loop mirror scheme. Only 15 meters of conventional (non-holey) silica-based fiber is used as a nonlinear element. The proposed thresholder is polarization insensitive and is good for multi-wavelength operation, meeting all the requirements for autocorrelation detection in various optical CDMA communication systems. The observed cubic transfer function is superior to the quadratic transfer function of second harmonic generation-based thresholders.
RCLED Optimization and Nonlinearity Compensation in a Polymer Optical Fiber DMT System
Directory of Open Access Journals (Sweden)
Pu Miao
2016-09-01
Full Text Available In polymer optical fiber (POF systems, the nonlinear transfer function of the resonant cavity light emitting diode (RCLED drastically degrades the communication performance. After investigating the characteristics of the RCLED nonlinear behavior, an improved digital look-up-table (LUT pre-distorter, based on an adaptive iterative algorithm, is proposed. Additionally, the system parameters, including the bias current, the average electrical power, the LUT size and the step factor are also jointly optimized to achieve a trade-off between the system linearity, reliability and the computational complexity. With the proposed methodology, both the operating point and efficiency of RCLED are enhanced. Moreover, in the practical 50 m POF communication system with the discrete multi-tone (DMT modulation, the bit error rate performance is improved by over 12 dB when RCLED is operating in the nonlinear region. Therefore, the proposed pre-distorter can both resist the nonlinearity and improve the operating point of RCLED.
Miranowicz, A; Miranowicz, Adam; Leonski, Wieslaw
2006-01-01
Schemes for optical-state truncation of two cavity modes are analysed. The systems, referred to as the nonlinear quantum scissors devices, comprise two coupled nonlinear oscillators (Kerr nonlinear coupler) with one or two of them pumped by external classical fields. It is shown that the quantum evolution of the pumped couplers can be closed in a two-qubit Hilbert space spanned by vacuum and single-photon states only. Thus, the pumped couplers can behave as a two-qubit system. Analysis of time evolution of the quantum entanglement shows that Bell states can be generated. A possible implementation of the couplers is suggested in a pumped double-ring cavity with resonantly enhanced Kerr nonlinearities in an electromagnetically-induced transparency scheme. The fragility of the generated states and their entanglement due to the standard dissipation and phase damping are discussed by numerically solving two types of master equations.
Conditional linear-optical measurement schemes generate effective photon nonlinearities
Lapaire, G G; Dowling, J P; Sipe, J E; Dowling, Jonathan P.
2003-01-01
We provide a general approach for the analysis of optical state evolution under conditional measurement schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identified. Our analysis extends to conditional measurement schemes more general than those based solely on linear optics.
Chemical studies on the nonlinear optics of coordina- tion compounds
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The exploration of molecule-based nonlinear optical (NLO) materials at the molecular level is one of the novel areas developed recently from the viewpoint of chemistry. This review summarizes some of our recent researches on new NLO materials based on coordination compounds, which may have potential applications in optical devices.
Ultra-Fast Optical Signal Processing in Nonlinear Silicon Waveguides
DEFF Research Database (Denmark)
Oxenløwe, Leif Katsuo; Galili, Michael; Pu, Minhao;
2011-01-01
We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals....
Progress Toward Single-Photon-Level Nonlinear Optics in Crystalline Microcavities
Kowligy, Abijith S.
excess of 500 ns for all the three waves in the interaction, provided a cavity of radius R 100 mum, whereas for the smaller disks, additional rigorous polishing may be required. We also fabricated resonators as small as R ˜ 40 mum via this method. In a millimeter-sized resonator, we experimentally demonstrated triply resonant sum-frequency generation, which allowed for an observation of the classical manifestation of the quantum Zeno effect, wherein line-splitting occurs due to the high efficiency intracavity frequency conversion. For the sub-100 mum resonators, we present phase-matching calculations and dispersion-management techniques using analytical approximations and rigorous finite-element-method simulations. Experimentally, Q -factor measurements are shown, and we identify the specific short-comings of the fabrication procedure that may have led to the lower, surface-roughness-limited Q-factors. Finally, we identify pathways toward achieving the single-photon-level nonlinear optics using off-resonant nonlinear optics, which requires the simultaneous realization of phase-matching, large cavity lifetimes, and small mode volumes. We believe this would be feasible in the near future as more advanced fabrication and processing methods are developed for crystalline materials and novel nonlinear crystals are synthesized.
Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber
DEFF Research Database (Denmark)
Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.
2012-01-01
We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber...
Fiber-coupled nanophotonic devices for nonlinear optics and cavity QED
Barclay, Paul Edward
2007-10-01
The sub-wavelength optical confinement and low optical loss of nanophotonic devices dramatically enhances the interaction between light and matter within these structures. When nanophotonic devices are combined with an efficient optical coupling channel, nonlinear optical behavior can be observed at low power levels in weakly-nonlinear materials. In a similar vein, when resonant atomic systems interact with nanophotonic devices, atom-photon coupling effects can be observed at a single quanta level. Crucially, the chip based nature of nanophotonics provides a scalable platform from which to study these effects. This thesis addresses the use of nanophotonic devices in nonlinear and quantum optics, including device design, optical coupling, fabrication and testing, modeling, and integration with more complex systems. We present a fiber taper coupling technique that allows efficient power transfer from an optical fiber into a photonic crystal waveguide. Greater than 97% power transfer into a silicon photonic crystal waveguide is demonstrated. This optical channel is then connected to a high-Q (> 40,000), ultra-small mode volume (V 44% of the photons input to a fiber. This permits the observation of optical bistability in silicon for sub-mW input powers at telecommunication wavelengths. To port this technology to cavity QED experiments at near-visible wavelengths, we also study silicon nitride microdisk cavities at wavelengths near 852 nm, and observe resonances with Q > 3 million and V device with an atom chip, creating an "atom-cavity chip" which can magnetically trap laser cooled atoms above the microcavity. Calculations of the microcavity single atom sensitivity as a function of Q/V are presented and compared with numerical simulations. Taking into account non-idealities, these cavities should allow detection of single laser cooled cesium atoms.
Li, Bing-Xuan; Wei, Yong; Huang, Cheng-Hui; Zhuang, Feng-Jiang; Zhang, Ge; Guo, Guo-Cong
2014-01-01
In the present paper the authors report a research on testing the nonlinear optical performance of optical materials in visible and infrared band. Based on the second order nonlinear optic principle and the photoelectric signal detection technology, the authors have proposed a new testing scheme in which a infrared OPO laser and a method for separating the beams arising from frequency matching and the light produced by other optical effects were used. The OPO laser is adopted as light source to avoid the error of measurement caused by absorption because the double frequency signal of the material is in the transmittance band Our research work includes testing system composition, operational principle and experimental method. The experimental results of KTP, KDP, AGS tested by this method were presented. In the experiment several new infrared non-linear materials were found. This method possesses the merits of good stability and reliability, high sensitivity, simple operation and good reproducibility, which can effectively make qualitative and semi-quantitative test for optical material's nonlinear optical properties from visible to infrared. This work provides an important test -method for the research on second order nonlinear optical materials in visible, infrared and ultraviolet bands.
Nonlinear dynamic response of beam and its application in nanomechanical resonator
Institute of Scientific and Technical Information of China (English)
Yin Zhang; Yun Liu; Kevin D. Murphy
2012-01-01
Nonlinear dynamic response of nanomechanical resonator is of very important characteristics in its application.Two categories of the tension-dominant and curvaturedominant nonlinearities are analyzed.The dynamic nonlinearity of four beam structures of nanomechanical resonator is quantitatively studied via a dimensional analysis approach.The dimensional analysis shows that for the nanomechanical resonator of tension-dominant nonlinearity,its dynamic nonlinearity decreases monotonically with increasing axial loading and increases monotonically with the increasing aspect ratio of length to thickness; the dynamic nonlinearity can only result in the hardening effects.However,for the nanomechanical resonator of the curvature-dominant nonlinearity,its dynamic nonlinearity is only dependent on axial loading.Compared with the tension-dominant nonlinearity,the curvature-dominant nonlinearity increases monotonically with increasing axial loading; its dynamic nonlinearity can result in both hardening and softening effects.The analysis on the dynamic nonlinearity can be very helpful to the tuning application of the nanomechanical resonator.
Optical rogue waves in whispering-gallery-mode resonators
Coillet, Aurélien; Dudley, John; Genty, Goëry; Larger, Laurent; Chembo, Yanne K.
2014-01-01
We report a theoretical study showing that rogue waves can emerge in whispering-gallery-mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering-gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we give evidence of a range of parameters where rare and extreme events associated with non-Gaussian statistics of the field maxima are observed.
Optical Rogue Waves in Whispering-Gallery-Mode Resonators
Coillet, Aurélien; Genty, Goery; Larger, Laurent; Chembo, Yanne K
2014-01-01
We report a theoretical study showing that rogue waves can emerge in whispering gallery mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we evidence a range of parameters where rare and extreme events associated with a non-gaussian statistics of the field maxima are observed.
Synthetic gauge fields for light beams in optical resonators
Longhi, Stefano
2015-01-01
A method to realize artificial magnetic fields for light waves trapped in passive optical cavities with anamorphic optical elements is theoretically proposed. In particular, when a homogeneous magnetic field is realized, a highly-degenerate Landau level structure for the frequency spectrum of the transverse resonator modes is obtained, corresponding to a cyclotron motion of the optical cavity field. This can be probed by transient excitation of the passive optical resonator.
Optimal operating points of oscillators using nonlinear resonators.
Kenig, Eyal; Cross, M C; Villanueva, L G; Karabalin, R B; Matheny, M H; Lifshitz, Ron; Roukes, M L
2012-11-01
We demonstrate an analytical method for calculating the phase sensitivity of a class of oscillators whose phase does not affect the time evolution of the other dynamic variables. We show that such oscillators possess the possibility for complete phase noise elimination. We apply the method to a feedback oscillator which employs a high Q weakly nonlinear resonator and provide explicit parameter values for which the feedback phase noise is completely eliminated and others for which there is no amplitude-phase noise conversion. We then establish an operational mode of the oscillator which optimizes its performance by diminishing the feedback noise in both quadratures, thermal noise, and quality factor fluctuations. We also study the spectrum of the oscillator and provide specific results for the case of 1/f noise sources.
Optical cavity resonator in an expanding universe
Kopeikin, Sergei M.
2015-02-01
We study the cosmological evolution of frequency of a standing electromagnetic wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. Because of the Einstein principle of equivalence (EEP), one can find a local coordinate system (a local freely falling frame), in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate, . Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to unambiguously decide whether atomic clocks based on quantum transitions of atoms, ticks at the same rate as the clocks based on electromagnetic modes of a cavity. To resolve this ambiguity we have to analyse the cavity rigidity and the oscillation of its electromagnetic modes in an expanding universe by employing the full machinery of the Maxwell equations irrespectively of the underlying theory of gravity. We proceed in this way and found out that the size of the cavity and the electromagnetic frequency experience an adiabatic drift in conformal (unphysical) coordinates as the universe expands in accordance with the Hubble law. We set up the oscillation equation for the resonant electromagnetic modes, solve it by the WKB approximation, and reduce the coordinate-dependent quantities to their counterparts measured by a local observer who counts time with atomic clock. The solution shows that there is a perfect mutual cancellation of the adiabatic drift of cavity's frequency by space transformation to local coordinates and the time counted by the clocks based on electromagnetic modes of cavity has the same rate as that of atomic clocks. We conclude that if general relativity is correct and the local expansion of space is isotropic there should be no cosmological drift of frequency of a
Ultrafast control of third-order optical nonlinearities in fishnet metamaterials
Shorokhov, Alexander S.; Okhlopkov, Kirill I.; Reinhold, Jörg; Helgert, Christian; Shcherbakov, Maxim R.; Pertsch, Thomas; Fedyanin, Andrey A.
2016-06-01
Nonlinear photonic nanostructures that allow efficient all-optical switching are considered to be a prospective platform for novel building blocks in photonics. We performed time-resolved measurements of the photoinduced transient third-order nonlinear optical response of a fishnet metamaterial. The mutual influence of two non-collinear pulses exciting the magnetic resonance of the metamaterial was probed by detecting the third-harmonic radiation as a function of the time delay between pulses. Subpicosecond-scale dynamics of the metamaterial’s χ(3) was observed; the all-optical χ(3) modulation depth was found to be approximately 70% at a pump fluence of only 20 μJ/cm2.
Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation
Wu, Yicong; Zhang, Yuying; Xi, Jiefeng; Li, Ming-Jun; Li, Xingde
2010-01-01
A miniature fiber optic endomicroscope with built-in dynamic focus scanning capability is developed for the first time for 3-D two-photon fluorescence (TPF) imaging of biological samples. Fast 2-D lateral beam scanning is realized by resonantly vibrating a double-clad fiber cantilever with a tubular piezoactuator. Slow axial scanning is achieved by moving the distal end of the imaging probe with an extremely compact electrically driven shape memory alloy (SMA). The 10-mm-long SMA allows 150-μm contractions with a driving voltage varying only from 50 to 100 mV. The response of the SMA contraction with the applied voltage is nonlinear, but repeatable and can be accurately calibrated. Depth-resolved imaging of acriflavine-stained biological tissues and unstained white paper with the endomicroscope is performed, and the results demonstrate the feasibility of 3-D nonlinear optical imaging with the SMA-based scanning fiber-optic endomicroscope. PMID:21198147
Ultrafast broadband tuning of resonant optical nanostructures using phase change materials
Rudé, Miquel; Cetin, Arif E; Miller, Timothy A; Carrilero, Albert; Wall, Simon; de Abajo, F Javier García; Altug, Hatice; Pruneri, Valerio
2015-01-01
The phenomenon of extraordinary optical transmission {EOT} through arrays of nanoholes patterned in a metallic film has emerged as a promising tool for a wide range of applications, including photovoltaics, nonlinear optics, and sensing. Designs and methods enabling the dynamic tuning of the optical resonances of these structures are essential to build efficient optical devices, including modulators, switches, filters, and biosensors. However, the efficient combination of EOT and dynamic tuning remains a challenge, mainly because of the lack of materials that can induce modulation over a broad spectral range at high speeds. Here, we demonstrate tuneable resonance wavelength shifts as large as 385 nm - an order of magnitude higher than previously reported - through the combination of phase change materials {PCMs}, which exhibit dramatic variations in optical properties upon transitions between amorphous and crystalline phases, with properly designed subwavelength nanohole metallic arrays. We further find throu...
Lavdas, Spyros; You, Jie; Osgood, Richard M.; Panoiu, Nicolae C.
2015-08-01
We present recent results pertaining to pulse reshaping and optical signal processing using optical nonlinearities of silicon-based tapered photonic wires and photonic crystal waveguides. In particular, we show how nonlinearity and dispersion engineering of tapered photonic wires can be employed to generate optical similaritons and achieve more than 10× pulse compression. We also discuss the properties of four-wave mixing pulse amplification and frequency conversion efficiency in long-period Bragg waveguides and photonic crystal waveguides. Finally, the influence of linear and nonlinear optical effects on the transmission bit-error rate in uniform photonic wires and photonic crystal waveguides made of silicon is discussed.
Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations
Energy Technology Data Exchange (ETDEWEB)
Manela, Ofer; Segev, Mordechai [Department of Physics and Solid State Institute, Technion, Haifa 32000 (Israel); Christodoulides, Demetrios N [College of Optics/CREOL, University of Central Florida, FL 32816-2700 (United States); Kip, Detlef, E-mail: msegev@tx.technion.ac.i [Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg (Germany)
2010-05-15
The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.
Nonlinear optical susceptibility of multicomponent tellurite thin film glasses
Munoz-Martin, D.; Fernandez, H.; Fernandez-Navarro, J. M.; Gonzalo, J.; Solis, J.; Fierro, J. L. G.; Domingo, C.; Garcia-Ramos, J. V.
2008-12-01
Tellurite (TeO2-TiO2-Nb2O5) thin film glasses have been produced by pulsed laser deposition. The dispersion of the real and imaginary parts of the linear refractive index has been measured in the range from 300 to 1700 nm. Films present high refractive index (n =2.01) and reduced absorption (k nm. The nonlinear third order optical susceptibility (|χ(3)|) has been determined at four different wavelengths (600, 800, 1200, and 1500 nm). The out-of-resonance |χ(3)| values (˜10-12 esu) are found to be ten times higher than those of the bulk glass and 102 times higher than that of silica. Compositional and structural analysis reveals an increase of both the Ti atomic content and the fraction of nonbridging oxygen bonds in the deposited films. Both factors lead to a higher hyperpolarizability of the film constituents that is proposed to be responsible for the high |χ(3)| value of the films.
Energy Technology Data Exchange (ETDEWEB)
Lidorikis, E. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Busch, K. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)]|[Instituet fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, D-76128, Karlsruhe (Germany); Li, Q. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Chan, C.T. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)]|[Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Soukoulis, C.M. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)
1997-12-01
We consider the general problem of electromagnetic wave propagation through a one-dimensional system consisting of a nonlinear medium sandwiched between two linear structures. Special emphasis is given to systems where the latter comprise Bragg reflectors. We obtain an exact expression for the nonlinear response of such dielectric superlattices when the nonlinear impurity is very thin, or in the {delta}-function limit. We find that both the switching-up and switching-down intensities of the bistable response can be made very low, when the frequency of the incident wave matches that of the impurity mode of the structure. Numerical results for a nonlinear layer of finite width display qualitatively similar behavior, thus confirming the usefulness of the simpler {delta}-function model. In addition, an analytical solution for the resonance states of an infinitely extended finite-width superlattice with a finite-width nonlinear impurity is presented. {copyright} {ital 1997} {ital The American Physical Society}
Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity.
Zeng, Xiaoge; Popović, Miloš A
2014-06-30
We propose optimal designs for triply-resonant optical parametric oscillators (OPOs) based on degenerate four-wave mixing (FWM) in microcavities. We show that optimal designs in general call for different external coupling to pump and signal/idler resonances. We provide a number of normalized performance metrics including threshold pump power and maximum achievable conversion efficiency for OPOs with and without two-photon (TPA) and free-carrier absorption (FCA). We find that the maximum achievable conversion efficiency is bound to an upper limit by nonlinear and free-carrier losses independent of pump power, while linear losses only increase the pump power required to achieve a certain conversion efficiency. The results of this work suggest unique advantages in on-chip implementations that allow explicit engineering of resonances, mode field overlaps, dispersion, and wavelength-and mode-selective coupling. We provide universal design curves that yield optimum designs, and give example designs of microring-resonator-based OPOs in silicon at the wavelengths 1.55 μm (with TPA) and 2.3 μm (no TPA) as well as in silicon nitride (Si(3)N(4)) at 1.55 μm. For typical microcavity quality factor of 10(6), we show that the oscillation threshold in excitation bus can be well into the sub-mW regime for silicon microrings and a few mW for silicon nitride microrings. The conversion efficiency can be a few percent when pumped at 10 times of the threshold. Next, based on our results, we suggest a family of synthetic "photonic molecule"-like, coupled-cavity systems to implement optimum FWM, where structure design for control of resonant wavelengths can be separated from that of optimizing nonlinear conversion efficiency, and where furthermore pump, signal, and idler coupling to bus waveguides can be controlled independently, using interferometric cavity supermode coupling as an example. Finally, consideration of these complex geometries calls for a generalization of the nonlinear
Nonlinear effects in optical pumping of a cold and slow atomic beam
Porfido, N.
2015-10-12
By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients.
Optimization of nonlinear structural resonance using the incremental harmonic balance method
DEFF Research Database (Denmark)
Dou, Suguang; Jensen, Jakob Søndergaard
2015-01-01
We present an optimization procedure for tailoring the nonlinear structural resonant response with time-harmonic loads. A nonlinear finite element method is used for modeling beam structures with a geometric nonlinearity and the incremental harmonic balance method is applied for accurate nonlinea...
Nonlinear Response of One-Dimensional Magneto-Optical Photonic Crystals
Institute of Scientific and Technical Information of China (English)
WANG Wei-Zhong
2005-01-01
@@ We numerically investigate the magneto-optical Cotton-Mouton effect in an alternating multilayer structure with a nonlinear dielectric constant. The multistability and polarization of the transmission of electromagnetic field near the edges of the stop gap are studied in detail. The resonant transmission is accompanied by solitons of intensity of the field. This investigation provides a way to select the transmission property with different polarizations since both the amplitude and the phase of the output field can be adjusted by the input power and by the magneto-optical coefficient depending on the external magnetic field.
Optical nonlinearities in GaSe and InSe crystals upon laser excitation
Kyazym-zade, A. G.; Salmanov, V. M.; Guseinov, A. G.; Gasanova, L. G.; Mamedov, R. M.
2014-04-01
The nonlinear absorption of light and its temporal evolution in the vicinity of exciton resonance in layered GaSe and InSe crystals under high optical excitation have been experimentally investigated. The decisive factor for the observed temporal dependence of the absorption coefficient and its dependence on the excitation intensity is screening excitons by nonequilibrium-carrier plasma. It is shown that the increase in the transmittance in the absorption-band edge in GaSe with a simultaneous blue shift of the band edge is caused by filling the energy bands under high optical excitation.
Nonlinear Quantum Optics in Optomechanical Nanoscale Waveguides
Zoubi, Hashem
2016-01-01
We explore the possibility of achieving a significant nonlinear phase shift among photons propagating in nanoscale waveguides exploiting interactions among photons that are mediated by vibrational modes and induced through Stimulated Brillouin Scattering (SBS). We introduce a configuration that allows slowing down the photons by several orders of magnitude via SBS involving sound waves and two pump fields. We extract the conditions for maintaining vanishing amplitude gain or loss for slowly propagating photons while keeping the influence of thermal phonons to the minimum. The nonlinear phase among two counter-propagating photons can be used to realize a deterministic phase gate.
Modelling a singly resonant, intracavity ring optical parametric oscillator
DEFF Research Database (Denmark)
Buchhave, Preben; Tidemand-Lichtenberg, Peter; Wei, Hou;
2003-01-01
We study theoretically and experimentally the dynamics of a single-frequency, unidirectional ring laser with an intracavity nonlinear singly resonant OPO-crystal in a coupled resonator. We find for a range of operating conditions good agreement between model results and measurements of the laser ...
Dynamic computer-generated nonlinear-optical holograms
Liu, Haigang; Li, Jun; Fang, Xiangling; Zhao, Xiaohui; Zheng, Yuanlin; Chen, Xianfeng
2017-08-01
We propose and experimentally demonstrate dynamic nonlinear optical holograms by introducing the concept of computer-generated holograms for second-harmonic generation of a structured fundamental wave with a specially designed wave front. The generation of Laguerre-Gaussian second-harmonic beams is investigated in our experiment. Such a method, which only dynamically controls the wave front of the fundamental wave by a spatial light modulator, does not need domain inversion in nonlinear crystals and hence is a more flexible way to achieve the off-axis nonlinear second-harmonic beams. It can also be adopted in other schemes and has potential applications in nonlinear frequency conversion, optical signal processing, and real-time hologram, etc.
Dissipation-induced optical nonlinearity at low light levels
Greenberg, Joel A
2011-01-01
We observe a dissipation-induced nonlinear optical process in a gas of cold atoms that gives rise to large nonlinear coupling strengths with high transparency. The nonlinearity results from the simultaneous cooling and crystallization of the gas, and can give rise to efficient Bragg scattering in the form of a six-wave-mixing process at low-light-levels with an extremely large effective fifth-order nonlinear susceptibility of \\chi^(5)= 7.6 x 10-15 (m/V)^4. For large optical gains, collective scattering due to the strong light-matter coupling leads to slow group velocities (~c/105) and long atomic coherence times (~100 {\\mu}s).
Local-field enhancement of optical nonlinearities in the AGZO nano-triangle array
Long, Hua; Bao, Lijiao; Wang, Kai; Liu, Shuhui; Wang, Bing
2016-10-01
Enhancement of the third order optical nonlinearities in Ga and Al co-doped ZnO (AGZO) nano-triangle array was investigated by performing a Z-scan method with a femtosecond laser (800 nm, 40 fs). The AGZO nano-triangle array was fabricated on silica substrates by nanosphere lithography (NSL) method, showing a surface plasmon resonance (SPR) peak around 3 μm. The two photon absorption (TPA) coefficient and nonlinear refractive index of the AGZO nano-triangle array were determined to be 340 cm/GW and 3.22 × 10-2 cm2/GW under an excitation intensity of 26 GW/cm2. It shows a 3.4-fold enhancement of the nonlinear refraction in the AGZO array with respect to that in the AGZO film, which attributes to the local field enhancement effect. The finite-difference time-domain (FDTD) simulation was in agreement with the experimental results. It indicates that the AGZO nano-triangle arrays have potential applications for nonlinear optical devices like all-optical switching, optical limiting and other types of signal processing.
Nonlinear optical properties of sodium copper chlorophyllin in aqueous solution.
Li, Jiangting; Peng, Yufeng; Han, Xueyun; Guo, Shaoshuai; Liang, Kunning; Zhang, Minggao
2017-06-16
Sodium copper chlorophyllin (SCC), as one of the derivatives of chlorophyll - with its inherent green features; good stability for heat, light, acids and alkalies; unique antimicrobial capability; and particular deodori zation performance - is widely applied in some fields such as the food industry, medicine and health care, daily cosmetic industry etc. SCC, as one of the metal porphyrins, has attracted much attention because of its unique electronic band structure and photon conversion performance. To promote the application of SCC in materials science; energy research and photonics, such as fast optical communications; and its use in nonlinear optical materials, solar photovoltaic cells, all-optical switches, optical limiters and saturable absorbers, great efforts should be dedicated to studying its nonlinear optical (NLO) properties. In this study, the absorption spectra and NLO properties of SCC in aqueous solution at different concentrations were measured. The Z-scan technique was used to determine NLO properties. The results indicated that the absorption spectra of SCC exhibit 2 characteristic absorption peaks located at the wavelengths 405 and 630 nm, and the values of the peaks increase with increasing SCC concentration. The results also showed that SCC exhibits reverse saturation absorption and negative nonlinear refraction (self-defocusing). It can be seen that SCC has good optical nonlinearity which will be convenient for applications in materials science, energy research and photonics.
Nonlinear optical and magneto-optical effects in non-spherical magnetic granular composite
Institute of Scientific and Technical Information of China (English)
Ping Xu(须萍); Zhenya Li(李振亚)
2004-01-01
The magnetization-induced nonlinear optical and nonlinear magneto-optical properties in a magnetic metal-insulator composite are studied based on a tensor effective medium approximation with shape factor and Taylcr-expansion method. There is a weakly nonlinear relation between electric displacement D and elcctric field E in the composite. The results of our studies on the effective dielectric tensor and the nonlinear susceptibility tensor in a magnetic nanocomposite are surveyed. It is shown that such a metal-insulator composite exhibits the enhancements of optical and magneto-optical nonlinearity. The frequencies at which the enhancements occur, and the amplitude of the enhancement factors depend on the concentration and shape of the magnetic grains.
Linear and nonlinear optical properties of tellurite glasses
Jin, Zhian
Tellurite glasses have been widely studied from bulk materials to structured devices, with the emphasis on the development of nonlinear optical fibers to demonstrate the functionalities of supercontinuum generation, erbium doped fiber amplifier and Raman amplifiers, etc. The new type tellurite-based optical fibers exhibit superior advantages over conventional silica ones, due to their high optical nonlinearity, broad transmission window, high rare earth element solubility and Raman gain intensity. Like silica fibers, tellurite fibers may also incorporate various fiber structures including solid core-cladding one and microstructure one (e.g. photonic crystal). The fiber loss was ever reported as low as ˜1dB/m using rod-in-tube fabrication process. Beyond all those progresses, little success has been made on improving the optical nonlinear property of tellurite glasses chi(3) ˜ 50 times bigger than fused silica). The challenge remains for tellurite glasses that their optical nonlinearity is more than 1 order smaller to compare with chalcogenides, although they are more stable chemically and structurally. In this work, after carefully reviewing the trend of optical nonlinearity for solid glasses, we adopted two strategies to potentially increase the linear and third-order optical nonlinear properties for tellurite glasses. A more polarizable electronic excitation may be achievable by introducing chalcogen elements (e.g. Sulfur or Selenium) into TeO2 vitreous network and synthesizing glasses with a linear helical chainlike structure. The ab initio computational results of microscopic hyper-polarizabilities of hypothetical mixed - 2 - tellurite chalcogenide glass molecular structure (TeO2(TeOX)n) confirmed the enhanced effect as Te-X (X=S or Se) bonds exist and the molecular size (n) grows. Quantitative estimates of the macroscopic linear and nonlinear properties for a mixed glass made from chains of n = 5 units leads to a conclusion that the extra Te-S (or Te
Photoconductive and nonlinear optical properties of composites based on metallophthalocyanines
Vannikov, A. V.; Grishina, A. D.; Gorbunova, Yu. G.; Tsivadze, A. Yu.
2015-08-01
The photoconductive, photorefractive and nonlinear optical properties of composites from polyvinylcarbazole or aromatic polyimide containing supramolecular ensembles of (tetra-15-crown-5) - phthalocyaninato gallium, indium, - phthalocyaninateacetato yttrium, - phthalocyaninato ruthenium with axially coordinated pyrazine molecules were investigated at 633, 1030 and 1064nmusing continuous and pulsed lasers. Supramolecular ensembles (SE) were prepared through dissolution of molecular metallophthalocyanines in tetrachloroethane (TCE) and subsequent treatment via three cycles of heating to 90∘C and slow cooling to room temperature. The zscan method in femtosecond and nanosecond regimeswas used for measuring nonlinear optical properties phthalocyaninato indium and yttrium in TCE solutions and polymer films. It was established that effect of heavy metallic atom is basic factor which determines the quantum yield, photorefractive amplification of laser object beam, dielectric susceptibility of third order and nonlinear optical properties of metallophthalocyanines.
Nonlinear optical studies of single gold nanoparticles
Dijk, Meindert Alexander van
2007-01-01
Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new
Conservation Laws in Higher-Order Nonlinear Optical Effects
Kim, J; Shin, H J; Kim, Jongbae
1999-01-01
Conservation laws of the nonlinear Schrödinger equation are studied in the presence of higher-order nonlinear optical effects including the third-order dispersion and the self-steepening. In a context of group theory, we derive a general expression for infinitely many conserved currents and charges of the coupled higher-order nonlinear Schrödinger equation. The first few currents and charges are also presented explicitly. Due to the higher-order effects, conservation laws of the nonlinear Schrödinger equation are violated in general. The differences between the types of the conserved currents for the Hirota and the Sasa-Satsuma equations imply that the higher-order terms determine the inherent types of conserved quantities for each integrable cases of the higher-order nonlinear Schrödinger equation.
Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process
Zheng, Jian; Katsuragawa, Masayuki
2015-01-01
Nonlinear optical processes are governed by the relative-phase relationships among the relevant electromagnetic fields in these processes. In this Report, we describe the physics of arbitrary manipulation of Raman-resonant four-wave-mixing process by artificial control of relative phases. As a typical example, we show freely designable optical-frequency conversions to extreme spectral regions, mid-infrared and vacuum-ultraviolet, with near-unity quantum efficiencies. Furthermore, we show that such optical-frequency conversions can be realized by using a surprisingly simple technology where transparent plates are placed in a nonlinear optical medium and their positions and thicknesses are adjusted precisely. In a numerical simulation assuming practically applicable parameters in detail, we demonstrate a single-frequency tunable laser that covers the whole vacuum-ultraviolet spectral range of 120 to 200 nm. PMID:25748023
Center mode of a doubly resonant optical periodic structure
Alagappan, G.; Png, C. E.
2016-07-01
An optical periodic structure with a single spatial resonance exhibits a stopband. When a second spatial resonance very close to the first one is added, the resulting doubly resonant structure exhibits a Gaussian enveloped, high quality factor transmission state right at the center of the original stopband. Using a slowly varying envelope approximation, we describe the optical characteristics of this transmission state analytically. The transmission state exists despite an optical structure of low refractive index contrast, and has potential applications in nano-optics, and photonics.
Pulse operation of semiconductor laser with nonlinear optical feedback
Guignard, Celine; Besnard, Pascal; Mihaescu, Adrian; MacDonald, K. F.; Pochon, Sebastien; Zheludev, Nikolay I.
2004-09-01
A semiconductor laser coupled to a gallium-made non linear mirror may exhibit pulse regime. In order to better understand this coupled cavity, stationary solutions and dynamics are described following the standard Lang and Kobayashi equations for a semiconductor laser submitted to nonlinear optical feedback. It is shown that the nonlinearity distorts the ellipse on which lied the stationary solutions, with a ``higher'' part corresponding to lower reflectivity and a ``lower'' part to higher reflectivity. Bifurcation diagrams and nonlinear analysis are presented while the conditions for pulsed operation are discussed.
Dispersion of the nonlinear refractive index of optical crystals
Adair, Robert; Chase, L. L.; Payne, Stephen A.
1992-09-01
The nonlinear refractive indices of several important optical materials have been measured at the second and third harmonic wavelengths of the Nd laser using nearly degenerate four-wave mixing. Measurements made relative to the nonlinear index of fused silica have the highest accuracy. Absolute measurements were also made using the Raman cross-section of benzene as a nonlinear reference standard. The relative measurements are compared with a despersion model base on parameters fitted to the linear refractive indicies and also to a recently proposed model based on Kramers-Kronig transformation of the calculated, two-band, two-photon loss spectrum.
Institute of Scientific and Technical Information of China (English)
M. Singh; P. Aghamkar; S. Duhan
2008-01-01
Using electromagnetic treatment, an expression of effective nonlinear optical susceptibility Xe[= Xe(2) + Xe(3) E] is obtained for Ⅲ-Ⅴ semiconducting crystals in an applied transverse dc magnetic field under off-resonant transition regime. The origin of nonlinear interaction lies in nonlinear polarization arising from the crystal properties such as piezoelectricity and electrostriction. Numerical estimates have been made by a representative n-InSb crystal at 77K duly irradiated by a pulsed lO.6-μm CO2 laser under off-resonant transition regime. Efforts are dedicated to optimizing doping level and externally applied dc magnetic field to achieve maximum Xe(2) and Xe(3). The results are found to be in good agreement with the available literature. The analysis shows that Xe(2) and Xe(3)can be significantly enhanced in doped Ⅲ-Ⅴ semiconductors by the proper selection of doping concentration and dc magnetic field, which confirms its potential as a candidate material for the fabrication of nonlinear optical devices.
All-electrical nonlinear fano resonance in coupled quantum point contacts
Xiao, Shiran
This thesis is motivated by recent interest in the Fano resonance (FR). As a wave-interference phenomenon, this resonance is of increasing importance in optics, plasmon-ics, and metamaterials, where its ability to cause rapid signal modulations under variation of some suitable parameter makes it desirable for a variety of applications. In this thesis, I focus on a novel manifestation of this resonance in systems of coupled quantum point contacts (QPCs). The major finding of this work is that the FR in this system may be ma-nipulated by applying a nonlinear DC bias to the system. Under such conditions, we are able to induce significant distortions of resonance lineshape, providing a pathway to all-electrical manipulation of the FR. To interpret this behavior we apply a recently-developed model for a three-path FR, involving an additional "intruder" continuum. We have previously used this model to account for the magnetic-field induced distortions of the FR observed in coupled QPCs, and show here that this model also provides a frame-work for understanding the observed nonlinear behavior. Our work therefore reveals a new manifestation of the FR that can be sensitively tailored by external control, a finding that may eventually allow the application of this feature to nanoelectronics. Since the in-terference scheme involves in this thesis is a completely general one, it should be broadly applicable across a variety of different wave-based systems, including those in both pho-tonics and electronics and opening up the possibility of new applications in areas such as chemical and biological sensing and secure communications.
Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides
Institute of Scientific and Technical Information of China (English)
Zhang Jie-Fang; Jin Mei-Zhen; He Ji-Da; Lou Ji-Hui; Dai Chao-Qing
2013-01-01
We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr(o)dinger equation with varying coefficients.And then the dynamics of the first-and the second-order optical rogues are investigated.Finally,the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed.By properly choosing the distributed coefficients,we demonstrate analytically that rogue waves can be restrained or even be annihilated,or emerge periodically and sustain forever.We also figure out the center-of-mass motion of the rogue waves.
Modeling of Nonlinear Signal Distortion in Fiber-Optical Networks
Johannisson, Pontus
2013-01-01
A low-complexity model for signal quality prediction in a nonlinear fiber-optical network is developed. The model, which builds on the Gaussian noise model, takes into account the signal degradation caused by a combination of chromatic dispersion, nonlinear signal distortion, and amplifier noise. The center frequencies, bandwidths, and transmit powers can be chosen independently for each channel, which makes the model suitable for analysis and optimization of resource allocation, routing, and scheduling in large-scale optical networks applying flexible-grid wavelength-division multiplexing.
Hybrid quantum systems for enhanced nonlinear optical susceptibilities
Sullivan, Dennis; Kuzyk, Mark G
2016-01-01
Significant effort has been expended in the search for materials with ultra-fast nonlinear-optical susceptibilities, but most fall far below the fundamental limits. This work applies a theoretical materials development program that has identified a promising new hybrid made of a nanorod and a molecule. This system uses the electrostatic dipole moment of the molecule to break the symmetry of the metallic nanostructure that shifts the energy spectrum to make it optimal for a nonlinear-optical response near the fundamental limit. The structural parameters are varied to determine the ideal configuration, providing guidelines for making the best structures.
Weakly Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws
Chen, Gui-Qiang; Zhang, Yongqian
2012-01-01
We establish an $L^1$-estimate to validate the weakly nonlinear geometric optics for entropy solutions of nonlinear hyperbolic systems of conservation laws with arbitrary initial data of small bounded variation. This implies that the simpler geometric optics expansion function can be employed to study the properties of general entropy solutions to hyperbolic systems of conservation laws. Our analysis involves new techniques which rely on the structure of the approximate equations, besides the properties of the wave-front tracking algorithm and the standard semigroup estimates.
A Web Tool for Research in Nonlinear Optics
Prikhod'ko, Nikolay V.; Abramovsky, Viktor A.; Abramovskaya, Natalia V.; Demichev, Andrey P.; Kryukov, Alexandr P.; Polyakov, Stanislav P.
2016-02-01
This paper presents a project of developing the web platform called WebNLO for computer modeling of nonlinear optics phenomena. We discuss a general scheme of the platform and a model for interaction between the platform modules. The platform is built as a set of interacting RESTful web services (SaaS approach). Users can interact with the platform through a web browser or command line interface. Such a resource has no analogues in the field of nonlinear optics and will be created for the first time therefore allowing researchers to access high-performance computing resources that will significantly reduce the cost of the research and development process.
Third-Order Optical Nonlinearity in Novel Porphyrin Dimers
Institute of Scientific and Technical Information of China (English)
PEI Song-Hao; ZHAO Da-Peng; ZHANG Wei; ZHENG Wen-Qi; WANG Xing-Qiao; PENG Wei-Xian; SHI Guang; SONG Ying-Lin
2008-01-01
@@ We investigate the third-order optical nonlinearities in four novel porphyrin dimers (directs A to I)) and a monomeric porphyrin H2 CPTPP measured by using the single-beam z-scan technique with a pulsed Q-switched Nd:YAG nanosecond laser at 532nm.All the samples show strong excited state absorption (ESA) and high value of X(3) in the ns domain at this wavelength.We perform a comparison between dimer A and its monomer H2 CPTPP in their third-order optical nonlinearity, and discuss the relationships between the values of X(3) and the different bridging groups for all the dimers.
High-speed signal processing using highly nonlinear optical fibres
DEFF Research Database (Denmark)
Peucheret, Christophe; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen
2009-01-01
relying on the phase of the optical field. Topics covered include all-optical switching of 640 Gbit/s and 1.28 Tbit/s serial data, wavelength conversion at 640 Gbit/s, optical amplitude regeneration of differential phase shift keying (DPSK) signals, as well as midspan spectral inversion for differential 8......We review recent progress in all-optical signal processing techniques making use of conventional silica-based highly nonlinear fibres. In particular, we focus on recent demonstrations of ultra-fast processing at 640 Gbit/s and above, as well as on signal processing of novel modulation formats...
40-Gb/s all-optical wavelength conversion based on a nonlinear optical loop mirror
DEFF Research Database (Denmark)
Yu, Jianjun; Zheng, Xueyan; Peucheret, Christophe
2000-01-01
All-optical wavelength conversion based on a nonlinear optical loop mirror (NOLM) at 40 Gb/s is demonstrated for the first time. The effect of walkoff time between control beam and signal beams is investigated when the NOLM is used as an all-optical wavelength converter or an all...
Bhowmick, Arup; Mohapatra, Ashok K
2016-01-01
We demonstrate the phenomenon of blockade in two-photon excitations to the Rydberg state in thermal vapor. A technique based on optical heterodyne is used to measure the dispersion of a probe beam far off resonant to the D2 line of rubidium in the presence of a strong laser beam that couples to the Rydberg state via two-photon resonance. Density dependent suppression of the dispersion peak is observed while coupling to the Rydberg state with principal quantum number, n = 60. The experimental observation is explained using the phenomenon of Rydberg blockade. The blockade radius is measured to be about 2.2 {\\mu}m which is consistent with the scaling due to the Doppler width of 2-photon resonance in thermal vapor. Our result promises the realization of single photon source and strong single photon non-linearity based on Rydberg blockade in thermal vapor.
Recent Advances in Graphene-Assisted Nonlinear Optical Signal Processing
Directory of Open Access Journals (Sweden)
Jian Wang
2016-01-01
Full Text Available Possessing a variety of remarkable optical, electronic, and mechanical properties, graphene has emerged as an attractive material for a myriad of optoelectronic applications. The wonderful optical properties of graphene afford multiple functions of graphene based polarizers, modulators, transistors, and photodetectors. So far, the main focus has been on graphene based photonics and optoelectronics devices. Due to the linear band structure allowing interband optical transitions at all photon energies, graphene has remarkably large third-order optical susceptibility χ(3, which is only weakly dependent on the wavelength in the near-infrared frequency range. The graphene-assisted four-wave mixing (FWM based wavelength conversions have been experimentally demonstrated. So, we believe that the potential applications of graphene also lie in nonlinear optical signal processing, where the combination of its unique large χ(3 nonlinearities and dispersionless over the wavelength can be fully exploited. In this review article, we give a brief overview of our recent progress in graphene-assisted nonlinear optical device and their applications, including degenerate FWM based wavelength conversion of quadrature phase-shift keying (QPSK signal, phase conjugated wavelength conversion by degenerate FWM and transparent wavelength conversion by nondegenerate FWM, two-input and three-input high-base optical computing, and high-speed gate-tunable terahertz coherent perfect absorption (CPA using a split-ring graphene.
Study of Linear and Non-Linear Optical Parameters of Zinc Selenide Thin Film
Directory of Open Access Journals (Sweden)
H. N. Desai
2015-06-01
Full Text Available Thin film of Zinc Selenide (ZnSe was deposited onto transparent glass substrate by thermal evaporation technique. ZnSe thin film was characterized by UV-Visible spectrophotometer within the wavelength range of 310 nm-1080 nm. The Linear optical parameters (linear optical absorption, extinction coefficient, refractive index and complex dielectric constant of ZnSe thin film were analyzed from absorption spectra. The optical band gap and Urbach energy were obtained by Tauc’s equation. The volume and surface energy loss function of ZnSe thin film were obtained by complex dielectric constant. The Dispersion parameters (dispersion energy, oscillation energy, moment of optical dispersion spectra, static dielectric constant and static refractive index were calculated using theoretical Wemple-DiDomenico model. The oscillation strength, oscillator wavelength, high frequency dielectric constant and high frequency refractive index were calculated by single Sellmeier oscillator model. Also, Lattice dielectric constant, N/m* and plasma resonance frequency were obtained. The electronic polarizibility of ZnSe thin film was estimated by Clausius-Mossotti local field polarizibility. The nonlinear optical parameters (non-linear susceptibility and non-linear refractive index were estimated.
Optical sensors of bulk refractive index using optical fiber resonators
Eryürek, M.; Karadag, Y.; Ghafoor, M.; Bavili, N.; Cicek, K.; Kiraz, A.
2017-05-01
Optical fiber resonator (OFR) sensor is presented for bulk liquid refractive index (RI) sensing. The sensing mechanism relies on the spectral shifts of whispering gallery modes (WGMs) of OFRs which are excited using a tapered fiber. OFR liquid RI sensor is fully characterized using water solutions of ethanol and ethylene glycol (EG). A good agreement is achieved between the analytical calculations and experimental results for both TE and TM polarizations. The detection limit for bulk RI is calculated to be between 2.7 - 4.7 × 10-5 refractive index unit (RIU). The OFR sensor provides a robust, easy-to-fabricate and sensitive liquid refractive index sensor which can be employed in lab-on-a-chip applications.
Optics in a nonlinear gravitational wave
Harte, Abraham I
2015-01-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. The commonly-used predictions of linear perturbation theory are shown to be generically overshadowed---even for very weak gravitational waves---by nonlinear effects when considering observations of sufficiently distant sources; higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Optics in a nonlinear gravitational plane wave
Harte, Abraham I.
2015-09-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Nonlinear optical properties and optical power limiting effect of Giemsa dye
Al-Saidi, Imad Al-Deen Hussein A.; Abdulkareem, Saif Al-Deen
2016-08-01
The nonlinear optical properties of Giemsa dye in chloroform solution for different concentrations and dye mixed with poly(methylmethacrylate) (PMMA) as a dye-doped polymer film were investigated using continuous wave (CW) low power solid-state laser (SSL) operating at wavelength of 532 nm as an excitation source. Using the single beam z-scan technique, the nonlinear refractive index (n2), the nonlinear absorption coefficient (β), and the third-order nonlinear optical susceptibility (χ(3)) of Giemsa dye were measured. The measurements reveal that both n2 and β are dependent on the dye concentration. The obtained results indicate that the Giemsa dye exhibits positive nonlinear saturable absorption (SA) and negative refraction nonlinearity, manifestation of self-defocusing effect. Optical power limiting characteristics of the Giemsa dye at different concentrations in solution and polymer film were studied. The observed large third-order optical nonlinearity of Giemsa dye confirms that Giemsa dye is a promising nonlinear material for the optical power limiting and photonic devices applications.
Unstable optical resonator loss calculations using the prony method.
Siegman, A E; Miller, H Y
1970-12-01
The eigenvalues for all the significant low-order resonant modes of an unstable optical resonator with circular mirrors are computed using an eigenvalue method called the Prony method. A general equivalence relation is also given, by means of which one can obtain the design parameters for a single-ended unstable resonator of the type usually employed in practical lasers, from the calculated or tabulated values for an equivalent symmetric or double-ended unstable resonator.
Materials for Nonlinear Optics Chemical Perspectives
1991-01-01
introduced into LB muldilayers built from 1/1 mixtures with an amphiphilic cyclodextrin . The polyenic chains are again perpendicular to the substrate...molecules in inorganic matrices. The encapsulated molecules can be used to induce new optical properties in the material or to probe the changes at the...glass are discussed here. First, laser dyes including rhodamines and coumarins are encapsulated . The resulting doped gel-glasses exhibit optical gain
Nonlinear Real-Time Optical Signal Processing.
1983-12-01
8217 " University of Southern CaliforniaN JU Los Angeles, California 90089-0272 " --;984. ,’ I ’I Research Sponsored by the ., k Air Force Office of...concentrates on experimental results from the sixteen gate clocked master-slave optical flip-flop. A second paper " Architectures for a Sequential Optical Logic...purpose computer could permit the realization of a number of architectural advantages over semiconductor electronics [27]. These advantages include
Optical Beams in Nonlocal Nonlinear Media
DEFF Research Database (Denmark)
Królikowski, W.; Bang, Ole; Wyller, J.
2003-01-01
We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....
Application of Novel Nonlinear Optical Materials to Optical Processing
Banerjee, Partha P.
1999-01-01
We describe wave mixing and interactions in nonlinear photorefractive polymers and disodium flourescein. Higher diffracted orders yielding forward phase conjugation can be generated in a two-wave mixing geometry in photorefractive polymers, and this higher order can be used for image edge enhancement and correlation. Four-wave mixing and phase conjugation is studied using nonlinear disodium floureschein, and the nature and properties of gratings written in this material are investigated.
Demonstration of sharp multiple Fano resonances in optical metamaterials.
Moritake, Yuto; Kanamori, Yoshiaki; Hane, Kazuhiro
2016-05-01
We experimentally demonstrated multiple Fano resonances in optical metamaterials. By combination of two different sized asymmetric-double-bar (ADB) structures, triple Fano resonance was observed in the near-infrared region. In addition to Fano resonance due to anti-phase modes in isolated ADB structures, an anti-phase mode due to coupling among different sized ADBs was observed. Dependence of characteristics of resonances on size difference was also investigated. At specific conditions of size difference, quality factors of three Fano resonances were improved compared with ADB metamaterials consisting of one kind of ADBs. The results will help to realize applications using metamaterial resonators with multiple functionalities and high performance.
Nonlinear Optical BBO Crystals: Growth, Properties and Applications
Institute of Scientific and Technical Information of China (English)
唐鼎元
2000-01-01
Low temperature phase barium metaborate β-BaB2O4 (BBO) is an important nonlinear optical material. Up to now, the BBO single crystals with large size and good optical quality were grown from Na2O or NaF fluxed solvents by the top-seeded solution growth (TSSG) technique with or without pulling. In order to improve the growth rate and quality of BBO crystals, several new techniques such as continuous feeding, forced stirring and cooling growing crystals etc. have been suggested. Applications of BBO as an excellent nonlinear optical crystal include mainly frequency conversion of various laser radiation, high average power frequency conversion, frequency doubling of ultrashort pulses and broadly tunable optical parametric oscillators (OPO).This paper is a brief review on the growth, properties and applications of BBO crystals.
Low-Loss Polymer-Based Ring Resonator for Resonant Integrated Optical Gyroscopes
Directory of Open Access Journals (Sweden)
Guang Qian
2014-01-01
Full Text Available Waveguide ring resonator is the sensing element of resonant integrated optical gyroscope (RIOG. This paper reports a polymer-based ring resonator with a low propagation loss of about 0.476 dB/cm for RIOG. The geometrical parameters of the waveguide and the coupler of the resonator were optimally designed. We also discussed the optical properties and gyroscope performance of the polymer resonator which shows a high quality factor of about 105. The polymer-based RIOG exhibits a limited sensitivity of less than 20 deg/h for the low and medium resolution navigation systems.
Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser
DEFF Research Database (Denmark)
Abitan, Haim; Buchhave, Preben
2003-01-01
A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....
A Strategy for the Development of Macromolecular Nonlinear Optical Materials
1990-01-01
obsolete. SECURITY CLASSIFICATION OF THIS PAGE STRATEGY FOR THE DEVELOPMENT OF MACROMOLECULAR NONLINEAR OPTICAL MATERIALS Braja K. Mandala , Jan-Chan...materials is significantly different from the conventional inorganic NLO materials. The extent of second order (quadratic) NLO effect such as second...is a criterion of paramount importance for a large second order electro-optic effect in organic materials 8 ,9 . The most common approach to obtain
Harmonic nanoparticles: noncentrosymmetric metal oxides for nonlinear optics
Rogov, Andrii; Mugnier, Yannick; Bonacina, Luigi
2015-01-01
The combination of nonlinear optics and nanotechnology is an extremely rich scientific domain yet widely unexplored. We present here a review of recent optical investigations on noncentrosymmetric oxide nanoparticles with a large ${{\\chi }^{(2)}}$ response, often referred to as harmonic nanoparticles (HNPs). HNPs feature a series of properties which distinguish them from other photonics nanoprobes (quantum dots, up-conversion nanoparticles, noble metal particles). HNPs emission is inherently ...
Guesmi, Latifa; Menif, Mourad
2016-04-01
The field of fiber optics nonlinearity is more discussed last years due to such remarkable enhancement in the nonlinear processes efficiency. In this paper, and for optical performance monitoring (OPM), a new achievement of nonlinear effects has been investigated. The use of cross-phase modulation (XPM) and four-wave mixing (FWM) effects between input optical signal and inserted continuous-wave probe has proposed for impairments monitoring. Indeed, transmitting a multi-channels phase modulated signal at high data rate (1 Tbps WDM Nyquist NRZ- DP-QPSK) improves the sensitivity and the dynamic range monitoring. It was observed by simulation results that various optical parameters including optical power, wavelength, chromatic dispersion (CD), polarization mode dispersion (PMD), optical signal-to-noise ratio (OSNR), Q-factor and so on, can be monitored. Also, the effect of increasing the channel spacing between WDM signals is studied and proved its use for FWM power monitoring.
Nonlinear optical studies of aqueous interfaces, polymers, and nanowires
Onorato, Robert Michael
-transfer-to-solvent band and a Langmuir adsorption model are used to determine the affinity of bromide for both the air/water and dodecanol/water interfaces in the molar concentration regime. The Gibbs free energy of adsorption for the former is determined to be -1.4 kJ/mol with a lower 90% confidence limit of -4.1 kJ/mol. For the dodecanol/water interface the data are best fit with a Gibbs free energy of +8 kJ/mol with an estimated a lower limit of -4 kJ/mol. Adsorption of ions to the air/water interface in the millimolar regime is a particularly interesting phenomenon. In Chapter 4, the affinity of sodium chloride and sodium bromide to the air/water interface is probed by UV-SHG. Both salts exhibit a strong adsorption, with free energies greater than -20 kJ/mol. Interestingly, sodium chloride exhibits a stronger affinity for the interface than does sodium iodide, which was previously studied by Poul Peterson. This is counter to both experimental and theoretical results for higher concentrations. It has been predicted that ion adsorption is dictated by strong and opposing electrostatic and entropic forces. The change in order of ion interfacial affinity can be explained by relatively small changes in these forces at different concentrations and ionic strengths. In Chapters 5 and 6, other work using nonlinear optical techniques is described. Coherent anti-Stokes Raman scattering microscopy is a promising tool for chemically selective imaging based on molecular vibrations. While CARS is currently used as a biological imaging tool, many variations are still being developed, perhaps the most important being multiplex CARS microscopy. Multiplex CARS has the advantage of comparing images based on different molecular vibrations without changing the excitation wavelengths. In Chapter 5, I demonstrate both high spectral and spatial resolution multiplex CARS imaging of polymer films using a simple scheme for chirped CARS with a spectral bandwidth of 300 cm-1. In Chapter 6, the nonlinear optical
Geometrically Protected Resonance Modes and Optical Fano Resonances
Regan, Emma C; Lopez, Josue J; Hsu, Chia Wei; Zhen, Bo; Joannopoulos, John D; Soljacic, Marin
2015-01-01
Traditionally, photonic crystal slabs can support resonances that are strongly confined to the slab but also couple to external radiation. However, when a photonic crystal slab is placed on a substrate, the resonance modes become less confined, and as the index contrast between slab and substrate decreases, they eventually disappear. Using the scale structure of the Dione Juno butterfly wing as an inspiration, we present a low-index zigzag surface structure that supports resonance modes even without index contrast with the substrate. The zigzag structure supports resonances that are contained away from the substrate; this geometrically protects the modes from coupling to the substrate. We experimentally verify the protected resonance property of the zigzag structure in the visible wavelength regime. Potential applications include substrate-independent structural color and light guiding.
Third-order optical nonlinearity studies of bilayer Au/Ag metallic films
Mezher, M. H.; Chong, W. Y.; Zakaria, R.
2016-05-01
This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and -1.61) × 10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at -1.24 × 10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.
Intensity dependences of the nonlinear optical excitation of plasmons in graphene.
Constant, T J; Hornett, S M; Chang, D E; Hendry, E
2017-03-28
Recently, we demonstrated an all-optical coupling scheme for plasmons, which takes advantage of the intrinsic nonlinear optical response of graphene. Frequency mixing using free-space, visible light pulses generates surface plasmons in a planar graphene sample, where the phase matching condition can define both the wavevector and energy of surface waves and intraband transitions. Here, we also show that the plasmon generation process is strongly intensity-dependent, with resonance features washed out for absorbed pulse fluences greater than 0.1 J m(-2) This implies a subtle interplay between the nonlinear generation process and sample heating. We discuss these effects in terms of a non-equilibrium charge distribution using a two-temperature model.This article is part of the themed issue 'New horizons for nanophotonics'.
Photonic Integrated Devices for Nonlinear Optics
Caspani, Lucia; Dolgaleva, Ksenia; Wagner, Sean; Ferrera, Marcello; Razzari, Luca; Pasquazi, Alessia; Peccianti, Marco; Moss, David J; Aitchison, J Stewart; Morandotti, Roberto
2014-01-01
We review our recent progresses on frequency conversion in integrated devices, focusing primarily on experiments based on strip-loaded and quantum-well intermixed AlGaAs waveguides, and on CMOS-compatible high-index doped silica glass waveguides. The former includes both second- and third-order interactions, demonstrating wavelength conversion by tunable difference-frequency generation over a bandwidth of more than nm, as well as broadband self-phase modulation and tunable four-wave mixing. The latter includes four-wave mixing using low-power continuous-wave light in microring resonators as well as hyper-parametric oscillation in a high quality factor resonator, towards the realization of an integrated multiple wavelength source with important applications for telecommunications, spectroscopy, and metrology.