WorldWideScience

Sample records for resonant mode conversion

  1. Surface acoustic wave mode conversion resonator

    Science.gov (United States)

    Martin, S. J.; Gunshor, R. L.; Melloch, M. R.; Datta, S.; Pierret, R. F.

    1983-08-01

    The fact that a ZnO-on-Si structure supports two distinct surface waves, referred to as the Rayleigh and the Sezawa modes, if the ZnO layer is sufficiently thick is recalled. A description is given of a unique surface wave resonator that operates by efficiently converting between the two modes at the resonant frequency. Since input and output coupling is effected through different modes, the mode conversion resonator promises enhanced out-of-band signal rejection. A Rayleigh wave traversing the resonant cavity in one direction is reflected as a Sezawa wave. It is pointed out that the off-resonance rejection of the mode conversion resonator could be enhanced by designing the transducers to minimize the level of cross coupling between transducers and propagating modes.

  2. Resonant mode conversion in the waveguides with an unbroken and broken PT-symmetry

    CERN Document Server

    Vysloukh, Victor A

    2014-01-01

    We study resonant mode conversion in the PT-symmetric multimode waveguides, where symmetry breaking manifests itself in sequential destabilization (appearance of the complex eigenvalues) of the pairs of adjacent guided modes. We show that the efficient mode conversion is possible even in the presence of the resonant longitudinal modulation of the complex refractive index. The distinguishing feature of the resonant mode conversion in the PT-symmetric structure is a drastic growth of the width of the resonance curve when the gain/losses coefficient approaches a critical value, at which symmetry breaking occurs. We found that in the system with broken symmetry the resonant coupling between exponentially growing mode with stable higher-order one effectively stabilizes dynamically coupled pair of modes and remarkably diminishes the average rate of the total power growth.

  3. Efficient single sideband microwave to optical conversion using an electro-optical whispering gallery mode resonator

    CERN Document Server

    Rueda, Alfredo; Collodo, Michele C; Vogl, Ulrich; Stiller, Birgit; Schunk, Gerhard; Strekalov, Dmitry V; Marquardt, Christoph; Fink, Johannes M; Painter, Oskar; Leuchs, Gerd; Schwefel, Harald G L

    2016-01-01

    Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent microwave-to-optical conversion to link electronic quantum processors and memories via low-loss optical telecommunication networks. Efficient conversion can be achieved with electro-optical modulators operating at the single microwave photon level. In the standard electro-optic modulation scheme this is impossible because both, up- and downconverted, sidebands are necessarily present. Here we demonstrate true single sideband up- or downconversion in a triply resonant whispering gallery mode resonator by explicitly addressing modes with asymmetric free spectral range. Compared to previous experiments, we show a three orders of magnitude improvement of the electro-optical conversion efficiency reaching 0.1% photon number conversion for a 10GHz microwave tone at 0.42mW of optical pump power. The presented scheme is fully compatible...

  4. Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators.

    Science.gov (United States)

    Xia, Fengnian; Sekaric, Lidija; Vlasov, Yurii A

    2006-05-01

    Two complimentary types of SOI photonic wire based devices, the add/drop (A/D) filter using a racetrack resonator and the Mach-Zehnder interferometer with one arm consisting of an identical resonator in all-pass filter (APF) configuration, were fabricated and characterized in order to extract the optical properties of the resonators and predict the performance of the optical delay lines based on such resonators. We found that instead of well-known waveguide bending and propagation losses, mode conversion loss in the coupling region of such resonators dominates when the air gap between the racetrack resonator and access waveguide is smaller than 120nm. We also show that this additional loss significantly degrades the performance of the optical delay line containing cascaded resonators in APF configuration.

  5. Mode conversion and electron heating near the upper hybrid resonance frequency

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.L.; Okuda, H.; Abe, H.

    1983-11-01

    Mode conversion near the upper hybrid resonance frequency and electron heating are studied using a one-dimensional electromagnetic relativistic particle code. It is found that for a sufficiently small pump field E/sub 0/, E/sub 0//sup 2//4..pi..nT/sub e/ less than or equal to 0.01, electron heating is localized in a region near the electron cyclotron layer where the pump frequency is equal to the local electron gyrofrequency. For stronger pump fields, electron heating takes place more or less uniformly across a region between the upper hybrid resonance layer and the cyclotron layer. In addition, a significant fraction of electromagnetic energy associated with the pump is found to be reflected back into the vacuum from a region in the plasma near the upper hybrid resonance layer for both strong (E/sub 0//sup 2//4..pi..nT/sub e/ approx. = 1) and weak pumps (E/sub 0//sup 2//4..pi..nT/sub e/ << 1).

  6. Resonance vector mode locking

    CERN Document Server

    Kolpakov, Stanislav A; Loika, Yuri; Tarasov, Nikita; Kalashnikov, Vladimir; Agrawal, Govind P

    2015-01-01

    A mode locked fibre laser as a source of ultra-stable pulse train has revolutionised a wide range of fundamental and applied research areas by offering high peak powers, high repetition rates, femtosecond range pulse widths and a narrow linewidth. However, further progress in linewidth narrowing seems to be limited by the complexity of the carrier-envelope phase control. Here for the first time we demonstrate experimentally and theoretically a new mechanism of resonance vector self-mode locking where tuning in-cavity birefringence leads to excitation of the longitudinal modes sidebands accompanied by the resonance phase locking of sidebands with the adjacent longitudinal modes. An additional resonance with acoustic phonons provides the repetition rate tunability and linewidth narrowing down to Hz range that drastically reduces the complexity of the carrier-envelope phase control and so will open the way to advance lasers in the context of applications in metrology, spectroscopy, microwave photonics, astronomy...

  7. One-dimensional full wave treatment of mode conversion process at the ion-ion hybrid resonance in a bounded tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Monakhov, I.; Becoulet, A.; Fraboulet, D.; NGuyen, F

    1998-09-01

    A consistent picture of the mode conversion (MC) process at the ion-ion hybrid resonance in a bounded plasma of a tokamak is discussed, which clarifies the role of the global fast wave interference and cavity effects in the determination of the MC efficiency. This picture is supported by simulations with one-dimensional full wave kinetic code `VICE`. The concept of the `global resonator`, formed by the R = n{sup 2}{sub ||} boundary cutoffs [B. Saoutic et al., Phys. Rev. Lett. 76, 1647 (1996)], is justified, as well as the importance of a proper tunneling factor choice {eta}{sub cr} = 0.22 [A. K. Ram et al., Phys. Plasmas 3, 1976 (1996)]. The MC scheme behavior appears to be very sensitive to the MC layer position relative to the global wave field pattern, i.e. to the local value of `poloidal` electric field at the resonance. Optimal MC regimes are found to be attainable without requirement of a particular parallel wavenumber choice. (author) 40 refs.

  8. Optical wavelength conversion via optomechanical coupling in a silica resonator

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chunhua; Fiore, Victor; Kuzyk, Mark C.; Wang, Hailin [Department of Physics, University of Oregon, Eugene, OR (United States); Tian, Lin [University of California, Merced, CA (United States)

    2015-01-01

    In an optomechanical resonator, an optically active mechanical mode can couple to any of the optical resonances via radiation pressure. This unique property can enable a remarkable phenomenon: conversion of optical fields via optomechanical coupling between vastly different wavelengths. Here we expand an earlier experimental study [Science 338, 1609 (2012)] on classical wavelength conversion of coherent optical fields by coupling two optical modes to a mechanical breathing mode in a silica resonator. Heterodyne detection of the converted optical fields shows that the wavelength conversion process is coherent and bidirectional. The conversion efficiency obtained features a distinct saturation behavior that arises from optomechanical impedance matching. A measurement of the coherent mechanical excitation involved in the wavelength conversion process also provides additional insight on the underlying optomechanical interactions. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Resonance modes in optical fibres

    Institute of Scientific and Technical Information of China (English)

    余寿绵; 余恬

    2002-01-01

    The weakly nonlinear boundary value problem of wave propagation in an optical fibre (for the transverse electric mode, for example) is formulated and a modified linear solution is obtained. It is shown that a self-consistent theory of fibre optics should be weakly nonlinear. The mode of critical refraction that does not exist in the linear theory is obtained, showing that it is a mode consisting of resonance modes. It is shown that the signal carriers in a long fibre are of resonance modes, not normal modes. Some experimental data are given for comparison with the theoretical predictions, and the agreement seems satisfactory.

  10. Lower hybrid to whistler mode conversion on a density striation

    CERN Document Server

    Camporeale, Enrico; Colestock, Patrick

    2013-01-01

    When a wave packet composed of short wavelength lower hybrid modes traveling in an homogeneous plasma region encounters an inhomogeneity, it can resonantly excite long wavelength whistler waves via a linear mechanism known as mode conversion. An enhancement of lower hybrid/whistler activity has been often observed by sounding rockets and satellites in the presence of density depletions (striations) in the upper ionosphere. We address here the process of linear mode conversion of lower hybrid to whistler waves, mediated by a density striation, using a scalar-field formalism (in the limit of cold plasma linear theory) which we solve numerically. We show that the mode conversion can effectively transfer a large amount of energy from the short to the long wavelength modes. We also study how the efficiency scales by changing the properties (width and amplitude) of the density striation. We present a general criterion for the width of the striation that, if fulfilled, maximizes the conversion efficiency. Such a cri...

  11. Broadband mode conversion via gradient index metamaterials.

    Science.gov (United States)

    Wang, HaiXiao; Xu, YaDong; Genevet, Patrice; Jiang, Jian-Hua; Chen, HuanYang

    2016-04-21

    We propose a design for broadband waveguide mode conversion based on gradient index metamaterials (GIMs). Numerical simulations demonstrate that the zeroth order of transverse magnetic mode or the first order of transverse electric mode (TM0/TE1) can be converted into the first order of transverse magnetic mode or the second order of transverse electric mode (TM1/TE2) for a broadband of frequencies. As an application, an asymmetric propagation is achieved by integrating zero index metamaterials inside the GIM waveguide.

  12. Broadband mode conversion via gradient index metamaterials

    CERN Document Server

    Wang, HaiXiao; Genevet, Patrice; Jiang, Jian-Hua; Chen, HuanYang

    2015-01-01

    We propose a design for broadband waveguide mode conversion based on gradient index metamaterials (GIMs). Numerical simulations demonstrate that the zeroth order of transverse magnetic mode or the first order of transverse electric mode (TM0/TE1) can be converted into the first order of transverse magnetic mode or the second order of transverse electric mode (TM1/TE2) for a broadband of frequencies. As an application, an asymmetric propagation is achieved by integrating zero index metamaterials inside the GIM waveguide.

  13. MHD Mode Conversion around a 2D Magnetic Null Point

    CERN Document Server

    McDougall, A M D; 10.1063/1.3099224

    2009-01-01

    Mode conversion occurs when a wave passes through a region where the sound and Alfven speeds are equal. At this point there is a resonance, which allows some of the incident wave to be converted into a different mode. We study this phenomenon in the vicinity of a two-dimensional, coronal null point. As a wave approaches the null it passes from low- to high-beta plasma, allowing conversion to take place. We simulate this numerically by sending in a slow magnetoacoustic wave from the upper boundary; as this passes through the conversion layer a fast wave can clearly be seen propagating ahead. Numerical simulations combined with an analytical WKB investigation allow us to determine and track both the incident and converted waves throughout the domain.

  14. The O-X-B mode conversion scheme for ECRH of a high-density Tokamak plasma

    DEFF Research Database (Denmark)

    Hansen, F. R.; Lynov, Jens-Peter; Michelsen, Poul

    1985-01-01

    A method to apply electron cyclotron resonance heating (ECRH) to a Tokamak plasma with central density higher than the critical density for cut-off of the ordinary mode (O-mode) has been investigated. This method involves two mode conversions, from an O-mode via an extraordinary mode (X-mode) int......A method to apply electron cyclotron resonance heating (ECRH) to a Tokamak plasma with central density higher than the critical density for cut-off of the ordinary mode (O-mode) has been investigated. This method involves two mode conversions, from an O-mode via an extraordinary mode (X...

  15. Development of Mode Conversion Waveguides at KIT

    Directory of Open Access Journals (Sweden)

    Jin Jianbo

    2015-01-01

    Full Text Available The development of mode conversion waveguides (launchers for high power gyrotrons has gone through three stages at KIT. Formerly, harmonically deformed launchers have been used in the series gyrotrons developed for the stellarator W7-X. In 2009, a numerical method for the analysis and synthesis of mirror-line launchers was developed at KIT. Such a launcher with adapted mode-converting mirrors for a 2 MW TE34,19-mode, 170GHz coaxial-cavity gyrotron has been designed and tested, and also a mirror-line launcher for the 1MW EU ITER gyrotron has been designed. Recently, based on the Helmholtz-Kirchhoff integral theorem, a novel numerical method for the synthesis of hybrid-type gyrotron launchers has been developed. As an example, TE32,9 mode launchers operating at 170GHz that have been designed using the three different methods are being compared.

  16. Optical wavelength conversion via optomechanical coupling in a silica resonator

    CERN Document Server

    Dong, Chunhua; Kuzyk, Mark C; Tian, Lin; Wang, Hailin

    2012-01-01

    We report the experimental demonstration of converting coherent optical fields between two different optical wavelengths by coupling two optical modes to a mechanical breathing mode in a silica resonator. The experiment is based on an itinerant approach, in which state-mapping from optical to mechanical and from mechanical to another optical state takes place simultaneously. In contrast to conventional nonlinear optical processes, optomechanical impedance matching as well as efficient optical input-output coupling, instead of phase-matching, plays a crucial role in optomechanics-based wavelength conversion.

  17. Microwave-to-Optical Conversion in WGM Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  18. Quantum Light from a Whispering-Gallery-Mode Disk Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.;

    2011-01-01

    Optical parametric down-conversion has proven to be a valuable source of nonclassical light. The process is inherently able to produce twin-beam correlations along with individual intensity squeezing of either parametric beam, when pumped far above threshold. Here, we present for the first time...... the direct observation of intensity squeezing of -1.2 dB of each of the individual parametric beams in parametric down-conversion by use of a high quality whispering-gallery-mode disk resonator. In addition, we observed twin-beam quantum correlations of -2.7 dB with this cavity. Such resonators feature...

  19. Broadband second harmonic generation in whispering gallery mode resonators

    CERN Document Server

    Lin, Guoping; Strekalov, Dmitry V; Yu, Nan

    2013-01-01

    Optical frequency conversion processes in nonlinear materials are limited in wavelength by the accessible phase matching and the required high pump powers. In this letter, we report a novel broadband phase matching (PM) technique in high quality factor (Q) whispering gallery mode (WGM) resonators made of birefringent crystalline materials. This technique relies on two interacting WGMs, one with constant and the other with spatially oscillating phase velocity. Thus, phase matching occurs cyclically. The technique can be implemented with a WGM resonator with its disk plane parallel to the optic axis of the crystal. With a single beta barium borate (BBO) resonator in that configuration, we experimentally demonstrated efficient second harmonic generation (SHG) to harmonic wavelengths from 780 nm in the near infrared to 317 nm in the ultraviolet (UV). The observed SHG conversion efficiency is as high as 4.6% (mW)-1. This broadband PM technique opens a new way for nonlinear optics applications in WGM resonators. Th...

  20. Enhancing The Mode Conversion Efficiency In JET Plasmas With Multiple Mode Conversion Layers

    Science.gov (United States)

    Van Eester, D.; Lerche, E.; Johnson, T.; Hellsten, T.; Ongena, J.; Mayoral, M.-L.; Frigione, D.; Sozzi, C.; Calabro, G.; Lennholm, M.; Beaumont, P.; Blackman, T.; Brennan, D.; Brett, A.; Cecconello, M.; Coffey, I.; Coyne, A.; Crombe, K.; Czarnecka, A.; Felton, R.; Johnson, M. Gatu; Giroud, C.; Gorini, G.; Hellesen, C.; Jacquet, P.; Kazakov, Y.; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Lin, Y.; Maslov, M.; Monakhov, I.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Stamp, M.; Studholme, W.; Tardocchi, M.; Versloot, T. W.; Vdovin, V.; Whitehurst, A.; Wooldridge, E.; Zoita, V.

    2011-12-01

    The constructive interference effect described by Fuchs et al. [1] shows that the mode conversion and thereby the overall heating efficiency can be enhanced significantly when an integer number of fast wave wavelengths can be folded in between the high field side fast wave cutoff and the ion-ion hybrid layer(s) at which the ion Bernstein or ion cyclotron waves are excited. This effect was already experimentally identified in (3He)-D plasmas [2] and was recently tested in (3He)-H JET plasmas. The latter is an `inverted' scenario, which differs significantly from the (3He)-D scenarios since the mode-conversion layer is positioned between the low field side edge of the plasma and the ion-cyclotron layer of the minority 3He ions (whereas the order in which a wave entering the plasma from the low field side encounters these layers is inverted in a `regular' scenario), and because much lower 3He concentrations are needed to achieve the mode-conversion heating regime. The presence of small amounts of 4He and D in the discharges gave rise to an additional mode conversion layer on top of the expected one associated with 3He-H, which made the interpretation of the results more complex but also more interesting: Three different regimes could be distinguished as a function of X[3He], and the differing dynamics at the various concentrations could be traced back to the presence of these two mode conversion layers and their associated fast wave cutoffs. Whereas (1-D and 2-D) numerical modeling yields quantitative information on the RF absorptivity, recent analytical work by Kazakov [3] permits to grasp the dominant underlying wave interaction physics.

  1. Geometrically Protected Resonance Modes and Optical Fano Resonances

    CERN Document Server

    Regan, Emma C; Lopez, Josue J; Hsu, Chia Wei; Zhen, Bo; Joannopoulos, John D; Soljacic, Marin

    2015-01-01

    Traditionally, photonic crystal slabs can support resonances that are strongly confined to the slab but also couple to external radiation. However, when a photonic crystal slab is placed on a substrate, the resonance modes become less confined, and as the index contrast between slab and substrate decreases, they eventually disappear. Using the scale structure of the Dione Juno butterfly wing as an inspiration, we present a low-index zigzag surface structure that supports resonance modes even without index contrast with the substrate. The zigzag structure supports resonances that are contained away from the substrate; this geometrically protects the modes from coupling to the substrate. We experimentally verify the protected resonance property of the zigzag structure in the visible wavelength regime. Potential applications include substrate-independent structural color and light guiding.

  2. Localized bulk electron heating with ICRF mode conversion in the JET tokamak

    DEFF Research Database (Denmark)

    Mantsinen, M.J.; Mayoral, M.-L.; Eester, D. Van

    2004-01-01

    Ion cyclotron resonance frequencies (ICRF) mode conversion has been developed for localized on-axis and off-axis bulk electron heating on the JET tokamak. The fast magnetosonic waves launched from the low-field side ICRF antennas are mode-converted to short-wavelength waves on the high-field side...

  3. Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance

    Science.gov (United States)

    Wu, Gaojian; Nan, Tianxiang; Zhang, Ru; Zhang, Ning; Li, Shandong; Sun, Nian X.

    2013-10-01

    Resonant direct and converse magnetoelectric (ME) effects have been investigated experimentally and theoretically in FeGa/PZT/FeGa sandwich laminate composites under the same electric and magnetic bias conditions. Resonant direct ME effect (DME) occurs at antiresonance frequency while resonant converse ME effect (CME) occurs at resonance frequency. The antiresonance and resonance frequencies have close but different values under identical bias conditions. The magnitudes of resonant effective ME coefficients for direct and converse ME effects are also not equal. A model was developed to describe the frequency response of DME and CME in laminate composite, which was in good agreement with experimental results.

  4. Nanofabricated Optomechanical Whispering Gallery Mode Resonators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strong interest in whispering gallery mode resonators (WGMR) for use in chip-scale photonic devices is motivated by their high optical quality, mechanical simplicity...

  5. Highly efficient generation of single-mode photon pairs using a crystalline whispering gallery mode resonator

    CERN Document Server

    Förtsch, Michael; Fürst, Josef U; Strekalov, Dmitry; Gerrits, Thomas; Stevens, Martin J; Sedlmeir, Florian; Schwefel, Harald G L; Nam, Sae Woo; Leuchs, Gerd; Marquardt, Christoph

    2014-01-01

    We report a highly efficient source of narrow-band photon pairs based on parametric down-conversion in a crystalline whispering gallery mode resonator. Remarkably, each photon of a pair is strictly emitted into a single spatial and temporal mode, as witnessed by Glaubers autocorrelation function. We explore the phase-matching conditions in spherical geometries, and determine the requirements of the single-mode operation. Understanding these conditions has allowed us to experimentally demonstrate a single-mode pair-detection rate of $0.97 \\cdot 10^6$ pairs/s per mW pump power per 20 MHz bandwidth without the need of additional filter cavities.

  6. Study of Mode Coupling on Coaxial Resonators

    Institute of Scientific and Technical Information of China (English)

    Rui Liu; Hong-Fu Li

    2011-01-01

    A study of mode coupling phenomenon of coaxial resonators has been conducted with theories.Through establishing the source-free transmission line equation,boundary conditions of the coaxial resonators with a corrugated inner conductor are analyzed.In the end,calculations are performed in a wide range of corrugation parameters for the resonator of the Karisruhe Institute of Technology (KIT) relevant coaxial gyrotron.

  7. Fiber-guided modes conversion using superposed helical gratings

    Science.gov (United States)

    Ma, Yancheng; Fang, Liang; Wu, Guoan

    2017-03-01

    Optical fibers can support various modal forms, including vector modes, linear polarization (LP) modes, and orbital angular momentum (OAM) modes, etc. The modal correlation among these modes is investigated via Jones matrix, associated with polarization and helical phase corresponding to spin angular momentum (SAM) and OAM of light, respectively. We can generate different modal forms by adopting superposed helical gratings (SHGs) with opposite helix orientations. Detailed analysis and discussion on mode conversion is given as for mode coupling in optical fibers with both low and high contrast index, respectively. Our study may deepen the understanding for various fiber-guided modes and mode conversion among them via fiber gratings.

  8. Acoustic one-way mode conversion and transmission by sonic crystal waveguides

    CERN Document Server

    Ouyang, Shiliang; He, Zhaojian; Deng, Ke; Zhao, Heping

    2016-01-01

    We proposed a scheme to achieve one-way acoustic propagation and even odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.

  9. Mode conversion in three ion species ICRF heating scenario

    Science.gov (United States)

    Lin, Y.; Edlund, E.; Ennever, P.; Porkolab, M.; Wright, J.; Wukitch, S.

    2016-10-01

    Three-ion species ICRF heating has been studied on Alcator C-Mod and on JET. It has been shown to heat the plasma and generate energetic particles. In a typical three-ion scenario, the plasma consists of 60-70% D, 30-40% H and a trace level (1% or less) of 3He. This species mixture creates two hybrid resonances (D-3He and 3He-H) in the plasma, in the vicinity of the 3He IC resonance (on both sides). The fast wave can undergo mode conversion (MC) to ion Bernstein waves and ion cyclotron waves at the two hybrid resonances. A phase contrast imaging (PCI) system has been used to measure the RF waves in the three-ion heating experiment. The experimentally measured MC locations and the separating distance between the two MC regions help to determine the concentration of the three species. The PCI signal amplitudes for the RF waves are found to be sensitive to RF and plasma parameters, including PRF, Te, ne and also the species mix concentration. The parameter dependences found in the experiment will be compared with ICRF code simulations. Supported by USDoE Awards DE-FC02-99ER54512 and DE-FG02-94-ER54235.

  10. Mode conversion in nonlinear waveguides stimulated by the longitudinal bi-harmonic refractive index modulation

    CERN Document Server

    Kartashov, Yaroslav V

    2014-01-01

    We study specific features of resonant mode conversion in nonlinear waveguides stimulated by the bi-harmonic longitudinal modulation of its parameters, which includes changes of the waveguide depth as well as its bending (in the one-dimensional case) or spiraling (in the two-dimensional case). We demonstrate the possibility of simultaneous excitation of higher-order modes of different parities and topologies with controllable energy weights. The output mode composition is highly sensitive to the variation in the input power and detuning from the resonant modulation frequency.

  11. Electromagnetically induced transparency and wide-band wavelength conversion in silicon nitride microdisk optomechanical resonators

    CERN Document Server

    Liu, Yuxiang; Aksyuk, Vladimir; Srinivasan, Kartik

    2013-01-01

    We demonstrate optomechanically-mediated electromagnetically-induced transparency and wavelength conversion in silicon nitride (Si3N4) microdisk resonators. Fabricated devices support whispering gallery optical modes with a quality factor (Q) of 10^6, and radial breathing mechanical modes with a Q=10^4 and a resonance frequency of 625 MHz, so that the system is in the resolved sideband regime. Placing a strong optical control field on the red (blue) detuned sideband of the optical mode produces coherent interference with a resonant probe beam, inducing a transparency (absorption) window for the probe. This is observed for multiple optical modes of the device, all of which couple to the same mechanical mode, and which can be widely separated in wavelength due to the large bandgap of Si3N4. These properties are exploited to demonstrate frequency upconversion and downconversion of optical signals between the 1300 nm and 980 nm bands.

  12. Performance of conformal guided mode resonance filters.

    Science.gov (United States)

    Cannistra, Aaron T; Poutous, Menelaos K; Johnson, Eric G; Suleski, Thomas J

    2011-04-01

    Guided mode resonance (GMR) filters are highly functional micro-optics capable of narrowband spectral filtering. GMR devices have previously been demonstrated on flat substrates using a wide range of materials and configurations. In this Letter, we apply a soft lithographic technique followed by the deposition of dielectric layers to generate GMR filters on a concave lens surface. Resonances of the resulting conformal GMR filters are experimentally measured and characterized, and the results are compared to the performance of similar GMR filters fabricated on flat surfaces.

  13. PIC simulations of wave-mode conversion on the plasmapause

    Science.gov (United States)

    Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej

    2017-04-01

    We study a conversion process from the electron Bernstein modes to electromagnetic free space modes using a 2D-3V electromagnetic PIC code with predefined particle density irregularities. We use a Gaussian profile of the particle density irregularity along the external magnetic field. Our results show the electron Bernstein modes generated by the ring-beam instability in the dense plasma region as well as their conversion into the electromagnetic waves. The resulting free space mode waves propagate out of the dense region perpendicular to magnetic field with the corresponding energy flux. Our simulation results are compared with measured data from Cluster and Van Allen Probes spacecraft. This wave mode conversion process might help us to explain generation of electromagnetic waves over the plasmapause density gradient.

  14. Aptasensors Based on Whispering Gallery Mode Resonators

    Science.gov (United States)

    Nunzi Conti, Gualtiero; Berneschi, Simome; Soria, Silvia

    2016-01-01

    In this paper, we review the literature on optical evanescent field sensing in resonant cavities where aptamers are used as biochemical receptors. The combined advantages of highly sensitive whispering gallery mode resonator (WGMR)-based transducers, and of the unique properties of aptamers make this approach extremely interesting in the medical field, where there is a particularly high need for devices able to provide real time diagnosis for cancer, infectious diseases, or strokes. However, despite the superior performances of aptamers compared to antibodies and WGMR to other evanescent sensors, there is not much literature combining both types of receptors and transducers. Up to now, the WGMR that have been used are silica microspheres and silicon oxynitride (SiON) ring resonators. PMID:27438861

  15. Aptasensors Based on Whispering Gallery Mode Resonators

    Directory of Open Access Journals (Sweden)

    Gualtiero Nunzi Conti

    2016-07-01

    Full Text Available In this paper, we review the literature on optical evanescent field sensing in resonant cavities where aptamers are used as biochemical receptors. The combined advantages of highly sensitive whispering gallery mode resonator (WGMR-based transducers, and of the unique properties of aptamers make this approach extremely interesting in the medical field, where there is a particularly high need for devices able to provide real time diagnosis for cancer, infectious diseases, or strokes. However, despite the superior performances of aptamers compared to antibodies and WGMR to other evanescent sensors, there is not much literature combining both types of receptors and transducers. Up to now, the WGMR that have been used are silica microspheres and silicon oxynitride (SiON ring resonators.

  16. Observation of resonant lattice modes by inelastic neutron scattering

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Mackintosh, A.R.

    1965-01-01

    Observation by inelastic neutron scattering of resonant lattice modes due to small concentration of W atoms in Cr host crystal; frequencies and lifetimes of phonons with frequencies near that of resonant mode are considerably affected by presence of defects....

  17. Optical sum-frequency generation in whispering gallery mode resonators

    CERN Document Server

    Strekalov, Dmitry V; Huang, Yu-Ping; Kumar, Prem

    2013-01-01

    We demonstrate sum-frequency generation in a nonlinear whispering gallery mode resonator between a telecom wavelength and the Rb D2 line, achieved through natural phase matching. Due to the strong optical field confinement and ultra high Q of the cavity, we achieve a 1000-fold enhancement in the conversion efficiency compared to existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory in the spherical geometry employed. The experimental and theoretical results point to a new platform to manipulate the color and quantum states of light waves toward applications such as atomic memory based quantum networking and logic operations with optical signals.

  18. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a new class of switching-mode audio power amplifiers, which are capable of direct energy conversion from the AC mains to the audio output. They represent an ultimate integration of a switching-mode power supply and a Class D audio power amplifier, where the intermediate DC bus...

  19. Broadband wide-angle absorption enhancement due to mode conversion in cold unmagnetized plasmas with periodic density variations

    CERN Document Server

    Yu, Dae Jung

    2016-01-01

    We study theoretically the mode conversion and the associated resonant absorption of p-polarized electromagnetic waves into longitudinal plasma oscillations in cold, unmagnetized and stratified plasmas with periodic spatial density variations. We consider sinusoidal density configurations for which the frequency band where mode conversion occurs is well included within a transmission band of the one-dimensional plasma photonic crystal. We calculate the mode conversion coefficient, which measures the fraction of the electromagnetic wave energy absorbed into the plasma, and the spatial distribution of the magnetic field intensity for various values of the wave frequency and the incident angle using the invariant imbedding theory of mode conversion. We find that the absorption is greatly enhanced over a wide range of frequency and incident angle due to the interplay between the mode conversion and the photonic band structure. The enhancement occurs because for frequencies within a transmission band, the wave ref...

  20. Guided-mode resonant wave plates.

    Science.gov (United States)

    Magnusson, Robert; Shokooh-Saremi, Mehrdad; Johnson, Eric G

    2010-07-15

    We introduce half-wave and quarter-wave retarders based on the dispersion properties of guided-mode resonance elements. We design the wave plates using numerical electromagnetic models joined with the particle swarm optimization method. The wave plates operate in reflection. We provide computed results for reflectance and phase in the telecommunication spectral region near 1.55 microm wavelength. A surface-relief grating etched in glass and overcoated with silicon yields a half-wave plate with nearly equal amplitudes of the TE and TM polarization components and pi phase difference across a bandwidth exceeding 50 nm. Wider operational bandwidths are obtainable with more complex designs involving glass substrates and mixed silicon/hafnium dioxide resonant gratings. The results indicate a potential new approach to fashion optical retarders.

  1. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a new class of switching-mode audio power amplifiers, which are capable of direct energy conversion from the AC mains to the audio output. They represent an ultimate integration of a switching-mode power supply and a Class D audio power amplifier, where the intermediate DC bus...... has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced...

  2. Mode Conversion of Solar p-Modes in Non-Vertical Magnetic Fields

    Science.gov (United States)

    Crouch, A. D.; Cally, P. S.

    2005-03-01

    Sunspots absorb and scatter incident f- and p-modes. Until recently, the responsible absorption mechanism was uncertain. The most promising explanation appears to be mode conversion to slow magnetoacoustic-gravity waves, which carry energy down the magnetic field lines into the interior. In vertical magnetic field, mode conversion can adequately explain the observed f-mode absorption, but is too inefficient to account for the absorption of p-modes. In the first paper of the present series we calculated the efficiency of fast-to-slow magnetoacoustic-gravity wave conversion in uniform non-vertical magnetic fields. We assumed two-dimensional propagation, where the Alfvén waves decouple. In comparison to vertical field, it was found that mode conversion is significantly enhanced in moderately inclined fields, especially at higher frequencies. Using those results, Cally, Crouch, and Braun showed that the resultant p-mode absorption produced by simple sunspot models with non-vertical magnetic fields is ample to explain the observations. In this paper, we further examine mode conversion in non-vertical magnetic fields. In particular, we consider three-dimensional propagation, where the fast and slow magnetoacoustic-gravity waves and the Alfvén waves are coupled. Broadly speaking, the p-mode damping rates are not substantially different to the two-dimensional case. However, we do find that the Alfvén waves can remove similar quantities of energy to the slow MAG waves.

  3. Resonant mode controllers for launch vehicle applications

    Science.gov (United States)

    Schreiner, Ken E.; Roth, Mary Ellen

    Electro-mechanical actuator (EMA) systems are currently being investigated for the National Launch System (NLS) as a replacement for hydraulic actuators due to the large amount of manpower and support hardware required to maintain the hydraulic systems. EMA systems in weight sensitive applications, such as launch vehicles, have been limited to around 5 hp due to system size, controller efficiency, thermal management, and battery size. Presented here are design and test data for an EMA system that competes favorably in weight and is superior in maintainability to the hydraulic system. An EMA system uses dc power provided by a high energy density bipolar lithium thionyl chloride battery, with power conversion performed by low loss resonant topologies, and a high efficiency induction motor controlled with a high performance field oriented controller to drive a linear actuator.

  4. High efficiency in mode-selective frequency conversion.

    Science.gov (United States)

    Quesada, Nicolás; Sipe, J E

    2016-01-15

    Frequency conversion (FC) is an enabling process in many quantum information protocols. Recently, it has been observed that upconversion efficiencies in single-photon, mode-selective FC are limited to around 80%. In this Letter, we argue that these limits can be understood as time-ordering corrections (TOCs) that modify the joint conversion amplitude of the process. Furthermore, using a simple scaling argument, we show that recently proposed cascaded FC protocols that overcome the aforementioned limitations act as "attenuators" of the TOCs. This observation allows us to argue that very similar cascaded architectures can be used to attenuate TOCs in photon generation via spontaneous parametric downconversion. Finally, by using the Magnus expansion, we argue that the TOCs, which are usually considered detrimental for FC efficiency, can also be used to increase the efficiency of conversion in partially mode-selective FC.

  5. Transverse Mode Multi-Resonant Single Crystal Transducer

    Science.gov (United States)

    Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)

    2015-01-01

    A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.

  6. Alignment-to-orientation conversion and nuclear quadrupole resonance

    CERN Document Server

    Budker, D; Rochester, S M; Urban, J T

    2003-01-01

    The role of alignment-to-orientation conversion (AOC) in nuclear quadrupole resonance (NQR) is discussed. AOC is shown to be the mechanism responsible for the appearance of macroscopic orientation in a sample originally lacking any global polarization. Parallels are drawn between NQR and AOC in atomic physics.

  7. High conversion efficiency in resonant four-wave mixing processes.

    Science.gov (United States)

    Lee, Chin-Yuan; Wu, Bo-Han; Wang, Gang; Chen, Yong-Fang; Chen, Ying-Cheng; Yu, Ite A

    2016-01-25

    We propose a new scheme of the resonant four-wave mixing (FWM) for the frequency up or down conversion, which is more efficient than the commonly-used scheme of the non-resonant FWM. In this new scheme, two control fields are spatially varied such that a probe field at the input can be converted to a signal field at the output. The efficiency of probe-to-signal energy conversion can be 90% at medium's optical depth of about 100. Our proposed scheme works for both the continuous-wave and pulse cases, and is flexible in choosing the control field intensity. This work provides a very useful tool in the nonlinear frequency conversion.

  8. Constraining resonant photon-axion conversions in the Early Universe

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max-Planck-Inst. fuer Physik (Werner-Heisenberg-Inst.), Muenchen (Germany); Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sigl, Guenter [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2009-05-15

    The presence of a primordial magnetic field would have induced resonant conversions between photons and axion-like particles (ALPs) during the thermal history of the Universe. These conversions would have distorted the blackbody spectrum of the cosmic microwave background (CMB). In this context, we derive bounds on the photon-ALP resonant conversions using the high precision CMB spectral data collected by the FIRAS instrument on board of the Cosmic Background Explorer. We obtain upper limits on the product of the photon-ALP coupling constant g times the magnetic field strength B down to gB

  9. Constraining resonant photon-axion conversions in the early universe

    Science.gov (United States)

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Günter

    2009-08-01

    The presence of a primordial magnetic field would have induced resonant conversions between photons and axion-like particles (ALPs) during the thermal history of the Universe. These conversions would have distorted the blackbody spectrum of the cosmic microwave background (CMB). In this context, we derive bounds on the photon-ALP resonant conversions using the high precision CMB spectral data collected by the FIRAS instrument on board of the Cosmic Background Explorer. We obtain upper limits on the product of the photon-ALP coupling constant g times the magnetic field strength B down to gB lesssim 10-13 GeV-1 nG for ALP masses below the eV scale.

  10. Constraining resonant photon-axion conversions in the Early Universe

    CERN Document Server

    Mirizzi, Alessandro; Sigl, Guenter

    2009-01-01

    The presence of a primordial magnetic field would have induced resonant conversions between photons and axion-like particles (ALPs) during the thermal history of the Universe. These conversions would have distorted the blackbody spectrum of the cosmic microwave background (CMB). In this context, we derive bounds on the photon-ALP resonant conversions using the high precision CMB spectral data collected by the FIRAS instrument on board of the Cosmic Background Explorer. We obtain upper limits on the product of the photon-ALP coupling constant g times the magnetic field strength B down to g B > 10^{-13} GeV^{-1} nG for ALP masses below the eV scale.

  11. Thermoelastic dissipation in MEMS/NEMS flexural mode resonators.

    Science.gov (United States)

    Yan, Jize; Seshia, Ashwin A

    2009-02-01

    Understanding the energy dissipation mechanisms in single-crystal silicon MEMS/NEMS resonators are particularly important to maximizing an important figure of merit relevant for miniature sensor and signal processing applications: the Quality factor (Q) of resonance. This paper discusses thermoelastic dissipation (TED) as the dominant internal-friction mechanism in flexural mode MEMS/NEMS resonators. Criteria for optimizing the geometrical design of flexural mode MEMS/NEMS resonators are theoretically established with a view towards minimizing the TED for single-crystal silicon MEMS/NEMS flexural mode resonators.

  12. Mode-resolved Photon Counting via Cascaded Quantum Frequency Conversion

    CERN Document Server

    Huang, Yu-Ping

    2012-01-01

    Resources for the manipulation and measurements of high-dimensional photonic signals are crucial for implementing qu$d$it-based applications. Here we propose potentially high-performance, chip-compatible devices for such purposes by exploiting quantum-frequency conversion in nonlinear optical media. Specifically, by using sum-frequency generation in a $\\chi^{(2)}$ waveguide we show how mode-resolved photon counting can be accomplished for telecom-band photonic signals subtending multiple temporal modes. Our method is generally applicable to any nonlinear medium with arbitrary dispersion property.

  13. Rarefying Spectra of Whispering-Gallery-Mode Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitri; Iltchenko, Vladimir; Maleki, Lute

    2007-01-01

    A method of cleaning the mode spectra of whispering-gallery-mode (WGM) optical resonators has been devised to make such resonators more suitable for use as narrow-band optical filters. The method applies, more specifically, to millimeter- sized whispering-gallery-mode optical resonators that are made of crystalline electro-optical materials and have ultrahigh values of the resonance quality factor (Q). The mode spectrum of such a resonator is typically dense, consisting of closely spaced families of modes; as such, the spectrum is not well suited for narrow-band filtering, in which there is a need for strong rejection of side modes. Cleaning as used here signifies rarefying the spectrum so that what remains consists mostly of a single desired family of modes or, at worst, a few mode families that are more widely spaced in frequency than are the mode families in the original, non-rarefied spectrum. The spectrum-cleaning method exploits the fact that various WGM mode families occupy various positions near the equator at the rim of a resonator disk. In this method, a damper in the form of a prism or other polished piece of material having an index of refraction greater than that of the resonator material is placed in contact with the rim of the resonator at such a position that the Qs of most or all of the undesired mode families are greatly reduced while the Q of the desired mode family is reduced by only a tolerably small amount. In an alternative method that has been considered, the mode spectrum would be cleaned through special design of the shape of the rim, but fabrication of the rim in a special shape is a complicated task. The advantage of the present method, relative to the alternative method, is that special shaping of the rim is not necessary and the damping prism can be emplaced after the resonator has been fabricated.

  14. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  15. Resonance Conversion as a Catalyser of Nuclear Reactions

    CERN Document Server

    Karpeshin, Feodor; Zhang, Weining

    2014-01-01

    It is shown that resonance interal conversion offers a feasible tool for mastering nuclear processes with laser or synchrotron radiation. Physics of the process is discussed in detail in historical aspect. Possible way of experimental applicaytion is shown in the case of the $M1$ 70.6-keV transition in nuclei of $^{169}$Yb. Nuclear transition rate in hydrogenlike ions of this nuclide can be enhanced by up to four orders of magnitude.

  16. Resonance Conversion as a Catalyzer of Nuclear Reactions

    Institute of Scientific and Technical Information of China (English)

    KARPESHIN Feodor; ZHANG Jing-Bo; ZHANG Wei-Ning

    2006-01-01

    @@ It is shown that resonance internal conversion offers a feasible tool for mastering nuclear processes with laser or synchrotron radiation. The physics of the process is discussed in detail in a historical aspect. Possible experimental application is shown in the case of the M1 70.6-keV transition in nuclei of 169 Yb. The nuclear transition rate in hydrogen-like ions of this nuclide can be enhanced by up to four orders of magnitude.

  17. Full-Wave Calculations of the O-X Mode Conversion Process

    DEFF Research Database (Denmark)

    Hansen, F.R.; Lynov, Jens-Peter; Maroli, C.

    1988-01-01

    A two-point boundary-value problem has been formulated that describes the conversion between ordinary (O) and extraordinary (X) wave modes in a cold inhomogeneous plasma. Numerical solutions to this problem have been obtained for various values of the WKB parameter k0L; where k0 is the vacuum...... wavenumber and L the density-gradient scale length. The results are compared with three different theoretical expressions for the O-X mode conversion efficiency derived by others in the WKB limit of k0 L >> l. Most of the results presented in this paper are obtained for a collisionless plasma with finite...... density near the plasma cut-off density. However, some examples are also given of wave propagation from vacuum. In these examples, collision effects are added to the equations in order to remove the singularity otherwise present at the position of the upper hybrid resonance layer....

  18. Characterization of optical whispering gallery mode resonance and applications

    Science.gov (United States)

    Quan, Haiyong

    The whispering-gallery mode microdisk or microsphere resonators have supercompact size, high energy storage, very narrow resonance bandwidth, and high sensitivity. These appealing properties have attracted much attention in the realization of microlasers, narrow filters, optical switching, biosensing, high resolution spectroscopy, and so on. In this dissertation, the optical and energy transport phenomena of whispering-gallery mode resonance and its potentials in some optical sensing applications will be characterized. A 2D theoretical analysis is first presented based on the method of separation of variables and by deriving several appropriate and reasonable boundary conditions to describe the electrical field distribution at resonance modes. This analytical model can precisely predict the intrinsic resonance frequencies of isolated whispering-gallery mode resonators. To consider the coupling of light-delivery waveguides with resonators and investigate the resonance phenomena of the resonator-waveguide system and/or device, simulations using a Finite Element Method solver of Maxwell's equations are conducted. The results indicate the influences of the geometric dimensions, refractive indices, gap distances, and excitation wavelengths on the main characteristics of the resonance modes such as the quality factor Q, the finesse, the mode intensity, and so on. Furthermore, the gap effects are detailedly studied by both theoretical analysis and simulation modeling. The optimal gap for the maximum coupling efficiency and the optimum gap for the best sensing application of the whispering gallery mode resonators are introduced and discussed based on simulation data and theoretical estimations. Three prospective applications of the whispering gallery mode-based sensors are introduced and proof-of-concept studies are demonstrated. The design schemes and fabrication process of the on-chip resonance device made of the Si3N4/SiO2 material system using nanofabrication

  19. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lyneis, C., E-mail: CMLyneis@lbl.gov; Benitez, J.; Hodgkinson, A.; Strohmeier, M.; Todd, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Plaum, B. [Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP), Stuttgart (Germany); Thuillier, T. [Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des martyrs 38026 Grenoble cedex (France)

    2014-02-15

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE{sub 01} circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE{sub 10} mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE{sub 01}-HE{sub 11} mode conversion system has been built to test launching HE{sub 11} microwave power into the plasma chamber. The HE{sub 11} mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long “snake” converts the TE{sub 01} mode to the TE{sub 11} mode. Second, a corrugated circular waveguide excites the HE{sub 11} mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  20. Tunneling and mode conversion of fast magnetosonic waves in the magnetospheres of Earth and Mercury

    CERN Document Server

    Kazakov, Yevgen O

    2014-01-01

    Narrow-band linearly polarized waves, having a resonant structure and a peak frequency between the local cyclotron frequency of protons and heavy ions, have been detected in the magnetospheres of Earth and of Mercury. Some of these wave events have been suggested to be driven by linear mode conversion (MC) of the fast magnetosonic waves at the ion-ion hybrid (IIH) resonances. Since the resonant IIH frequency is linked to the plasma composition, solving the inverse problem allows one to infer the concentration of the heavy ions from the measured frequency spectra. In this paper, we identify the conditions when the MC efficiency is maximized in the magnetospheric plasmas and discuss how this can be applied for estimating the heavy ion concentration in the magnetospheres of Earth and Mercury.

  1. Mode couplings and resonance instabilities in dust clusters.

    Science.gov (United States)

    Qiao, Ke; Kong, Jie; Oeveren, Eric Van; Matthews, Lorin S; Hyde, Truell W

    2013-10-01

    The normal modes for three to seven particle two-dimensional (2D) dust clusters in a complex plasma are investigated using an N-body simulation. The ion wakefield downstream of each particle is shown to induce coupling between horizontal and vertical modes. The rules of mode coupling are investigated by classifying the mode eigenvectors employing the Bessel and trigonometric functions indexed by order integers (m, n). It is shown that coupling only occurs between two modes with the same m and that horizontal modes having a higher shear contribution exhibit weaker coupling. Three types of resonances are shown to occur when two coupled modes have the same frequency. Discrete instabilities caused by both the first and third type of resonances are verified and instabilities caused by the third type of resonance are found to induce melting. The melting procedure is observed to go through a two-step process with the solid-liquid transition closely obeying the Lindemann criterion.

  2. Strong and tunable mode coupling in carbon nanotube resonators

    Science.gov (United States)

    Castellanos-Gomez, Andres; Meerwaldt, Harold B.; Venstra, Warner J.; van der Zant, Herre S. J.; Steele, Gary A.

    2012-07-01

    The nonlinear interaction between two mechanical resonances of the same freely suspended carbon nanotube resonator is studied. We find that, in the Coulomb-blockade regime, the nonlinear modal interaction is dominated by single-electron-tunneling processes and that the mode-coupling parameter can be tuned with the gate voltage, allowing both mode-softening and mode-stiffening behaviors. This is in striking contrast to tension-induced mode coupling in strings where the coupling parameter is positive and gives rise to a stiffening of the mode. The strength of the mode coupling in carbon nanotubes in the Coulomb-blockade regime is observed to be 6 orders of magnitude larger than the mechanical-mode coupling in micromechanical resonators.

  3. Prospect of triggering the 178m2Hf isomer and the role of resonance conversion

    Science.gov (United States)

    Karpeshin, F. F.; Trzhaskovskaya, M. B.; Zhang, J.

    2009-03-01

    A mechanism of triggering the 12.7keV E3 transition, based on the new decay mode of the 31y isomer via resonance internal conversion and emission of a 1.4keV X-ray quantum, is considered. Actually, this decay mode was observed previously in the decay of 45- and 46-fold ions of 125Te . For the purpose of triggering, the atomic radiative vertex has to be induced by resonance radiation. This mechanism makes triggering by an order of magnitude more efficient than triggering a bare nucleus, and is achieved at a lower combination frequency. An experiment is proposed for the direct observation of the new decay mode. This also offers a new way of resonance scattering of these X-rays. Triggering through higher-lying 2573 and 2805keV states is also considered. The results are extended to the general problem of triggering. The main obstacle for enhancing the efficiency is a high internal conversion rate. For this reason, shape isomers with low multipole order -- E1 , M1 , and with a high enough energy of triggering transition are of interest for triggering. The partial ionization of the outer electrons will also help. The same recommendations hold for triggering isomers in laser-produced plasma.

  4. Selective Mode Excitation And Detection Of Micromachined Resonators

    NARCIS (Netherlands)

    Prak, Albert; Elwenspoek, Miko; Fluitman, Jan H.J

    1992-01-01

    Distributed mechanical systems such as micromachined resonant strain gages possess an infinite number of modes of vibration. Mostly, one is interested in only one or a few modes. A method is described with which only the desired modes are excited and detected. This is achieved by geometrically shapi

  5. Simulation of mode conversion process from upper-hybrid waves to LO-mode waves in the vicinity of the plasmapause

    Directory of Open Access Journals (Sweden)

    M. J. Kalaee

    2010-06-01

    Full Text Available In order to clarify the role of the mode conversion process in the generation mechanism of LO-mode waves in the equatorial region of the plasmasphere, we have investigated the linear mode conversion process among upper-hybrid-resonance (UHR-mode, Z-mode and LO-mode waves by a numerical simulation solving Maxwell's equations and the equation of motion of a cold electron fluid. The wave coupling process occurring in the cold magnetized plasma are examined in detail. In order to give a realistic initial plasma condition in the numerical experiments, we use initial parameters inferred from observation data obtained around the generation region of LO-mode waves obtained by the Akebono satellite. A density gradient is estimated from the observed UHR frequency, and wave normal angles are estimated from the dispersion relation of cold plasma by comparing observed wave electric fields. Then, we perform numerical experiments of mode conversion processes using the density gradient of background plasma and the wave normal angle of incident upper hybrid mode waves determined from the observation results. We found that the characteristics of reproduced LO-mode waves in each simulation run are consistent with observations.

  6. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  7. Purcell factor of Mie resonators featuring electric and magnetic modes

    CERN Document Server

    Zambrana-Puyalto, Xavier

    2015-01-01

    We present a modal approach to compute the Purcell factor in Mie resonators exhibiting both electric and magnetic resonances. The analytic expressions of the normal modes are used to calculate the effective volumes. We show that important features of the effective volume can be predicted thanks to the translation-addition coefficients of a displaced dipole. Using our formalism, it is easy to see that, in general, the Purcell factor of Mie resonators is not dominated by a single mode, but rather by a large superposition. Finally we consider a silicon resonator homogeneously doped with electric dipolar emitters, and we show that the average electric Purcell factor dominates over the magnetic one.

  8. Numerical Research of Mode Conversion in an Inhomogeneous Plasma

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The linear mode conversion of electromagnetic waves in the hot, unmagnetized inhomogeneous plasma is studied numerically for different density profiles, and the dependence of the absorption coefficient on the incident angles and the wave frequencies are obtained for different electrons' temperature. The results show that the shapes of the density profiles and the electron's temperature create a certain effect on the coefficients of absorption, which reaches its peak value (about 50%) for appropriate parameters. Effective absorption occurs in a limited range of parameter q.

  9. Air modes of the Bacon internal resonator banjo

    CERN Document Server

    Politzer, David

    2016-01-01

    Sound measurements on a sequence of related, similar constructions with slightly different dimensions confirm a simple picture of the air modes of the internal resonator banjo's body. For the purpose of this study, the air modes are decoupled from the soundboard (i.e., [drum] head) modes by replacing the head with 3/4" plywood. The resulting characteristic features survive the strong coupling of the air modes to the head and are in accord with the qualitative distinctions recognized by banjo players.

  10. Longitudinal mode structure in a non-planar ring resonator

    Directory of Open Access Journals (Sweden)

    M Jaberi

    2013-09-01

    Full Text Available  The structure of longitudinal modes of a passively Q-switched, non-planar unidirectional ring-resonator,with Nd:YAG active medium is described in this article. Two different techniques are used to study the longitudinal mode structure of the laser resonator. At first, the fast-fourier transform technique is applied for analyzing the mode beating of the optical fields by intensity frequency structure of the laser pulses to determine the number of longitudinal modes. Then, an analyzer etalon is used to observe Fabry-Perot fringes to compute the numbers of the resonator longitudinal modes. The results of two techniques are in good agreement with each other. Under the proper conditions, a reliable single longitudinal mode of the non-planar ring-resonator can be achieved with a good spatial mode profile that originates from the unidirectional travelling optical field propagation in the resonator having a very low sensitivity of the non-planar ring resonator to the optical elements misalignment.

  11. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan;

    2014-01-01

    We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due...

  12. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern

    DEFF Research Database (Denmark)

    Schunk, Gerhard; Fuerst, Josef U.; Förtsch, Michael;

    2014-01-01

    Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs....... The radial mode numbers q and the angular mode numbers p = l-m are identified and labeled via far-field imaging. The polar mode numbers l are determined unambiguously by fitting the frequency differences between individual whispering gallery modes (WGMs). This allows for the accurate determination...

  13. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    Science.gov (United States)

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-08-01

    The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.

  14. Whispering gallery mode resonators for frequency metrology applications

    Science.gov (United States)

    Baumgartel, Lukas

    This dissertation describes an investigation into the use of whispering gallery mode (WGM) resonators for applications towards frequency reference and metrology. Laser stabilization and the measurement of optical frequencies have enabled myriad technologies of both academic and commercial interest. A technology which seems to span both motivations is optical atomic clocks. These devices are virtually unimaginable without the ultra stable lasers plus frequency measurement and down-conversion afforded by Fabry Perot (FP) cavities and model-locked laser combs, respectively. However, WGM resonators can potentially perform both of these tasks while having the distinct advantages of compactness and simplicity. This work represents progress towards understanding and mitigating the performance limitations of WGM cavities for such applications. A system for laser frequency stabilization to a the cavity via the Pound-Drever-Hall (PDH) method is described. While the laser lock itself is found to perform at the level of several parts in 1015, a variety of fundamental and technical mechanisms destabilize the WGM frequency itself. Owing to the relatively large thermal expansion coefficients in optical crystals, environmental temperature drifts set the stability limit at time scales greater than the thermal relaxation time of the crystal. Uncompensated, these drifts pull WGM frequencies about 3 orders of magnitude more than they would in an FP cavity. Thus, two temperature compensation schemes are developed. An active scheme measures and stabilizes the mode volume temperature to the level of several nK, reducing the effective temperature coefficient of the resonator to 1.7x10-7 K-1; simulations suggest that the value could eventually be as low as 3.5x10-8 K-1, on par with the aforementioned FP cavities. A second, passive scheme is also described, which employs a heterogeneous resonator structure that capitalizes on the thermo-mechanical properties of one material and the optical

  15. Whispering Gallery Mode Resonator with Orthogonally Reconfigurable Filter Function

    Science.gov (United States)

    Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Savchenkov, Anatoliy

    2008-01-01

    An optical resonator has been developed with reconfigurable filter function that has resonant lines that can be shifted precisely and independently from each other, creating any desirable combination of resonant lines. This is achieved by changing the axial distribution of the effective refractive index of the resonator, which shifts the resonant frequency of particular optical modes, leaving all the rest unchanged. A reconfigurable optical filter is part of the remote chemical detector proposed for the Mars mission (Planetary Instrument Definition and Development Program PIDDP), but it is also useful for photonic communications devices.

  16. Optical rogue waves in whispering-gallery-mode resonators

    Science.gov (United States)

    Coillet, Aurélien; Dudley, John; Genty, Goëry; Larger, Laurent; Chembo, Yanne K.

    2014-01-01

    We report a theoretical study showing that rogue waves can emerge in whispering-gallery-mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering-gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we give evidence of a range of parameters where rare and extreme events associated with non-Gaussian statistics of the field maxima are observed.

  17. Optical Rogue Waves in Whispering-Gallery-Mode Resonators

    CERN Document Server

    Coillet, Aurélien; Genty, Goery; Larger, Laurent; Chembo, Yanne K

    2014-01-01

    We report a theoretical study showing that rogue waves can emerge in whispering gallery mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we evidence a range of parameters where rare and extreme events associated with a non-gaussian statistics of the field maxima are observed.

  18. Continuous spectrum of modes for optical micro-sphere resonators

    Science.gov (United States)

    Nooramin, Amir Saman; Shahabadi, Mahmoud

    2016-09-01

    This paper presents an improved modal analysis for the spherical dielectric resonator. This is commonly carried out by assuming an outgoing spherical Hankel function for the region surrounding the dielectric sphere. It will be shown that this assumption is incomplete and cannot lead to the entire spectrum of resonance frequencies. Following an analytical formulation, we prove that, like cylindrical resonators, the only choice for the outer region of the dielectric sphere can be a proper linear combination of an inward and an outward traveling wave. Starting from this formulation, we determine the complete spectrum of the resonance frequencies and the associated mode fields. In this analysis, the continuous spectrum of resonance frequencies is introduced and the properties of radiation modes are studied in detail. The proposed analytical formulation is thereafter employed to calculate the quality factor of the resonator due to radiation and dielectric loss.

  19. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron

    2014-01-01

    A class of photonic crystal resonant reflectors known as guided mode resonant filters are optical structures that are widely used in the field of refractive index sensing, particularly in biosensing. For the purposes of understanding and design, their behavior has traditionally been modeled numer...

  20. Strong and tunable mode coupling in carbon nanotube resonators

    NARCIS (Netherlands)

    Castellanos Gomez, A.; Meerwaldt, H.B.; Ventra, W.J.; Van der Zant, H.S.J.; Steele, G.A.

    2012-01-01

    The nonlinear interaction between two mechanical resonances of the same freely suspended carbon nanotube resonator is studied. We find that, in the Coulomb-blockade regime, the nonlinear modal interaction is dominated by single-electron-tunneling processes and that the mode-coupling parameter can be

  1. Electron Bernstein Wave Emission and Mode Conversion Physics on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Diem, S J; Caughman, J B; Efthimion, P; Kugel, H; LeBlanc, B P; Preinhaelter, J; Sabbagh, S A; Urban, J

    2008-05-21

    NSTX is a spherical tokamak (ST) that operates with ne up to 1020 m-3 and BT less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for Te measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local Te measurements in the ST. Practically, a robust Te(R,t) EBE diagnostic requires EBW transmission efficiencies of > 90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While Te(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge ne scale length resulted in > 20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency 2 during H-modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H-modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when Te < 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H-modes have shown that evaporated lithium can increase Te inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  2. Broadband absorption through extended resonance modes in random metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Hao, J.; Niemiec, R.; Lheurette, É.; Lippens, D. [Institut d' Électronique de Microélectronique et Nanotechnologies, IEMN-UMR CNRS 8520, Université de Lille 1, Avenue Poincaré, BP 60069, 59652 Villeneuve d' Ascq Cedex (France); Burgnies, L. [Institut d' Électronique de Microélectronique et Nanotechnologies, IEMN-UMR CNRS 8520, Université de Lille 1, Avenue Poincaré, BP 60069, 59652 Villeneuve d' Ascq Cedex (France); Université du Littoral Côte d' Opale, Rue Ferdinand Buisson, CS 80699, 62228 Calais cedex (France)

    2016-05-21

    The properties of disordered metamaterial absorbers are analyzed on the basis of numerical simulations and experimental characterizations. A broadening of the absorption spectrum is clearly evidenced. This effect is the consequence of both the coupling between nearby resonators leading to the occurrence of extended magnetic resonance modes and the interconnection of elementary particles yielding the definition of resonating clusters. The angular robustness of the absorbing structure under oblique incidence is also demonstrated for a wide domain of angles.

  3. Topics in mode conversion theory and the group theoretical foundations of path integrals

    Science.gov (United States)

    Richardson, Andrew Stephen

    This dissertation reports research about the phase space perspective for solving wave problems, with particular emphasis on the phenomenon of mode conversion in multicomponent wave systems, and the mathematics which underlie the phase space perspective. Part I of this dissertation gives a review of the phase space theory of resonant mode conversion. We describe how the WKB approximation is related to geometrical structures in phase space, and how in particular ray-tracing algorithms can be used to construct the WKB solution. We further review how to analyze the phenomena of mode conversion from the phase space perspective. By making an expansion of the dispersion matrix about the mode conversion point in phase space, a local coupled wave equation is obtained. The solution of this local problem then provides a way to asymptotically match the WKB solutions on either side of the mode conversion region. We describe this theory in the context of a pedagogical example; that of a pair of coupled harmonic oscillators undergoing resonant conversion. Lastly, we present new higher order corrections to the local solution for the mode conversion problem which allow better asymptotic matching to the WKB solutions. The phase space tools used in Part I rely on the Weyl symbol calculus, which gives a way to relate operators to functions on phase space. In Part II of this dissertation, we explore the mathematical foundations of the theory of symbols. We first review the theory of representations of groups, and the concept of a group Fourier transform. The Fourier transform for commutative groups gives the ordinary transform, while the Fourier transform for non-commutative groups relates operators to functions on the group. We go on to present the group theoretical formulation of symbols, as developed recently by Zobin. This defines the symbol of an operator in terms of a double Fourier transform on a non-commutative group. We give examples of this new type of symbol, using the

  4. Single-Mode WGM Resonators Fabricated by Diamond Turning

    Science.gov (United States)

    Grudinin, Ivan; Maleki, Lute; Savchenkov, Anatoliy; Matsko, Andrewy; Strekalov, Dmitry; Iltchenko, Vladimir

    2008-01-01

    A diamond turning process has made possible a significant advance in the art of whispering-gallery-mode (WGM) optical resonators. By use of this process, it is possible to fashion crystalline materials into WGM resonators that have ultrahigh resonance quality factors (high Q values), are compact (ranging in size from millimeters down to tens of microns), and support single electromagnetic modes. This development combines and extends the developments reported in "Few- Mode Whispering-Gallery-Mode Resonators" (NPO-41256), NASA Tech Briefs, Vol. 30, No. 1 (January 2006), page 16a and "Fabrication of Submillimeter Axisymmetric Optical Components" (NPO-42056), NASA Tech Briefs, Vol. 31, No. 5 (May 2007), page 10a. To recapitulate from the first cited prior article: A WGM resonator of this special type consists of a rod, made of a suitable transparent material, from which protrudes a thin circumferential belt of the same material. The belt is integral with the rest of the rod and acts as a circumferential waveguide. If the depth and width of the belt are made appropriately small, then the belt acts as though it were the core of a single-mode optical fiber: the belt and the rod material adjacent to it support a single, circumferentially propagating mode or family of modes. To recapitulate from the second cited prior article: A major step in the fabrication of a WGM resonator of this special type is diamond turning or computer numerically controlled machining of a rod of a suitable transparent crystalline material on an ultrahigh-precision lathe. During the rotation of a spindle in which the rod is mounted, a diamond tool is used to cut the rod. A computer program is used to control stepping motors that move the diamond tool, thereby controlling the shape cut by the tool. Because the shape can be controlled via software, it is possible to choose a shape designed to optimize a resonator spectrum, including, if desired, to limit the resonator to supporting a single mode

  5. Optical combs with a crystalline whispering gallery mode resonator

    CERN Document Server

    Savchenkov, Anatoliy A; Ilchenko, Vladimir S; Solomatine, Iouri; Seidel, David; Maleki, Lute

    2008-01-01

    We report on the experimental demonstration of a tunable monolithic optical frequency comb generator. The device is based on the four-wave mixing in a crystalline calcium fluoride whispering gallery mode resonator. The frequency spacing of the comb is given by an integer number of the free spectral range of the resonator. We select the desired number by tuning the pumping laser frequency with respect to the corresponding resonator mode. We also observe interacting optical combs and high-frequency hyperparametric oscillation, depending on the experimental conditions. A potential application of the comb for generating narrowband frequency microwave signals is demonstrated.

  6. Resonant Inerter Based Absorbers for a Selected Global Mode

    DEFF Research Database (Denmark)

    Krenk, Steen

    2016-01-01

    The paper presents calibration and efficiency analyses for two different configurations of a resonant vibration absorber consisting of a spring, a damper and an inerter element. In the two configurations the damper is either in parallel with the spring or with the inerter element. A calibration......-resonant modes. The calibration procedure is given a unified format for the two absorber types, and the high efficiency – evaluated as the ability to reproduce the selected dynamic amplification level of the resonant mode – is demonstrated....

  7. Resonant Modes of L-Shaped Gold Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    YANG Jing; ZHANG Jia-Sen; WU Xiao-Fei; GONG Qi-Huang

    2009-01-01

    We analyze the electric field modes excited in resonant L-shaped gold nanoparticles using a finite-difference time domain method.Compared to a single gold nanorod,both the odd and even modes of the L-shaped nanoparticles can be excited due to the symmetry breaking.The nanoparticles with equal and unequal arms have different dependence of field enhancement and mode on the incident polarization.

  8. Impinging Jet Resonant Modes at Mach 1.5

    CERN Document Server

    Davis, Timothy

    2013-01-01

    High speed impinging jets have been the focus of several studies owing to their practical application and resonance dominated flow-field. The current study focuses on the identification and visualization of the resonant modes at certain critical impingement heights for a Mach 1.5 normally impinging jet. These modes are associated with high amplitude, discrete peaks in the power spectra and can be identified as having either axisymmetric or azimuthal modes. Their visualization is accomplished through phase-locked Schlieren imaging and fast-response pressure sensitive paint (PC-PSP) applied to the ground plane.

  9. Resonant mode for gravitational wave detectors based on atom interferometry

    Science.gov (United States)

    Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet

    2016-11-01

    We describe an atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wave packets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes. For instance, a binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to ΩGW˜10-14 for a two-satellite space-based detector.

  10. Transforming Fabry-Perot resonances into a Tamm mode

    CERN Document Server

    Durach, Maxim

    2012-01-01

    We propose a novel photonic structure composed of metal nanolayer, Bragg mirror and metal nanolayer. The structure supports resonances that are transitional between Fabry-Perot and Tamm modes. When the dielectric contrast of the DBR is removed these modes are a pair of conventional Fabry-Perot resonances. They spectrally merge into a Tamm mode at high contrast. Such behavior differs from the results for structures supporting Tamm modes reported earlier. The optical properties of the structure in the frequency range of the DBR stop band, including highly beneficial 50% transmittivity through thick structures, are determined by the introduced in the paper hybrid resonances. The results can find a wide range of photonic applications.

  11. Phase Matching of Diverse Modes in a WGM Resonator

    Science.gov (United States)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Mohageg, Makan; Maleki, Lute

    2008-01-01

    Phase matching of diverse electromagnetic modes (specifically, coexisting optical and microwave modes) in a whispering-gallery-mode (WGM) resonator has been predicted theoretically and verified experimentally. Such phase matching is necessary for storage of microwave/terahertz and optical electromagnetic energy in the same resonator, as needed for exploitation of nonlinear optical phenomena. WGM resonators are used in research on nonlinear optical phenomena at low optical intensities and as a basis for design and fabrication of novel optical devices. Examples of nonlinear optical phenomena recently demonstrated in WGM resonators include low-threshold Raman lasing, optomechanical oscillations, frequency doubling, and hyperparametric oscillations. The present findings regarding phase matching were made in research on low-threshold, strongly nondegenerate parametric oscillations in lithium niobate WGM resonators. The principle of operation of such an oscillator is rooted in two previously observed phenomena: (1) stimulated Raman scattering by polaritons in lithium niobate and (2) phase matching of nonlinear optical processes via geometrical confinement of light. The oscillator is partly similar to terahertz oscillators based on lithium niobate crystals, the key difference being that a novel geometrical configuration of this oscillator supports oscillation in the regime. The high resonance quality factors (Q values) typical of WGM resonators make it possible to achieve oscillation at a threshold signal level much lower than that in a non-WGM-resonator lithium niobate crystal.

  12. SOl-based radial-contour-mode micromechanical disk resonator

    Institute of Scientific and Technical Information of China (English)

    Jia Yingqian; Zhao Zhengping; Yang Yongjun; Hu Xiaodong; Li Qian

    2011-01-01

    This paper reports a radial-contour-mode micromechanical disk resonator for radio frequency applications.This disk resonator with a gold plated layer as the electrodes,was prepared on a silicon-on-insulator wafer,which is supported by an anchor on another silicon wafer through Au-Au thermo-compression bonding.The gap between the disk and the surrounding gold electrodes is 100 nm.The radius of the disk is 20 μm and the thickness is 4.5μm.In results,the resonator shows a resonant frequency of 143 MHz and a quality factor of 5600 in vacuum.

  13. Complex resonances and trapped modes in ducted domains

    Science.gov (United States)

    Duan, Yuting; Koch, Werner; Linton, Chris M.; McIver, Maureen

    Owing to radiation losses, resonances in open systems, i.e. solution domains which extend to infinity in at least one direction, are generally complex valued. However, near symmetric centred objects in ducted domains, or in periodic arrays, so-called trapped modes can exist below the cut-off frequency of the first non-trivial duct mode. These trapped modes have no radiation loss and correspond to real-valued resonances. Above the first cut-off frequency isolated trapped modes exist only for specific parameter combinations. These isolated trapped modes are termed embedded, because their corresponding eigenvalues are embedded in the continuous spectrum of an appropriate differential operator. Trapped modes are of considerable importance in applications because at these parameters the system can be excited easily by external forcing. In the present paper directly computed embedded trapped modes are compared with numerically obtained resonances for several model configurations. Acoustic resonances are also computed in two-dimensional models of a butterfly and a ball-type valve as examples of more complicated geometries.

  14. Parametric strong mode-coupling in carbon nanotube mechanical resonators

    Science.gov (United States)

    Li, Shu-Xiao; Zhu, Dong; Wang, Xin-He; Wang, Jiang-Tao; Deng, Guang-Wei; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-08-01

    Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes.Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes. Electronic supplementary information (ESI) available: Fit of the quality factor and similar results in more devices. See DOI: 10.1039/c6nr02853e

  15. Multi-mode to single-mode conversion in a 61 port photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M.W.; Maack, Martin D.;

    2010-01-01

    Efficient multi-mode (MM) to single-mode (SM) conversion in a 61 port splitter or “Photonic Lantern” is demonstrated. The coupling loss from a 100 µm core diameter MM section to an ensemble of 61 SM fibers and back to another 100 µm core MM section is measured to be as low as 0.76 dB. This demons......Efficient multi-mode (MM) to single-mode (SM) conversion in a 61 port splitter or “Photonic Lantern” is demonstrated. The coupling loss from a 100 µm core diameter MM section to an ensemble of 61 SM fibers and back to another 100 µm core MM section is measured to be as low as 0.76 d......B. This demonstration shows the feasibility of using the Photonic Lanterns within the field of astrophotonics for coupling MM star-light to an ensemble of SM fibers in order to perform fiber Bragg grating based spectral filtering."...

  16. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.;

    2010-01-01

    efficient optical frequency conversion. Our analysis of the phase-matching conditions for optical parametric down-conversion (PDC) in a spherical WGM resonator shows their direct relation to the sum rules for photons' angular momenta and predicts a very low parametric oscillation threshold. We realized...... such an optical parametric oscillator (OPO) based on naturally phase-matched PDC in lithium niobate. We demonstrated a single-mode, strongly nondegenerate OPO with a threshold of 6.7  μW and linewidth under 10 MHz. This work demonstrates the remarkable capabilities of WGM-based OPOs....

  17. Resonant photo-thermal conversion for sub-terahertz imaging

    Science.gov (United States)

    Jolly, Alain; Chassagne, Bruno; Jolly, Jean-Claude

    2013-01-01

    An original design of generic interest is proposed for fast imaging, in the field of sub-terahertz frequencies, by means of resonant coupling between an ultra-thin photo-thermal converter and a metallic grid upstream an infrared camera. The material is a sheet of polyimide material with a high content of absorptive carbon inclusions. We make use of the large difference between the IR and THz wavelengths in a quarter-wave planar geometry, to ensure a highly efficient and stable conversion process. A complete setup has been implemented for demonstration purposes, using the beam from a Gunn diode at 110 GHz. Experimental results are in good agreement with the predictions from the numerical model, which helps to validate the concept and the requirements for geometrical adjustment.

  18. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide.

    Science.gov (United States)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan; Peucheret, Christophe

    2014-01-13

    We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler based (de)multiplexers and a multimode waveguide is designed and fabricated for this application. Experimental results show clear eye-diagrams and moderate power penalties for the wavelength conversion of both modes.

  19. Multichannel mode conversion and multiplexing based on a single spatial light modulator for optical communication

    Science.gov (United States)

    Nie, Song; Yu, Song; Cai, Shanyong; Lan, Mingying; Gu, Wanyi

    2016-07-01

    A method is proposed to achieve multichannel mode conversion and multiplexing by dividing a single spatial light modulator into several blocks with the mode conversion pattern and blazed grating loaded on each block. The conversion patterns realize the precise excitation of higher order modes using combined amplitude and phase modulation. The blazed gratings bring together incident beams, so these beams can be coupled into few-mode fiber (FMF). In the experiment, four higher order modes are precisely excited and converge with a tilt angle. Through the simulation method, these beams can be coupled into FMF with small tilt angles (0.0344 deg for LP11 mode).

  20. Neutron Flux Measurements in an ICRF Mode Conversion Regime Heating Plasmas on HT-7

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ling; WAN Bao-Nian; ZHONG Guo-Qiang; HU Li-Qun; LIN Shi-Yao; ZHANG Xin-Jun; ZANG Qing

    2011-01-01

    Ion cyclotron resonance heating experiments using antenna, in the high Reid side (HFS) have been carried out on HT-7 in different target plasmas. Unlike a standard-mode conversion heating scheme with dominant electron heating, anomalous ion heating and DD neutron fluxes higher than those estimated from thermal ions were observed in the present experiments with the ion-ion hybrid resonant layer near the center of plasma. The features of ion cyclotron range frequency (ICRF) antenna in HFS and experiments suggest that this is most probably due to the nonlinear 3/2 harmonic deuterium heating by the mode-converted ion Bernstein wave, which could produce a high energy tail on ion energy distribution.%Ion cyclotron resonance heating experiments using antenna in the high field side (HFS) have been carried out on HT-7 in different target plasmas.Unlike a standard-mode conversion heating scheme with dominant electron heating,anomalous ion heating and DD neutron fluxes higher than those estimated from thermal ions were observed in the present experiments with the ion-ion hybrid resonant layer near the center of plasma.The features of ion cyclotron range frequency (ICRF) antenna in HFS and experiments suggest that this is most probably due to the nonlinear 3/2 harmonic deuterium heating by the mode-converted ion Bernstein wave,which could produce a high energy tail on ion energy distribution.Neutron diagnostics have been applied in ion cyclotron range frequency (ICRF) plasmas on HT-7 for measurements of the fusion reaction product,which give a direct measure of the ICRF heating.The neutron emission is recorded by a 3He proportional counter,whose sensitive size is φ30 mm × 300 mm,gas pressure is 49.34 kPa and the responsibility to thermal neutrons is 133 cps/n.cm-2.s-1.It exploits large reaction cross sections and is therefore embedded in polythene moderators to thermalize the incident neutrons.

  1. Center Frequency Stabilization in Planar Dual-Mode Resonators during Mode-Splitting Control

    Science.gov (United States)

    Naji, Adham; Soliman, Mina H.

    2017-03-01

    Shape symmetry in dual-mode planar electromagnetic resonators results in their ability to host two degenerate resonant modes. As the designer enforces a controllable break in the symmetry, the degeneracy is removed and the two modes couple, exchanging energy and elevating the resonator into its desirable second-order resonance operation. The amount of coupling is controlled by the degree of asymmetry introduced. However, this mode coupling (or splitting) usually comes at a price. The centre frequency of the perturbed resonator is inadvertently drifted from its original value prior to coupling. Maintaining centre frequency stability during mode splitting is a nontrivial geometric design problem. In this paper, we analyse the problem and propose a novel method to compensate for this frequency drift, based on field analysis and perturbation theory, and we validate the solution through a practical design example and measurements. The analytical method used works accurately within the perturbational limit. It may also be used as a starting point for further numerical optimization algorithms, reducing the required computational time during design, when larger perturbations are made to the resonator. In addition to enabling the novel design example presented, it is hoped that the findings will inspire akin designs for other resonator shapes, in different disciplines and applications.

  2. Center Frequency Stabilization in Planar Dual-Mode Resonators during Mode-Splitting Control

    Science.gov (United States)

    Naji, Adham; Soliman, Mina H.

    2017-01-01

    Shape symmetry in dual-mode planar electromagnetic resonators results in their ability to host two degenerate resonant modes. As the designer enforces a controllable break in the symmetry, the degeneracy is removed and the two modes couple, exchanging energy and elevating the resonator into its desirable second-order resonance operation. The amount of coupling is controlled by the degree of asymmetry introduced. However, this mode coupling (or splitting) usually comes at a price. The centre frequency of the perturbed resonator is inadvertently drifted from its original value prior to coupling. Maintaining centre frequency stability during mode splitting is a nontrivial geometric design problem. In this paper, we analyse the problem and propose a novel method to compensate for this frequency drift, based on field analysis and perturbation theory, and we validate the solution through a practical design example and measurements. The analytical method used works accurately within the perturbational limit. It may also be used as a starting point for further numerical optimization algorithms, reducing the required computational time during design, when larger perturbations are made to the resonator. In addition to enabling the novel design example presented, it is hoped that the findings will inspire akin designs for other resonator shapes, in different disciplines and applications. PMID:28272422

  3. Resonant Mode Reduction in Radiofrequency Volume Coils for Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Xiaoliang Zhang

    2011-07-01

    Full Text Available In a multimodal volume coil, only one mode can generate homogeneous Radiofrequency (RF field for Magnetic Resonance Imaging. The existence of other modes may increase the volume coil design difficulties and potentially decreases coil performance. In this study, we introduce common-mode resonator technique to high and ultrahigh field volume coil designs to reduce the resonant mode while maintain the homogeneity of the RF field. To investigate the design method, the common-mode resonator was realized by using a microstrip line which was split along the central to become a pair of parallel transmission lines within which common-mode currents exist. Eight common-mode resonators were placed equidistantly along the circumference of a low loss dielectric cylinder to form a volume coil. Theoretical analysis and comparison between the 16-strut common-mode volume coil and a conventional 16-strut volume coil in terms of RF field homogeneity and efficiency was performed using Finite-Difference Time-Domain (FDTD method at 298.2 MHz. MR imaging experiments were performed by using a prototype of the common-mode volume coil on a whole body 7 Tesla scanner. FDTD simulation results showed the reduced number of resonant modes of the common-mode volume coil over the conventional volume coil, while the RF field homogeneity of the two type volume coils was kept at the same level. MR imaging of a water phantom and a kiwi fruit showing the feasibility of the proposed method for simplifying the volume coil design is also presented.

  4. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    Science.gov (United States)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2016-07-01

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  5. Electron acceleration by Landau resonance with whistler mode wave packets

    Science.gov (United States)

    Gurnett, D. A.; Reinleitner, L. A.

    1983-01-01

    Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.

  6. Symmetry and resonant modes in platonic grating stacks

    CERN Document Server

    Haslinger, Stewart G; Movchan, Natasha V; McPhedran, Ross C

    2013-01-01

    We study the flexural wave modes existing in finite stacks of gratings containing rigid, zero-radius pins. We group the modes into even and odd classes, and derive dispersion equations for each. We study the recently discovered EDIT (elasto-dynamically inhibited transmission) phenomenon, and relate it to the occurrence of trapped waves of even and odd symmetries being simultaneously resonant. We show how the EDIT interaction may be steered over a wide range of frequencies and angles, using a strategy in which the single-grating reflectance is kept high, so enabling the quality factors of the even and odd resonances to be kept large.

  7. Using Whispering-Gallery-Mode Resonators for Refractometry

    Science.gov (United States)

    Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry; Iltchenko, Vladimir; Maleki, Lute

    2010-01-01

    A method of determining the refractive and absorptive properties of optically transparent materials involves a combination of theoretical and experimental analysis of electromagnetic responses of whispering-gallery-mode (WGM) resonator disks made of those materials. The method was conceived especially for use in studying transparent photorefractive materials, for which purpose this method affords unprecedented levels of sensitivity and accuracy. The method is expected to be particularly useful for measuring temporally varying refractive and absorptive properties of photorefractive materials at infrared wavelengths. Still more particularly, the method is expected to be useful for measuring drifts in these properties that are so slow that, heretofore, the properties were assumed to be constant. The basic idea of the method is to attempt to infer values of the photorefractive properties of a material by seeking to match (1) theoretical predictions of the spectral responses (or selected features thereof) of a WGM of known dimensions made of the material with (2) the actual spectral responses (or selected features thereof). Spectral features that are useful for this purpose include resonance frequencies, free spectral ranges (differences between resonance frequencies of adjacently numbered modes), and resonance quality factors (Q values). The method has been demonstrated in several experiments, one of which was performed on a WGM resonator made from a disk of LiNbO3 doped with 5 percent of MgO. The free spectral range of the resonator was approximately equal to 3.42 GHz at wavelengths in the vicinity of 780 nm, the smallest full width at half maximum of a mode was approximately equal to 50 MHz, and the thickness of the resonator in the area of mode localization was 30 microns. In the experiment, laser power of 9 mW was coupled into the resonator with an efficiency of 75 percent, and the laser was scanned over a frequency band 9 GHz wide at a nominal wavelength of

  8. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramodal...

  9. Flexural Mie Resonances: Localized Surface Platonic Modes

    CERN Document Server

    Farhat, M; Chen, P Y; Salama, K N; Bagci, H

    2016-01-01

    Surface plasmons polaritons were thought to exist only in metals near their plasma frequencies. The concept of spoof plasmons extended the realms of plasmonics to domains such as radio frequencies, magnetism, or even acoustic waves. Here, we introduce the concept of localized surface platonic modes (SPMs). We demonstrate that they can be generated on a two-dimensional clamped (or stress-free) cylindrical surface, in a thin elastic plate, with subwavelength corrugations under excitation by an incident flexural plane wave. Our results show that the corrugated rigid surface is elastically equivalent to a cylindrical scatterer with negatively uniform and dispersive flexural rigidity. This, indeed, suggests that plasmonic-like platonic materials can be engineered with potential applications in various areas including earthquake sensing, or elastic imaging and cloaking.

  10. Two Mode Resonator and Contact Model for Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Blanke, Mogens; Helbo, J.

    2001-01-01

    The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailled simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...

  11. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    Science.gov (United States)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  12. Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes.

    Science.gov (United States)

    Faust, Thomas; Rieger, Johannes; Seitner, Maximilian J; Krenn, Peter; Kotthaus, Jörg P; Weig, Eva M

    2012-07-20

    The Landau-Zener transition is a fundamental concept for dynamical quantum systems and has been studied in numerous fields of physics. Here, we present a classical mechanical model system exhibiting analogous behavior using two inversely tunable, strongly coupled modes of the same nanomechanical beam resonator. In the adiabatic limit, the anticrossing between the two modes is observed and the coupling strength extracted. Sweeping an initialized mode across the coupling region allows mapping of the progression from diabatic to adiabatic transitions as a function of the sweep rate.

  13. Superradiant modes in Fibonacci quantum wells under resonant conditions

    Science.gov (United States)

    Chang, C. H.; Tsao, C. W.; Hsueh, W. J.

    2014-11-01

    It is first presented that superradiant modes exist in Fibonacci quantum wells within the exact regions that are obtained using the gap map diagram, rather than the traditional resonant Bragg condition. The results show that three limited regions are derived from the diagram, which correspond to bandgaps with widths that differ from each other. The regions in which the superradiant modes do not occur are also defined clearly. Moreover, the proposed method can be used to determine whether superradiant modes occur in multiple quantum wells that have non-periodical arrangements, including quasiperiodic sequences and correlated disorder sequences.

  14. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    KAUST Repository

    Hajjaj, Amal Z.

    2017-01-30

    We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage.

  15. Mode splitting effect in FEMs with oversized Bragg resonators

    Energy Technology Data Exchange (ETDEWEB)

    Peskov, N. Yu.; Sergeev, A. S. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Kaminsky, A. K.; Perelstein, E. A.; Sedykh, S. N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kuzikov, S. V. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Nizhegorodsky State University, Nizhny Novgorod (Russian Federation)

    2016-07-15

    Splitting of the fundamental mode in an oversized Bragg resonator with a step of the corrugation phase, which operates over the feedback loop involving the waveguide waves of different transverse structures, was found to be the result of mutual influence of the neighboring zones of the Bragg scattering. Theoretical description of this effect was developed within the framework of the advanced (four-wave) coupled-wave approach. It is shown that mode splitting reduces the selective properties, restricts the output power, and decreases the stability of the narrow-band operating regime in the free-electron maser (FEM) oscillators based on such resonators. The results of the theoretical analysis were confirmed by 3D simulations and “cold” microwave tests. Experimental data on Bragg resonators with different parameters in a 30-GHz FEM are presented. The possibility of reducing the mode splitting by profiling the corrugation parameters is shown. The use of the mode splitting effect for the output power enhancement by passive compression of the double-frequency pulse generated in the FEM with such a resonator is discussed.

  16. Laser modes and threshold condition i N-mirror resonator

    DEFF Research Database (Denmark)

    Pedersen, Christian; Skettrup, Torben

    1996-01-01

    Two formal methods for finding laser modes and threshold conditions in laser resonators containing as many as N mirrors are presented. The first method is based on an analysis determining the reflectivity and the transmittivity of an N-mirror system with gain. This is an extension of the classica...

  17. Transforming Fabry-Pérot resonances into a Tamm mode

    Science.gov (United States)

    Durach, Maxim; Rusina, Anastasia

    2012-12-01

    We propose an optical structure composed of two metal nanolayers enclosing a distributed Bragg reflector (DBR) mirror. The structure is an open photonic system whose bound modes are coupled to external radiation. We apply the special theoretical treatment based on inversion symmetry of the structure to classify its resonances. We show that the structure supports resonances transitional between Fabry-Pérot modes and Tamm plasmons. When the dielectric contrast of the DBR is removed these modes are a pair of conventional Fabry-Pérot resonances. They spectrally merge into a Tamm mode at high contrast. The optical properties of the structure in the frequency range of the DBR stop band, including highly beneficial 50% transmittivity through thick structures with sub-skin-depth metal films, are determined by the hybrid quasinormal modes of the open nonconservative structure under consideration. The results can find a broad range of applications in photonics and optoelectronics, including the possibility of coherent control over optical fields in the class of structures similar to the one proposed here.

  18. Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls.

    Science.gov (United States)

    Dai, Daoxin; Zhang, Ming

    2015-12-14

    The mode property and light propagation in a tapered silicon-on-insulator (SOI) nanowire with angled sidewalls is analyzed. Mode hybridization is observed and mode conversion between the TM fundamental mode and higher-order TE modes happens when light propagates in a waveguide taper which is used very often in the design of photonic integrated devices. This mode conversion ratio is possible to be very high (even close to 100%) when the taper is long enough to be adiabatic, which might be useful for some applications of multimode photonics. When the mode conversion is undesired to avoid any excess loss as well as crosstalk for photonic integrated circuits, one can depress the mode conversion by compensating the vertical asymmetry in the way of reducing the sidewall angle or introducing an optimal refractive index for the upper-cladding. It is also possible to eliminate the undesired mode conversion almost and improve the desired mode conversion greatly by introducing an abrupt junction connecting two sections with different widths to jump over the mode hybridization region.

  19. Scissors mode of Gd nuclei studied from resonance neutron capture

    Science.gov (United States)

    Kroll, J.; Baramsai, B.; Becker, J. A.; Bečvár, F.; Bredeweg, T. A.; Couture, A.; Chyzh, A.; Dashdorj, D.; Haight, R. C.; Heil, M.; Jandel, M.; Käppeler, F.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Vieira, D. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2012-10-01

    Spectra of γ rays following the neutron capture at isolated resonances of stable Gd nuclei weremeasured. The objectives were to get new information on photon strength of 153,155-159Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength ΣB(M1)↑, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information. Our analysis indicates that for these nuclei the sum ΣB(M1)↑ increases with A and for 157,159Gd it is significantly higher compared to 156,158Gd.

  20. A new type of resonant neutrino conversions induced by magnetic fields

    CERN Document Server

    Sahu, S; Valle, José W F

    1995-01-01

    We consider resonant neutrino conversions in magnetised matter, such as a degenerate electron gas. We show how magnetisation effects caused by axial vector interactions of neutrinos with the charged leptons in the medium can induce a new type of resonant neutrino conversion which may occur even in situations where the MSW effect does not occur, such as the case of degenerate or inverted neutrino mass spectra. Our new resonance may simultaneously affect anti-neutrino \\bar{\

  1. Entanglement and nonclassicality in four-mode Gaussian states generated via parametric down-conversion and frequency up-conversion

    Science.gov (United States)

    Arkhipov, Ievgen I.; Peřina, Jan, Jr.; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2016-09-01

    Multipartite entanglement and nonclassicality of four-mode Gaussian states generated in two simultaneous nonlinear processes involving parametric down-conversion and frequency up-conversion are analyzed assuming the vacuum as the initial state. Suitable conditions for the generation of highly entangled states are found. Transfer of the entanglement from the down-converted modes into the up-converted ones is also suggested. The analysis of the whole set of states reveals that sub-shot-noise intensity correlations between the equally-populated down-converted modes, as well as the equally-populated up-converted modes, uniquely identify entangled states. They represent a powerful entanglement identifier also in other cases with arbitrarily populated modes.

  2. Entanglement and nonclassicality in four-mode Gaussian states generated via parametric down-conversion and frequency up-conversion

    Science.gov (United States)

    Arkhipov, Ievgen I.; Peřina Jr., Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2016-01-01

    Multipartite entanglement and nonclassicality of four-mode Gaussian states generated in two simultaneous nonlinear processes involving parametric down-conversion and frequency up-conversion are analyzed assuming the vacuum as the initial state. Suitable conditions for the generation of highly entangled states are found. Transfer of the entanglement from the down-converted modes into the up-converted ones is also suggested. The analysis of the whole set of states reveals that sub-shot-noise intensity correlations between the equally-populated down-converted modes, as well as the equally-populated up-converted modes, uniquely identify entangled states. They represent a powerful entanglement identifier also in other cases with arbitrarily populated modes. PMID:27658508

  3. A study of trapped mode resonances in asymmetric X-shape resonator for frequency selective surface

    Science.gov (United States)

    Chen, Kejian; Liu, Hong; Wang, Yiqi; Zhu, Yiming

    2013-08-01

    FSS is a two-dimensional periodic array of resonating metallic-dielectric structures, When FSS device steps into Terahertz range from microwave range, it is studied as THz functional components (such as Terahertz filter, Terahertz biochemical sensor, etc.) to promote the functionality of the THz spectroscopy/imaging system. When the device requires a narrow band transmission window for frequency selecting or a high electric field concentration in certain area to improve its sensitivity for sensing, normally, a high quality (Q) resonant structure can give helps. Recently, high-Q resonance induced by trapped mode resonance i studied widely in FSS research areas. To induce trapped mode resonance, one can simply break the symmetric of the unit structure of FSS. In this paper, several asymmetric X-shaped resonators for FSS working in terahertz range have been studied numerically. To compare the behaviour of X-shape resonator under different conditions (with additional part: Heart lines, Shoulder lines, Wrap or Shoes squares), a common platform (θ=60, θis angle of X shape) which is suitable for most of cases was used to make the study more meaningful. As the field enhancement behaviour is related to the trapped mode introduced by the asymmetric structure, we propose such kind of device to be used as a high quality filter or as a sensing element for biochemical samples.

  4. AM-to-PM conversion in a resonant microwave optical rectification detector.

    Science.gov (United States)

    Kolner, Brian H; Kang, Lanbing

    2017-01-15

    A LiNbO3-loaded microwave cavity pumped with weakly AM-modulated 30 fs optical pulses was used as a platform to investigate AM-to-PM conversion in the optical rectification process. Theoretical treatment of AM-to-PM conversion (i.e., peak-induced electrical phase deviation βi due to optical power modulation with index m) suggests that the dominant mechanism is self-group-velocity modulation due to χ(3) and cascaded χ(2) processes with a value of δ=βi/m=-151  dB, linearly dependent on the optical power at intensities of 6×1010  W/m2 in a 40 mm long LiNbO3 crystal. This is in stark contrast to p-i-n photodiodes which can exhibit an AM-to-PM conversion gain δ>0  dB. In this experiment, we measured values of δ for a resonant optical rectification detector using typical mode-locked Ti:sapphire laser pulses (100 MHz, 30 fs, Pavg≈100  mW) and found an instrumentation-limited lower bound of δ≈-43.5  dB, independent of the optical power.

  5. Stochastic Resonance in Linear Regime of a Single- Mode Laser

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liang-Ying; CAO Li; WU Da-Jin; WANG Jun

    2003-01-01

    We present an analytic investigation of the signal-to-noise ratio by studying the linear model of a single-mode laser driven by coloured pump noise (TI) and coloured quantum noise (TZ) with coloured cross-correlation (TS), and obtain an exact analytic expression of the signal-to-noise ratio. We detect that the stochastic resonance occurs when the noise correlation coefficient A < 0. Furthermore, we analyse the effect of TI , T2 and Ta on the signal-to-noise ratio, and derive the condition under which the stochastic resonance occurs.

  6. Thermal effects on parallel resonance energy of whistler mode wave

    Indian Academy of Sciences (India)

    Devendraa Siingh; Shubha Singh; R P Singh

    2006-02-01

    In this short communication, we have evaluated the effect of thermal velocity of the plasma particles on the energy of resonantly interacting energetic electrons with the propagating whistler mode waves as a function of wave frequency and -value for the normal and disturbed magnetospheric conditions. During the disturbed conditions when the magnetosphere is depleted in electron density, the resonance energy of the electron enhances by an order of magnitude at higher latitudes, whereas the effect is small at low latitudes. An attempt is made to explain the enhanced wave activity observed during magnetic storm periods.

  7. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    Science.gov (United States)

    Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi

    2016-08-01

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein-Gordon, Fermi-Pasta-Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation.

  8. Analysis of modes in an unstable strip laser resonator

    Science.gov (United States)

    Rowley, J. E.

    1980-12-01

    The mode eigenvalue equation for an unstable strip laser resonator is developed from scalar diffraction theory. The field distributions are expressed as a series and the integral is then evaluated using a first order approximation to the method of stationary phase. The resulting approximate closed form is rearranged to form an eigenvalue polynomial, the roots of which are the mode eigenvalues. Eigenfunction expressions are then developed using second order approximation to the method of stationary phase. Modifications to these expressions are then made to account for the presence of uniform gain in the resonator. The results of a computer program using the derived expressions are presented. Comparisons to previously published results are made for the bare cavity case, and results for the loaded cavity case follow.

  9. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    Science.gov (United States)

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-03-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion.

  10. Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    Directory of Open Access Journals (Sweden)

    Baramsai B.

    2015-01-01

    Full Text Available Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ experiments on Gd isotopes, and (γ,γ’ reactions.

  11. Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    Science.gov (United States)

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-01

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ') reactions.

  12. Transverse modes of plane-mirror waveguide resonators

    Energy Technology Data Exchange (ETDEWEB)

    Hill, C.A. (Laser Devices and Techniques Div., Royal Signals and Radar Establishment, Malvern (GB))

    1988-09-01

    Large numbers of waveguide gas lasers (CO/sub 2/ ones especially) have found medical, military, industrial, and scientific application in the past few years. The simplest resonator design, with a plane mirror close to each end of a long thin dielectric tube, is still the most common. The authors examine what familiar first-order theory predicts about plane-plane resonator behavior, stressing the similarities and differences between circular-bore and square-bore devices. The effects of moving a mirror away from the guide are discussed, and illustrated with new results for the modes and losses of single-guide and U-folded designs with square bores. It appears that laser performance cannot be accurately predicted by previous treatments which use only a few (1-3) waveguide modes.

  13. Tearing mode velocity braking due to resonant magnetic perturbations

    Science.gov (United States)

    Frassinetti, L.; Menmuir, S.; Olofsson, K. E. J.; Brunsell, P. R.; Drake, J. R.

    2012-10-01

    The effect of resonant magnetic perturbations (RMPs) on the tearing mode (TM) velocity is studied in EXTRAP T2R. Experimental results show that the RMP produces TM braking until a new steady velocity or wall locking is reached. The braking is initially localized at the TM resonance and then spreads to the other TMs and to the rest of the plasma producing a global velocity reduction via the viscous torque. The process has been used to experimentally estimate the kinematic viscosity profile, in the range 2-40 m2 s-1, and the electromagnetic torque produced by the RMP, which is strongly localized at the TM resonance. Experimental results are then compared with a theoretical model which gives a reasonable qualitative explanation of the entire process.

  14. Microwave Photonics Systems Based on Whispering-gallery-mode Resonators

    Science.gov (United States)

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K.

    2013-01-01

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency. PMID:23963358

  15. Microwave photonics systems based on whispering-gallery-mode resonators.

    Science.gov (United States)

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K

    2013-08-05

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.

  16. Head-Positioning Control Using Virtual Resonant Modes in a Hard Disk Drive

    Science.gov (United States)

    Atsumi, Takenori

    In conventional control systems in hard disk drives, it is difficult to compensate for disturbances above the primary mechanical resonance. In this paper, a design method that uses a virtual resonant mode in head-positioning systems of hard disk drives was developed. The virtual resonant mode is a digital filter that works like a mechanical resonant mode. Using the proposed method, stable resonant modes in a control system can be designed with a high degree of accuracy to compensate for disturbances whose frequencies are higher than that of the primary mechanical resonance. Application of this method to a hard disk drive showed that it significantly suppresses disturbances beyond the primary mechanical resonance.

  17. Two-mode model for metal-dielectric guided-mode resonance filters.

    Science.gov (United States)

    Tuambilangana, Christelle; Pardo, Fabrice; Sakat, Emilie; Bouchon, Patrick; Pelouard, Jean-Luc; Haïdar, Riad

    2015-12-14

    Symmetric metal-dielectric guided-mode resonators (GMR) can operate as infrared band-pass filters, thanks to high-transmission resonant peaks and good rejection ratio. Starting from matrix formalism, we show that the behavior of the system can be described by a two-mode model. This model reduces to a scalar formula and the GMR is described as the combination of two independent Fabry-Perot resonators. The formalism has then been applied to the case of asymmetric GMR, in order to restore the properties of the symmetric system. This result allows designing GMR-on-substrate as efficient as free-standing systems, the same high transmission maximum value and high quality factor being conserved.

  18. Optically induced mode conversion in graded-index fibers using ultra-short laser pulses

    CERN Document Server

    Hellwig, Tim; Fallnich, Carsten

    2013-01-01

    We propose the use of graded-index few-mode fibers for mode-conversion by long-period gratings (LPG) transiently written by ultrashort laser pulses using the optical Kerr effect. The mode inter- action is studied by numerically solving the multi-mode coupled nonlinear Schroedinger equations. We present highly efficient conversion of the LP 01 - into the LP 11 -mode preserving the pulse shape in contrast to previous results in step-index fibers. Furthermore, mode conversion using different wavelengths for inducing and probing the LPG is shown. Due to the flat phase-matching curve of the examined modes in the graded-index fiber, mode-conversion can be observed for probe center wavelengths of 1100nm up to 1800nm with a write beam centered around 1030nm. Therefore, a complete separation of the probe from the write beam should be possible as well as the application of optically induced guided mode conversion for all optical modulation across a broad wavelength range.

  19. Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.

    Science.gov (United States)

    Leung, W. P.

    1980-01-01

    Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)

  20. Well-posedness and generalized plane waves simulations of a 2D mode conversion model

    CERN Document Server

    Imbert-Gérard, Lise-Marie

    2015-01-01

    Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.

  1. Kinetic simulations of X-B and O-X-B mode conversion

    CERN Document Server

    Arefiev, A V; Köhn, A; Holzhauer, E; Shevchenko, V F; Vann, R G L

    2015-01-01

    We have performed fully-kinetic simulations of X-B and O-X-B mode conversion in one and two dimensional setups using the PIC code EPOCH. We have recovered the linear dispersion relation for electron Bernstein waves by employing relatively low amplitude incoming waves. The setups presented here can be used to study non-linear regimes of X-B and O-X-B mode conversion.

  2. Mode Selectivity with Quantum-state-preserving Frequency Conversion Using Four-wave Mixing

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Reddy, Dileep V.; McKinstrie, Colin J.

    2013-01-01

    We consider quantum frequency conversion using four-wave mixing Bragg scattering and the prospects for multiplexing using the temporal modes.We find that there is an optimal strength parameter, but that the fiber length is less critical.......We consider quantum frequency conversion using four-wave mixing Bragg scattering and the prospects for multiplexing using the temporal modes.We find that there is an optimal strength parameter, but that the fiber length is less critical....

  3. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify the design, increase...... efficiency, reduce the product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented....

  4. Guided-mode resonance nanophotonics in materially sparse architectures

    Science.gov (United States)

    Magnusson, Robert; Niraula, Manoj; Yoon, Jae W.; Ko, Yeong H.; Lee, Kyu J.

    2016-03-01

    The guided-mode resonance (GMR) concept refers to lateral quasi-guided waveguide modes induced in periodic layers. Whereas these effects have been known for a long time, new attributes and innovations continue to appear. Here, we review some recent progress in this field with emphasis on sparse, or minimal, device embodiments. We discuss properties of wideband resonant reflectors designed with gratings in which the grating ridges are matched to an identical material to eliminate local reflections and phase changes. This critical interface therefore possesses zero refractive-index contrast; hence we call them "zero-contrast gratings." Applying this architecture, we present single-layer, wideband reflectors that are robust under experimentally realistic parametric variations. We introduce a new class of reflectors and polarizers fashioned with dielectric nanowire grids that are mostly empty space. Computed results predict high reflection and attendant polarization extinction for these sparse lattices. Experimental verification with Si nanowire grids yields ~200-nm-wide band of high reflection for one polarization state and free transmission of the orthogonal state. Finally, we present bandpass filters using all-dielectric resonant gratings. We design, fabricate, and test nanostructured single layer filters exhibiting high efficiency and sub-nanometer-wide passbands surrounded by 100-nm-wide stopbands.

  5. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator

    DEFF Research Database (Denmark)

    Xiong, Meng; Ding, Yunhong; Ou, Haiyan

    2016-01-01

    Wavelength conversion based on degenerate four-wave mixing (FWM) was demonstrated and compared between silicon nanowire and microring resonator (MRR). 15 dB enhancement of conversion efficiency (CE) with relatively low input pump power (5 mW) was achieved experimentally in an MRR. The impacts...

  6. Selective mode coupling in microring resonators for single mode semiconductor lasers

    Science.gov (United States)

    Arbabi, Amir

    Single mode semiconductor laser diodes have many applications in optical communications, metrology and sensing. Edge-emitting single mode lasers commonly use distributed feedback structures, or narrowband reflectors such as distributed Bragg reflectors (DBRs) and sampled grating distributed Bragg reflectors (SGDBRs). Compact, narrowband reflectors with high reflectivities are of interest to replace the commonly used DBRs and SGDBRs. This thesis presents our work on the simulation, design, fabrication, and characterization of devices operating based on the coupling of degenerate modes of a microring resonator, and investigation of the possibility of using them for improving the performance of laser diodes. In particular, we demonstrate a new type of compact, narrowband, on-chip reflector realized by selectively coupling degenerate modes of a microring resonator. For the simulation and design of reflective microring resonators, a fast and accurate analysis method is required. Conventional numerical methods for solving Maxwell's equations such as the finite difference time domain and the finite element method (FEM) provide accurate results but are computationally intense and are not suitable for the design of large 3D structures. We formulated a set of coupled mode equations that, combined with 2D FEM simulations, can provide a fast and accurate tool for the modeling and design of reflective microrings. We developed fabrication processing recipes and fabricated passive reflective microrings on silicon substrates with a silicon nitride core and silicon dioxide cladding. Narrowband single wavelength reflectors were realized which are 70 times smaller than a conventional DBR with the same bandwidth. Compared to the conventional DBR, they have faster roll-off, and no side modes. The smaller footprint saves real estate, reduces tuning power and makes these devices attractive as in-line mirrors for low threshold narrow linewidth laser diodes. Self-heating caused by material

  7. Observation and characterization of mode splitting in microsphere resonators in aquatic environment

    CERN Document Server

    Woosung, Kim; Zhu, Jiangang; Yang, Lan

    2011-01-01

    Whispering gallery mode (WGM) optical resonators utilizing resonance shift (RS) and mode splitting (MS) techniques have emerged as highly sensitive platforms for label-free detection of nano-scale objects. RS method has been demonstrated in various resonators in air and liquid. MS in microsphere resonators has not been achieved in aqueous environment up to date, despite its demonstration in microtoroid resonators. Here, we demonstrate scatterer-induced MS of WGMs in microsphere resonators in water. We determine the size range of particles that induces MS in a microsphere in water as a function of resonator mode volume and quality factor. The results are confirmed by the experimental observations.

  8. Resonance modes in stereometamaterial of square split ring resonators connected by sharing the gap

    CERN Document Server

    Wang, Sheng Lei; Zhang, Qiang; Zhang, Xiao Ming

    2014-01-01

    Stereometamaerials can fully utilize the 3D degrees of freedom to exploit the coupling and hybridization between multiple split ring resonators (SRRs), enabling more extraordinary resonances and properties over their planar counterparts. Here we propose and numerically study a kind of structure based on connected SRRs sharing their gap in a rotational fashion. It is shown that there are three typical resonance modes in such cage-like SRR (C-SRR) stereometamaterial in the communication and near infrared range. In the order of increasing energy, these modes can be essentially ascribed to magnetic torodial dipole, magnetic dipole, and a mixture of electric-dipole and magnetic toroidal dipole. We show that the latter two are derived from the second-order mode in the corresponding individual SRR, while the first one from the fundamental one. The highest energy mode remains relatively "dark" in an individual C-SRR due to the high-order feature and the rotational symmetry. However, they are all easily excitable in a...

  9. Method of fabricating a whispering gallery mode resonator

    Science.gov (United States)

    Savchenkov, Anatoliy A. (Inventor); Matkso, Andrey B. (Inventor); Iltchenko, Vladimir S. (Inventor); Maleki, Lute (Inventor)

    2011-01-01

    A method of fabricating a whispering gallery mode resonator (WGMR) is provided. The WGMR can be fabricated from a particular material, annealed, and then polished. The WGMR can be repeatedly annealed and then polished. The repeated polishing of the WGMR can be carried out using an abrasive slurry. The abrasive slurry can have a predetermined, constant grain size. Each subsequent polishing of the WGMR can use an abrasive slurry having a grain size that is smaller than the grain size of the abrasive slurry of the previous polishing iteration.

  10. Analytical solutions of coupled-mode equations for microring resonators

    Indian Academy of Sciences (India)

    ZHAO C Y

    2016-06-01

    We present a study on analytical solutions of coupled-mode equations for microring resonators with an emphasis on occurrence of all-optical EIT phenomenon, obtained by using a cofactor. As concrete examples, analytical solutions for a $3 \\times 3$ linearly distributed coupler and a circularly distributed coupler are obtained. The former corresponds to a non-degenerate eigenvalue problem and the latter corresponds to a degenerate eigenvalue problem. For comparison and without loss of generality, analytical solution for a $4 \\times 4$ linearly distributed coupler is also obtained. This paper may be of interest to optical physics and integrated photonics communities.

  11. Design rules for lossy mode resonance based sensors.

    Science.gov (United States)

    Del Villar, Ignacio; Hernaez, Miguel; Zamarreño, Carlos R; Sánchez, Pedro; Fernández-Valdivielso, Carlos; Arregui, Francisco J; Matias, Ignacio R

    2012-07-01

    Lossy mode resonances can be obtained in the transmission spectrum of cladding removed multimode optical fiber coated with a thin-film. The sensitivity of these devices to changes in the properties of the coating or the surrounding medium can be optimized by means of the adequate parameterization of the coating refractive index, the coating thickness, and the surrounding medium refractive index. Some basic rules of design, which enable the selection of the best parameters for each specific sensing application, are indicated in this work.

  12. Topology Optimized Mode Conversion In a Photonic Crystal Waveguide

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Ding, Yunhong;

    2013-01-01

    We experimentally demonstrate an ultra-compact TE0-TE1 mode converter obtained in a photonic crystal waveguide by utilizing topology optimization and show a ~39 nm bandwidth around 1550 nm with an insertion loss lower than ~3 dB....

  13. Mode-Selective Wavelength Conversion Based on Four-Wave Mixing in a Multimode Silicon Waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2013-01-01

    We report all-optical mode-selective wavelength conversion based on four-wave mixing in a multimode Si waveguide. A two-mode division multiplexing circuit using tapered directional coupler based (de)multiplexers is used for the application. Experimental results show clear eye-diagrams and moderate...

  14. Mechanism of Edge Localized Mode Mitigation by Resonant Magnetic Perturbations

    Science.gov (United States)

    Bécoulet, M.; Orain, F.; Huijsmans, G. T. A.; Pamela, S.; Cahyna, P.; Hoelzl, M.; Garbet, X.; Franck, E.; Sonnendrücker, E.; Dif-Pradalier, G.; Passeron, C.; Latu, G.; Morales, J.; Nardon, E.; Fil, A.; Nkonga, B.; Ratnani, A.; Grandgirard, V.

    2014-09-01

    A possible mechanism of edge localized modes (ELMs) mitigation by resonant magnetic perturbations (RMPs) is proposed based on the results of nonlinear resistive magnetohydrodynamic modeling using the jorek code, realistic JET-like plasma parameters and an RMP spectrum of JET error-field correction coils (EFCC) with a main toroidal number n =2 were used in the simulations. Without RMPs, a large ELM relaxation is obtained mainly due to the most unstable medium-n ballooning mode. The externally imposed RMP drives nonlinearly the modes coupled to n =2 RMP which produce small multimode relaxations, mitigated ELMs. The modes driven by RMPs exhibit a tearinglike structure and produce additional islands. Mitigated ELMs deposit energy into the divertor mainly in the structures ("footprints") created by n =2 RMPs, however, slightly modulated by other nonlinearly driven even harmonics. The divertor power flux during a ELM phase mitigated by RMPs is reduced almost by a factor of 10. The mechanism of ELM mitigation by RMPs proposed here reproduces generic features of high collisionality RMP experiments, where large ELMs are replaced by small, much more frequent ELMs or magnetic turbulence. Total ELM suppression was also demonstrated in modeling at higher RMP amplitude.

  15. All-optical mode conversion via spatially-multimode four-wave mixing

    CERN Document Server

    Danaci, Onur; Glasser, Ryan T

    2016-01-01

    We experimentally demonstrate the conversion of a Gaussian beam to an approximate Bessel-Gauss mode by making use of a non-collinear four-wave mixing process in hot atomic vapor. The presence of a strong, spatially non-Gaussian pump both converts the probe beam into a non-Gaussian mode, and generates a conjugate beam that is in a similar non-Gaussian mode. The resulting probe and conjugate modes are compared to the output of a Gaussian beam incident on an annular aperture that is then spatially filtered according to the phase-matching conditions imposed by the four-wave mixing process. We find that the resulting experimental data agrees well with both numerical simulations, as well as analytical formulae describing the effects of annular apertures on Gaussian modes. These results show that spatially-multimode gain platforms may be used as a new method of mode conversion.

  16. Mode conversion of large-amplitude electromagnetic waves in relativistic critical density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pesch, T.C.; Kull, H.J. [Aachen Univ., Institute of Theoretical Physics A, RWTH (Germany)

    2009-01-15

    The propagation of linearly polarized large-amplitude electromagnetic waves in critical density plasmas is studied in the framework of the Akiezer-Polovin model. A new mechanism of mode conversion is presented. The well-known periodic solutions are generalized to quasiperiodic solutions taking into account additional electrostatic oscillations. Nearly periodic circle-like solutions are found to be stabilized by intrinsic mode coupling whereas for nearly periodic eight-like solutions an effective mode conversion mechanism is discovered. Finally, the modulation timescales are considered. (authors)

  17. Rayleigh surface waves, phonon mode conversion, and thermal transport in nanostructures

    Science.gov (United States)

    Maurer, Leon; Knezevic, Irena

    We study the effects of phonon mode conversion and Rayleigh (surface) waves on thermal transport in nanostructures. We present a technique to calculate thermal conductivity in the elastic-solid approximation: a finite-difference time-domain (FDTD) solution of the elastic or scalar wave equations combined with the Green-Kubo formula. The technique is similar to an equilibrium molecular dynamics simulation, captures phonon wave behavior, and scales well to nanostructures that are too large to simulate with many other techniques. By imposing fixed or free boundary conditions, we can selectively turn off mode conversion and Rayleigh waves to study their effects. In the example case of graphenelike nanoribbons with rough edges, we find that mode conversion among bulk modes has little effect on thermal transport, but that conversion between bulk and Rayleigh waves can significantly reduce thermal conductivity. With increasing surface disorder, Rayleigh waves readily become trapped by the disorder and draw energy away from the propagating bulk modes, which lowers thermal conductivity. We discuss the implications on the accuracy of popular phonon-surface scattering models that stem from scalar wave equations and cannot capture mode conversion to Rayleigh waves.

  18. Design of a Mode Conversion Ultrasonic Motor for Position Control

    Science.gov (United States)

    LeLetty, Ronan; Bouchilloux, Philippe; Claeyssen, Frank; Lhermet, Nicolas

    1996-01-01

    The many useful characteristics of ultrasonic motors, such as high holding torques, and high torque at low speeds, have made them the subject of increasing interest. In addition, several of their characteristics make them attractive for aerospace applications: they have a torque to weight ratio, and they require neither gearing mechanisms nor lubrication. Moreover, they create negligible magnetic fields, and conversely, they are not affected by external magnetic fields. Ultrasonic motors based on bolt-tightened structures offer simplicity and high stress capability. They use the inverse piezoelectric effect in the stator to produce vibrational energy, which is transferred to the rotor by friction. We designed a bolt-tightened ultrasonic motor using numerical modelling tools (finite element and electromechanical circuit analyses), creating an equivalent circuit model that takes into account the electromechanical energy conversion in the stator and the contact between the stator and the rotor. Analysis of the circuit gives insight into the behavior of the motor and allows its performance to be calculated. Two prototypes of the motor were built; their transient responses and other quantities, such as starting torque, were measured. In this paper, we discuss the numerical and the experimental results, and demonstrate the usefulness of numerical analysis in designing ultrasonic motors and estimating their performance.

  19. Simultaneous high bit-rate format and mode conversion with a single tilted apodized few-mode fiber Bragg grating

    Science.gov (United States)

    Gao, Ya; Sun, Junqiang; Sima, Chaotan

    2016-10-01

    We propose an all-optical approach for simultaneous high bit-rate return-to-zero (RZ) to non-return-to-zero (NRZ) format and LP01 to LP11 mode conversion using a weakly tilted apodized few-mode fiber Bragg grating (TA-FM-FBG) with specific linear spectral response. The grating apodization profile is designed by utilizing an efficient inverse scattering algorithm and the maximum refractive index modulation is adjusted based on the grating tilt angle, according to Coupled-Mode Theory. The temporal performance and operation bandwidth of the converter are discussed. The approach provides potential favorable device for the connection of various communication systems.

  20. Resonant mode behavior of lumped-resistor-loaded electric-inductive-capacitive resonator and its absorber application

    Directory of Open Access Journals (Sweden)

    Hong-Min Lee

    2013-05-01

    Full Text Available This paper presents investigations into the resonant mode behavior of a lumped-resistor-loaded electric-inductive-capacitive (ELC resonator, which is illuminated with a parallel polarization external electromagnetic wave. An ELC resonator exhibits a negative effective permittivity for both parallel and perpendicular polarizations. In contrast to a common ELC resonator, the lumped-resistor-loaded ELC resonator exhibits a switchable resonant mode behavior, thereby revealing a negative effective permeability. In addition, this resonator exhibits a low quality factor owing to the loaded lumped resistors. A metamaterial absorber, which consists of a lumped-resistor-loaded ELC resonator and a cut-wire strip, is designed to confirm the effectiveness of the resonator.

  1. Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves

    Science.gov (United States)

    Okabe, Yoji; Fujibayashi, Keiji; Shimazaki, Mamoru; Soejima, Hideki; Ogisu, Toshimichi

    2010-11-01

    A new ultrasonic propagation system has been constructed using macrofiber composite (MFC) actuators and fiber Bragg grating (FBG) sensors. The MFCs and FBGs can be integrated into composite laminates because of their small size and high fracture strain. The developed system can send and receive broadband Lamb waves. In this research, this system was used to detect delamination damage in composite laminates. First, the multiple modes of Lamb waves in a carbon-fiber-reinforced plastic (CFRP) quasi-isotropic laminate were identified by transmitting and receiving the symmetric and antisymmetric modes separately. Then, the mode conversions at both tips of a delamination were investigated through an experiment and a two-dimensional finite element analysis (FEA). A new delamination detection method was proposed on the basis of the mode conversions, and experiments were carried out on laminates with an artificial delamination. When antisymmetric modes were excited, the frequency dispersion of the received A1 mode changed, depending on the delamination length owing to the mode conversion between the A1 mode and the S0 mode. This phenomenon was confirmed through the FEA and these results prove that this new method is effective in detecting a delamination in CFRP laminates.

  2. DBD in burst mode: solution for more efficient CO2 conversion?

    Science.gov (United States)

    Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Reniers, F.; Bogaerts, A.

    2016-10-01

    CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the conversion from 16-26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the process time for the duty cycles  <70%, while a higher duty cycle or the usual pure AC mode leads to a clear voltage decay by more than 500 V, over approximately 90 s, before reaching a steady state regime. The higher plasma voltage in the burst mode yields a higher electric field. This causes the increasing the electron energy, and therefore their involvement in the CO2 dissociation process, which is an additional explanation for the higher CO2 conversion and energy efficiency in the burst mode.

  3. Ultrasonic guided wave propagation across waveguide transitions: energy transfer and mode conversion.

    Science.gov (United States)

    Puthillath, Padmakumar; Galan, Jose M; Ren, Baiyang; Lissenden, Cliff J; Rose, Joseph L

    2013-05-01

    Ultrasonic guided wave inspection of structures containing adhesively bonded joints requires an understanding of the interaction of guided waves with geometric and material discontinuities or transitions in the waveguide. Such interactions result in mode conversion with energy being partitioned among the reflected and transmitted modes. The step transition between an aluminum layer and an aluminum-adhesive-aluminum multi-layer waveguide is analyzed as a model structure. Dispersion analysis enables assessment of (i) synchronism through dispersion curve overlap and (ii) wavestructure correlation. Mode-pairs in the multi-layer waveguide are defined relative to a prescribed mode in a single layer as being synchronized and having nearly perfect wavestructure matching. Only a limited number of mode-pairs exist, and each has a unique frequency range. A hybrid model based on semi-analytical finite elements and the normal mode expansion is implemented to assess mode conversion at a step transition in a waveguide. The model results indicate that synchronism and wavestructure matching is associated with energy transfer through the step transition, and that the energy of an incident wave mode in a single layer is transmitted almost entirely to the associated mode-pair, where one exists. This analysis guides the selection of incident modes that convert into transmitted modes and improve adhesive joint inspection with ultrasonic guided waves.

  4. Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide.

    Science.gov (United States)

    Sun, Feiran; Sun, Zhenguo; Chen, Qiang; Murayama, Riichi; Nishino, Hideo

    2016-10-19

    To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.

  5. Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide

    Directory of Open Access Journals (Sweden)

    Feiran Sun

    2016-10-01

    Full Text Available To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT for S0-wave and a periodic permanent magnet (PPM EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1 mode, L(0,1 mode, and L(0,2 mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1 mode, while the SH0-wave is easier to convert to the L(0,1 mode and L(0,2 mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.

  6. Vibrational modes of ultrathin carbon nanomembrane mechanical resonators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianghui, E-mail: zhang@physik.uni-bielefeld.de, E-mail: elke.scheer@uni-konstanz.de; Angelova, Polina; Gölzhäuser, Armin [Fakultät für Physik, Universität Bielefeld, 33615 Bielefeld (Germany); Waitz, Reimar; Yang, Fan; Lutz, Carolin; Scheer, Elke, E-mail: zhang@physik.uni-bielefeld.de, E-mail: elke.scheer@uni-konstanz.de [Fachbereich Physik, Universität Konstanz, 78457 Konstanz (Germany)

    2015-02-09

    We report measurements of vibrational mode shapes of mechanical resonators made from ultrathin carbon nanomembranes (CNMs) with a thickness of approximately 1 nm. CNMs are prepared from electron irradiation induced cross-linking of aromatic self-assembled monolayers and the variation of membrane thickness and/or density can be achieved by varying the precursor molecule. Single- and triple-layer freestanding CNMs were made by transferring them onto Si substrates with square/rectangular orifices. The vibration of the membrane was actuated by applying a sinusoidal voltage to a piezoelectric disk on which the sample was glued. The vibrational mode shapes were visualized with an imaging Mirau interferometer using a stroboscopic light source. Several mode shapes of a square membrane can be readily identified and their dynamic behavior can be well described by linear response theory of a membrane with negligible bending rigidity. By applying Fourier transformations to the time-dependent surface profiles, the dispersion relation of the transverse membrane waves can be obtained and its linear behavior verifies the membrane model. By comparing the dispersion relation to an analytical model, the static stress of the membranes was determined and found to be caused by the fabrication process.

  7. DBD in burst mode: solution for more efficient CO2 conversion?

    CERN Document Server

    Ozkan, A; Silva, T; Britun, N; Snyders, R; Reniers, F; Bogaerts, A

    2016-01-01

    CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the conversion from 16--26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the proc...

  8. Crystalline Whispering Gallery Mode Resonators: In Search of The Optimal Material

    CERN Document Server

    Ilchenko, V S; Matsko, A B; Maleki, L

    2014-01-01

    Different applications of crystalline whispering gallery mode resonators call for different properties of the resonator host material. We report on our recent study of resonators made out of sapphire, diamond, and quartz crystals and discuss possible applications of these resonators. In particular, we demonstrate Kerr frequency comb generation in sapphire microresonators.

  9. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    Science.gov (United States)

    Zhang, Kewei; Chai, Yuesheng; Fu, Jiahui

    2015-12-01

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonance modes. For the first resonance mode, when mass loading position xc satisfied 0 xc xc ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.

  10. Plate-mode waves in phononic crystal thin slabs: mode conversion.

    Science.gov (United States)

    Chen, Jiu-Jiu; Bonello, Bernard; Hou, Zhi-Lin

    2008-09-01

    We have computed the dispersion curves of plate-mode waves propagating in periodic composite structures composed of isotropic aluminum cylinders embedded in an isotropic nickel background. The phononic crystal has a square symmetry and the calculation is based on the plane-wave expansion method. Along GammaX or GammaM directions, shear-horizontal modes do not couple to the Lamb wave modes which are polarized in the sagittal plane. Whatever the direction of propagation in between GammaX and GammaM, shear-horizontal modes convert to Lamb waves and couple with the flexural and dilatational modes. This phenomenon is demonstrated both through the mode splitting in the lower-order symmetric band structure and through the calculation of all three components of the particle displacements. The phononic case is different from the pure isotropic plate case where shear-horizontal waves decouple from Lamb waves whatever the direction of propagation.

  11. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  12. Spectral Engineering with Coupled Microcavities: Active Control of Resonant Mode-Splitting

    CERN Document Server

    Souza, Mario C M M; Barea, Luis A M; von Zuben, Antonio A G; Wiederhecker, Gustavo S; Frateschi, Newton C

    2015-01-01

    Optical mode-splitting is an efficient tool to shape and fine-tune the spectral response of resonant nanophotonic devices. The active control of mode-splitting, however, is either small or accompanied by undesired resonance shifts, often much larger than the resonance-splitting. We report a control mechanism that enables reconfigurable and widely tunable mode-splitting while efficiently mitigating undesired resonance shifts. This is achieved by actively controlling the excitation of counter-traveling modes in coupled resonators. The transition from a large splitting (80 GHz) to a single-notch resonance is demonstrated using low power microheaters (35 mW). We show that the spurious resonance-shift in our device is only limited by thermal crosstalk and resonance-shift-free splitting control may be achieved.

  13. Design of Microstrip UWB bandpass Filter using Multiple Mode Resonator

    Directory of Open Access Journals (Sweden)

    Vinay Kumar Sharma

    2014-10-01

    Full Text Available In this letter, we present a design of microstrip ultrawideband (UWB bandpass filter (BPF for the use in UWB wireless communication application set by Federal Communications Commission (FCC. The UWB filter is realized with a Basic MMR (Multiple Mode Resonators structure feed by interdigital coupled lines for achieving higher degree of coupling. The structure is optimized for high selectivity, inband and stopband performance. Finally for fabrication of this structure Rogers RT5880 substrate of thickness 0.4mm with Dielectric constant 2.2 is used. The electromagnetic simulation software, Computer Simulation Technology Microwave Studio (CST MWS is used for the simulation and analysis of the designed structure. The comparison between simulated and fabricated measured result shows good agreement. The insertion loss of proposed filter is greater then 0.2 dB at 6.8 GHz and very flat over whole pass band also returns loss is less then -12db.

  14. Coupled mode parametric resonance in a vibrating screen model

    CERN Document Server

    Slepyan, Leonid I

    2013-01-01

    We consider a simple dynamic model of the vibrating screen operating in the parametric resonance (PR) mode. This model was used in the course of designing and setting of such a screen in LPMC. The PR-based screen compares favorably with conventional types of such machines, where the transverse oscillations are excited directly. It is characterized by larger values of the amplitude and by insensitivity to damping in a rather wide range. The model represents an initially strained system of two equal masses connected by a linearly elastic string. Self-equilibrated, longitudinal, harmonic forces act on the masses. Under certain conditions this results in transverse, finite-amplitude oscillations of the string. The problem is reduced to a system of two ordinary differential equations coupled by the geometric nonlinearity. Damping in both the transverse and longitudinal oscillations is taken into account. Free and forced oscillations of this mass-string system are examined analytically and numerically. The energy e...

  15. Mode structure analysis of a Bessel-Gauss resonator

    CSIR Research Space (South Africa)

    Litvin, IA

    2006-08-01

    Full Text Available modes under given radius R 0. 0.2 0.25 0.3 0.35 0.4 0.45 0.5 noitcarffid sessol 0 2 4 6 8 10 12 14 16 18 20 22 24 26 1 3 5 7 9 11 13 15 17 19 21 23 5 27 Figure 4: The dependence of diffraction losses per pass under expansion from... on mirror L1 of resonator depending on mirror radius L0 (eq. 3) are shown on (fig. 2). 1.44 1.46 1.48 1.5 radius of mirror L1, ´ 10- 4 m edutilpma , r. u. 13 5 7 9 0 6 Figure 2: The dependence of maximums of displaced Gauss intensity...

  16. Transmission analysis of ultrasonic Lamb mode conversion in a plate with partial-thickness notch.

    Science.gov (United States)

    Xu, Kailiang; Ta, Dean; Su, Zhongqing; Wang, Weiqi

    2014-01-01

    Mode conversions of Lamb waves can occur upon encountering damage or defect such as a notch, leading to newly-converted modes apart from wave reflection and transmission. In this paper, the transmission of the fundamental Lamb modes symmetrical S0 and anti-symmetrical A0 with anti-symmetrical notches were investigated in steel plates within the relatively short propagation distance. The group velocity and modal energy of the converted modes were analyzed using simulations and experiments. Two-dimensional finite difference time domain (2D-FDTD) method was employed to calculate the scattering field and extract numerical trends for simulation study and experimental confirmation. Both simulations and experiments revealed that the apparent group velocities of the converted modes in the transmitted signals subject to the notch positions. To describe the mode conversion degree and evaluate the notch severity, wave packets of the originally-transmitted modes and newly-converted modes were separated and corresponding mode energy percentages were analyzed at different notch severities. Frequency-sweeping measurements illustrated that the modal energy percentages varied monotonically over the notch-depth increase with a statistically consistency (R=1.00, P<0.0004).

  17. Mode Conversion Losses in Expansion Units for ITER ECH Transmission Lines

    Science.gov (United States)

    Schaub, S. C.; Shapiro, M. A.; Temkin, R. J.; Hanson, G. R.

    2016-01-01

    The ITER electron cyclotron heating transmission lines will consist of 63.5-mm-diameter corrugated waveguides, each carrying 1 MW of 170 GHz microwaves. These transmission lines must include expansion units to accommodate expansion and contraction along the path from the gyrotron microwave sources to the tokamak. A numerical mode matching code has been developed to calculate power losses due to mode conversion of the operating mode, HE11, to higher order modes as a result of the radial discontinuities in a sliding joint. Two expansion unit designs were evaluated, a simple gap expansion unit and a more complex tapered expansion unit. The gap expansion unit demonstrated loss that oscillated rapidly with expansion length, due to trapped modes within the unit. The tapered expansion unit has been shown to effectively suppress these trapped modes at the expense of increased fabrication complexity. In a gap expansion unit, for a waveguide step size of 2.5 mm, loss can be kept below 0.1 % to a maximum expansion length of 17 mm. Expansion units without corrugation on interior walls were also evaluated. Expansion units that lack corrugations are found to increase mode trapping within the units, though not beyond useful application. The mode matching code developed in this paper was also used to estimate mode conversion loss in vacuum pumpouts for the ECH lines; the estimated loss was found to be negligibly small.

  18. Low insertion loss highly mode-selective spatial multiplexers using multi-plane light conversion

    Science.gov (United States)

    Morizur, Jean-François; Barré, Nicolas; Pinel, Olivier; Lenglé, Kevin; Garcia, Lionel; Jaffres, Lionel; Jian, Pu; Labroille, Guillaume

    2016-02-01

    Multi-Plane Light Conversion enables novel beam shaping devices, including spatial multiplexers. After a presentation of the achievable performances of these spatial multiplexers, which can combine 10 spatial modes with cross-talk below -22 dB and insertion loss below 4 dB, we review the performances of Multi-Plane Light Con-version in multiple application cases. These application cases include mode-multiplexed optical amplification, high-power beam shaping and combining and LAN fiber capacity upgrade.

  19. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify design, increase efficiency and integration level, reduce product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented. (au)

  20. Celiac disease biodetection using lossy-mode resonances generated in tapered single-mode optical fibers

    Science.gov (United States)

    Socorro, A. B.; Corres, J. M.; Del Villar, I.; Matias, I. R.; Arregui, F. J.

    2014-05-01

    This work presents the development and test of an anti-gliadin antibodies biosensor based on lossy mode resonances (LMRs) to detect celiac disease. Several polyelectrolites were used to perform layer-by-layer assembly processes in order to generate the LMR and to fabricate a gliadin-embedded thin-film. The LMR shifted 20 nm when immersed in a 5 ppm anti-gliadin antibodies-PBS solution, what makes this bioprobe suitable for detecting celiac disease. This is the first time, to our knowledge, that LMRs are used to detect celiac disease and these results suppose promising prospects on the use of such phenomena as biological detectors.

  1. Robust Sliding Mode Control of Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Guangping Zhuo

    2016-12-01

    Full Text Available The subject of this paper pertains to sliding mode control and its application in nonlinear electrical power systems as seen in wind energy conversion systems. Due to the robustness in dealing with unmodeled system dynamics, sliding mode control has been widely used in electrical power system applications. This paper presents first and high order sliding mode control schemes for permanent magnet synchronous generator-based wind energy conversion systems. The application of these methods for control using dynamic models of the d-axis and q-axis currents, as well as those of the high speed shaft rotational speed show a high level of efficiency in power extraction from a varying wind resource. Computer simulation results have shown the efficacy of the proposed sliding mode control approaches.

  2. Calculation of two-fluid resonant modes in spheromaks

    Science.gov (United States)

    Howell, E. C.; Sovinec, C. R.

    2010-11-01

    Numerical computation is applied to investigate two-fluid effects on resonant modes in spheromaks using the NIMROD code [C.R. Sovinec et. at., Phys. Plasmas 10(2003)]. Earlier whole-device simulations of SSPX show that MHD stability has a strong influence on confinement during the sustained decay phase [E.B. Hooper et. al., POP 15, 032502 (2008)]. Recent computations of spheromak equilibria in a cylindrical domain with prescribed peaked pressure profiles show ideal interchange behavior. A moderate reduction of growth rate (10-70%) for intermediate toroidal mode numbers (n=16˜20) is observed when two-fluid effects are included [E.C. Howell and C.R. Sovinec, APS 2009]. Here, we consider more realistic pressure and safety-factor profiles from 3D self-consistent nonlinear MHD simulations. Linear analyses of axisymmetric equilibria reconstructed from the simulations are performed, and growth rates calculated using both ion gyroviscosity and a two fluid Ohm's law are compared with resistive MHD results.

  3. Efficient telecom to visible wavelength conversion in doubly resonant GaP microdisks

    CERN Document Server

    Lake, David P; Jayakumar, Harishankar; Santos, Laís Fujii dos; Curic, Davor; Barclay, Paul E

    2015-01-01

    Resonant second harmonic generation between 1550 nm and 775 nm with outside efficiency $> 4.4\\times10^{-4}\\, \\text{mW}^{-1}$ is demonstrated in a gallium phosphide microdisk cavity supporting high-$Q$ modes at visible ($Q \\sim 10^4$) and infrared ($Q \\sim 10^5$) wavelengths. The double resonance condition was satisfied through intracavity photothermal temperature tuning using $\\sim 360\\,\\mu$W of 1550 nm light input to a fiber taper and resonantly coupled to the microdisk. Above this pump power efficiency was observed to decrease. The observed behavior is consistent with a simple model for thermal tuning of the double resonance condition.

  4. Equivalent-Circuit Model for the Thickness-Shear Mode Resonator with a Viscoelastic Film Near Film Resonance

    Energy Technology Data Exchange (ETDEWEB)

    BANDEY, HELEN L.; BROWN, MARK J.; CERNOSEK, RICHARD W.; HILLMAN, A. ROBERT; MARTIN, STEPHEN J.

    1999-09-16

    We derive a lumped-element, equivalent-circuit model for the thickness shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of {pi}/2 radians. This model predicts accurately the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. The elements of the model are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and the Sauerbrey models.

  5. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    Science.gov (United States)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  6. PT-symmetric microring lasers: Self-adapting broadband mode-selective resonators

    CERN Document Server

    Hodaei, Hossein; Heinrich, Matthias; Christodoulides, Demetrios N; Khajavikhan, Mercedeh

    2014-01-01

    We demonstrate experimentally that stable single longitudinal mode operation can be readily achieved in PT-symmetric arrangements of coupled microring resonators. Whereas any active resonator is in principle capable of displaying single-wavelength operation, selective breaking of PT-symmetry can be utilized to systematically enhance the maximum achievable gain of this mode, even if a large number of competing longitudinal or transverse resonator modes fall within the amplification bandwidth of the inhomogeneously broadened active medium. This concept is robust with respect to fabrication tolerances, and its mode selectivity is established without the need for additional components or specifically designed filters. Our results may pave the way for a new generation of versatile cavities lasing at a desired longitudinal resonance. Along these lines, traditionally highly multi-moded microring resonator configurations can be fashioned to suppress all but one longitudinal mode.

  7. Benchmarking Fast-to-Alfven Mode Conversion in a Cold MHD Plasma

    CERN Document Server

    Cally, Paul S

    2011-01-01

    Alfv\\'en waves may be generated via mode conversion from fast magneto-acoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helio-seismology. In active regions this reflection typically occurs high enough that the Alfv\\'en speed $a$ greatly exceeds the sound speed $c$, well above the $a=c$ level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfv\\'en conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold MHD model $c\\to0$. This provides a benchmark for fast-to-Alfv\\'en mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfv\\'en speed profile with density scale height $h$, the Alfv\\'en conversion coefficient depends on three variables only; the dimensionless transverse-to-the-stratification wavenumber $\\kappa=kh$, the magnetic field ...

  8. Resonant Spin-Flavor Conversion of Supernova Neutrinos: Dependence on Electron Mole Fraction

    CERN Document Server

    Yoshida, T; Kimura, K; Yokomakura, H; Kawagoe, S; Kajino, T

    2009-01-01

    Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Ye is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Ye. At an adiabatic high RSF resonance the flavor conversion of bar{nu}_e -> nu_{mu,tau} occurs in Ye 0.5 and inverted mass hierarchy. In other cases of Ye values and mass hierarchies, the conversion of nu_e -> bar{nu}_{mu,tau} occurs. The final bar{nu}_e spectrum is evaluated in the cases of Ye 0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low bar{nu}_e energy to high bar{nu}_e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron frac...

  9. Antisymmetric-Symmetric Mode Conversion of Ultrasonic Lamb Waves and Negative Refraction on Thin Steel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young H. [Dept. of Physics and Earth Science, Korea Science Academy of KAIST, Busan (Korea, Republic of); Sung, Jin Woo [Dept. of Physics and Astronomy, Seoul National University, Seoul, (Korea, Republic of)

    2013-06-15

    In this study, focusing of ultrasonic Lamb wave by negative refraction with mode conversion from antisymmetric to symmetric mode was investigated. When a wave propagates backward by negative refraction, the energy flux is antiparallel to the phase velocity. Backward propagation of Lamb wave is quite well known, but the behavior of backward Lamb wave at an interface has rarely been investigated. A pin-type transducer is used to detect Lamb wave propagating on a steel plate with a step change in thickness. Conversion from forward to backward propagating mode leads to negative refraction and thus wave focusing. By comparing the amplitudes of received Lamb waves at a specific frequency measured at different distance between transmitter and interface, the focusing of Lamb wave due to negative refraction was confirmed.

  10. Model of the transverse modes of stable and unstable porro–prism resonators using symmetry considerations

    CSIR Research Space (South Africa)

    Burger, L

    2007-01-01

    Full Text Available A simple model of a Porro prism laser resonator has been found to correctly predict the formation of the “petal” mode patterns typical of these resonators. A geometrical analysis of the petals suggests that these petals are the lowest−order modes...

  11. A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations

    Science.gov (United States)

    Noy, Lior; Liron, Yuvalal; Alon, Uri

    2017-01-01

    Face-to-face conversations are central to human communication and a fascinating example of joint action. Beyond verbal content, one of the primary ways in which information is conveyed in conversations is body language. Body motion in natural conversations has been difficult to study precisely due to the large number of coordinates at play. There is need for fresh approaches to analyze and understand the data, in order to ask whether dyads show basic building blocks of coupled motion. Here we present a method for analyzing body motion during joint action using depth-sensing cameras, and use it to analyze a sample of scientific conversations. Our method consists of three steps: defining modes of body motion of individual participants, defining dyadic modes made of combinations of these individual modes, and lastly defining motion motifs as dyadic modes that occur significantly more often than expected given the single-person motion statistics. As a proof-of-concept, we analyze the motion of 12 dyads of scientists measured using two Microsoft Kinect cameras. In our sample, we find that out of many possible modes, only two were motion motifs: synchronized parallel torso motion in which the participants swayed from side to side in sync, and still segments where neither person moved. We find evidence of dyad individuality in the use of motion modes. For a randomly selected subset of 5 dyads, this individuality was maintained for at least 6 months. The present approach to simplify complex motion data and to define motion motifs may be used to understand other joint tasks and interactions. The analysis tools developed here and the motion dataset are publicly available. PMID:28141861

  12. Observation of the antiferromagnetic resonance of multi-sublattice modes in KCuF 3

    Science.gov (United States)

    Shi, Qingfan; Li, Liangsheng; Mino, Michinobu; Yamada, Isao; Yamazaki, Hitoshi

    2006-05-01

    We report antiferromagnetic resonance measurements of KCuF 3 at various frequencies from 3.8 to 10 GHz at 4.2 K. A second antiferromagnetic resonance absorption mode is observed in the [1 0 0] p direction and equivalent directions, where [ ] p represents an axis in a unit cell of the perovskite structure. Using the eight-sublattice model proposed by Yamada and Kato [J. Phys. Soc. Japan 63 (1994) 289], the numerical calculation for the antiferromagnetic resonance indicates that this second absorption mode comes from one of the resonance modes of the eight-sublattice system.

  13. Conversion of the dominantly ideal perturbations into a tearing mode after a sawtooth crash

    Energy Technology Data Exchange (ETDEWEB)

    Igochine, V., E-mail: valentin.igochine@ipp.mpg.de; Gude, A.; Günter, S.; Lackner, K.; Yu, Q.; Barrera Orte, L.; McDermott, R. M. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Bogomolov, A.; Classen, I. [FOM-Institute DIFFER, Dutch Institute for Fundamental Energy Research, 3430 BE Nieuwegein (Netherlands); Luhmann, N. C. [University of California at Davis, Davis, California 95616 (United States)

    2014-11-15

    Forced magnetic reconnection is a topic of common interest in astrophysics, space science, and magnetic fusion research. The tearing mode formation process after sawtooth crashes implies the existence of this type of magnetic reconnection and is investigated in great detail in the ASDEX Upgrade tokamak. The sawtooth crash provides a fast relaxation of the core plasma temperature and can trigger a tearing mode at a neighbouring resonant surface. It is demonstrated for the first time that the sawtooth crash leads to a dominantly ideal kink mode formation at the resonant surface immediately after the sawtooth crash. Local measurements show that this kink mode transforms into a tearing mode on a much longer timescale (10{sup −3}s−10{sup −2}s) than the sawtooth crash itself (10{sup −4}s). The ideal kink mode formed after the sawtooth crash provides the driving force for magnetic reconnection and its amplitude is one of the critical parameters for the length of the transition phase from a ideal into an resistive mode. Nonlinear two fluid MHD simulations confirm these observations.

  14. Efficient multi-mode to single-mode conversion in a 61 port photonic lantern

    Science.gov (United States)

    Noordegraaf, D.; Skovgaard, P. M. W.; Maack, M. D.; Bland-Hawthorn, J.; Haynes, R.; Lægsgaard, J.

    2010-02-01

    We demonstrate the fabrication of a multi-mode (MM) to 61 port single-mode (SM) splitter or "Photonic Lantern". Low port count Photonic Lanterns were first described by Leon-Saval et al. (2005). These are based on a photonic crystal fiber type design, with air-holes defining the multi-mode fiber (MMF) cladding. Our fabricated Photonic Lanterns are solid all-glass versions, with the MMF defined by a low-index tube surrounding the single-mode fibers (SMFs). We show experimentally that these devices can be used to achieve efficient and reversible coupling between a MMF and 61 SMFs, when perfectly matched launch conditions into the MMF are ensured. The total coupling loss from a 100 μm core diameter MM section to the ensemble of 61 SMFs and back to another 100 μm core MM section is measured to be as low as 0.76 dB. This demonstrates the feasibility of using the Photonic Lanterns within the field of astrophotonics for coupling MM star-light to an ensemble of SM fibers in order to perform fiber Bragg grating based spectral filtering.

  15. Resonant Acceleration of Magnetospheric Electrons Driven by the R-X Mode

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; ZHENG Hui-Nan; WANG Shui

    2005-01-01

    @@ An extended relativistic model is developed to evaluate the superluminous R-X-mode resonance especially the second-order and third-order resonances with electrons in the Earth's magnetosphere. The potential for stochastic electron acceleration driven by the R-X mode is determined by the dispersive properties of the R-X mode and specifically the resonant harmonic N. In contrast to the limited acceleration at the first harmonic (N = 1)resonance, for the higher harmonic (N > 1) resonances, the R-X mode is capable of accelerating electrons from ~10keV to ~ MeV energies, over a wide range of wave normal angles, in spatial regions extending from the auroral cavity to the latitude (>30°) outer radiation belt. This indicates that higher-order resonance is essentially important for the electron acceleration for the oblique wave propagation.

  16. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes

    Energy Technology Data Exchange (ETDEWEB)

    Fountaine, Katherine T., E-mail: kfountai@caltech.edu [Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Whitney, William S. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Physics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Atwater, Harry A. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Applied Physics and Materials Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States)

    2014-10-21

    We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.

  17. A review: aluminum nitride MEMS contour-mode resonator

    Science.gov (United States)

    Yunhong, Hou; Meng, Zhang; Guowei, Han; Chaowei, Si; Yongmei, Zhao; Jin, Ning

    2016-10-01

    Over the past several decades, the technology of micro-electromechanical system (MEMS) has advanced. A clear need of miniaturization and integration of electronics components has had new solutions for the next generation of wireless communications. The aluminum nitride (AlN) MEMS contour-mode resonator (CMR) has emerged and become promising and competitive due to the advantages of the small size, high quality factor and frequency, low resistance, compatibility with integrated circuit (IC) technology, and the ability of integrating multi-frequency devices on a single chip. In this article, a comprehensive review of AlN MEMS CMR technology will be presented, including its basic working principle, main structures, fabrication processes, and methods of performance optimization. Among these, the deposition and etching process of the AlN film will be specially emphasized and recent advances in various performance optimization methods of the CMR will be given through specific examples which are mainly focused on temperature compensation and reducing anchor losses. This review will conclude with an assessment of the challenges and future trends of the CMR. Project supported by National Natural Science Foundation (Nos. 61274001, 61234007, 61504130), the Nurturing and Development Special Projects of Beijing Science and Technology Innovation Base's Financial Support (No. Z131103002813070), and the National Defense Science and Technology Innovation Fund of CAS (No. CXJJ-14-M32).

  18. Resonant magnetic perturbation effect on tearing mode dynamics

    Science.gov (United States)

    Frassinetti, L.; Olofsson, K. E. J.; Brunsell, P. R.; Drake, J. R.

    2010-03-01

    The effect of a resonant magnetic perturbation (RMP) on the tearing mode (TM) dynamics is experimentally studied in the EXTRAP T2R device. EXTRAP T2R is equipped with a set of sensor coils and active coils connected by a digital controller allowing a feedback control of the magnetic instabilities. The recently upgraded feedback algorithm allows the suppression of all the error field harmonics but keeping a selected harmonic to the desired amplitude, therefore opening the possibility of a clear study of the RMP effect on the corresponding TM. The paper shows that the RMP produces two typical effects: (1) a weak oscillation in the TM amplitude and a modulation in the TM velocity or (2) a strong modulation in the TM amplitude and phase jumps. Moreover, the locking mechanism of a TM to a RMP is studied in detail. It is shown that before the locking, the TM dynamics is characterized by velocity modulation followed by phase jumps. Experimental results are reasonably explained by simulations obtained with a model.

  19. Protein-based flexible whispering gallery mode resonators

    Science.gov (United States)

    Yilmaz, Huzeyfe; Pena-Francesch, Abdon; Xu, Linhua; Shreiner, Robert; Jung, Huihun; Huang, Steven H.; Özdemir, Sahin K.; Demirel, Melik C.; Yang, Lan

    2016-02-01

    The idea of creating photonics tools for sensing, imaging and material characterization has long been pursued and many achievements have been made. Approaching the level of solutions provided by nature however is hindered by routine choice of materials. To this end recent years have witnessed a great effort to engineer mechanically flexible photonic devices using polymer substrates. On the other hand, biodegradability and biocompatibility still remains to be incorporated. Hence biomimetics holds the key to overcome the limitations of traditional materials in photonics design. Natural proteins such as sucker ring teeth (SRT) and silk for instance have remarkable mechanical and optical properties that exceed the endeavors of most synthetic and natural polymers. Here we demonstrate for the first time, toroidal whispering gallery mode resonators (WGMR) fabricated entirely from protein structures such as SRT of Loligo vulgaris (European squid) and silk from Bombyx mori. We provide here complete optical and material characterization of proteinaceous WGMRs, revealing high quality factors in microscale and enhancement of Raman signatures by a microcavity. We also present a most simple application of a WGMR as a natural protein add-drop filter, made of SRT protein. Our work shows that with protein-based materials, optical, mechanical and thermal properties can be devised at the molecular level and it lays the groundwork for future eco-friendly, flexible photonics device design.

  20. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode

    Institute of Scientific and Technical Information of China (English)

    Li Peng; Zhao Qijun; Zhu Qiuxian

    2015-01-01

    In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conver-sion mode, a virtual blade model (VBM) and an real blade model (RBM) are established respec-tively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM) is established to search corresponding donor elements in the present moving-embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD) model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum–Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are val-idated by comparing the calculated results with available experimental data. Then, unsteady aero-dynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15?, 30?, 60?) and a whole conversion mode which converses from 0? to 90?, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these investigation

  1. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode

    Directory of Open Access Journals (Sweden)

    Li Peng

    2015-12-01

    Full Text Available In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode, a virtual blade model (VBM and an real blade model (RBM are established respectively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM is established to search corresponding donor elements in the present moving-embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum–Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are validated by comparing the calculated results with available experimental data. Then, unsteady aerodynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60° and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these

  2. Demonstration of whispering-gallery-mode resonant enhancement of optical forces

    CERN Document Server

    Li, Yangcheng; Limberopoulos, Nicholaos I; Astratov, Vasily N

    2015-01-01

    We experimentally studied whispering-gallery modes(WGMs) and demonstrated resonance enhancement of optical forces evanescently exerted on dielectric microspheres. We showed that the resonant light pressure can be used for optical sorting of microparticles with extraordinary uniform resonant properties that is unachievable by conventional sorting techniques.

  3. Brillouin Lasing with a CaF_2 Whispering Gallery Mode Resonator

    CERN Document Server

    Grudinin, Ivan S; Maleki, Lute

    2008-01-01

    Stimulated Brillouin scattering with both pump and Stokes beams in resonance with whispering gallery modes of an ultra high Q CaF_2 resonator is demonstrated for the first time. The resonator is pumped with 1064 nm light and has a Brillouin lasing threshold of 3.5 microwatt. Potential applications include optical generation of microwaves and sensitive gyros.

  4. Modifying Resonance Modes of Dissipative Structures using Magnitude and Phase Information

    NARCIS (Netherlands)

    Peters, H.J.; Tiso, P.; Goosen, J.F.L.; Van Keulen, A.

    2014-01-01

    Several Flapping Wing Micro Air Vehicle (FWMAV) designs exploit structural resonance to decrease power consumption. Practical use of most resonating structures requires temporary modifications to the resonance mode (i.e., the eigensolution). This paper presents a systematic design approach to modify

  5. On the fundamental mode of the optical resonator with toroidal mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Serednyakov, S.S.; Vinokurov, N.A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1995-12-31

    The fundamental mode of the optical resonator with the toroidal mirrors is investigated. The losses in such resonator with the on-axis holes are low in compare with the case of spherical mirrors. The use of this type of optical resonator is briefly discussed.

  6. Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions

    DEFF Research Database (Denmark)

    Schunk, G.; Vogl, U.; Sedlmeir, F.

    2016-01-01

    Quantum repeaters rely on interfacing flying qubits with quantum memories. The most common implementations include a narrowband single photon matched in bandwidth and central frequency to an atomic system. Previously, we demonstrated the compatibility of our versatile source of heralded single...... photons, which is based on parametric down-conversion in a triply resonant whispering-gallery mode resonator, with alkaline transitions [Schunk et al., Optica 2015, 2, 773]. In this paper, we analyse our source in terms of phase matching, available wavelength-tuning mechanisms and applications...... to narrowband atomic systems. We resonantly address the D1 transitions of caesium and rubidium with this optical parametric oscillator pumped above its oscillation threshold. Below threshold, the efficient coupling of single photons to atomic transitions heralded by single telecom-band photons is demonstrated...

  7. Linewidth broadening and emission saturation of a resonantly excited quantum dot monitored via an off-resonant cavity mode

    DEFF Research Database (Denmark)

    Ulhaq, A.; Ates, Serkan; Weiler, S.;

    2010-01-01

    We report on the robustness of a detuned mode channel for reading out the relevant s-shell properties of a resonantly excited coupled quantum dot (QD) in a pillar microcavity. The line broadening of the QD s-shell is “monitored” by the mode signal with high conformity to the directly measured QD ...

  8. Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves.

    Science.gov (United States)

    Fan, Ying; Honarvar, Farhang; Sinclair, Anthony N; Jafari, Mohammad-Reza

    2003-01-01

    When an immersed solid elastic cylinder is insonified by an obliquely incident plane acoustic wave, some of the resonance modes of the cylinder are excited. These modes are directly related to the incidence angle of the insonifying wave. In this paper, the circumferential resonance modes of such immersed elastic cylinders are studied over a large range of incidence angles and frequencies and physical explanations are presented for singular features of the frequency-incidence angle plots. These features include the pairing of one axially guided mode with each transverse whispering gallery mode, the appearance of an anomalous pseudo-Rayleigh in the cylinder at incidence angles greater than the Rayleigh angle, and distortional effects of the longitudinal whispering gallery modes on the entire resonance spectrum of the cylinder. The physical explanations are derived from Resonance Scattering Theory (RST), which is employed to determine the interior displacement field of the cylinder and its dependence on insonification angle.

  9. Leaky Modes of Waveguides as a Classical Optics Analogy of Quantum Resonances

    Directory of Open Access Journals (Sweden)

    Sara Cruz y Cruz

    2015-01-01

    Full Text Available A classical optics waveguide structure is proposed to simulate resonances of short range one-dimensional potentials in quantum mechanics. The analogy is based on the well-known resemblance between the guided and radiation modes of a waveguide with the bound and scattering states of a quantum well. As resonances are scattering states that spend some time in the zone of influence of the scatterer, we associate them with the leaky modes of a waveguide, the latter characterized by suffering attenuation in the direction of propagation but increasing exponentially in the transverse directions. The resemblance is complete because resonances (leaky modes can be interpreted as bound states (guided modes with definite lifetime (longitudinal shift. As an immediate application we calculate the leaky modes (resonances associated with a dielectric homogeneous slab (square well potential and show that these modes are attenuated as they propagate.

  10. Higher order mode of a microstripline fed cylindrical dielectric resonator antenna

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. V. Praveen, E-mail: praveen.kumar@pilani.bits-pilani.ac.in [Department of Electrical and Electronics Engineering, BITS Pilani, Pilani, Rajasthan-333 031 (India)

    2016-03-09

    A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.

  11. Efficient conversion of surface-plasmon-like modes to spatial radiated modes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun Jun; Zhang, Hao Chi; Zhang, Qian; Cui, Tie Jun, E-mail: tjcui@seu.edu.cn [State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096 (China)

    2015-01-12

    We propose a spoof surface plasmon polariton (SPP) emitter which is composed of ultrathin corrugated metallic strips, exhibiting the directional radiation property. The spoof SPP emitter provides a way to quickly convert the SPP mode to a radiated mode. By controlling phase modulations produced by the phase-gradient metasurface on the ultrathin metallic strips, we demonstrate theoretically and experimentally that spoof SPP waves are converted into spatial propagating waves with high efficiency, which are further radiated with flexible beam steering. The proposed method sets up a link between SPP waves and radiation waves in a highly controllable way, which would possibly open an avenue in designing new kinds of microwave and optical elements in engineering.

  12. Theory of light-induced resonances with collective Higgs and Leggett modes in multiband superconductors

    Science.gov (United States)

    Murotani, Yuta; Tsuji, Naoto; Aoki, Hideo

    2017-03-01

    We theoretically investigate coherent optical excitations of collective modes in two-band BCS superconductors, which accommodate two Higgs modes and one Leggett mode corresponding, respectively, to the amplitude and relative-phase oscillations of the superconducting order parameters associated with the two bands. We find, based on a mean-field analysis, that each collective mode can be resonantly excited through a nonlinear light-matter coupling when the doubled frequency of the driving field coincides with the frequency of the corresponding mode. Among the two Higgs modes, the higher-energy one exhibits a sharp resonance with light, while the lower-energy mode has a broadened resonance width. The Leggett mode is found to be resonantly induced by a homogeneous ac electric field because the leading nonlinear effect generates a potential offset between the two bands that couples to the relative phase of the order parameters. The resonance for the Leggett mode becomes sharper with increasing temperature. All of these light-induced collective modes along with density fluctuations contribute to the third-harmonic generation. We also predict an experimental possibility of optical detection of the Leggett mode.

  13. Modelling resonant field amplification due to low-n peeling modes in JET

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yueqiang; Saarelma, S; Gryaznevich, M P; Hender, T C; Howell, D F, E-mail: yueqiang.liu@ukaea.org.u [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2010-04-15

    The MHD code MARS-F is used to model low-n, low-frequency, large-amplitude resonant field amplification peaks observed in JET low-pressure plasmas. The resonant response of a marginally stable, n = 1 ideal peeling mode is offered as a candidate to explain the experimental observation. It is found that, unlike the response of a stable resistive wall mode, the peeling mode response is not sensitive to the plasma rotation, nor to the kinetic effects.

  14. Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides

    DEFF Research Database (Denmark)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.;

    2013-01-01

    in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process...... in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion....

  15. Nonlinear resonances of three modes in a high-T{sub c} superconducting magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Masahiko, E-mail: galian@z2.keio.jp; Sakaguchi, Ryunosuke; Sugiura, Toshihiko, E-mail: sugiura@mach.keio.ac.jp

    2013-11-15

    Highlights: •We studied two nonlinear vibrations of a levitated beam supported by superconductors. •One of the vibrations is combination resonance of the 1st mode and the 3rd mode. •The other vibration is autoparametric resonance of the 2nd mode. •When the amplitude of the 2nd mode is small, the combination resonance is suppressed. •Otherwise, the two resonances can be resonated simultaneously. -- Abstract: In a high-T{sub c} superconducting magnetic levitation system, an object can levitate without control and contact. So it is expected to be applied to magnetically levitated transportation. To use it safely, lightening the levitated object is necessary. But this reduces the bending stiffness of the object. Besides, the system has nonlinearity. Therefore nonlinear elastic vibration can occur. This study focused on how plural nonlinear elastic vibrations of the 1st, 2nd and 3rd modes simultaneously occur. Our numerical calculation and experiment found out that the three modes simultaneously resonate when the amplitude of the 2nd mode is large enough whereas only the 2nd mode resonates when it is small.

  16. A dual-mode microwave resonator for double electron-electron spin resonance spectroscopy at W-band microwave frequencies

    Science.gov (United States)

    Tkach, Igor; Sicoli, Giuseppe; Höbartner, Claudia; Bennati, Marina

    2011-04-01

    We present a dual-mode resonator operating at/near 94 GHz (W-band) microwave frequencies and supporting two microwave modes with the same field polarization at the sample position. Numerical analysis shows that the frequencies of both modes as well as their frequency separation can be tuned in a broad range up to GHz. The resonator was constructed to perform pulsed ELDOR experiments with a variable separation of "pump" and "detection" frequencies up to Δ ν = 350 MHz. To examine its performance, test ESE/PELDOR experiments were performed on a representative biradical system.

  17. Ultrafast, low-power, all-optical switching via birefringent phase-matched transverse mode conversion in integrated waveguides

    CERN Document Server

    Hellwig, Tim; Schnack, Martin; Boller, Klaus -J; Fallnich, Carsten

    2015-01-01

    We demonstrate the potential of birefringence-based, all-optical, ultrafast conversion between the transverse modes in integrated optical waveguides by modelling the conversion process by numerically solving the multi-mode coupled nonlinear Schroedinger equations. The observed conversion is induced by a control beam and due to the Kerr effect, resulting in a transient index grating which coherently scatters probe light from one transverse waveguide mode into another. We introduce birefringent phase matching to enable efficient all-optically induced mode conversion at different wavelengths of the control and probe beam. It is shown that tailoring the waveguide geometry can be exploited to explicitly minimize intermodal group delay as well as to maximize the nonlinear coefficient, under the constraint of a phase matching condition. The waveguide geometries investigated here, allow for mode conversion with over two orders of magnitude reduced control pulse energy compared to previous schemes and thereby promise ...

  18. Efficient multi-mode to single-mode conversion in a 61 port photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M. W.; Dybendahl Maack, Martin

    2010-01-01

    (MMF) cladding. Our fabricated Photonic Lanterns are solid all-glass versions, with the MMF defined by a low-index tube surrounding the single-mode fibers (SMFs). We show experimentally that these devices can be used to achieve efficient and reversible coupling between a MMF and 61 SMFs, when perfectly...... matched launch conditions into the MMF are ensured. The total coupling loss from a 100 µm core diameter MM section to the ensemble of 61 SMFs and back to another 100 µm core MM section is measured to be as low as 0.76 dB. This demonstrates the feasibility of using the Photonic Lanterns within the field...

  19. Efficient multi-mode to single-mode conversion in a 61 port photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M. W.; Dybendahl Maack, Martin

    2010-01-01

    (MMF) cladding. Our fabricated Photonic Lanterns are solid all-glass versions, with the MMF defined by a low-index tube surrounding the single-mode fibers (SMFs). We show experimentally that these devices can be used to achieve efficient and reversible coupling between a MMF and 61 SMFs, when perfectly...... matched launch conditions into the MMF are ensured. The total coupling loss from a 100 µm core diameter MM section to the ensemble of 61 SMFs and back to another 100 µm core MM section is measured to be as low as 0.76 dB. This demonstrates the feasibility of using the Photonic Lanterns within the field...

  20. Guided-mode-resonance coupled localized surface plasmons for dually resonance enhanced Raman scattering sensing

    Science.gov (United States)

    Wang, Zheng; Liu, Chao; Li, Erwen; Chakravarty, Swapnajit; Xu, Xiaochuan; Wang, Alan X.; Fan, D. L.; Chen, Ray T.

    2017-02-01

    Raman scattering spectroscopy is a unique tool to probe vibrational, rotational, and other low-frequency modes of a molecular system and therefore could be utilized to identify chemistry and quantity of molecules. However, the ultralow efficient Raman scattering, which is only 1/109 1/1014 of the excitation light due to the small Raman scattering cross-sections of molecules, have significantly hindered its development in practical sensing applications. The discovery of surface-enhanced Raman scattering (SERS) in the 1970s and the significant progress in nanofabrication technique, provide a promising solution to overcome the inherent issues of Raman spectroscopy. It is found that In the vicinity of nanoparticles and their junctions, the Raman signals of molecules can be significantly improved by an enhancement factor as high as 1010, due to the ultrahigh electric field generated by the localized surface plasmons resonance (LSPR), where the intensity of Raman scattering is proportional to the |E|4. In this work, we propose and demonstrate a new approach combining LSPR from nanocapsules with densely assembled silver nanoparticles (NC-AgNPs) and guidemode- resonance (GMR) from dielectric photonic crystal slabs (PCSs) for SERS substrates with robustly high performance.

  1. Ferromagnetic resonance and resonance modes in kagome lattices: From an open to a closed kagome structure

    Science.gov (United States)

    Dubowik, J.; Kuświk, P.; Matczak, M.; Bednarski, W.; Stobiecki, F.; Aleshkevych, P.; Szymczak, H.; Kisielewski, M.; Kisielewski, J.

    2016-06-01

    We present ferromagnetic resonance (FMR) investigations of 20 nm thick permalloy (Ni80Fe20 ) elements (width W =200 nm, length L =470 nm, period a =500 nm) arranged in open and closed artificial kagome lattices. The measurements were done at 9.4 and 34 GHz to ensure a saturated or near-saturated magnetic state of the kagome structures. The FMR data are analyzed in the framework of an analytical macrospin model which grasps the essential features of the bulk and edge modes at these microwave frequencies and is in agreement with the results of micromagnetic simulations. Polar plots of the resonance fields versus the field angle made by the direction of the magnetic field with respect to the main symmetry directions of the kagome lattice are compared with the results of the analytical model. The measured FMR spectra with a sixfold rotational symmetry qualitatively reproduce the structure expected from the theory. Magnetic dipolar interactions between the elements of the kagome lattices result in the mixing of edge and bulklike excitations at 9.4 GHz and in a systematic deviation from the model, especially for the closed kagome lattice.

  2. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-07-19

    Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

  3. Flexible Mode Control of Grid Connected Wind Energy Conversion System Using Wavelet

    Directory of Open Access Journals (Sweden)

    Bhavna Jain

    2015-01-01

    Full Text Available Small wind turbine systems offer services to critical loads during grid faults and also connected back to grid in normal condition. The connection of a wind energy conversion system to the grid requires a robust phase locked loop (PLL and continuous monitoring of the grid conditions such as overvoltage, undervoltage, overfrequency, underfrequency, and grid outages. This paper describes a flexible control operation to operate a small wind turbine in both stand-alone mode via planned islanding and grid connected mode as well. In particular, a proper monitoring and control algorithm is required for transition between the modes. A wavelet based energy function is used for detection of grid disturbances as well as recovery of grid so that transition between the modes is made. To obtain good power quality LCL filter is used to reduce ripples. PLL is used for synchronization whenever mode changes from stand-alone to grid connected. Simulation results from a 10 kW wind energy conversion system are included to show the usefulness of the proposed methods. The control method is tested by generated gate pulses for single phase bridge inverter using field programmable gate array (FPGA.

  4. Efficient mode conversion in an optical nanoantenna mediated by quantum emitters

    CERN Document Server

    Straubel, Jakob; Rockstuhl, Carsten; Slowik, Karolina

    2016-01-01

    Converting signals between different electromagnetic modes is an asset for future information technologies. In general, slightly asymmetric optical nanoantennas enable the coupling between bright and dark modes sustained by an optical nanoantenna. However, the conversion efficiency might be very low. Here, we show that the additional incorporation of a quantum emitter allows to tremendously enhance this efficiency. The enhanced local density of states cycles the quantum emitter between its upper and lower level at an extremely hight rate; hence converting the energy very efficient. The process is robust with respect to possible experimental tolerances and adds a new ingredient to be exploited while studying and applying coupling phenomena in optical nanosystems.

  5. A novel vibration mode testing method for cylindrical resonators based on microphones.

    Science.gov (United States)

    Zhang, Yongmeng; Wu, Yulie; Wu, Xuezhong; Xi, Xiang; Wang, Jianqiu

    2015-01-16

    Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  6. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    Directory of Open Access Journals (Sweden)

    Yongmeng Zhang

    2015-01-01

    Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  7. Propagation and linear mode conversion of magnetosonic and electromagnetic ion cyclotron waves in the radiation belts

    Science.gov (United States)

    Horne, Richard B.; Miyoshi, Yoshizumi

    2016-10-01

    Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called crossover frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the crossover frequency, magnetosonic waves could be a source of hydrogen band waves but not helium band waves.

  8. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Shen; Zhang, Yaxin, E-mail: Zhangyaxin@uestc.edu.cn; Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang [Terahertz Science Cooperative Innovation Center, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liang, Shixiong [National Key Laboratory of Application Specific Integrated Circuit, Hebei Semiconductor Research Institute, Shijiazhuang 050051 (China)

    2015-11-21

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices.

  9. On spurious resonant modes in the MOT solution of time domain EFIE

    KAUST Repository

    Shi, Yifei

    2013-07-01

    Theoretically, internal resonant modes should not be induced in the marching-on-in-time (MOT) solution of the time domain electric field integral equation since zero initial conditions are enforced at the beginning of time marching and the internal resonant modes do not satisfy these initial conditions. However, these spurious modes are always observed in the MOT solution. It has been conjectured in the past that numerical errors might establish the necessary initial conditions and allow the incident field to induce the internal resonant modes. Systematic numerical experiments carried out in this work prove this conjecture by demonstrating that the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors and the spectrum of the incident field. © 2013 IEEE.

  10. Onset and Saturation of a Non-resonant Internal Mode in NSTX and Implications For AT Modes in ITER

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Breslau, M.S. Chance, J. Chen, G.Y. Fu, S,. Gerhardt, N. Gorelenkov, S.C. Jardin and J. Manickam

    2011-08-01

    Motivated by experimental observations of apparently triggerless tearing modes, we have performed linear and nonlinear MHD analysis showing that a non-resonant mode with toroidal mode number n = 1 can develop in the National Spherical Torus eXperiment (NSTX) at moderate normalized βN when the shear is low and the central safety factor q0 is close to but greater than one. This mode, which is related to previously identified ‘infernal’ modes, will saturate and persist, and can develop poloidal mode number m = 2 magnetic islands in agreement with experiments. We have also extended this analysis by performing a free-boundary transport simulation of an entire discharge and showing that, with reasonable assumptions, we can predict the time of mode onset. __________________________________________________

  11. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes.

    Science.gov (United States)

    Uebel, Patrick; Günendi, Mehmet C; Frosz, Michael H; Ahmed, Goran; Edavalath, Nitin N; Ménard, Jean-Michel; Russell, Philip St J

    2016-05-01

    We report a hollow-core photonic crystal fiber that is engineered so as to strongly suppress higher-order modes, i.e., to provide robust LP01 single-mode guidance in all the wavelength ranges where the fiber guides with low loss. Encircling the core is a single ring of nontouching glass elements whose modes are tailored to ensure resonant phase-matched coupling to higher-order core modes. We show that the resulting modal filtering effect depends on only one dimensionless shape parameter, akin to the well-known d/Λ parameter for endlessly single-mode solid-core PCF. Fabricated fibers show higher-order mode losses some ∼100 higher than for the LP01 mode, with LP01 losses 110  THz bandwidth.

  12. EXAMINING A SERIES RESONANT INVERTER CIRCUIT TO USE IN THE PHOTOVOLTAIC ENERGY CONVERSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Engin ÇETİN

    2004-03-01

    Full Text Available As we know, solar energy is the energy source which is environment friendly, renewable, and can be found easily. Particularly, in the recent years, interest on producing electrical energy by alternative energy sources increased because of the fact that underground sources are not enough to produce energy in the future and also these sources cause enviromental pollution. The solar energy is one of the most popular one among the alternative energy sources. Photovoltaic systems produce the electrical energy from the sunlight. In this study, a series resonant inverter circuit which is used in the photovoltaic energy conversion systems has been examined.Effects of the series resonant inverter circuit on the photovoltaic energy conversion system have been investigated and examined

  13. Nonlinear resonance converse magnetoelectric effect modulated by voltage for the symmetrical magnetoelectric laminates under magnetic and thermal loadings

    Science.gov (United States)

    Zhou, Hao-Miao; Liu, Hui; Zhou, Yun; Hu, Wen-Wen

    2016-12-01

    Based on the tri-layer symmetrical magnetoelectric laminates, a equivalent circuit for the nonlinear resonance converse magnetoelectric coupling effect is established. Because the nonlinear thermo-magneto-mechanical constitutive equations of magnetostrictive material were introduced, a converse magnetoelectric coefficient model was derived from the equivalent circuit, which can describe the influence of bias electric field, bias magnetic field and ambient temperature on the resonance converse magnetoelectric coupling effect. Especially, the model can well predict the modulation effect of bias electric field/voltage on the magnetism of magnetoelectric composite or the converse magnetoelectric coefficient, which is absolutely vital in applications. Both of the converse magnetoelectric coefficient and the resonance frequency predicted by the model have good agreements with the existing experimental results in qualitatively and quantitatively, and the validity of the model is confirmed. On this basis, according to the model, the nonlinear trends of the resonance converse magnetoelectric effect under different bias voltages, bias magnetic fields and ambient temperatures are predicted. From the results, it can be found that the bias voltage can effectively modulate the curve of the resonance converse magnetoelectric coefficient versus bias magnetic field, and then change the corresponding optimal bias magnetic field of the maximum converse magnetoelectric coefficient; with the increasing volume ratio of piezoelectric layers, the modulation effect of bias voltage becomes more obvious; under different bias magnetic fields, the modulation effect of bias voltage on the converse magnetoelectric effect has nonvolatility in a wide temperature region.

  14. The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in two types of asymmetric dimer

    Science.gov (United States)

    Li, Quanshui; Hu, Jianling; Wang, Ziya; Wang, Fengping; Bao, Yongjun

    2014-07-01

    The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in asymmetric dimers are illustrated by two types of configuration, one formed by a gold nanoparticle and a TiO2-Ag core-shell nanoparticle and the other formed by two TiO2-Ag core-shell nanoparticles with suitable sizes. The redshift and blueshift behaviours of the coupled bonding modes with decreasing gap are found under longitudinal and transverse polarization of light for these dimers in the resonant situation, respectively. Under the near-resonant situation, the redshift behaviours of the coupled bonding modes still remain under longitudinal polarization, whereas the two separated modes of monomers after coupling under transverse polarization exhibit no obvious peak-shift behaviours, and the one on the lower frequency side shows an apparent attenuation in the strength. Under the off-resonant situation, the redshift behaviours not only occur in the coupled modes under longitudinal polarization, but also occur in two separated modes under transverse polarization.

  15. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mamone, Salvatore, E-mail: s.mamone@soton.ac.uk; Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Denning, Mark; Carravetta, Marina; Whitby, Richard J.; Levitt, Malcolm H., E-mail: mhl@soton.ac.uk [School of Chemistry, University of Southampton, Southampton SO17 1BJ (United Kingdom); Lei, Xuegong; Li, Yongjun [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Goh, Kelvin; Horsewill, Anthony J. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-05-21

    The water-endofullerene H{sub 2}O@C{sub 60} provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H{sub 2}O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H{sub 2}O molecules is catalysed by {sup 13}C nuclei present in the cages.

  16. Trophic mode conversion and nitrogen deprivation of microalgae for high ammonium removal from synthetic wastewater.

    Science.gov (United States)

    Wang, Jinghan; Zhou, Wenguang; Yang, Haizhen; Wang, Feng; Ruan, Roger

    2015-11-01

    In this study, a well-controlled three-stage process was proposed for high ammonium removal from synthetic wastewater using selected promising microalgal strain UMN266. Three trophic modes (photoautotrophy, heterotrophy, and mixotrophy), two N sufficiency conditions (N sufficient and N deprived), two inoculum modes (photoautotrophic and heterotrophic), and different NH4(+)-N concentrations were compared to investigate the effect of trophic mode conversion and N deprivation on high NH4(+)-N removal by UMN266. Results showed that photoautotrophic inoculum with trophic mode conversion from heterotrophy to photoautotrophy and N deprivation in Stage 2 turned was the optimum plan for NH4(+)-N removal, and average removal rates were 12.4 and 19.1mg/L/d with initial NH4(+)-N of 80 and 160mg/L in Stage 3. Mechanism investigations based on algal biomass carbon (C) and N content, cellular composition, and starch content confirmed the above optimum plan and potential of UMN266 as bioethanol feedstock.

  17. Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks

    DEFF Research Database (Denmark)

    Wright, J.C.; Bonoli, P.T.; Brambilla, M.;

    2004-01-01

    Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k(perpendi......Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first......)] to gain new understanding into the nature of FWMC in tokamaks. The massively-parallel-processor version of TORIC is also now capable of running with sufficient resolution to model planned lower hybrid range of frequencies experiments in the Alcator C-Mod. (C) 2004 American Institute of Physics....

  18. Detection of coatings within liquid-filled tubes and containers by mode conversion of leaky Lamb waves

    Directory of Open Access Journals (Sweden)

    M. Schmitt

    2013-05-01

    Full Text Available In this paper, a new acoustic sensor principle for coating detection within liquid-filled tubes and containers based on mode conversion of leaky Lamb waves is introduced. Leaky Lamb waves are excited and detected by single-phase transducers, which are attached on the outer side of a tube or container. By transmission time and amplitude measurements, coating formation within the liquid-filled tube and container is detected non-invasively. This new sensor principle is subdivided into the separate considerations of Lamb wave excitation, mode conversion and inverse mode conversion. The Lamb wave excitation by a single-phase transducer is visualized by scanning laser Doppler vibrometer imaging. The mode conversion process of leaky Lamb waves is measured by membrane hydrophone measurements and Schlieren visualization; afterwards, the measured emission angles are compared with the theoretical one. The inverse mode conversion process of pressure waves back to leaky Lamb waves is visualized by Schlieren images. By merging the results of Lamb wave excitation, mode conversion and inverse mode conversion, the new sensor concept is explained. Theoretical considerations and measurement results of adhesive tape coating inside a liquid-filled plastic tube and a liquid-filled stainless steel container verify the new acoustic sensor principle. Finally the measuring sensitivity and the technical realization are discussed.

  19. Wireless actuation of bulk acoustic modes in micromechanical resonators

    Science.gov (United States)

    Mateen, Farrukh; Brown, Benjamin; Erramilli, Shyamsunder; Mohanty, Pritiraj

    2016-08-01

    We report wireless actuation of a Lamb wave micromechanical resonator from a distance of over 1 m with an efficiency of over 15%. Wireless actuation of conventional micromechanical resonators can have broad impact in a number of applications from wireless communication and implantable biomedical devices to distributed sensor networks.

  20. Tunable coupled-mode dispersion compensation and its application to on-chip resonant four-wave mixing

    CERN Document Server

    Gentry, Cale M; Popovic, Milos A

    2014-01-01

    We propose and demonstrate localized mode coupling as a viable dispersion engineering technique for phase-matched resonant four-wave mixing (FWM). We demonstrate a dual-cavity resonant structure that employs coupling-induced frequency splitting at one of three resonances to compensate for cavity dispersion, enabling phase-matching. Coupling strength is controlled by thermal tuning of one cavity enabling active control of the resonant frequency-matching. In a fabricated silicon microresonator, we show an 8 dB enhancement of seeded FWM efficiency over the non-compensated state. The measured four-wave mixing has a peak wavelength conversion efficiency of -37.9 dB across a free spectral range (FSR) of 3.334 THz ($\\sim$27 nm). Enabled by strong counteraction of dispersion, this FSR is, to our knowledge, the largest in silicon to demonstrate FWM to date. This form of mode-coupling-based, active dispersion compensation can be beneficial for many FWM-based devices including wavelength converters, parametric amplifier...

  1. Fuzzy sliding mode control of a doubly fed induction generator for wind energy conversion

    Directory of Open Access Journals (Sweden)

    A. Meroufel

    2013-12-01

    Full Text Available In this paper we present a nonlinear control using fuzzy sliding mode for wind energy conversion system based on a doubly-fed induction generator (DFIG supplied by an AC-AC converter. In the first place, we carried out briefly a study of modeling on the whole system. In order to control the power flowing between the stator of the DFIG and the grid, a proposed control design uses fuzzy logic technique is applied for implementing a fuzzy hitting control law to remove completely the chattering phenomenon on a conventional sliding mode control. The use of this method provides very satisfactory performance for the DFIG control, and the chattering effect is also reduced by the fuzzy mode. The machine is tested in association with a wind turbine. Simulations results are presented and discussed for the whole system.

  2. Quantum frequency conversion and strong coupling of photonic modes using four-wave mixing in integrated microresonators

    CERN Document Server

    Vernon, Z; Sipe, J E

    2016-01-01

    Single photon-level quantum frequency conversion has recently been demonstrated using silicon nitride microring resonators. The resonance enhancement offered by such systems enables high-efficiency translation of quantum states of light across wide frequency ranges at sub-watt pump powers. Using a quantum-mechanical Hamiltonian formalism, we present a detailed theoretical analysis of the conversion dynamics in these systems, and show that they are capable of converting single- and multi-photon quantum states. Analytic formulas for the conversion efficiency, spectral conversion probability density, and pump power requirements are derived which are in good agreement with previous theoretical and experimental results. We show that with only modest improvement to the state of the art, efficiencies exceeding 95% are achievable using less than 100 mW of pump power. At the critical driving strength that yields maximum conversion efficiency, the spectral conversion probability density is shown to exhibit a flat-toppe...

  3. Design and use of guided mode resonance filters for refractive index sensing

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon

    This Ph.D. thesis is concerned with the design and use of guided mode resonance filters (GMRF) for applications in refractive index sensing. GMRFs are optical nanostructures capable of efficiently and resonantly reflecting a narrow wavelength interval of incident broad band light. They combine...... a diffractive element with a waveguiding element, and it is the coupling between diffracted light and quasi guided modes that gives rise to the resonant response. The linewidth of the resonance can be tuned by the material and geometrical configuration of the device. The resonance wavelength is highly sensitive...... to changes in refractive index that occur within the region overlapped by the quasi guided mode, and GMRFs are thus well suited for optical sensing and tunable filter applications. They produce a polarization dependent response and can be optically characterized in both reflection and transmission...

  4. Influence of spherical aberrations on fundamental mode beam quality under different laser resonators

    Institute of Scientific and Technical Information of China (English)

    Xiang Zhen; Hu Miao; Ge Jian-Hong; Zhao Zhi-Gang; Wang Sha; Liu Chong; Chen Jun

    2009-01-01

    Spherical aberrations of the thermal lens of the active media are severe when solid state lasers are strongly pumped.The fundamental mode profile deteriorates due to the aberrations. Self-consistent modes of a resonator with aberrations are calculated by using the Fox-Li diffraction iterative algorithm. Calculation results show that the aberration induced fundamental mode beam quality deterioration depends greatly on the resonator design. The tolerance of a flat-flat resonator to the aberration coefficient is about 30λ in the middle of stability, where λ is the wavelength of laser beam. But for a dynamically stable resonator, 2λ of spherical aberration will create diffraction loss of more than 40%, if inappropriate design criteria are used. A birefringence compensated laser resonator with two Nd:YAG rods is experimentally studied. The experimental data are in quite good agreement with simulation results.

  5. Exploring the distinction between experimental resonant modes and theoretical eigenmodes: From vibrating plates to laser cavities

    Science.gov (United States)

    Tuan, P. H.; Wen, C. P.; Yu, Y. T.; Liang, H. C.; Huang, K. F.; Chen, Y. F.

    2014-02-01

    Experimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate, resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity.

  6. Center mode of a doubly resonant optical periodic structure

    Science.gov (United States)

    Alagappan, G.; Png, C. E.

    2016-07-01

    An optical periodic structure with a single spatial resonance exhibits a stopband. When a second spatial resonance very close to the first one is added, the resulting doubly resonant structure exhibits a Gaussian enveloped, high quality factor transmission state right at the center of the original stopband. Using a slowly varying envelope approximation, we describe the optical characteristics of this transmission state analytically. The transmission state exists despite an optical structure of low refractive index contrast, and has potential applications in nano-optics, and photonics.

  7. Mode coupling control in a resonant device: application to solid-state ring lasers

    OpenAIRE

    Schwartz, Sylvain; Feugnet, Gilles; Bouyer, Philippe; Lariontsev, Evguenii; Aspect, Alain; Pocholle, Jean-Paul

    2006-01-01

    International audience; A theoretical and experimental investigation of the effects of mode coupling in a resonant macro- scopic quantum device is achieved in the case of a ring laser. In particular, we show both analytically and experimentally that such a device can be used as a rotation sensor provided the effects of mode coupling are controlled, for example through the use of an additional coupling. A possible general- ization of this example to the case of another resonant macroscopic qua...

  8. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-06-09

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for Ω ∝ (ωL)1/3(ωc/ω) somewhat less than 1, contrary to previous ideas. Only o mode is produced for Ω and somewhat greater than 1.5. Here ωc is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as Ω increases. (4) As Ω increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as Ω increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 – 70%. (7) The interference effect and the disappearance of the x mode at Ω somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for

  9. White-Light Whispering Gallery Mode Optical Resonator System and Method

    Science.gov (United States)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical resonator system and method that includes a whispering-gallery mode (WGM) optical resonator that is capable of resonating across a broad, continuous swath of frequencies is provided. The optical resonator of the system is shaped to support at least one whispering gallery mode and includes a top surface, a bottom surface, a side wall, and a first curved transition region extending between the side wall and the top surface. The system further includes a coupler having a coupling surface which is arranged to face the transition region of the optical resonator and in the vicinity thereof such that an evanescent field emitted from the coupler is capable of being coupled into the optical resonator through the first curved transition region

  10. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    Directory of Open Access Journals (Sweden)

    Kewei Zhang

    2015-12-01

    Full Text Available Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonance modes. For the first resonance mode, when mass loading position xc satisfied 0 < xc < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end, mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ xc ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.

  11. High-Q lattice mode matched structural resonances in terahertz metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ningning; Zhang, Weili, E-mail: weili.zhang@okstate.edu [School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078 (United States); Singh, Ranjan, E-mail: ranjans@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2016-07-11

    The quality (Q) factor of metamaterial resonances is limited by the radiative and non-radiative losses. At terahertz frequencies, the dominant loss channel is radiative in nature since the non-radiative losses are low due to high conductivity of metals. Radiative losses could be suppressed by engineering the meta-atom structure. However, such suppression usually occurs at the fundamental resonance mode which is typically a closed mode resonance such as an inductive-capacitive resonance or a Fano resonance. Here, we report an order of magnitude enhancement in Q factor of all the structural eigenresonances of a split-ring resonator fueled by the lattice mode matching. We match the fundamental order diffractive mode to each of the odd and even eigenresonances, thus leading to a tremendous line-narrowing of all the resonances. Such precise tailoring and control of the structural resonances in a metasurface lattice could have potential applications in low-loss devices, sensing, and design of high-Q metamaterial cavities.

  12. PCB Slot Based Transformers to Avoid Common-Mode Resonances in Connected Arrays of Dipoles

    NARCIS (Netherlands)

    Cavallo, D.; Neto, A.; Gerini, G.

    2010-01-01

    The scanning performances of connected arrays are degraded by the excitation of common-mode resonances that are compatible with balanced feeding lines. Here, a strategy to avoid these resonances is outlined. The strategy involves feeding the dipoles via printed circuit board (PCB) based transformers

  13. Field representation for optical defect resonances in multilayer microcavities using quasi-normal modes

    NARCIS (Netherlands)

    Maksimovic, Milan; Lohmeyer, Manfred; van Groesen, Embrecht W.C.

    2008-01-01

    Quasi-normal modes are used to characterize transmission resonances in 1D optical defect cavities and the related field approximations. We specialize to resonances inside the bandgap of the periodic multilayer mirrors that enclose the defect cavities. Using a template with the most relevant QNMs a

  14. All-optical Photonic Oscillator with High-Q Whispering Gallery Mode Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy A.; Matsko, Andrey B.; Strekalov, Dmitry; Mohageg, Makan; Iltchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We demonstrated low threshold optical photonic hyper-parametric oscillator in a high-Q 10(exp 10) CaF2 whispering gallery mode resonator which generates stable 8.5 GHz signal. The oscillations result from the resonantly enhanced four wave mixing occurring due to Kerr nonlinearity of the material.

  15. RZ-to-NRZ format conversion at 50 Gbit/s based on a silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Pu, Minhao

    2010-01-01

    We demonstrate RZ-to-NRZ format conversion at 50 Gbit/s based on silicon microring resonator with FSR of 100 GHz. Bit error rate measurements show a low power penalty compared to electrical NRZ signal for error free operation.......We demonstrate RZ-to-NRZ format conversion at 50 Gbit/s based on silicon microring resonator with FSR of 100 GHz. Bit error rate measurements show a low power penalty compared to electrical NRZ signal for error free operation....

  16. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    Science.gov (United States)

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-10-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions.

  17. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    Science.gov (United States)

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-01-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions. PMID:27698443

  18. Classical-quantum correspondence in bosonic two-mode conversion systems: Polynomial algebras and Kummer shapes

    Science.gov (United States)

    Graefe, Eva-Maria; Korsch, Hans Jürgen; Rush, Alexander

    2016-04-01

    Bosonic quantum conversion systems can be modeled by many-particle single-mode Hamiltonians describing a conversion of m molecules of type A into n molecules of type B and vice versa. These Hamiltonians are analyzed in terms of generators of a polynomially deformed su(2) algebra. In the mean-field limit of large particle numbers, these systems become classical and their Hamiltonian dynamics can again be described by polynomial deformations of a Lie algebra, where quantum commutators are replaced by Poisson brackets. The Casimir operator restricts the motion to Kummer shapes, deformed Bloch spheres with cusp singularities depending on m and n . It is demonstrated that the many-particle eigenvalues can be recovered from the mean-field dynamics using a WKB-type quantization condition. The many-particle state densities can be semiclassically approximated by the time periods of periodic orbits, which show characteristic steps and singularities related to the fixed points, whose bifurcation properties are analyzed.

  19. Explaining Inverted Temperature Loops in the Quiet Solar Corona with Magnetohydrodynamic Wave Mode Conversion

    CERN Document Server

    Schiff, Avery J

    2016-01-01

    Coronal loops trace out bipolar, arch-like magnetic fields above the Sun's surface. Recent measurements that combine rotational tomography, extreme ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted temperature profiles; i.e., loops for which the apex temperature is a local minimum, not a maximum. These "down loops" appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale "up loops" by modeling coronal heating as a time-steady superposition of: (1) dissipation of incompressible Alfven-wave turbulence, and (2) dissipation of compressive waves formed by mode conversion from the initial population of Alfven waves. We found that when a large percentage (> 99%) of the Alfven waves undergo this conversion, heating is greatly concentrated at the footpoints and stable "down loops" are created. In some cases we found loops with three maxima that are also gravitationally stable. Models th...

  20. Can Internal Conversion BE Controlled by Mode-Specific Vibrational Excitation in Polyatomic Molecules

    Science.gov (United States)

    Portnov, Alexander; Epshtein, Michael; Bar, Ilana

    2017-06-01

    Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.

  1. Design of low-cost resonant mode sensors

    Science.gov (United States)

    Kazinczi, Robert; Turmezei, P.; Mollinger, Jeff R.; Bossche, Andre

    2001-11-01

    This study introduces a novel design for low-cost MEMS devices, which exploit the benefits of resonant operation and maintain stable performance. Resonant devices provide high sensitivity and convenient signal processing. The drawback of the method is the sensitivity to undesired environmental effects and aging. The environment induced degradation processes and the long-term stability of thin film resonators were investigated previously. The two major reliability problems were stiffening effect and degrading shock response, both affecting the mechanical resonance frequency. Based on these results, new, low-cost pressure sensors and accelerometers were designed and fabricated. The structures are based on locally reinforced silicon nitride membranes, and double-clamped 3-D silicon nitride bridges as sensing elements. This double mechanical structure allows separate optimization of the membrane and the bridges for the workload and for the most efficient driving and sensing. The 3-D bridges work as mechanical amplifiers, resulting in higher detection efficiency. The reliability tests indicated, that a low-cost atmospheric packaging is efficient, thus the bridges do not require vacuum encapsulation with multiple-wafer process. External mechanical and thermal excitation combined with piezoresistive and optical detection methods are implemented in the different sensors. Differential detection using reference resonators allow compensation for thermal, environment- and aging-induced stresses.

  2. Interactions between directly- and parametrically-driven vibration modes in a micromechanical resonator

    NARCIS (Netherlands)

    Westra, H.J.R.; Karabacak, D.M.; Brongersma, S.H.; Crego-Calama, M.; Van der Zant, H.S.J.; Venstra, W.J.

    2011-01-01

    The interactions between parametrically- and directly-driven vibration modes of a clamped-clamped beam resonator are studied. An integrated piezoelectric transducer is used for direct and parametric excitation. First, the parametric amplification and oscillation of a single mode are analyzed by the

  3. Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators

    CERN Document Server

    Kristensen, Philip Trøst; Hughes, Stephen

    2015-01-01

    We discuss three formally different formulas for normalization of quasinormal modes currently in use for modeling optical cavities and plasmonic resonators and show that they are complementary and provide the same result. Regardless of the formula used for normalization, one can use the norm to define an effective mode volume for use in Purcell factor calculations.

  4. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive rea...

  5. Interactions between directly- and parametrically-driven vibration modes in a micromechanical resonator

    NARCIS (Netherlands)

    Westra, H.J.R.; Karabacak, D.M.; Brongersma, S.H.; Crego-Calama, M.; Van der Zant, H.S.J.; Venstra, W.J.

    2011-01-01

    The interactions between parametrically- and directly-driven vibration modes of a clamped-clamped beam resonator are studied. An integrated piezoelectric transducer is used for direct and parametric excitation. First, the parametric amplification and oscillation of a single mode are analyzed by the

  6. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels;

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...

  7. Influence of density fluctuations on the O–X mode conversion and on microwave propagation

    Directory of Open Access Journals (Sweden)

    Köhn A.

    2015-01-01

    Full Text Available Full-wave simulations are performed in order to investigate the interaction of plasma density perturbations and microwaves. The perturbations are divided into two cases: A single blob-like structure and a fully turbulent density profile. The resulting scattering of a microwave beam and the effect on the O–X mode conversion are presented for both cases. Quantitative analyses are performed as a function of the average size and position of the perturbations. The usage of spatial coordinates normalized to the vacuum wavelength of the microwave allows to easily adopt the results to a specific problem.

  8. Enhanced loss of fusion products during mode conversion heating in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.

    1995-07-01

    Ion Bernstein waves (IBWS) have been generated by mode conversion of ion cyclotron range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at the passing/trapped boundary, indicating that passing particles are being moved onto loss orbits either by increase of their v{perpendicular} due to the wave, by outward transport in minor radius, or both. The lost particles appear to be DD fusion produced tritons heated to {approximately}1.5 times their birth energy.

  9. Nonlinear interaction of two trapped-mode resonances in a bilayer "fish-scale" metamaterial

    CERN Document Server

    Tuz, Vladimir R; Mladyonov, Pavel L; Prosvirnin, Sergey L; Novitsky, Andrey V

    2014-01-01

    We report on a bistable light transmission through a bilayer "fish-scale" (meander-line) metamaterial. It is demonstrated that an all-optical switching may be achieved nearly the frequency of the high-quality-factor Fano-shaped trapped-mode resonance excitation. The nonlinear interaction of two closely spaced trapped-mode resonances in the bilayer structure composed with a Kerr-type nonlinear dielectric slab is analyzed in both frequency and time domains. It is demonstrated that these two resonances react differently on the applied intense light which leads to destination of a multistable transmission.

  10. Coupled-mode induced transparency in aerostatically-tuned microbubble whispering gallery resonators

    CERN Document Server

    Yang, Yong; Ward, Jonathan; Chormaic, Síle Nic

    2015-01-01

    Coupled-mode induced transparency is realized in a single microbubble whispering gallery mode resonator. Using aerostatic tuning, we find that the pressure induced shifting rates are different for different radial order modes. A finite element simulation considering both the strain and stress effects shows a GHz/bar difference and this is confirmed by experiments. A transparency spectrum is obtained when a first order mode shifts across a higher order mode through precise pressure tuning. The resulting lineshapes are fitted with the theory. This work lays a foundation for future applications in microbubble sensing.

  11. Mode conversion of Mie plasmons at the surface of metallic atomic clusters

    Science.gov (United States)

    El-Khawaldeh, A.; Kull, H.-J.

    2017-04-01

    The dynamics of the Mie plasmon is described in the framework of the self-consistent quantum Vlasov theory by a reduced single-state model. The single-state model is validated by many-electron calculations for Na clusters. In this framework, collisionless damping of the Mie plasmon can be investigated for a wide range of cluster parameters by linear perturbation theory. The characteristic scaling of the damping rate with the inverse cluster radius is demonstrated. The basic damping mechanism of the Mie plasmon can be explained by a conversion of surface modes into volume modes due to the scattering by the self-consistent potential of the electron-electron interaction at the cluster boundary.

  12. Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process

    Science.gov (United States)

    Zheng, Jian; Katsuragawa, Masayuki

    2015-01-01

    Nonlinear optical processes are governed by the relative-phase relationships among the relevant electromagnetic fields in these processes. In this Report, we describe the physics of arbitrary manipulation of Raman-resonant four-wave-mixing process by artificial control of relative phases. As a typical example, we show freely designable optical-frequency conversions to extreme spectral regions, mid-infrared and vacuum-ultraviolet, with near-unity quantum efficiencies. Furthermore, we show that such optical-frequency conversions can be realized by using a surprisingly simple technology where transparent plates are placed in a nonlinear optical medium and their positions and thicknesses are adjusted precisely. In a numerical simulation assuming practically applicable parameters in detail, we demonstrate a single-frequency tunable laser that covers the whole vacuum-ultraviolet spectral range of 120 to 200 nm. PMID:25748023

  13. Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage

    Science.gov (United States)

    Kano, Shinya; Fujii, Minoru

    2017-03-01

    We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.

  14. Length control of an optical resonator using second-order transverse modes

    CERN Document Server

    Miller, John

    2014-01-01

    We present the analysis of an unorthodox technique for locking a laser to a resonant optical cavity. Error signals are derived from the interference between the fundamental cavity mode and higher-order spatial modes of order two excited by mode mismatch. This scheme is simple, inexpensive and, in contrast to similar techniques, first-order-insensitive to beam jitter. After mitigating sources of technical noise, performance is fundamentally limited by quantum shot-noise.

  15. Modeling of ICRH H-minority-driven n = 1 Resonant Modes in JET

    Energy Technology Data Exchange (ETDEWEB)

    N.N. Gorelenkov; M.J. Mantsinen; S.E. Sharapov; C.Z. Cheng; the JET-EFDA Contributors

    2003-08-21

    A nonperturbative code NOVA-KN (Kinetic Nonperturbative) has been developed to account for finite orbit width (FOW) effects in nonperturbative resonant modes such as the low-frequency MHD modes observed in the Joint European Torus (JET). The NOVA-KN code was used to show that the resonant modes with frequencies in the observed frequency range are ones having the characteristic toroidal precession frequency of H-minority ions. Results are similar to previous theoretical studies of fishbone instabilities, which were found to exist at characteristic precession frequencies of hot ions.

  16. Systematization of All Resonance Modes in Circular Dielectric Cavities

    NARCIS (Netherlands)

    Dettmann, C.P.; Morozov, G.V.; Sieber, M.; Waalkens, H.

    2009-01-01

    Circular dielectric cavities are key components for the construction of optic microresonators and microlasers. They are one of very few cases where the transcendental equations for complex eigenmodes (resonances) of an open system (dielectric cavity) can be found analytically in an exact manner. The

  17. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Directory of Open Access Journals (Sweden)

    Kyung Ho Sun

    2014-10-01

    Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  18. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  19. Multimode filter composed of single-mode surface acoustic wave/bulk acoustic wave resonators

    Science.gov (United States)

    Huang, Yulin; Bao, Jingfu; Tang, Gongbin; Wang, Yiling; Omori, Tatsuya; Hashimoto, Ken-ya

    2017-07-01

    This paper discusses the possibility of realizing multimode filters composed of multiple single-mode resonators by using radio frequency surface and bulk acoustic wave (SAW/BAW) technologies. First, the filter operation and design principle are given. It is shown that excellent filter characteristics are achievable by combining multiple single-mode resonators with identical capacitance ratios provided that their resonance frequencies and clamped capacitances are set properly. Next, the effect of balun performance is investigated. It is shown that the total filter performance is significantly degraded by balun imperfections such as the common-mode rejection. Then, two circuits are proposed to improve the common-mode rejection, and their effectiveness is demonstrated.

  20. Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes

    Science.gov (United States)

    Song, Qinghai; Ge, Li; Wiersig, Jan; Cao, Hui

    2013-08-01

    The recent progresses in single crystalline wide bandgap hexagonal disk have stimulated intense research attention on pursuing ultraviolet (UV) laser diodes with low thresholds. While whispering-gallery modes based UV lasers have been successfully obtained in GaN, ZnO nanorods, and nanopillars, the reported thresholds are still very high, due to the low-quality (Q) factors of the hexagonal resonances. Here we demonstrate resonances whose Q factors can be more than two orders of magnitude higher than the hexagonal modes, promising the reduction of the energy consumption. The key to our finding is the avoided resonance crossing between superscar states along two sets of nearly degenerated triangle orbits, which leads to the formation of hexagram modes. The mode couplings suppress the field distributions at the corners and the deviations from triangle orbits simultaneously and therefore enhance the Q factors significantly.

  1. A coupling model for quasi-normal modes of photonic resonators

    Science.gov (United States)

    Vial, Benjamin; Hao, Yang

    2016-11-01

    We develop a model for the coupling of quasi-normal modes in open photonic systems consisting of two resonators. By expressing the modes of the coupled system as a linear combination of the modes of the individual particles, we obtain a generalized eigenvalue problem involving small size dense matrices. We apply this technique to dielectric rod dimmer of rectangular cross section for transverse electric polarization in a two-dimensional setup. The results of our model show excellent agreement with full wave finite element simulations. We provide a convergence analysis, and a simplified model with a few modes to study the influence of the relative position of the two resonators. This model provides interesting physical insights on the coupling scheme at stake in such systems and pave the way for systematic and efficient design and optimization of resonances in more complicated systems, for applications including sensing, antennae and spectral filtering.

  2. A Resonant Mode for Gravitational Wave Detectors based on Atom Interferometry

    CERN Document Server

    Graham, Peter W; Kasevich, Mark A; Rajendran, Surjeet

    2016-01-01

    We describe a new atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wavepackets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes without changing hardware. For instance, a new binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to $\\Omega_\\text{GW} ...

  3. Robust Vibration Suppression of Resonant Modes by Feedback Compensation Realized Using Allpass Filters

    Science.gov (United States)

    Hirose, Noriaki; Iwasaki, Makoto; Kawafuku, Motohiro; Hirai, Hiromu

    In this paper, we present a novel type of feedback compensation for achieving robust vibration suppression of resonant modes in mechatronic systems by the use of allpass filters. In most mechactronic systems, residual vibration must be sufficiently suppressed during precise positioning. In order to achieve the required vibration suppression, the proposed feedback compensation realized using allpass filters is adopted to stabilize the resonant modes without attenuating the gain and to improve the sensitivity characteristics around the resonant modes even when the plant system has high-order vibration modes and time-delay characteristics. The effectiveness of the proposed approach has been verified by carrying out numerical simulations and performing experiments using a prototype.

  4. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    CERN Document Server

    Lin, Guoping; Saleh, Khaldoun; Martinenghi, Romain; Beugnot, Jean-Charles; Sylvestre, Thibaut; Chembo, Yanne K

    2015-01-01

    We report the observation of stimulated Brillouin scattering and lasing at 1550~nm in barium fluoride (BaF$_2$) crystal. Brillouin lasing was achieved with ultra-high quality ($Q$) factor monolithic whispering gallery mode (WGM) mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from $8.2$ GHz up to $49$ GHz have been generated through cascaded Brillouin lasing. BaF$_2$ resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.

  5. Vibration Mode Observation of Piezoelectric Disk-type Resonator by High Frequency Laser Doppler Vibrometer

    Science.gov (United States)

    Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji

    For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.

  6. How Natural Evaporation Temporally Self-Tunes an Oscillating Sessile Droplet To Resonate at Different Modes.

    Science.gov (United States)

    Sanyal, Apratim; Basu, Saptarshi

    2016-05-17

    We report the dynamics and underlying physics of evaporation driven transitions and autotuning of oscillation modes in sessile droplets subject to substrate perturbations. We have shown that evaporation controls temporal transition of the oscillation mode with a spatially downward shift of nodes (surface locations with zero displacement) toward the three-phase contact line. We have explained the physical mechanism using two parameters: the first quantifies evaporation driven tuning for resonance detection, and the second parameter characterizes mode lifetime which is found to be governed by evaporation dynamics. It is desirable to achieve autotuning of the oscillation modes in sessile droplets that essentially self-evolves in a spatiotemporal manner with continued evaporation. The insights suggest control of mode resonances is possible, which in turn will allow precision manipulations at droplet scale crucial for many applications such as surface patterning and others.

  7. Ultrafast, low-power, all-optical switching via birefringent phase-matched transverse mode conversion in integrated waveguides.

    Science.gov (United States)

    Hellwig, Tim; Epping, Jörn P; Schnack, Martin; Boller, Klaus-J; Fallnich, Carsten

    2015-07-27

    We demonstrate the potential of birefringence-based, all-optical, ultrafast conversion between the transverse modes in integrated optical waveguides by modelling the conversion process by numerically solving the multi-mode coupled nonlinear Schroedinger equations. The observed conversion is induced by a control beam and due to the Kerr effect, resulting in a transient index grating which coherently scatters probe light from one transverse waveguide mode into another. We introduce birefringent phase matching to enable efficient all-optically induced mode conversion at different wavelengths of the control and probe beam. It is shown that tailoring the waveguide geometry can be exploited to explicitly minimize intermodal group delay as well as to maximize the nonlinear coefficient, under the constraint of a phase matching condition. The waveguide geometries investigated here, allow for mode conversion with over two orders of magnitude reduced control pulse energy compared to previous schemes and thereby promise nonlinear mode switching exceeding efficiencies of 90% at switching energies below 1 nJ.

  8. Resonator stability and higher-order modes in free-electron laser oscillators

    Science.gov (United States)

    Pathak, Abhishek; Krishnagopal, Srinivas

    2014-08-01

    Three-dimensional simulation codes genesis and opc are used to investigate the dependence of the resonator stability of free-electron laser (FEL) oscillators on the stability parameter, laser wavelength, outcoupling hole size and mirror tilt. We find that to have stable lasing over a wide range of wavelengths, the FEL cavity configuration should be carefully chosen. Broadly, the concentric configuration gives near-Gaussian modes and the best performance. At intermediate configurations the dominant mode often switches to a higher-order mode, which kills lasing. For the same reason, the outcoupled power can also be less. We have constructed a simple analytic model to study resonator stability which gives results that are in excellent agreement with the simulations. This suggests that modes in FEL oscillators are determined more by the cavity configuration and radiation propagation than by the details of the FEL interaction. We find (as in experiments at the CLIO FEL) that tilting the mirror can, for some configurations, lead to more outcoupled power than a perfectly aligned mirror because the mode is now a more compact higher-order mode, which may have implications for the mode quality for user experiments. Finally, we show that the higher-order mode obtained is usually a single Gauss-Laguerre mode, and therefore it should be possible to filter out the mode using suitable intracavity elements, leading to better FEL performance.

  9. Full-wave feasibility study of anti-radar diagnostic of magnetic field based on O-X mode conversion and oblique reflectometry imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meneghini, Orso [General Atomics, San Diego, California 92121 (United States); Volpe, Francesco A., E-mail: fvolpe@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2016-11-15

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contains information on the magnetic field vector B at the cutoff layer. Probing the plasma with different wave frequencies provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry. Modeling confirms the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. The proposed reflectometric approach is expected to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit electron Bernstein waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Frequencies above the edge electron-cyclotron frequency (f > 28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.

  10. Full-wave feasibility study of anti-radar diagnostic of magnetic field based on O-X mode conversion and oblique reflectometry imaging

    Science.gov (United States)

    Meneghini, Orso; Volpe, Francesco A.

    2016-11-01

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contains information on the magnetic field vector B at the cutoff layer. Probing the plasma with different wave frequencies provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry. Modeling confirms the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. The proposed reflectometric approach is expected to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit electron Bernstein waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Frequencies above the edge electron-cyclotron frequency (f > 28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.

  11. MEMS switching of contour-mode aluminum nitride resonators for switchable and reconfigurable radio frequency filters

    Science.gov (United States)

    Nordquist, Christopher D.; Branch, Darren W.; Pluym, Tammy; Choi, Sukwon; Nguyen, Janet H.; Grine, Alejandro; Dyck, Christopher W.; Scott, Sean M.; Sing, Molly N.; Olsson, Roy H., III

    2016-10-01

    Switching of transducer coupling in aluminum nitride contour-mode resonators provides an enabling technology for future tunable and reconfigurable filters for multi-function RF systems. By using microelectromechanical capacitive switches to realize the transducer electrode fingers, coupling between the metal electrode finger and the piezoelectric material is modulated to change the response of the device. On/off switched width extensional resonators with an area of  24 dB switching ratio at a resonator center frequency of 635 MHz. Other device examples include a 63 MHz resonator with switchable impedance and a 470 MHz resonator with 127 kHz of fine center frequency tuning accomplished by mass loading of the resonator with the MEMS switches.

  12. Whispering Gallery Mode Resonator Stabilized Narrow Linewidth Fiber Loop Laser

    CERN Document Server

    Sprenger, B; Wang, L J; 10.1364/OL.34.003370

    2012-01-01

    We demonstrate a narrow line, fiber loop laser using Erbium-doped fiber as the gain material, stabilized by using a microsphere as a transmissive frequency selective element. Stable lasing with a linewidth of 170 kHz is observed, limited by the experimental spectral resolution. A linear increase in output power and a red-shift of the lasing mode were also observed with increasing pump power. Its potential application is also discussed.

  13. Mode-Selective Photon Counting Via Quantum Frequency Conversion Using Spectrally-Engineered Pump Pulses

    Science.gov (United States)

    Manurkar, Paritosh

    Most of the existing protocols for quantum communication operate in a two-dimensional Hilbert space where their manipulation and measurement have been routinely investigated. Moving to higher-dimensional Hilbert spaces is desirable because of advantages in terms of longer distance communication capabilities, higher channel capacity and better information security. We can exploit the spatio-temporal degrees of freedom for the quantum optical signals to provide the higher-dimensional signals. But this necessitates the need for measurement and manipulation of multidimensional quantum states. To that end, there have been significant theoretical studies based on quantum frequency conversion (QFC) in recent years even though the experimental progress has been limited. QFC is a process that allows preservation of the quantum information while changing the frequency of the input quantum state. It has deservedly garnered a lot of attention because it serves as the connecting bridge between the communications band (C-band near 1550 nm) where the fiber-optic infrastructure is already established and the visible spectrum where high efficiency single-photon detectors and optical memories have been demonstrated. In this experimental work, we demonstrate mode-selective frequency conversion as a means to measure and manipulate photonic signals occupying d -dimensional Hilbert spaces where d=2 and 4. In the d=2 case, we demonstrate mode contrast between two temporal modes (TMs) which serves as the proof-of-concept demonstration. In the d=4 version, we employ six different TMs for our detailed experimental study. These TMs also include superposition modes which are a crucial component in many quantum key distribution protocols. Our method is based on producing pump pulses which allow us to upconvert the TM of interest while ideally preserving the other modes. We use MATLAB simulations to determine the pump pulse shapes which are subsequently produced by controlling the amplitude and

  14. Ultrahigh-Q circular-side square resonator lasers with enhanced transverse mode interval

    CERN Document Server

    Weng, Hai-Zhong; Yang, Yue-De; Ma, Xiu-Wen; Xiao, Jin-Long; Du, Yun

    2015-01-01

    A mechanism of transverse mode control is proposed for circular-side square resonator (CSR) with the flat sides replaced by arcs, which results in ultrahigh-Q factors and large transverse mode intervals according to two and three dimensional (2D and 3D) simulations. A 2D numerical optimization shows that mode Q factors up to 1011 can be obtained for the 16-{\\mu}m-side-length CSR with a 1.5-{\\mu}m-width output waveguide. Dual-mode lasing with frequency intervals in THz range in agreement with simulated results is achieved for AlGaInAs/InP CSR lasers.

  15. High-Q MgF₂ whispering gallery mode resonators for refractometric sensing in aqueous environment.

    Science.gov (United States)

    Sedlmeir, Florian; Zeltner, Richard; Leuchs, Gerd; Schwefel, Harald G L

    2014-12-15

    We present our experiments on refractometric sensing with ultrahigh-Q, crystalline, birefringent magnesium fluoride (MgF₂) whispering gallery mode resonators. The difference to fused silica which is most commonly used for sensing experiments is the small refractive index of MgF₂ which is very close to that of water. Compared to fused silica this leads to more than 50% longer evanescent fields and a 4.25 times larger sensitivity. Moreover the birefringence amplifies the sensitivity difference between TM and TE type modes which will enhance sensing experiments based on difference frequency measurements. We estimate the performance of our resonators and compare them with fused silica theoretically and present experimental data showing the interferometrically measured evanescent field decay and the sensitivity of mm-sized MgF₂ whispering gallery mode resonators immersed in water. These data show reasonable agreement with the developed theory. Furthermore, we observe stable Q factors in water well above 1 × 10⁸.

  16. Petal–like modes in Porro prism resonators

    CSIR Research Space (South Africa)

    Litvin, IA

    2007-10-01

    Full Text Available to complete the pattern, the smaller the angle of each sub–division. The simplest case is when i = 1; then j = 1 and the circle is divided into divisions of α. For higher j values the lossless regions between the high loss sub–division lines become small... not result in any lossless regions because of the non–repeating apex positions. This latter situation prohibits the formation of a stable mode since all regions have high loss, while the former scenarios could potentially support lasing in the lower loss...

  17. Transverse waveguide mode suppression for Pt-electrode SAW resonators on quartz and LGS.

    Science.gov (United States)

    Meulendyk, Bennett J; Pereira da Cunha, Mauricio

    2011-12-01

    SAW resonators on ST-X quartz and langasite (LGS) [0°, 144°, 24°] are currently being used for hydrogen fluoride (HF) vapor sensing and high-temperature sensing, respectively. For these applications, the use of Pt-based electrodes allows the resonators to withstand the targeted harsh environments. This work reveals that for Pt-electrode resonators with conventional short-circuit gratings on the aforementioned quartz and LGS orientations, acoustic energy leaks from the grating region to the bus bars, thus degrading the resonator response. To resolve this problem, this paper proposes and implements open-circuit gratings for resonators fabricated with these substrate/metal combinations. The open-circuit gratings guide the acoustic energy within the grating region, resulting in greater quality factors and reduced losses in the resonator response. In addition, scalar potential theory is utilized in this work to identify transverse waveguide modes in the responses of open-circuit grating resonators on quartz and LGS. A transverse waveguide mode dispersion relation was derived to extend the scalar potential theory to account for asymmetry in the slowness curve around the propagation direction. This is the case for several commonly used LGS orientations, in particular LGS [0°, 144°, 24°]. Finally, this work addresses spurious transverse mode mitigation by scaling both the transducer's grating aperture and electrode overlap width. Open circuit grating resonators with appropriately scaled transducer designs were fabricated and tested, resulting in a 71% increase in quality factor and a spurious mode rejection of over 26 dBc for Pt-electrode devices on ST-X quartz. This progress directly translates into better frequency resolution and increased dynamic range for HF vapor sensors and high-temperature SAW devices.

  18. Spatial and spectral beam shaping with space-variant guided mode resonance filters.

    Science.gov (United States)

    Srinivasan, Pradeep; Poutous, Menelaos K; Roth, Zachary A; Yilmaz, Yigit O; Rumpf, Raymond C; Johnson, Eric G

    2009-10-26

    Novel all-dielectric beam shaping elements were developed based on guided mode resonance (GMR) filters. This was achieved by spatially varying the duty cycle of a hexagonal-cell GMR filter, to locally detune from the resonant condition, which resulted in modified wavelength dependent reflection and transmission profiles, across the device aperture. This paper presents the design, fabrication, and characterization of the device and compares simulations to experimental results.

  19. Resonant and non-resonant internal kink modes excited by the energetic electrons on HL-2A tokamak

    Science.gov (United States)

    Yu, L. M.; Chen, W.; Jiang, M.; Shi, Z. B.; Ji, X. Q.; Ding, X. T.; Li, Y. G.; Ma, R. R.; Shi, P. W.; Song, S. D.; Yuan, B. S.; Zhou, Y.; Ma, R.; Song, X. M.; Dong, J. Q.; Xu, M.; Liu, Y.; Yan, L. W.; Yang, Q. W.; Xu, Y. H.; Duan, X. R.; HL-2A Team

    2017-03-01

    Strong resonant and non-resonant internal kink modes (abbreviated as RKs and NRKs, respectively), which are also called resonant and non-resonant fishbones, are observed on HL-2A tokamak with high-power ECRH  +  ECCD‑ (or ECRH) and ECRH  +  ECCD+, respectively. (‘Resonant’ derives from the existence of q  =  1 surface (the resonant surface), and ‘non-resonant’ originates from the absence of q  =  1 surface ({{q}\\text{min}}>1 ). ECCD+ and ECCD‑ mean the driving direction of energetic electrons is the same and opposite to plasma current, respectively.) RK has features of periodic strong bursting amplitude and rapid chirping-down frequency, but NRK usually has the saturated amplitude, slow changed or constant frequency and long-lasting time. The NRK excited by energetic electrons is found for the first time. The reversed q-profiles are formed, and q min decreases during plasma current ramp-up. The value of q min is slightly smaller and a bit bigger than unity for RK and NRK conditions, respectively. The internal kink mode (IKM) structures of RKs and NRKs are confirmed by the ECEI system. Although there are different current drive directions of ECCD for excitation of RK and NRK, they all propagate in electron diamagnetic directions in poloidal. The radial mode structures, frequency and growth rate for IKMs are obtained by solving the dispersion relationship. The NRK is stable when q min is larger than a certain value, and with the decreasing q min the frequency drops, but the growth rate almost keeps constant when {{q}\\text{min}}>1 . This result is in agreement with experimental observation. Studying IKMs excited by energetic electrons can provide important experimental experiences for ITER, because the NRKs may be excited by high-power non-inductive drive of ECCD or ECRH in the operation of hybrid scenarios.

  20. Comparative research on the methods for measuring the mode deflection angle of cylindrical resonator gyroscope

    Science.gov (United States)

    Wang, Kai; Fan, Zhenfang; Wang, Dongya; Wang, Yanyan; Pan, Yao; Qu, Tianliang; Xu, Guangming

    2016-10-01

    The existence of mode deflection angle in the cylindrical resonator gyroscope (CRG) leads to the signal drift on the detecting nodes of the gyro vibration and significantly decreases the performance of the CRG. Measuring the mode deflection angle efficiently is the foundation of tuning for the imperfect cylindrical shell resonator. In this paper, an optical method based on the measuring gyroscopic resonator's vibration amplitude with the laser Doppler vibrometer and an electrical method based on measuring the output voltage of the electrodes on the resonator are both presented to measure the mode deflection angle. Comparative experiments were implemented to verify the methodology and the results show that both of the two methods could recognize the mode deflection angle efficiently. The precision of the optical method relies on the number and position of testing points distributed on the resonator. The electrical method with simple circuit shows high accuracy of measuring in a less time compared to the optical method and its error source arises from the influence of circuit noise as well as the inconsistent distribution of the piezoelectric electrodes.

  1. Kinetic parameters and monomeric conversion of different dental composites using standard and soft-start photoactivation modes

    Science.gov (United States)

    Denis, A. B.; Viana, R. B.; Plepis, A. M. G.

    2012-06-01

    This paper evaluates the photopolymerization kinetics and degree of conversion of different commercial dental composites when photoactivated by a LED curing unit using two different modes (standard and soft-start mode). The investigation was performed on with RelyX ARC (dual-cured), Filtek Z-350 (Nanocomposite), Filtek Z-250 (Hybrid), and Filtek Z-350flow (Flowable) resin composites. The analysis used was attenuated total reflection with a Fourier transform infrared (ATR-FTIR). The RelyX ARC resin demonstrated the highest degree of conversion with both LED photoactivation modes. For this resin a 28% decrease in maximum rate was observed and the time to reach its highest rate was almost 2.3 times higher than when the soft-start photoactivation light curing was used. Z-350flow resin recorder a higher maximum rate using the soft-start mode rather than the standard mode. In contrast, the Z-250 showed a higher value using the standard mode. Although Z-250 and Z-350 showed a higher total degree of conversion effectiveness using the soft-start mode, RelyX and Z-350flow achieved a higher value using the standard mode.

  2. Special optical fiber for temperature sensing based on cladding-mode resonance.

    Science.gov (United States)

    Pang, Fufei; Xiang, Wenchao; Guo, Hairun; Chen, Na; Zeng, Xianglong; Chen, Zhenyi; Wang, Tingyun

    2008-08-18

    A fiber-optic temperature sensor by using a multi-cladding special fiber is presented. It works on the basis of leaky mode resonance from fiber core to outer cladding. With the thin-thickness inner cladding, the cladding mode is strongly excited and the resonant spectrum is very sensitive to the refractive index variation of coating material. By coating the special fiber with temperature-sensitive silicone, the temperature response was investigated experimentally from -20 degrees C to 80 degrees C. The results show high temperature sensitivity (240 pm/degrees C at 20 degrees C) and good repeatability.

  3. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

    Science.gov (United States)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S; Zhang, Lin

    2016-10-14

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  4. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials

    Science.gov (United States)

    Song, Haojie; Zhang, Junxi; Fei, Guangtao; Wang, Junfeng; Jiang, Kang; Wang, Pei; Lu, Yonghua; Iorsh, Ivan; Xu, Wei; Jia, Junhui; Zhang, Lide; Kivshar, Yuri S.; Zhang, Lin

    2016-10-01

    Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.

  5. Dynamically creating tripartite resonance and dark modes in a multimode optomechanical system

    CERN Document Server

    Damskägg, E; Sillanpää, M A

    2016-01-01

    We study a multimode optomechanical system where two mechanical oscillators are coupled to an electromagnetic cavity. Previously it has been shown that if the mechanical resonances have nearly equal frequencies, one can make the oscillators to interact via the cavity by strong pumping with a coherent pump tone. One can view the interaction also as emergence of an electromagnetically dark mode which gets asymptotically decoupled from the cavity and has a linewidth much smaller than that of the bare cavity. The narrow linewidth and long lifetime of the dark mode could be advantageous for example in information storage and processing. Here we investigate the possibility to create dark modes dynamically using two pump tones. We show that if the mechanical frequencies are intrinsically different, one can bring the mechanical oscillators and the cavity on-resonance and thus create a dark mode by double sideband pumping of the cavity. We realize the scheme in a microwave optomechanical device employing two drum osci...

  6. Normal modes and quality factors of spherical dielectric resonators: I — Shielded dielectric sphere

    Indian Academy of Sciences (India)

    R A Yadav; I D Singh

    2004-06-01

    Electromagnetic theoretic analysis of shielded homogeneous and isotropic dielectric spheres has been made. Characteristic equations for the TE and TM modes have been derived. Dielectric spheres of radii of the order of $$m size are found suitable for the optical frequency region whereas for the microwave region radii of the order of mm size are found suitable. Parameters suitable for their application in the optical and microwave frequency ranges have been used to compute the frequencies corresponding to the normal modes for the TE and TM modes. Expressions for the quality factors for realistic resonators, i.e., for a dielectric sphere with a non-zero conductivity and a metal shield with a finite conductivity have also been derived for the TE and TM modes. Computations of the quality factors have been made for resonators with parameters suitable for the optical and the microwave regions.

  7. Broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes

    CERN Document Server

    Günendi, Mehmet C; Frosz, Michael H; Russell, Philip St J

    2015-01-01

    We propose and theoretically analyse a novel hollow-core photonic crystal fibre (PCF) that is engineered so as to strongly suppress higher order modes, i.e., to provide robust LP$_{01}$ single-mode guidance in all the wavelength ranges where the fibre guides with low loss. Encircling the core is a single ring of non-touching glass elements whose modes are tailored to ensure resonant phase-matched coupling to higher-order core modes, causing them to leak at a very high rate into the supporting solid glass sheath. Using a model based on coupled capillary waveguides, as well as full vectorial finite element modelling, we show that this modal filtering effect depends on only one dimensionless geometrical parameter, akin to the well-known $d/{\\Lambda}$ parameter for endlessly single-mode solid-core PCF. The design is scalable up to large core sizes and is predicted to deliver LP$_{01}$ mode losses of some $10$s of dB/km in multiple transmission windows, the broadest of which spans more than an octave. At the same ...

  8. Excitation and Imaging of Resonant Optical Modes of Au Triangular Nano-Antennas Using Cathodoluminescence Spectroscopy

    CERN Document Server

    Kumar, Anil; Mabon, James C; Chow, Edmond; Fang, Nicholas X

    2010-01-01

    Cathodoluminescence (CL) imaging spectroscopy is an important technique to understand resonant behavior of optical nanoantennas. We report high-resolution CL spectroscopy of triangular gold nanoantennas designed with near-vacuum effective index and very small metal-substrate interface. This design helped in addressing issues related to background luminescence and shifting of dipole modes beyond visible spectrum. Spatial and spectral investigations of various plasmonic modes are reported. Out-of-plane dipole modes excited with vertically illuminated electron beam showed high-contrast tip illumination in panchromatic imaging. By tilting the nanostructures during fabrication, in-plane dipole modes of antennas were excited. Finite-difference time-domain simulations for electron and optical excitations of different modes showed excellent agreement with experimental results. Our approach of efficiently exciting antenna modes by using low index substrates is confirmed both with experiments and numerical simulations....

  9. Structural Protein-based Flexible Whispering Gallery Mode Resonators

    CERN Document Server

    Yilmaz, Huzeyfe; Shreiner, Robert; Szwejkowski, Chester J; Jung, Huihun; Hopkins, Patrick; Ozdemir, Sahin Kaya; Yang, Lan; Demirel, Melik C

    2016-01-01

    Nature provides a set of solutions for photonic structures that are finely tuned, organically diverse and optically efficient. Exquisite knowledge of structure-property relationships in proteins aids in the design of materials with desired properties for building devices with novel functionalities, which are difficult to achieve or previously unattainable. Recent bio-inspired photonic platforms made from proteinaceous materials lay the groundwork for many functional device applications, such as electroluminescence in peptide nucleic acids1, multiphoton absorption in amyloid fibers2 and silk waveguides and inverse opals3-5. Here we report whispering-gallery-mode (WGM) microresonators fabricated entirely from semi-crystalline structural proteins (i.e., squid ring teeth, SRT, from Loligo vulgaris and its recombinant, and silk from Bombyx mori) with unconventional thermo-optic response. We present a striking example of how small modifications at the molecular level lead to structural changes and alter macroscopic...

  10. Localized surface plate modes via flexural Mie resonances

    KAUST Repository

    Farhat, M.

    2017-05-11

    Surface-plasmon polaritons are naturally generated upon excitation of metals with high-frequency electromagnetic waves. However, the concept of spoof plasmons has made it possible to generate plasmoniclike effects in microwave electrodynamics, magnetics, and even acoustics. Similarly, in this paper, the concept of localized surface plate modes (SPMs) is introduced. It is demonstrated that SPMs can be generated on a two-dimensional (clamped or stress-free) cylindrical surface with subwavelength corrugations, which resides on a thin elastic plate, under excitation by an incident flexural plane wave. Numerical characterization of this corrugated rigid structure shows that it is elastically equivalent to a cylindrical scatterer with dispersive but uniformly negative flexural rigidity. This, indeed, suggests that plasmoniclike elastic materials can be engineered with potential applications in various areas including earthquake sensing and elastic imaging and cloaking.

  11. Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods

    Science.gov (United States)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)

    2007-01-01

    A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.

  12. Stochastic resonance in a single-mode laser driven by frequency modulated signal and coloured noises

    Institute of Scientific and Technical Information of China (English)

    Jin Guo-Xiang; Zhang Liang-Ying; Cao Li

    2009-01-01

    By adding frequency modulated signals to the intensity equation of gain-noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.

  13. Analysis of a shielded TE011 mode composite dielectric resonator for stable frequency reference

    Indian Academy of Sciences (India)

    N D Kataria; K S Daya; V G Das

    2002-05-01

    Analysis of a TE011 mode composite sapphire–rutile dielectric resonator has been carried out to study the temperature variation of resonance frequency, close to the Cs atomic clock hyperfine frequency of 9.192 GHz. The complementary behavior of dielectric permittivity with temperature of the composite has been exploited to obtain the desired turning point in the resonant frequency. The frequency of the composite structure is found to be independent of the shield diameter beyond four times the puck diameter.

  14. Two-Mode Resonator and Contact Model for Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Blanke, Mogens; Helbo, J.

    2001-01-01

    The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailed simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...

  15. Inter-Well Coupling and Resonant Tunneling Modes of Multiple Graphene Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    安丽萍; 王同标; 刘念华

    2011-01-01

    We investigate the inter-well coupling of multiple graphene quantum well structures consisting of graphene superlattices with different periodic potentials. The general form of the eigenlevel equation for the bound states of the quantum well is expressed in terms of the transfer matrix elements. It is found that the electronic transmission exhibits resonant tunneling peaks at the eigenlevels of the bound states and shifts to the higher energy with increasing the incident angle. If there are N coupled quantum wells, the resonant modes have N-fold splitting. The peaks of resonant tunneling can be controlled by modulating the graphene barriers.

  16. Quantum averaging and resonances: two-level atom in a one-mode classical laser field

    Directory of Open Access Journals (Sweden)

    M. Amniat-Talab

    2007-06-01

    Full Text Available   We use a nonperturbative method based on quantum averaging and an adapted from of resonant transformations to treat the resonances of the Hamiltonian of a two-level atom interacting with a one-mode classical field in Floquet formalism. We illustrate this method by extraction of effective Hamiltonians of the system in two regimes of weak and strong coupling. The results obtained in the strong-coupling regime, are valid in the whole range of the coupling constant for the one-photon zero-field resonance.

  17. On limitation of quality factor of single mode resonators with finite size

    CERN Document Server

    Ferdous, Fahmida; Vyatchanin, Sergey P; Matsko, Andrey B; Maleki, Lute

    2014-01-01

    Using realistic numerical models we analyze radiative loss of bound and unbound modes of specially designed high-Q whispering gallery and Fabry-Perot cavities of similar size and shape, and find a set of parameters when they can be treated as single mode structures. We show that these cavities have similar properties in spite of their different loss mechanisms. The cavity morphology engineering does not lead to reduction of the resonator quality factor.

  18. A complete dc characterization of a constant-frequency, clamped-mode, series-resonant converter

    Science.gov (United States)

    Tsai, Fu-Sheng; Lee, Fred C.

    1988-01-01

    The dc behavior of a clamped-mode series-resonant converter is characterized systematically. Given a circuit operating condition, the converter's mode of operation is determined and various circuit parameters are calculated, such as average inductor current (load current), rms inductor current, peak capacitor voltage, rms switch currents, average diode currents, switch turn-on currents, and switch turn-off currents. Regions of operation are defined, and various circuit characteristics are derived to facilitate the converter design.

  19. Use of nondegenerate resonant leaky modes to fashion diverse optical spectra.

    Science.gov (United States)

    Ding, Y; Magnusson, Robert

    2004-05-03

    In this paper, we show that bandstop and bandpass filters with versatile spectral attributes can be implemented with modulated films possessing asymmetric grating profiles. The profile asymmetry breaks the resonant leaky mode degeneracy at normal incidence thereby permitting precise spectral spacing of interacting leaky modes with interesting implications in optical filter design. Several example filters, containing only a single grating layer, are designed with this methodology to demonstrate the concept.

  20. Soliton Formation in Whispering-Gallery-Mode Resonators via Input Phase Modulation

    CERN Document Server

    Taheri, Hossein; Wiesenfeld, Kurt; Adibi, Ali

    2014-01-01

    We propose a method for soliton formation in whispering-gallery-mode (WGM) resonators through input phase modulation. Our numerical simulations of a variant of the Lugiato-Lefever equation suggest that modulating the input phase at a frequency equal to the resonator free-spectral-range and at modest modulation depths provides a deterministic route towards soliton formation in WGM resonators without undergoing a chaotic phase. We show that the generated solitonic state is sustained when the modulation is turned off adiabatically. Our results support parametric seeding as a powerful means of control, besides input pump power and pump-resonance detuning, over frequency comb generation in WGM resonators. Our findings also help pave the path towards ultra-short pulse formation on a chip.

  1. One-shot Design of Radial Mode Piezoelectric Transformer for Magneticless Power Conversion

    DEFF Research Database (Denmark)

    Meyer, Kaspar Sinding; Andersen, Michael A. E.

    2011-01-01

    Piezoelectric Transformer based resonant power converters are an attractive alternative to magnetic power converters in applications requiring a power level currently less than 100W. Among the benefits are a power density up to 40W/cm3, a low profile, reduced radiated EMI and high system efficiency...... due to zero voltage switching commutation. The main criteria to take advantage of these benefits are, despite the fact that a PT is a piezoelectric capacitor, is optimization the transformer to behave inductively as a means to avoid excessive hard switching losses. With this objective, the inverse...... mathematical problem has been solved, that directly links wanted electrical specifications to the mechanical dimensions of a radial mode piezoelectric transformer. The novel outcome of this study is that the soft switching ability is directly linked to the ratio between the active volume of the primary...

  2. Higher-nodal collective modes in a resonantly interacting Fermi gas

    Science.gov (United States)

    Guajardo, Edmundo R. Sánchez; Tey, Meng Khoon; Sidorenkov, Leonid A.; Grimm, Rudolf

    2013-06-01

    We report on experimental investigations of longitudinal collective oscillations in a highly elongated, harmonically trapped two-component Fermi gas with resonantly tuned s-wave interactions (“unitary Fermi gas”). We focus on higher-nodal axial modes, which in contrast to the elementary modes have received little attention so far. We show how these modes can be efficiently excited using a resonant local excitation scheme and sensitively analyzed by a Fourier transformation of the detected time evolution of the axial density profile. We study the temperature dependence of the mode frequencies across the superfluid phase transition. The behavior is qualitatively different from the elementary modes, where the mode frequencies are independent of the temperature as long as the gas stays in the hydrodynamic regime. Our results are compared to theoretical predictions based on Landau's two-fluid theory and available experimental knowledge of the equation of state. The comparison shows excellent agreement and thus both represents a sensitive test for the validity of the theoretical approach and provides an independent test of the equation of state. The present results obtained on modes of first-sound character represent benchmarks for the observation of second-sound propagation and corresponding oscillation modes.

  3. Optical Analog-to-digital Conversion Scheme Based on Tunable Fabry-Perot Resonator

    Institute of Scientific and Technical Information of China (English)

    LI Zheng

    2007-01-01

    Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into light wavelength through selecting lights of different wavelengthes. The parameters of the scheme are acquired with the transmission matrix of optical element and the time of steady-state light field. The maximum sampling speedes of 4-bit, 6-bit, 7-bit, 8-bit and 9-bit(ADC) are 1.695×1010 count/s, 4.33×109 count/s, 2.38×109 count/s, 1.24×109 count/s and 5.9×108 count/s, respectively.

  4. Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions

    Science.gov (United States)

    Schunk, G.; Vogl, U.; Sedlmeir, F.; Strekalov, D. V.; Otterpohl, A.; Averchenko, V.; Schwefel, H. G. L.; Leuchs, G.; Marquardt, Ch.

    2016-11-01

    Quantum repeaters rely on interfacing flying qubits with quantum memories. The most common implementations include a narrowband single photon matched in bandwidth and central frequency to an atomic system. Previously, we demonstrated the compatibility of our versatile source of heralded single photons, which is based on parametric down-conversion in a triply resonant whispering-gallery mode resonator, with alkaline transitions [Schunk et al., Optica 2015, 2, 773]. In this paper, we analyse our source in terms of phase matching, available wavelength-tuning mechanisms and applications to narrowband atomic systems. We resonantly address the D1 transitions of caesium and rubidium with this optical parametric oscillator pumped above its oscillation threshold. Below threshold, the efficient coupling of single photons to atomic transitions heralded by single telecom-band photons is demonstrated. Finally, we present an accurate analytical description of our observations. Providing the demonstrated flexibility in connecting various atomic transitions with telecom wavelengths, we show a promising approach to realize an essential building block for quantum repeaters.

  5. 41.6 Gb/s RZ-DPSK to NRZ-DPSK Format Conversion in a Microring Resonator

    DEFF Research Database (Denmark)

    Xiong, Meng; Ozolins, Oskars; Ding, Yunhong

    2012-01-01

    RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator is demonstrated experimentally for the first time at 41.6 Gb/s. The converted signal eye diagrams and bit-error-rate measurements show the good performance of the scheme........RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator is demonstrated experimentally for the first time at 41.6 Gb/s. The converted signal eye diagrams and bit-error-rate measurements show the good performance of the scheme.....

  6. Stochastic and equilibrium pictures of the ultracold Fano-Feshbach-resonance molecular conversion rate

    Science.gov (United States)

    Yamakoshi, Tomotake; Watanabe, Shinichi; Zhang, Chen; Greene, Chris H.

    2013-05-01

    The ultracold molecular conversion rate occurring in an adiabatic ramp through a Fano-Feshbach resonance is studied and compared in two statistical models. One model, the so-called stochastic phase-space sampling (SPSS) [Hodby , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.94.120402 94, 120402 (2005)] evaluates the overlap of two atomic distributions in phase space by sampling atomic pairs according to a phase-space criterion. The other model, the chemical equilibrium theory (ChET) [Watabe and Nikuni, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.77.013616 77, 013616 (2008)] considers atomic and molecular distributions in the limit of the chemical and thermal equilibrium. The present study applies SPSS and ChET to a prototypical system of K+K→ K2 in all the symmetry combinations, namely Fermi-Fermi, Bose-Bose, and Bose-Fermi cases. To examine implications of the phase-space criterion for SPSS, the behavior of molecular conversion is analyzed using four distinct geometrical constraints. Our comparison of the results of SPSS with those of ChET shows that while they appear similar in most situations, the two models give rise to rather dissimilar behaviors when the presence of a Bose-Einstein condensate strongly affects the molecule formation.

  7. Tailoring the plasmonic whispering gallery modes of a metal-coated resonator for potential application as a refractometric sensor.

    Science.gov (United States)

    Guo, Chang-Lei; Che, Kai-Jun; Gu, Guo-Qiang; Cai, Guo-Xiong; Cai, Zhi-Ping; Xu, Hui-Ying

    2015-02-20

    Plasmonic whispering gallery (WG) modes confined in metal-coated resonators are theoretically investigated by electromagnetic analyses. The resonance can be tuned from internal surface plasmonic WG modes to the hybrid state of the plasmonic mode by an introduced isolation layer. As the coated metal is reduced in size, the optical resonance is shifted out by the mode coupling of the internal and external surface plasmonic WG modes. Based on the optical leak of the plasmonic WG mode, the optical influences led by the surroundings with a variable refractive index are considered. Device performance criteria such as optical power leak, resonant wavelength shift, and threshold gain are studied. Full wave simulations are also employed and the results present good consistency with analytic solutions. The metal-coated resonator assisted by an active material is expected to provide promising performance as a refractometric sensor.

  8. On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation

    KAUST Repository

    Shi, Yifei

    2013-08-01

    Internal resonant modes are always observed in the marching-on-in-time (MOT) solution of the time domain electric field integral equation (EFIE), although \\'relaxed initial conditions,\\' which are enforced at the beginning of time marching, should in theory prevent these spurious modes from appearing. It has been conjectured that, numerical errors built up during time marching establish the necessary initial conditions and induce the internal resonant modes. However, this conjecture has never been proved by systematic numerical experiments. Our numerical results in this communication demonstrate that, the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors. Additionally, it is shown that in a few cases, the internal resonant modes can be made \\'invisible\\' by significantly suppressing the numerical errors. These tests prove the conjecture that the internal resonant modes are induced by numerical errors when the time domain EFIE is solved by the MOT method. © 2013 IEEE.

  9. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    Science.gov (United States)

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  10. Evidence of Resonant Mode Coupling in the Hot B Subdwarf Star KIC 10139564

    Directory of Open Access Journals (Sweden)

    Zong W.

    2015-01-01

    Full Text Available The Kepler spacecraft provides new opportinuties to observe long term frequency and amplitude modulations of oscillation modes in pulsating stars. We analyzed more than three years of uninterrupted data obtained with this instrument on the hot B subdwarf (sdB star KIC 10139564 and found clear signatures of nonlinear resonant mode coupling affecting several multiplets. The observed periodic frequency and amplitude modulations may allow for new asteroseismic diagnostics, providing in particular ways to measure linear growth rates of pulsation modes in hot subdwarf stars for the first time.

  11. Off-resonance coupling between a cavity mode and an ensemble of driven spins

    Science.gov (United States)

    Wang, Hui; Masis, Sergei; Levi, Roei; Shtempluk, Oleg; Buks, Eyal

    2017-05-01

    We study the interaction between a superconducting cavity and a spin ensemble. The response of a cavity mode is monitored while simultaneously the spins are driven at a frequency close to their Larmor frequency, which is tuned to a value much higher than the cavity resonance. We experimentally find that the effective damping rate of the cavity mode is shifted by the driven spins. The measured shift in the damping rate is attributed to the retarded response of the cavity mode to the driven spins. The experimental results are compared with theoretical predictions and fair agreement is found.

  12. Discovery of higher order modes in a cylindrical reentrant-ring cavity resonator

    CERN Document Server

    Fan, Y; Carvalho, N C; Floch, J-M Le; Shan, Q; Tobar, M E

    2013-01-01

    Rigorous analysis of the properties of resonant modes in a reentrant cavity structure comprising of a post and ring is undertaken and verified experimentally. In particular for the first time we show the existence of higher order reentrant cavity modes in such a structure. Results show this cavity has a better displacement sensitivity compared to the common fundamental mode in a reentrant cylindrical cavity with just a single post. Thus, this type of cavity has the potential to operate as a highly sensitive transducer for a variety of precision measurement applications.

  13. Pattern Formation in Double-Layer Kerr Resonators with Coupled Modes

    CERN Document Server

    Bois, Antoine

    2016-01-01

    A double-layer Kerr resonator in which both coupled modes are excited and interact with each other via incoherent cross-phase modulation is investigated to reveal stable localized solutions beyond the usual formation mechanism involving a single mode. Periodic solutions from modulational instability are found to occur at a slight penalty on the nonlinear efficiency, but they stabilize the spatial dynamics, leading to dissipative solitons in previously unattainable regimes. Numerical simulations show paired breather solitons in addition to temporally stable solutions. The results demonstrate coupled modes can increase the stability of Kerr frequency comb generation.

  14. ELECTRICALLY FORCED VIBRATION OF A THICKNESS-TWIST MODE PIEZOELECTRIC RESONATOR WITH NON-UNIFORM ELECTRODES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study the effect of electrodes with varying thickness on thickness-twist vibration of a piezoelectric plate resonator of crystals of 6 mm symmetry. An exact theoretical analysis is performed. Results show that non-uniform electrodes have a strong effect on mode shapes, and suggest the possibility of using nonuniform electrodes for strong energy trapping.

  15. Aberration influence and active compensation on laser mode properties for asymmetric folded resonators

    Science.gov (United States)

    Zhang, Xiang; Hu, Zhiqiu; Yang, Wentao; Su, Likun

    2017-09-01

    We demonstrate the influence on mode features with introducing typical intracavity perturbation and results of aberrated wavefront compensation in a folded-type unstable resonator used in high energy lasers. The mode properties and aberration coefficient with intracavity misalignment are achieved by iterative calculation and Zernike polynomial fitting. Experimental results for the relation of intracavity maladjustment and mode characteristics are further obtained in terms of S-H detection and model wavefront reconstruction. It indicates that intracavity phase perturbation has significant influence on out coupling beam properties, and the uniform and symmetry of the mode is rapidly disrupted even by a slight misalignment of the resonator mirrors. Meanwhile, the far-field beam patterns will obviously degrade with increasing the distance between the convex mirror and the phase perturbation position even if the equivalent disturbation is inputted into such the resonator. The closed-loop device for compensating intracavity low order aberration is successfully fabricated. Moreover, Zernike defocus aberration is also effectively controlled by precisely adjusting resonator length, and the beam quality is noticeably improved.

  16. New Method of Vapour Discrimination Using the Thickness Shear Mode (TSM Resonator

    Directory of Open Access Journals (Sweden)

    J. Siddiqi

    2003-06-01

    Full Text Available The Impedance analysis technique complimented with curve fitting software was used to monitor changes in film properties of Thickness Shear Mode (TSM resonator on vapour exposure. The approach demonstrates how sensor selectivity can be achieved through unique changes in film viscosity caused by organic vapour adsorption.

  17. Packets of resonant modes in the Fermi–Pasta–Ulam system

    Energy Technology Data Exchange (ETDEWEB)

    Genta, Tommaso, E-mail: tomgenta@gmail.com [Università degli Studi di Milano, Corso di Laurea in Matematica, Via C. Saldini 50, 20133 Milano (Italy); Giorgilli, Antonio, E-mail: antonio.giorgilli@unimi.it [Università degli Studi di Milano, Dipartimento di Matematica, Via C. Saldini 50, 20133 Milano (Italy); Paleari, Simone, E-mail: simone.paleari@unimi.it [Università degli Studi di Milano, Dipartimento di Matematica, Via C. Saldini 50, 20133 Milano (Italy); Penati, Tiziano, E-mail: tiziano.penati@unimi.it [Università degli Studi di Milano, Dipartimento di Matematica, Via C. Saldini 50, 20133 Milano (Italy)

    2012-06-04

    We reconsider the phenomenon of localization of energy in low frequency modes in the FPU system, exploiting the resonances in the lower part of the spectrum. Using the resonant normal form of Birkhoff we construct some candidates of approximate first integrals which we put in correspondence to packets of low frequency modes. By numerical calculation we show that the packet associated to the best quasi-integral involves all modes up to a frequency ω{sup ⁎}(ε), where ε is the specific energy. The phenomenon disappears when the specific energy is bigger than a threshold value. The dependence of the relevant quantities on the number N of particles is also investigated. A final section is devoted to a first comparison with the Toda model. -- Highlights: ► We study the role of resonances for energy localization and metastability in the FPU model. ► We construct an approximated first integral associated to the metastable state. ► We propose to identify the metastable state as a packet of resonant modes. ► The packet extend up to a frequency ω{sup ⁎}(ε), which depends only on the specific energy ε.

  18. Controlling Spiral Waves by Modulations Resonant with the Intrinsic System Mode

    Institute of Scientific and Technical Information of China (English)

    XIAO Jing-Hua; HU Gang; HU Bam-Bi

    2004-01-01

    We investigate the spiral wave control in the two-dimensional complex Ginzburg-Landau equation. External drivings which are not resonant with spiral waves but with intrinsic system modes are used to successfully annihilate spiral waves and direct the system to various target states. The novel control mechanism is intuitively explained and the richness and flexibility the control results are emphasized.

  19. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...... theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall perspective...

  20. One-dimensional ordinary-slow extraordinary-Bernstein mode conversion in the electron cyclotron range of frequencies

    Science.gov (United States)

    Guo, Xingyu; Gao, Zhe; Jia, Guozhang

    2017-08-01

    The ordinary-slow extraordinary-Bernstein (O-SX-B) mode conversion in the electron cyclotron range of frequencies (ECRF) is revisited in slab geometry. The analytical formula of the O-SX conversion efficiency by Mjølhus is upgraded to include the magnetic field gradient, and the analytical expression of the SX-B conversion efficiency by Ram and Schultz is generalized for the case of oblique injection. Therefore, the conversion efficiency and optimal parallel refractive index for the whole O-SX-B conversion are obtained analytically and a shift of optimal parallel refractive index due to SX-FX loss is found. Full wave calculations are also presented to be compared with the analytical results.

  1. Ion cyclotron range of frequency mode conversion flow drive in D(He-3) plasmas on JET

    NARCIS (Netherlands)

    Lin, Y.; Mantica, P.; Hellsten, T.; Kiptily, V.; Lerche, E.; Nave, M. F. F.; Rice, J. E.; Van Eester, D.; de Vries, P. C.; Felton, R.; Giroud, C.; Tala, T.

    2012-01-01

    Ion cyclotron range of frequency (ICRF) mode conversion has been shown to drive toroidal flow in JET D(He-3) L-mode plasmas: B-t0 = 3.45 T, n(e0) similar to 3x10(19) m(-3), I-p = 2.8 and 1.8 MA, P-RF <= 3MW at 33MHz and -90 degrees phasing. Central toroidal rotation in the counter-I-p directi

  2. Measurement and reliability issues in resonant mode cantilever for bio-sensing application in fluid medium

    Science.gov (United States)

    Kathel, G.; Shajahan, M. S.; Bhadra, P.; Prabhakar, A.; Chadha, A.; Bhattacharya, E.

    2016-09-01

    Cantilevers immersed in liquid experience viscous damping and hydrodynamic loading. We report on the use of such cantilevers, operating in the dynamic mode with, (i) frequency sweeping and (ii) phase locked loop methods. The solution to reliability issues such as random drift in the resonant peak values, and interference of spurious modes in the resonance frequency spectrum, are explained based on the actuation signal provided and laser spot size. The laser beam spot size and its position on the cantilever were found to have an important role, on the output signal and resonance frequency. We describe a method to distinguish the normal modes from the spurious modes for a cantilever. Uncertainties in the measurements define the lower limit of mass detection (m min). The minimum detection limits of the two measurement methods are investigated by measuring salt adsorption from phosphate buffer solution, as an example, a mass of 14 pg was measured using the 14th transverse mode of a 500~μ m  ×  100 μm  ×  1 μm silicon cantilever. The optimized measurement was used to study the interaction between antibody and antigen.

  3. Coupling-of-modes analysis of thin film plate acoustic wave resonators utilizing the S0 Lamb mode.

    Science.gov (United States)

    Yantchev, Ventsislav

    2010-04-01

    In this work the applicability of the coupling-of-modes (COM) approach to the analysis of thin AlN film plate acoustic resonators (FPAR), utilizing the S0 Lamb wave, is discussed. Analysis based on the Floquet-Bloch theorem as well as COM parameter extraction from a micromachined FPAR test structure are simultaneously used to verify the applicability of the COM approach. Finite element model simulation is used to further study the contribution of the higher order mass loading effects over the Lamb wave propagation under a periodical grating. A possibility to achieve zero sensitivity of the FPAR resonance with respect to the grating strip thickness is identified and physically interpreted for the first time.

  4. A coupling model for quasi-normal modes of photonic resonators

    CERN Document Server

    Vial, Benjamin

    2016-01-01

    We develop a model for the coupling of quasi-normal modes in open photonic systems consisting of two resonators. By expressing the modes of the coupled system as a linear combination of the modes of the individual particles, we obtain a generalized eigenvalue problem involving small size dense matrices. We apply this technique to a 2D problem of a high index rod dimmer of rectangular cross section for Transverse Electric (TE) polarization. The results of our model are compared with full-wave finite element simulations and show a good agreement for the four lowest eigenvalues by taking into account the two lowest eigenfrequencies of the isolated rods. This model provides interesting physical insights on the coupling scheme at stake in such systems and pave the way for the design and optimization of resonances in more complicated systems, including the engineering of metamaterial unit cells.

  5. Explaining Inverted-temperature Loops in the Quiet Solar Corona with Magnetohydrodynamic Wave-mode Conversion

    Science.gov (United States)

    Schiff, Avery J.; Cranmer, Steven R.

    2016-11-01

    Coronal loops trace out bipolar, arch-like magnetic fields above the Sun’s surface. Recent measurements that combine rotational tomography, extreme-ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted-temperature profiles, i.e., loops for which the apex temperature is a local minimum, not a maximum. These “down loops” appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale “up loops” by modeling coronal heating as a time-steady superposition of (1) dissipation of incompressible Alfvén wave turbulence and (2) dissipation of compressive waves formed by mode conversion from the initial population of Alfvén waves. We found that when a large percentage (>99%) of the Alfvén waves undergo this conversion, heating is greatly concentrated at the footpoints and stable “down loops” are created. In some cases we found loops with three maxima that are also gravitationally stable. Models that agree with the tomographic temperature data exhibit higher gas pressures for “down loops” than for “up loops,” which is consistent with observations. These models also show a narrow range of Alfvén wave amplitudes: 3 to 6 km s‑1 at the coronal base. This is low in comparison to typical observed amplitudes of 20–30 km s‑1 in bright X-ray loops. However, the large-scale loops we model are believed to compose a weaker diffuse background that fills much of the volume of the corona. By constraining the physics of loops that underlie quiescent streamers, we hope to better understand the formation of the slow solar wind.

  6. Microspherical photonics: Giant resonant light forces, spectrally resolved optical manipulation, and coupled modes of microcavity arrays

    CERN Document Server

    Li, Yangcheng

    2015-01-01

    In this dissertation novel resonant propulsion of dielectric microspheres is studied with the goal of sorting spheres with identical resonances, which are critical for developing microspherical photonics. First, evanescent field couplers were developed by fixing tapered microfibers in mechanically robust platforms. The tapers were obtained by chemical etching techniques. Using these platforms, WGMs modal numbers, coupling regimes and quality factors were determined for various spheres and compared with theory. Second, the spectroscopic properties of photonic molecules formed by spheres with better than 0.05% uniformity of WGM resonances were studied. It was shown that various spatial configurations of coupled-cavities present relatively stable mode splitting patterns in the fiber transmission spectra which can be used as spectral signatures to distinguish such photonic molecules. The third part is the study of giant resonant propulsion forces exerted on microspheres. This effect was observed in suspensions of...

  7. Observation of optical domino modes in arrays of non-resonant plasmonic nanoantennas

    Science.gov (United States)

    Sinev, Ivan S.; Samusev, Anton K.; Voroshilov, Pavel M.; Mukhin, Ivan S.; Denisyuk, Andrey I.; Guzhva, Mikhail E.; Belov, Pavel A.; Simovski, Constantin R.

    2014-09-01

    Domino modes are highly-confined collectivemodes that were first predicted for a periodic arrangement of metallic parallelepipeds in far-infrared region. The main feature of domino modes is the advantageous distribution of the local electric field, which is concentrated between metallic elements (hot spots), while its penetration depth in metal is much smaller than the skin-depth. Therefore, arrays of non-resonant plasmonic nanoantennas exhibiting domino modes can be employed as broadband light trapping coatings for thin-film solar cells. However, until now in the excitation of such modes was demonstrated only in numerical simulations. Here, we for the first time demonstrate experimentally the excitation of optical domino modes in arrays of non-resonant plasmonic nanoantennas. We characterize the nanoantenna arrays produced by means of electron beam lithography both experimentally using an aperture-type near-field scanning optical microscope and numerically. The proof of domino modes concept for plasmonic arrays of nanoantennas in the visible spectral region opens new pathways for development of low-absorptive structures for effective focusing of light at the nanoscale.

  8. Investigation of impinging jet resonant modes using unsteady pressure-sensitive paint measurements

    Science.gov (United States)

    Davis, Timothy; Edstrand, Adam; Alvi, Farrukh; Cattafesta, Louis; Yorita, Daisuke; Asai, Keisuke

    2015-05-01

    At given nozzle to plate spacings, the flow field of high-speed impinging jets is known to be characterized by a resonance phenomenon. Large coherent structures that convect downstream and impinge on the surface create strong acoustic waves that interact with the inherently unstable shear layer at the nozzle exit. This feedback mechanism, driven by the coherent structures in the jet shear layer, can either be axisymmetric or helical in nature. Fast-response pressure-sensitive paint (PSP) is applied to the impingement surface to map the unsteady pressure distribution associated with these resonant modes. Phase-averaged results acquired at several kHz are obtained using a flush mounted unsteady pressure transducer on the impingement plate as a reference signal. Tests are conducted on a Mach 1.5 jet at nozzle to plate spacings of . The resulting phase-averaged distribution reveals dramatically different flow fields at the corresponding impingement heights. The existence of a purely axisymmetric mode with a frequency of 6.3 kHz is identified at and is characterized by concentric rings of higher/lower pressure that propagate radially with increasing phase. Two simultaneous modes are observed at with one being a dominant symmetric mode at 7.1 kHz and the second a sub-dominant helical mode at 4.3 kHz. Complimentary phase-conditioned Schlieren images are also obtained visualizing the flow structures associated with each mode and are consistent with the PSP results.

  9. Magnetic-dipolar-mode Fano resonances for microwave spectroscopy of high absorption matter

    Science.gov (United States)

    Vaisman, G.; Kamenetskii, E. O.; Shavit, R.

    2015-03-01

    The interaction between high absorption matter and microwave radiated energy is a subject of great importance. In particular, this concerns the microwave spectroscopic characterization of biological liquids. The use of effective testing methods to obtain information about physical properties of different liquids on the molecular level is one of the most important problems in biophysics. However, the standard methods based on microwave resonant techniques are not sufficiently suitable for biological liquids because the resonance peak in a resonator with high-loss liquids is so broad that the material parameters cannot be measured correctly. Although molecular vibrations of biomolecules may have microwave frequencies, it is not thought that such resonant coupling is significant due to their low energy compared with thermal energy and the strongly dampening aqueous environment. This paper presents an innovative microwave sensing technique for different types of lossy materials, including biological liquids. The technique is based on the combination of the microwave perturbation method and the Fano resonance effects observed recently in microwave structures with embedded magnetic-dipolar quantum dots. When the frequency of the magnetic dipolar mode (MDM) resonance is not equal to the cavity resonance frequency, one gets Fano transmission intensity. When the MDM resonance frequency is tuned to the cavity resonance frequency, by a bias magnetic field, one observes a Lorentzian line shape. Use of an extremely narrow Lorentzian peak allows exact probing of the resonant frequency of a cavity loaded by a highly lossy material sample. For different kinds of samples, one has different frequencies of Lorentzian peaks. This presents a picture of precise spectroscopic characterization of high absorption matter in microwaves.

  10. Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip.

    Science.gov (United States)

    Soltani, Mohammad; Ilchenko, Vladimir; Matsko, Andrey; Savchenkov, Anatoliy; Schlafer, John; Ryan, Colm; Maleki, Lute

    2016-09-15

    Crystalline whispering gallery mode (WGM) electro-optic resonators made of LiNbO3 and LiTaO3 are critical for a wide range of applications in nonlinear and quantum optics, as well as RF photonics, due to their remarkably ultrahigh Q(>108) and large electro-optic coefficient. Achieving efficient coupling of these resonators to planar on-chip optical waveguides is essential for any high-yield and robust practical applications. However, it has been very challenging to demonstrate such coupling while preserving the ultrahigh Q properties of the resonators. Here, we show how the silicon photonic platform can overcome this long-standing challenge. Silicon waveguides with appropriate designs enable efficient and strong coupling to these WGM electro-optic resonators. We discuss various integration architectures of these resonators onto a silicon chip and experimentally demonstrate critical coupling of a planar Si waveguide and an ultrahigh QLiTaO3 resonator (Q∼108). Our results show a promising path for widespread and practical applications of these resonators on a silicon photonic platform.

  11. Bandwidth tunable guided-mode resonance filter using contact coupled gratings at oblique incidence

    Science.gov (United States)

    Sang, Tian; Wang, Yueke; Li, Junlang; Zhou, Jianyu; Jiang, Wenwen; Wang, Jicheng; Chen, Guoqing

    2017-01-01

    A novel bandwidth tunable guided-mode resonance filter (GMRF) is proposed based on the contact coupled gratings (CCGs) with the absentee layers at oblique incidence. The design principle of the CCGs with double absentee layers is presented. The lateral shift of the CCGs changes the magnetic field distributions of the waveguide mode in the grating cavity and the surface-confined mode at the cover/grating interface thus facilitates the dynamic control of both the spectral and angular bandwidth of the GMRF. The resonance locations are almost immune to the variation of the lateral shift of the CCGs. The sideband level of the GMRF is almost unaffected by the lateral shift due to the Brewster AR effect. The resonance peak red-shifts quasi-linearly as the incident angle is increased, and the resonance wavelength can be selected by merely tuning the incident angle. The tunable ranges of both the spectral and angular bandwidth can be significantly enhanced by increasing the refractive-index contrast. Low-sideband reflection with controllable bandwidth at 650 nm is designed to demonstrate this concept.

  12. Effects of mode coupling on the admittance of an AT-cut quartz thickness-shear resonator

    Institute of Scientific and Technical Information of China (English)

    He Hui-Jing; Yang Jia-Shi; Zhang Wei-Ping; Wang Ji

    2013-01-01

    We study the effects of couplings to flexure and face-shear modes on the admittance of an AT-cut quartz plate thickness-shear mode resonator.Mindlin's two-dimensional equations for piezoelectric plates are employed.Electrically forced vibration solutions are obtained for three cases:pure thickness-shear mode alone; two coupled modes of thickness shear and flexure; and three coupled modes of thickness shear,flexure,and face shear.Admittance is calculated and its dependence on the driving frequency and the length/thickness ratio of the resonator is examined.Results show that near the thickness-shear resonance,admittance assumes maxima,and that for certain values of the length/thickness ratio,the coupling to flexure causes severe admittance drops,while the coupling to the face-shear mode causes additional admittance changes that were previously unknown and hence are not considered in current resonator design practice.

  13. Conversion of electrostatic upper hybrid emissions to electromagnetic O and X mode waves in the Earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Budden, K.G.; Jones, D.

    1987-02-01

    The linear conversion of electrostatic upper hybrid emissions via the Z mode to electromagnetic ordinary (O) mode waves has for some time been invoked for the source of Terrestrial and Saturnian myriametric and Jovian kilometric radiations. The conversion occurs by virtue of the emissions' propagation in concentration gradients, and for it to be efficient it is necessary for the gradient to be normal to the ambient magnetic field. Suitable concentration gradients are believed to occur at the plasmapause and at the magnetopause. Ray theory predicts only O mode production whereas full wave theory in a cold plasma shows that both O and X (extraordinary) mode are produced, their relative intensities depending on the plasma parameters. Full wave theory in a warm plasma, besides yielding more accurate information on the O and X modes also provides an insight into the effect of conversion on the source plasma wave. Results obtained from these three levels of theory are compared using plasma parameters derived from wave experiments on spacecraft.

  14. Variational Symplectic Particle-in-cell Simulation of Nonlinear Mode Conversion from Extraordinary waves to Bernstein Waves

    CERN Document Server

    Xiao, Jianyuan; Qin, Hong; Yu, Zhi; Xiang, Nong

    2015-01-01

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and cur...

  15. Ordinary-mode fundamental electron cyclotron resonance absorption and emission in the Princeton Large Torus

    Energy Technology Data Exchange (ETDEWEB)

    Efthimion, P.C.; Arunasalam, V.; Hosea, J.C.

    1979-11-01

    Fundamental electron cyclotron resonance damping for 4 mm waves with ordinary polarization is measured for propagation along the major radius traversing the midplane of the plasma in the Princeton Large Torus (PLT). Optical depths obtained from the data are in good agreement with those predicted by the relativistic hot plasma theory. Near blackbody emission over much of the plasma midplane is obtained and, in conjunction with the damping measurements, indicates that the vessel reflectivity is high. The practical use of ordinary mode fundamental electron cyclotron resonance heating (ECRH) in existing and future toroidal devices is supported by these results.

  16. Phase effects in guided mode resonances II: measuring the angular phase of a surface plasmon polariton

    Science.gov (United States)

    Theisen, M. J.; Brown, T. G.

    2015-02-01

    We show how the phase of a resonant interaction between a focused beam and a guided mode can be directly observed in a pupil imaging experiment, in which the irradiance leaving the pupil of a standard microscope is relayed to an image sensor through a combination Wollaston prism, calcite beam splitter and polarizer. We apply the method to the observation of a surface plasmon polariton resonance excited in a corrugated silver film fabricated using electron beam lithography. We discuss how this particular imaging configuration could be adapted for applications in plasmonic optical sensing.

  17. Lithographically defined aluminum nitride cross-sectional Lamé mode resonators

    Science.gov (United States)

    Chen, G.; Cassella, C.; Qian, Z.; Hummel, G. E.; Rinaldi, M.

    2017-03-01

    This paper reports on aluminum nitride (AlN) cross-sectional Lamé mode resonators (CLMRs) showing high electromechanical coupling coefficient (kt{2} ) in excess of 4% in a lithographically defined 307 MHz frequency range around 920 MHz. In addition, we report the performance of a CLMR showing a figure of merit (FoM, defined as the product of quality factor, Q, and kt{2} ) in excess of 85. To the best of the authors’ knowledge, such FoM value is the highest reported for AlN resonators using interdigitated metal electrodes (IDTs).

  18. Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, O., E-mail: olli.tarvainen@jyu.fi; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J. [Department of Physics, University of Jyväskylä, 40500 Jyväskylä (Finland); Izotov, I.; Mansfeld, D. [Institute of Applied Physics, RAS, 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Skalyga, V. [Institute of Applied Physics, RAS, 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation)

    2016-02-15

    The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz A-electron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10-100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime.

  19. Coupled tangential-axial resonant modes of piezoelectric hollow cylinders and their application in ultrasonic motors.

    Science.gov (United States)

    Vyshnevskyy, Oleksiy; Kovalev, Sergej; Mehner, Jan

    2005-01-01

    This paper describes a tangential-axial eigen-mode of a piezoelectric hollow cylinder. A new type of piezoelectric ultrasonic motor using this oscillation mode has been developed. The motor is a traveling-wave-type motor. The stator of such a motor consists of a solid piezoelectric hollow cylinder, which, excited in the tangential-axial resonant mode by a three-phase electrical signal, will exhibit elliptical displacement and transfer rotation to the rotor. The behavior of the stator has been simulated with finite element method (FEM) software. The simulation results have been checked with single-point contact measurements on the surface of the ultrasonic motors. The paper closes with the introduction of new ultrasonic motors based on this oscillation mode.

  20. Normal mode analysis of pyrococcus furiosus rubredoxin via nuclear resonance vibrational spectroscopy (NRVS) and resonance raman spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Y.; Wang, H.; George, S.J.; Smith, M.C.; Adams, M.W.W.; Jenney, F.E., Jr.; Sturhahn, W.; Alp, E.E.; Zhao, J.; Yoda, Y.; Dey, A.; Solomon, E.I.; Cramer, S.P.; Experimental Facilities Division (APS); Univ. of California; LBNL; Stanford Univ.; Univ. of Georgia; SPring-8

    2005-10-26

    We have used {sup 57}Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(S{sub cys})4 site in reduced and oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). The oxidized form has also been investigated by resonance Raman spectroscopy. In the oxidized Rd NRVS, strong asymmetric Fe-S stretching modes are observed between 355 and 375 cm{sup -1}; upon reduction these modes shift to 300-320 cm{sup -1}. This is the first observation of Fe-S stretching modes in a reduced Rd. The peak in S-Fe-S bend mode intensity is at {approx}150 cm{sup -1} for the oxidized protein and only slightly lower in the reduced case. A third band occurs near 70 cm{sup -1} for both samples; this is assigned primarily as a collective motion of entire cysteine residues with respect to the central Fe. The {sup 57}Fe partial vibrational density of states (PVDOS) were interpreted by normal mode analysis with optimization of Urey-Bradley force fields. The three main bands were qualitatively reproduced using a D{sub 2d} Fe(SC){sub 4} model. A C{sub 1} Fe(SCC){sub 4} model based on crystallographic coordinates was then used to simulate the splitting of the asymmetric stretching band into at least 3 components. Finally, a model employing complete cysteines and 2 additional neighboring atoms was used to reproduce the detailed structure of the PVDOS in the Fe-S stretch region. These results confirm the delocalization of the dynamic properties of the redox-active Fe site. Depending on the molecular model employed, the force constant KFe-S for Fe-S stretching modes ranged from 1.24 to 1.32 mdyn/Angstrom. KFe-S is clearly diminished in reduced Rd; values from {approx}0.89 to 1.00 mdyn/Angstrom were derived from different models. In contrast, in the final models the force constants for S-Fe-S bending motion, HS-Fe-S, were 0.18 mdyn/Angstrom for oxidized Rd and 0.15 mdyn/Angstrom for reduced Rd. The NRVS technique demonstrates great promise for the observation and quantitative

  1. Acoustic Eigenvalues of a Quasispherical Resonator: Second Order Shape Perturbation Theory for Arbitrary Modes.

    Science.gov (United States)

    Mehl, James B

    2007-01-01

    The boundary-shape formalism of Morse and Ingard is applied to the acoustic modes of a deformed spherical resonator (quasisphere) with rigid boundaries. For boundary shapes described by r = a [1 - ε ℱ(θ, ϕ)], where ε is a small scale parameter and ℱ is a function of order unity, the frequency perturbation is calculated to order ε (2). The formal results apply to acoustic modes whose angular dependence is designated by the indices ℓ and m. Specific examples are worked out for the radial (ℓ = 0) and triplet (ℓ = 1) modes, for prolate and oblate spheroids, and for triaxial ellipsoids. The exact eigenvalues for the spheroids, and eigenvalue determined with finite-element calculations, are shown to agree with perturbation theory through terms of order ε (2). This work is an extension of the author's previous papers on the acoustic eigenfrequencies of deformed spherical resonators, which were limited to the second-order perturbation for radial modes [J. Acoust. Soc. Am. 71, 1109-1113 (1982)] and the first order-perturbation for arbitrary modes [J. Acoust. Soc. Am. 79, 278-285 (1986)].

  2. Tomographic study of helical modes in bifurcating Taylor-Couette-Poiseuille flow using magnetic resonance imaging.

    Science.gov (United States)

    Moser, K W; Raguin, L G; Georgiadis, J G

    2001-07-01

    The quantitative visualization of flow in a wide-gap annulus (radius ratio 0.5) between concentric cylinders with the inner cylinder rotating and a superimposed axial flow reveals a novel mixed-mode state at relatively high flow rates. A fast magnetic resonance imaging sequence allows the cinematographic dissection and three-dimensional reconstruction of supercritical nonaxisymmetric modes in a regime where stationary helical and propagating toroidal vortices coexist. The findings shed light on symmetry-breaking instabilities, flow pattern selection, and their consequences for hydrodynamic mixing in a complex laminar flow that constitutes a celebrated prototype of many mixing or fractionation processes.

  3. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators

    Science.gov (United States)

    Chembo, Yanne K.; Menyuk, Curtis R.

    2013-05-01

    We demonstrate that frequency (Kerr) comb generation in whispering-gallery-mode resonators can be modeled by a variant of the Lugiato-Lefever equation that includes higher-order dispersion and nonlinearity. This spatiotemporal model allows us to explore pulse formation in which a large number of modes interact cooperatively. Pulse formation is shown to play a critical role in comb generation, and we find conditions under which single pulses (dissipative solitons) and multiple pulses (rolls) form. We show that a broadband comb is the spectral signature of a dissipative soliton, and we also show that these solitons can be obtained by using a weak anomalous dispersion and subcritical pumping.

  4. Resonance between coherent whistler mode waves and electrons in the topside ionosphere

    Science.gov (United States)

    Neubert, T.; Bell, T. F.; Storey, L. R. O.

    1987-01-01

    Landau resonance and cyclotron resonance of coherent whistler mode waves and energetic electrons are explored for magnetoplasmas with appreciable gradients in the plasma density and magnetic field strength. It is shown that in the topside ionosphere of the earth near the ion transition height the gradients in plasma density and magnetic field strength along a magnetic field line may match in a way which enhances both Landau and cyclotron interactions between waves and electrons at the loss cone pitch angle. The pitch angle scattering induced by a signal from a ground-based VLF transmitter in the ionosphere above the transmitter has been estimated and compared to the pitch angle scattering induced by naturally occurring ELF hiss through cyclotron resonance. It is found that the expected scattering due to plasmapheric hiss is an order of magnitude larger than that due to Landau resonance in the topside ionosphere. Pitch angle scattering due to cyclotron resonance in the topside ionosphere, however, may be larger by a factor of 2. It is suggested that the 'fast Trimpi' effect may be caused by a cyclotron resonance interaction in the topside ionosphere.

  5. The Theoretical Foundation of 3D Alfvén Resonances: Normal Modes

    Science.gov (United States)

    Wright, Andrew N.; Elsden, Thomas

    2016-12-01

    We consider the resonant coupling of fast and Alfvén magnetohydrodynamic (MHD) waves in a 3D equilibrium. Numerical solutions to normal modes (\\propto \\exp (-iω t)) are presented, along with a theoretical framework to interpret them. The solutions we find are fundamentally different from those in 1D and 2D. In 3D there exists an infinite number of possible resonant solutions within a “Resonant Zone,” and we show how boundary conditions and locally 2D regions can favor particular solutions. A unique feature of the resonance in 3D is switching between different permissible solutions when the boundary of the Resonant Zone is encountered. The theoretical foundation that we develop relies upon recognizing that, in 3D, the orientation of the resonant surface will not align in a simple fashion with an equilibrium coordinate. We present a method for generating the Alfvén wave natural frequencies for an arbitrarily oriented Alfvén wave, which requires a careful treatment of scale factors describing the background magnetic field geometry.

  6. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn, E-mail: dongxiang87@gmail.com [National Laboratory of solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Qi, Dong-Xiang, E-mail: rwpeng@nju.edu.cn, E-mail: dongxiang87@gmail.com [National Laboratory of solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Science, Jiangnan University, Wuxi 214122 (China)

    2015-04-15

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.

  7. Defect modes of one-dimensional photonic-crystal structure with a resonance nanocomposite layer

    Science.gov (United States)

    Moiseev, S. G.; Ostatochnikov, V. A.

    2016-08-01

    We have studied the defect modes of a structure of Fabry - Perot interferometer type, in which the layer separating Bragg mirrors is made of a heterogeneous composite material with metallic nanoscale inclusions. Effective optical characteristics of the nanocomposite material have resonance singularities in the visible region of the spectrum, which are conditioned by the surface plasmon resonance of metallic nanoparticles. It is shown that the spectral profile of the energy bandgap of the photonic structure can be modified by varying the volume fraction and size of nanoparticles. The interrelation of splitting and shift of defect modes with structural parameters of a nanocomposite layer is studied by means of a numerical - graphical method with allowance for the frequency dependences of phases and amplitudes of reflectances in Bragg mirrors.

  8. Experimental investigation of relaxation oscillations resonance in mode-locked Fabry-Perot semiconductor lasers

    CERN Document Server

    Roncin, Vincent; Hayau, Jean-François; Besnard, Pascal; Simon, Jean-Claude; Van Dijk, F; Shen, Alexandre; Duan, Guang-Hua

    2014-01-01

    We propose in this communication an experimental study of the relaxation oscillations behavior in mode-locked lasers. The semiconductor self-pulsating laser diode is composed by two gain sections, without saturable absorber. It is made of bulk structure and designed for optical telecommunication applications. This specific device allows two different regimes of optical modulation: the first one corresponds to the resonance of the relaxation oscillations and the second one, to the mode-locking regime at FSR value. This singular behavior leads us to characterize the self-pulsations which are coexisting in the laser and to describe two regimes of output modulation: the first one appears thanks to the resonance of the oscillation relaxation and the other one corresponds to the FSR of the Fabry-Perot laser at 40 GHz.

  9. Structure of wave-particle resonances and Alfvén mode saturation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Lauber, Ph. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Briguglio, S.; Fusco, V. [C.R. ENEA Frascati - C.P. 65, 00044 Frascati (Italy); Zonca, F. [C.R. ENEA Frascati - C.P. 65, 00044 Frascati (Italy); Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University Hangzhou 310027 (China)

    2016-01-15

    The dynamics of beta-induced Alfvén eigenmodes driven by anisotropic co-passing or counter-passing fast ions, in a low-shear magnetic equilibrium, is investigated by self-consistent hybrid MHD-particle simulations with the XHMGC code. Though the modes exhibit similar structure and frequency in both cases and the linear growth rate is 10% larger for counter-passing ions than for co-passing ions, the nonlinear saturation amplitude is much larger in co-passing case. Moreover, different scalings for the saturation amplitude with increasing growth rates are observed in the two cases. It is shown that these differences are caused by the different radial dependence of resonance frequencies of co-passing and counter-passing fast ions: flat in the former case, steep in the latter case, so that the resonance width is, respectively, larger (in the former case) or smaller (in the latter case) than the mode width.

  10. Resonant Raman scattering theory for Kitaev models and their Majorana fermion boundary modes

    Science.gov (United States)

    Perreault, Brent; Knolle, Johannes; Perkins, Natalia B.; Burnell, F. J.

    2016-09-01

    We study the inelastic light scattering response in two- (2D) and three-dimensional (3D) Kitaev spin-liquid models with Majorana spinon band structures in the symmetry classes BDI and D leading to protected gapless surface modes. We present a detailed calculation of the resonant Raman/Brillouin scattering vertex relevant to iridate and ruthenate compounds whose low-energy physics is believed to be proximate to these spin-liquid phases. In the symmetry class BDI, we find that while the resonant scattering on thin films can detect the gapless boundary modes of spin liquids, the nonresonant processes do not couple to them. For the symmetry class D, however, we find that the coupling between both types of light-scattering processes and the low-energy surface states is strongly suppressed. Additionally, we describe the effect of weak time-reversal symmetry breaking perturbations on the bulk Raman response of these systems.

  11. Discontinuous conduction mode analysis of phase-modulated series resonant converter

    Indian Academy of Sciences (India)

    UTSAB KUNDU; PARTHASARATHI SENSARMA

    2017-08-01

    This paper proposes an analytical approach to derive voltage gain for phase-modulated dc–dc series resonant converter (SRC) operating in discontinuous conduction mode (DCM). The conventional fundamental harmonic approximation technique is extended for a non-ideal series resonant tank to clarify the limitations of SRC operating in continuous conduction mode (CCM). The DCM analysis is described in a normalized form defining appropriate base quantities. The converter is analysed both in time and frequency domain to derive a non-linear algebraic function of diode rectifier extinction angle. The root of this function is numericallydetermined using MATLAB and used to predict the dc bus voltage. Analytical derivation of critical load resistance is discussed, which indicates the CCM–DCM boundary condition. Experimental results are presented to validate the analysis

  12. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    CERN Document Server

    Bhattacharya, Jishnu; Antia, H M

    2015-01-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the "surface term." The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun....

  13. Resonant modes in cholesteric liquid crystals with a gaussian pitch profile.

    Science.gov (United States)

    da Silva, R R; Zanetti, F M; de Oliveira, I N

    2010-12-01

    In this paper, we investigate the spectral properties of a cholesteric film presenting a pitch profile with a gaussian deformation. Using the Berreman 4 × 4 matrix formalism, we numerically obtain the transmission spectrum at normal and oblique light incidence as a function of width and the position of the deformation. Our results reveal that a pair of resonant modes emerges inside the main stop band of the transmission spectrum as the width of the deformation becomes comparable to the helical pitch length. The mechanism behind the emergence of the resonant modes is discussed. The case of a pitch profile with multiple gaussian deformations is also analyzed. At this configuration, a crossover from single to multiple band-gap pattern can be observed in the transmission spectrum, depending on the deformation parameters.

  14. Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna

    Science.gov (United States)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2015-11-01

    In this study, we examined the plasmon response for both metallic and metallodielectric nanoantennas composed of four gold (Au) triangles in a quadrumer orientation. Tailoring an artificial metallic quad-triangles nanoantenna, it is shown that the structure is able to support pronounced plasmon and Fano resonances in the visible spectrum. Using plasmon transmutation effect, we showed that the plasmonic response of the proposed cluster can be enhanced with the placement of carbon nanoparticles in the offset gaps between the proximal triangles. It is verified that this structural modification gives rise to formation of new collective magnetic antibonding (dark) plasmon modes. Excitation of these subradiant dark modes leads to formation of narrower and deeper Fano resonances in the spectral response of the metallodielectric nanoantenna. To investigate the practical applications of the metallodielectric structure, we immersed the nano-assembly in various liquids with different refractive indices to define its sensitivity to the environmental perturbation as a plasmonic biological sensor.

  15. Annual and semi-annual cycle of equatorial Atlantic circulation associated with basin mode resonance

    Science.gov (United States)

    Brandt, Peter; Claus, Martin; Greatbatch, Richard J.; Kopte, Robert; Toole, John M.; Johns, William E.; Böning, Claus W.

    2016-04-01

    Seasonal variability of the tropical Atlantic circulation is dominated by the annual cycle, but semi-annual variability is also pronounced, despite weak forcing at that period. Here we use multi-year, full depth velocity measurements from the central equatorial Atlantic to analyze the vertical structure of annual and semi-annual variations of zonal velocity. A baroclinic modal decomposition finds that the annual cycle is dominated by the 4th mode and the semi-annual cycle by the 2nd mode. Similar local behavior is found in a high-resolution general circulation model. This simulation reveals that the annual and semi-annual cycles of the respective dominant baroclinic modes are associated with characteristic basin-wide structures. Using an idealized linear reduced-gravity model to simulate the dynamics of individual baroclinic modes, it is shown that the observed circulation variability can be best explained by resonant equatorial basin modes. Companion simulations using the reduced-gravity model varying the basin geometry, i.e. square basin versus realistic coastlines, and forcing, i.e. spatially uniform versus spatially varying wind forcing, show a structural robustness of the simulated basin modes. A main focus of this study is the seasonal variability of the Equatorial Undercurrent (EUC) as identified in recent observational studies. Main characteristics of the observed EUC including seasonal variability of transport, core depth, and maximum core velocity can be explained by the linear superposition of the dominant equatorial basin modes as obtained from the reduced-gravity model.

  16. Fourth-Order Contour Mode ZnO-on-SOI Disk Resonators for Mass Sensing Applications

    Directory of Open Access Journals (Sweden)

    Ivan Rivera

    2015-04-01

    Full Text Available In this work, we have investigated the design, fabrication and testing of ZnO-on-SOI fourth-order contour mode disk resonators for mass sensing applications. This study aims to unveil the possibility for real-time practical mass sensing applications by using high-Q ZnO-on-SOI contour-mode resonators while taking into account their unique modal characteristics. Through focused ion beam (FIB direct-write metal deposition techniques, the effects of localized mass loading on the surface of three extensional mode devices have been investigated. Ten microfabricated 40 mm-radius disk resonators, which all have a 20 mm-thick silicon device layer and 1 mm-thick ZnO transducer layer but varied anchor widths and numbers, have exhibited resonant frequencies ranging from 84.9 MHz to 86.7 MHz with Q factors exceeding 6000 (in air and 10,000 (in vacuum, respectively. It has been found that the added mass at the nodal locations leads to noticeable Q-factor degradation along with lower induced frequency drift, thereby resulting in reduced mass sensitivity. All three measured devices have shown a mass sensitivity of ~1.17 Hz·fg−1 at the maximum displacement points with less than 33.3 ppm of deviation in term of fractional frequency change. This mass sensitivity is significantly higher than 0.334 Hz·fg−1 at the nodal points. Moreover, the limit of detection (LOD for this resonant mass sensor was determined to be 367 ag and 1290 ag (1 ag = 10−18 g for loaded mass at the maximum and minimum displacement points, accordingly.

  17. Stimulated excitation of resonant Cherenkov radiation at a large number of neighbouring waveguide modes

    CERN Document Server

    Grigoryan, L Sh; Khachatryan, H F; Grigoryan, M L

    2012-01-01

    The resonance Cherenkov radiation generated from a train of equally-spaced unidimensional electron bunches travelling along the axis of a hollow channel inside an infinite cylindrical waveguide filled with (weakly dispersing) transparent dielectric has been investigated. It was shown that its excitation might be stimulated at a large number of neighboring modes of the waveguide. A visual explanation of this effect is given and the possibility of its observation in the range of terahertz radiation is discussed.

  18. Temperature Compensation of Aluminum Nitride Lamb Wave Resonators Utilizing the Lowest-Order Symmetric Mode

    Science.gov (United States)

    2012-12-14

    82. D. P. Morgan, Surface- Wave Devices for Signal Processing, Holland: Elsevier, 1991. 83. L. E. McNeil, M. Grimsditch, and R. H. French ... Vibrational spectroscopy of aluminum nitride,” J. Am. Ceram. Soc., vol. 76, pp. 1132–1136, May 1993. 84. K. Hashimoto, Surface Acoustic Wave Devices in...Temperature Compensation of Aluminum Nitride Lamb Wave Resonators Utilizing the Lowest-Order Symmetric Mode Chih-Ming Lin Electrical Engineering and

  19. Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice.

    Science.gov (United States)

    Ma, Jing; Martínez, Luis Javier; Povinelli, Michelle L

    2012-03-12

    A novel photonic crystal lattice is proposed for trapping a two-dimensional array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality factors on the order of 10⁵ are predicted in the lattice. A significant decrease of the optical power required for optical trapping can be achieved compared to our previous design.

  20. Tailoring optical resonant cavity modes in SnO2 microstructures through doping and shape engineering

    Science.gov (United States)

    García-Tecedor, M.; Maestre, D.; Cremades, A.; Piqueras, J.

    2017-10-01

    Optical resonances are effectively tailored by engineering size, morphology and doping in tin oxide microstructures. The use of Cr shifts the light confinement to the near-infrared region, as compared to the undoped microstructures, while achieving good Q and F factors. Other issues, such as appropriate thickness to width ratio, allow the selection of Fabry–Pérot or Whispering Gallery modes, or the appearance of a combination of both kinds of resonances in the same microstructure. Morphology variability would contribute with flexibility in the design of systems for different applications, while combining the observed waveguiding behavior with the optical resonances in the same material is an advantage for applications based in a monolithic design. Refraction index of Cr doped tin oxide has been obtained.

  1. Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor

    CERN Document Server

    Lin, Guoping; Henriet, Rémi; Jacquot, Maxime; Chembo, Yanne K

    2015-01-01

    We demonstrate a monolithic optical whispering gallery mode resonator fabricated with barium fluoride (BaF$_2$) with an ultra-high quality ($Q$) factor above $10^9$ at $1550$ nm, and measured with both the linewidth and cavity-ring-down methods. Vertical scanning optical profilometry shows that the root mean square surface roughness of $2$ nm is achieved for our mm-size disk. To the best of our knowledge, we show for the first time that one billion $Q$-factor is achievable by precision polishing in relatively soft crystals with mohs hardness of ~$3$. We show that complex thermo-optical dynamics can take place in these resonators. Beside usual applications in nonlinear optics and microwave photonics, high energy particle scintillation detection utilizing monolithic BaF$_2$ resonators potentially becomes feasible.

  2. Design of Dual-Band Bandpass Filter Using Dual-Mode Defected Stub Loaded Resonator

    Directory of Open Access Journals (Sweden)

    Dechang Huang

    2014-01-01

    Full Text Available A novel approach for designing a dual-band bandpass filter (BPF using defected stub loaded resonator (DSLR is presented in this paper. The proposed DSLR consists of two fundamental resonant modes and some resonant characteristics have been investigated by EM software of Ansoft HFSS. Then, based on two coupled DSLRs, a dual-band response BPF that operates at 2.4 GHz and 3.5 GHz is designed and implemented for WLAN and WIMAX application. The first passband is constructed by two lower frequencies of the coupled DSLRs and the second passband is produced by two higher ones; the coupling scheme of them is also given. Finally, the dual-band BPF is fabricated and measured; a good agreement between simulation and measurement is obtained, which verifies the validity of the design methodology.

  3. Second-Order Resonant Interaction of Ring Current Protons with Whistler-Mode Waves

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; CHEN Liang-Xu; HE Hui-Yong; ZHOU Qing-Hua

    2008-01-01

    We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory.The diffusion coefficients are proportional to the electric field amplitude E,much greater than those for the regular first-order resonance.which are proportional to the electric field amplitudes square E2.Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek=50ke V and 100ke V at locations L=2 and L=3.5.The timescale for the loss process of protons by the Whistler waves is found to approach one hour,comparable to that by the EMIC waves,suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.

  4. Continuous monitoring of bacterial biofilm growth using uncoated Thickness-Shear Mode resonators

    Science.gov (United States)

    Castro, P.; Resa, P.; Durán, C.; Maestre, J. R.; Mateo, M.; Elvira, L.

    2012-12-01

    Quartz Crystal Microbalances (QCM) were used to nondestructively monitor in real time the microbial growth of the bacteria Staphylococcus epidermidis (S. epidermidis) in a liquid broth. QCM, sometimes referred to as Thickness-Shear Mode (TSM) resonators, are highly sensitive sensors not only able to measure very small mass, but also non-gravimetric contributions of viscoelastic media. These devices can be used as biosensors for bacterial detection and are employed in many applications including their use in the food industry, water and environment monitoring, pharmaceutical sciences and clinical diagnosis. In this work, three strains of S. epidermidis (which differ in the ability to produce biofilm) have been continuously monitored using an array of piezoelectric TSM resonators, at 37 °C in a selective culturing media. Microbial growth was followed by measuring the changes in the crystal resonant frequency and bandwidth at several harmonics. It was shown that microbial growth can be monitored in real time using multichannel and multiparametric QCM sensors.

  5. Top loaded TM01δ Mode Cylindrical Dielectric Resonator for Complex Permittivity Characterization of Liquids

    Directory of Open Access Journals (Sweden)

    A. Yasin

    2016-12-01

    Full Text Available This paper reports on a technique of using a very high quality factor cylindrical dielectric resonator operating in TM01δ mode to characterize liquids available in trace quantities. The proposed measurement technique is based on the resonant perturbation theory and the resonator is used as a sensor to determine complex permittivity of solvents at 10.5GHz. Owing to a very high unloaded quality factor of about 5000 the proposed sensor can characterize low to medium loss materials with high accuracy. Small quantities of isopropanol and ethanol have been characterized for their solution ratio when mixed with different quantities of distilled water. Low cost and versatility of the proposed structure make it a prime choice for pharmaceutical industry where high standards of purity need to be ensured.

  6. Nonlinear mode coupling and internal resonances in MoS2 nanoelectromechanical system

    Science.gov (United States)

    Samanta, C.; Yasasvi Gangavarapu, P. R.; Naik, A. K.

    2015-10-01

    Atomically thin two dimensional (2D) layered materials have emerged as a new class of material for nanoelectromechanical systems (NEMS) due to their extraordinary mechanical properties and ultralow mass density. Among them, graphene has been the material of choice for nanomechanical resonator. However, recent interest in 2D chalcogenide compounds has also spurred research in using materials such as MoS2 for the NEMS applications. As the dimensions of devices fabricated using these materials shrink down to atomically thin membrane, strain and nonlinear effects have become important. A clear understanding of the nonlinear effects and the ability to manipulate them is essential for next generation sensors. Here, we report on all electrical actuation and detection of few-layer MoS2 resonator. The ability to electrically detect multiple modes and actuate the modes deep into the nonlinear regime enables us to probe the nonlinear coupling between various vibrational modes. The modal coupling in our device is strong enough to detect three distinct internal resonances.

  7. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields

    Science.gov (United States)

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-08-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices.

  8. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields.

    Science.gov (United States)

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-08-09

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices.

  9. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields

    Science.gov (United States)

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-01-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844

  10. Studying Kittel-like modes in a 3D YIG disk using Torque-mixing Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Fani Sani, Fatemeh; Losby, Joseph; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    We report a study of ferrimagnetic resonance in a mesoscopic, single-crystalline YIG disk using torque-mixing magnetic resonance spectroscopy (TMRS). The Kittel model for magnetic resonance is a touchstone in measuring fundamental magnetic properties for magnetic films, which does not significantly depend on the film size. In 3D structures, ladders of confined resonance modes are observed, and these can exhibit the non-monotonic evolution of frequency with field familiar from Kittel modes. TMRS is a tool uniquely suited for observing this physics in individual 3D structures, on account of its combination of high sensitivity and broadband capability coupled with fine frequency resolution.

  11. Properties of Optical Resonant Modes in Ⅲ-Nitride Semiconductor Micro-Cone Cavities

    Institute of Scientific and Technical Information of China (English)

    DAI Lun; ZHANG Bei; LIN Jing-Yu; JIANG Hong-Xing

    2001-01-01

    Arrays of Ⅲ-nitride semiconductor micro-cone cavities with a base diameter of 3.3μm were fabricated by ion beam etching. The micro-cones consisted of 58 nm thick multiple quantum wells of ln0.22Ga0.78N/In0.06Ga0.94N as well as a 1.5μm thick epilayer of GaN. Optical resonant modes from a single micro-cone could be clearly observed in the photoluminescence spectra at temperatures up to 200K under a pumping power density two orders of magnitude lower than that for the Ⅲ-nitride semiconductor micro-disk or micro-ring cavity. Using a novel optical ray tracing method, we have figured out four main types of optical resonant cavities inside the three-dimensional micro-cone, including two Fabry-Perot (F-P) mode types as well as two Whispering Gallery mode types. The three corresponding mode spacings among the four agree perfectly with the experimental results. The advantages of this new class of micro-cavity over the other micro-cavities are discussed. These findings are expected to have an impact on the design of the ultraviolet/blue micro-cavity laser diodes.

  12. Dynamically creating tripartite resonance and dark modes in a multimode optomechanical system

    Science.gov (United States)

    Damskägg, Erno; Pirkkalainen, Juha-Matti; Sillanpää, Mika A.

    2016-10-01

    We study a multimode optomechanical system where two mechanical oscillators are coupled to an electromagnetic cavity. Previously it has been shown that if the mechanical resonances have nearly equal frequencies, one can make the oscillators to interact via the cavity by strong pumping with a coherent pump tone. One can view the interaction also as emergence of an electromagnetically dark mode which gets asymptotically decoupled from the cavity and has a linewidth much smaller than that of the bare cavity. The narrow linewidth and long lifetime of the dark mode could be advantageous, for example in information storage and processing. Here we investigate the possibility to create dark modes dynamically using two pump tones. We show that if the mechanical frequencies are intrinsically different, one can bring the mechanical oscillators and the cavity on-resonance and thus create a dark mode by double sideband pumping of the cavity. We realize the scheme in a microwave optomechanical device employing two drum oscillators with unmatched frequencies, {ω }1/2π =8.1 {MHz} and {ω }2/2π =14.2 {MHz}. We also observe a breakdown of the rotating-wave approximation, most pronounced in another device where the mechanical frequencies are close to each other.

  13. Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance

    Science.gov (United States)

    Lahmiri, Salim

    2016-08-01

    The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.

  14. A Theory of Self-Resonance After Inflation, Part 1: Adiabatic and Isocurvature Goldstone Modes

    CERN Document Server

    Hertzberg, Mark P; Spitzer, William G; Becerra, Juana C; Li, Lanqing

    2014-01-01

    We develop a theory of self-resonance after inflation. We study a large class of models involving multiple scalar fields with an internal symmetry. For illustration, we often specialize to dimension 4 potentials, but we derive results for general potentials. This is the first part of a two part series of papers. Here in Part 1 we especially focus on the behavior of long wavelengths modes, which are found to govern most of the important physics. Since the inflaton background spontaneously breaks the time translation symmetry and the internal symmetry, we obtain Goldstone modes; these are the adiabatic and isocurvature modes. We find general conditions on the potential for when a large instability band exists for these modes at long wavelengths. For the adiabatic mode, this is determined by a sound speed derived from the time averaged potential. While for the isocurvature mode, this is determined by a speed derived from a time averaged auxiliary potential. Interestingly, we find that this instability band usual...

  15. Magneto-optical mode conversion in a hybrid glass waveguide made by sol-gel and ion-exchange techniques

    Science.gov (United States)

    Royer, François; Amata, Hadi; Parsy, François; Jamon, Damien; Ghibaudo, Elise; Broquin, Jean-Emmanuel; Neveu, Sophie

    2012-01-01

    The integration of magneto-optical materials with classical technologies being still a difficult problem, this study explores the possibility to realize a mode converter based on a hybrid structure. A composite magneto-optical layer made of a silica/zirconia matrix doped by magnetic nanoparticles is coated on the top face of ion-exchanged glass waveguides. Optical characterizations that have been carried out demonstrated the efficiency of these hybrid structures in terms of lateral confinement. Furthermore, TE to TM mode conversion has been observed when a longitudinal magnetic field is applied to the device. The amount of this conversion is analysed taking into account the magneto-optical confinement and the modal birefringence of the structure.

  16. Kinetic full wave analyses of O-X-B mode conversion of EC waves in tokamak plasmas

    Science.gov (United States)

    Fukuyama, Atsushi; Khan, Shabbir Ahmad; Igami, Hiroe; Idei, Hiroshi

    2016-10-01

    For heating and current drive in a high-density plasma of tokamak, especially spherical tokamak, the use of electron Bernstein waves and the O-X-B mode conversion were proposed and experimental observations have been reported. In order to evaluate the power deposition profile and the current drive efficiency, kinetic full wave analysis using an integral form of dielectric tensor has been developed. The incident angle dependence of wave structure and O-X-B mode conversion efficiency is examined using one-dimensional analysis in the major radius direction. Two-dimensional analyses on the horizontal plane and the poloidal plane are also conducted, and the wave structure and the power deposition profile are compared with those of previous analyses using ray tracing method and cold plasma approximation. This work is supported by JSPS KAKENHI Grant Number JP26630471.

  17. Method of Measuring Common-Mode Current Conversion Coefficient for Estimating Variation in Radiated Emission from Printed Circuit Board Components

    Directory of Open Access Journals (Sweden)

    C. Ho

    2014-06-01

    Full Text Available This work describes the measurement of the common-mode current conversion coefficient for a microstrip line with solid and slotted ground planes by using a VNA with a BCI probe. The radiated emissions estimated by the common-mode current conversion coefficient are further compared with those obtained by the FAC measurements. Furthermore, the proposed method was used to estimate radiated emissions from a microstrip bandpass filter. For all of the case studies, results of electromagnetic (EM simulation demonstrate the validity of the measurement results by the proposed method. Highly promising for use in EMI measurement application, the proposed method can estimate the radiated emissions by miniaturized microstrip components on a PCB when pre-tested for compliance with EMI regulations.

  18. Study of resonant modes in a 700 nm pitch macroporous silicon photonic crystal

    Science.gov (United States)

    Cardador, D.; Vega, D.; Segura, D.; Rodríguez, A.

    2017-01-01

    In this study the modes produced by a defect inserted in a macroporous silicon (MP) photonic crystal (PC) have been studied theoretical and experimentally. In particular, the transmitted and reflected spectra have been analyzed for variations in the defect's length and width. The performed simulations show that the resonant frequency is more easily adjusted for the fabricated samples by length tuning rather than width. The optimum resonance peak results when centered in the PC bandgap. The changes in the defect geometry result in small variations of the optical response of the PC. The resonance frequency is most sensitive to length variations, while the mode linewidth shows greater change with the defect width variation. Several MPS photonic crystals were fabricated by the electrochemical etching (EE) process with optical response in the range of 5.8 μm to 6.5 μm. Results of the characterization are in good agreement with simulations. Further samples were fabricated consisting of ordered modulated pores with a pitch of 700 nm. This allowed to reduce the vertical periodicity and therefore to have the optical response in the range of 4.4 μm to 4.8 μm. To our knowledge, modes working in this range of wavelengths have not been previously reported in 3-d MPS structures. Experimental results match with simulations, showing a linear relationship between the defect's length and working frequency inside the bandgap. We demonstrate the possibility of tailoring the resonance peak in both ranges of wavelengths, where the principal absorption lines of different gases in the mid infrared are placed. This makes these structures very promising for their application to compact gas sensors.

  19. A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance.

    Science.gov (United States)

    Jiang, Jin-Wu; Wang, Bing-Shen; Wang, Jian-Sheng; Park, Harold S

    2015-03-04

    Single-layer graphene is so flexible that its flexural mode (also called the ZA mode, bending mode, or out-of-plane transverse acoustic mode) is important for its thermal and mechanical properties. Accordingly, this review focuses on exploring the relationship between the flexural mode and thermal and mechanical properties of graphene. We first survey the lattice dynamic properties of the flexural mode, where the rigid translational and rotational invariances play a crucial role. After that, we outline contributions from the flexural mode in four different physical properties or phenomena of graphene-its thermal conductivity, thermal expansion, Young's modulus and nanomechanical resonance. We explain how graphene's superior thermal conductivity is mainly due to its three acoustic phonon modes at room temperature, including the flexural mode. Its coefficient of thermal expansion is negative in a wide temperature range resulting from the particular vibration morphology of the flexural mode. We then describe how the Young's modulus of graphene can be extracted from its thermal fluctuations, which are dominated by the flexural mode. Finally, we discuss the effects of the flexural mode on graphene nanomechanical resonators, while also discussing how the essential properties of the resonators, including mass sensitivity and quality factor, can be enhanced.

  20. Detection of coatings within liquid-filled tubes and containers by mode conversion of leaky Lamb waves

    OpenAIRE

    SCHMITT, M; Schmidt, K.; Olfert, S.; Rautenberg, J.; Lindner, G; B. Henning; L. M. Reindl

    2013-01-01

    In this paper, a new acoustic sensor principle for coating detection within liquid-filled tubes and containers based on mode conversion of leaky Lamb waves is introduced. Leaky Lamb waves are excited and detected by single-phase transducers, which are attached on the outer side of a tube or container. By transmission time and amplitude measurements, coating formation within the liquid-filled tube and container is detected non-invasively. This new sensor principle is subdivid...

  1. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2004-01-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion...

  2. Topology optimized mode conversion in a photonic crystal waveguide fabricated in siliconon-insulator material

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Frellsen, Louise Floor;

    2014-01-01

    We have designed and for the first time experimentally verified a topology optimized mode converter with a footprint of ∼6.3 μm × ∼3.6 μm which converts the fundamental even mode to the higher order odd mode of a dispersion engineered photonic crystal waveguide. 2D and 3D topology optimization is...

  3. Probing ultrafast \\pi\\pi*/n\\pi* internal conversion in organic chromophores via K-edge resonant absorption

    CERN Document Server

    Wolf, T J A; Cryan, J P; Coriani, S; Squibb, R J; Battistoni, A; Berrah, N; Bostedt, C; Bucksbaum, P; Coslovich, G; Feifel, R; Gaffney, K J; Grilj, J; Martinez, T J; Miyabe, S; Moeller, S P; Mucke, M; Natan, A; Obaid, R; Osipov, T; Plekan, O; Wang, S; Koch, H; Gühr, M

    2016-01-01

    Organic chromophores with heteroatoms possess an important excited state relaxation channel from an optically allowed {\\pi}{\\pi}* to a dark n{\\pi}*state. We exploit the element and site specificity of soft x-ray absorption spectroscopy to selectively follow the electronic change during the {\\pi}{\\pi}*/n{\\pi}* internal conversion. As a hole forms in the n orbital during {\\pi}{\\pi}*/n{\\pi}* internal conversion, the near edge x-ray absorption fine structure (NEXAFS) spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept with the nucleobase thymine, a prototypical heteroatomic chromophore. With the help of time resolved NEXAFS spectroscopy at the oxygen K-edge, we unambiguously show that {\\pi}{\\pi}*/n{\\pi}* internal conversion takes place within (60 \\pm 30) fs. High-level coupled cluster calculations on the isolated molecules used in the experiment confirm the superb electronic structure sensitivity of this new method for excited state investigations.

  4. MHD Field Line Resonances and Global Modes in Three-Dimensional Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    C.Z. Cheng

    2002-05-30

    By assuming a general isotropic pressure distribution P = P (y,a), where y and a are three-dimensional scalar functions labeling the field lines with B = -y x -a, we have derived a set of MHD eigenmode equations for both global MHD modes and field line resonances (FLR). Past MHD theories are restricted to isotropic pressures with P = P (y only). The present formulation also allows the plasma mass density to vary along the field line. The linearized ideal-MHD equations are cast into a set of global differential equations from which the field line resonance equations of the shear Alfvin waves and slow magnetosonic modes are naturally obtained for general three-dimensional magnetic field geometries with flux surfaces. Several new terms associated with the partial derivative of P with respect to alpha are obtained. In the FLR equations, a new term is found in the shear Alfvin FLR equation due to the geodesic curvature and the pressure gradient in the poloidal flux surface. The coupling between the shear Alfvin waves and the magnetosonic waves is through the combined effects of geodesic magnetic field curvature and plasma pressure as previously derived. The properties of the FLR eigenfunctions at the resonance field lines are investigated, and the behavior of the FLR wave solutions near the FLR surface are derived. Numerical solutions of the FLR equations for three-dimensional magnetospheric fields in equilibrium with high plasma pressure will be presented in a future publication.

  5. Theory of magnetoelectric effect in multilayer nanocomposites on a substrate: Resonant bending-mode response

    Directory of Open Access Journals (Sweden)

    Matthias C. Krantz

    2013-05-01

    Full Text Available Resonant bending-mode magnetoelectric (ME coefficients of magnetostrictive-piezoelectric multilayer cantilevers are calculated analytically using a model developed for arbitrary multilayers on a substrate. Without quality factor effects the ME coefficient maxima in the four-dimensional parameter space of layer numbers, layer sequences, piezoelectric volume fractions, and substrate thicknesses are found to be essentially constant for nonzero substrate thickness. Global maxima occur for bilayers without substrates. Vanishing magnetoelectric response regions result from voltage cancellation in piezoelectric layers or absence of bending-mode excitation. They are determined by the neutral plane position in the multilayer stack. With Q-factor effects dominated by viscous air damping ME coefficients strongly increase with cantilever thickness primarily due to increasing resonance frequencies. The results yield a layer specific prediction of ME coefficients, resonance frequencies, and Q-factors in arbitrary multilayers and thus distinction of linear-coupling and Q-factor effects from exchange interaction, interface, or nonlinear ME effects.

  6. Portable organic gas detection sensor based on the effect of guided-mode resonance

    Science.gov (United States)

    Guo, Liang; Wang, Qi; Huang, Yuanshen; Zhang, Dawei

    2017-01-01

    A novel organic gas detection sensor based on the effect of guided-mode resonance is proposed in this paper. The sensor is designed to operate in the visible light band. It contains four main sections: a light source, a miniature gas chamber composed of a guided-mode resonant filter, a diffraction grating, and a CCD image sensor. When bunched visible light is irradiated vertically to the gas chamber, it passes through the gas chamber and diffraction grating, and is then received by the CCD sensor. The optical signal received by the CCD sensor is then reduced to the spectrum using a specific algorithm. When organic gases are injected into the gas chamber, there is a shift in the wavelength of resonant reflection, and the magnitude of this shift is proportional to the refractive index of the gas. The large variation in the refractive indexes of industrially important organic gases means that their characteristic peak wavelengths can be easily identified. As a result, this system can quickly detect organic gases. To verify the feasibility of this technique, we use finite difference time domain solutions to simulate the results. The sensitivity of this type of sensor can reach wavelength differences of 0.001 nm, which means that the sensor has high potential for application in portable, high-precision detection systems.

  7. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion

    Science.gov (United States)

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838

  8. Detection and identification of microparticles/nanoparticles and blood components using optical resonance of whispering-gallery modes in microspheres

    Science.gov (United States)

    Tcherniavskaia, E. A.; Saetchnikov, V. A.

    2010-11-01

    We present experimental data on the dependence of optical resonance spectra of whispering-gallery modes in dielectric microspheres on the constituent composition of solutions modeling blood plasma and also containing disease indicators and virus ghosts. We observe substantial changes in the optical resonance spectra of whispering-gallery modes, associated both with a change in the macroscopic parameters of the microsphere environment and with possible interaction between the microsphere surface and components of the solution.

  9. Mode Modification of Plasmonic Gap Resonances induced by Strong Coupling with Molecular Excitons

    CERN Document Server

    Chen, Xingxing; Qin, Jian; Zhao, Ding; Ding, Boyang; Blaikie, Richard J; Qiu, Min

    2016-01-01

    Plasmonic cavities can be used to control the atom-photon coupling process at the nanoscale, since they provide ultrahigh density of optical states in an exceptionally small mode volume. Here we demonstrate strong coupling between molecular excitons and plasmonic resonances (so-called plexcitonic coupling) in a film-coupled nanocube cavity, which can induce profound and significant spectral and spatial modifications to the plasmonic gap modes. Within the spectral span of a single gap mode in the nanotube-film cavity with a 3-nm wide gap, the introduction of narrow-band J-aggregate dye molecules not only enables an anti-crossing behavior in the spectral response, but also splits the single spatial mode into two distinct modes that are easily identified by their far-field scattering profiles. Simulation results confirm the experimental findings and the sensitivity of the plexcitonic coupling is explored using digital control of the gap spacing. Our work opens up a new perspective to study the strong coupling pr...

  10. Modbus协议RTU模式与TCP模式的通信转换设计%Conversion of RTU mode and TCP mode in Modbus Communication Protocol

    Institute of Scientific and Technical Information of China (English)

    刘紫燕; 冯亮; 詹志辉

    2013-01-01

    Modbus communication protocol is often used in power optimization management system,which has to convert serial link mode to Ethernet mode.After analyzing the Modbus serial link communication protocol,the communication of Modbus RTU mode and Modbus TCP mode is implemented separately,and then the communication conversion of Modbus RTU and Modbus TCP mode is achieued.This method offers good technical support for communication and central control of power optimization management system.%Modbus通信协议运用于电能优化管理系统中,需要将串行链路通信模式转换为以太网通信模式.在详细分析Modbus串行链路通信协议的基础上,分别实现了Modbus RTU模式和Modbus TCP模式的通信,然后完成了Modbus RTU与Modbus TCP模式的通信转换.该方法为电能优化管理系统的通信和系统集中控制提供了良好的技术支持.

  11. Effect of resonant magnetic perturbations with toroidal mode numbers of 4 and 6 on edge-localized modes in single null H-mode plasmas in MAST

    Science.gov (United States)

    Kirk, A.; Chapman, I. T.; Harrison, J.; Liu, Yueqiang; Nardon, E.; Saarelma, S.; Scannell, R.; Thornton, A. J.; the MAST Team

    2013-01-01

    The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n = 4 or n = 6 to lower single null plasmas in the MAST tokamak produces up to a factor of 5 increase in edge-localized mode (ELM) frequency and reduction in plasma energy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. Despite a large scan of parameters, complete ELM suppression has not been achieved. The results have been compared with modelling performed using either the vacuum approximation or including the plasma response. During the ELM mitigated stage clear lobe structures are observed in visible-light imaging of the X-point region. The size of these lobes is correlated with the increase in ELM frequency observed. The characteristics of the mitigated ELMs are similar to those of the natural ELMs suggesting that they are type-I ELMs which are triggered at a lower pressure gradient. The application of the RMPs in the n = 4 and n = 6 configurations before the L-H transition has little effect on the power required to achieve H-mode while still allowing the first ELM to be mitigated.

  12. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    OpenAIRE

    Ryoji Yukino; Pankaj K. Sahoo; Jaiyam Sharma; Tsukasa Takamura; Joby Joseph; Adarsh Sandhu

    2017-01-01

    We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position...

  13. Drag detection and identification by whispering gallery mode optical resonance based sensor

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2013-06-01

    Experimental data on optical resonance spectra of whispering gallery modes of dielectric microspheres in antibiotic solutions under varied in wide range concentration are represented. Optical resonance was demonstrated could be detected at a laser power of less than 1 microwatt. Several antibiotics of different generations: Amoxicillin, Azithromycin, Cephazolin, Chloramphenicol, Levofloxacin, Lincomicin Benzylpenicillin, Riphampicon both in deionized water and physiological solution had been used for measurements. Both spectral shift and the structure of resonance spectra were of specific interest in this investigation. Drag identification has been performed by developed multilayer perceptron network. The network topology was designed included: a number of the hidden layers of multilayered perceptron, a number of neurons in each of layers, a method of training of a neural network, activation functions of layers, type and size of a deviation of the received values from required values. For a network training the method of the back propagation error in various modifications has been used. Input vectors correspond to 6 classes of biological substances under investigation. The result of classification was considered as positive when each of the region, representing a certain substance in a space: relative spectral shift of an optical resonance maxima - relative efficiency of excitation of WGM, was singly connected. It was demonstrated that the approach described in the paper can be a promising platform for the development of sensitive, lab-on-chip type sensors that can be used as an express diagnostic tools for different drugs and instrumentation for proteomics, genomics, drug discovery, and membrane studies.

  14. Contact force identification using the subharmonic resonance of a contact-mode atomic force microscopy.

    Science.gov (United States)

    Abdel-Rahman, Eihab M; Nayfeh, Ali H

    2005-02-01

    We propose a step-by-step experimental procedure for characterization of the nonlinear contact stiffness on surfaces using contact-mode atomic force microscopy. Our approach directly estimates the first-, second-, and third-order coefficients of the contact stiffness. It neither uses nor requires the underlying assumptions of the Hertzian contact theory. We use a primary resonance excitation of the probe to estimate the linear coefficient of the contact stiffness. We use the method of multiple scales to obtain closed-form expressions approximating the response of the probe to a subharmonic resonance excitation of order one-half. We utilize these expressions and higher-order spectral measurements to independently estimate the quadratic and cubic coefficients of the contact stiffness.

  15. Temporal coupled mode theory of standing wave resonant cavities for infrared photodetection.

    Science.gov (United States)

    Lesmanne, Emeline; De Lamaestre, Roch Espiau; Fowler, David; Boutami, Salim; Badano, Giacomo

    2015-03-23

    Standing wave resonating cavities have been proposed in the past to increase the performance of infrared detectors by minimizing the volume of photogeneration, hence the noise, while maintaining the same quantum efficiency. We present an approach based on the temporal coupled mode theory to explain their behavior and limitations. If the ratio of the imaginary part of the absorber's dielectric function to the index of the incident medium ε″(d)/n₀ is larger than 1.4, then the absorption cross section σ(a) can attain its maximum value, which for an isolated cavity is approximately 2λ/π. Besides, for σ(a) to exceed the cavity width, the incident medium refractive index must be close to unity. Metallic loss is negligible in the infrared, making those resonators suitable for integration in infrared photodetectors.

  16. FLOW-INDUCED INTERNAL RESONANCES AND MODE EXCHANGE IN HORIZONTAL CANTILEVERED PIPE CONVEYING FLUID (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    XU Jian; YANG Qian-biao

    2006-01-01

    Based on the nonlinear mathematical model of motion of a horizontally cantilevered rigid pipe conveying fluid, the 3:1 internal resonance induced by the minimum critical velocity is studied in details. With the detuning parameters of internal and primary resonances and the amplitude of the external disturbing excitation varying, the flow in the neighborhood of the critical flow velocity yields that some nonlinearly dynamical behaviors occur in the system such as mode exchange, saddle-node, Hopf and co-dimension 2 bifurcations. Correspondingly, the periodic motion losses its stability by jumping or flutter, and more complicated motions occur in the pipe under consideration.The good agreement between the analytical analysis and the numerical simulation for several parameters ensures the validity and accuracy of the present analysis.

  17. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes

    Science.gov (United States)

    NOVAIS, Veridiana Resende; RAPOSO, Luís Henrique Araújo; de MIRANDA, Rafael Resende; LOPES, Camila de Carvalho Almança; SIMAMOTO, Paulo Cézar; SOARES, Carlos José

    2017-01-01

    Abstract Resin cements have led to great advances in dental ceramic restoration techniques because of their ability to bond to both dental structures and restorative materials. Objective The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Material and Methods Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC) and one light-cured (Variolink Veneer). The dual-cured resin cements were tested by using the dual activation mode (base and catalyst) and light-activation mode (base paste only). For degree of conversion (DC) (n=5), a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR). For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05). Scanning electron microscopy (SEM) was used for classifying the failure modes. Results Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. Conclusion The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick. PMID:28198977

  18. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes

    Directory of Open Access Journals (Sweden)

    Veridiana Resende NOVAIS

    Full Text Available Abstract Resin cements have led to great advances in dental ceramic restoration techniques because of their ability to bond to both dental structures and restorative materials. Objective The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Material and Methods Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC and one light-cured (Variolink Veneer. The dual-cured resin cements were tested by using the dual activation mode (base and catalyst and light-activation mode (base paste only. For degree of conversion (DC (n=5, a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR. For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05. Scanning electron microscopy (SEM was used for classifying the failure modes. Results Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. Conclusion The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.

  19. Mode-locked pulse oscillation of a self-resonating enhancement optical cavity

    CERN Document Server

    Hosaka, Yuji; Kosuge, Atsushi; Omori, Tsunehiko; Sakaue, Kazuyuki; Takahashi, Tohru; Uesugi, Yuuki; Urakawa, Junji; Washio, Masakazu

    2016-01-01

    A power enhancement optical cavity is a compelling means of realizing a pulsed laser with a high peak power and a high repetition frequency, which is not feasible by using a simple amplifier scheme. However, a precise feedback system is necessary for maintaining the narrow resonance condition of the optical cavity, and has become a major technical issue in developing such cavities. We developed a new approach that does not require any active feedback system, by placing the cavity in the outer loop of a laser amplifier. We report on the first demonstration of a mode-locked pulse oscillation using the new system.

  20. Effects of resonator input power on Kerr lens mode-locked lasers

    Indian Academy of Sciences (India)

    S Kazempour; A Keshavarz; G Honarasa

    2015-07-01

    Using the ABCD matrix method, the common stability region between the sagittal and tangential planes of a four-mirror Kerr lens mode-locked (KLM) laser cavity is obtained for different ranges of input power. In addition, the effect of the input power on the Kerr lens sensitivity is investigated. Optimal input power and position for highest Kerr lens sensitivity in the stability region are presented and self-starting regime has been achieved. Results show that the resonator input power has a great influence on designing the KLM lasers which can be used in fabricating an optimal femtosecond laser.

  1. Stochastic resonance of bias signal-modulated noise in a single-mode laser

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Cao Li; Wu Da-Jin

    2004-01-01

    Stochastic resonance (SR) for bias signal modulation is studied in a single-mode laser system. By investigating a gain-noise model driven by correlated pump noise and quantum noir, we find that, whether the correlation coefficient between both the noises is positive or negative, SR always appears in the dependence of signal-to-noise ratio (SNR) upon the noise correlation time and the frequency of the modulation signal. However, only when the correlation coefficient between both noises is negative can SR occur in the dependence of SNR upon the quantum noise intensity and pump noise intensity, while when the correlation coefficient between both noises is positive, it shows monotonically.

  2. Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator

    CERN Document Server

    Yang, Yong; Kasumie, Sho; Ward, Jonathan M; Chormaic, Síle Nic

    2016-01-01

    In whispering gallery mode resonator sensing applications, the conventional way to detect a change in the parameter to be measured is by observing the steady state transmission spectrum through the coupling waveguide. Alternatively, cavity ring-up spectroscopy (CRUS) sensing can be achieved transiently. In this work, we investigate CRUS using coupled mode equations and find analytical solutions with a large spectral broadening approximation of the input pulse. The relationships between the frequency detuning, coupling gap and ring-up peak height are determined and experimentally verified using an ultrahigh \\textit{Q}-factor silica microsphere. This work shows that distinctive dispersive and dissipative transient sensing can be realised by simply measuring the peak height of the CRUS signal, which might improve the data collection rate.

  3. Enhancing dominant modes in nonstationary time series by means of the symbolic resonance analysis.

    Science.gov (United States)

    beim Graben, Peter; Drenhaus, Heiner; Brehm, Eva; Rhode, Bela; Saddy, Douglas; Frisch, Stefan

    2007-12-01

    We present the symbolic resonance analysis (SRA) as a viable method for addressing the problem of enhancing a weakly dominant mode in a mixture of impulse responses obtained from a nonlinear dynamical system. We demonstrate this using results from a numerical simulation with Duffing oscillators in different domains of their parameter space, and by analyzing event-related brain potentials (ERPs) from a language processing experiment in German as a representative application. In this paradigm, the averaged ERPs exhibit an N400 followed by a sentence final negativity. Contemporary sentence processing models predict a late positivity (P600) as well. We show that the SRA is able to unveil the P600 evoked by the critical stimuli as a weakly dominant mode from the covering sentence final negativity.

  4. Non-linear MHD modeling of edge localized mode cycles and mitigation by resonant magnetic perturbations

    Science.gov (United States)

    Orain, François; Bécoulet, M.; Morales, J.; Huijsmans, G. T. A.; Dif-Pradalier, G.; Hoelzl, M.; Garbet, X.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Fil, A.; Cahyna, P.

    2015-01-01

    The dynamics of a multi-edge localized mode (ELM) cycle as well as the ELM mitigation by resonant magnetic perturbations (RMPs) are modeled in realistic tokamak X-point geometry with the non-linear reduced MHD code JOREK. The diamagnetic rotation is found to be a key parameter enabling us to reproduce the cyclical dynamics of the plasma relaxations and to model the near-symmetric ELM power deposition on the inner and outer divertor target plates consistently with experimental measurements. Moreover, the non-linear coupling of the RMPs with unstable modes are found to modify the edge magnetic topology and induce a continuous MHD activity in place of a large ELM crash, resulting in the mitigation of the ELMs. At larger diamagnetic rotation, a bifurcation from unmitigated ELMs—at low RMP current—towards fully suppressed ELMs—at large RMP current—is obtained.

  5. Spatiotemporal Model for Kerr Comb Generation in Whispering Gallery Mode Resonators

    CERN Document Server

    Chembo, Yanne K

    2012-01-01

    We establish an exact partial differential equation to model Kerr comb generation in whispering-gallery mode resonators. This equation is a variant of the Lugiato-Lefever equation that includes higher-order dispersion and nonlinearity. This spatio-temporal model, whose main variable is the total intracavity field, is significantly more suitable than the modal expansion approach for the theoretical understanding and the numerical simulation of wide-span combs. It allows us to explore pulse formation in which a large number of modes interact cooperatively. This versatile approach can be straightforwardly extended to include higher-order dispersion, as well as other phenomena like Raman, Brillouin and Rayleigh scattering. We demonstrate for the first time that when the dispersion is anomalous, Kerr comb generation can arise as the spectral signature of dissipative cavity solitons, leading to wide-span combs with low pumping.

  6. Selective gating to vibrational modes through resonant X-ray scattering

    Science.gov (United States)

    Couto, Rafael C.; Cruz, Vinícius V.; Ertan, Emelie; Eckert, Sebastian; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Guimarães, Freddy F.; Ågren, Hans; Gel'Mukhanov, Faris; Odelius, Michael; Kimberg, Victor; Föhlisch, Alexander

    2017-01-01

    The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations.

  7. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    Science.gov (United States)

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  8. A surface plasmon resonance sensor based on a single mode D-shape polymer optical fiber

    Science.gov (United States)

    Gasior, Katarzyna; Martynkien, Tadeusz; Napiorkowski, Maciej; Zolnacz, Kinga; Mergo, Pawel; Urbanczyk, Waclaw

    2017-02-01

    For the first time to our knowledge, we report a successful fabrication of surface plasmon resonance (SPR) sensors in a specially developed single-mode birefringent polymer D-shape fiber with a core made of PMMA/PS copolymer. A small distance between the core and the cladding boundary allows to deposit a gold layer directly onto the flat fiber surface, which significantly simplifies the sensors fabrication process. The developed SPR sensor exhibits a sensitivity of 2765 nm RIU-1 for the refractive index of external medium equal to 1.410, which is similar to the sensitivity of the SPR sensors based on conventional side-polished single-mode silica fibers. Using the finite element method, we also numerically studied the sensor performance. The sensor characteristics obtained in the simulations are in a relatively good agreement with the experimental results.

  9. Enhancing dominant modes in nonstationary time series by means of the symbolic resonance analysis

    Science.gov (United States)

    beim Graben, Peter; Drenhaus, Heiner; Brehm, Eva; Rhode, Bela; Saddy, Douglas; Frisch, Stefan

    2007-12-01

    We present the symbolic resonance analysis (SRA) as a viable method for addressing the problem of enhancing a weakly dominant mode in a mixture of impulse responses obtained from a nonlinear dynamical system. We demonstrate this using results from a numerical simulation with Duffing oscillators in different domains of their parameter space, and by analyzing event-related brain potentials (ERPs) from a language processing experiment in German as a representative application. In this paradigm, the averaged ERPs exhibit an N400 followed by a sentence final negativity. Contemporary sentence processing models predict a late positivity (P600) as well. We show that the SRA is able to unveil the P600 evoked by the critical stimuli as a weakly dominant mode from the covering sentence final negativity.

  10. Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit Cell

    Directory of Open Access Journals (Sweden)

    M. N. Kawakatsu

    2011-01-01

    Full Text Available We present a theoretical study of reflection and transmission characteristics of a microwave planar array on a thin dielectric substrate with unit cell made of two concentric rings. This array possesses high quality factor transmission resonance with polarization insensitivity for normally incident plane wave. This resonance is defined by the trapped-mode regime. We show that for oblique incidence, there are some differences in characteristics of the array and a small change in quality factor of the trapped-mode resonance.

  11. Towards understanding edge localised mode mitigation by resonant magnetic perturbations in MAST

    CERN Document Server

    Chapman, I T; Ham, C J; Harrison, J R; Liu, Y Q; Saarelma, S; Scannell, R; Thornton, A J; Becoulet, M; Orain, F; Cooper, W A; Pamela, S

    2013-01-01

    Type-I Edge Localised Modes (ELMs) have been mitigated in MAST through the application of n = 3, 4 and 6 resonant magnetic perturbations (RMPs). For each toroidal mode number of the non-axisymmetric applied fields, the frequency of the ELMs has been increased significantly, and the peak heat flux on the divertor plates reduced commensurately. This increase in ELM frequency occurs despite a significant drop in the edge pressure gradient, which would be expected to stabilise the peeling-ballooning modes thought to be responsible for type-I ELMs. Various mechanisms which could cause a destabilisation of the peeling-ballooning modes are presented, including pedestal widening, plasma rotation braking, three dimensional corrugation of the plasma boundary and the existence of radially extended lobe structures near to the X-point. This leads to a model aimed at resolving the apparent dichotomy of ELM control, that is to say ELM suppression occurring due to the pedestal pressure reduction below the peeling-ballooning ...

  12. Resonant instability of the nonlinearly-saturated magnetorotational mode in thin Keplerian discs

    CERN Document Server

    Shtemler, Yuri M; Liverts, Edward

    2014-01-01

    The magneto-rotational decay instability (MRDI) of thin Keplerian discs threaded by poloidal magnetic fields is introduced and studied. The linear magnetohydrodynamic problem decouples into eigenvalue problems for in-plane slow- and fast- Alfv'een-Coriolis (AC), and vertical magnetosonic (MS) eigenmodes. The magnetorotational instability (MRI) is composed of a discrete number of unstable slow AC eigenmodes that is determined for each radius by the local beta. In the vicinity of the first beta threshold a parent MRI eigenmode together with a stable AC eigenmode (either slow or fast) and a stable MS eigenmode form a resonant triad. The three-wave MRDI relies on the nonlinear saturation of the parent MRI mode and the exponential growth of two daughter linearly stable waves, slow-AC and MS modes with an effective growth rate that is comparable to that of the parent MRI. If, however, the role of the AC daughter wave is played by a stable fast mode, all three modes remain bounded.

  13. In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances

    CERN Document Server

    Mueller, Chris L; Adhikari, Rana X; Arai, Koji; Brooks, Aidan F; Chakraborty, Rijuparna; Frolov, Valery V; Fritschel, Peter; King, Eleanor J; Tanner, David B; Yamamoto, Hiroaki; Mueller, Guido

    2015-01-01

    Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this technique to measure changes in the Advanced LIGO input mode cleaner cavity geometry as a function of input power, and subsequently infer the optical absorption at the mirror surfaces at the level of 1 ppm per mirror. We also demonstrate the generation of a useful error signal for thermal state of the Advanced LIGO power recycling cavity by continuously tracking the first order spatial mode resonance frequency. Such an error signal could be used as an input to thermal compensation systems to maintain the interferometer cavity geometries in the presence of transients in circulating light power levels, thereby maintaining o...

  14. Detection and size measurement of individual hemozoin nanocrystals in aquatic environment using a whispering gallery mode resonator

    CERN Document Server

    Kim, Woosung; Zhu, Jiangang; Faraz, Monifi; Coban, Cevayir; Yang, Lan; 10.1364/OE.20.029426

    2013-01-01

    We, for the first time, report the detection and the size measurement of single nanoparticles (i.e. polystyrene) in aquatic environment using mode splitting in a whispering gallery mode (WGM) optical resonator, namely a microtoroid resonator. Using this method we achieved detecting and measuring individual synthetic hemozoin nanocrystals, which are a hemoglobin degradation by-product of malarial parasites, dispersed in a solution or in air. The results of size measurement in solution and in air agree with each other and with those obtained using scanning electron microscope and dynamic light scattering. Moreover, we compare the sensing capabilities of the degenerate (single resonance) and non-degenerate (split mode, doublet) operation regimes of the WGM resonator.

  15. Noninvasive Vibrational Mode Spectroscopy of Ion Coulomb Crystals through Resonant Collective Coupling to an Optical Cavity Field

    DEFF Research Database (Denmark)

    Dantan, Aurélien; Marler, Joan; Albert, Magnus

    2010-01-01

    We report on a novel noninvasive method to determine the normal mode frequencies of ion Coulomb crystals in traps based on the resonance enhanced collective coupling between the electronic states of the ions and an optical cavity field at the single photon level. Excitations of the normal modes...... are observed through a Doppler broadening of the resonance. An excellent agreement with the predictions of a zero-temperature uniformly charged liquid plasma model is found. The technique opens up for investigations of the heating and damping of cold plasma modes, as well as the coupling between them....

  16. Controlling mode competition by tailoring the spatial pump distribution in a laser: A resonance-based approach

    CERN Document Server

    Cerjan, Alexander; Ge, Li; Liew, Seng Fatt; Cao, Hui; Stone, A Douglas

    2016-01-01

    We introduce a simplified version of the steady-state ab initio laser theory for calculating the effects of mode competition in continuous wave lasers using the passive cavity resonances. This new theory harnesses widely available numerical methods that can efficiently calculate the passive cavity resonances, with negligible additional computational overhead. Using this theory, we demonstrate that the pump profile of the laser cavity can be optimized both for highly multi-mode and single-mode emission. An open source implementation of this method has been made available.

  17. Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles.

    Science.gov (United States)

    Zhang, Qing; Shan, Xin-Yan; Feng, Xiao; Wang, Chun-Xiao; Wang, Qu-Quan; Jia, Jin-Feng; Xue, Qi-Kun

    2011-10-12

    Semiconductor nanowire (NW) cavities with tailorable optical modes have been used to develop nanoscale oscillators and amplifiers in microlasers, sensors, and single photon emitters. The resonance modes of NW could be tuned by different boundary conditions. However, continuously and reversibly adjusting resonance modes and improving Q-factor of the cavity remain a great challenge. We report a method to modulate resonance modes continuously and reversibly and improve Q-factor based on surface plasmon-exciton interaction. By placing single Ag nanoparticle (NP) nearby a CdS NW, we show that the wavelength and relative intensity of the resonance modes in the NW cavity can systematically be tuned by adjusting the relative position of the Ag NP. We further demonstrate that a 56% enhancement of Q-factor and an equivalent π-phase shift of the resonance modes can be achieved when the Ag NP is located near the NW end. This hybrid cavity has potential applications in active plasmonic and photonic nanodevices.

  18. Modelling and characterization of the roof tile-shaped modes of AlN-based cantilever resonators in liquid media

    Science.gov (United States)

    Ruiz-Díez, V.; Hernando-García, J.; Toledo, J.; Manzaneque, T.; Kucera, M.; Pfusterschmied, G.; Schmid, U.; Sánchez-Rojas, J. L.

    2016-08-01

    In this work, roof tile-shaped modes of MEMS (micro electro-mechanical systems) cantilever resonators with various geometries and mode orders are analysed. These modes can be efficiently excited by a thin piezoelectric film and a properly designed top electrode. The electrical and optical characterization of the resonators are performed in liquid media and the device performance is evaluated in terms of quality factor, resonant frequency and motional conductance. A quality factor as high as 165 was measured in isopropanol for a cantilever oscillating in the seventh order roof tile-shaped mode at 2 MHz. To support the results of the experimental characterization, a 2D finite element method simulation model is presented and studied. An analytical model for the estimation of the motional conductance was also developed and validated with the experimental measurements.

  19. Two Novel Measurements for the Drive-Mode Resonant Frequency of a Micromachined Vibratory Gyroscope

    Directory of Open Access Journals (Sweden)

    Ancheng Wang

    2013-11-01

    Full Text Available To investigate the drive-mode resonance frequency of a micromachined vibratory gyroscope (MVG, one needs to measure it accurately and efficiently. The conventional approach to measure the resonant frequency is by performing a sweep frequency test and spectrum analysis. The method is time-consuming and inconvenient because of the requirements of many test points, a lot of data storage and off-line analyses. In this paper, we propose two novel measurement methods, the search method and track method, respectively. The former is based on the magnitude-frequency characteristics of the drive mode, utilizing a one-dimensional search technique. The latter is based on the phase-frequency characteristics, applying a feedback control loop. Their performances in precision, noise resistivity and efficiency are analyzed through detailed simulations. A test system is implemented based on a field programmable gate array (FPGA and experiments are carried out. By comparing with the common approach, feasibility and superiorities of the proposed methods are validated. In particular, significant efficiency improvements are achieved whereby the conventional frequency method consumes nearly 5,000 s to finish a measurement, while only 5 s is needed for the track method and 1 s for the search method.

  20. Two novel measurements for the drive-mode resonant frequency of a micromachined vibratory gyroscope.

    Science.gov (United States)

    Wang, Ancheng; Hu, Xiaoping; Luo, Bing; Jiang, Mingming; He, Xiaofeng; Tang, Kanghua

    2013-01-01

    To investigate the drive-mode resonance frequency of a micromachined vibratory gyroscope (MVG), one needs to measure it accurately and efficiently. The conventional approach to measure the resonant frequency is by performing a sweep frequency test and spectrum analysis. The method is time-consuming and inconvenient because of the requirements of many test points, a lot of data storage and off-line analyses. In this paper, we propose two novel measurement methods, the search method and track method, respectively. The former is based on the magnitude-frequency characteristics of the drive mode, utilizing a one-dimensional search technique. The latter is based on the phase-frequency characteristics, applying a feedback control loop. Their performances in precision, noise resistivity and efficiency are analyzed through detailed simulations. A test system is implemented based on a field programmable gate array (FPGA) and experiments are carried out. By comparing with the common approach, feasibility and superiorities of the proposed methods are validated. In particular, significant efficiency improvements are achieved whereby the conventional frequency method consumes nearly 5,000 s to finish a measurement, while only 5 s is needed for the track method and 1 s for the search method.

  1. The pygmy quadrupole resonance and neutron-skin modes in 124Sn

    Science.gov (United States)

    Spieker, M.; Tsoneva, N.; Derya, V.; Endres, J.; Savran, D.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R.-D.; Lagoyannis, A.; Lenske, H.; Pietralla, N.; Popescu, L.; Scheck, M.; Schlüter, F.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.

    2016-01-01

    We present an extensive experimental study of the recently predicted pygmy quadrupole resonance (PQR) in Sn isotopes, where complementary probes were used. In this study, (α ,α‧ γ) and (γ ,γ‧) experiments were performed on 124Sn. In both reactions, Jπ =2+ states below an excitation energy of 5 MeV were populated. The E2 strength integrated over the full transition densities could be extracted from the (γ ,γ‧) experiment, while the (α ,α‧ γ) experiment at the chosen kinematics strongly favors the excitation of surface modes because of the strong α-particle absorption in the nuclear interior. The excitation of such modes is in accordance with the quadrupole-type oscillation of the neutron skin predicted by a microscopic approach based on self-consistent density functional theory and the quasiparticle-phonon model (QPM). The newly determined γ-decay branching ratios hint at a non-statistical character of the E2 strength, as it has also been recently pointed out for the case of the pygmy dipole resonance (PDR). This allows us to distinguish between PQR-type and multiphonon excitations and, consequently, supports the recent first experimental indications of a PQR in 124Sn.

  2. Type of tunable guided-mode resonance filter based on electro-optic characteristic of polymer-dispersed liquid crystal.

    Science.gov (United States)

    Wang, Qi; Zhang, Dawei; Huang, Yuanshen; Ni, Zhengji; Chen, Jiabi; Zhong, Yangwan; Zhuang, Songlin

    2010-04-15

    A narrowband guided-mode resonance filter (GMRF) incorporating polymer-dispersed liquid crystal (PDLC) is designed. Simulating the characteristics of the filter with rigorous coupled-wave analysis, we find that the resonance wavelength of the new kind of GMRF can be tuned from 672.4 to 698.4 nm by varying the refractive index of the PDLC layer with the applied voltage. Furthermore, the resonance wavelengths vary in a linear fashion with respect to the refractive index of the PDLC layer. Therefore, the desired resonance wavelength can be conveniently selected and tuned in a tuning range of 26 nm by using the applied voltage.

  3. One-step sol-gel imprint lithography for guided-mode resonance structures.

    Science.gov (United States)

    Huang, Yin; Liu, Longju; Johnson, Michael; C Hillier, Andrew; Lu, Meng

    2016-03-01

    Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step. An organic-inorganic hybrid sol-gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol-gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol-gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol-gel thin film.

  4. Frequency Up- and Down-conversions in Two-mode Cavity%两模腔中的参量上转换和下转换

    Institute of Scientific and Technical Information of China (English)

    李斌; 冯勋立; 张智明

    2011-01-01

    提出了一种通过建立双线性二次哈密顿量在量子腔中实现参量上转换和下转换的方案.通常在非线性过程中,介质本身不参与能量的净交换,但光波频率可以发生转换的作用称为参量转换作用.此方案建立在一个四能级原子同时与两经典场和两量子场相互作用的基础上,理论属于非线性光学四波混频范畴.将原子制备在合适的能级上,经典光场与相应的能级发生共振,而同时量子光场与相应的能级产生大失谐相互作用,在强相互作用区域内,原子和腔场失耦合,进而实现腔模的参量转换.根据所制备初始能级的不同以及光场激发能级的差异,分别实现了参量上转换和参量下转换.在利用参量下转换制备压缩算符后,对实验的可行性进行了讨论,并且给出了理论值.结果表明:在级联三能原子中采用一个级联双光子过程代替了原来的两个偶极禁戒跃迁间的经典驱动,可以保证高的不同频率之间的转换效率,并且用于光的量子操控和量子信息处理.%A scheme was proposed to construct bilinear and quadratic Hamiltonians for frequency up-and down-conversions in cavity quantum electrodynamics (QED).Generally,in nonlinear optics,the interaction that the energe swaps between different optic modes without atomic transition is named frequency conversion.The proposed scheme was based on the interactions of a single four-level atom simultaneously with two classical driving fields and a two-mode cavity field,which is in the domain of four-wave mixing.By initially preparing the atom in a suitable state,each pump light was resonant with its transition,and two quantum modes were large tune to the other two transition,respectively,In the strong laser regime,the atomic degrees of freedom could be decoupled from the cavity degrees of freedom and the frequency conversion could be realized for the cavity modes.Due to the different initial states and

  5. FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai-400005 (India)

    2015-06-20

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  6. Locked mode unlocking by rotating resonant magnetic perturbations in J-TEXT tokamak

    Science.gov (United States)

    Jin, Hai; Hu, Qiming; Wang, Nengchao; Rao, Bo; Ding, Yonghua; Li, Da; Li, Mao; Xie, Shujia

    2015-10-01

    This study aimed to unlock the m/n = 2/1 locked mode (LM) performed in J-TEXT tokamak by using rotating resonant magnetic perturbations (RMPs), where m and n are the poloidal and toroidal mode numbers, respectively. In the experiments, to maintain the LM, mode locking occurs by using static RMPs generated by a set of saddle coils. After mode locking, another rotating RMP with frequency of several kilo-Hz is applied to drive the static LM to rotate. The unlocking of LM is realized by using rotating RMP with different frequency and amplitude. It is found that the unlocking process contains two stages, i.e. the oscillating stage and the unlocking stage. In the oscillating stage, the rotating RMP with amplitude that is not strong enough causes the LM to oscillate around its locked phase and produces magnetic fluctuation to behave as a standing wave-like structure in poloidal direction. When the amplitude of the rotating RMP is strong enough, it first causes the LM to oscillate and then transforms to mode unlocking quickly in less than 1 ms, namely the unlocking stage. Further analysis shows that the unlocking of LM is determined by the torque balance between the viscous torque and the electromagnetic torques exerted by both the static and the rotating RMP. In addition, the unlocking process is sensitive to both the amplitude and the frequency of the rotating RMP as well as the amplitude of static RMP. Nonlinear numerical modeling based on reduced MHD equations is also performed to understand the unlocking process, and numerical results qualitatively agree with the experimental ones.

  7. Excitation of internal m = 1 mode during application of resonant magnetic perturbations on J-TEXT tokamak

    Science.gov (United States)

    Li, Jianchao; Hu, Qiming; Ding, Yonghua; Zhang, Xiaoqing; Yu, Qingquan; Yang, Zhoujun; Chen, Zhipeng; Li, Da; Rao, Bo; Wang, Nengchao; Zhuang, Ge; the J-TEXT Team

    2017-08-01

    The excitation of internal m = 1 mode during application of resonant magnetic perturbations (RMPs) is observed on J-TEXT tokamak. It is found that the sawtooth oscillation disappears after RMPs penetration, and subsequently an internal m = 1 mode with a frequency around 2 kHz appears, were m and n are the poloidal and toroidal mode numbers, respectively. In addition, the internal m = 1 mode often coexists with a rotating m/n = 2/1 tearing mode, and its frequency increases by about 0.5 kHz when the 2/1 tearing mode is locked by RMPs. The bispectrum analysis proves that the m = 1 mode interacts with the rotating 2/1 tearing mode, which implies the mode coupling between these two modes. The frequency of m = 1 mode increases for higher electron density. These results reveal that, the internal m = 1 mode can be excited by RMPs and coexist with both locked and rotating 2/1 mode due to toroidal mode coupling.

  8. Active High Power Conversion Efficiency Rectifier With Built-In Dual-Mode Back Telemetry in Standard CMOS Technology.

    Science.gov (United States)

    Bawa, G; Ghovanloo, M

    2008-09-01

    In this paper, we present an active rectifier with high power conversion efficiency (PCE) implemented in a 0.5- mum 5 V standard CMOS technology with two modes of built-in back telemetry; short- and open-circuit. As a rectifier, it ensures a PCE > 80%, taking advantage of active synchronous rectification technique in the frequency range of 0.125-1 MHz. The built-in complementary back telemetry feature can be utilized in implantable microelectronic devices (IMD), wireless sensors, and radio frequency identification (RFID) applications to reduce the silicon area, increase the data rate, and improve the reading range and robustness in load shift keying (LSK).

  9. New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Ketan B Ghaghada

    Full Text Available BACKGROUND: Liposomal-based gadolinium (Gd nanoparticles have elicited significant interest for use as blood pool and molecular magnetic resonance imaging (MRI contrast agents. Previous generations of liposomal MR agents contained gadolinium-chelates either within the interior of liposomes (core-encapsulated gadolinium liposomes or presented on the surface of liposomes (surface-conjugated gadolinium liposomes. We hypothesized that a liposomal agent that contained both core-encapsulated gadolinium and surface-conjugated gadolinium, defined herein as dual-mode gadolinium (Dual-Gd liposomes, would result in a significant improvement in nanoparticle-based T1 relaxivity over the previous generations of liposomal agents. In this study, we have developed and tested, both in vitro and in vivo, such a dual-mode liposomal-based gadolinium contrast agent. METHODOLOGY/PRINCIPAL FINDINGS: THREE TYPES OF LIPOSOMAL AGENTS WERE FABRICATED: core-encapsulated, surface-conjugated and dual-mode gadolinium liposomes. In vitro physico-chemical characterizations of the agents were performed to determine particle size and elemental composition. Gadolinium-based and nanoparticle-based T1 relaxivities of various agents were determined in bovine plasma. Subsequently, the agents were tested in vivo for contrast-enhanced magnetic resonance angiography (CE-MRA studies. Characterization of the agents demonstrated the highest gadolinium atoms per nanoparticle for Dual-Gd liposomes. In vitro, surface-conjugated gadolinium liposomes demonstrated the highest T1 relaxivity on a gadolinium-basis. However, Dual-Gd liposomes demonstrated the highest T1 relaxivity on a nanoparticle-basis. In vivo, Dual-Gd liposomes resulted in the highest signal-to-noise ratio (SNR and contrast-to-noise ratio in CE-MRA studies. CONCLUSIONS/SIGNIFICANCE: The dual-mode gadolinium liposomal contrast agent demonstrated higher particle-based T1 relaxivity, both in vitro and in vivo, compared to either the

  10. Electromagnetic noise in electric circuits: Ringing and resonance phenomena in the common mode

    Directory of Open Access Journals (Sweden)

    Shuji Kitora

    2014-11-01

    Full Text Available It is generally believed that electromagnetic noise originates from the coupling of electric signals in a circuit with electric signals in surrounding materials in the environment. However, the noise phenomenon had not been quantified until now. In order to study the phenomenon of noise, we considered a standard circuit (two transmission lines, to which an additional transmission line was introduced in order to explicitly take into account the effect of conductors in the environment. We performed calculations using a newly developed multiconductor transmission-line theory for the resulting three-line circuit in order to determine the magnitude of the coupling between the circuit and the conductors in the environment under various conditions. We observed ringing and resonance phenomena in the common mode, which influenced the performance of the normal mode as electromagnetic noise. Our findings were confirmed by recent experiments in which conductor lines were arranged in various ways using a printed circuit board (PCB. The ordinary usage of electricity in the standard electric circuit was found to be worst in exciting the common mode noise.

  11. Resonant-magnetic-perturbation-induced plasma transport in H-mode pedestals

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J. D.; Hegna, C. C. [University of Wisconsin, 1500 Engineering Drive, Madison, Wisconsin 53706-1609 (United States); Cole, A. J. [Columbia University, 201 S.W. Mudd, New York, New York 10027 (United States)

    2012-11-15

    Plasma toroidal rotation reduces reconnection of externally applied resonant magnetic perturbation (RMP) fields {delta}B on rational (q = m/n) magnetic flux surfaces. Hence, it causes radial perturbations {delta}B{sub {rho}m/n} to be small there, and thus inhibits magnetic island formation and stochasticity in the edge of high (H-) mode confinement tokamak plasmas. However, electron collisional damping combined with the spatial magnetic flutter {delta}B{sub {rho}m/n} induced by RMPs in the vicinity of rational surfaces causes a radial electron heat diffusivity in which {chi}{sub e Parallel-To }{sup eff}{approx}(v{sub Te}{sup 2}/{nu}{sub e})/(1+x{sup 2}/{delta}{sub Parallel-To }{sup 2}) is an effective parallel electron thermal diffusivity. These effects are reduced by magnetic shear effects at a distance x from rational surfaces for |x|>{delta}{sub Parallel-To} but amplified for {delta}B-caret{sub {rho}m/n}(x)>{delta}B-caret{sub {rho}m/n}(0). A kinetic, toroidal model of these RMP-flutter-induced plasma transport effects is developed and compared to a previously developed cylindrical model. The RMP-induced increases in plasma transport can be large enough to reduce plasma gradients in H-mode pedestals. Thus, they may contribute to suppressing edge localized modes in tokamak plasmas.

  12. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Pu, Minhao

    2010-01-01

    range of 100 GHz and Q value of 7900 is designed and fabricated for this purpose. Multi-channel RZ-to-NRZ format conversion is demonstrated experimentally at 50 Gbit/s for WDM channels with 200 GHz channel spacing using the fabricated device. Bit error rate (BER)measurements show very good conversion......We comprehensively analyze multiple WDM channels RZ-to- NRZ format conversion using a single microring resonator. The scheme relies on simultaneous suppression of the first order harmonic components in the spectra of all the RZ channels. An optimized silicon microring resonator with free spectral...

  13. Full-wave Feasibility Study of Magnetic Diagnostic based on O-X Mode Conversion and Oblique Reflectometry Imaging

    Science.gov (United States)

    Volpe, F. A.; Choi, M.; Patel, Y.; Meneghini, O.

    2013-10-01

    We present initial two-dimensional full-wave modeling of an innovative diagnostic of the magnetic field vector as a function of the minor radius in the pedestal region. An angularly broad millimeter-wave beam of ordinary (O) polarization is obliquely injected in the magnetized plasma; part of it converts in the extraordinary (X) mode at the O-mode cutoff, the rest is reflected. The reflected beam pattern, measured with an array of receivers, contains information on the angular-dependent mode conversion, which contains information on the magnetic pitch angle at the cutoff. Measurements at various frequencies provide radially resolved measurements of pitch angle. The new technique proposed does not require the plasma to be an overdense emitter of Electron Bernstein Waves and is applicable whenever reflectometry is applicable. Simulations performed with the finite-element COMSOL Multiphysics code in ``DIII-D-like'' plasma slabs confirmed the presence of a minimum in reflectivity of an externally injected O-mode beam. The dependence of such reflectivity ``hole'' upon magnetic field is under study. Future inclusion of toroidal ripple, density and magnetic fluctuation effects, as well as possible extensions to a fully three-dimensional diagnostic of the magnetic field will be discussed. Current address: Imsol-X.

  14. Non-resonant instability of coupled Alfvén and drift compressional modes in magnetospheric plasma

    Science.gov (United States)

    Mager, Pavel N.; Klimushkin, Dmitri Yu

    2017-09-01

    A new mechanism of generation of the high-m compressional ULF waves in the magnetosphere is considered. It is suggested that the wave can be generated by the non-resonant instability of coupled Alfvén and drift compressional modes in the energetic component of the magnetospheric plasma. A stability analysis of the of the coupled modes in the inhomogeneous finite-β plasma in the dipole-like field in gyrokinetics is performed. A quadratic equation was obtained that determines mode frequency and the growth rate. The frequencies of both modes depend on the azimuthal wave number, m. The branches are merged at some critical m value, forming a mode with both real and imaginary parts of the wave frequency. This mode is amplified due to the instability called the drift coupling instability. The instability criterion was found. Its growth rate is determined by the mode coupling.

  15. Temporal mode sorting using dual-stage quantum frequency conversion by asymmetric Bragg scattering

    DEFF Research Database (Denmark)

    Christensen, Jesper Bjerge; Reddy, Dileep V.; McKinstrie, C. J.;

    2015-01-01

    The temporal shape of single photons provides a high-dimensional basis of temporal modes, and can therefore support quantum computing schemes that go beyond the qubit. However, the lack of linear optical components to act as quantum gates has made it challenging to efficiently address specific...

  16. Conversion of the dominantly ideal perturbations into a tearing mode after a sawtooth crash

    NARCIS (Netherlands)

    Igochine, V.; Gude, A.; S. Günter,; Lackner, K.; Yu, Q.; Orte, L. B.; Bogomolov, A.; Classen, I.; McDermott, R. M.; N C Luhmann Jr.,; ASDEX Upgrade team,

    2014-01-01

    Forced magnetic reconnection is a topic of common interest in astrophysics, space science, and magnetic fusion research. The tearing mode formation process after sawtooth crashes implies the existence of this type of magnetic reconnection and is investigated in great detail in the ASDEX Upgrade toka

  17. Guided-mode resonant filters and reflectors: Principles, design, and fabrication

    Science.gov (United States)

    Niraula, Manoj

    In this dissertation, we overview the operational principles of these resonant periodic structures, discuss the methods of their design and fabrication, and propose and demonstrate novel functionalities for spatial and spectral filtering, and unpolarized wideband reflection. Fashioned with materially sparse gratings, these optical devices are easy to fabricate and integration friendly compared to their traditional multi-layer counterparts making their research and development critical for practical applications. We study, theoretically, modal properties and parametric dependence of resonant periodic bandpass filters operating in the mid- and near-infrared spectral domains. We investigate three different device architectures consisting of single, double, and triple layers based on all-transparent dielectric and semiconductor thin films. We present three modal coupling configurations forming complex mixtures of two or three distinct leaky modes coupling at different evanescent diffraction orders. Our modal analysis demonstrates key attributes of subwavelength periodic thin-film structures in multiple-modal blending to achieve desired transmission spectra. We provide the first experimental demonstration of high-efficiency and narrow-linewidth resonant bandpass filter applying a single patterned silicon layer on a quartz substrate. Its performance corresponds to bandpass filters requiring 15 traditional Si/SiO2 thin-film layers. The feasibility of sparse narrowband, high-efficiency bandpass filters with extremely wide, flat, and low sidebands is thereby demonstrated. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied. We demonstrate concurrent spatial and spectral filtering as a new outstanding attribute of resonant periodic devices. This functionality is enabled by a unique, near-complete, reflection state that is discrete in both

  18. Diffuse auroral precipitation by resonant interaction with electron cyclotron harmonic and whistler mode waves

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Singh, K. P.; Singh, O. N.

    2013-05-01

    Bounce-averaged pitch angle diffusion coefficients of electrons due to resonant interaction with electrostatic electron cyclotron harmonic (ECH) and whistler mode waves have been calculated. Temporal growth rates obtained by solving the appropriate dispersion relation have been used to represent the distribution of wave energy with frequency. Calculations have been performed at two spatial locations L=4.6 and L=6.8. The results obtained suggest that ECH waves can put electrons on strong pitch angle diffusion at both spatial locations. However, at L=4.6, electrons with energy <100 eV and at L=6.8 electrons with energy up to ∼500 eV can be put on strong diffusion contributing to diffuse auroral precipitation. Whistler mode waves can put electrons of energy ≤5 keV on strong pitch angle diffusion at L=6.8 whereas at L=4.6 observed wave fields are insufficient to put electrons on strong diffusion. ECH waves contribute up to 17% of the total electron energy precipitation flux due to both ECH and whistler mode waves. A case study has been performed to calculate pitch angle diffusion coefficients using Gaussian function to represent wave energy distribution with frequency. It is found that, for electron energy <500 eV, the calculated diffusion coefficients using Gaussian function to represent ECH wave energy distribution are several orders of magnitude smaller or negligible as compared to diffusion coefficients calculated by temporal growth rates. However, the calculated pitch angle diffusion coefficients using Gaussian function for whistler mode wave energy distribution are in very good agreement with diffusion coefficients calculated by temporal growth rates. It is concluded that representing the ECH wave energy distribution with frequency by a Gaussian function grossly underestimates the low energy (<500 eV) electron precipitation flux due to ECH waves.

  19. Broadband optical absorbance spectroscopy using a whispering gallery mode microsphere resonator

    Science.gov (United States)

    Westcott, Sarah L.; Zhang, Jiangquan; Shelton, Robert K.; Bruce, Nellie M. K.; Gupta, Sachin; Keen, Steven L.; Tillman, Jeremy W.; Wald, Lara B.; Strecker, Brian N.; Rosenberger, A. T.; Davidson, Roy R.; Chen, Wei; Donovan, Kevin G.; Hryniewicz, John V.

    2008-03-01

    We demonstrate the ability to excite and monitor many whispering gallery modes (WGMs) of a microsphere resonator simultaneously in order to make broadband optical absorbance measurements. The 340μm diameter microsphere is placed in a microfluidic channel. A hemispherical prism is used for coupling the WGMs into and out of the microsphere. The flat surface of the prism seals the microfluidic channel. The slight nonsphericity in the microsphere results in coupling to precessed modes whose emission is spatially separated from the reflected excitation light. The evanescent fields of the light trapped in WGMs interact with the surrounding environment. The change in transmission observed in the precessed modes is used to determine the absorbance of the surrounding environment. In contrast to our broadband optical absorbance measurements, previous WGM sensors have used only a single narrow mode to measure properties such as refractive index. With the microfluidic cell, we have measured the absorbance of solutions of dyes (lissamine green B, sunset yellow, orange G, and methylene blue), aromatic molecules (benzylamine and benzoic acid), and biological molecules (tryptophan, phenylalanine, tyrosine, and o-phospho-L-tyrosine) at visible and ultraviolet wavelengths. The microsphere surface was reacted with organosilane molecules to attach octadecyl groups, amino groups, and fluorogroups to the surface. Both electrostatic and hydrophobic interactions were observed between the analytes and the microsphere surface, as indicated by changes in the measured effective pathlength with different organosilanes. For a given analyte and coated microsphere, the pathlength measurement was repeatable within a few percent. Methylene blue dye had a very strong interaction with the surface and pathlengths of several centimeters were measured. Choosing an appropriate surface coating to interact with a specific analyte should result in the highest sensitivity detection.

  20. Multi-Format Wavelength Conversion Using Quantum Dash Mode-Locked Laser Pumps

    Directory of Open Access Journals (Sweden)

    Yousra Ben M’Sallem

    2015-05-01

    Full Text Available We investigate and compare the performance of wavelength conversion for two different non-return-to-zero (NRZ modulation formats at 40 Gb/s: on off keying (OOK and differential phase-shift keying (DPSK. To achieve wide wavelength coverage and integrability, we use a dual pump scheme exploiting four-wave mixing in semiconductor optical amplifiers. For phase stability, we use a quantum-dash mode-locked laser (QD-MLL as a multi-wavelength source for the dual pumps, with tunability provided by the output filter. The significant sidelobes of the DPSK spectrum (relative to OOK require the balancing of the pump proximity to the original signal (facilitating high conversion efficiency with the signal degradation from the pump spectrum overlapping the converted DPSK signal. We achieve a conversion efficiency near –3.6 dB for OOK and –5.4 dB for DPSK across a 12 nm tuning range with low input powers (1 dBm. We measure bit error rate (BER and obtain error free transmission (BER < 10−9 with a power penalty less than 2 dB for OOK and 3 dB for DPSK.

  1. Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity

    KAUST Repository

    Amin, Muhammad Ruhul

    2012-08-10

    In this paper, a planar metallic nanostructure design, which supports two distinct Fano resonances in its extinction cross-section spectrum under normally incident and linearly polarized electromagnetic field, is proposed. The proposed design involves a circular disk embedding an elongated cavity; shifting and rotating the cavity break the symmetry of the structure with respect to the incident field and induce higher order plasmon modes. As a result, Fano resonances are generated in the visible spectrum due to the destructive interference between the sub-radiant higher order modes and super-radiant the dipolar mode. The Fano resonances can be tuned by varying the cavity\\'s width and the rotation angle. An RLC circuit, which is mathematically equivalent to a mass-spring oscillator, is proposed to model the optical response of the nanostructure design.

  2. High-Q MgF$_2$ whispering gallery mode resonators for refractometric sensing in aqueous environment

    CERN Document Server

    Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G L

    2014-01-01

    We present our experiments on refractometric sensing with ultrahigh-Q, crystalline, birefringent magnesium fluoride (MgF$_2$) whispering gallery mode resonators. The difference to fused silica which is most commonly used for sensing experiments is the small refractive index of MgF$_2$ which is very close to that of water. Compared to fused silica this leads to more than 50% longer evanescent fields and a 4.25 times larger sensitivity. Moreover the birefringence amplifies the sensitivity difference between TM and TE type modes which will enhance sensing experiments based on difference frequency measurements. We estimate the performance of our resonators and compare them with fused silica theoretically and present experimental data showing the interferometrically measured evanescent decay and the sensitivity of mm-sized MgF$_2$ whispering gallery mode resonators immersed in water. They show reasonable agreement with the developed theory. Furthermore, we observe stable Q factors in water well above $1 \\times 10^...

  3. Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators.

    Science.gov (United States)

    Li, Yu; Feng, Shaoqi; Zhang, Yu; Poon, Andrew W

    2013-12-01

    We report a sub-bandgap linear-absorption-based photodetector in avalanche mode at 1550 nm in a PN-diode-integrated silicon microring resonator. The photocurrent is primarily generated by the defect-state absorption introduced by the boron and phosphorous ion implantation during the PN diode formation. The responsivity is enhanced by both the cavity effect and the avalanche multiplication. We measure a responsivity of ~72.8 mA/W upon 8 V at cavity resonances in avalanche mode, corresponding to a gain of ~72 relative to the responsivity of ~1.0 mA/W upon 3 V at cavity resonances in normal mode. Our device exhibits a 3 dB bandwidth of ~7 GHz and an open eye diagram at 15 Gbit/s upon 8 V.

  4. Resonant energy conversion of 3-minute intensity oscillations into Alfven waves in the solar atmosphere

    CERN Document Server

    Kuridze, D

    2007-01-01

    Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.

  5. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles

    Science.gov (United States)

    Bakhti, Saïd; Tishchenko, Alexandre V.; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Dhuey, Scott D.; Schuck, P. James; Cabrini, Stefano; Alayoglu, Selim; Destouches, Nathalie

    2016-09-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.

  6. H- extraction from electron-cyclotron-resonance-driven multicusp volume source operated in pulsed mode

    Science.gov (United States)

    Svarnas, P.; Bacal, M.; Auvray, P.; Béchu, S.; Pelletier, J.

    2006-03-01

    H2 microwave (2.45GHz) pulsed plasma is produced from seven elementary electron cyclotron resonance sources installed into the magnetic multipole chamber "Camembert III" (École Polytechnique—Palaiseau) from which H- extraction takes place. The negative-ion and electron extracted currents are studied through electrical measurements and the plasma parameters by means of electrostatic probe under various experimental conditions. The role of the plasma electrode bias and the discharge duty cycle in the extraction process is emphasized. The gas breakdown at the beginning of every pulse gives rise to variations of the plasma characteristic parameters in comparison with those established at the later time of the pulse, where the electron temperature, the plasma potential, and the floating potential converge to the values obtained for a continuous plasma. The electron density is significantly enhanced in the pulsed mode.

  7. Multi-mode excitation of a clamped–clamped microbeam resonator

    KAUST Repository

    Younis, Mohammad I.

    2015-02-18

    We present modeling and simulation of the nonlinear dynamics of a microresonator subjected to two-source electrostatic excitation. The resonator is composed of a clamped–clamped beam excited by a DC voltage load superimposed to two AC voltage loads of different frequencies. One frequency is tuned close to the first natural frequency of the beam and the other is close to the third (second symmetric) natural frequency. A multi-mode Galerkin procedure is applied to extract a reduced-order model, which forms the basis of the numerical simulations. Time history response, Poincare’ sections, Fast Fourier Transforms FFT, and bifurcation diagrams are used to reveal the dynamics of the system. The results indicate complex nonlinear phenomena, which include quasiperiodic motion, torus bifurcations, and modulated chaotic attractors.

  8. Entanglement of resonantly coupled field modes in cavities with vibrating boundaries

    CERN Document Server

    Andreata, M A; Dodonov, V V

    2002-01-01

    We study time dependence of various measures of entanglement (covariance entanglement coefficient, purity entanglement coefficient, normalized distance coefficient, entropic coefficients) between resonantly coupled modes of the electromagnetic field in ideal cavities with oscillating boundaries. Two types of cavities are considered: a three-dimensional cavity possessing eigenfrequencies $\\omega_3=3\\omega_1$, whose wall oscillates at the frequency $\\omega_w=2\\omega_1$, and a one-dimensional (Fabry--Perot) cavity with an equidistant spectrum $\\omega_n= n\\omega_1$, when the distance between perfect mirrors oscillates at the frequencies $\\omega_1$ and $2\\omega_1$. The behaviour of entanglement measures in these cases turns out to be completely different, although all three coefficients demonstrate qualitatively similar time dependences in each case (except for some specific situations, where the covariance entanglement coefficient, based on traces of covariance submatrices, seems to be essentially more sensitive ...

  9. Optical sum-frequency generation in a whispering-gallery-mode resonator

    Science.gov (United States)

    Strekalov, Dmitry V.; Kowligy, Abijith S.; Huang, Yu-Ping; Kumar, Prem

    2014-05-01

    We demonstrate sum-frequency generation between a telecom wavelength and the Rb D2 line, achieved through natural phase matching in a nonlinear whispering gallery mode resonator. Due to the strong optical field confinement and ultra high Q of the cavity, the process saturates already at sub-mW pump peak power, at least two orders of magnitude lower than in existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory based on spherical geometry. Our experimental and theoretical results point toward a new platform for manipulating the color and quantum states of light waves for applications such as atomic memory based quantum networking and logic operations with optical signals.

  10. Stochastic resonance for signal-modulated pump noise in a single-mode laser

    Institute of Scientific and Technical Information of China (English)

    Liangying Zhang; Li Cao; Fahui Zhu

    2006-01-01

    By adopting the gain-noise model of the single-mode laser in which with bias and periodical signals serve as inputs, combining with the effect of coloured pump noise, we use the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity under the condition of pump noise and quantum noise cross-related in the form of δ function. It is found that with the change of pump noise correlation time, both SNR and the output power will occur stochastic resonance (SR). If the bias signal α is very small, changing the intensities of pump noise and quantum noise respectively does not lead to the appearance of SR in the SNR; while α increases to a certain number, SR appears.

  11. Reply to "Comment on `Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators' "

    Science.gov (United States)

    Kristensen, Philip Trøst; Ge, Rong-Chun; Hughes, Stephen

    2017-07-01

    We refute all claims of the "Comment on `Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators' " by E. A. Muljarov and W. Langbein. Based entirely on information already contained in our original article [P. T. Kristensen, R.-C. Ge, and S. Hughes, Phys. Rev. A 92, 053810 (2015), 10.1103/PhysRevA.92.053810], we dismiss every point of criticism as being unsupported and point out how important parts of our argumentation appear to have been overlooked by the Comment authors. In addition, we provide additional calculations showing directly the connection between the normalizations by Sauvan et al. and Muljarov et al., which were not included in our original article.

  12. Phase-locking transition in Raman combs generated with whispering gallery mode resonators.

    Science.gov (United States)

    Lin, Guoping; Chembo, Yanne K

    2016-08-15

    We investigate the mechanisms leading to phase locking in Raman optical frequency combs generated with ultrahigh Q crystalline whispering gallery mode disk resonators. We show that several regimes can be triggered depending on the pumping conditions, such as single-frequency Raman lasing, multimode operation involving more than one family of cavity eigenmodes, and Kerr-assisted Raman frequency comb generation. The phase locking and coherence of the combs are experimentally monitored through the measurement of beat signal spectra. These phase-locked combs, which feature high coherence and wide spectral spans, are obtained with pump powers in the range of a few tens of mW. In particular, Raman frequency combs with multiple free-spectral range spacings are reported, and the measured beat signal in the microwave domain features a 3 dB linewidth smaller than 50 Hz, thereby indicating phase locking.

  13. Elementary Mode Analysis for the Rational Design of Efficient Succinate Conversion from Glycerol by Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhen Chen

    2010-01-01

    Full Text Available By integrating the restriction of oxygen and redox sensing/regulatory system, elementary mode analysis was used to predict the metabolic potential of glycerol for succinate production by E. coli under either anaerobic or aerobic conditions. It was found that although the theoretical maximum succinate yields under both anaerobic and aerobic conditions are 1.0 mol/mol glycerol, the aerobic condition was considered to be more favorable for succinate production. Although increase of the oxygen concentration would reduce the succinate yield, the calculation suggests that controlling the molar fraction of oxygen to be under 0.65 mol/mol would be beneficial for increasing the succinate productivity. Based on the elementary mode analysis, the rational genetic modification strategies for efficient succinate production under aerobic and anaerobic conditions were obtained, respectively. Overexpressing the phosphoenolpyruvate carboxylase or heterogonous pyruvate carboxylase is considered to be the most efficient strategy to increase the succinate yield.

  14. Four-mode continuous-variables entangled state:generation from beam splitter, a parametric down-conversion and a polarizer

    Institute of Scientific and Technical Information of China (English)

    Kuang Mai-Hua; Ma Shan-Jun; Liu Dong-Mei; Wang Shu-Jing

    2009-01-01

    We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is presented by combining a symmetrical beamsplitter, a parametric down-conversion and a polarizer. After making a single-mode quadrature amplitude measurement, the remaining three modes are kept in entanglement. And its applications are also discussed.

  15. Design and Modelling of a Two-port Surface Acoustic WaveResonator using Coupling-of-modes Theory

    Directory of Open Access Journals (Sweden)

    Mamta Khaneja

    2008-05-01

    Full Text Available In this present paper the coupling-of-modes theory has been used to design and simulatethe characteristics of a two-port SAW resonator with shorted reflection gratings to define theresonance cavity. A resonator device at 150 MHz has been designed and fabricated on ST-Quartz. It is found that the simulated and experimental characteristics of the device are in closeagreement. The results show that the SAW designs based on coupling-of-modes formulationare adequate for most applications.

  16. Giant positive and negative Goos-Hänchen shift on dielectric gratings caused by guided mode resonance.

    Science.gov (United States)

    Yang, Rui; Zhu, Wenkan; Li, Jingjing

    2014-01-27

    Giant positive and negative Goos-Hänchen shift more than 5000 times of the operating wavelength is observed when a beam is totally reflected from a substrate decorated by a dielectric grating. Different to the former studies where Goos-Hänchen shift is related to metamaterials or plasmonic materials with ohmic loss, here the giant shift is realized with unity reflectance without the loss. This is extremely advantageous for sensor applications. The Goos-Hänchen shift exhibits a strong resonant feature at the frequency of guided mode resonance, and is associated to the energy flow carried by the guided mode.

  17. Quantitative vibro-acoustography of tissue-like objects by measurement of resonant modes.

    Science.gov (United States)

    Mazumder, Dibbyan; Umesh, Sharath; Vasu, Ram Mohan; Roy, Debasish; Kanhirodan, Rajan; Asokan, Sundarrajan

    2017-01-07

    We demonstrate a simple and computationally efficient method to recover the shear modulus pertaining to the focal volume of an ultrasound transducer from the measured vibro-acoustic spectral peaks. A model that explains the transport of local deformation information with the acoustic wave acting as a carrier is put forth. It is also shown that the peaks correspond to the natural frequencies of vibration of the focal volume, which may be readily computed by solving an eigenvalue problem associated with the vibrating region. Having measured the first natural frequency with a fibre Bragg grating sensor, and armed with an expedient means of computing the same, we demonstrate a simple procedure, based on the method of bisection, to recover the average shear modulus of the object in the ultrasound focal volume. We demonstrate this recovery for four homogeneous agarose slabs of different stiffness and verify the accuracy of the recovery using independent rheometer-based measurements. Extension of the method to anisotropic samples through the measurement of a more complete set of resonant modes and the recovery of an elasticity tensor distribution, as is done in resonant ultrasound spectroscopy, is suggested.

  18. Biochemical component identification by light scattering techniques in whispering gallery mode optical resonance based sensor

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-03-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins (albumin, interferon, C reactive protein), microelements (Na+, Ca+), antibiotic of different generations, in both single and multi component solutions under varied in wide range concentration are represented. Analysis has been performed on the light scattering parameters of whispering gallery mode (WGM) optical resonance based sensor with dielectric microspheres from glass and PMMA as sensitive elements fixed by spin - coating techniques in adhesive layer on the surface of substrate or directly on the coupling element. Sensitive layer was integrated into developed fluidic cell with a digital syringe. Light from tuneable laser strict focusing on and scattered by the single microsphere was detected by a CMOS camera. The image was filtered for noise reduction and integrated on two coordinates for evaluation of integrated energy of a measured signal. As the entrance data following signal parameters were used: relative (to a free spectral range) spectral shift of frequency of WGM optical resonance in microsphere and relative efficiency of WGM excitation obtained within a free spectral range which depended on both type and concentration of investigated agents. Multiplexing on parameters and components has been realized using spatial and spectral parameters of scattered by microsphere light with developed data processing. Biochemical component classification and identification of agents under investigation has been performed by network analysis techniques based on probabilistic network and multilayer perceptron. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis.

  19. Quantitative vibro-acoustography of tissue-like objects by measurement of resonant modes

    Science.gov (United States)

    Mazumder, Dibbyan; Umesh, Sharath; Mohan Vasu, Ram; Roy, Debasish; Kanhirodan, Rajan; Asokan, Sundarrajan

    2017-01-01

    We demonstrate a simple and computationally efficient method to recover the shear modulus pertaining to the focal volume of an ultrasound transducer from the measured vibro-acoustic spectral peaks. A model that explains the transport of local deformation information with the acoustic wave acting as a carrier is put forth. It is also shown that the peaks correspond to the natural frequencies of vibration of the focal volume, which may be readily computed by solving an eigenvalue problem associated with the vibrating region. Having measured the first natural frequency with a fibre Bragg grating sensor, and armed with an expedient means of computing the same, we demonstrate a simple procedure, based on the method of bisection, to recover the average shear modulus of the object in the ultrasound focal volume. We demonstrate this recovery for four homogeneous agarose slabs of different stiffness and verify the accuracy of the recovery using independent rheometer-based measurements. Extension of the method to anisotropic samples through the measurement of a more complete set of resonant modes and the recovery of an elasticity tensor distribution, as is done in resonant ultrasound spectroscopy, is suggested.

  20. Comparison of formulas for resonant interactions between energetic electrons and oblique whistler-mode waves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jinxing, E-mail: lijx@pku.edu.cn [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095 (United States); Bortnik, Jacob; Thorne, Richard M. [Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095 (United States); Xie, Lun, E-mail: xielun@pku.edu.cn; Pu, Zuyin; Fu, Suiyan; Guo, Ruilong [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Chen, Lunjin [W. B. Hanson Center for Space Sciences, Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Ni, Binbin [Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan, Hubei 430072 (China); Tao, Xin [Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yao, Zhonghua [Mullard Space Science Laboratory, University College London, Dorking (United Kingdom)

    2015-05-15

    Test particle simulation is a useful method for studying both linear and nonlinear wave-particle interactions in the magnetosphere. The gyro-averaged equations of particle motion for first-order and other cyclotron harmonic resonances with oblique whistler-mode waves were first derived by Bell [J. Geophys. Res. 89, 905 (1984)] and the most recent relativistic form was given by Ginet and Albert [Phys. Fluids B 3, 2994 (1991)], and Bortnik [Ph.D. thesis (Stanford University, 2004), p. 40]. However, recently we found there was a (−1){sup l−1} term difference between their formulas of perpendicular motion for the lth-order resonance. This article presents the detailed derivation process of the generalized resonance formulas, and suggests a check of the signs for self-consistency, which is independent of the choice of conventions, that is, the energy variation equation resulting from the momentum equations should not contain any wave magnetic components, simply because the magnetic field does not contribute to changes of particle energy. In addition, we show that the wave centripetal force, which was considered small and was neglect in previous studies of nonlinear interactions, has a profound time derivative and can significantly enhance electron phase trapping especially in high frequency waves. This force can also bounce the low pitch angle particles out of the loss cone. We justify both the sign problem and the missing wave centripetal force by demonstrating wave-particle interaction examples, and comparing the gyro-averaged particle motion to the full particle motion under the Lorentz force.

  1. Focusing of the lowest-order antisymmetric Lamb mode behind a gradient-index acoustic metalens with local resonators

    Science.gov (United States)

    Zhao, Jinfeng; Bonello, Bernard; Boyko, Olga

    2016-05-01

    We have investigated the focusing of the lowest-order antisymmetric Lamb mode (A0) behind a positive gradient-index (GRIN) acoustic metalens consisting of air holes drilled in a silicon plate with silicon pillars erected on one face of the lens. We have analyzed the focusing in the near field as the result of the coupling between the flexural resonant mode of the pillars and the vibration mode of the air/silicon phononic crystal. We highlight the role played by the polarization coherence between the resonant mode and the vibration of the plate. We demonstrate both numerically and experimentally the focusing behind the lens over a spot less than half a wavelength, paving a way for performance of acoustic lenses beyond the diffraction limit. Our findings can be easily extended to other types of elastic wave.

  2. Anisotropic anti-resonant elements gives broadband single-mode low-loss hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    Hollow-core fibers with node-free anisotropic anti-resonant elements give broadband low-loss fibers that are also single-moded. At 1.06 μm silica-based fiber designs show higher-order-mode extinction-ratio >1000 and losses below 10 dB/km over a broad wavelength range.......Hollow-core fibers with node-free anisotropic anti-resonant elements give broadband low-loss fibers that are also single-moded. At 1.06 μm silica-based fiber designs show higher-order-mode extinction-ratio >1000 and losses below 10 dB/km over a broad wavelength range....

  3. Mode conversion and heating in a UCLA-high schools collaborative experiment

    Science.gov (United States)

    Smith, Miana; Buckley-Bonnano, Samuel; Pribyl, Patrick; Gekelman, Walter; Wise, Joe; Baker, Bob; Marmie, Ken

    2016-10-01

    A small plasma device is in operation for use by undergraduates and high school students at UCLA. Magnetic field up to 100 G, with density 108 meters long. The plasma is generated by an ICP source at one end operating at about 500 kHz. For this experiment, a small plate located near the edge of the plasma column is used as an electrostatic launcher. High frequency waves ωce distance away axially measures plasma heating along a field line that passes several cm in front of the launcher, localized in radius with δr 1cm Absorption and strong electron heating are observed at the plasma resonant layer. We explore the ``double resonance condition at which ωpe = 2ωce . Here strong interaction with electron Bernstein waves is expected. The Bernstein waves are also launched at low power and their dispersion relation verified. Work done at the BaPSF at UCLA which is supported by the DOE/NSF.

  4. Low-limit detection of NO2 by longitudinal mode selection in a photoacoustic resonant system

    Indian Academy of Sciences (India)

    F Yehya; A K Chaudhary

    2013-09-01

    The paper reports the pulsed laser-based photoacoustic (PA) spectroscopy of NO2 in a resonant PA cavity with special filters made of stainless steel. The PA cell along with special types of sound filters are designed and fabricated to excite only the second-order longitudinal mode inside the cavity. The second harmonic, i.e. = 532 nm pulse width, of 7 ns obtained from -switched Nd:YAG laser at 10 Hz repetition rate has been used to study the saturation behaviour of the PA signal and absorption coefficient with respect to the input laser energy. Generally, the -factor of longitudinal modes in the acoustic cavities is quite low. However, by modifying the design of the cell and the filter, we can achieve high value of = 30. The combination of special filter along with the experimental data acquisition technique helped us to achieve the minimum detection concentration of NO2 of the order of 9 ppbV which is much better than the previous value of the same PA cell without filter [Yehya and Chaudhary, Appl. Phys. B 106, 953 (2012)].

  5. THz Pyro-Optical Detector Based on LiNbO3 Whispering Gallery Mode Microdisc Resonator

    Science.gov (United States)

    Cosci, Alessandro; Cerminara, Matteo; Nunzi Conti, Gualtiero; Soria, Silvia; Righini, Giancarlo C.; Pelli, Stefano

    2017-01-01

    This study analyzes the capabilities of a LiNbO3 whispering gallery mode microdisc resonator as a potential bolometer detector in the THz range. The resonator is theoretically characterized in the stationary regime by its thermo-optic and thermal coefficients. Considering a Q-factor of 107, a minimum detectable power of 20 μW was evaluated, three orders of magnitude above its noise equivalent power. This value opens up the feasibility of exploiting LiNbO3 disc resonators as sensitive room-temperature detectors in the THz range. PMID:28134857

  6. Single-Frequency, Yb-Free, Resonantly Cladding-Pumped Large Mode Area Er Fiber Amplifier for Power Scaling

    Science.gov (United States)

    2008-07-25

    report results for a single-frequency SF resonantly cladding-pumped Yb-free large mode area LMA erbium-doped fiber amplifier EDFA with nearly 50...original demonstration of a SF resonantly cladding-pumped LMA EDFA . We obtained a diffraction-limited SF output of 9.3 W, which is also a record power...output obtained for resonantly cladding-pumped LMA EDFA . © 2008 American Institute of Physics. DOI: 10.1063/1.2964189 Recent advances in eye-safe 1.5

  7. Stochastic resonance in a single-mode laser driven by quadratic Pump noise and amplitude-modulated signal

    Institute of Scientific and Technical Information of China (English)

    Zhang Li

    2009-01-01

    This paper investigates the phenomenon of stochastic resonance in a single-mode laser driven by quadratic pump noise and amplitude-modulated signal.A new linear approximation approach is advanced to calculate the signal-to-noise ratio.In the linear approximation only the drift term is linearized,the multiplicative noise term is unchangeable.It is found that there appears not only the standard form of stochastic resonance but also the broad sense of stochastic resonance,especially stochastic multiresonance appears in the curve of signal-to-noise ratio as a function of coupling strength λ between the real and imaginary parts of the pump noise.

  8. Doubly-Resonant Fabry-Perot Cavity for Power Enhancement of Burst-Mode Picosecond Ultraviolet Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Abudureyimu, Reheman [ORNL; Huang, Chunning [ORNL; Liu, Yun [ORNL

    2015-01-01

    We report on a first experimental demonstration of locking a doubly-resonant Fabry-Perot cavity to burst-mode picosecond ultraviolet (UV) pulses by using a temperature controlled dispersion compensation method. This technique will eventually enable the intra cavity power enhancement of burst-mode 402.5MHz/50ps UV laser pulses with a MW level peak power required for the laser assisted H- beam stripping experiment at the Spallation Neutron Source.

  9. Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination

    Directory of Open Access Journals (Sweden)

    V. B. Yurchenko

    2015-08-01

    Full Text Available We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor that makes light-microwave interaction observable with an ordinary light (no laser at conventional brightness (like an office lighting in quasi-optical microwave structures at rather long (centimeter-scale wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel.

  10. Abnormal Default-Mode Network Activation in Cirrhotic Patients: A Functional Magnetic Resonance Imaging Study

    Energy Technology Data Exchange (ETDEWEB)

    Long Jiang Zhang; Guifen Yang; Jianzhong Yin; Yawu Liu; Ji Qi [Dept. of Radiology, Tianjin First Central Hospital, Tianjin Medical Univ., Tianjin (China)

    2007-09-15

    Background: Recently, increasing numbers of studies have demonstrated that, in humans, a default-mode functional network exists in the resting state. Abnormal default-mode network in various diseases has been reported; however, no report concerning hepatic cirrhosis has been published to date. Purpose: To prospectively explore whether the resting-state network in patients with hepatic cirrhosis is abnormal or not, using functional magnetic resonance imaging (fMRI). Material and Methods: 14 patients with hepatic cirrhosis (12 male, two female; 45{+-}9 years) and 14 age- and gender-matched healthy volunteers (12 male, two female; 42{+-}10 years) participated in a blocked-design fMRI study. A modified Stroop task with Chinese characters was used as the target stimulus. Statistical Parametric Mapping 99 software was employed to process the functional data. Individual maps and group data were generated for patients with hepatic cirrhosis and for healthy controls, respectively. Intergroup analysis between patients and healthy controls was also generated using the two-sample t-test model. Cluster analyses were done based on the group data, and an identical P value 0.01 with continuously connected voxels of no less than 10 was defined as significant deactivation. After fMRI scanning was complete, behavioral Stroop interference tests were performed on all subjects; reaction time and error number were recorded. Results: Functionally, deactivation of the posterior cingulate cortex (PCC) and precuneus was absent when subjects performed the incongruous word-reading task; deactivation of the PCC, precuneus, and ventral medial prefrontal cortex was increased when they performed the incongruous color-naming task. Conclusion: The functional as well as behavioral data suggest that cirrhotic patients may have an abnormal deactivation mode. The absence of deactivation in the PCC and precuneus may be a sensitive rather than specific marker in patients with hepatic cirrhosis.

  11. Treatment of near-skull brain tissue with a focused device using shear-mode conversion: a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Pichardo, Samuel; Hynynen, Kullervo [Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Ave. Rm C713 Toronto, ON M4N 3M5 (Canada)

    2007-12-21

    Shear mode transmission through the skull has been previously proposed as a new trans-skull propagation technique for noninvasive therapeutic ultrasound (Clement 2004 J. Acoust. Soc. Am. 115 1356-64). The main advantage of choosing shear over longitudinal mode resides on the fact that there is less wavefront distortion with the former. In the present study, the regions of the brain suitable for shear-mode transmission were established for a simple focused ultrasound device. The device consists of a spherically curved transducer that has a focal length of 10 cm, an aperture between 30{sup 0} and 60{sup 0} and operates at 0.74 MHz. The regions suitable for shear-mode transmission were determined by the shear wave acoustic windows that matched the shape of the device acoustic field. The acoustic windows were calculated using segmentation and triangulation of outer and inner faces of skull from 3D-MRI head datasets. Nine heads of healthy adults were analyzed. The surface considered for the calculations was the head region found above the supra-orbital margin. For every inspected point in the brain volume, the axis of the device was determined by the vector between this inspection point and a point located in the center of the brain. Numerical predictions of the acoustic field, where shear-mode conversion through the skull was considered, were obtained and compared to the case of water-only conditions. The brain tissue that is close to the skull showed suitable acoustic windows for shear waves. The central region of the brain seems to be unreachable using shear-mode. Analysis of the acoustic fields showed a proportional relation between the acoustic window for shear mode and the effective degree of focusing. However, this relation showed significant differences among specimens. In general, highly focused fields were obtained when the acoustic window for shear waves (A{sub SW}) intersected more than 67% of the entering acoustic window (A{sub TX}) of the device. The

  12. Treatment of near-skull brain tissue with a focused device using shear-mode conversion: a numerical study

    Science.gov (United States)

    Pichardo, Samuel; Hynynen, Kullervo

    2007-12-01

    Shear mode transmission through the skull has been previously proposed as a new trans-skull propagation technique for noninvasive therapeutic ultrasound (Clement 2004 J. Acoust. Soc. Am. 115 1356-64). The main advantage of choosing shear over longitudinal mode resides on the fact that there is less wavefront distortion with the former. In the present study, the regions of the brain suitable for shear-mode transmission were established for a simple focused ultrasound device. The device consists of a spherically curved transducer that has a focal length of 10 cm, an aperture between 30° and 60° and operates at 0.74 MHz. The regions suitable for shear-mode transmission were determined by the shear wave acoustic windows that matched the shape of the device acoustic field. The acoustic windows were calculated using segmentation and triangulation of outer and inner faces of skull from 3D-MRI head datasets. Nine heads of healthy adults were analyzed. The surface considered for the calculations was the head region found above the supra-orbital margin. For every inspected point in the brain volume, the axis of the device was determined by the vector between this inspection point and a point located in the center of the brain. Numerical predictions of the acoustic field, where shear-mode conversion through the skull was considered, were obtained and compared to the case of water-only conditions. The brain tissue that is close to the skull showed suitable acoustic windows for shear waves. The central region of the brain seems to be unreachable using shear-mode. Analysis of the acoustic fields showed a proportional relation between the acoustic window for shear mode and the effective degree of focusing. However, this relation showed significant differences among specimens. In general, highly focused fields were obtained when the acoustic window for shear waves (ASW) intersected more than 67% of the entering acoustic window (ATX) of the device. The average depth from the

  13. The influence of thermal and free carrier dispersion effects on all-optical wavelength conversion in a silicon racetrack-shaped microring resonator

    Science.gov (United States)

    Wang, Zhaolu; Liu, Hongjun; Sun, Qibing; Huang, Nan; Li, Shaopeng; Han, Jing

    2016-07-01

    We experimentally demonstrate ultra-low pump power wavelength conversion based on four-wave mixing in a silicon racetrack-shaped microring resonator. When the pump and signal are located at the resonance wavelengths, wavelength conversion with a pump power of only 1 mW can be realized in this microring resonator because of the resonant enhancement of the device. However, saturation of the conversion efficiency occurs because of the shift of the resonance peak, which is caused by the change of the effective refractive index induced by a combination of thermal and free carrier dispersion effects, and it is demonstrated that the thermal effect is the leading-order factor for the change of the refractive index. The maximum conversion efficiency of  -21 dB is obtained when the pump power is less than 12 mW. This ultra-low-power on-chip wavelength convertor based on a silicon microring resonator can find important potential applications in highly integrated optical circuits for all-optical signal processing.

  14. Lower hybrid heating associated with mode conversion on the Wisconsin octupole

    Energy Technology Data Exchange (ETDEWEB)

    Owens, T.L.

    1979-08-01

    This thesis addresses the following key issues in the lower hybrid frequency range: 1. What are the importent physics aspects of wave propagation and heating in an experimental situation. 2. How effective is plasma heating in the complex magnetic field configuration of the octupole. Experimental work is accomplished by launching 1-10ms pulses of up to 40kW of radio frequency power at 140MHz corresponding to the hot plasma lower hybrid resonance in the octupole. A diploe antenna which is moveable radially and is also rotatable couples wave power to the plasma. Coupling efficiencies greater than 95% are achieved by proper antenna placement near the edge of the plasma radial density profile.

  15. Fast-to-Alfv\\'en Mode Conversion Mediated by Hall Current. I. Cold Plasma Model

    CERN Document Server

    Cally, Paul S

    2015-01-01

    The photospheric temperature minimum in the Sun and solar-like stars is very weakly ionized, with ionization fraction $f$ as low as $10^{-4}$. In galactic star forming regions, $f$ can be $10^{-10}$ or lower. Under these circumstances, the Hall current can couple low frequency Alfv\\'en and magneto\\-acoustic waves via the dimensionless Hall parameter $\\epsilon=\\omega/\\Omega_\\text{i}f$, where $\\omega$ is the wave frequency and $\\Omega_\\text{i}$ is the mean ion gyrofrequency. This is analysed in the context of a cold (zero-$\\beta$) plasma, and in less detail for a warm plasma. It is found that Hall coupling preferentially occurs where the wave vector is nearly field-aligned. In these circumstances, Hall coupling in theory produces a continual oscillation between fast and Alfv\\'en modes as the wave passes through the weakly ionized region. At low frequencies (mHz), characteristic of solar and stellar normal modes, $\\epsilon$ is probably too small for more than a fraction of one oscillation to occur. On the other ...

  16. Quality Factor and Radiation Efficiency of Dual-Mode Self-Resonant Spherical Antennas With Lossy Magnetodielectric Cores

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle; Kim, Oleksiy S.; Breinbjerg, Olav

    2014-01-01

    determine the relative mode excitation, as a function of the core material parameters, which ensures self-resonance. For the specific case of a dual-${\\rm TE}_{m1}$ , ${\\rm TM}_{m1}$ dipole antenna of half a wavelength circumference, we show quantitatively, how $Q/e$ and $e$ behave, and can be optimized...

  17. A VHF Interleaved Self-Oscillating Resonant SEPIC Converter with Phase-Shift Burst-Mode Control

    DEFF Research Database (Denmark)

    Kovacevic, Milovan; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents design and implementation of the phase-shift burst-mode control method for interleaved selfoscillating resonant SEPIC converters for LED lighting applications. The proposed control method utilizes delays in the turn-on and turn-off of the power stage and control circuitry in o...

  18. First results with a surface conversion H ion source based on helicon wave mode-driven plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, Ollie A [Los Alamos National Laboratory; Geros, Ernest [Los Alamos National Laboratory; Rouleau, Gary [Los Alamos National Laboratory; Zaugg, Thomas J [Los Alamos National Laboratory

    2008-01-01

    The currently employed converter-type negative ion source at Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H{sup -} ion beams in a filament-driven discharge. The extracted H{sup -} beam current is limited by the achievable plasma density, which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which degrades the performance of the H{sup -} conversion surface. In order to overcome these limitations we have designed and tested a prototype of a surface conversion H{sup -} ion source, based on excitation of helicon plasma wave mode with an external antenna. The source has been operated with and without cesium injection. An H{sup -} beam current of over 12 mA has been transported through the low energy beam transport of the LANSCE ion source test stand. The results of these experiments and the effects of different source parameters on the extracted beam current are presented. The limitations of the source prototype are discussed and future improvements are proposed based on the experimental observations.

  19. Theoretical investigation of band-gap and mode characteristics of anti-resonance guiding photonic crystal fibres

    Institute of Scientific and Technical Information of China (English)

    Yuan Jin-Hui; Sang Xin-Zhu; Yu Chong-Xiu; Xin Xiang-Jun; Zhang Jin-Long; Zhou Gui-Yao; Li Shu-Guang; Hou Lan-Tian

    2011-01-01

    With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in anti-resonance guiding photonic crystal fibres (ARGPCFs) are sufficiently analysed. An ARGPCF operating in the near-infrared wavelength is shown. The influences of the high index cylinders, glass interstitial apexes and silica structure on the characteristics of band-gaps and modes are deeply investigated. The equivalent planar waveguide theory is used for analysing such an ARGPCF filled by the isotropic materials, and the resonance and the anti-resonance characteristics can be well predicted.

  20. High Q-factor Sapphire Whispering Gallery Mode Microwave Resonator at Single Photon Energies and milli-Kelvin Temperatures

    CERN Document Server

    Creedon, Daniel L; Farr, Warrick; Martinis, John M; Duty, Timothy L; Tobar, Michael E

    2011-01-01

    The microwave properties of a crystalline sapphire dielectric whispering gallery mode resonator have been measured at very low excitation strength (E/hf=1) and low temperatures (T = 30 mK). The measurements were sensitive enough to observe saturation due to a highly detuned electron spin resonance, which limited the loss tangent of the material to about 2e-8 measured at 13.868 and 13.259 GHz. Small power dependent frequency shifts were also measured which correspond to an added magnetic susceptibility of order 1e-9. This work shows that quantum limited microwave resonators with Q-factors > 1e8 are possible with the implementation of a sapphire whispering gallery mode system.