WorldWideScience

Sample records for resonant level coupled

  1. Quantum thermodynamics of the resonant-level model with driven system-bath coupling

    Science.gov (United States)

    Haughian, Patrick; Esposito, Massimiliano; Schmidt, Thomas L.

    2018-02-01

    We study nonequilibrium thermodynamics in a fermionic resonant-level model with arbitrary coupling strength to a fermionic bath, taking the wide-band limit. In contrast to previous theories, we consider a system where both the level energy and the coupling strength depend explicitly on time. We find that, even in this generalized model, consistent thermodynamic laws can be obtained, up to the second order in the drive speed, by splitting the coupling energy symmetrically between system and bath. We define observables for the system energy, work, heat, and entropy, and calculate them using nonequilibrium Green's functions. We find that the observables fulfill the laws of thermodynamics, and connect smoothly to the known equilibrium results.

  2. Apodized coupled resonator waveguides.

    Science.gov (United States)

    Capmany, J; Muñoz, P; Domenech, J D; Muriel, M A

    2007-08-06

    In this paper we propose analyse the apodisation or windowing of the coupling coefficients in the unit cells of coupled resonator waveguide devices (CROWs) as a means to reduce the level of secondary sidelobes in the bandpass characteristic of their transfer functions. This technique is regularly employed in the design of digital filters and has been applied as well in the design of other photonic devices such as corrugated waveguide filters and fiber Bragg gratings. The apodisation of both Type-I and Type-II structures is discussed for several windowing functions.

  3. Multiqubit quantum phase gate using four-level superconducting quantum interference devices coupled to superconducting resonator

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, Muhammad; Irfan, Muhammad [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Qamar, Shahid, E-mail: shahid_qamar@pieas.edu.pk [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2012-07-15

    In this paper, we propose a scheme to realize three-qubit quantum phase gate of one qubit simultaneously controlling two target qubits using four-level superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. The two lowest levels Divides 0 Right-Pointing-Angle-Bracket and Divides 1 Right-Pointing-Angle-Bracket of each SQUID are used to represent logical states while the higher energy levels Divides 2 Right-Pointing-Angle-Bracket and Divides 3 Right-Pointing-Angle-Bracket are utilized for gate realization. Our scheme does not require adiabatic passage, second order detuning, and the adjustment of the level spacing during gate operation which reduce the gate time significantly. The scheme is generalized for an arbitrary n-qubit quantum phase gate. We also apply the scheme to implement three-qubit quantum Fourier transform.

  4. Coupling n-level Atoms with l-modes of Quantised Light in a Resonator

    International Nuclear Information System (INIS)

    Castaños, O; Cordero, S; Nahmad-Achar, E; López-Peña, R

    2016-01-01

    We study the quantum phase transitions associated to the Hamiltonian of a system of n-level atoms interacting with l modes of electromagnetic radiation in a resonator. The quantum phase diagrams are determined in analytic form by means of a variational procedure where the test function is constructed in terms of a tensorial product of coherent states describing the matter and the radiation field. We demonstrate that the system can be reduced to a set of Dicke models. (paper)

  5. Coherence Phenomena in Coupled Optical Resonators

    Science.gov (United States)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  6. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  7. Modeling of supermodes in coupled unstable resonators

    International Nuclear Information System (INIS)

    Townsend, S.S.

    1986-01-01

    A general formalism describing the supermodes of an array of N identical, circulantly coupled resonators is presented. The symmetry of the problem results in a reduction of the N coupled integral equations to N decoupled integral equations. Each independent integral equation defines a set of single-resonator modes derived for a hypothetical resonator whose geometry resembles a member of the real array with the exception that all coupling beams are replaced by feedback beams, each with a prescribed constant phase. A given array supermode consists of a single equivalent resonator mode appearing repetitively in each resonator with a prescribed relative phase between individual resonators. The specific array design chosen for example is that of N adjoint coupled confocal unstable resonators. The impact of coupling on the computer modeling of this system is discussed and computer results for the cases of two- and four-laser coupling are presented

  8. Temporal Bell-type inequalities for two-level Rydberg atoms coupled to a high-Q resonator

    International Nuclear Information System (INIS)

    Huelga, S.F.; Marshall, T.W.; Santos, E.

    1996-01-01

    Following the strategy of showing specific quantum effects by means of the violation of a classical inequality, a pair of Bell-type inequalities is derived on the basis of certain additional assumptions, whose plausibility is discussed in detail. Such inequalities are violated by the quantum mechanical predictions for the interaction of a two-level Rydberg atom with a single mode sustained by a high-Q resonator. The experimental conditions required in order to show the existence of forbidden values, according to a hidden variables formalism, in a real experiment are analyzed for various initial field statistics. In particular, the revival dynamics expected for the interaction with a coherent field leads to classically forbidden values, which would indicate a purely quantum effect. copyright 1996 The American Physical Society

  9. Resonant coupling applied to superconducting accelerator structures

    International Nuclear Information System (INIS)

    Potter, James M.; Krawczyk, Frank L.

    2013-01-01

    The concept of resonant coupling and the benefits that accrue from its application is well known in the world of room temperature coupled cavity linacs. Design studies show that it can be applied successfully between sections of conventional elliptical superconducting coupled cavity accelerator structures and internally to structures with spoked cavity resonators. The coupling mechanisms can be designed without creating problems with high field regions or multipactoring. The application of resonant coupling to superconducting accelerators eliminates the need for complex cryogenic mechanical tuners and reduces the time needed to bring a superconducting accelerator into operation.

  10. Double Fano resonances in plasmon coupling nanorods

    International Nuclear Information System (INIS)

    Liu, Fei; Jin, Jie

    2015-01-01

    Fano resonances are investigated in nanorods with symmetric lengths and side-by-side assembly. Single Fano resonance can be obtained by a nanorod dimer, and double Fano resonances are shown in nanorod trimers with side-by-side assembly. With transverse plasmon excitation, Fano resonances are caused by the destructive interference between a bright superradiant mode and dark subradiant modes. The bright mode originates from the electric plasmon resonance, and the dark modes originate from the magnetic resonances induced by near-field inter-rod coupling. Double Fano resonances result from double dark modes at different wavelengths, which are induced and tuned by the asymmetric gaps between the adjacent nanorods. Fano resonances show a high figure of merit and large light extinction in the periodic array of assembled nanorods, which can potentially be used in multiwavelength sensing in the visible and near-infrared regions. (paper)

  11. Quantum heat engine with coupled superconducting resonators

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.

    2017-01-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....

  12. Effect of couplings in the resonance continuum

    International Nuclear Information System (INIS)

    Royal, J; Larson, A; Orel, A E

    2004-01-01

    Electronic coupling of two or more resonances via the electron scattering continuum is investigated. The effect of this coupling as a function of the resonance curves and autoionization widths is investigated, and the conditions for the maximum effect are determined. The theory is applied to two physical problems, the product state distribution produced by the dissociative recombination of electrons with HeH + and a one-dimensional model for ion-pair production resulting from electron collisions with H + 3 . It is found that the coupling does not affect the product state distribution in HeH + but produces a significant effect in the H + 3 model

  13. Wave energy extraction by coupled resonant absorbers.

    Science.gov (United States)

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  14. Coupled optical resonance laser locking

    CSIR Research Space (South Africa)

    Burd, CC

    2014-10-01

    Full Text Available We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different...

  15. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it [Istituto Italiano di Tecnologia, Via Morego, 30, I-16163 Genova (Italy); Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Univ. Paris Sud, Univ. Paris Saclay, 91405 Orsay (France)

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  16. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  17. Bicritical behaviors observed in coupled diode resonators

    International Nuclear Information System (INIS)

    Kim, Youngtae

    2004-01-01

    We have investigated bicritical behaviors of unidirectionally coupled diode resonators having a period doubling route to chaos. Depending on the dynamical states of the drive subsystem, the response subsystem showed a dynamical behavior other than that of the uncoupled system. The experimental results agreed well with the results obtained from the simulation of unidirectionally coupled logistic maps and oscillators. A new type of scaling behavior and a power spectrum of the hyperchaotic attractor appearing near a bicritical point were also observed.

  18. Coupled optical resonance laser locking.

    Science.gov (United States)

    Burd, S C; du Toit, P J W; Uys, H

    2014-10-20

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different lasers are obtained by modulating each laser at a different frequency and using lock-in detection of a single photodiode signal. Experimentally, we simultaneously lock a 369 nm and a 935 nm laser to the (2)S(1/2) → (2)(P(1/2) and (2)D(3/2) → (3)D([3/2]1/2) transitions, respectively, of Yb(+) ions generated in a hollow cathode discharge lamp. Stabilized lasers at these frequencies are required for cooling and trapping Yb(+) ions, used in quantum information and in high precision metrology experiments. This technique should be readily applicable to other ion and neutral atom systems requiring multiple stabilized lasers.

  19. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    Science.gov (United States)

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  20. Quantum heat engine with coupled superconducting resonators

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.

    2017-01-01

    the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal......We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....

  1. Nuclear level mixing resonance spectroscopy

    International Nuclear Information System (INIS)

    Coussement, R.; Put, P.; Scheveneels, G.; Hardeman, F.

    1985-01-01

    The existent methods for measuring quadrupole interactions are not suited to nuclei with lifetimes in the micro-seconds to minutes region. AD/NQR, a possible candidate in this lifetime gap, has not yet succeeded in overcoming its predicted difficulties. A new resonant method, recently developed and based on the principles of level mixing (cfr atomic spectroscopy) covers this less accessible lifetime range. Many other kinds of resonances can be described according to the level mixing formalism. The particular example of NMR as a level mixing resonance (LMR) is discussed. The underlying theory of LMR and its important consequences, leading to some interesting features of the method, is briefly formulated. Two successfully performed measurements demonstrate the feasibility and the predicted characteristics of this new promising method. (orig.)

  2. Quantum heat engine with coupled superconducting resonators

    Science.gov (United States)

    Hardal, Ali Ü. C.; Aslan, Nur; Wilson, C. M.; Müstecaplıoǧlu, Özgür E.

    2017-12-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.

  3. Coupled-resonator-induced plasmonic bandgaps.

    Science.gov (United States)

    Wang, Yujia; Sun, Chengwei; Gong, Qihuang; Chen, Jianjun

    2017-10-15

    By drawing an analogy with the conventional photonic crystals, the plasmonic bandgaps have mainly employed the periodic metallic structures, named as plasmonic crystals. However, the sizes of the plasmonic crystals are much larger than the wavelengths, and the large sizes considerably decrease the density of the photonic integration circuits. Here, based on the coupled-resonator effect, the plasmonic bandgaps are experimentally realized in the subwavelength waveguide-resonator structure, which considerably decreases the structure size to subwavelength scales. An analytic model and the phase analysis are established to explain this phenomenon. Both the experiment and simulation show that the plasmonic bandgap structure has large fabrication tolerances (>20%). Instead of the periodic metallic structures in the bulky plasmonic crystals, the utilization of the subwavelength plasmonic waveguide-resonator structure not only significantly shrinks the bandgap structure to be about λ 2 /13, but also expands the physics of the plasmonic bandgaps. The subwavelength dimension, together with the waveguide configuration and robust realization, makes the bandgap structure easy to be highly integrated on chips.

  4. Resonance phenomena at high level density

    International Nuclear Information System (INIS)

    Sobeslavsky, E.; Dittes, F.M.; Rotter, I.; Technische Univ. Dresden

    1994-11-01

    We investigate the behaviour of resonances as a function of the coupling strength between bound and unbound states on the basis of a simple S-matrix model. Resonance energies and widths are calculated for well isolated, overlapping and strongly overlapping resonance states. The formation of shorter and longer time scales (trapping effect) is traced. We illustrate that the cross section results from an interference of all resonance states in spite of the fact that their lifetimes may be very different. (orig.)

  5. Resonant MHD modes with toroidal coupling

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Taylor, J.B.

    1990-07-01

    This is part 2 of a study of resonant perturbations, such as resistive tearing and ballooning modes, in a torus. These are described by marginal ideal mhd equations in the regions between resonant surfaces; matching across these surfaces provides the dispersion relation. In part 1 we described how all the necessary information from the ideal mhd calculations could be represented by a so-called E-matrix. We also described the calculation of this E-matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix is a generalization of the familiar Δ' quantity in a cylinder. In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes are instrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. This is evident from the analysis of the high-n limit in ballooning-space, where a transition from a stable Δ' to an unstable Δ' occurs for the twisting mode when the ballooning effect exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this singular behaviour and indicates how one may define twisting-mode Δ'. It also yields a prescription for treating low-n twisting modes and a method for calculating an E-matrix for resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are given in terms of cylindrical tearing mode solutions

  6. Synthesis of coupled resonator optical waveguides by cavity aggregation.

    Science.gov (United States)

    Muñoz, Pascual; Doménech, José David; Capmany, José

    2010-01-18

    In this paper, the layer aggregation method is applied to coupled resonator optical waveguides. Starting from the frequency transfer function, the method yields the coupling constants between the resonators. The convergence of the algorithm developed is examined and the related parameters discussed.

  7. The calculation of Feshbach resonances using coupled propagator equations

    International Nuclear Information System (INIS)

    Zhan, Hongbin; Zhang, Yinchun; Winkler, P.

    1994-01-01

    A coupled channel theory of resonances has been formulated within the propagator approach of man-body theory and applied to the 1s3s 2 resonance of e-helium scattering. This system has previously been studied both experimentally and theoretically. These results for the width of the resonance agree well with these earlier findings

  8. Resonator coupled Josephson junctions; parametric excitations and mutual locking

    DEFF Research Database (Denmark)

    Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper

    1991-01-01

    Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...

  9. Integrating out resonances in strongly-coupled electroweak scenarios

    Directory of Open Access Journals (Sweden)

    Rosell Ignasi

    2017-01-01

    Full Text Available Accepting that there is a mass gap above the electroweak scale, the Electroweak Effective Theory (EWET is an appropriate tool to describe this situation. Since the EWET couplings contain information on the unknown high-energy dynamics, we consider a generic strongly-coupled scenario of electroweak symmetry breaking, where the known particle fields are coupled to heavier states. Then, and by integrating out these heavy fields, we study the tracks of the lightest resonances into the couplings. The determination of the low-energy couplings (LECs in terms of resonance parameters can be made more precise by considering a proper short-distance behaviour on the Lagrangian with heavy states, since the number of resonance couplings is then reduced. Notice that we adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs.

  10. Evidence for trapping and collectivization of resonances at strong coupling

    International Nuclear Information System (INIS)

    Herzberg, R.D.; Brentano, P. von; Rotter, I.

    1993-01-01

    The behavior of 22 neutron resonances in 53 Cr is investigated as a function of the coupling-strength parameter μ and of the degree of overlapping. Starting from a doorway picture at small μ, the widths of 21 resonances increase with increasing μ at the cost of the width of the original 'single-particle doorway resonance'. At μ≅1, the widths of most states decrease again. At μ→10 the widths of these 'trapped' states vanish while 'collective' states are formed which gather the widths. Thus we again observe a doorway picture at strong coupling. At μ=1, the energies and widths of the resonances are fitted to the experimental data. At this coupling strength, most resonances investigated resemble trapped modes. (orig.)

  11. A MEMS coupled resonator for frequency filtering in air

    KAUST Repository

    Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.

    2018-01-01

    We present design, fabrication, and characterization of a mechanically coupled MEMS H resonator capable of performing simultaneous mechanical amplification and filtering in air. The device comprises of two doubly clamped polyimide microbeams joined

  12. Vanishing chiral couplings in the large-NC resonance theory

    International Nuclear Information System (INIS)

    Portoles, Jorge; Rosell, Ignasi; Ruiz-Femenia, Pedro

    2007-01-01

    The construction of a resonance theory involving hadrons requires implementing the information from higher scales into the couplings of the effective Lagrangian. We consider the large-N C chiral resonance theory incorporating scalars and pseudoscalars, and we find that, by imposing LO short-distance constraints on form factors of QCD currents constructed within this theory, the chiral low-energy constants satisfy resonance saturation at NLO in the 1/N C expansion

  13. Coupling ultracold atoms to a superconducting coplanar waveguide resonator

    OpenAIRE

    Hattermann, H.; Bothner, D.; Ley, L. Y.; Ferdinand, B.; Wiedmaier, D.; Sárkány, L.; Kleiner, R.; Koelle, D.; Fortágh, J.

    2017-01-01

    We demonstrate coupling of magnetically trapped ultracold $^87$Rb ground state atoms to a coherently driven superconducting coplanar resonator on an integrated atom chip. We measure the microwave field strength in the cavity through observation of the AC shift of the hyperfine transition frequency when the cavity is driven off-resonance from the atomic transition. The measured shifts are used to reconstruct the field in the resonator, in close agreement with transmission measurements of the c...

  14. Resonances for coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Haroutyunyan, H.L.; Nienhuis, G.

    2004-01-01

    The properties of a Bose-Einstein condensate in a two-well potential can be manipulated by periodic modulation of the potential parameters. We study the effects arising from modulating the barrier height and the difference in well depth. At certain modulation frequencies the system exhibits resonances, which may show up in an enhancement of the tunneling rate between the wells. Resonances can be used to control the particle distribution over the wells. Some of the effects occurring in the two-well system also arise for a Bose-Einstein condensate in an optical lattice

  15. Study on 2D arbitrary geometry coupling resonance method

    International Nuclear Information System (INIS)

    He Lei; Wu Hongchun; Cao Liangzhi

    2014-01-01

    The paper firstly proposes a coupling resonance method in which subgroup method is employed in the serried peak energy region, and wavelet expansion method is employed in single peak energy region. The original subgroup model and wavelet expansion model are improved and coupled through the calculation of scattering source from subgroup to wavelet expansion, so that the self-shielding cross section in the whole energy region can be calculated accurately. To verify these theories and to prove the improvements, a PWR cell benchmark problem is calculated. It is demonstrated that, compared with other traditional multi-group resonance methods and continuous energy resonance method, this coupling resonance method has the ability to accurately calculate the whole energy region's self-shielding cross section while Keeping enough efficiency and finally has an ability to offer the accurate self-shielding parameters for latter transport, calculation. (authors)

  16. Coherence resonance and stochastic resonance in directionally coupled rings

    Science.gov (United States)

    Werner, Johannes Peter; Benner, Hartmut; Florio, Brendan James; Stemler, Thomas

    2011-11-01

    In coupled systems, symmetry plays an important role for the collective dynamics. We investigate the dynamical response to noise with and without weak periodic modulation for two classes of ring systems. Each ring system consists of unidirectionally coupled bistable elements but in one class, the number of elements is even while in the other class the number is odd. Consequently, the rings without forcing show at a certain coupling strength, either ordering (similar to anti-ferromagnetic chains) or auto-oscillations. Analysing the bifurcations and fixed points of the two ring classes enables us to explain the dynamical response measured to noise and weak modulation. Moreover, by analysing a simplified model, we demonstrate that the response is universal for systems having a directional component in their stochastic dynamics in phase space around the origin.

  17. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    Science.gov (United States)

    Lück, S.; Pikovsky, A.

    2011-07-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.

  18. Properties of regular polygons of coupled microring resonators.

    Science.gov (United States)

    Chremmos, Ioannis; Uzunoglu, Nikolaos

    2007-11-01

    The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1+N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed.

  19. Transversely coupled Fabry-Perot resonators with Bragg grating reflectors.

    Science.gov (United States)

    Saber, Md Ghulam; Wang, Yun; El-Fiky, Eslam; Patel, David; Shahriar, Kh Arif; Alam, Md Samiul; Jacques, Maxime; Xing, Zhenping; Xu, Luhua; Abadía, Nicolás; Plant, David V

    2018-01-01

    We design and demonstrate Fabry-Perot resonators with transverse coupling using Bragg gratings as reflectors on the silicon-on-insulator (SOI) platform. The effects of tailoring the cavity length and the coupling coefficient of the directional coupler on the spectral characteristics of the device are studied. The fabricated resonators achieved an extinction ratio (ER) of 37.28 dB and a Q-factor of 3356 with an effective cavity length of 110 μm, and an ER of 8.69 dB and a Q-factor of 23642 with a 943 μm effective cavity length. The resonator structure presented here has the highest reported ER on SOI and provides additional degrees of freedom compared to an all-pass ring resonator to tune the spectral characteristics.

  20. Coupling of high-quality-factor optical resonators

    International Nuclear Information System (INIS)

    Salzenstein, Patrice; Henriet, Rémi; Coillet, Aurélien; Chembo, Yanne K; Mortier, Michel; Sérier-Brault, Hélène; Rasoloniaina, Alphonse; Dumeige, Yannick; Féron, Patrice

    2013-01-01

    We improve theoretically and experimentally the problem of the coupling between a high Q-factor resonator and its external coupler. We have observed oscillations of ringing induced by the sweeping of the excitation frequency of an active microsphere. Thanks to this approach, the quality factor of an optical resonator was measured and we obtained Q = 5.8 × 10 8 . (paper)

  1. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    Energy Technology Data Exchange (ETDEWEB)

    Elnaggar, Sameh Y. [School of Engineering and Information Technology, University of New South Wales, Canberra (Australia); Tervo, Richard J. [Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3 Canada (Canada); Mattar, Saba M., E-mail: mattar@unb.ca [Chemistry Department, University of New Brunswick, Fredericton, NB, E3B 5A3 Canada (Canada)

    2015-11-21

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ{sub E} and/or magnetic κ{sub M} components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.

  2. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    International Nuclear Information System (INIS)

    Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.

    2015-01-01

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ E and/or magnetic κ M components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures

  3. MEMS Coupled Resonator for Filter Application in Air

    KAUST Repository

    Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.

    2017-01-01

    We present a mechanically coupled MEMS H resonator capable of performing simultaneous amplification and filter operation in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multilayer surface micromachining process. A special fabrication process and device design is employed to enable the device's operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter. The device design combined with the mixed-frequency excitation is used to demonstrate simultaneous amplification and filtering in air.

  4. Resonance-enhanced optical forces between coupled photonic crystal slabs.

    Science.gov (United States)

    Liu, Victor; Povinelli, Michelle; Fan, Shanhui

    2009-11-23

    The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.

  5. MEMS Coupled Resonator for Filter Application in Air

    KAUST Repository

    Ilyas, Saad

    2017-11-03

    We present a mechanically coupled MEMS H resonator capable of performing simultaneous amplification and filter operation in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multilayer surface micromachining process. A special fabrication process and device design is employed to enable the device\\'s operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter. The device design combined with the mixed-frequency excitation is used to demonstrate simultaneous amplification and filtering in air.

  6. Characterization of complementary electric field coupled resonant surfaces

    Science.gov (United States)

    Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.

    2008-11-01

    We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.

  7. Parameters optimization for magnetic resonance coupling wireless power transmission.

    Science.gov (United States)

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  8. Stochastic Resonance in a System of Coupled Chaotic Oscillators

    International Nuclear Information System (INIS)

    Krawiecki, A.

    1999-01-01

    Noise-free stochastic resonance is investigated numerically in a system of two coupled chaotic Roessler oscillators. Periodic signal is applied either additively or multiplicatively to the coupling term. When the coupling constant is varied the oscillators lose synchronization via attractor bubbling or on-off intermittency. Properly chosen signals are analyzed which reflect the sequence of synchronized (laminar) phases and non-synchronized bursts in the time evolution of the oscillators. Maximum of the signal-to-noise ratio as a function of the coupling constant is observed. Dependence of the signal-to-noise ratio on the frequency of the periodic signal and parameter mismatch between the oscillators is investigated. Possible applications of stochastic resonance in the recovery of signals in secure communication systems based on chaotic synchronization are briefly discussed. (author)

  9. Critical Coupling Between Optical Fibers and WGM Resonators

    Science.gov (United States)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy

    2009-01-01

    Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:

  10. Spatiotemporal multiple coherence resonances and calcium waves in a coupled hepatocyte system

    International Nuclear Information System (INIS)

    Bao-Hua, Wang; Qi-Shao, Lu; Shu-Juan, Lü; Xiu-Feng, Lang

    2009-01-01

    Spatiotemporal multiple coherence resonances for calcium activities induced by weak Gaussian white noise in coupled hepatocytes are studied. It is shown that bi-resonances in hepatocytes are induced by the interplay and competition between noise and coupling of cells, in other words, the cell in network can be excited either by noise or by its neighbour via gap junction which can transfer calcium ions between cells. Furthermore, the intercellular annular calcium waves induced by noise are observed, in which the wave length decreases with noise intensity augmenting but increases monotonically with coupling strength increasing. And for a fixed noise level, there is an optimal coupling strength that makes the coherence resonance reach maximum. (general)

  11. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    International Nuclear Information System (INIS)

    Lueck, S.; Pikovsky, A.

    2011-01-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. -- Highlights: → Kuramoto model is generalized on the case of resonantly interacting oscillators having frequency ratio 2:1. → Regimes of full and partial synchrony, as well as non-synchronous ones are reported. → Analytical description is developed on the basis of the Watanabe-Strogatz approach.

  12. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lueck, S. [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany); Pikovsky, A., E-mail: pikovsky@stat.physik.uni-potsdam.de [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)

    2011-07-11

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. -- Highlights: → Kuramoto model is generalized on the case of resonantly interacting oscillators having frequency ratio 2:1. → Regimes of full and partial synchrony, as well as non-synchronous ones are reported. → Analytical description is developed on the basis of the Watanabe-Strogatz approach.

  13. Qubit Coupled Mechanical Resonator in an Electromechanical System

    Science.gov (United States)

    Hao, Yu

    This thesis describes the development of a hybrid quantum electromechanical system. In this system the mechanical resonator is capacitively coupled to a superconducting transmon which is embedded in a superconducting coplanar waveguide (CPW) cavity. The difficulty of achieving high quality of superconducting qubit in a high-quality voltage-biased cavity is overcome by integrating a superconducting reflective T-filter to the cavity. Further spectroscopic and pulsed measurements of the hybrid system demonstrate interactions between the ultra-high frequency mechanical resonator and transmon qubit. The noise of mechanical resonator close to ground state is measured by looking at the spectroscopy of the transmon. At last, fabrication and tests of membrane resonators are discussed.

  14. Giant dipole resonance by many levels theory

    International Nuclear Information System (INIS)

    Mondaini, R.P.

    1977-01-01

    The many levels theory is applied to photonuclear effect, in particular, in giant dipole resonance. A review about photonuclear dipole absorption, comparing with atomic case is done. The derivation of sum rules; their modifications by introduction of the concepts of effective charges and mass and the Siegert theorem. The experimental distributions are compared with results obtained by curve adjustment. (M.C.K.) [pt

  15. Tunneling effect in cavity-resonator-coupled arrays

    International Nuclear Information System (INIS)

    Ma Hua; Xu Zhuo; Qu Shao-Bo; Zhang Jie-Qiu; Wang Jia-Fu; Liang Chang-Hong

    2013-01-01

    The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, and then was generalized to acoustic waves and matter waves. It is indicated that for the three kinds of waves, the QTE can be excited by cavity resonance in a CRC array, resulting in sub-wavelength transparency through the narrow splits between cavities. This opens up opportunities for designing new types of crystals based on CRC arrays, which may find potential applications such as quantum devices, micro-optic transmission, and acoustic manipulation. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Coupled superconducting qudit-resonator system: Energy spectrum, state population, and state transition under microwave drive

    Science.gov (United States)

    Liu, W. Y.; Xu, H. K.; Su, F. F.; Li, Z. Y.; Tian, Ye; Han, Siyuan; Zhao, S. P.

    2018-03-01

    Superconducting quantum multilevel systems coupled to resonators have recently been considered in some applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity to the present phase device.

  17. Quality factor of a transmission line coupled coplanar waveguide resonator

    Energy Technology Data Exchange (ETDEWEB)

    Besedin, Ilya [National University for Science and Technology (MISiS), Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Menushenkov, Alexey P. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2018-12-15

    We investigate analytically the coupling of a coplanar waveguide resonator to a coplanar waveguide feedline. Using a conformal mapping technique we obtain an expression for the characteristic mode impedances and coupling coefficients of an asymmetric multi-conductor transmission line. Leading order terms for the external quality factor and frequency shift are calculated. The obtained analytical results are relevant for designing circuit-QED quantum systems and frequency division multiplexing of superconducting bolometers, detectors and similar microwave-range multi-pixel devices. (orig.)

  18. Radiative resonance couplings in γ π →π π

    Science.gov (United States)

    Hoferichter, Martin; Kubis, Bastian; Zanke, Marvin

    2017-12-01

    Studies of the reaction γ π →π π , in the context of the ongoing Primakoff program of the COMPASS experiment at CERN, give access to the radiative couplings of the ρ (770 ) and ρ3(1690 ) resonances. We provide a vector-meson-dominance estimate of the respective radiative width of the ρ3, Γρ3→πγ=48 (18 ) keV , as well as its impact on the F -wave in γ π →π π . For the ρ (770 ), we establish the formalism necessary to extract its radiative coupling directly from the residue of the resonance pole by analytic continuation of the γ π →π π amplitude to the second Riemann sheet, without any reference to the vector-meson-dominance hypothesis.

  19. Coupling thermal atomic vapor to an integrated ring resonator

    International Nuclear Information System (INIS)

    Ritter, R; Kübler, H; Pfau, T; Löw, R; Gruhler, N; Pernice, W H P

    2016-01-01

    Strongly interacting atom–cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum networks, nanophotonic resonators are promising candidates because they can be scalably fabricated and interconnected with waveguides and optical fibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale hybrid circuits. Although strong coupling is not yet achieved in this first realization, our approach provides a key step towards miniaturization and scalability of atom–cavity systems. (paper)

  20. A MEMS coupled resonator for frequency filtering in air

    KAUST Repository

    Ilyas, Saad

    2018-02-03

    We present design, fabrication, and characterization of a mechanically coupled MEMS H resonator capable of performing simultaneous mechanical amplification and filtering in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multi-layer surface micromachining process. A special fabrication process and device design is employed to enable operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter for low frequency applications. It is demonstrated that through the multi-source harmonic excitation and the operation in air, an improved band-pass filter with flat response and minimal ripples can be achieved.

  1. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  2. Oscillation thresholds for "striking outwards" reeds coupled to a resonator

    OpenAIRE

    Silva , Fabrice; Kergomard , Jean; Vergez , Christophe

    2007-01-01

    International audience; This paper considers a "striking outwards" reed coupled to a resonator. This expression, due to Helmholtz, is not discussed here : it corresponds to the most common model of a lip-type valve, when the valve is assumed to be a one degree of freedom oscillator. The presented work is an extension of the works done by Wilson and Beavers (1974), Tarnopolsky (2000). The range of the playing frequencies is investigated. The first results are analytical : when no losses are pr...

  3. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    International Nuclear Information System (INIS)

    Jin, L.

    2016-01-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.

  4. Coupled superconducting resonant cavities for a heavy ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W [Argonne National Lab., IL (United States); Roy, A [Nuclear Science Center, New Delhi (India)

    1992-11-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs.

  5. Coupled superconducting resonant cavities for a heavy ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.

    1992-01-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs

  6. Magnetically coupled resonance wireless charging technology principles and transfer mechanisms

    Science.gov (United States)

    Zhou, Jiehua; Wan, Jian; Ma, Yinping

    2017-05-01

    With the tenure of Electric-Vehicle rising around the world, the charging methods have been paid more and more attention, the current charging mode mainly has the charging posts and battery swapping station. The construction of the charging pile or battery swapping station not only require lots of manpower, material costs but the bare conductor is also easy to generate electric spark hidden safety problems, still occupies large space. Compared with the wired charging, wireless charging mode is flexible, unlimited space and location factors and charging for vehicle safety and quickly. It complements the traditional charging methods in adaptability and the independent charge deficiencies. So the researching the wireless charging system have an important practical significance and application value. In this paper, wireless charging system designed is divided into three parts: the primary side, secondary side and resonant coupling. The main function of the primary side is to generate high-frequency alternating current, so selecting CLASS-E amplifier inverter structure through the research on full bridge, half-bridge and power amplification circuit. Addition, the wireless charging system is susceptible to outside interference, frequency drift phenomenon. Combined with the wireless energy transmission characteristics, resonant parts adopt resonant coupling energy transmission scheme and the Series-Series coupling compensation structure. For the electric vehicle charging power and voltage requirements, the main circuit is a full bridge inverter and Boost circuit used as the secondary side.

  7. Expression of Heat Shock Proteins in Human Fibroblast Cells under Magnetic Resonant Coupling Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Kohei Mizuno

    2015-10-01

    Full Text Available Since 2007, resonant coupling wireless power transfer (WPT technology has been attracting attention and has been widely researched for practical use. Moreover, dosimetric evaluation has also been discussed to evaluate the potential health risks of the electromagnetic field from this WPT technology based on the International Commission on Non-Ionizing Radiation Protection (ICNIRP guidelines. However, there has not been much experimental evaluation of the potential health risks of this WPT technology. In this study, to evaluate whether magnetic resonant coupling WPT induces cellular stress, we focused on heat shock proteins (Hsps and determined the expression level of Hsps 27, 70 and 90 in WI38VA13 subcloned 2RA human fibroblast cells using a western blotting method. The expression level of Hsps under conditions of magnetic resonant coupling WPT for 24 h was not significantly different compared with control cells, although the expression level of Hsps for cells exposed to heat stress conditions was significantly increased. These results suggested that exposure to magnetic resonant coupling WPT did not cause detectable cell stress.

  8. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    Science.gov (United States)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  9. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    KAUST Repository

    Hajjaj, Amal Z.

    2017-01-30

    We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage.

  10. Quantum averaging and resonances: two-level atom in a one-mode classical laser field

    Directory of Open Access Journals (Sweden)

    M. Amniat-Talab

    2007-06-01

    Full Text Available   We use a nonperturbative method based on quantum averaging and an adapted from of resonant transformations to treat the resonances of the Hamiltonian of a two-level atom interacting with a one-mode classical field in Floquet formalism. We illustrate this method by extraction of effective Hamiltonians of the system in two regimes of weak and strong coupling. The results obtained in the strong-coupling regime, are valid in the whole range of the coupling constant for the one-photon zero-field resonance.

  11. Terahertz Magnetoelectric Resonance Enhanced by Mutual Coupling of Electromagnons

    Science.gov (United States)

    Takahashi, Y.; Yamasaki, Y.; Tokura, Y.

    2013-07-01

    Both electric- and magnetic-dipole active spin excitations, i.e., electromagnons, which mediate the dynamical magnetoelectric effect, have been investigated for a multiferroic perovskite of manganite by optical spectroscopy at terahertz frequencies. Upon the magnetoelectric resonance at 1 meV in the multiferroic phase with the bc-plane spin cycloidal order, a gigantic dynamical magnetoelectric effect has been observed as a nonreciprocal directional dichroism or birefringence. The light k-vector-dependent difference (Δκ=κ+-κ-) of the extinction coefficient (κ±) is as large as Δκ˜1 or 2Δκ/(κ++κ-)˜0.7 at the lowest-lying electromagnon energy. We clarified the mutual coupling of the Eω∥a-polarized electromagnons of the different origins, leading to the enhancement of the magnetoelectric resonance.

  12. Tunable coupled nanomechanical resonators for single-electron transport

    International Nuclear Information System (INIS)

    Scheible, Dominik V; Erbe, Artur; Blick, Robert H

    2002-01-01

    Nano-electromechanical systems (NEMS) are ideal for sensor applications and ultra-sensitive force detection, since their mechanical degree of freedom at the nanometre scale can be combined with semiconductor nano-electronics. We present a system of coupled nanomechanical beam resonators in silicon which is mechanically fully Q-tunable ∼700-6000. This kind of resonator can also be employed as a mechanical charge shuttle via an insulated metallic island at the tip of an oscillating cantilever. Application of our NEMS as an electromechanical single-electron transistor (emSET) is introduced and experimental results are discussed. Three animation clips demonstrate the manufacturing process of the NEMS, the Q-tuning experiment and the concept of the emSET

  13. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope.

    Science.gov (United States)

    Nitzan, Sarah H; Zega, Valentina; Li, Mo; Ahn, Chae H; Corigliano, Alberto; Kenny, Thomas W; Horsley, David A

    2015-03-12

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.

  14. Wireless energy transfer through non-resonant magnetic coupling

    DEFF Research Database (Denmark)

    Peng, Liang; Breinbjerg, Olav; Mortensen, Asger

    2010-01-01

    could be properly designed to minimize undesired energy dissipation in the source coil when the power receiver is out of the range. Our basic observation paves the way for more flexible design and fabrication of non-resonant mid-range wireless energy transfer systems, thus potentially impacting......We demonstrate by theoretical analysis and experimental verification that mid-range wireless energy transfer systems may take advantage of de-tuned coupling devices, without jeopardizing the energy transfer efficiency. Allowing for a modest de-tuning of the source coil, energy transfer systems...... practical implementations of wireless energy transfer....

  15. Resonance Spectrum Characteristics of Effective Electromechanical Coupling Coefficient of High-Overtone Bulk Acoustic Resonator

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available A high-overtone bulk acoustic resonator (HBAR consisting of a piezoelectric film with two electrodes on a substrate exhibits a high quality factor (Q and multi-mode resonance spectrum. By analyzing the influences of each layer’s material and structure (thickness parameters on the effective electromechanical coupling coefficient (Keff2, the resonance spectrum characteristics of Keff2 have been investigated systematically, and the optimal design of HBAR has been provided. Besides, a device, corresponding to one of the theoretical cases studied, is fabricated and evaluated. The experimental results are basically consistent with the theoretical results. Finally, the effects of Keff2 on the function of the crystal oscillators constructed with HBARs are proposed. The crystal oscillators can operate in more modes and have a larger frequency hopping bandwidth by using the HBARs with a larger Keff2·Q.

  16. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    International Nuclear Information System (INIS)

    Naqui, J.; Su, L.; Mata, J.; Martín, F.

    2015-01-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties. - Highlights: • Magnetic-coupling between resonant elements affects transmission properties. • Inter-resonant coupling enhances the distance of two resonant frequencies. • The structures are useful for sensors and comparators, etc

  17. Lineshape Engineering in an All-Pass Ring Resonator with Backreflection Coupled to a Symmetrical Fabry-Perot Resonator

    KAUST Repository

    Melnikov, Vasily

    2012-11-10

    We derive transfer functions for an all-pass ring resonator with internal backreflection coupled to a symmetrical Fabry-Perot resonator and demonstrate electromagnetically induced transparency-like and Fano-like lineshapes tunable by backreflection in the ring resonator.

  18. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    International Nuclear Information System (INIS)

    Kashan, M A M; Kalavally, V; Ramakrishnan, N; Lee, H W

    2016-01-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface. (paper)

  19. Lineshape Engineering in an All-Pass Ring Resonator with Backreflection Coupled to a Symmetrical Fabry-Perot Resonator

    KAUST Repository

    Melnikov, Vasily; Roqan, Iman S.

    2012-01-01

    We derive transfer functions for an all-pass ring resonator with internal backreflection coupled to a symmetrical Fabry-Perot resonator and demonstrate electromagnetically induced transparency-like and Fano-like lineshapes tunable by backreflection in the ring resonator.

  20. Strongly coupled modes of M and H for perpendicular resonance

    Science.gov (United States)

    Sun, Chen; Saslow, Wayne M.

    2018-05-01

    We apply the equations for the magnetization M ⃗ and field H ⃗ to study their coupled modes for a semi-infinite ferromagnet, conductor, or insulator with magnetization M0 and field H0 normal to the plane (perpendicular resonance) and wave vector normal to the plane, which makes the modes doubly degenerate. With dimensionless damping constant α and dimensionless transverse susceptibility χ⊥=M0/He(He≡H0-M0) , we derive an analytic expression for the wave vector squared, showing that M ⃗ and H ⃗ are nearly decoupled only if α ≫χ⊥ . This is violated in the ferromagnetic regime, although a first correction is found to give good agreement away from resonance. Emphasizing the conductor permalloy as a function of H0 we study the eigenvalues and eigenmodes and the dissipation rate due to absorption both from the total effective field and from the Joule heating. (We include the contribution of the nonuniform exchange energy term, needed for energy conservation.) Using these modes we then apply, for a semi-infinite ferromagnet, a range of boundary conditions (i.e., surface anisotropies) on M⊥ to find the reflection coefficient R and the reflectivity |R| 2. As a function of H0, absorption is dominated by the the skin depth mode (primarily H ⃗) except near the resonance and at a higher-field Hd associated with a dip in the reflectivity, whose position above the main resonance varies quadratically with the surface anisotropy Ks. The dip is driven by the boundary condition on M ⃗; the coefficient of the (primarily) M ⃗ mode becomes very small at the dip, being compensated by an increase in the amplitude of the M ⃗ mode, which has a Lorentzian line shape of height ˜α-1 and width ˜α .

  1. Switchable coupling for superconducting qubits using double resonance in the presence of crosstalk

    International Nuclear Information System (INIS)

    Ashhab, S.; Nori, Franco

    2007-01-01

    Several methods have been proposed recently to achieve switchable coupling between superconducting qubits. We discuss some of the main considerations regarding the feasibility of implementing one of those proposals: The double-resonance method. We analyze mainly issues related to the achievable effective coupling strength and the effects of crosstalk on this coupling mechanism. We also find a crosstalk-assisted coupling channel that can be an attractive alternative when implementing the double-resonance coupling proposal

  2. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J

    2010-01-01

    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  3. Storage and on-demand release of microwaves using superconducting resonators with tunable coupling

    International Nuclear Information System (INIS)

    Pierre, Mathieu; Svensson, Ida-Maria; Raman Sathyamoorthy, Sankar; Johansson, Göran; Delsing, Per

    2014-01-01

    We present a system which allows to tune the coupling between a superconducting resonator and a transmission line. This storage resonator is addressed through a second, coupling resonator, which is frequency-tunable and controlled by a magnetic flux applied to a superconducting quantum interference device. We experimentally demonstrate that the lifetime of the storage resonator can be tuned by more than three orders of magnitude. A field can be stored for 18 μs when the coupling resonator is tuned off resonance and it can be released in 14 ns when the coupling resonator is tuned on resonance. The device allows capture, storage, and on-demand release of microwaves at a tunable rate.

  4. Plasma diagnostics using laser-excited coupled and transmission ring resonators

    International Nuclear Information System (INIS)

    Haas, R.A.

    1976-01-01

    In this paper a simple two-level laser model is used to investigate the frequency response of coupled-cavity laser interferometers. It is found that under certain circumstances, often satisfied by molecular gas lasers, the frequency response exhibits a resonant behavior. This behavior severely complicates the interpretation of coupled-cavity laser interferometer measurements of rapidly varying plasmas. To circumvent this limitation a new type of laser interferometer plasma diagnostic with significantly improved time response was developed. In this interferometer the plasma is located in one arm of a transmission ring resonator cavity that is excited by an externally positioned laser. Thus, the laser is decoupled from the interferometer cavity and the time response of the interferometer is then limited by the Q of the ring resonator cavity. This improved time response is acquired without loss of spatial resolution, but requires a more sensitive signal detector since the laser is no longer used as a detector as it is in conventional coupled-cavity laser interferometers. Thus, the new technique incorporates the speed of the Mach--Zender interferometer and the sensitivity of the coupled-cavity laser interferometer. The basic operating principles of this type of interferometer have been verified using a CO 2 laser

  5. Realizing a Circuit Analog of an Optomechanical System with Longitudinally Coupled Superconducting Resonators

    OpenAIRE

    Eichler, C.; Petta, J. R.

    2017-01-01

    We realize a superconducting circuit analog of the generic cavity-optomechanical Hamiltonian by longitudinally coupling two superconducting resonators, which are an order of magnitude different in frequency. We achieve longitudinal coupling by embedding a superconducting quantum interference device (SQUID) into a high frequency resonator, making its resonance frequency depend on the zero point current fluctuations of a nearby low frequency LC-resonator. By employing sideband drive fields we e...

  6. Characteristic analysis of a polarization output coupling Porro prism resonator

    Science.gov (United States)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-02-01

    An Electro-optical Q-switched Nd:YAG slab laser with a crossed misalignment Porro prism resonator for space applications has been theoretically and experimentally investigated. The phase shift induced by the combination of different wave plates and Porro prism azimuth angles have been studied for creating high loss condition prior to Q-switching. The relationship of the effective output coupling reflectivity and the employed Q-switch driving voltage is explored by using Jones matrix optics. In the experiment, the maximum output pulse energy of 93 mJ with 14-ns pulse duration is obtained at the repetition rate of 20 Hz and the optical-to-optical conversion efficiency is 16.8%. The beam quality factors are M 2 x = 2.5 and M 2y = 2.2, respectively.

  7. Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide.

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2017-11-01

    We report on Fano resonances in a high-quality (Q) whispering-gallery mode (WGM) spherical resonator coupled to a multi-mode waveguide in the terahertz (THz) frequency range. The asymmetric line shape and phase of the Fano resonances detected with coherent continuous-wave (CW) THz spectroscopy measurements are in excellent agreement with the analytical model. A very high Q factor of 1600, and a finesse of 22 at critical coupling is observed around 0.35 THz. To the best of our knowledge this is the highest Q factor ever reported for a THz WGM resonator.

  8. Anomalous couplings, resonances and unitarity in vector boson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sekulla, Marco

    2015-12-04

    The Standard Model of particle physics has proved itself as a reliable theory to describe interactions of elementary particles. However, many questions concerning the Higgs sector and the associated electroweak symmetry breaking are still open, even after (or because) a light Higgs boson has been discovered. The 2→2 scattering amplitude of weak vector bosons is suppressed in the Standard Model due to the Higgs boson exchange. Therefore, weak vector boson scattering processes are very sensitive to additional contributions beyond the Standard Model. Possible new physics deviations can be studied model-independently by higher dimensional operators within the effective field theory framework. In this thesis, a complete set of dimension six and eight operators are discussed for vector boson scattering processes. Assuming a scenario where new physics in the Higgs/Goldstone boson decouples from the fermion-sector and the gauge-sector in the high energy limit, the impact of the dimension six operator L{sub HD} and dimension eight operators L{sub S,0} and L{sub S,1} to vector boson scattering processes can be studied separately for complete processes at particle colliders. However, a conventional effective field theory analysis will violate the S-matrix unitarity above a certain energy limit. The direct T-matrix scheme is developed to allow a study of effective field theory operators consistent with basic quantum-mechanical principles in the complete energy reach of current and future colliders. Additionally, this scheme can be used preventively for any model, because it leaves theoretical predictions invariant, which already satisfies unitarity. The effective field theory approach is further extended by allowing additional generic resonances coupling to the Higgs/Goldstone boson sector, namely the isoscalar-scalar, isoscalar-tensor, isotensor-scalar and isotensor-tensor. In particular, the Stueckelberg formalism is used to investigate the impact of the tensor degree of

  9. Quadrature squeezing of a mechanical resonator generated by the electromechanical coupling with two coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yan [Department of Physics, Huazhong Normal University, Wuhan (China); School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou (China); Zhu, Jia-pei [Department of Physics, Honghe University, Mengzi (China); Zhao, Shao-ming; Li, Gao-xiang [Department of Physics, Huazhong Normal University, Wuhan (China)

    2015-01-01

    The quadrature squeezing of a mechanical resonator (MR) coupled with two quantum dots (QDs) through the electromechanical coupling, where the QDs are driven by a strong and two weak laser fields is investigated. By tuning the gate voltage, the electron can be trapped in a quantum pure state. Under certain conditions, the discrepancies between the transition frequency and that of two weak fields are compensated by the phonons induced by the electromechanical coupling of the MR with QDs. In this case, some dissipative processes occur resonantly. The phonons created and (or) annihilated in these dissipative processes are correlated thus leading to the quadrature squeezing of the MR. A squeezed vacuum reservoir for the MR is built up. By tuning the gate voltage to control the energy structure of the QDs, the present squeezing scheme has strong resistance against the dephasing processes of the QDs in low temperature limit. The role of the temperature of the phonon reservoir is to damage squeezing of the MR. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. A fully analytic treatment of resonant inductive coupling in the far field

    Science.gov (United States)

    Sedwick, Raymond J.

    2012-02-01

    For the application of resonant inductive coupling for wireless power transfer, fabrication of flat spiral coils using ribbon wire allows for analytic expressions of the capacitance and inductance of the coils and therefore the resonant frequency. The expressions can also be used in an approximate way for the analysis of coils constructed from cylindrical wire. Ribbon wire constructed from both standard metals as well as high temperature superconducting material is commercially available, so using these derived expressions as a basis, a fully analytic treatment is presented that allows for design trades to be made for hybrid designs incorporating either technology. The model is then extended to analyze the performance of the technology as applied to inductively coupled communications, which has been demonstrated as having an advantage in circumstances where radiated signals would suffer unacceptable levels of attenuation.

  11. Top-quark couplings to TeV resonances at future lepton colliders

    International Nuclear Information System (INIS)

    Han, T.; Kim, Y.J.; Likhoded, A.; Valencia, G.

    2001-01-01

    We study the processes W L W L →tt-bar and W L Z L →tb-bar (t-barb) at future lepton colliders as probes of the couplings of the top quark to resonances at the TeV scale. We consider the cases in which the dominant low energy feature of a strongly interacting electroweak symmetry breaking sector is either a scalar or a vector resonance with mass near 1 TeV. We find that future lepton colliders with high energy and high luminosity have great potential to sensitively probe these physics scenarios. In particular, at a 1.5 TeV linear collider with an integrated luminosity of 200 fb -1 , we expect about 120 events for either a scalar or a vector to decay to tt-bar, tb. Their leading partial decay widths, which characterize the coupling strengths, can be statistically determined to about 10% level

  12. Multipole giant resonances of 12C nucleus electro excitation in intermediate coupling model

    International Nuclear Information System (INIS)

    Goncharova, N.G.; Zhivopistsev, F.A.

    1977-01-01

    Multipole giant resonances in 12 C electroexcitation are considered using the shell model with coupling. Cross sections are calculated for the states of 1 - , 2 - , 3 - , 4 - , at T=1. The distributions of the transverse form factor at transferred momenta equal to q approximately 0.75, 1.04, 1.22 and 1.56 Fm -1 and the longitudinal form factor for q = 0.75, 1.04, 1.56 Fm -1 are presented. For the excitation energies in the range from 18 to 28 MeV positive-parity states have a small contribution in the cross section. The distribution of the total form factor in the excitation energies is given. It is concluded that the multipole giant resonances of anomalous parity levels calculated within the interatomic-coupling shell model show a satisfactorily close agreement with the behavior of experimental form factors in the excitation energy range from 18 to 28 MeV

  13. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    Science.gov (United States)

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  14. Waveguide-loaded silica fibers for coupling to high-index micro-resonators

    Science.gov (United States)

    Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.

    2016-01-01

    Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.

  15. A fully analytic treatment of resonant inductive coupling in the far field

    International Nuclear Information System (INIS)

    Sedwick, Raymond J.

    2012-01-01

    For the application of resonant inductive coupling for wireless power transfer, fabrication of flat spiral coils using ribbon wire allows for analytic expressions of the capacitance and inductance of the coils and therefore the resonant frequency. The expressions can also be used in an approximate way for the analysis of coils constructed from cylindrical wire. Ribbon wire constructed from both standard metals as well as high temperature superconducting material is commercially available, so using these derived expressions as a basis, a fully analytic treatment is presented that allows for design trades to be made for hybrid designs incorporating either technology. The model is then extended to analyze the performance of the technology as applied to inductively coupled communications, which has been demonstrated as having an advantage in circumstances where radiated signals would suffer unacceptable levels of attenuation. - Highlights: ► An analytic framework finds power and efficiency for resonant inductive coupling. ► The framework supports superconducting, resistive and dielectric elements. ► Maximum power transfer occurs at an efficiency of 50% when in close proximity. ► A 100 turn superconducting design achieves 10% efficiency out to 280 coil radii. ► The system response to narrow band amplitude modulation is modeled and presented.

  16. Optimal and Miniaturized Strongly Coupled Magnetic Resonant Systems

    Science.gov (United States)

    Hu, Hao

    Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and traditional SCMR systems exhibit narrowband efficiency thereby imposing strict limitations on simultaneous wireless transmission of information and power, which is important for battery-less sensors. Therefore, new SCMR systems that are optimally designed and miniaturized in size will significantly enhance various technologies in many applications. The optimal and miniaturized SCMR systems are studied here. First, analytical models of the Conformal SCMR (CSCMR) system and thorough analysis and design methodology have been presented. This analysis specifically leads to the identification of the optimal design parameters, and predicts the performance of the designed CSCMR system. Second, optimal multiband and broadband CSCMR systems are designed. Two-band, three-band, and four-band CSCMR systems are designed and validated using simulations and measurements. Novel broadband CSCMR systems are also analyzed, designed, simulated and measured. The proposed broadband CSCMR system achieved more than 7 times larger bandwidth compared to the traditional SCMR system at the same frequency. Miniaturization methods of SCMR systems are also explored. Specifically, methods that use printable CSCMR with large capacitors, novel topologies including meandered, SRRs, and

  17. Magnetically coupled Fano resonance of dielectric pentamer oligomer

    International Nuclear Information System (INIS)

    Zhang, Fuli; Li, Chang; He, Xuan; Chen, Lei; Fan, Yuancheng; Zhao, Qian; Zhang, Weihong; Zhou, Ji

    2017-01-01

    We present magnetically induced Fano resonance inside a dielectric metamaterial pentamer composed of ceramic bricks. Unlike previous reports where different sizes of dielectric resonators were essential to produce Fano resonance, under external magnetic field excitation, central and outer dielectric bricks with identical sizes exhibit in-phase and out-of-phase magnetic Mie oscillations. An asymmetric line shape of Fano resonance along with enhanced group delay is observed due to the interference between the magnetic resonance of the central brick and the symmetric magnetic resonance of outer bricks. Besides, Fano resonance blueshifts with the increasing resonance of the smaller central brick. The thermal-dependent permittivity of ceramics allows Fano resonance to be reversibly tuned by 300 MHz when temperature varies by 60 °C. (paper)

  18. Tunable superconducting resonators with integrated trap structures for coupling with ultracold atomic gases

    Energy Technology Data Exchange (ETDEWEB)

    Ferdinand, Benedikt; Wiedmaier, Dominik; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Bothner, Daniel [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands)

    2016-07-01

    We intend to investigate a hybrid quantum system where ultracold atomic gases play the role of a long-living quantum memory, coupled to a superconducting qubit via a coplanar waveguide transmission line resonator. As a first step we developed a resonator chip containing a Z-shaped trapping wire for the atom trap. In order to suppress parasitic resonances due to stray capacitances, and to achieve good ground connection we use hybrid superconductor - normal conductor chips. As an additional degree of freedom we add a ferroelectric capacitor making the resonators voltage-tunable. We furthermore show theoretical results on the expected coupling strength between resonator and atomic cloud.

  19. Increase in effectiveness of low frequency acoustic liners by use of coupled Helmholtz resonators

    Science.gov (United States)

    Dean, L. W.

    1977-01-01

    Coupling of Helmholtz resonators in a low-frequency absorber array was studied as a means for increasing the effectiveness for absorbing low-frequency core engine noise. The equations for the impedance of the coupled-resonator systems were developed in terms of uncoupled-resonator parameters, and the predicted impedance for a parallel-coupled scheme is shown to compare favorably with measurements from a test model. In addition, attenuation measurements made in a flow duct on test coupled-resonator panels are shown to compare favorably with predicted values. Finally, the parallel-coupled concept is shown to give significantly more attenuation than that of a typical uncoupled resonator array of the same total volume.

  20. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    Science.gov (United States)

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-07

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  1. In Vitro Evaluation of Genotoxic Effects under Magnetic Resonant Coupling Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Kohei Mizuno

    2015-04-01

    Full Text Available Wireless power transfer (WPT technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  2. Analysis of superconducting microstrip resonator at various microwave power levels

    International Nuclear Information System (INIS)

    Srivastava, G.P.; Jacob, M.V.; Jayakumar, M.; Bhatnagar, P.K.; Kataria, N.D.

    1997-01-01

    The real and imaginary parts of the surface impedance of YBCO superconductors have been studied at different microwave power levels. Using the relations for the critical current density and the grain boundary resistance, a relation for calculating the power dependence of the surface resistance has been obtained. Also, a relation to find the resonant frequency of a superconducting microstrip resonator at various input power levels has been derived. Measurements have been carried out on various microstrip resonators to study the variation of surface resistance and resonant frequency at different rf power levels. The experimental results are in good agreement with theoretical results. copyright 1997 American Institute of Physics

  3. Interference in the resonance fluorescence of two incoherently coupled transitions

    International Nuclear Information System (INIS)

    Kiffner, Martin; Evers, Joerg; Keitel, Christoph H.

    2006-01-01

    The fluorescence light emitted by a four-level system in J=1/2 to J=1/2 configuration driven by a monochromatic laser field and in an external magnetic field is studied. We show that the spectrum of resonance fluorescence emitted on the π transitions shows a signature of spontaneously generated interference effects. The degree of interference in the fluorescence spectrum can be controlled by means of the external magnetic field, provided that the Lande g factors of the excited and the ground state doublet are different. For a suitably chosen magnetic field strength, the relative weight of the Rayleigh line can be completely suppressed, even for low intensities of the coherent driving field. The incoherent fluorescence spectrum emitted on the π transitions exhibits a very narrow peak whose width and weight depend on the magnetic field strength. We demonstrate that the spectrum of resonance fluorescence emitted on the σ transitions shows an indirect signature of interference. A measurement of the relative peak heights in the spectrum from the σ transitions allows us to determine the branching ratio of the spontaneous decay of each excited state into the σ channel

  4. Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2015-03-16

    In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.

  5. Optical resonance and two-level atoms

    CERN Document Server

    Allen, L

    1987-01-01

    ""Coherent and lucid…a valuable summary of a subject to which [the authors] have made significant contributions by their own research."" - Contemporary PhysicsOffering an admirably clear account of the basic principles behind all quantum optical resonance phenomena, and hailed as a valuable contribution to the literature of nonlinear optics, this distinguished work provides graduate students and research physicists probing fields such as laser physics, quantum optics, nonlinear optics, quantum electronics, and resonance optics an ideal introduction to the study of the interaction of electroma

  6. Equilibrium beam distribution in an electron storage ring near linear synchrobetatron coupling resonances

    Directory of Open Access Journals (Sweden)

    Boaz Nash

    2006-03-01

    Full Text Available Linear dynamics in a storage ring can be described by the one-turn map matrix. In the case of a resonance where two of the eigenvalues of this matrix are degenerate, a coupling perturbation causes a mixing of the uncoupled eigenvectors. A perturbation formalism is developed to find eigenvalues and eigenvectors of the one-turn map near such a linear resonance. Damping and diffusion due to synchrotron radiation can be obtained by integrating their effects over one turn, and the coupled eigenvectors can be used to find the coupled damping and diffusion coefficients. Expressions for the coupled equilibrium emittances and beam distribution moments are then derived. In addition to the conventional instabilities at the sum, integer, and half-integer resonances, it is found that the coupling can cause an instability through antidamping near a sum resonance even when the symplectic dynamics are stable. As one application of this formalism, the case of linear synchrobetatron coupling is analyzed where the coupling is caused by dispersion in the rf cavity, or by a crab cavity. Explicit closed-form expressions for the sum/difference resonances are given along with the integer/half-integer resonances. The integer and half-integer resonances caused by coupling require particular care. We find an example of this with the case of a crab cavity for the integer resonance of the synchrotron tune. Whether or not there is an instability is determined by the value of the horizontal betatron tune, a unique feature of these coupling-caused integer or half-integer resonances. Finally, the coupled damping and diffusion coefficients along with the equilibrium invariants and projected emittances are plotted as a function of the betatron and synchrotron tunes for an example storage ring based on PEP-II.

  7. A particle-hole-rotator coupling model for the giant resonance of carbon-12

    International Nuclear Information System (INIS)

    McDougall, A.; Spicer, B.M.

    1975-01-01

    A collective correlations calculation has been made for the giant resonance of 12 C. The low-lying states are treated as members of two rotational bands, and higher energy low-lying states are included in the coupling procedure in an attempt to examine the connection of these states with structure in the 30-35 MeV region, and to examine a proposed rotational band of states built on the 7.65 MeV (0 + ) level. The calculation fails to transfer strength to the extent expected. (author)

  8. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    Lyutorovich, N.; Tselyaev, V. [Physical Faculty, St. Petersburg State University, RU-198504 St. Petersburg (Russian Federation); Speth, J., E-mail: J.Speth@fz-juelich.de [Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich (Germany); Krewald, S.; Grümmer, F. [Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich (Germany); Reinhard, P.-G. [Institut für Theoretische Physik II, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany)

    2015-10-07

    We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree–Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  9. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    Directory of Open Access Journals (Sweden)

    N. Lyutorovich

    2015-10-01

    Full Text Available We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree–Fock ground state and the excitation spectra within random-phase approximation (RPA and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA. All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  10. Transmission-line resonators for the study of individual two-level tunneling systems

    Science.gov (United States)

    Brehm, Jan David; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey V.; Lisenfeld, Jürgen

    2017-09-01

    Parasitic two-level tunneling systems (TLS) emerge in amorphous dielectrics and constitute a serious nuisance for various microfabricated devices, where they act as a source of noise and decoherence. Here, we demonstrate a new test bed for the study of TLS in various materials which provides access to properties of individual TLS as well as their ensemble response. We terminate a superconducting transmission-line resonator with a capacitor that hosts TLS in its dielectric. By tuning TLS via applied mechanical strain, we observe the signatures of individual TLS strongly coupled to the resonator in its transmission characteristics and extract the coupling components of their dipole moments and energy relaxation rates. The strong and well-defined coupling to the TLS bath results in pronounced resonator frequency fluctuations and excess phase noise, through which we can study TLS ensemble effects such as spectral diffusion, and probe theoretical models of TLS interactions.

  11. Multiple-state Feshbach resonances mediated by high-order couplings

    International Nuclear Information System (INIS)

    Hemming, Christopher J.; Krems, Roman V.

    2008-01-01

    We present a study of multistate Feshbach resonances mediated by high-order couplings. Our analysis focuses on a system with one open scattering state and multiple bound states. The scattering state is coupled to one off-resonant bound state and multiple Feshbach resonances are induced by a sequence of indirect couplings between the closed channels. We derive a general recursive expression that can be used to fit the experimental data on multistate Feshbach resonances involving one continuum state and several bound states and present numerical solutions for several model systems. Our results elucidate general features of multistate Feshbach resonances induced by high-order couplings and suggest mechanisms for controlling collisions of ultracold atoms and molecules with external fields

  12. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Liu, Xiaofei; Di, Yuanjian; Han, Shuaitao; Cui, Xingning; He, Lei

    2018-05-01

    Based on the transmission property and the photon localization characteristic of the surface plasmonic sub-wavelength structure, a metallic double-baffle contained metal-dielectric-metal (MDM) waveguide coupled ring resonator is proposed. Like the electromagnetically induced transparency (EIT), the Fano resonance can be achieved by the interference between the metallic double-baffle resonator and the ring resonator. Based on the coupled mode theory, the transmission property is analyzed. Through the numerical simulation by the finite element method (FEM), the quantitative analysis on the influences of the radius R of the ring and the coupling distance g between the metallic double-baffle resonator and the ring resonator for the figure of merit (FOM) is performed. And after the structure parameter optimization, the sensing performance of the waveguide structure is discussed. The simulation results show that the FOM value of the optimized structure can attain to 5.74 ×104 and the sensitivity of resonance wavelength with refractive index drift is about 825 nm/RIU. The range of the detected refractive index is suitable for all gases. The waveguide structure can provide effective theoretical references for the design of integrated plasmonic devices.

  13. Formation and coupling of band gaps in a locally resonant elastic system comprising a string with attached resonators

    International Nuclear Information System (INIS)

    Xiao Yong; Mace, Brian R.; Wen Jihong; Wen Xisen

    2011-01-01

    A uniform string with periodically attached spring-mass resonators represents a simple locally resonant continuous elastic system whose band gap mechanisms are basic to more general and complicated problems. In this Letter, analytical models with explicit formulations are provided to understand the band gap mechanisms of such a system. Some interesting phenomena are demonstrated and discussed, such as asymmetric/symmetric attenuation behavior within a resonance gap, and the realization of a super-wide gap due to exact coupling between Bragg and resonance gaps. In addition, some approximate formulas for the evaluation of low frequency resonance gaps are derived using an approach different from existing investigations. - Research highlights: → We examine band gaps in a special one-dimensional locally resonant system. → Bragg and resonance gaps co-exist. → Explicit formulas for locating band edges are derived. → Exact physical models are used to clarify the band gap formation mechanisms. → Coupling between Bragg and resonance gaps leads to a super-wide gap.

  14. Eddy-current effect on resonant magnetoelectric coupling in magnetostrictive-piezoelectric laminated composites

    Science.gov (United States)

    Liu, Guoxi; Zhang, Chunli; Chen, Weiqiu; Dong, Shuxiang

    2013-07-01

    An analytical model of resonant magnetoelectric (ME) coupling in magnetostrictive (MS)-piezoelectric (PE) laminated composites in consideration of eddy-current effect in MS layer using equivalent circuit method is presented. Numerical calculations show that: (1) the eddy-current has a strong effect on ME coupling in MS-PE laminated composites at resonant frequency; and (2) the resonant ME coupling is then significantly dependent on the sizes of ME laminated composites, which were neglected in most previous theoretical analyses. The achieved results provide a theoretical guidance for the practice engineering design, manufacture, and application of ME laminated composites and devices.

  15. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide

    DEFF Research Database (Denmark)

    Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.

    2012-01-01

    In this paper we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the NMR indirect nuclear spin-spin coupling constant with respect to an external elec...

  16. The combined resonance tunneling and semi-resonance level in low energy D-D reaction

    International Nuclear Information System (INIS)

    Li Xingzhong; Jin Dezhe; Chang Lee

    1993-01-01

    When nuclear potential wells are connected by an atomic potential well, a new kind of tunneling may happen even if there is no virtual energy level in nuclear potential wells. The necessary condition for this combined resonance tunneling is the resonance in the atomic potential well. Thus, the nuclear reaction may be affected by the action in atomic scale in terms of combined resonance tunneling. The nuclear spectrum data support this idea. (author)

  17. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    International Nuclear Information System (INIS)

    Qiao, Shen; Zhang, Yaxin; Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-01-01

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices

  18. Coupled-resonator optical waveguides: Q-factor and disorder influence

    DEFF Research Database (Denmark)

    Grgic, Jure; Campaioli, Enrico; Raza, Søren

    2011-01-01

    Coupled resonator optical waveguides (CROW) can significantly reduce light propagation pulse velocity due to pronounced dispersion properties. A number of interesting applications have been proposed to benefit from such slow-light propagation. Unfortunately, the inevitable presence of disorder...

  19. Pfaffian Solutions and Resonant Interaction Properties of a Coupled BKP Lattice

    International Nuclear Information System (INIS)

    Zhao Hai-Qiong; Yu Guo-Fu

    2014-01-01

    In this paper, we give a coupled lattice equation with the help of Hirota operators, which comes from a special BKP lattice. Two-soliton and three-soliton solutions to the coupled system are constructed. Furthermore, resonant interaction of the two-soliton solution is analyzed in detail. Under some special resonant condition, it is shown that low soliton can propagate faster than high one. Finally, the N-soliton solution is presented in the Pfaffian form. (general)

  20. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    Science.gov (United States)

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  1. Compact HTS bandpass filter employing CPW quarter-wavelength resonators with strongly-coupled open stubs

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, K; Koizumi, D; Narahashi, S [Research Laboratories, NTT DoCoMo, Inc., 3-5 Hikari-no-oka, Yokosuka, Kanagwa, 239-8536 (Japan)], E-mail: satokei@nttdocomo.co.jp

    2008-02-01

    This paper presents a novel compact high temperature superconducting (HTS) bandpass filter (BPF) that employs a newly developed miniaturized coplanar-waveguide (CPW) quarter-wavelength resonators with strongly-coupled open stubs. The proposed resonator has a structure in which the open stubs are aligned close to the center conductor of the resonator. This is because strongly-coupled resonators have widely-split resonant frequencies, and the lowest resonant frequency is employed as the fundamental resonant frequency of the resonator in order to achieve miniaturization. The proposed resonator is 1.7 mm or less in length for use in the 5-GHz band, whereas the conventional straight resonator is approximately 6.4 mm long. A four-pole Chebyshev HTS BPF is designed and fabricated using the proposed CPW resonators. The entire length of the proposed four-pole filter is 15 mm. The frequency response of the fabricated filter agrees well with the electromagnetic simulation results. The proposed filter achieves a size reduction of at least 50% compared to previously reported filters without any degradation in the frequency characteristics.

  2. Photon–phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator

    International Nuclear Information System (INIS)

    Zhang, Lin; Ji, Fengzhou; Zhang, Xu; Zhang, Weiping

    2017-01-01

    A direct photon–phonon parametric effect of quadratic coupling on the mean-field dynamics of an optomechanical resonator in the large-scale-movement regime is found and investigated. Under a weak pumping power, the mechanical resonator damps to a steady state with a nonlinear static response sensitively modified by the quadratic coupling. When the driving power increases beyond the static energy balance, the steady states lose their stabilities via Hopf bifurcations, and the resonator produces stable self-sustained oscillation (limit-circle behavior) of discrete energies with step-like amplitudes due to the parametric effect of quadratic coupling, which can be understood roughly by the power balance between gain and loss on the resonator. A further increase in the pumping power can induce a chaotic dynamic of the resonator via a typical routine of period-doubling bifurcation, but which can be stabilized by the parametric effect through an inversion-bifurcation process back to the limit-circle states. The bifurcation-to-inverse-bifurcation transitions are numerically verified by the maximal Lyapunov exponents of the dynamics, which indicate an efficient way of suppressing the chaotic behavior of the optomechanical resonator by quadratic coupling. Furthermore, the parametric effect of quadratic coupling on the dynamic transitions of an optomechanical resonator can be conveniently detected or traced by the output power spectrum of the cavity field. (paper)

  3. Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system

    Science.gov (United States)

    Zhang, Zecen; Ng, Geok Ing; Hu, Ting; Qiu, Haodong; Guo, Xin; Wang, Wanjun; Rouifed, Mohamed Saïd; Liu, Chongyang; Wang, Hong

    2017-08-01

    A conversion between the electromagnetically induced transparency (EIT) transmission and Fano transmission is theoretically and experimentally demonstrated in an all-pass microring-Bragg grating (APMR-BG) coupled-resonator system. In this work, the coupling between the two resonators (the microring resonator and the Fabry-Perot resonator formed by two Bragg gratings) gives rise to the EIT and Fano transmissions. The resonant status strongly depends on the round-trip attenuation of the microring and the coupling strength. By tuning the coupling strength, the EIT and Fano transmissions can be controlled and converted. The device performance has been theoretically calculated and analyzed with a specially developed numerical model based on the transfer matrix method. The APMR-BG coupled-resonator systems with different gap widths were designed, fabricated, and characterized on a silicon-on-insulator (SOI) platform. The conversion of resonance was experimentally observed and verified. In addition, this on-chip system has the advantage of a small footprint, and the fabrication process is compatible with the planar waveguide fabrication process.

  4. Single-level resonance parameters fit nuclear cross-sections

    Science.gov (United States)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  5. Analytically continued Fock space multi-reference coupled-cluster theory: Application to the shape resonance

    International Nuclear Information System (INIS)

    Pal, Sourav; Sajeev, Y.; Vaval, Nayana

    2006-01-01

    The Fock space multi-reference coupled-cluster (FSMRCC) method is used for the study of the shape resonance energy and width in an electron-atom/molecule collision. The procedure is based upon combining a complex absorbing potential (CAP) with FSMRCC theory. Accurate resonance parameters are obtained by solving a small non-Hermitian eigen-value problem. We study the shape resonances in e - -C 2 H 4 and e - -Mg

  6. Missing and Spurious Level Corrections for Nuclear Resonances

    International Nuclear Information System (INIS)

    Mitchell, G E; Agvaanluvsan, U; Pato, M P; Shriner, J F

    2005-01-01

    Neutron and proton resonances provide detailed level density information. However, due to experimental limitations, some levels are missed and some are assigned incorrect quantum numbers. The standard method to correct for missing levels uses the experimental widths and the Porter-Thomas distribution. Analysis of the spacing distribution provides an independent determination of the fraction of missing levels. We have derived a general expression for such an imperfect spacing distribution using the maximum entropy principle and applied it to a variety of nuclear resonance data. The problem of spurious levels has not been extensively addressed

  7. Continuum level density of a coupled-channel system in the complex scaling method

    International Nuclear Information System (INIS)

    Suzuki, Ryusuke; Kato, Kiyoshi; Kruppa, Andras; Giraud, Bertrand G.

    2008-01-01

    We study the continuum level density (CLD) in the formalism of the complex scaling method (CSM) for coupled-channel systems. We apply the formalism to the 4 He=[ 3 H+p]+[ 3 He+n] coupled-channel cluster model where there are resonances at low energy. Numerical calculations of the CLD in the CSM with a finite number of L 2 basis functions are consistent with the exact result calculated from the S-matrix by solving coupled-channel equations. We also study channel densities. In this framework, the extended completeness relation (ECR) plays an important role. (author)

  8. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masayuki, E-mail: kimura.masayuki.8c@kyoto-u.ac.jp [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsushita, Yasuo [Advanced Mathematical Institute, Osaka City University, 3-3-138 Sughimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Hikihara, Takashi [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2016-08-19

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.

  9. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    International Nuclear Information System (INIS)

    Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi

    2016-01-01

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.

  10. High-efficiency resonant coupled wireless power transfer via tunable impedance matching

    Science.gov (United States)

    Anowar, Tanbir Ibne; Barman, Surajit Das; Wasif Reza, Ahmed; Kumar, Narendra

    2017-10-01

    For magnetic resonant coupled wireless power transfer (WPT), the axial movement of near-field coupled coils adversely degrades the power transfer efficiency (PTE) of the system and often creates sub-resonance. This paper presents a tunable impedance matching technique based on optimum coupling tuning to enhance the efficiency of resonant coupled WPT system. The optimum power transfer model is analysed from equivalent circuit model via reflected load principle, and the adequate matching are achieved through the optimum tuning of coupling coefficients at both the transmitting and receiving end of the system. Both simulations and experiments are performed to evaluate the theoretical model of the proposed matching technique, and results in a PTE over 80% at close coil proximity without shifting the original resonant frequency. Compared to the fixed coupled WPT, the extracted efficiency shows 15.1% and 19.9% improvements at the centre-to-centre misalignment of 10 and 70 cm, respectively. Applying this technique, the extracted S21 parameter shows more than 10 dB improvements at both strong and weak couplings. Through the developed model, the optimum coupling tuning also significantly improves the performance over matching techniques using frequency tracking and tunable matching circuits.

  11. Application of coupled nanoscale resonators for spectral sensing

    International Nuclear Information System (INIS)

    Nefedov, N

    2009-01-01

    In this paper we propose a method to perform tunable spectral sensing using globally inhibitory coupled oscillators. The suggested system may operate in the analog radio frequency (RF) domain without high speed ADC and heavy digital signal processing. Oscillator arrays may be made of imprecise elements such as nanoresonators. Provided there is a proper coupling, the system dynamics can be made stable despite the imprecision of the components. Global coupling could be implemented using a common load and controlled by digital means to tune the bandwidth. This method may be used for spectral sensing in cognitive radio terminals.

  12. Application of coupled nanoscale resonators for spectral sensing

    Energy Technology Data Exchange (ETDEWEB)

    Nefedov, N [Nokia Research Center, Hardturmstrasse 253, CH-8005 Zurich (Switzerland); Swiss Federal Institute of Technology Zurich (ETHZ), ISI Laboratory, Sternwartstrasse 7, CH-8092 Zuerich (Switzerland)], E-mail: nikolai.nefedov@nokia.com

    2009-04-08

    In this paper we propose a method to perform tunable spectral sensing using globally inhibitory coupled oscillators. The suggested system may operate in the analog radio frequency (RF) domain without high speed ADC and heavy digital signal processing. Oscillator arrays may be made of imprecise elements such as nanoresonators. Provided there is a proper coupling, the system dynamics can be made stable despite the imprecision of the components. Global coupling could be implemented using a common load and controlled by digital means to tune the bandwidth. This method may be used for spectral sensing in cognitive radio terminals.

  13. Self-induced steps in a small Josephson junction strongly coupled to a multimode resonator

    DEFF Research Database (Denmark)

    Larsen, A.; Jensen, H. Dalsgaard; Mygind, Jesper

    1991-01-01

    An equally spaced series of very large and nearly constant-voltage self-induced singularities has been observed in the dc I-V characteristics of a small Josephson tunnel junction strongly coupled to a resonant section of a superconducting transmission line. The system allows extremely high values...... of the coupling parameter. The current steps are due to subharmonic parametric excitation of the fundamental mode of the resonator loaded by the junction admittance. Using an applied magnetic field to vary the coupling parameter, we traced out half-integer steps as well as the mode steps known from more weakly...

  14. Study on frequency characteristics of wireless power transmission system based on magnetic coupling resonance

    Science.gov (United States)

    Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.

    2017-11-01

    In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.

  15. Resonance saturation of the chiral couplings at next-to-leading order in 1/NC

    International Nuclear Information System (INIS)

    Rosell, Ignasi; Ruiz-Femenia, Pedro; Sanz-Cillero, Juan Jose

    2009-01-01

    The precision obtainable in phenomenological applications of chiral perturbation theory is currently limited by our lack of knowledge on the low-energy constants (LECs). The assumption that the most important contributions to the LECs come from the dynamics of the low-lying resonances, often referred to as the resonance saturation hypothesis, has stimulated the use of large-N C resonance Lagrangians in order to obtain explicit values for the LECs. We study the validity of the resonance saturation assumption at the next-to-leading order in the 1/N C expansion within the framework of resonance chiral theory. We find that, by imposing QCD short-distance constraints, the chiral couplings can be written in terms of the resonance masses and couplings and do not depend explicitly on the coefficients of the chiral operators in the Goldstone boson sector of resonance chiral theory. As we argue, this is the counterpart formulation of the resonance saturation statement in the context of the resonance Lagrangian. Going beyond leading order in the 1/N C counting allows us to keep full control of the renormalization scale dependence of the LEC estimates.

  16. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    KAUST Repository

    Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2017-01-01

    the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature

  17. Research on Wireless Power Transfer System via Magnetically Coupled Resonance

    Directory of Open Access Journals (Sweden)

    ZHU Meng

    2017-04-01

    Full Text Available In order to extend the transmission distance and improve the transmission efficiency of the traditional wireless power transmission(WPTsystem composed with the transmitting and receiving coil resonators based on magnetic resonance coupling,we proposed an effective method to add a magnetic core between repeating coil and receiving coil based on the single repeating three coils mode. This paper deduced a mathematical expression of the transmission efficiency,and built a model by the circuit theory,and also simulated the transmission system added with the magnetic core between repeating and receiving coil. Then we selected the flat magnetic core for test. At last,we verified the feasibility of the proposal by actual experiment.

  18. Phase transitions in trajectories of a superconducting single-electron transistor coupled to a resonator.

    Science.gov (United States)

    Genway, Sam; Garrahan, Juan P; Lesanovsky, Igor; Armour, Andrew D

    2012-05-01

    Recent progress in the study of dynamical phase transitions has been made with a large-deviation approach to study trajectories of stochastic jumps using a thermodynamic formalism. We study this method applied to an open quantum system consisting of a superconducting single-electron transistor, near the Josephson quasiparticle resonance, coupled to a resonator. We find that the dynamical behavior shown in rare trajectories can be rich even when the mean dynamical activity is small, and thus the formalism gives insights into the form of fluctuations. The structure of the dynamical phase diagram found from the quantum-jump trajectories of the resonator is studied, and we see that sharp transitions in the dynamical activity may be related to the appearance and disappearance of bistabilities in the state of the resonator as system parameters are changed. We also demonstrate that for a fast resonator, the trajectories of quasiparticles are similar to the resonator trajectories.

  19. Study on electromagnetic characteristics of the magnetic coupling resonant coil for the wireless power transmission system.

    Science.gov (United States)

    Wang, Zhongxian; Liu, Yiping; Wei, Yonggeng; Song, Yilin

    2018-01-01

    The resonant coil design is taken as the core technology in the magnetic coupling resonant wireless power transmission system, which achieves energy transmission by the coupling of the resonant coil. This paper studies the effect of the resonant coil on energy transmission and the efficiency of the system. Combining a two-coil with a three-coil system, the optimum design method for the resonant coil is given to propose a novel coil structure. First, the co-simulation methods of Pspice and Maxwell are used. When the coupling coefficient of the resonant coil is different, the relationship between system transmission efficiency, output power, and frequency is analyzed. When the self-inductance of the resonant coil is different, the relationship between the performance and frequency of the system transmission is analyzed. Then, two-coil and three-coil structure models are built, and the parameters of the magnetic field of the coils are calculated and analyzed using the finite element method. In the end, a dual E-type simulation circuit model is used to optimize the design of the novel resonance coil. The co-simulation results show that the coupling coefficients of the two-coil, three-coil, and novel coil systems are 0.017, 0.17 and 0.0126, respectively. The power loss of the novel coil is 16.4 mW. There is an obvious improvement in the three-coil system, which shows that the magnetic leakage of the field and the energy coupling are relatively small. The new structure coil has better performance, and the load loss is lower; it can improve the system output power and transmission efficiency.

  20. Shapiro and parametric resonances in coupled Josephson junctions

    International Nuclear Information System (INIS)

    Gaafar, Ma A; Shukrinov, Yu M; Foda, A

    2012-01-01

    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.

  1. Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime.

    Science.gov (United States)

    Liu, Chang-Hua; Kim, In Soo; Lauhon, Lincoln J

    2015-10-14

    Two-dimensional (2-D) materials including graphene and transition metal dichalcogenides (TMDs) are an exciting platform for ultrasensitive force and displacement detection in which the strong light-matter coupling is exploited in the optical control of nanomechanical motion. Here we report the optical excitation and displacement detection of a ∼ 3 nm thick MoS2 resonator in the strong-coupling regime, which has not previously been achieved in 2-D materials. Mechanical mode frequencies can be tuned by more than 12% by optical heating, and they exhibit avoided crossings indicative of strong intermode coupling. When the membrane is optically excited at the frequency difference between vibrational modes, normal mode splitting is observed, and the intermode energy exchange rate exceeds the mode decay rate by a factor of 15. Finite element and analytical modeling quantifies the extent of mode softening necessary to control intermode energy exchange in the strong coupling regime.

  2. Asymptotically exact solution of the multi-channel resonant-level model

    International Nuclear Information System (INIS)

    Zhang Guangming; Su Zhaobin; Yu Lu.

    1994-01-01

    An asymptotically exact partition function of the multi-channel resonant-level model is obtained through Tomonaga-Luttinger bosonization. A Fermi-liquid vs. non-Fermi-liquid transition, resulting from a competition between the Kondo and X-ray edge physics, is elucidated explicitly via the renormalization group theory. In the strong-coupling limit, the model is renormalized to the Toulouse limit. (author). 20 refs, 1 fig

  3. Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction

    Science.gov (United States)

    Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing

    2018-06-01

    We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.

  4. Ion cyclotron wave excitation by double resonance coupling

    International Nuclear Information System (INIS)

    Fasoli, A.; Good, T.N.; Paris, P.J.; Skiff, F.; Tran, M.Q.

    1990-07-01

    A modulated high frequency wave is used to remotely excite low frequency oscillations in a linear, strongly magnetized plasma column. An electromagnetic wave is launched as an extraordinary mode across the plasma by an external waveguide in the Upper Hybrid frequency regime f=f UH =f ce =8 GHz, with P≤2 W. By frequency modulating (at f FM =1-60 kHz, with f ci ≅30 kHz) the pump wave, the resonant layer is swept radially across the profile and perpendicularly to the field lines at f=f FM . The resulting radial oscillation of the electron linear and non linear pressure can be considered to act as a source term for the ion wave. A localized virtual antenna is thereby created inside the plasma. Measurements of the ion dielectric response (interferograms and perturbed distribution functions) via laser induced fluorescence identify the two branches (forward, or ion-acoustic-like, and backward, or Bernstein, modes) of the electrostatic dispersion relation in the ion cyclotron frequency range. By changing the modulation bandwidth, and thus the spatial excursion of the oscillating resonant layer, a control on the perpendicular wavelength of the excited mode can be exerted. In particular, the possibility of selective excitation of the ion Bernstein wave is demonstrated experimentally. (author) 38 refs., 13 figs

  5. Channel coupling in heavy quarkonia: Energy levels, mixing, widths, and new states

    International Nuclear Information System (INIS)

    Danilkin, I. V.; Simonov, Yu. A.

    2010-01-01

    The mechanism of channel coupling via decay products is used to study energy shifts, level mixing as well as the possibility of new near-threshold resonances in cc, bb systems. The Weinberg eigenvalue method is formulated in the multichannel problems, which allows one to describe coupled-channel resonances and wave functions in a unitary way, and to predict new states due to channel coupling. Realistic wave functions for all single-channel states and decay matrix elements computed earlier are exploited, and no new fitting parameters are involved. Examples of level shifts, widths, and mixings are presented; the dynamical origin of X(3872) and the destiny of the single-channel 2 3 P 1 (cc) state are clarified. As a result a sharp and narrow peak in the state with quantum numbers J PC =1 ++ is found at 3.872 GeV, while the single-channel resonance originally around 3.940 GeV becomes increasingly broad and disappears with growing coupling to open channels.

  6. Resonant enhanced parallel-T topology for weak coupling wireless power transfer pickup applications

    Directory of Open Access Journals (Sweden)

    Yao Guo

    2015-07-01

    Full Text Available For the wireless power transfer (WPT system, the transfer performance and the coupling coefficient are contradictory. In this paper, a novel parallel-T resonant topology consists of a traditional parallel circuit and a T-matching network for secondary side is proposed. With this method, a boosted voltage can be output to the load, since this topology has a resonant enhancement effect, and high Q value can be obtained at a low resonant frequency and low coil inductance. This feature makes it more suitable for weak coupling WPT applications. Besides, the proposed topology shows good frequency stability and adaptability to variations of load. Experimental results show that the output voltage gain improves by 757% compared with traditional series circuit, and reaches 85% total efficiency when the coupling coefficient is 0.046.

  7. Multiple resonance compensation for betatron coupling and its equivalence with matrix method

    CERN Document Server

    De Ninno, G

    1999-01-01

    Analyses of betatron coupling can be broadly divided into two categories: the matrix approach that decouples the single-turn matrix to reveal the normal modes and the hamiltonian approach that evaluates the coupling in terms of the action of resonances in perturbation theory. The latter is often regarded as being less exact but good for physical insight. The common opinion is that the correction of the two closest sum and difference resonances to the working point is sufficient to reduce the off-axis terms in the 4X4 single-turn matrix, but this is only partially true. The reason for this is explained, and a method is developed that sums to infinity all coupling resonances and, in this way, obtains results equivalent to the matrix approach. The two approaches is discussed with reference to the dynamic aperture. Finally, the extension of the summation method to resonances of all orders is outlined and the relative importance of a single resonance compared to all resonances of a given order is analytically desc...

  8. Analytical studies on pump-induced optical resonances in an M-type six-level system

    International Nuclear Information System (INIS)

    Ghosh, Saswata; Mandal, Swapan

    2010-01-01

    In the domain of semiclassical formulation and for the Doppler-free atom-field interaction, we construct the optical Bloch equations involving an M-type six-level system coupled to two pump fields and a probe field. The response of the system is probed for different pump-induced transitions in double and triple-resonance situations. In order to obtain the coherent lineshapes (absorptive and dispersive), we use the usual perturbation method for obtaining the approximate analytical solutions to these coupled optical Bloch equations for the density matrix elements. The interferences between the probability amplitudes for different energy levels (dipole allowed and dipole forbidden) are taken care of. For off-resonance pump positions, the linewidths of the three probe transitions are insensitive to the pump Rabi frequencies. On the other hand, the shifts of the three resonance peaks are extremely sensitive to the pump Rabi frequencies. However, for on-resonance pump conditions, the sensitivities of pump Rabi frequencies on the linewidths of the resonance peaks and on the shifts of the resonance peak positions are opposite to those of their off-resonance counterparts. In particular, we have shown the asymmetric and symmetric Rabi splittings under different physical conditions, for non-zero and near-zero probe detuning, respectively. The Rabi splitting under triple-resonance conditions, significantly, modifies the dispersive lineshape at the centre of the absorption line. The two- and three-photon absorptions are also reported for different off-resonant pump positions.

  9. Resonant exciton-phonon coupling in ZnO nanorods at room temperature

    Directory of Open Access Journals (Sweden)

    Soumee Chakraborty

    2011-09-01

    Full Text Available Vibronic and optoelectronic properties, along with detailed studies of exciton-phonon coupling at room temperature (RT for random and aligned ZnO nanorods are reported. Excitation energy dependent Raman studies are performed for detailed analysis of multi-phonon processes in the nanorods. We report here the origin of coupling between free exciton and its associated phonon replicas, including its higher order modes, in the photoluminescence spectra at RT. Resonance of excitonic electron and resonating first order zone center LO phonon, invoked strongly by Frolich interaction, are made responsible for the observed phenomenon.

  10. A Coupled Resonator for Highly Tunable and Amplified Mixer/Filter

    KAUST Repository

    Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.

    2017-01-01

    We present an H-shaped resonator made of two clamped-clamped microbeams mechanically coupled at the middle with a strong coupler to achieve, in a single device, mechanical amplification of the response signal, filtering, and frequency conversion simultaneously. Using mechanical amplification combined with combination resonances generated from a mixed-frequency excitation, a wideband tunable filter, and a simultaneous frequency up and down convertors at multiple bands is demonstrated. The proposed coupled structure, when combined with the easy-to-implement technique of frequency mixing, is promising for applications in an RF chain.

  11. Ferro-paramagnetic coupled resonant modes in GdEuCuO4

    International Nuclear Information System (INIS)

    Fainstein, A.; Tovar, M.

    1990-01-01

    Two paramagnetic resonances were observed in compound GdEuCuO 4 : one was originated in trivalent gadolinium paramagnetism, while the other is associated to a weak ferromagnetic mode in Cu-O planes. In this work, experimental results are presented that show an anisotropy and a strongly anomalous temperature dependence of Gd 3+ . A theoretical model was introduced which explains the data in terms of coupled ferro-paramagnetic resonant modes originated in spin exchange coupling of Cu and Gd. (Author). 9 refs., 4 figs

  12. A Coupled Resonator for Highly Tunable and Amplified Mixer/Filter

    KAUST Repository

    Ilyas, Saad

    2017-04-25

    We present an H-shaped resonator made of two clamped-clamped microbeams mechanically coupled at the middle with a strong coupler to achieve, in a single device, mechanical amplification of the response signal, filtering, and frequency conversion simultaneously. Using mechanical amplification combined with combination resonances generated from a mixed-frequency excitation, a wideband tunable filter, and a simultaneous frequency up and down convertors at multiple bands is demonstrated. The proposed coupled structure, when combined with the easy-to-implement technique of frequency mixing, is promising for applications in an RF chain.

  13. Excitation transfer in two two-level systems coupled to an oscillator

    International Nuclear Information System (INIS)

    Hagelstein, P L; Chaudhary, I U

    2008-01-01

    We consider a generalization of the spin-boson model in which two different two-level systems are coupled to an oscillator, under conditions where the oscillator energy is much less than the two-level system energies, and where the oscillator is highly excited. We find that the two-level system transition energy is shifted, producing a Bloch-Siegert shift in each two-level system similar to what would be obtained if the other were absent. At resonances associated with energy exchange between a two-level system and the oscillator, the level splitting is about the same as would be obtained in the spin-boson model at a Bloch-Siegert resonance. However, there occur resonances associated with the transfer of excitation between one two-level system and the other, an effect not present in the spin-boson model. We use a unitary transformation leading to a rotated system in which terms responsible for the shift and splittings can be identified. The level splittings at the anticrossings associated with both energy exchange and excitation transfer resonances are accounted for with simple two-state models and degenerate perturbation theory using operators that appear in the rotated Hamiltonian

  14. Time-dependent resonant tunnelling for parallel-coupled double quantum dots

    International Nuclear Information System (INIS)

    Dong Bing; Djuric, Ivana; Cui, H L; Lei, X L

    2004-01-01

    We derive the quantum rate equations for an Aharonov-Bohm interferometer with two vertically coupled quantum dots embedded in each of two arms by means of the nonequilibrium Green function in the sequential tunnelling regime. Based on these equations, we investigate time-dependent resonant tunnelling under a small amplitude irradiation and find that the resonant photon-assisted tunnelling peaks in photocurrent demonstrate a combination behaviour of Fano and Lorentzian resonances due to the interference effect between the two pathways in this parallel configuration, which is controllable by threading the magnetic flux inside this device

  15. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    International Nuclear Information System (INIS)

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-01-01

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials

  16. Strain coupling between nitrogen vacancy centers and the mechanical motion of a diamond optomechanical crystal resonator

    Science.gov (United States)

    Cady, J. V.; Lee, K. W.; Ovartchaiyapong, P.; Bleszynski Jayich, A. C.

    Several experiments have recently demonstrated coupling between nitrogen vacancy (NV) centers in diamond and mechanical resonators via crystal strain. In the strong coupling regime, such devices could realize applications critical to emerging quantum technologies, including phonon-mediated spin-spin interactions and mechanical cooling with the NV center1. An outstanding challenge for these devices is generating higher strain coupling in high frequency devices while maintaining the excellent coherence properties of the NV center and high mechanical quality factors. As a step toward these objectives, we demonstrate single-crystal diamond optomechanical crystal resonators with embedded NV centers. These devices host highly-confined GHz-scale mechanical modes that are isolated from mechanical clamping losses and generate strain profiles that allow for large strain coupling to NV centers far from noise-inducing surfaces.

  17. Computation of expectation values from vibrational coupled-cluster at the two-mode coupling level

    DEFF Research Database (Denmark)

    Zoccante, Alberto; Seidler, Peter; Christiansen, Ove

    2011-01-01

    In this work we show how the vibrational coupled-cluster method at the two-mode coupling level can be used to calculate zero-point vibrational averages of properties. A technique is presented, where any expectation value can be calculated using a single set of Lagrangian multipliers computed...

  18. Analysis and design of a coupled coaxial line TEM resonator for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Benahmed, Nasreddine; Feham, Mohammed; Khelif, M'Hamed

    2006-01-01

    In this paper, we have successfully realized a numerical tool to analyse and to design an n-element unloaded coaxial line transverse electromagnetic (TEM) resonator. This numerical tool allows the determination of the primary parameters, matrices [L], [C] and [R], and simulates the frequency response of S 11 at the RF port of the designed TEM resonator. The frequency response permits evaluation of the unloaded quality factor Q 0 . As an application, we present the analysis and the design of an eight-element unloaded TEM resonator for animal studies at 4.7 T. The simulated performance has a -62.81 dB minimum reflection and a quality factor of 260 around 200 MHz

  19. Femtosecond pulse with THz repetition frequency based on the coupling between quantum emitters and a plasmonic resonator

    Science.gov (United States)

    Li, Shilei; Ding, Yinxing; Jiao, Rongzhen; Duan, Gaoyan; Yu, Li

    2018-03-01

    Nanoscale pulsed light is highly desirable in nano-integrated optics. In this paper, we obtained femtosecond pulses with THz repetition frequency via the coupling between quantum emitters (QEs) and plasmonic resonators. Our structure consists of a V -groove (VG) plasmonic resonator and a nanowire embedded with two-level QEs. The influences of the incident light intensity and QE number density on the transmission response for this hybrid system are investigated through semiclassical theory and simulation. The results show that the transmission response can be modulated to the pulse form. And the repetition frequency and extinction ratio of the pulses can be controlled by the incident light intensity and QE number density. The reason is that the coupling causes the output power of nanowire to behave as an oscillating form, the oscillating output power in turn causes the field amplitude in the resonator to oscillate over time. A feedback system is formed between the plasmonic resonator and the QEs in the nanowire. This provides a method for generating narrow pulsed lasers with ultrahigh repetition frequencies in plasmonic systems using a continuous wave input, which has potential applications in generating optical clock signals at the nanoscale.

  20. Coupling effects of resonant and discretized non-resonant continuum states in 4He+6Li scattering at 10 MeV/A

    International Nuclear Information System (INIS)

    Sinha, T.; Kanungo, R.; Samanta, C.; Ghosh, S.; Basu, P.; Rebel, H.

    1996-01-01

    Alpha- particle scattering from the resonant (3 + 1 ) and non-resonant continuum states of 6 Li is studied at incident energy 10 MeV/A. The α+d breakup continuum part within the excitation energy E ex = 1.475-2.475 MeV is discretized in two energy bins. Unlike the results at higher incident energies, here the coupled-channel calculations show significant breakup continuum coupling effects on the elastic and inelastic scattering. It is shown that even when the continuum-continuum coupling effects are strong, the experimental data of the ground state and the resonant as well as discretized non-resonant continuum states impose stringent constraint on the coupling strengths of the non-resonant continuum states. (orig.). With 2 figs., 1 tab

  1. Soliton Coupling Driven by Phase Fluctuations in Auto-Parametric Resonance

    CERN Document Server

    Binder, B

    2002-01-01

    In this paper the interaction of sine-Gordon solitons and mediating linear waves is modelled by a special case of auto-parametric resonance, the Rayleigh-type self-excited non-linear autonomous system driven by a statistical phase gradient related to the soliton energy. Spherical symmetry can stimulate "whispering gallery modes" (WGM) with integral coupling number M=137.

  2. Analisa Compact Wireless Power Transfer (CWPT menggunakan Metode Magnetic Resonator Coupling

    Directory of Open Access Journals (Sweden)

    Bambang Sudibya

    2016-12-01

    Full Text Available Magnetic Resonator Coupling banyak dipergunakan untuk berbagai aplikasi Wireless Power Transfer (WPT. Pada penelitian ini berhasil dirancang WPT dengan tegangan sebesar 5 V. Jika Tx dan Rx diposisikan saling berhadapan, tegangan maksimum 4,7 volt pada jarak 1 cm. Sementara itu, jika Tx dan Rx diposisikan berdampingan, tegangan yang dihasilkan dari 3.5V.

  3. Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle

    Science.gov (United States)

    Carreño, F.; Antón, M. A.; Arrieta-Yáñez, Francisco

    2013-11-01

    The resonance fluorescence spectrum (RFS) of a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle (MNP) is analyzed. The quantum dot is described as a four-level atomlike system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle, which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions, which is accompanied by very minor local field corrections. This manifests into dramatic modifications in the RFS of the hybrid system in contrast to the one obtained for the isolated QD. The RFS is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field applied in the Voigt geometry, and the Rabi frequency of the driving field. It is shown that the spin of the QD is imprinted onto certain sidebands of the RFS, and that the signal at these sidebands can be optimized by engineering the shape of the MNP.

  4. Nonmonotonous electron mobility due to structurally induced resonant coupling of subband states in an asymmetric double quantum well

    Directory of Open Access Journals (Sweden)

    R. K. Nayak

    2015-11-01

    Full Text Available We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/AlxGa1-xAs barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip in mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.

  5. An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.

    Science.gov (United States)

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua

    2010-01-01

    This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.

  6. Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion

    International Nuclear Information System (INIS)

    Borg, G.G.

    1994-01-01

    Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs

  7. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    Science.gov (United States)

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  8. Coupling constants deduced for the resonances in kaon photo-production

    International Nuclear Information System (INIS)

    Cheoun, M. K.; Kim, K. S.; Choi, T. K.

    2004-01-01

    We deduced the coupling constants of nucleon and hyperon resonances, which participate in kaon productions as intermediate states that are formed by electro-magnetic probes and that finally decay into hadronic final states. We used an isobaric model based on an effective Lagrangian approach to describe the processes, in which relevant coupling constants regarding related resonances are effectively determined by fitting available experimental data. Our scheme to deduce the coupling constants was as follows: First, we calculated the lower and the upper limits on the coupling constants by using the experimental decay data available until now and/or theoretical predictions, such as those from quark models and SU(3) symmetry. Second, we exploited those limits as physical constraints on our fitting scheme for the kaon photo-production data. Finally, the deduced values and regions of the coupling constants, which satisfy not only the reaction data but also the decay data, are presented as figures with respect to the strong and the electro-magnetic coupling constants, and their multiplicative values. Our results for the coupling constants give physical values that are more restricted than those allowed by the experimental data nowadays.

  9. Scattering resonances in a low-dimensional Rashba-Dresselhaus spin-orbit coupled quantum gas

    Science.gov (United States)

    Wang, Su-Ju; Blume, D.

    2017-04-01

    Confinement-induced resonances allow for the tuning of the effective one-dimensional coupling constant. When the scattering state associated with the ground transverse mode is brought into resonance with the bound state attached to the energetically excited transverse modes, the atoms interact through an infinitely strong repulsion. This provides a route to realize the Tonks-Girardeau gas. On the other hand, the realization of synthetic gauge fields in cold atomic systems has attracted a lot of attention. For instance, bound-state formation is found to be significantly modified in the presence of spin-orbit coupling in three dimensions. This motivates us to study ultracold collisions between two Rashba-Dresselhaus spin-orbit coupled atoms in a quasi-one-dimensional geometry. We develop a multi-channel scattering formalism that accounts for the external transverse confinement and the spin-orbit coupling terms. The interplay between these two single-particle terms is shown to give rise to new scattering resonances. In particular, it is analyzed what happens when the scattering energy crosses the various scattering thresholds that arise from the single-particle confinement and the spin-orbit coupling. Support by the NSF is gratefully acknowledged.

  10. Stochastic resonance in multi-stable coupled systems driven by two driving signals

    Science.gov (United States)

    Xu, Pengfei; Jin, Yanfei

    2018-02-01

    The stochastic resonance (SR) in multi-stable coupled systems subjected to Gaussian white noises and two different driving signals is investigated in this paper. Using the adiabatic approximation and the perturbation method, the coupled systems with four-well potential are transformed into the master equations and the amplitude of the response is obtained. The signal-to-noise ratio (SNR) is calculated numerically to demonstrate the occurrence of SR. For the case of two driving signals with different amplitudes, the interwell resonance between two wells S1 and S3 emerges for strong coupling. The SR can appear in the subsystem with weaker signal amplitude or even without driving signal with the help of coupling. For the case of two driving signals with different frequencies, the effects of SR in two subsystems driven by high and low frequency signals are both weakened with an increase in coupling strength. The stochastic multi-resonance phenomenon is observed in the subsystem subjected to the low frequency signal. Moreover, an effective scheme for phase suppressing SR is proposed by using a relative phase between two driving signals.

  11. Coupled-mode theory and Fano resonances in guided-mode resonant gratings: the conical diffraction mounting.

    Science.gov (United States)

    Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A

    2017-01-23

    We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.

  12. Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators

    Science.gov (United States)

    Huang, Pei-Nian; Xia, Sheng-Xuan; Fu, Guang-Lai; Liang, Mei-Zhen; Qin, Meng; Zhai, Xiang; Wang, Ling-Ling

    2018-03-01

    In this paper, we propose a structure composed of two graphene waveguides and dual coupled graphene ring resonators (GRRs) to achieve a plasmon-induced absorption (PIA) effect. A three-level plasmonic system and a temporal coupled mode theory (CMT) are utilized to verify the simulation results. Moreover, a double-window-PIA effect can be conveniently attained by introducing another GRR with proper parameters to meet more specific acquirement in optical modulation process. The pronounced PIA resonances can be tuned in a number of ways, such as by adjusting the coupling distance between the GRRs and the couplings between the GRR and the waveguide, and tuning the radius and the Fermi energy of the GRRs. Besides, the produced PIA effect shows a high group delay up to - 1 . 87 ps, exhibiting a particularly prominent fast-light feature. Our results have potential applications in the realization of THz-integrated spectral control and graphene plasmonic devices such as sensors, filters, ultra-fast optical switches and so on.

  13. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    Science.gov (United States)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  14. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  15. Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration.

    Science.gov (United States)

    Britzger, Michael; Wimmer, Maximilian H; Khalaidovski, Alexander; Friedrich, Daniel; Kroker, Stefanie; Brückner, Frank; Kley, Ernst-Bernhard; Tünnermann, Andreas; Danzmann, Karsten; Schnabel, Roman

    2012-11-05

    Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively-coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal light power employable in GW observatories. Here, we propose and realize a Michelson-type laser interferometer with arm resonators whose coupling components are all-reflective second-order Littrow gratings. In principle such gratings allow high finesse values of the resonators but avoid bulk transmission of the laser light and thus the corresponding thermal beam distortion. The gratings used have three diffraction orders, which leads to the creation of a second signal port. We theoretically analyze the signal response of the proposed topology and show that it is equivalent to a conventional Michelson-type interferometer. In our proof-of-principle experiment we generated phase-modulation signals inside the arm resonators and detected them simultaneously at the two signal ports. The sum signal was shown to be equivalent to a single-output-port Michelson interferometer with transmissively-coupled arm cavities, taking into account optical loss. The proposed and demonstrated topology is a possible approach for future all-reflective GW observatory designs.

  16. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators

    Directory of Open Access Journals (Sweden)

    Sadeque Reza Khan

    2016-08-01

    Full Text Available High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8% than circular resonators (78.43% when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW to the load than the square coils (396 mW under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  17. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.

    Science.gov (United States)

    Khan, Sadeque Reza; Choi, GoangSeog

    2016-08-03

    High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  18. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  19. Quantum logic gates generated by SC-charge qubits coupled to a resonator

    International Nuclear Information System (INIS)

    Obada, A-S F; Hessian, H A; Mohamed, A-B A; Homid, Ali H

    2012-01-01

    We propose some quantum logic gates by using SC-charge qubits coupled to a resonator to study two types of quantum operation. By applying a classical magnetic field with the flux, a simple rotation on the target qubit is generated. Single and two-qubit gates of quantum logic gates are realized. Two-qubit joint operations are firstly generated by applying a classical magnetic field with the flux, and secondly by applying a classical magnetic field with the flux when qubits are placed a quarter of the distance along the resonator. A short discussion of fidelity is given to prove the success of the operations in implementing these gates. (paper)

  20. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-01-01

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies

  1. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators.

    Science.gov (United States)

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Luo, Bin; Wen, Kunhua; Guo, Zhen; Luo, Xiangang

    2012-10-22

    We investigate a plasmonic waveguide system based on side-coupled complementary split-ring resonators (CSRR), which exhibits electromagnetically induced transparency (EIT)-like transmission. LC resonance model is utilized to explain the electromagnetic responses of CSRR, which is verified by simulation results of finite difference time domain method. The electromagnetic responses of CSRR can be flexible handled by changing the asymmetry degree of the structure and the width of the metallic baffles. Cascaded CSRRs also have been studied to obtain EIT-like transmission at visible and near-infrared region, simultaneously.

  2. Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei

    2017-08-15

    Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.

  3. Optimization design of wireless charging system for autonomous robots based on magnetic resonance coupling

    Directory of Open Access Journals (Sweden)

    Junhua Wang

    2018-05-01

    Full Text Available Wireless charging is the key technology to realize real autonomy of mobile robots. As the core part of wireless power transfer system, coupling mechanism including coupling coils and compensation topology is analyzed and optimized through simulations, to achieve stable and practical wireless charging suitable for ordinary robots. Multi-layer coil structure, especially double-layer coil is explored and selected to greatly enhance coupling performance, while shape of ferrite shielding goes through distributed optimization to guarantee coil fault tolerance and cost effectiveness. On the basis of optimized coils, primary compensation topology is analyzed to adopt composite LCL compensation, to stabilize operations of the primary side under variations of mutual inductance. Experimental results show the optimized system does make sense for wireless charging application for robots based on magnetic resonance coupling, to realize long-term autonomy of robots.

  4. Analysis on the power and efficiency in wireless power transfer system via coupled magnetic resonances

    Science.gov (United States)

    Liu, Mingjie

    2018-06-01

    The analysis of characteristics of the power and efficiency in wireless power transmission (WPT) system is the theoretical basis of magnetic coupling resonant wireless power transmission (MCR-WPT) technology. The electromagnetic field theory was employed to study the variation of the coupling degree of the two electromagnetic coils with the parameters of the coils. The equivalent circuit was used to analyze the influence of different factors on the transmission power and efficiency of the WPT system. The results show that there is an optimal radius ratio between the two coils, which makes the mutual inductance of the coils the largest. Moreover, when the WPT system operates in the under-coupling state, the transmission power of the system drops sharply, and there is a frequency splitting of the power when in the over-coupling state.

  5. Optimization design of wireless charging system for autonomous robots based on magnetic resonance coupling

    Science.gov (United States)

    Wang, Junhua; Hu, Meilin; Cai, Changsong; Lin, Zhongzheng; Li, Liang; Fang, Zhijian

    2018-05-01

    Wireless charging is the key technology to realize real autonomy of mobile robots. As the core part of wireless power transfer system, coupling mechanism including coupling coils and compensation topology is analyzed and optimized through simulations, to achieve stable and practical wireless charging suitable for ordinary robots. Multi-layer coil structure, especially double-layer coil is explored and selected to greatly enhance coupling performance, while shape of ferrite shielding goes through distributed optimization to guarantee coil fault tolerance and cost effectiveness. On the basis of optimized coils, primary compensation topology is analyzed to adopt composite LCL compensation, to stabilize operations of the primary side under variations of mutual inductance. Experimental results show the optimized system does make sense for wireless charging application for robots based on magnetic resonance coupling, to realize long-term autonomy of robots.

  6. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator

    International Nuclear Information System (INIS)

    Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan

    2016-01-01

    We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10"1"7 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.

  7. Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.

    Science.gov (United States)

    Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q

    2018-02-02

    We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.

  8. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    International Nuclear Information System (INIS)

    Karna, S.P.

    1997-01-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society

  9. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...... of the emerging pulse train. A range of tuning around this frequency allows for effective mode locking. Finally, noise is added to the generalized single-cavity eigenfrequencies in order to evaluate the effects of fabrication imperfections on the cold-cavity transmission properties and consequently on the locking...

  10. Multichannel coupling with supersymmetric quantum mechanics and exactly-solvable model for the Feshbach resonance

    International Nuclear Information System (INIS)

    Sparenberg, Jean-Marc; Samsonov, Boris F; Foucart, Francois; Baye, Daniel

    2006-01-01

    A new type of supersymmetric transformations of the coupled-channel radial Schroedinger equation is introduced, which do not conserve the vanishing behaviour of solutions at the origin. Contrary to the usual transformations, these 'non-conservative' transformations allow, in the presence of thresholds, the construction of well-behaved potentials with coupled scattering matrices from uncoupled potentials. As an example, an exactly-solvable potential matrix is obtained which provides a very simple model of the Feshbach-resonance phenomenon. (letter to the editor)

  11. Improving the calculation of electron paramagnetic resonance hyperfine coupling tensors for d-block metals

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Kongsted, Jacob; Sauer, Stephan P. A.

    2012-01-01

    Calculation of hyperfine coupling constants (HFCs) of Electron Paramagnetic Resonance from first principles can be a beneficial compliment to experimental data in cases where the molecular structure is unknown. We have recently investigated basis set convergence of HFCs in d-block complexes...... and obtained a set of basis functions for the elements Sc–Zn, which were saturated with respect to both the Fermi contact and spin-dipolar components of the hyperfine coupling tensor [Hedeg°ard et al., J. Chem. Theory Comput., 2011, 7, pp. 4077-4087]. Furthermore, a contraction scheme was proposed leading...

  12. A Computational Study on the Magnetic Resonance Coupling Technique for Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Zakaria N.A.

    2017-01-01

    Full Text Available Non-radiative wireless power transfer (WPT system using magnetic resonance coupling (MRC technique has recently been a topic of discussion among researchers. This technique discussed more scenarios in mid-range field of wireless power transmission reflected to the distance and efficiency. The WPT system efficiency varies when the coupling distance between two coils involved changes. This could lead to a decisive issue of high efficient power transfer. This paper presents case studies on the relationship of operating range with the efficiency of the MRC technique. Demonstrative WPT system operates at two different frequencies are projected in order to verify performance. The resonance frequencies used are less than 100MHz within range of 10cm to 20cm.

  13. Study on efficiency of different topologies of magnetic coupled resonant wireless charging system

    Science.gov (United States)

    Cui, S.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Liang, L. H.

    2017-11-01

    This paper analyses the relationship between the output power, the transmission efficiency and the frequency, load and coupling coefficient of the four kinds of magnetic coupled resonant wireless charging system topologies. Based on mutual inductance principle, four kinds of circuit models are established, and the expressions of output power and transmission efficiency of different structures are calculated. The difference between the two power characteristics and efficiency characteristics is compared by simulating the SS (series-series) and SP (series-parallel) type wireless charging systems. With the same parameters of circuit components, the SS structure is usually suitable for small load resistance. The SP structure can be applied to large load resistors, when the transmission efficiency of the system is required to keep high. If the operating frequency deviates from the system resonance frequency, the SS type system has higher transmission efficiency than the SP type system.

  14. Ferromagnetic resonance in coupled permalloy double films separated by a Cu interlayer

    Science.gov (United States)

    Maksymowicz, A. Z.; Whiting, J. S. S.; Watson, M. L.; Chambers, A.

    1991-03-01

    Ferromagnetic resonance (FMR) at 16 GHz was used to study the magnetic coupling between two-layers of permalloy separated by a nonmagnetic Cu layer. Samples with the same thickness (600 Å) of both permalloy layers were deposited from e-gun sources onto glass substrates in UHV. The thickness d of the Cu interlayer was varied from 5 to 37 Å. The exchange coupling energy ( E = - KM1· M2) model was used to describe the interaction between the two magnetic layers. It was found from the ferromagnetic resonance data in the perpendicular configuration that K( d) follows an exponential law, K = K0e - d/ q, where q = 9.3 Å.

  15. Coherence resonance in globally coupled neuronal networks with different neuron numbers

    International Nuclear Information System (INIS)

    Ning Wei-Lian; Zhang Zheng-Zhen; Zeng Shang-You; Luo Xiao-Shu; Hu Jin-Lin; Zeng Shao-Wen; Qiu Yi; Wu Hui-Si

    2012-01-01

    Because a brain consists of tremendous neuronal networks with different neuron numbers ranging from tens to tens of thousands, we study the coherence resonance due to ion channel noises in globally coupled neuronal networks with different neuron numbers. We confirm that for all neuronal networks with different neuron numbers there exist the array enhanced coherence resonance and the optimal synaptic conductance to cause the maximal spiking coherence. Furthermoremore, the enhancement effects of coupling on spiking coherence and on optimal synaptic conductance are almost the same, regardless of the neuron numbers in the neuronal networks. Therefore for all the neuronal networks with different neuron numbers in the brain, relative weak synaptic conductance (0.1 mS/cm 2 ) is sufficient to induce the maximal spiking coherence and the best sub-threshold signal encoding. (interdisciplinary physics and related areas of science and technology)

  16. A BIOSENSOR USING COUPLED PLASMON WAVEGUIDE RESONANCE COMBINED WITH HYPERSPECTRAL FLUORESCENCE ANALYSIS

    Directory of Open Access Journals (Sweden)

    CHAN DU

    2014-01-01

    Full Text Available We developed a biosensor that is capable for simultaneous surface plasmon resonance (SPR sensing and hyperspectral fluorescence analysis in this paper. A symmetrical metal-dielectric slab scheme is employed for the excitation of coupled plasmon waveguide resonance (CPWR in the present work. Resonance between surface plasmon mode and the guided waveguide mode generates narrower full width half-maximum of the reflective curves which leads to increased precision for the determination of refractive index over conventional SPR sensors. In addition, CPWR also offers longer surface propagation depths and higher surface electric field strengths that enable the excitation of fluorescence with hyperspectral technique to maintain an appreciable signal-to-noise ratio. The refractive index information obtained from SPR sensing and the chemical properties obtained through hyperspectral fluorescence analysis confirm each other to exclude false-positive or false-negative cases. The sensor provides a comprehensive understanding of the biological events on the sensor chips.

  17. Transmission line model for coupled rectangular double split‐ring resonators

    DEFF Research Database (Denmark)

    Yan, Lei; Tang, Meng; Krozer, Viktor

    2011-01-01

    In this work, a model based on a coupled transmission line formulation is developed for microstrip rectangular double split‐ring resonators (DSRRs). This model allows using the physical dimensions of the DSRRs as an input avoiding commonly used extraction of equivalent parameters. The model inclu...... simulations of the DSRR structures. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:1311–1315, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25988...

  18. Bistable laser device with multiple coupled active vertical-cavity resonators

    Science.gov (United States)

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-08-19

    A new class of bistable coupled-resonator vertical-cavity semiconductor laser devices has been developed. These bistable laser devices can be switched, either electrically or optically, between lasing and non-lasing states. A switching signal with a power of a fraction of a milliwatt can change the laser output of such a device by a factor of a hundred, thereby enabling a range of optical switching and data encoding applications.

  19. Couple-level Minority Stress: An Examination of Same-sex Couples' Unique Experiences.

    Science.gov (United States)

    Frost, David M; LeBlanc, Allen J; de Vries, Brian; Alston-Stepnitz, Eli; Stephenson, Rob; Woodyatt, Cory

    2017-12-01

    Social stress resulting from stigma, prejudice, and discrimination-"minority stress"-negatively impacts sexual minority individuals' health and relational well-being. The present study examined how being in a same-sex couple can result in exposure to unique minority stressors not accounted for at the individual level. Relationship timeline interviews were conducted with 120 same-sex couples equally distributed across two study sites (Atlanta and San Francisco), gender (male and female), and relationship duration (at least six months but less than three years, at least three years but less than seven years, and seven or more years). Directed content analyses identified 17 unique couple-level minority stressors experienced within nine distinct social contexts. Analyses also revealed experiences of dyadic minority stress processes (stress discrepancies and stress contagion). These findings can be useful in future efforts to better understand and address the cumulative impact of minority stress on relational well-being and individual health.

  20. Novel Electro-Optical Coupling Technique for Magnetic Resonance-Compatible Positron Emission Tomography Detectors

    Directory of Open Access Journals (Sweden)

    Peter D. Olcott

    2009-03-01

    Full Text Available A new magnetic resonance imaging (MRI-compatible positron emission tomography (PET detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  1. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    Science.gov (United States)

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  2. Theoretical study of ferromagnetic resonance in exchange - coupled magnetic / nonmagnetic / magnetic multilayer structure

    International Nuclear Information System (INIS)

    Oezdogan, K.; Oezdemir, M.; Yalcin, O.; Aktas, B.

    2002-01-01

    The dispersion relation on ferromagnetic films was calculation by using torque equation of motion with a damping term. The total energy including zeeman, demagnetizing and anisotropy energy terms was used to get ferromagnetic resonance frequency for both uniform and higher order spin wave modes. In antiferromagnetic films, the torque equation of motion for each sub-lattice were written to derive an expression for the dispersion relation. The magnetic trilayer system under investigation consist of two ferromagnetic layers separated by a nonmagnetic layer. The dispersion relation of magnetic/nonmagnetic/magnetic three layers is calculated by using Landau-Lifshitz dynamic equation of motion for the magnetization with interlayer exchange energy. As for the exchange-coupled resonance of ferromagnetic resonance (FMR), the theoretical study has been calculated for both symmetrical and asymmetrical structures. In this systems, the exchange-coupling parameter A 12 between neighboring layers was used to get resonance fields as a function of the angle between the magnetization vectors of each magnetic layers

  3. A new mode of acoustic NDT via resonant air-coupled emission

    Science.gov (United States)

    Solodov, Igor; Dillenz, Alexander; Kreutzbruck, Marc

    2017-06-01

    Resonant modes of non-destructive testing (NDT) which make use of local damage resonance (LDR) have been developed recently and demonstrated a significant increase in efficiency and sensitivity of hybrid inspection techniques by laser vibrometry, ultrasonic thermography, and shearography. In this paper, a new fully acoustic version of resonant NDT is demonstrated for defects in composite materials relevant to automotive and aviation applications. This technique is based on an efficient activation of defect vibrations by using a sonic/ultrasonic wave matched to a fundamental LDR frequency of the defect. On this condition, all points of the faulty area get involved in synchronous out-of-plane vibrations which produce a similar in-phase wave motion in ambient air. This effect of resonant air-coupled emission results in airborne waves emanating from the defect area, which can be received by a commercial microphone (low LDR frequency) or an air-coupled ultrasonic transducer (high frequency LDR). A series of experiments confirm the feasibility of both contact and non-contact versions of the technique for NDT and imaging of simulated and realistic defects (impacts, delaminations, and disbonds) in composites.

  4. Unexpected nonlinear effects and critical coupling in NbN superconducting microwave resonators

    International Nuclear Information System (INIS)

    Abdo, B.; Buks, E.

    2004-01-01

    Full Text:In this work, we have designed and fabricated several NbN superconducting stripline microwave resonators sputtered on sapphire substrates. The low temperature response exhibits strong and unexpected nonlinear effects, including sharp jumps as the frequency or poser are varied, frequency hysteresis loops changing direction as the input power is varied, and others. Contrary to some other superconducting resonators, a simple model of a one-dimensional Duffing resonator cannot account for the experimental results. Whereas the physical origin of the unusual nonlinear response of our samples remains an open question, our intensive experimental study of these effects under varying conditions provides some important insight. We consider a hypothesis according to which Josephson junctions forming weak links between the grains of the NbN are responsible for the observed behavior. We show that most of the experimental results are qualitatively consistent with such hypothesis. While revealing the underlying physics remains an outstanding challenge for future research, the utilization of the unusual nonlinear response for some novel applications is already demonstrated in the present work. In particular an operate the resonator as an inter modulation amplifier and find that the gain can be as high as 15 dB. To the best of our knowledge, inter modulation gain greater than unity has not been reported before in the scientific literature. In another application we demonstrate for the first time that the coupling between the resonator and its feed line can be made amplitude dependent. This novel mechanism allows us to tune the resonator into critical coupling conditions

  5. Dynamic control of the asymmetric Fano resonance in side-coupled Fabry–Pérot and photonic crystal nanobeam cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tong; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-11-30

    Fano resonance is a prevailing interference phenomenon that stems from the intersection between discrete and continuum states in many fields. We theoretically and experimentally characterize the asymmetric Fano lineshape in side-coupled waveguide Fabry–Pérot and photonic crystal nanobeam cavities. The measured quality-factor of the Fano resonance before tuning is 28 100. A nanoelectromechanical systems bidirectional actuator is integrated seamlessly to control the shape of the Fano resonance through in-plane translations in two directions without sacrificing the quality-factor. The peak intensity level of the Fano resonance can be increased by 8.5 dB from 60 nW to 409 nW while the corresponding dip intensity is increased by 12.8 dB from 1 nW to 18 nW. The maximum recorded quality-factor throughout the tuning procedure is up to 32 500. Potential applications of the proposed structure include enhancing the sensitivity of sensing, reconfigurable nanophotonics devices, and on-chip intensity modulator.

  6. Determination of ultra-low levels of uranium using resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kiran Kumar, P.V.; Acharyulu, G.V.S.G.

    2015-01-01

    The determination of isotopic composition of actinides like U and Pu is important, due to their distribution in the environment as a result of nuclear weapons testing, fuel reprocessing, reactor operations and to a smaller extent from accidental releases. The analytical methods like fission track analysis (FTA), thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS) and resonance ionization mass spectrometry (RIMS) have evolved as sensitive techniques. Resonance Ionization Mass Spectrometry yields rapid isotopic signature data for material containing actinides without requiring time-consuming sample preparation and chemical separation procedures. In this paper, authors presented the details of the methodology and results for low-level detection of uranium using RIMS

  7. Review of methods for level density estimation from resonance parameters

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1983-01-01

    A number of methods are available for statistical analysis of resonance parameter sets, i.e. for estimation of level densities and average widths with account of missing levels. The main categories are (i) methods based on theories of level spacings (orthogonal-ensemble theory, Dyson-Mehta statistics), (ii) methods based on comparison with simulated cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (iii) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The present review will concentrate on (iii) with the aim of clarifying the basic mathematical concepts and the relationship between the various techniques. Recent theoretical progress in the treatment of resolution effects, detectability thresholds and p-wave admixture is described. (Auth.)

  8. Three-mode resonant coupling of collective excitations in a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Ma Yongli; Huang, Guoxiang; Hu Bambi

    2005-01-01

    We make a systematic study of the resonant mode coupling of the collective excitations at zero temperature in a Bose-Einstein condensate (BEC). (i) Based on the Gross-Pitaevskii equation we derive a set of nonlinearly coupled envelope equations for a three-mode resonant interaction (TMRI) by means of a method of multiple scales. (ii) We calculate the coupling matrix elements for the TMRI and show that the divergence appearing in previous studies can be eliminated completely by using a Fetter-like variational approximation for the ground-state wave function of the condensate. (iii) We provide the selection rules in mode-mode interaction processes [including TMRI and second-harmonic generation (SHG)] according to the symmetry of the excitations. (iv) By solving the nonlinearly coupled envelope equations we obtain divergence-free nonlinear amplitudes for the TMRI and SHG processes and show that our theoretical results on the shape oscillations of the condensate agree well with the experimental ones. We suggest also an experiment to check the theoretical prediction of the present study on the TMRI of collective excitations in a BEC

  9. Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Matjaz Rozman

    2017-04-01

    Full Text Available This paper proposes a hybrid circuit between a conformal strongly-coupled magnetic resonance (CSCMR and a strongly-coupled magnetic resonance (SCMR, for better wireless power transmission (WPT. This combination promises to enhance the flexibility of the proposed four-loop WPT system. The maximum efficiency at various distances is achieved by combining coupling-matching between the source and transmitting coils along with the coupling factor between the transmitting and receiving coils. Furthermore, the distance between transmitting and receiving coils is investigated along with the distance relationship between the source loop and transmission coil, in order to achieve the maximum efficiency of the proposed hybrid WPT system. The results indicate that the proposed approach can be effectively employed at distances comparatively smaller than the maximum distance without frequency matching. The achievable efficiency can be as high as 84% for the whole working range of the transmitter. In addition, the proposed hybrid system allows more spatial freedom compared to existing chargers.

  10. Mutual Coupling Reduction of E-Shaped MIMO Antenna with Matrix of C-Shaped Resonators

    Directory of Open Access Journals (Sweden)

    Raghad Ghalib Saadallah Alsultan

    2018-01-01

    Full Text Available E-shaped multiple-input-multiple-output (MIMO microstrip antenna systems operating in WLAN and WiMAX bands (between 5 and 7.5 GHz are proposed with enhanced isolation features. The systems are comprised of two antennas that are placed parallel and orthogonal to each other, respectively. According to the simulation results, the operating frequency of the MIMO antenna system is 6.3 GHz, and mutual coupling is below −18 dB in a parallel arrangement, whereas they are 6.4 GHz and −25 dB, respectively, in the orthogonal arrangement. The 2 × 3 matrix of C-shaped resonator (CSR is proposed and placed between the antenna elements over the substrate, to reduce the mutual coupling and enhance the isolation between the antennas. More than 30 dB isolation between the array elements is achieved at the resonant frequency for both of the configurations. The essential parameters of the MIMO array such as mutual coupling, surface current distribution, envelop correlation coefficient (ECC, diversity gain (DG, and the total efficiency have been simulated to verify the reliability and the validity of the MIMO system in both parallel and orthogonal configurations. The experimental results are also provided and compared for the mutual coupling with simulated results. An adequate match between the measured and simulated results is achieved.

  11. Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators

    Science.gov (United States)

    Bagci, Fulya; Akaoglu, Baris

    2017-08-01

    We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.

  12. Resonator modes and mode dynamics for an external cavity-coupled laser array

    Science.gov (United States)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  13. Scaling effects in resonant coupling phenomena between fundamental and cladding modes in twisted microstructured optical fibers.

    Science.gov (United States)

    Napiorkowski, Maciej; Urbanczyk, Waclaw

    2018-04-30

    We show that in twisted microstructured optical fibers (MOFs) the coupling between the core and cladding modes can be obtained for helix pitch much greater than previously considered. We provide an analytical model describing scaling properties of the twisted MOFs, which relates coupling conditions to dimensionless ratios between the wavelength, the lattice pitch and the helix pitch of the twisted fiber. Furthermore, we verify our model using a rigorous numerical method based on the transformation optics formalism and study its limitations. The obtained results show that for appropriately designed twisted MOFs, distinct, high loss resonance peaks can be obtained in a broad wavelength range already for the fiber with 9 mm helix pitch, thus allowing for fabrication of coupling based devices using a less demanding method involving preform spinning.

  14. Statistical inference of level densities from resolved resonance parameters

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1983-08-01

    Level densities are most directly obtained by counting the resonances observed in the resolved resonance range. Even in the measurements, however, weak levels are invariably missed so that one has to estimate their number and add it to the raw count. The main categories of missinglevel estimators are discussed in the present review, viz. (I) ladder methods including those based on the theory of Hamiltonian matrix ensembles (Dyson-Mehta statistics), (II) methods based on comparison with artificial cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (III) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The language of mathematical statistics is employed to clarify the basis of, and the relationship between, the various techniques. Recent progress in the treatment of resolution effects, detection thresholds and p-wave admixture is described. (orig.) [de

  15. Coupled large earthquakes in the Baikal rift system: Response to bifurcations in nonlinear resonance hysteresis

    Directory of Open Access Journals (Sweden)

    Anatoly V. Klyuchevskii

    2013-11-01

    Full Text Available The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation. The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS. The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes, proximal in time but distant in space, may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors. The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity, with the largest events occurring in pairs, one shortly after another, on two ends of the rift system and with couples of smaller events in the central part of the rift. The event couples appear as peaks of earthquake ‘migration’ rate with an approximately decadal periodicity. Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation. The new knowledge, with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis, may be of theoretical and practical value for earthquake prediction issues. Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region, i.e., there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.

  16. Resonance fluorescence spectra of three-level atoms in a squeezed vacuum

    International Nuclear Information System (INIS)

    Ferguson, M.R.; Ficek, Z.; Dalton, B.J.

    1996-01-01

    The fluorescence field from one of the two allowed transitions in a three-level atom can sense squeezed fluctuations of a vacuum field coupled to the other transition. We examine the fluorescence spectra of strongly driven three-level atoms in Λ, V, and cascade configurations in which one of the two one-photon transitions is coupled to a finite-bandwidth squeezed vacuum field, when the bandwidth is much smaller than the difference in the atomic transition frequencies, though much larger than atomic decay rates and Rabi frequencies of the driving fields. The driving fields are on one-photon resonance, and the squeezed vacuum field is generated by a degenerate parameter oscillator. Details are only given for the Λ configuration. The extension to the V and cascade configurations is straightforward. We find that in all configurations the fluorescence spectra of the transition not coupled to the squeezed vacuum field are composed of five lines, one central and two pairs of sidebands, with intensities and widths strongly influenced by the squeezed vacuum field. However, only the central component and the outer sidebands exhibit a dependence on the squeezing phase. We also examine the fluorescence spectrum for the cascade configuration with a squeezed vacuum field on resonance with the two-photon transition between the ground and the most excited states and now generated by a nondegenerate parametric oscillator. In this case, where the squeezed vacuum field can be made coupled to both transitions, all spectral lines depend on the squeezing phase. The spectral features are explained in terms of the dressed-atom model of the system. We show that the coherent mixing of the atomic states by the strong driving fields modifies transition rates between the dressed states, which results in the selective phase dependence of the spectral features. copyright 1996 The American Physical Society

  17. The longitudinal offset technique for apodization of coupled resonator optical waveguide devices: concept and fabrication tolerance analysis.

    Science.gov (United States)

    Doménech, José David; Muñoz, Pascual; Capmany, José

    2009-11-09

    In this paper, a novel technique to set the coupling constant between cells of a coupled resonator optical waveguide (CROW) device, in order to tailor the filter response, is presented. The technique is demonstrated by simulation assuming a racetrack ring resonator geometry. It consists on changing the effective length of the coupling section by applying a longitudinal offset between the resonators. On the contrary, the conventional techniques are based in the transversal change of the distance between the ring resonators, in steps that are commonly below the current fabrication resolution step (nm scale), leading to strong restrictions in the designs. The proposed longitudinal offset technique allows a more precise control of the coupling and presents an increased robustness against the fabrication limitations, since the needed resolution step is two orders of magnitude higher. Both techniques are compared in terms of the transmission esponse of CROW devices, under finite fabrication resolution steps.

  18. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

    Science.gov (United States)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2016-02-01

    This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.

  19. Hybrid Alfvén resonant mode generation in the magnetosphere-ionosphere coupling system

    International Nuclear Information System (INIS)

    Hiraki, Yasutaka; Watanabe, Tomo-Hiko

    2012-01-01

    Feedback unstable Alfvén waves involving global field-line oscillations and the ionospheric Alfvén resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfvén resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfvén velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3–1 Hz in auroral and polar-cap regions.

  20. Study of photon–magnon coupling in a YIG-film split-ring resonant system

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, B.; Aiyar, R. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); CRNTS, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Cliff, T.; Maksymov, I. S.; Kostylev, M., E-mail: mikhail.kostylev@uwa.edu.au [School of Physics M013, University of Western Australia, Crawley 6009 (Australia); Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Prasad, S. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Stamps, R. L. [School of Physics M013, University of Western Australia, Crawley 6009 (Australia); SUPA, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2014-12-28

    By using the stripline Microwave Vector–Network Analyser Ferromagnetic Resonance and Time Domain spectroscopy techniques, we study a strong coupling regime of magnons to microwave photons in the planar geometry of a lithographically formed split-ring resonator (SRR) loaded by a single-crystal epitaxial yttrium–iron–garnet (YIG) film. Strong anti-crossing of the photon modes of SRR and of the magnon modes of the YIG film is observed in the applied-magnetic-field resolved measurements. The coupling strength extracted from the experimental data reaches 9% at 3 GHz. Theoretically, we propose an equivalent circuit model of the SRR loaded by a magnetic film. This model follows from the results of our numerical simulations of the microwave field structure of the SRR and of the magnetisation dynamics in the YIG film driven by the microwave currents in the SRR. The results obtained with the equivalent-circuit model are in good agreement with the experiment. This model provides a simple physical explanation of the process of mode anti-crossing. Our findings are important for future applications in microwave quantum photonic devices as well as in nonlinear and magnetically tuneable metamaterials exploiting the strong coupling of magnons to microwave photons.

  1. Off-resonant transitions in the collective dynamics of multi-level atomic ensembles

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Mølmer, Klaus

    2013-01-01

    We study the contributions of off-resonant transitions to the dynamics of a system of N multi-level atoms sharing one excitation and interacting with the quantized vector electromagnetic field. The rotating wave approximation significantly simplifies the derivation of the equations of motion...... describing the collective atomic dynamics, but it leads to an incorrect expression for the dispersive part of the atom–atom interaction terms. For the case of two-level atoms and a scalar electromagnetic field, it turns out that the atom–atom interaction can be recovered correctly if integrals over...... the photon mode frequencies are extended to incorporate negative values. We explicitly derive the atom–atom interaction for multi-level atoms, coupled to the full vector electromagnetic field, and we recover also in this general case the validity of the results obtained by the extension to negative...

  2. Analytical determination of Kondo and Fano resonances of electron Green's function in a single-level quantum dot

    International Nuclear Information System (INIS)

    Nguyen Bich Ha; Nguyen Van Hop

    2009-01-01

    The Kondo and Fano resonances in the two-point Green's function of the single-level quantum dot were found and investigated in many previous works by means of different numerical calculation methods. In this work we present the derivation of the analytical expressions of resonance terms in the expression of the two-point Green's function. For that purpose the system of Dyson equations for the two-point nonequilibrium Green's functions in the complex-time Keldysh formalism was established in the second order with respect to the tunneling coupling constants and the mean field approximation. This system of Dyson equations was solved exactly and the analytical expressions of the resonance terms are derived. The conditions for the existence of Kondo or Fano resonances are found.

  3. Coupled processes in NRC high-level waste research

    International Nuclear Information System (INIS)

    Costanzi, F.A.

    1987-01-01

    The author discusses NRC research effort in support of evaluating license applications for disposal of nuclear waste and for promulgating regulations and issuing guidance documents on nuclear waste management. In order to do this they fund research activities at a number of laboratories, academic institutions, and commercial organizations. One of our research efforts is the coupled processes study. This paper discusses interest in coupled processes and describes the target areas of research efforts over the next few years. The specific research activities relate to the performance objectives of NRC's high-level waste (HLW) regulation and the U.S. Environmental Protection Agency (EPA) HLW standard. The general objective of the research program is to ensure the NRC has a sufficient independent technical base to make sound regulatory decisions

  4. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators

    International Nuclear Information System (INIS)

    Eriksson, A M; Midtvedt, D; Croy, A; Isacsson, A

    2013-01-01

    We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings. (paper)

  5. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    Science.gov (United States)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  6. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    KAUST Repository

    Xu, Quan

    2016-11-29

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  7. Low-noise, transformer-coupled resonant photodetector for squeezed state generation.

    Science.gov (United States)

    Chen, Chaoyong; Shi, Shaoping; Zheng, Yaohui

    2017-10-01

    In an actual setup of squeezed state generation, the stability of a squeezing factor is mainly limited by the performance of the servo-control system, which is mainly influenced by the shot noise and gain of a photodetector. We present a unique transformer-coupled LC resonant amplifier as a photodetector circuit to reduce the electronic noise and increase the gain of the photodetector. As a result, we obtain a low-noise, high gain photodetector with the gain of more than 1.8×10 5 V/A, and the input current noise of less than 4.7 pA/Hz. By adjusting the parameters of the transformer, the quality factor Q of the resonant circuit is close to 100 in the frequency range of more than 100 MHz, which meets the requirement for weak power detection in the application of squeezed state generation.

  8. A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances

    Directory of Open Access Journals (Sweden)

    Xuezhe Wei

    2014-07-01

    Full Text Available Strongly coupled magnetic resonance (SCMR, proposed by researchers at MIT in 2007, attracted the world’s attention by virtue of its mid-range, non-radiative and high-efficiency power transfer. In this paper, current developments and research progress in the SCMR area are presented. Advantages of SCMR are analyzed by comparing it with the other wireless power transfer (WPT technologies, and different analytic principles of SCMR are elaborated in depth and further compared. The hot research spots, including system architectures, frequency splitting phenomena, impedance matching and optimization designs are classified and elaborated. Finally, current research directions and development trends of SCMR are discussed.

  9. Relaxation dynamics of a quantum emitter resonantly coupled to a metal nanoparticle

    DEFF Research Database (Denmark)

    Nerkararyan, K. V.; Bozhevolnyi, S. I.

    2014-01-01

    consequence of this relaxation process is that the emission, being largely determined by the MNP, comes out with a substantial delay. A large number of system parameters in our analytical description opens new possibilities for controlling quantum emitter dynamics. (C) 2014 Optical Society of America......The presence of a metal nanoparticle (MNP) near a quantum dipole emitter, when a localized surface plasmon mode is excited via the resonant coupling with an excited quantum dipole, dramatically changes the relaxation dynamics: an exponential decay changes to step-like behavior. The main physical...

  10. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator

    DEFF Research Database (Denmark)

    Pályi, András; Struck, P R; Rudner, Mark

    2012-01-01

    as a realization of the Jaynes-Cummings model of quantum electrodynamics in the strong-coupling regime. A quantized flexural mode of the suspended tube plays the role of the optical mode and we identify two distinct two-level subspaces, at small and large magnetic field, which can be used as qubits in this setup......We theoretically investigate the deflection-induced coupling of an electron spin to vibrational motion due to spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate that, with current capabilities, a quantum dot with an odd number of electrons can serve...

  11. Feshbach Resonance due to Coherent {lambda}-{sigma} Coupling in {sup 7}{sub {lambda}}He

    Energy Technology Data Exchange (ETDEWEB)

    Mon, San San; Nwe, Tin Tin [Department of Physics, Mandalay University (Myanmar); Myint, Khin Swe [Pro-Rector, Mandalay University (Myanmar)], E-mail: pro-rector@mptmail.net.mm; Akaishi, Y. [College of Science and Technology, Nihon University, Chiba, Japan and RIKEN Nishina Center, Saitama (Japan)

    2010-04-01

    Coherent {lambda}-{sigma} coupling effect in {sup 7}{sub {lambda}}He is analyzed within three-body framework of two coupled channels, {lambda}-t-t and {sigma}-{tau}-t, where {tau} represents trinulceon which is either {sup 3}H or {sup 3}He. The hyperon-trinucleon (Y{tau}) and trinucleon-trinucleon ({tau}{tau}) interactions are derived by folding G-matrices of YN and NN interactions with trinucleon density distributions. It is found that the binding energy of {sup 7}{sub {lambda}}He is 4.04 MeV below the {lambda}+t+t threshold without {lambda}-{sigma} coupling and the binding energy is increased to 4.46 MeV when the coupling effect is included. This state is 7.85 MeV above the {sup 6}He+{lambda} threshold and it may have a chance to be observed as a Feshbach resonance in {sup 7}Li (e,e{sup '}K{sup +}){sup 7}{sub {lambda}}He experiment done at Jefferson Lab.

  12. The interpretation of resonance formation in coupled-channel models of positron scattering by atomic hydrogen using localized optical potentials

    International Nuclear Information System (INIS)

    Bransden, B.H.; Hewitt, R.N.

    1997-01-01

    Above-threshold resonances can occur in coupled-channel models of the e + + H system when Ps formation is taken into account (although it should be pointed out that, in this specific system, resonances do not occur in an exact theory). In general, to understand the mechanism of resonance formation it is useful to obtain the exact optical potential in a given channel in a localized form. The methods of achieving this localization are discussed with reference to a specific application to the resonance found in the two-state approximation for the l = 0 partial wave. (author)

  13. Computation of the Coupling Resonance Driving term f1001 and the coupling coefficient C from turn-by-turn single-BPM data.

    CERN Document Server

    Franchi, A; Vanbavinkhove, G; CERN. Geneva. BE Department

    2010-01-01

    In this note we show how to compute the Resonance Driving Term (RDT) f1001, the local resonance term chi 1010 and the coupling coefficient C from the spectrum of turn-by-turn single-BPM data. The harmonic analysis of real coordinate x(y) is model independent, conversely to the the analysis of the complex Courant-Snyder coordinate hx,- = x-ipx. From the computation of f1001 along the ring is closely related to the global coupling coefficient C, but it is affected by an intrinsic error, discussed in this note.

  14. Deep-level defects in semiconductors: studies by magnetic resonance

    International Nuclear Information System (INIS)

    Ammerlaan, C.A.J.

    1983-01-01

    This work is divided into two parts. In the first one, the following topics are discussed: paramagnetic centers in semiconductors, principles of magnetic resonance, spin-Hamiltonian, g-tensor, hyperfine interaction, magnetic resonance spectrometer. In the second part it is dicussed defects studied by magnetic resonance including vacancy and divacancy in silicon, iron in silicon, nitrogen in diamond and antisite defects in III-V compounds. (A.C.A.S.) [pt

  15. Periodic Forcing of Inhibition-Stabilized Networks: Nonlinear Resonances and Phase-Amplitude Coupling

    Science.gov (United States)

    Veltz, Romain; Sejnowski, Terrence J.

    2016-01-01

    Inhibition-stabilized networks (ISNs) are neural architectures with strong positive feedback among pyramidal neurons balanced by strong negative feedback from inhibitory interneurons, a circuit element found in the hippocampus and the primary visual cortex. In their working regime, ISNs produce damped oscillations in the γ-range in response to inputs to the inhibitory population. In order to understand the properties of interconnected ISNs, we investigated periodic forcing of ISNs. We show that ISNs can be excited over a range of frequencies and derive properties of the resonance peaks. In particular, we studied the phase-locked solutions, the torus solutions, and the resonance peaks. Periodically forced ISNs respond with (possibly multistable) phase-locked activity, whereas networks with sustained intrinsic oscillations respond more dynamically to periodic inputs with tori. Hence, the dynamics are surprisingly rich, and phase effects alone do not adequately describe the network response. This strengthens the importance of phaseamplitude coupling as opposed to phase-phase coupling in providing multiple frequencies for multiplexing and routing information. PMID:26496044

  16. Exploratory study of possible resonances in heavy meson - heavy baryon coupled-channel interactions

    Science.gov (United States)

    Shen, Chao-Wei; Rönchen, Deborah; Meißner, Ulf-G.; Zou, Bing-Song

    2018-01-01

    We use a unitary coupled-channel model to study the \\bar{{{D}}}{{{Λ }}}{{c}}-\\bar{{{D}}}{{{Σ }}}{{c}} interactions. In our calculation, SU(3) flavor symmetry is applied to determine the coupling constants. Several resonant and bound states with different spin and parity are dynamically generated in the mass range of the recently observed pentaquarks. The approach is also extended to the hidden beauty sector to study the {{B}}{{{Λ }}}{{b}}-{{B}}{{{Σ }}}{{b}} interactions. As the b-quark mass is heavier than the c-quark mass, there are more resonances observed for the {{B}}{{{Λ }}}{{b}}-{{B}}{{{Σ }}}{{b}} interactions and they are more tightly bound. Supported by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetry and the Emergence of Structure in QCD” (NSFC 11621131001, DFG TR110), as well as an NSFC fund (11647601). The work of UGM was also supported by the CAS President’s International Fellowship Initiative (PIFI) (2017VMA0025)

  17. Tunable Fano resonance in MDM stub waveguide coupled with a U-shaped cavity

    Science.gov (United States)

    Yi, Xingchun; Tian, Jinping; Yang, Rongcao

    2018-04-01

    A new compact metal-dielectric-metal waveguide system consisting of a stub coupled with a U-cavity is proposed to produce sharp and asymmetric Fano resonance. The transmission properties of the proposed structure are numerically studied by the finite element method and verified by the coupled mode theory. Simulation results reveal that the spectral profile can be easily tuned by adjusting the geometric parameters of the structure. One of the potential application of the proposed structure as a highly efficient plasmonic refractive index nanosensor was investigated with its sensitivity of more than 1000 nm/RIU and a figure of merit of up to 5500. Another application is integrated slow-light device whose group index can be greater than 6. In addition, multiple Fano resonances will occur in the broadband transmission spectrum by adding another U-cavity or (and) stub. The characteristics of the proposed structure are very promising for the highly performance filters, on-chip nanosensors, and slow-light devices.

  18. Split resonance modes of a AuBRC plasmonic nanosystem caused by the coupling effect

    International Nuclear Information System (INIS)

    Ni, Yuan; Kan, Caixia; Xu, Haiying; Wang, Changshun

    2016-01-01

    A plasmonic nanosystem can give rise to particular optical responses due to a coupling effect. In this work, we investigate the optical properties and field distributions of a novel ‘matrioska’ nanocavity structure composed of a Au nanorod (AuNR) within a nanobox (AuNB) via finite-difference time-domain (FDTD) simulation. This nanocavity can be fabricated by a two-step wet-chemical method. The multiple SPR modes of optical spectrum for nanocavity are caused by the strong interaction between the AuNR-core and AuNB-shell when the incident light is perpendicular or parallel to the long axis of the Au box/rod nanocavity (AuBRC). The SPR modes are known as the dipole–dipole bonding resonance mode in the lower-energy region and the antibonding resonance mode in the higher-energy region. It is proposed that AuBRC can escape the orientation confinement of AuNR because the multiple modes occur and provide a potential application for the enhancement of the photoluminescence signal. Additionally, the SPR modes red-shift with increasing the offset of the AuNR-core, whereas the SPR mode dramatically blue-shifts when the conductive coupling is formed. The intense ‘hot-spot’ could be induced within a small interaction region in the conductive coupled system. The SPR line-shape of high quality would also be promoted. The SPR is highly sensitive to the medium, which is promising in the sensing and detecting devices. (paper)

  19. Improving Selectivity of 1D Bragg Resonator Using Coupling of Propagating and Trapped Waves

    CERN Document Server

    Ginzburg, N S; Peskov, Nikolay Yu; Sergeev, A S

    2004-01-01

    A novel 1D Bragg resonator based on coupling propagated and locked (quasi cut-off) modes should be tested in a JINR- IAP FEM-oscillator to improve selectivity over the transverse mode index. In this scheme the electron beam interacts with only propagating wave, and the latter is coupled with a quasi cut-off mode. This coupling can be realized by either helical or azimuthally-symmetric corrugation. The quasi cut-off mode provides the feedback in the system leading to the absolute instability and the self-excitation of the whole system while efficiency in the steady-state regime of generation is almost completely determined by the propagating mode, synchronous to the beam. Analytical consideration and numerical simulation show that the efficiency of such an FEM can be rather high. The main advantage of this scheme is provision of higher selectivity over the transverse mode index than traditional scheme of Bragg FEL that encourage increasing operating frequency for fixed transverse size of the interaction space.

  20. Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system

    International Nuclear Information System (INIS)

    Han, Xu; Wang, Tao; Liu, Bo; He, Yu; Tang, Jian; Li, Xiaoming

    2015-01-01

    Ultrafast and low-power dynamically tunable single channel and multichannel slow light based on plasmon induced transparencies (PITs) in disk resonators coupled to a metal-dielectric-metal (MDM) waveguide system with a nonlinear optical Kerr medium is investigated both numerically and analytically. A coupled-mode theory (CMT) is introduced to analyze this dynamically tunable single channel slow light structure. Multichannel slow light is realized in this plasmonic waveguide structure based on a bright–dark mode coupling mechanism. In order to reduce the pump intensity and obtain ultrafast response time, the traditional nonlinear Kerr material is replaced by monolayer graphene. It is found that the magnitude of the single PIT window can be controlled between 0.08 and 0.48, while the corresponding group index is controlled between 14.5 and 2.0 by dynamically decreasing pump intensity from 11.7 to 4.4 MW cm −2 . Moreover, the phase shift multiplication effect is found in this structure. This work paves a new way towards the realization of highly integrated optical circuits and networks, especially for wavelength-selective, all-optical storage and nonlinear devices. (paper)

  1. Universal relations for spin-orbit-coupled Fermi gas near an s -wave resonance

    Science.gov (United States)

    Zhang, Pengfei; Sun, Ning

    2018-04-01

    Synthetic spin-orbit-coupled quantum gases have been widely studied both experimentally and theoretically in the past decade. As shown in previous studies, this modification of single-body dispersion will in general couple different partial waves of the two-body scattering and thus distort the wave function of few-body bound states which determines the short-distance behavior of many-body wave function. In this work, we focus on the two-component Fermi gas with one-dimensional or three-dimensional spin-orbit coupling (SOC) near an s -wave resonance. Using the method of effective field theory and the operator product expansion, we derive universal relations for both systems, including the adiabatic theorem, viral theorem, and pressure relation, and obtain the momentum distribution matrix 〈ψa†(q ) ψb(q ) 〉 at large q (a ,b are spin indices). The momentum distribution matrix shows both spin-dependent and spatial anisotropic features. And the large momentum tail is modified at the subleading order thanks to the SOC. We also discuss the experimental implication of these results depending on the realization of the SOC.

  2. Spin-wave resonance frequency in ferromagnetic thin film with interlayer exchange coupling and surface anisotropy

    Science.gov (United States)

    Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei

    2018-01-01

    We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.

  3. Electroweak coupling measurements from polarized Bhabha scattering at the Z0 resonance

    International Nuclear Information System (INIS)

    Pitts, K.T.

    1994-03-01

    The cross section for Bhabha scattering (e + e - → e + e - ) with polarized electrons at the center of mass energy of the Z 0 resonance has been measured with the SLD experiment at the Stanford Linear Accelerator Center during the 1992 and 1993 runs. The electroweak couplings of the electron are extracted. At small angles the measurement is done in the SLD Silicon/Tungsten Luminosity Monitor (LMSAT). A detailed description of the design, construction, commissioning and operation of the LMSAT is provided. The integrated luminosity for 1992 is measured to be L = 420.86±2.56 (stat)±4.23 (sys) nb -1 . The luminosity asymmetry for polarized beams is measured to be A LR (LUM) = (1.7 ± 6.4) x 10 -3 . The large angle polarized Bhabha scattering reveals the effective electron vector and axial vector couplings to the Z 0 through the measurement of the Z 0 → e + e - partial width, Γ ee , and the parity violation parameter, A e . From the combined 1992 and 1993 data the effective electron vector and axial vector couplings are measured to be bar g v e = -0.0495±0.0096±0.0030, and bar g α e = -0.4977±0.0035±0.0064 respectively. The effective weak mixing angle is measured to be sin 2 θ W eff = 0.2251±0.0049±0.0015. These results are compared with other experiments

  4. Simulation Research of Magnetically-coupled Resonant Wireless Power Transfer System with Single Intermediate Coil Resonator Based on S Parameters Using ANSYS

    Directory of Open Access Journals (Sweden)

    Liu Cheng

    2016-01-01

    Full Text Available ANSYS can be a powerful tool to simulate the process of energy exchange in magnetically-coupled resonant wireless power transfer system. In this work, the MCR-WPT system with single intermediate coil resonator is simulated and researched based on scattering parameters using ANSYS Electromagnetics. The change rule of power transfer efficiency is reflected intuitively through the scattering parameters. A new method of calculating the coupling coefficient is proposed. A cascaded 2-port network model using scattering parameters is adopted to research the efficiency of transmission. By changing the relative position and the number of turns of the intermediate coil, we find some factors affecting the efficiency of transmission. Methods and principles of designing the MCR-WPT system with single intermediate coil resonator are obtained. And these methods have practical value with design and optimization of system efficiency.

  5. Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime

    Science.gov (United States)

    Yoshihara, F.; Fuse, T.; Ao, Z.; Ashhab, S.; Kakuyanagi, K.; Saito, S.; Aoki, T.; Koshino, K.; Semba, K.

    2018-05-01

    We report on experimentally measured light shifts of superconducting flux qubits deep-strongly coupled to L C oscillators, where the coupling constants are comparable to the qubit and oscillator resonance frequencies. By using two-tone spectroscopy, the energies of the six lowest levels of each circuit are determined. We find huge Lamb shifts that exceed 90% of the bare qubit frequencies and inversions of the qubits' ground and excited states when there are a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.

  6. Experimental study of rectenna coupling at low power level

    International Nuclear Information System (INIS)

    Douyère, A; Alicalapa, F; Lan Sun Luk, J-D; Rivière, S

    2013-01-01

    The experimental results presented in this paper focus on the performance of a rectenna array by studying the effect of mutual coupling between two rectennas. The measurements in several planes of the space are investigated and used to help us to define the minimum distance for future rectenna arrays that can be used at a low power density level. The single element chosen for the array is composed of a rectifier circuit and a CSPA (Circular Slot Patch Antenna). This study shows that at a distance greater than 6cm (λ/2) between two rectennas in reception, we observe that the DC received voltage is constant in the Y plane, while in the X plane, the DC received voltage remains constant whatever the distance. We deduce that these rectennas are uncoupled in this case. We can consider each rectenna like an independent system.

  7. Transmission and group-delay characterization of coupled resonator optical waveguides apodized through the longitudinal offset technique.

    Science.gov (United States)

    Doménech, J D; Muñoz, P; Capmany, J

    2011-01-15

    In this Letter, the amplitude and group delay characteristics of coupled resonator optical waveguides apodized through the longitudinal offset technique are presented. The devices have been fabricated in silicon-on-insulator technology employing deep ultraviolet lithography. The structures analyzed consisted of three racetracks resonators uniform (nonapodized) and apodized with the aforementioned technique, showing a delay of 5 ± 3 ps and 4 ± 0.5 ps over 1.6 and 1.4 nm bandwidths, respectively.

  8. Resonance properties of a three-level atom with quantized field modes

    International Nuclear Information System (INIS)

    Yoo, H.I.

    1984-01-01

    A system of one three-level atom and one or two quantized electro-magnetic field modes coupled to each other by the dipole interaction, with the rotating wave approximation is studied. All three atomic configurations, i.e., cascade Lambda- and V-types, are treated simultaneously. The system is treated as closed, i.e., no interaction with the external radiation field modes, to reveal the internal structures and symmetries in the system. The general dynamics of the system are investigated under several distinct initial conditions and their similarities and differences with the dynamics of the Jaynes-Cummings model are revealed. Also investigated is the possibility of so-called coherent trapping of the atom in the quantized field modes in a resonator. An atomic state of coherent trapping exists only for limited cases, and it generally requires the field to be in some special states, depending on the system. The discussion of coherent trapping is extended into a system of M identical three-level atoms. The stability of a coherent-trapping state when fluorescence can take place is discussed. The distinction between a system with resonator field modes and one with ideal laser modes is made clear, and the atomic relaxation to the coherent-trapping atomic state when a Lambda-type atom is irradiated by two ideal laser beams is studied. The experimental prospects to observe the collapse-revival phenomena in the atomic occupation probabilities, which is characteristic of a system with quantized resonator field modes is discussed

  9. 3D magnetic-resonance-coupling (MRC) localization of wireless capsule endoscopy

    DEFF Research Database (Denmark)

    Xia, Yongming; Zhang, Lihui; Lu, Kaiyuan

    2016-01-01

    ) technique, which has been widely developed for efficient wireless power transfer, is introduced. It is proposed that the distance dependent signal strength in a MRC system can be beneficially used for 3D localization. The new 3D-MRC localization system consists of three orthogonal emitting coils which......Wireless Capsule Endoscope (WCE) enables developing actively controlled capsule for potential complex surgeries, imaging, and new medicine tests. These tasks of WCE need safe, efficient, and precise 3D localization techniques. In this paper, a new application of the magnetic resonance coupling (MRC...... are powered by a battery in the capsule, and three pairs of orthogonal receiving coils which are placed outside human body. The distances between the WCE and the receiving coils can be estimated with good accuracy by studying the signal strengths in individual receiving coils. The proposed new 3D...

  10. Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits

    International Nuclear Information System (INIS)

    Canciamilla, A; Torregiani, M; Ferrari, C; Morichetti, F; Melloni, A; De La Rue, R M; Samarelli, A; Sorel, M

    2010-01-01

    Coupled-ring resonator-based slow light structures are reported and discussed. By combining the advantages of high index contrast silicon-on-insulator technology with an efficient thermo-optical activation, they provide an on-chip solution with a bandwidth of up to 100 GHz and a slowdown factor of up to 16, as well as a continuous reconfiguration scheme and a fine tunability. The performance of these devices is investigated in detail for both static and dynamic operation, in order to evaluate their potential in optical signal processing applications at high bit rate. The main impairments imposed by fabrication imperfections are also discussed in relation to the slowdown factor. In particular, the analysis of the impact of backscatter, disorder and two-photon absorption on the device transfer function reveals the ultimate limits of these structures and provides valuable design rules for their optimization

  11. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    Science.gov (United States)

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  12. Bistable output from a coupled-resonator vertical-cavity laser diode

    International Nuclear Information System (INIS)

    Fischer, A. J.; Choquette, K. D.; Chow, W. W.; Allerman, A. A.; Geib, K.

    2000-01-01

    We report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 μW to the electrical power applied to the top cavity. The bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point

  13. Charge asymmetry ratio as a probe of quark flavour couplings of resonant particles at the LHC

    International Nuclear Information System (INIS)

    Kom, Chun-Hay; Stirling, W.J.

    2011-01-01

    We show how a precise knowledge of parton distribution functions, in particular those of the u and d quarks, can be used to constrain a certain class of New Physics models in which new heavy charged resonances couple to quarks and leptons. We illustrate the method by considering a left-right symmetric model with a W' from a SU(2) R gauge sector produced in quark-antiquark annihilation and decaying into a charged lepton and a heavy Majorana neutrino. We discuss a number of quark and lepton mixing scenarios, and simulate both signals and backgrounds in order to determine the size of the expected charge asymmetry. We show that various quark-W' mixing scenarios can indeed be constrained by charge asymmetry measurements at the LHC, particularly at √(s)=14 TeV. (orig.)

  14. Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

    International Nuclear Information System (INIS)

    Chung, Y. D.; Lee, S. Y.; Lee, T. W.; Kim, J. S.; Lee, C. Y.

    2016-01-01

    The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system

  15. Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. D.; Lee, S. Y.; Lee, T. W.; Kim, J. S. [Suwon Science College, Suwon (Korea, Republic of); Lee, C. Y. [Korea Railroad Institute, Uiwang (Korea, Republic of)

    2016-03-15

    The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system.

  16. Decay rates of resonance states at high level density

    International Nuclear Information System (INIS)

    Persson, E.; Technische Univ. Dresden; Gorin, T.; Technische Univ. Dresden; Rotter, I.; Technische Univ. Dresden

    1996-05-01

    The time dependent Schroedinger equation of an open quantum mechanical system is solved by using the stationary bi-orthogonal eigenfunctions of the non-Hermitean time independent Hamilton operator. We calculate the decay rates at low and high level density in two different formalism. The rates are, generally, time dependent and oscillate around an average value due to the non-orthogonality of the wavefunctions. The decay law is studied disregarding the oscillations. In the one-channel case, it is proportional to t -b with b∼3/2 in all cases considered, including the critical region of overlapping where the non-orthogonality of the wavefunctions is large. Starting from the shell model, we get b∼2 for 2 and 4 open decay channels and all coupling strengths to the continuum. When the closed system is described by a random matrix, b∼1+K/2 for K=2 and 4 channels. This law holds in a limited time interval. The distribution of the widths is different in the two models when more than one channel are open. This leads to the different exponents b in the power law. Our calculations are performed with 190 and 130 states, respectively, most of them in the critical region. The theoretical results should be proven experimentally by measuring the time behaviour of de-excitation of a realistic quantum system. (orig.)

  17. On- and off-resonance radiation-atom-coupling matrix elements involving extended atomic wave functions

    Science.gov (United States)

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2014-01-01

    In continuation of our earlier works, we present results concerning the computation of matrix elements of the multipolar Hamiltonian (MPH) between extended wave functions that are obtained numerically. The choice of the MPH is discussed in connection with the broader issue of the form of radiation-atom (or -molecule) interaction that is appropriate for the systematic solution of various problems of matter-radiation interaction. We derive analytic formulas, in terms of the sine-integral function and spherical Bessel functions of various orders, for the cumulative radial integrals that were obtained and calculated by Komninos, Mercouris, and Nicolaides [Phys. Rev. A 71, 023410 (2005), 10.1103/PhysRevA.71.023410]. This development allows the much faster and more accurate computation of such matrix elements, a fact that enhances the efficiency with which the time-dependent Schrödinger equation is solved nonperturbatively, in the framework of the state-specific expansion approach. The formulas are applicable to the general case where a pair of orbitals with angular parts |ℓ1,m1> and |ℓ2,m2> are coupled radiatively. As a test case, we calculate the matrix elements of the electric field and of the paramagnetic operators for on- and off-resonance transitions, between hydrogenic circular states of high angular momentum, whose quantum numbers are chosen so as to satisfy electric dipole and electric quadrupole selection rules. Because of the nature of their wave function (they are nodeless and the large centrifugal barrier keeps their overwhelming part at large distances from the nucleus), the validity of the electric dipole approximation in various applications where the off-resonance couplings must be considered becomes precarious. For example, for the transition from the circular state with n = 20 to that with n = 21, for which ≈400 a.u., the dipole approximation starts to fail already at XUV wavelengths (λ <125nm).

  18. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Holliday, Nicholas D; Hansen, Jakob L

    2007-01-01

    To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase-inactive muta......To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase...

  19. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Kupenko, I., E-mail: kupenko@esrf.fr; Strohm, C. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France); McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); Glazyrin, K. [Photon Science, DESY, D-22607 Hamburg (Germany); Vasiukov, D.; Aprilis, G. [Laboratory of Crystallography, Material Physics and Technology at Extreme Conditions, Universität Bayreuth, D-95440 Bayreuth (Germany); Chumakov, A. I.; Rüffer, R. [ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France)

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

  20. An improved ultra-wideband bandpass filter design using split ring resonator with coupled microstrip line

    Science.gov (United States)

    Umeshkumar, Dubey Suhmita; Kumar, Manish

    2018-04-01

    This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.

  1. Feasible approach of contactless power transfer technology combined with HTS coils based on electromagnetic resonance coupling

    International Nuclear Information System (INIS)

    Chang, Yoon Do; Yim, Seong Woo; Hwang, Si Dole

    2013-01-01

    The contactless power transfer (CPT) systems have been recently gaining popularity widely since it is an available option to realize the power delivery and storage with connector-free devices across a large air gap. Especially, the CPT with electromagnetic resonance coupling method is possible to exchange energy within 2 m efficiently. However, the power transfer efficiency of CPT in commercialized products has been limited because the impedance matching of coupled coils is sensitive. As a reasonable approach, we combined the CPT system with HTS wire technology and called as, superconducting contactless power transfer (SUCPT) system. Since the superconducting coils have an enough current density, the superconducting antenna and receiver coils at CPT system have a merit to deliver and receive a mass amount of electric energy. In this paper, we present the feasibility of the SUCPT system and examine the transmission properties of SUCPT phenomenon between room temperature and very low temperature at 77 K as long as the receiver is within 1.0 m distance.

  2. Resonant atom-field interaction in large-size coupled-cavity arrays

    International Nuclear Information System (INIS)

    Ciccarello, Francesco

    2011-01-01

    We consider an array of coupled cavities with staggered intercavity couplings, where each cavity mode interacts with an atom. In contrast to large-size arrays with uniform hopping rates where the atomic dynamics is known to be frozen in the strong-hopping regime, we show that resonant atom-field dynamics with significant energy exchange can occur in the case of staggered hopping rates even in the thermodynamic limit. This effect arises from the joint emergence of an energy gap in the free photonic dispersion relation and a discrete frequency at the gap's center. The latter corresponds to a bound normal mode stemming solely from the finiteness of the array length. Depending on which cavity is excited, either the atomic dynamics is frozen or a Jaynes-Cummings-like energy exchange is triggered between the bound photonic mode and its atomic analog. As these phenomena are effective with any number of cavities, they are prone to be experimentally observed even in small-size arrays.

  3. Relativistic nuclear magnetic resonance J-coupling with ultrasoft pseudopotentials and the zeroth-order regular approximation

    International Nuclear Information System (INIS)

    Green, Timothy F. G.; Yates, Jonathan R.

    2014-01-01

    We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing the heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, 1 J(P-Ag) and 2 J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW

  4. Strong coupling of an NV- spin ensemble to a superconducting resonator

    International Nuclear Information System (INIS)

    Amsuess, R.

    2012-01-01

    This thesis is motivated by the idea of hybrid quantum systems, one promising approach to exploit quantum mechanics for information processing. The main challenge in this field is to counteract decoherence - an inevitable companion of every quantum system. Indeed some quantum systems are intrinsically better isolated from their environment and are therefore less prone to the loss of coherence. But it's the ambivalent nature of decoherence that these highly isolated systems are usually very difficult to interact with and coherently control. To overcome these obstacles ideas were born to combine or hybridize different quantum systems with mutually opposing properties - fast control and long coherence times - and take advantage of the prospective better behavior of the combined system. In this thesis, defects in single crystal diamond - negatively-charged nitrogen-vacancy centers (NV - centers) - are chosen as the quantum memory medium. Because an NV - center constitutes a defect in a solid, its combination with other solid-state quantum systems, as electrical circuits based on Josephson junctions, appears natural. In our work we aimed at the integration of a large number of NV - centers in a circuit quantum electrodynamics (cQED) set-up. These circuits, operating at microwave frequencies, are extremely fast and versatile quantum processors but suffer from short coherence times. Usually single microwave photons stored in a resonant circuit act as information carrier between different parts of the chip. As a main result we observe the coherent energy exchange between the NV - color centers and the electromagnetic field of a microwave resonator. We study in detail a number of important aspects of collective magnetic spin-field coupling as the characteristic scaling with the square root of the number of emitters. Additionally we measure weak coupling to 13C nuclear spins mediated by the hyperfine coupling to the NV - electron spins. The quantum memory capabilities of

  5. Silicon-Nitride-based Integrated Optofluidic Biochemical Sensors using a Coupled-Resonator Optical Waveguide

    Directory of Open Access Journals (Sweden)

    Jiawei eWANG

    2015-04-01

    Full Text Available Silicon nitride (SiN is a promising material platform for integrating photonic components and microfluidic channels on a chip for label-free, optical biochemical sensing applications in the visible to near-infrared wavelengths. The chip-scale SiN-based optofluidic sensors can be compact due to a relatively high refractive index contrast between SiN and the fluidic medium, and low-cost due to the complementary metal-oxide-semiconductor (CMOS-compatible fabrication process. Here, we demonstrate SiN-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide (CROW in the visible wavelengths. The working principle is based on imaging in the far field the out-of-plane elastic-light-scattering patterns of the CROW sensor at a fixed probe wavelength. We correlate the imaged pattern with reference patterns at the CROW eigenstates. Our sensing algorithm maps the correlation coefficients of the imaged pattern with a library of calibrated correlation coefficients to extract a minute change in the cladding refractive index. Given a calibrated CROW, our sensing mechanism in the spatial domain only requires a fixed-wavelength laser in the visible wavelengths as a light source, with the probe wavelength located within the CROW transmission band, and a silicon digital charge-coupled device (CCD / CMOS camera for recording the light scattering patterns. This is in sharp contrast with the conventional optical microcavity-based sensing methods that impose a strict requirement of spectral alignment with a high-quality cavity resonance using a wavelength-tunable laser. Our experimental results using a SiN CROW sensor with eight coupled microrings in the 680nm wavelength reveal a cladding refractive index change of ~1.3 × 10^-4 refractive index unit (RIU, with an average sensitivity of ~281 ± 271 RIU-1 and a noise-equivalent detection limit (NEDL of 1.8 ×10^-8 RIU ~ 1.0 ×10^-4 RIU across the CROW bandwidth of ~1 nm.

  6. Electroweak coupling measurements from polarized Bhabha scattering at the Z{sup 0} resonance

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, K.T.

    1994-03-01

    The cross section for Bhabha scattering (e{sup +}e{sup {minus}} {yields} e{sup +}e{sup {minus}}) with polarized electrons at the center of mass energy of the Z{sup 0} resonance has been measured with the SLD experiment at the Stanford Linear Accelerator Center during the 1992 and 1993 runs. The electroweak couplings of the electron are extracted. At small angles the measurement is done in the SLD Silicon/Tungsten Luminosity Monitor (LMSAT). A detailed description of the design, construction, commissioning and operation of the LMSAT is provided. The integrated luminosity for 1992 is measured to be L = 420.86{plus_minus}2.56 (stat){plus_minus}4.23 (sys) nb{sup {minus}1}. The luminosity asymmetry for polarized beams is measured to be A{sub LR}(LUM) = (1.7 {plus_minus} 6.4) {times} 10{sup {minus}3}. The large angle polarized Bhabha scattering reveals the effective electron vector and axial vector couplings to the Z{sup 0} through the measurement of the Z{sup 0} {yields} e{sup +}e{sup {minus}} partial width, {Gamma}{sub ee}, and the parity violation parameter, A{sub e}. From the combined 1992 and 1993 data the effective electron vector and axial vector couplings are measured to be {bar g}{sub v}{sup e} = {minus}0.0495{plus_minus}0.0096{plus_minus}0.0030, and {bar g}{sub {alpha}}{sup e} = {minus}0.4977{plus_minus}0.0035{plus_minus}0.0064 respectively. The effective weak mixing angle is measured to be sin{sup 2}{theta}{sub W}{sup eff} = 0.2251{plus_minus}0.0049{plus_minus}0.0015. These results are compared with other experiments.

  7. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu [Department of Chemistry and Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States); Perera, Ajith [Department of Chemistry and Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States); Department of Chemistry, Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States)

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate

  8. The off-resonant aspects of decoherence and a critique of the two-level approximation

    International Nuclear Information System (INIS)

    Savran, Kerim; Hakioglu, T; Mese, E; Sevincli, Haldun

    2006-01-01

    Conditions in favour of a realistic multilevelled description of a decohering quantum system are examined. In this regard the first crucial observation is that the thermal effects, contrary to the conventional belief, play a minor role at low temperatures in the decoherence properties. The system-environment coupling and the environmental energy spectrum dominantly affect the decoherence. In particular, zero temperature quantum fluctuations or non-equilibrium sources can be present and influential on the decoherence rates in a wide energy range allowed by the spectrum of the environment. A crucial observation against the validity of the two-level approximation is that the decoherence rates are found to be dominated not by the long time resonant but the short time off-resonant processes. This observation is demonstrated in two stages. Firstly, our zero temperature numerical results reveal that the calculated short time decoherence rates are Gaussian-like (the time dependence of the density matrix is led by the second time derivative at t = 0). Exact analytical results are also permitted in the short time limit, which, consistent with our numerical results, reveal that this specific Gaussian-like behaviour is a property of the non-Markovian correlations in the environment. These Gaussian-like rates have no dependence on any spectral parameter (position and the width of the spectrum) except, in totality, the spectral area itself. The dependence on the spectral area is a power law. Furthermore, the Gaussian-like character at short times is independent of the number of levels (N), but the numerical value of the decoherence rates is a monotonic function of N. In this context, we demonstrate that leakage, as a characteristic multilevel effect, is dominated by the non-resonant processes. The long time behaviour of decoherence is also examined. Since our spectral model allows Markovian environmental correlations at long times, the decoherence rates in this regime become

  9. Time-domain electric field enhancement on micrometer scale in coupled split ring resonator upon terahertz radiation

    DEFF Research Database (Denmark)

    Lange, Simon Lehnskov; Iwaszczuk, Krzysztof; Hoffmann, Matthias

    2016-01-01

    We present here a novel design for a coupled split ring resonator antenna optimized for time-domain electric field enhancement in the 0.1 to 1 terahertz (THz) range. The antenna is designed to be sensitive to the incident field polarization and seeks to avoid metal damage due to electron bombardm...

  10. Performance analysis and experimental verification of mid-range wireless energy transfer through non-resonant magnetic coupling

    DEFF Research Database (Denmark)

    Peng, Liang; Wang, Jingyu; Zhejiang University, Hangzhou, China, L.

    2011-01-01

    In this paper, the efficiency analysis of a mid-range wireless energy transfer system is performed through non-resonant magnetic coupling. It is shown that the self-resistance of the coils and the mutual inductance are critical in achieving a high efficiency, which is indicated by our theoretical...

  11. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masashi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  12. Future prospects of superfine structure of neutron resonance levels

    International Nuclear Information System (INIS)

    Ideno, Kazumi

    1996-01-01

    Neutron resonance spectra appear simply and regularly in the light of superfine structure (SFS). It is found that the relative shifts (i.e. the relative distances) between the SFSs for groups of nuclei have definite values and are closely interrelated to the symmetry properties of the compound systems if we treat neutron zero energy as a common reference point. An origin of the SFSs and its possible application to an evaluation of nuclear data are discussed. (author)

  13. Spectroscopic studies of resonant coupling of silver optical antenna arrays to a near-surface quantum well

    International Nuclear Information System (INIS)

    Gehl, Michael; Zandbergen, Sander; Gibson, Ricky; Nader, Nima; Sears, Jasmine; Keiffer, Patrick; Khitrova, Galina; Béchu, Muriel; Wegener, Martin; Hendrickson, Joshua

    2014-01-01

    The coupling of radiation emitted on semiconductor inter-band transitions to resonant optical-antenna arrays allows for enhanced light–matter interaction via the Purcell effect. Semiconductor optical gain also potentially allows for loss reduction in metamaterials. Here we extend our previous work on optically pumped individual near-surface InGaAs quantum wells coupled to silver split-ring-resonator arrays to wire and square-antenna arrays. By comparing the transient pump-probe experimental results with the predictions of a simple model, we find that the effective coupling is strongest for the split rings, even though the split rings have the weakest dipole moment. The effect of the latter must thus be overcompensated by a smaller effective mode volume of the split rings. Furthermore, we also present a systematic variation of the pump-pulse energy, which was fixed in our previous experiments. (paper)

  14. Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system

    International Nuclear Information System (INIS)

    Zhan, Shiping; Li, Hongjian; He, Zhihui; Li, Boxun; Yang, Hui; Cao, Guangtao

    2014-01-01

    We report a theoretical and numerical investigation of the plasmon-induced transparency (PIT) effect in a dual-ring resonator-coupled metal–dielectric–metal waveguide system. A transfer matrix method (TMM) is introduced to analyse the transmission and dispersion properties in the transparency window. A tunable PIT is realized in a constant separation design. The phase dispersion and slow-light effect are discussed in both the resonance and non-resonance conditions. Finally, a propagation constant based on the TMM is derived for the periodic system. It is found that the group index in the transparency window of the proposed structure can be easily tuned by the period p, which provides a new understanding, and a group index ∼51 is achieved. The quality factor of resonators can also be effective in adjusting the dispersion relation. These observations could be helpful to fundamental research and applications for integrated plasmonic devices. (paper)

  15. Inert two-Higgs-doublet model strongly coupled to a non-Abelian vector resonance

    Science.gov (United States)

    Rojas-Abatte, Felipe; Mora, Maria Luisa; Urbina, Jose; Zerwekh, Alfonso R.

    2017-11-01

    We study the possibility of a dark matter candidate having its origin in an extended Higgs sector which, at least partially, is related to a new strongly interacting sector. More concretely, we consider an i2HDM (i.e., a Type-I two Higgs doublet model supplemented with a Z2 under which the nonstandard scalar doublet is odd) based on the gauge group S U (2 )1×S U (2 )2×U (1 )Y . We assume that one of the scalar doublets and the standard fermion transform nontrivially under S U (2 )1 while the second doublet transforms under S U (2 )2. Our main hypothesis is that standard sector is weakly coupled while the gauge interactions associated to the second group is characterized by a large coupling constant. We explore the consequences of this construction for the phenomenology of the dark matter candidate and we show that the presence of the new vector resonance reduces the relic density saturation region, compared to the usual i2DHM, in the high dark matter mass range. In the collider side, we argue that the mono-Z production is the channel which offers the best chances to manifest the presence of the new vector field. We study the departures from the usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging even in the mono-Z channel since the typical cross sections are of the order of 10-2 fb .

  16. Effect of the upper-level decay on the resonantly enhanced four-wave mixing in a modified double-Λ system

    International Nuclear Information System (INIS)

    Kien, Fam Le; Hakuta, K.

    2004-01-01

    We study the continuous resonant four-wave mixing in a medium of atoms with a modified double-Λ level configuration. Under the far-off-resonance condition for a pair of levels, we reduce the five-level scheme to an effective three-level scheme, with a two-photon coupling between the two lower levels. We derive the exact steady-state solution to the density-matrix equations for the reduced scheme and obtain the wave-mixing equations for the fields in the continuous-wave regime. We show that the upper-level decay may substantially affect the resonantly enhanced wave-mixing process. We demonstrate that this decay shortens the conversion cycle rather than prolongs it

  17. GaAs Coupled Micro Resonators with Enhanced Sensitive Mass Detection

    Directory of Open Access Journals (Sweden)

    Tony Chopard

    2014-12-01

    Full Text Available This work demonstrates the improvement of mass detection sensitivity and time response using a simple sensor structure. Indeed, complicated technological processes leading to very brittle sensing structures are often required to reach high sensitivity when we want to detect specific molecules in biological fields. These developments constitute an obstacle to the early diagnosis of diseases. An alternative is the design of coupled structures. In this study, the device is based on the piezoelectric excitation and detection of two GaAs microstructures vibrating in antisymmetric modes. GaAs is a crystal which has the advantage to be micromachined easily using typical clean room processes. Moreover, we showed its high potential in direct biofunctionalisation for use in the biological field. A specific design of the device was performed to improve the detection at low mass and an original detection method has been developed. The principle is to exploit the variation in amplitude at the initial resonance frequency which has in the vicinity of weak added mass the greatest slope. Therefore, we get a very good resolution for an infinitely weak mass: relative voltage variation of 8%/1 fg. The analysis is based on results obtained by finite element simulation.

  18. Resonant coupling between ion bounce in a potential well and the potential relaxation instability

    International Nuclear Information System (INIS)

    Popa, G.; Schrittwieser, R.

    1994-01-01

    When in a double plasma machine (DP-machine) plasma is produced solely in the source chamber, not only ions but also electrons can leak through the separating grid into the target chamber, so that a low-density plasma forms there. The electrons are trapped by the traveling ion space charge and can thereby overcome the strongly negative grid bias. The investigations presented here show that a positive space-charge forms behind the grid in the target chamber and a deep potential well is formed around the grid. When the anode of the target chamber is biased positively, under certain conditions a low-frequency instability is observed in the target chamber, the properties of which indicate a potential relaxation oscillation, somewhat similar to the potential relaxation instability in a quiescent plasma machine (Q machine). The frequency of the instability is determined by the ion transit time through a thin layer of the target chamber plasma. In addition, resonant coupling occurs between this frequency and the bounce frequency of ions in the potential well around the grid

  19. Entropy, energy and negativity in Fermi-resonance coupled states of substituted methanes

    International Nuclear Information System (INIS)

    Hou Xiwen; Wan Mingfang; Ma Zhongqi

    2010-01-01

    Several measures of entanglement have attracted considerable interest in the relationship of a measure of entanglement with other quantities. The dynamics of entropy, energy and negativity is studied for Fermi-resonance coupled vibrations in substituted methanes with three kinds of initial mixed states, which are the mixed density matrices of binomial states, thermal states and squeezed states on two vibrational modes, respectively. It is demonstrated that for mixed binomial states and mixed thermal states with small magnitudes the entropies of the stretch and the bend are anti-correlated in the same oscillatory frequency, so do the energies for each kind of state with small magnitudes, whereas the entropies exhibit positive correlations with the corresponding energies. Furthermore, for small magnitudes quantum mutual entropy is positively correlated with the interacting energy. Analytic forms of entropies and energies are provided with initial conditions in which they are stationary, and the agreement between analytic and numerical simulations is satisfactory. The dynamical entanglement measured by negativity is examined for those states and conditions. It is shown that negativity displays a sudden death for mixed binomial states and mixed thermal states with small magnitudes, and the time-averaged negativity has the minimal value under the conditions of stationary entropies and energies. Moreover, negativity is positively correlated with the mutual entropy and the interacting energy just for mixed squeezed states with small magnitudes. Those are useful for molecular quantum information processing and dynamical entanglement.

  20. Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons.

    Science.gov (United States)

    Kerckhoff, Joseph; Mabuchi, Hideo

    2009-08-17

    Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on (39)K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions. (c) 2009 Optical Society of America

  1. Hybrid method to predict the resonant frequencies and to characterise dual band proximity coupled microstrip antennas

    Science.gov (United States)

    Varma, Ruchi; Ghosh, Jayanta

    2018-06-01

    A new hybrid technique, which is a combination of neural network (NN) and support vector machine, is proposed for designing of different slotted dual band proximity coupled microstrip antennas. Slots on the patch are employed to produce the second resonance along with size reduction. The proposed hybrid model provides flexibility to design the dual band antennas in the frequency range from 1 to 6 GHz. This includes DCS (1.71-1.88 GHz), PCS (1.88-1.99 GHz), UMTS (1.92-2.17 GHz), LTE2300 (2.3-2.4 GHz), Bluetooth (2.4-2.485 GHz), WiMAX (3.3-3.7 GHz), and WLAN (5.15-5.35 GHz, 5.725-5.825 GHz) bands applications. Also, the comparative study of this proposed technique is done with the existing methods like knowledge based NN and support vector machine. The proposed method is found to be more accurate in terms of % error and root mean square % error and the results are in good accord with the measured values.

  2. The electron–phonon coupling of fundamental, overtone, and combination modes and its effects on the resonance Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zhanlong; Wang, Shenghan; Gao, Shuqin [College of Physics, Jilin University, Changchun 130012 (China); Sun, Chenglin, E-mail: chenglin@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zuowei [College of Physics, Jilin University, Changchun 130012 (China)

    2015-12-15

    Highlights: • The Huang–Rhys factors and electron–phonon coupling constants are calculated. • The changes of overtone mode are larger than those of fundamental mode. • The variation pattern of electron–phonon coupling well interprets the changes of spectra. - Abstract: External field plays a very important role in the interaction between the π-electron transition and atomic vibration of polyenes. It has significant effects on both the Huang–Rhys factor and the electron–phonon coupling. In this paper, the visible absorption and resonance Raman spectra of all-trans-β-carotene are measured in the 345–295 K temperature range and it is found that the changes of the 0–1 and 0–2 vibration bands of the absorption spectra with the temperature lead to the different electron–phonon coupling of fundamental, overtone, and combination modes. The electron-phonon coupling constants of all the modes are calculated and analyzed under different temperatures. The variation law of the electron–phonon coupling with the temperature well interprets the changes of the resonance Raman spectra, such as the shift, intensity and line width of the overtone and combination modes, which are all greater than those of the fundamental modes.

  3. The effect of a coupling field on the entanglement dynamics of a three-level atom

    International Nuclear Information System (INIS)

    Mortezapour, Ali; Mahmoudi, Mohammad; Abedi, Majid; Khajehpour, M R H

    2011-01-01

    The effect of a coupling laser field on the entanglement of a three-level quantum system and its spontaneous emission is investigated via the reduced quantum entropy. We consider two schemes: the upper- and lower-level couplings. By calculating the degree of entanglement (DEM) for both systems, it is shown that the entanglement between the atom and its spontaneous emission can be controlled by the coupling laser field. This field, however, affects the entanglement differently in the two schemes; it is only the lower-level coupling scheme that shows a non-zero steady state DEM which can be controlled by the intensity and detuning of the coupling laser field.

  4. The effect of a coupling field on the entanglement dynamics of a three-level atom

    Energy Technology Data Exchange (ETDEWEB)

    Mortezapour, Ali; Mahmoudi, Mohammad [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Abedi, Majid; Khajehpour, M R H, E-mail: mahmoudi@iasbs.ac.ir, E-mail: pour@iasbs.ac.ir [Institute for Advanced Studies in Basic Sciences, PO Box 45195-159, Zanjan (Iran, Islamic Republic of)

    2011-04-28

    The effect of a coupling laser field on the entanglement of a three-level quantum system and its spontaneous emission is investigated via the reduced quantum entropy. We consider two schemes: the upper- and lower-level couplings. By calculating the degree of entanglement (DEM) for both systems, it is shown that the entanglement between the atom and its spontaneous emission can be controlled by the coupling laser field. This field, however, affects the entanglement differently in the two schemes; it is only the lower-level coupling scheme that shows a non-zero steady state DEM which can be controlled by the intensity and detuning of the coupling laser field.

  5. Acousto-optic resonant coupling of three spatial modes in an optical fiber.

    Science.gov (United States)

    Park, Hee Su; Song, Kwang Yong

    2014-01-27

    A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.

  6. A directly coupled monolithic rectangular resonator forming a robust microwave plasma ion source for SIFT-MS

    International Nuclear Information System (INIS)

    Spanel, P; Hall, E F H; Workman, C T; Smith, D

    2004-01-01

    A simple ion source is described that consists of a glass discharge tube positioned judiciously in a rectangular waveguide resonator that is directly coupled to an under-run standard magnetron. This ion source operates well with gas mixtures, including rare gases, air and water vapour in the pressure range 10-100 Pa and at magnetron powers within the range 15-40 W. The main advantage of this magnetron/cavity arrangement is the absence of mechanically adjustable parts (aerial and tuning stub), in contrast to other commonly used arrangements that combine a cavity resonator that is connected to the magnetron via a launcher and a coaxial cable

  7. A directly coupled monolithic rectangular resonator forming a robust microwave plasma ion source for SIFT-MS

    Energy Technology Data Exchange (ETDEWEB)

    Spanel, P [Trans Spectra Limited, 9 The Elms, Newcastle under Lyme, ST5 8RP (United Kingdom); Hall, E F H [Trans Spectra Limited, 9 The Elms, Newcastle under Lyme, ST5 8RP (United Kingdom); Workman, C T [Trans Spectra Limited, 9 The Elms, Newcastle under Lyme, ST5 8RP (United Kingdom); Smith, D [Trans Spectra Limited, 9 The Elms, Newcastle under Lyme, ST5 8RP (United Kingdom)

    2004-05-01

    A simple ion source is described that consists of a glass discharge tube positioned judiciously in a rectangular waveguide resonator that is directly coupled to an under-run standard magnetron. This ion source operates well with gas mixtures, including rare gases, air and water vapour in the pressure range 10-100 Pa and at magnetron powers within the range 15-40 W. The main advantage of this magnetron/cavity arrangement is the absence of mechanically adjustable parts (aerial and tuning stub), in contrast to other commonly used arrangements that combine a cavity resonator that is connected to the magnetron via a launcher and a coaxial cable.

  8. Concordance of vitamin D peripheral levels in infertile couples' partners.

    Science.gov (United States)

    Paffoni, Alessio; Ferrari, Stefania; Mangiarini, Alice; Noli, Stefania; Bulfoni, Alessandro; Vigano, Paola; Parazzini, Fabio; Somigliana, Edgardo

    2017-08-01

    A large number of evidence supports the role of vitamin D insufficiency in both women and men infertility. However, no studies have evaluated the rate of concordance of vitamin D status between the partners. This finding might open new scenarios in the interpretation of the available data linking vitamin D insufficiency and infertility. In the present cross-sectional study, 103 consecutive infertile couples were recruited between April and May 2014. Both partners concomitantly provided a serum sample for the assessment of 25-hydroxy-vitamin D [25-(OH)-D]. Vitamin D insufficiency was defined as serum 25-(OH)-D D insufficient, corresponding to a rate of 73%. Overall, concordance was observed in 73 couples (71%), thus higher than the expected 61% (0.732 + 0.272) based on chance (p = 0.007). The Pearson coefficient of correlation R2 between the partners of the couples was 0.52 (p D insufficiency according to the causes of infertility. Serum 25-(OH)-D correlates within the partners of infertile couples. Further evidence is warranted to determine the clinical relevance and possible clinical applications of this finding.

  9. Generation of maximally entangled mixed states of two atoms via on-resonance asymmetric atom-cavity couplings

    International Nuclear Information System (INIS)

    Li, Shang-Bin

    2007-01-01

    A scheme for generating the maximally entangled mixed state of two atoms on-resonance asymmetrically coupled to a single mode optical cavity field is presented. The part frontier of both maximally entangled mixed states and maximal Bell violating mixed states can be approximately reached by the evolving reduced density matrix of two atoms if the ratio of coupling strengths of two atoms is appropriately controlled. It is also shown that exchange symmetry of global maximal concurrence is broken if and only if coupling strength ratio lies between (√(3)/3) and √(3) for the case of one-particle excitation and asymmetric coupling, while this partial symmetry breaking cannot be verified by detecting maximal Bell violation

  10. Double-wall carbon nanotubes doped with different Br2 doping levels: a resonance Raman study.

    Science.gov (United States)

    do Nascimento, Gustavo M; Hou, Taige; Kim, Yoong Ahm; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Akuzawa, Noboru; Dresselhaus, Mildred S

    2008-12-01

    This report focuses on the effects of different Br2 doping levels on the radial breathing modes of "double-wall carbon nanotube (DWNT) buckypaper". The resonance Raman profile of the Br2 bands are shown for different DWNT configurations with different Br2 doping levels. Near the maximum intensity of the resonance Raman profile, mainly the Br2 molecules adsorbed on the DWNT surface contribute strongly to the observed omega(Br-Br) Raman signal.

  11. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    Directory of Open Access Journals (Sweden)

    Victor M. García-Chocano

    2011-12-01

    Full Text Available Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in a channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.

  12. Analysis and optimization of coupled windings in magnetic resonant wireless power transfer systems with orthogonal experiment method

    DEFF Research Database (Denmark)

    Yudi, Xiao; Xingkui, Mao; Mao, Lin

    2017-01-01

    The coupled magnetic resonant unit (CMRU) has great effect on the transmitting power capability and efficiency of magnetic resonant wireless power transfer system. The key objective i.e. the efficiency coefficient kQ is introduced in the design of CMRU or the coupled windings based on the mutual...... inductance model. Then the design method with orthogonal experiments and finite element method simulation is proposed to maximize the kQ due to low precise analytical model of AC resistance and inductance for PCB windings at high- frequency. The method can reduce the design iterations and thereby can get...... more optimal design results. The experiments verified the design objective of kQ as well as the design method effectively. In the optimal PCB windings prototype at operating frequency of 4 MHz, the kQ and the maximum efficiency are increased by about 12% and 4% respectively....

  13. Analysis and optimisation of coupled winding in magnetic resonant wireless power transfer systems with orthogonal experiment results

    DEFF Research Database (Denmark)

    Yudi, Xiao; Xingkui, Mao; Mao, Lin

    2017-01-01

    The coupled magnetic resonant unit (CMRU) has great effect on the transmitting power capability and efficiency of magnetic resonant wireless power transfer system. The key objective i.e. the efficiency coefficient kQ is introduced in the design of CMRU or the coupled windings based on the mutual...... inductance model. Then the design method with orthogonal experiments and finite element method simulation is proposed to maximize the kQ due to low precise analytical model of AC resistance and inductance for PCB windings at high- frequency. The method can reduce the design iterations and thereby can get...... more optimal design results. The experiments verified the design objective of kQ as well as the design method effectively. In the optimal PCB windings prototype at operating frequency of 4 MHz, the kQ and the maximum efficiency are increased by about 12% and 4% respectively....

  14. Multi-level converter with auxiliary resonant-commutated pole

    NARCIS (Netherlands)

    Dijkhuizen, F.R.; Duarte, J.L.; Groningen, van W.D.H.

    1998-01-01

    The family of multi-level power converters offers advantages for high-power, high-voltage systems. A multi-level nested-cell structure has the attractive feature of static and dynamic voltage sharing among the switches. This is achieved by using clamping capacitors (floating capacitors) rather than

  15. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  16. Robust magnon-photon coupling in a planar-geometry hybrid of inverted split-ring resonator and YIG film.

    Science.gov (United States)

    Bhoi, Biswanath; Kim, Bosung; Kim, Junhoe; Cho, Young-Jun; Kim, Sang-Koog

    2017-09-20

    We experimentally demonstrate strongly enhanced coupling between excited magnons in an Yttrium Iron Garnet (YIG) film and microwave photons in an inverted pattern of split-ring resonator (noted as ISRR). The anti-crossing effects of the ISRR's photon mode and the YIG's magnon modes were found from |S 21 |-versus-frequency measurements for different strengths and directions of externally applied magnetic fields. The spin-number-normalized coupling strength (i.e. single spin-photon coupling) [Formula: see text] was determined to 0.194 Hz ([Formula: see text] = 90 MHz) at 3.7 GHz frequency. Furthermore, we found that additional fine features in the anti-crossing region originate from the excitation of different spin-wave modes (such as the magnetostatic surface and the backward-volume magnetostatic spin-waves) rather than the Kittel-type mode. These spin-wave modes, as coupled with the ISRR mode, modify the anti-crossing effect as well as their coupling strength. An equivalent circuit model very accurately reproduced the observed anti-crossing effect and its coupling strength variation with the magnetic field direction in the planar-geometry ISRR/YIG hybrid system. This work paves the way for the design of new types of high-gain magnon-photon coupling systems in planar geometry.

  17. Kinetic inductance of HTS resonators at various microwave power levels

    International Nuclear Information System (INIS)

    Srivastava, G.P.; Jacob, Mohan V.

    1997-01-01

    Microwave superconducting devices show a drastic deterioration in its performance at high microwave power levels. The flux penetration through the weak links increases the quasiparticle concentration which results in the increase of penetration depth and hence the kinetic inductance. We have modeled an expression to find the kinetic inductance at various RF power levels. The results show that the change in kinetic inductance is proportional to be square of the applied field. This model can explain the reported experimental results at and below the intermediate power levels. (author)

  18. Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

    Directory of Open Access Journals (Sweden)

    A. Stockklauser

    2017-03-01

    Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238  MHz at a resonator linewidth κ/2π=12  MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40  MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.

  19. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator

    OpenAIRE

    Ovartchaiyapong, Preeti; Lee, Kenneth W.; Myers, Bryan A.; Jayich, Ania C. Bleszynski

    2014-01-01

    The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy center spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain inte...

  20. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    Science.gov (United States)

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  1. Induced high-order resonance linewidth shrinking with multiple coupled resonators in silicon-organic hybrid slotted two-dimensional photonic crystals for reduced optical switching power in bistable devices

    Science.gov (United States)

    Hoang, Thu Trang; Ngo, Quang Minh; Vu, Dinh Lam; Le, Khai Q.; Nguyen, Truong Khang; Nguyen, Hieu P. T.

    2018-01-01

    Shrinking the linewidth of resonances induced by multiple coupled resonators is comprehensively analyzed using the coupled-mode theory (CMT) in time. Two types of coupled resonators under investigation are coupled resonator optical waveguides (CROWs) and side-coupled resonators with waveguide (SCREW). We examine the main parameters influencing on the spectral response such as the number of resonators (n) and the phase shift (φ) between two adjacent resonators. For the CROWs geometry consisting of n coupled resonators, we observe the quality (Q) factor of the right- and left-most resonant lineshapes increases n times larger than that of a single resonator. For the SCREW geometry, relying on the phase shift, sharp, and asymmetric resonant lineshape of the high Q factor a narrow linewidth of the spectral response could be achieved. We employ the finite-difference time-domain (FDTD) method to design and simulate two proposed resonators for practical applications. The proposed coupled resonators in silicon-on-insulator (SOI) slotted two-dimensional (2-D) photonic crystals (PhCs) filled and covered with a low refractive index organic material. Slotted PhC waveguides and cavities are designed to enhance the electromagnetic intensity and to confine the light into small cross-sectional area with low refractive index so that efficient optical devices could be achieved. A good agreement between the theoretical CMT analysis and the FDTD simulation is shown as an evidence for our accurate investigation. All-optical switches based on the CROWs in the SOI slotted 2-D PhC waveguide that are filled and covered by a nonlinear organic cladding to overcome the limitations of its well-known intrinsic properties are also presented. From the calculations, we introduce a dependency of the normalized linewidth of the right-most resonance and its switching power of the all-optical switches on number of resonator, n. This result might provide a guideline for all-optical signal processing on

  2. Single-particle resonance levels in {sup 14}O examined by N13+p elastic resonance scattering

    Energy Technology Data Exchange (ETDEWEB)

    Teranishi, T. [Dept. of Physics, Kyushu Univ., 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)]. E-mail: teranishi@nucl.phys.kyushu-u.ac.jp; Kubono, S. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamaguchi, H. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); He, J.J. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Saito, A. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Fujikawa, H. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Amadio, G. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Niikura, M.; Shimoura, S. [Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y. [Dept. of Physics, Kyushu Univ., 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)]|[Center for Nuclear Study (CNS), Univ. of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nishimura, S.; Nishimura, M. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Moon, J.Y.; Lee, C.S. [Dept. of Physics, Chung-Ang Univ., Seoul 156-756 (Korea, Republic of); Odahara, A. [Nishinippon Inst. of Technology, Kanda, Fukuoka 800-0394 (Japan); Sohler, D. [Inst. of Nuclear Research (ATOMKI), H-4001 Debrecen, P.O. Box 51 (Hungary); Khiem, L.H. [Inst. of Physics and Electronics (IOP), Vietnamese Academy for Science and Technology (VAST), 10 Daotan, Congvi, Badinh, P.O. Box 429-BOHO, Hanoi 10000 (Viet Nam); Li, Z.H.; Lian, G.; Liu, W.P. [China Inst. of Atomic Energy, P.O. Box 275(46), Beijing 102413 (China)

    2007-06-28

    Single-particle properties of low-lying resonance levels in {sup 14}O have been studied efficiently by utilizing a technique of proton elastic resonance scattering with a {sup 13}N secondary beam and a thick proton target. The excitation functions for the N13+p elastic scattering were measured over a wide energy range of E{sub CM}=0.4-3.3 MeV and fitted with an R-matrix calculation. A clear assignment of J{sup {pi}}=2{sup -} has been made for the level at E{sub x}=6.767(11) MeV in {sup 14}O for the first time. The excitation functions show a signature of a new 0{sup -} level at E{sub x}=5.71(2) MeV with {gamma}=400(100) keV. The excitation energies and widths of the {sup 14}O levels are discussed in conjunction with the spectroscopic structure of A=14 nuclei with T=1.

  3. Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods

    Energy Technology Data Exchange (ETDEWEB)

    Penzel, Susanne; Smith, Albert A.; Agarwal, Vipin; Hunkeler, Andreas [ETH Zürich, Physical Chemistry (Switzerland); Org, Mai-Liis; Samoson, Ago, E-mail: ago.samoson@ttu.ee [Tallinn University of Technology, NMR Instituut, Tartu Teadus, Tehnomeedikum (Estonia); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Université de Lyon 1, Institut de Biologie et Chimie des Protéines (France); Ernst, Matthias, E-mail: maer@ethz.ch; Meier, Beat H., E-mail: beme@ethz.ch [ETH Zürich, Physical Chemistry (Switzerland)

    2015-10-15

    We discuss the optimum experimental conditions to obtain assignment spectra for solid proteins at magic-angle spinning (MAS) frequencies around 100 kHz. We present a systematic examination of the MAS dependence of the amide proton T{sub 2}′ times and a site-specific comparison of T{sub 2}′ at 93 kHz versus 60 kHz MAS frequency. A quantitative analysis of transfer efficiencies of building blocks, as they are used for typical 3D experiments, was performed. To do this, we compared dipolar-coupling and J-coupling based transfer steps. The building blocks were then combined into 3D experiments for sequential resonance assignment, where we evaluated signal-to-noise ratio and information content of the different 3D spectra in order to identify the best assignment strategy. Based on this comparison, six experiments were selected to optimally assign the model protein ubiquitin, solely using spectra acquired at 93 kHz MAS. Within 3 days of instrument time, the required spectra were recorded from which the backbone resonances have been assigned to over 96 %.

  4. Treatment of External Levels in Neutron Resonance Fitting: Application to the Nonfissile Nuclide 52Cr

    International Nuclear Information System (INIS)

    Froehner, Fritz H.; Bouland, Olivier

    2001-01-01

    Measured neutron resonance cross sections are usually analyzed and parametrized by fitting theoretical curves to high-resolution point data. Theoretically, the cross sections depend mainly on the 'internal' levels inside the fitted energy range but also on the 'external' levels outside. Although the external levels are mostly unknown, they must be accounted for. If they are simply omitted, the experimental data cannot be fitted satisfactorily. Especially with elastic scattering and total cross-section data, one gets troublesome edge effects and difficulties with the potential cross section between resonances. Various ad hoc approaches to these problems are still being used, involving replacement of the unknown levels by equidistant ('picket fence') or Monte Carlo-sampled resonance sequences, or replication of the internal level sequence; however, more convenient, better working, and theoretically sound techniques have been available for decades. These analytical techniques are reviewed. They describe the contribution of external levels to the R matrix concisely in terms of average resonance parameters (strength function, effective radius, etc.). A more recent, especially convenient approximation accounts for the edge effects by just one fictitious pair of very broad external resonances. Fitting the thermal region, including accurately known thermal cross sections, is often done by adjusting a number of bound levels by trial and error, although again a simple analytical recipe involving just one bound level has been available for a long time. For illustration, these analytical techniques are applied to the resolved resonance region of 52 Cr. The distinction between channel radii and effective radii, crucial in the present context, is emphasized

  5. Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, S M; Safari, L; Mahmoudi, M [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Sahrai, M, E-mail: sahrai@tabrizu.ac.i [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2010-08-28

    The effect of quantum interference on the optical properties of a pumped-probe three-level V-type atomic system is investigated. The probe absorption, dispersion, group index and optical bistability beyond the two-photon resonance condition are discussed. It is found that the optical properties of a medium in the frequency of the probe field, in general, are phase independent. The phase dependence arises from a scattering of the coupling field into the probe field at a frequency which in general differs from the probe field frequency. It is demonstrated that beyond the two-photon resonance condition the phase sensitivity of the medium will disappear.

  6. Resonant retuning of Rabi oscillations in a two-level system

    International Nuclear Information System (INIS)

    Leonov, A.V.; Feranchuk, I.D.

    2009-01-01

    The evolution of a two-level system in a single-mode quantum field is considered beyond the rotating wave approximation. The existence of quasi-degenerate energy levels is shown to influence the essential characteristics of temporal and amplitude Rabi oscillations of the system in a resonant manner. (authors)

  7. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    KAUST Repository

    Xu, Quan; Zhang, Xueqian; Xu, Yuehong; Li, Quan; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Wentao; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based

  8. Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide.

    Science.gov (United States)

    Huo, Yijie; Sandhu, Sunil; Pan, Jun; Stuhrmann, Norbert; Povinelli, Michelle L; Kahn, Joseph M; Harris, James S; Fejer, Martin M; Fan, Shanhui

    2011-04-15

    We measure the group delay in an on-chip photonic-crystal device with two resonators side coupled to a waveguide. We demonstrate that such a group delay can be controlled by tuning either the propagation phase of the waveguide or the frequency of the resonators.

  9. A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-07-15

    We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.

  10. Near field resonant inductive coupling to power electronic devices dispersed in water

    NARCIS (Netherlands)

    Kuipers, J.; Bruning, H.; Bakker, S.; Rijnaarts, H.H.M.

    2012-01-01

    The purpose of this research was to investigate inductive coupling as a way to wirelessly power electronic devices dispersed in water. The most important parameters determining this efficiency are: (1) the coupling between transmitting and receiving coils, (2) the quality factors of the transmitting

  11. Photon and spin dependence of the resonance line shape in the strong coupling regime

    NARCIS (Netherlands)

    Miyashita, Seiji; Shirai, Tatsuhiko; Mori, Takashi; De Raedt, Hans; Bertaina, Sylvain; Chiorescu, Irinel

    2012-01-01

    We study the quantum dynamics of a spin ensemble coupled to cavity photons. Recently, related experimental results have been reported, showing the existence of the strong coupling regime in such systems. We study the eigenenergy distribution of the multi-spin system (following the Tavis-Cummings

  12. Optical Resonance of A Three-Level System in Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Nguyen Van Hieu

    2017-11-01

    Full Text Available The optical resonance of a three-level system of the strongly correlated electrons in the twolevel semiconductor quantum dot interacting with the linearly polarized monochromatic electromagnetic radiation is studied. With the application of the Green function method the expressions of the state vectors and the energies of the stationary states of the system in the regime of the optical resonance are derived. The Rabi oscillations of the electron populations at different levels as well as the Rabi splitting of the peaks in the photon emission spectra are investigated. PACS numbers: 71.35.-y, 78.55.-m, 78.67.Hc

  13. Probability distribution of wave packet delay time for strong overlapping of resonance levels

    International Nuclear Information System (INIS)

    Lyuboshits, V.L.

    1983-01-01

    Time behaviour of nuclear reactions in the case of high level densities is investigated basing on the theory of overlapping resonances. In the framework of a model of n equivalent channels an analytical expression is obtained for the probability distribution function for wave packet delay time at the compound nucleus production. It is shown that at strong overlapping of the resonance levels the relative fluctuation of the delay time is small at the stage of compound nucleus production. A possible increase in the duration of nuclear reactions with the excitation energy rise is discussed

  14. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  15. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    Science.gov (United States)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  16. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Krishtopenko, S. S.

    2015-01-01

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system

  17. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  18. Generalized coupling resonance modeling, analysis, and active damping of multi-parallel inverters in microgrid operating in grid-connected mode

    DEFF Research Database (Denmark)

    Chen, Zhiyong; Chen, Yandong; Guerrero, Josep M.

    2016-01-01

    This paper firstly presents an equivalent coupling circuit modeling of multi-parallel inverters in microgrid operating in grid-connected mode. By using the model, the coupling resonance phenomena are explicitly investigated through the mathematical approach, and the intrinsic and extrinsic...

  19. A study of J-coupling spectroscopy using the Earth's field nuclear magnetic resonance inside a laboratory.

    Science.gov (United States)

    Liao, Shu-Hsien; Chen, Ming-Jye; Yang, Hong-Chang; Lee, Shin-Yi; Chen, Hsin-Hsien; Horng, Herng-Er; Yang, Shieh-Yueh

    2010-10-01

    In this paper, an instrumentation of the Earth's field nuclear magnetic resonance (EFNMR) inside a laboratory is presented. A lock-in analysis (LIA) technique was proposed to enhance the signal-to-noise ratio (SNR). A SNR of 137.8 was achieved in a single measurement for 9 ml tap water, and the LIA technique significantly enhanced the SNR to 188 after a 10-average in a noisy laboratory environment. The proton-phosphorus coupling in trimethyl phosphate ((CH(3)O)(3)PO) with J-coupling J[H,F]=(10.99±0.013) Hz has been demonstrated. The LIA technique improves the SNR, and a 2.6-fold improvement in SNR over that of the frequency-adjusted averaging is achieved. To reduce the noise in EFNMR, it was suggested that the LIA technique and the first order gradient shim be used to achieve a subhertz linewidth.

  20. Scheme for realizing quantum computation and quantum information transfer with superconducting qubits coupling to a 1D transmission line resonator

    International Nuclear Information System (INIS)

    Zhen-Gang, Shi; Xiong-Wen, Chen; Xi-Xiang, Zhu; Ke-Hui, Song

    2009-01-01

    This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on dc-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, but also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line. (general)

  1. Modification of optical properties by adiabatic shifting of resonances in a four-level atom

    Science.gov (United States)

    Dutta, Bibhas Kumar; Panchadhyayee, Pradipta

    2018-04-01

    We describe the linear and nonlinear optical properties of a four-level atomic system, after reducing it to an effective two-level atomic model under the condition of adiabatic shifting of resonances driven by two coherent off-resonant fields. The reduced form of the Hamiltonian corresponding to the two-level system is obtained by employing an adiabatic elimination procedure in the rate equations of the probability amplitudes for the proposed four-level model. For a weak probe field operating in the system, the nonlinear dependence of complex susceptibility on the Rabi frequencies and the detuning parameters of the off-resonant driving fields makes it possible to exhibit coherent control of single-photon and two-photon absorption and transparency, the evolution of enhanced Self-Kerr nonlinearity and noticeable dispersive switching. We have shown how the quantum interference results in the generic four-level model at the adiabatic limit. The present scheme describes the appearance of single-photon transparency without invoking any exact two-photon resonance.

  2. Sensitivity of neutron scattering properties to the coupling to giant resonances

    International Nuclear Information System (INIS)

    Delaroche, J.P.; Guss, P.P.; Floyd, C.E.; Walter, R.L.; Tornow, W.

    1983-01-01

    Extended coupled channels calculations have been performed for neutron elastic and inelastic cross sections and analyzing powers for vibrational nuclei with 40 208 Pb and 12 MeV results for 40 Ca are illustrated here

  3. Determination of nonlinear nanomechanical resonator-qubit coupling coefficient in a hybrid quantum system.

    Science.gov (United States)

    Geng, Qi; Zhu, Ka-Di

    2016-07-10

    We have theoretically investigated a hybrid system that is composed of a traditional optomechanical component and an additional charge qubit (Cooper pair box) that induces a new nonlinear interaction. It is shown that the peak in optomechanically induced transparency has been split by the new nonlinear interaction, and the width of the splitting is proportional to the coupling coefficient of this nonlinear interaction. This may give a way to measure the nanomechanical oscillator-qubit coupling coefficient in hybrid quantum systems.

  4. Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons

    Science.gov (United States)

    Stephanovich, V. A.; Sherman, E. Ya.; Zinner, N. T.; Marchukov, O. V.

    2018-05-01

    We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to nonintegrability of the system and hints at the possibility of quantum chaos emerging. Such behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization appears in the transitions between states with different total momenta.

  5. Endogenous fields enhanced stochastic resonance in a randomly coupled neuronal network

    International Nuclear Information System (INIS)

    Deng, Bin; Wang, Lin; Wang, Jiang; Wei, Xi-le; Yu, Hai-tao

    2014-01-01

    Highlights: • We study effects of endogenous fields on stochastic resonance in a neural network. • Stochastic resonance can be notably enhanced by endogenous field feedback. • Endogenous field feedback delay plays a vital role in stochastic resonance. • The parameters of low-passed filter play a subtle role in SR. - Abstract: Endogenous field, evoked by structured neuronal network activity in vivo, is correlated with many vital neuronal processes. In this paper, the effects of endogenous fields on stochastic resonance (SR) in a randomly connected neuronal network are investigated. The network consists of excitatory and inhibitory neurons and the axonal conduction delays between neurons are also considered. Numerical results elucidate that endogenous field feedback results in more rhythmic macroscope activation of the network for proper time delay and feedback coefficient. The response of the network to the weak periodic stimulation can be notably enhanced by endogenous field feedback. Moreover, the endogenous field feedback delay plays a vital role in SR. We reveal that appropriately tuned delays of the feedback can either induce the enhancement of SR, appearing at every integer multiple of the weak input signal’s oscillation period, or the depression of SR, appearing at every integer multiple of half the weak input signal’s oscillation period for the same feedback coefficient. Interestingly, the parameters of low-passed filter which is used in obtaining the endogenous field feedback signal play a subtle role in SR

  6. Flexible, wireless, inductively coupled surface coil resonator for EPR tooth dosimetry

    International Nuclear Information System (INIS)

    Schreiber, Wilson; Petryakov, Sergey V.; Kmiec, Maciej M.; Feldman, Matthew A.; Wood, Victoria A.; Boyle, Holly K.; Flood, Ann Barry; Williams, Benjamin B.; Swartz, Harold M.; Meaney, Paul M.

    2016-01-01

    Managing radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation relies on the availability of biodosimetry to assess whether individuals need to be triaged for care. Electron Paramagnetic Resonance (EPR) tooth dosimetry is a viable method to accurately estimate the amount of ionizing radiation to which an individual has been exposed. In the intended measurement conditions and scenario, it is essential that the measurement process be fast, straightforward and provides meaningful and accurate dose estimations for individuals in the expected measurement conditions. The sensing component of a conventional L-band EPR spectrometer used for tooth dosimetry typically consists of a surface coil resonator that is rigidly, physically attached to the coupler. This design can result in cumbersome operation, limitations in teeth geometries that may be measured and hinder the overall utility of the dosimeter. A novel surface coil resonator has been developed for the currently existing L-band (1.15 GHz) EPR tooth dosimeter for the intended use as a point of care device by minimally trained operators. This resonator development provides further utility to the dosimeter, and increases the usability of the dosimeter by non-expert operators in the intended use scenario. (authors)

  7. Coupling effects of giant resonances on the elastic and inelastic scattering of fast neutrons

    International Nuclear Information System (INIS)

    Delaroche, J.P.; Tornow, W.

    1983-01-01

    While the inelastic scattering of high energy hadrons is commonly used for the study of giant resonances in nuclei, it is just recently that one has thought to take into account these states in the analysis of proton scattering at low incident energies (E 0 and S 1 . (Auth.)

  8. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    Science.gov (United States)

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-04-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  9. Resonance fluorescence spectra of a three-level atom driven by two strong laser fields

    International Nuclear Information System (INIS)

    Peng Jinsheng.

    1986-12-01

    The resonance fluorescence of a three-level atom interacted with two high-power laser fields is investigated in strong field approximation. The fluorescence distribution is obtained by means of the theory of dressing transformation. (author). 15 refs, 2 figs

  10. Design and characteristic investigations of superconducting wireless power transfer for electric vehicle charging system via resonance coupling method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. D. [Suwon Science College, Suwon (Korea, Republic of); Yim, Seung Woo [Dept. of Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of)

    2014-09-15

    As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUWPT4EV) system. As the HTS coil has an enough current density, it can deliver a mass amount of electric energy in spite of a small scale antenna. The SUCPT4EV system has been expected as a noble option to improve the transfer efficiency of large electric power. Such a system consists of two resonator coils; HTS transmitting antenna (Tx) coil and normal conducting receiver (Rx) coil. Especially, the impedance matching for each resonator is a sensitive and plays an important role to improve transfer efficiency as well as delivery distance. In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, within 45 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 15% compared with copper antenna. In addition, we achieved effective impedance matching conditions between HTS antenna and copper receiver at radio frequency (RF) power of 370 kHz.

  11. Design and characteristic investigations of superconducting wireless power transfer for electric vehicle charging system via resonance coupling method

    International Nuclear Information System (INIS)

    Chung, Y. D.; Yim, Seung Woo

    2014-01-01

    As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUWPT4EV) system. As the HTS coil has an enough current density, it can deliver a mass amount of electric energy in spite of a small scale antenna. The SUCPT4EV system has been expected as a noble option to improve the transfer efficiency of large electric power. Such a system consists of two resonator coils; HTS transmitting antenna (Tx) coil and normal conducting receiver (Rx) coil. Especially, the impedance matching for each resonator is a sensitive and plays an important role to improve transfer efficiency as well as delivery distance. In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, within 45 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 15% compared with copper antenna. In addition, we achieved effective impedance matching conditions between HTS antenna and copper receiver at radio frequency (RF) power of 370 kHz

  12. Enhancement of Energy Harvesting Performance by a Coupled Bluff Splitter Body and PVEH Plate through Vortex Induced Vibration near Resonance

    Directory of Open Access Journals (Sweden)

    Wei Ken Chin

    2017-09-01

    Full Text Available Inspired by vortex induced vibration energy harvesting development as a new source of renewable energy, a T-shaped design vibration energy harvester is introduced with the aim of enhancing its performance through vortex induced vibration at near resonance conditions. The T-shaped structural model designed consists of a fixed boundary aluminum bluff splitter body coupled with a cantilever piezoelectric vibration energy harvesters (PVEH plate model which is a piezoelectric bimorph plate made of a brass plate sandwiched between 2 lead zirconate titanate (PZT plates. A 3-dimensional Fluid-Structure Interaction simulation analysis is carried out with Reynolds Stress Turbulence Model under wind speed of 7, 10, 12, 14, 16, 18, 19, 20, 22.5, and 25 m/s. The results showed that with 19 m/s wind speed, the model generates 75.758 Hz of vortex frequency near to the structural model’s natural frequency of 76.9 Hz. Resonance lock-in therefore occurred, generating a maximum displacement amplitude of 2.09 mm or a 49.76% increment relatively in vibrational amplitude. Under the effect of resonance at the PVEH plate’s fundamental natural frequency, it is able to generate the largest normalized power of 13.44 mW/cm3g2.

  13. Oscillations of Doppler-Raby of two level atom moving in resonator

    International Nuclear Information System (INIS)

    Kozlovskij, A.V.

    2001-01-01

    The interaction of the two-level atom with the quantum mode of the high-quality resonator uniformly moving by the classic trajectory, is considered. The recurrent formula for the probability of the atom transition with the photon radiation is determined through the dressed states method. It is shown, that the ratio between the Doppler shift value of the atom transition and the Raby frequency value of the atom-field system qualitatively effects the dependence of the moving atom transition probability on its position in the resonator, as well as on its value [ru

  14. Neutron resonance spectroscopy on 113Cd: The p-wave levels

    International Nuclear Information System (INIS)

    Frankle, C.M.; Bowman, C.D.; Bowman, J.D.; Seestrom, S.J.; Sharapov, E.I.; Popov, Y.P.; Roberson, N.R.

    1992-01-01

    Weak levels in the compound nucleus 114 Cd were located by neutron time-of-flight spectroscopy techniques. Neutron capture measurements were performed with both a natural cadmium target and a highly enriched 113 Cd target. A total of 22 new resonances were located in the neutron energy interval 20-500 eV and were assumed to be p-wave. Resonance parameters, E 0 and gΓ n , are given for the newly identified levels. The p-wave strength function was determined to be 10 4 S 1 =2.8±0.8 and the average level spacing left-angle D 1 right-angle=14 eV. Comparison of the reduced widths with a Porter-Thomas distribution is consistent with having missed 15% of the p-wave levels

  15. Investigating Margin and Grounding Line Dynamics with a Coupled Ice and Sea Level Model

    Science.gov (United States)

    Kuchar, J.; Milne, G. A.

    2017-12-01

    We present results from the coupling of an adaptive mesh glaciological model (BISICLES) with a model of glacial isostatic adjustment and sea level. We apply this coupled model to study the deglaciation of the Greenland Ice Sheet (GrIS) from the last glacial maximum. The proximity of the GrIS to the much larger Laurentide results in an east-west gradient in sea level rates across Greenland during the deglaciation. We investigate the impacts of this sea level gradient on ice and grounding line dynamics at the margins, as well as the influence of both local and non-local ice on sea level and ice dynamics.

  16. Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling

    Science.gov (United States)

    Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu

    2018-04-01

    In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.

  17. Thermoelectric performance of co-doped SnTe with resonant levels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Min; Han, Yemao; Li, Laifeng, E-mail: laifengli@mail.ipc.ac.cn, E-mail: wangheng83@gmail.com [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Gibbs, Zachary M. [Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. Pasadena, California 91125 (United States); Wang, Heng, E-mail: laifengli@mail.ipc.ac.cn, E-mail: wangheng83@gmail.com [Materials Science, California Institute of Technology, 1200 California Blvd., Pasadena, California 91125 (United States); Snyder, G. Jeffrey [Materials Science, California Institute of Technology, 1200 California Blvd., Pasadena, California 91125 (United States); TMO University, Saint Petersburg 197101 (Russian Federation)

    2016-07-25

    Some group III elements such as Indium are known to produce the resonant impurity states in IV-VI compounds. The discovery of these impurity states has opened up new ways for engineering the thermoelectric properties of IV-VI compounds. In this work, resonant states in SnTe were studied by co-doping with both resonant (In) and extrinsic (Ag, I) dopants. A characteristic nonlinear relationship was observed between the Hall carrier concentration (n{sub H}) and extrinsic dopant concentration (N{sub I}, N{sub Ag}) in the stabilization region, where a linear increase of dopant concentration does not lead to linear response in the measured n{sub H}. Upon substituting extrinsic dopants beyond a certain amount, the n{sub H} changed proportionally with additional dopants (Ag, I) (the doping region). The Seebeck coefficients are enhanced as the resonant impurity is introduced, whereas the use of extrinsic doping only induces minor changes. Modest zT enhancements are observed at lower temperatures, which lead to an increase in the average zT values over a broad range of temperatures (300–773 K). The improved average zT obtained through co-doping indicates the promise of fine carrier density control in maximizing the favorable effect of resonant levels for thermoelectric materials.

  18. A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging

    Directory of Open Access Journals (Sweden)

    Bo Xie

    2015-09-01

    Full Text Available This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months, a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%.

  19. Characterisation by nuclear magnetic resonance of the β catalytic subunit of the chloroplastic coupling factor

    International Nuclear Information System (INIS)

    Andre, Francois

    1986-09-01

    This academic work addressed the use of nuclear magnetic resonance (NMR) for the structural and dynamic study of the catalytic sub-unit of the extrinsic section of a membrane complex, the chloroplastic H+-ATPase. This work included the development of a protocol of preparation and quantitative purification of β subunits isolated from the CF1 for the elaboration of a concentrated sample for NMR, and then the study of the β subunit by using proton NMR

  20. Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators

    International Nuclear Information System (INIS)

    Chen Qiong; Yang Wanli; Feng Mang; Du Jiangfeng

    2011-01-01

    We propose a potentially practical scheme to entangle negatively charged nitrogen-vacancy (N-V) centers in distant diamonds. Each diamond is supposed to be fixed on the exterior surface of a microtoroidal resonator, and the single-photon input-output process - a currently available technique - could entangle separate N-V centers in a scalable fashion. The feasibility of our scheme and the experimental challenge are discussed by considering currently available techniques for qualified N-V centers and cavities.

  1. Grating-coupled surface plasmon resonance gas sensing based on titania anatase nanoporous films

    Science.gov (United States)

    Gazzola, Enrico; Cittadini, Michela; Brigo, Laura; Brusatin, Giovanna; Guglielmi, Massimo; Romanato, Filippo; Martucci, Alessandro

    2015-08-01

    Nanoporous TiO2 anatase film has been investigated as sensitive layer in Surface Plasmon Resonance sensors for the detection of hydrogen and Volatile Organic Compounds, specifically methanol and isopropanol. The sensors consist of a TiO2 nanoporous matrix deposited above a metallic plasmonic grating, which can support propagating Surface Plasmon Polaritons. The spectral position of the plasmonic resonance dip in the reflectance spectra was monitored and correlated to the interaction with the target gases. Reversible blue-shifts of the resonance frequency, up to more than 2 THz, were recorded in response to the exposure to 10000 ppm of H2 in N2 at 300°C. This shift cannot be explained by the mere refractive index variation due to the target gas filling the pores, that is negligible. Reversible red-shifts were instead recorded in response to the exposure to 3000 ppm of methanol or isopropanol at room temperature, of magnitudes up to 14 THz and 9 THz, respectively. In contrast, if the only sensing mechanism was the mere pores filling, the shifts should have been larger during the isopropanol detection. We therefore suggest that other mechanisms intervene in the analyte/matrix interaction, capable to produce an injection of electrons into the sensitive matrix, which in turn induces a decrease of the refractive index.

  2. Flat-top passband filter based on parallel-coupled double microring resonators in silicon

    Science.gov (United States)

    Huang, Qingzhong; Xiao, Xi; Li, Yuntao; Li, Zhiyong; Yu, Yude; Yu, Jinzhong

    2009-08-01

    Optical filters with box-like response were designed and realized based on parallel-coupled double microrings in silicon-on-insulator. The properties of this design are simulated, considering the impact of the center-to-center distance of two rings, and coupling efficiency. Flat-top passband in the drop channel of the fabricated device was demonstrated with a 1dB bandwidth of 0.82nm, a 1dB/10dB bandwidth ratio of 0.51, an out of band rejection ratio of 14.6dB, as well as a free spectrum range of 13.6nm.

  3. Rotation gate for a three-level superconducting quantum interference device qubit with resonant interaction

    International Nuclear Information System (INIS)

    Yang, C.-P.; Han Siyuan

    2006-01-01

    We show a way to realize an arbitrary rotation gate in a three-level superconducting quantum interference device (SQUID) qubit using resonant interaction. In this approach, the two logical states of the qubit are represented by the two lowest levels of the SQUID and a higher-energy intermediate level is utilized for the gate manipulation. By considering spontaneous decay from the intermediate level during the gate operation, we present a formula for calculating average fidelity over all possible initial states. Finally, based on realistic system parameters, we show that an arbitrary rotation gate can be achieved with a high fidelity in a SQUID

  4. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    Science.gov (United States)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  5. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission.

    Science.gov (United States)

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-09-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor ( Q ) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory.

  6. Dynamics of a quantum emitter resonantly coupled to both external field and localized surface plasmon

    DEFF Research Database (Denmark)

    Nerkararyan, Khachatur V.; Yezekyan, Torgom S.; Bozhevolnyi, Sergey I.

    2018-01-01

    electromagnetic field. Considering the QDE-field interactions in the regime of strong QDE-field coupling, we show that the feedback provided by the MNP on the QDE (due to the LSP excitation with the field generated by the dipole moment of the QDE transition) influences significantly the coherent process of Rabi...

  7. Using the Δ3 statistic to test for missed levels in mixed sequence neutron resonance data

    International Nuclear Information System (INIS)

    Mulhall, Declan

    2009-01-01

    The Δ 3 (L) statistic is studied as a tool to detect missing levels in the neutron resonance data where two sequences are present. These systems are problematic because there is no level repulsion, and the resonances can be too close to resolve. Δ 3 (L) is a measure of the fluctuations in the number of levels in an interval of length L on the energy axis. The method used is tested on ensembles of mixed Gaussian orthogonal ensemble spectra, with a known fraction of levels (x%) randomly depleted, and can accurately return x. The accuracy of the method as a function of spectrum size is established. The method is used on neutron resonance data for 11 isotopes with either s-wave neutrons on odd-A isotopes, or p-wave neutrons on even-A isotopes. The method compares favorably with a maximum likelihood method applied to the level spacing distribution. Nuclear data ensembles were made from 20 isotopes in total, and their Δ 3 (L) statistics are discussed in the context of random matrix theory.

  8. Strain and order-parameter coupling in Ni-Mn-Ga Heusler alloys from resonant ultrasound spectroscopy

    Science.gov (United States)

    Salazar Mejía, C.; Born, N.-O.; Schiemer, J. A.; Felser, C.; Carpenter, M. A.; Nicklas, M.

    2018-03-01

    Resonant ultrasound spectroscopy and magnetic susceptibility experiments have been used to characterize strain coupling phenomena associated with structural and magnetic properties of the shape-memory Heusler alloy series Ni50 +xMn25 -xGa25 (x =0 , 2.5, 5.0, and 7.5). All samples exhibit a martensitic transformation at temperature TM and ferromagnetic ordering at temperature TC, while the pure end member (x =0 ) also has a premartensitic transition at TP M, giving four different scenarios: TC>TP M>TM,TC>TM without premartensitic transition, TC≈TM , and TCcoupling of shear strains with three discrete order parameters relating to magnetic ordering, a soft mode, and the electronic instability responsible for the large strains typical of martensitic transitions. Linear-quadratic or biquadratic coupling between these order parameters, either directly or indirectly via the common strains, is then used to explain the stabilities of the different structures. Acoustic losses are attributed to critical slowing down at the premartensite transition, to the mobility of interphases between coexisting phases at the martensitic transition, and to mobility of some aspect of the twin walls under applied stress down to the lowest temperatures at which measurements were made.

  9. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    International Nuclear Information System (INIS)

    Haverkort, Maurits W.

    2016-01-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty , a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org. (paper)

  10. A Dyadic Analysis of Relationships and Health: Does Couple-Level Context Condition Partner Effects?

    OpenAIRE

    Barr, Ashley B.; Simons, Ronald L.

    2014-01-01

    Adding to the growing literature explicating the links between romantic relationships and health, this study examined how both couple-level characteristics, particularly union type (e.g. dating, cohabiting, or marriage) and interracial pairing, and interpersonal characteristics (e.g. partner strain and support) predicted young adults’ physical and mental health. Using dyadic data from a sample of 249 young, primarily African American couples, we hypothesized and found support for the importan...

  11. The Effect of Provision of Information Regarding Infertility Treatment Strategies on Anxiety Level of Infertile Couples

    Directory of Open Access Journals (Sweden)

    Mustafa Hamdieh

    2009-01-01

    Full Text Available Background: Infertility may have many emotional and psychological implications on infertilecouples. So far, different methods for reducing anxiety in infertile couples have been evaluated. Thegoal of this study is to evaluate the effect of provision of information regarding infertility treatmentto infertile couples on their anxiety levels.Materials and Methods: This study was conducted as a before and after clinical trial. Forty-twoindividuals were considered as cases and 40 as controls. In order to evaluate anxiety and depressionin participants, the Hamilton Anxiety and Depression Scale (HADS questionnaire was used. Theintervention group received information about infertility treatment through a two hour face-to-facemeeting and was provided with a brochure. Anxiety level was assessed at the time of admission,immediately after the session and two weeks later. Assessment was performed twice for the controlgroup; once at the time of admission and secondly, two weeks later.Results: Our results show that receiving information about infertility treatment significantlydecreases anxiety among infertile couples two weeks post-training. This decline does not have asignificant correlation with age, sex, education level of the couple, and neither with the durationnor the cause of infertility. Providing information does not have any significant effect on the rate ofdepression among couples.Conclusion: It is recommended that provision of information regarding infertility treatmentmethods should be considered as a means of decreasing anxiety among infertile couples who referto infertility treatment centers.

  12. Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator

    International Nuclear Information System (INIS)

    Teufel, J D; Regal, C A; Lehnert, K W

    2008-01-01

    Recent theoretical work has shown that radiation pressure effects can in principle cool a mechanical degree of freedom to its ground state. In this paper, we apply this theory to our realization of an optomechanical system in which the motion of mechanical oscillator modulates the resonance frequency of a superconducting microwave circuit. We present experimental data demonstrating the large mechanical quality factors possible with metallic, nanomechanical beams at 20 mK. Further measurements also show damping and cooling effects on the mechanical oscillator due to the microwave radiation field. These data motivate the prospects for employing this dynamical backaction technique to cool a mechanical mode entirely to its quantum ground state.

  13. Search for W(prime) → tb resonances with left- and right-handed couplings to fermions

    International Nuclear Information System (INIS)

    2011-01-01

    We present a search for the production of a heavy gauge boson, W(prime), that decays to third-generation quarks, by the D0 Collaboration in p(bar p) collisions at √s = 1.96 TeV. We set 95% confidence level upper limits on the production cross section times branching fraction. For the first time, we set limits for arbitrary combinations of left- and right-handed couplings of the W(prime) boson to fermions. For couplings with the same strength as the standard model W boson, we set the following limits for M(W(prime)) > m(ν R ): M(W(prime)) > 863 GeV for purely left-handed couplings, M(W(prime)) > 885 GeV for purely right-handed couplings, and M(W(prime)) > 916 GeV if both left- and right-handed couplings are present. The limit for right-handed couplings improves for M(W(prime)) R ) to M(W(prime)) > 890 GeV.

  14. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  15. Induced dipole-dipole coupling between two atoms at a migration resonance

    Science.gov (United States)

    Kaur, Maninder; Mian, Mahmood

    2018-05-01

    Results of numerical simulations for the resonant energy exchange phenomenon called Migration reaction between two cold Rydberg atoms are presented. The effect of spatial interatomic distance on the onset of peculiar coherent mechanism is investigated. Observation of Rabi-like population inversion oscillation at the resonance provides a clear signature of dipole induced exchange of electronic excitations between the atoms. Further we present the results for the dependence of expectation value of the interaction hamiltonian on the interatomic distance, which is responsible for energy exchange process. The results of this observation endorse the range of inter atomic distance within which the excitation exchange process occurs completely or partially. Migration process enhance the Rydberg-Rydberg interaction in the absence of an external field, under the condition of the zero permanent dipole moments. Our next observation sheds light on the fundamental mechanism of induced electric fields initiated by the oscillating dipoles in such energy exchange processes. We explore the dependence of induced electric field on the interatomic distance and angle between the dipoles highlighting the inverse power law dependence and anisotropic property of the field. We put forward an idea to utilise the coherent energy exchange process to build efficient and fast energy transfer channels by incorporating more atoms organised at successive distances with decreasing distance gradient.

  16. Calculation of the probability of overlapping one family of nuclear levels with resonances of an independent family

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1982-01-01

    Calculations of the resonance integrals of particular isotopes in a mixture of isotopes show that the overlapping of the resonances of one isotope by resonances of other isotopes affects the final values of effective cross sections. The same effect might adversely influence those nondestructive techniques which assay fissile materials on the basis of resonance effects. Of relevance for these applications is the knowledge of the probability of overlapping resonances of a family of nuclear levels (class 1) with resonances of an independent family (class 2). For the sequence of class 1 resonances we calculate the probability distribution, p(delta), to find a class 2, first-neighbor resonance at distance (in energy) delta from a class 1 resonance; integration of p(delta) over the average finite width of the resonances would give the aforementioned probability of overlapping. Because a class 1 resonance can have a class 1 or a class 2 resonance as a first neighbor, the resultant p(delta) is not given by the distribution of spacings of the composite family

  17. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    International Nuclear Information System (INIS)

    Breger, M.; Montgomery, M. H.

    2014-01-01

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day –1 (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day –1 in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  18. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    Energy Technology Data Exchange (ETDEWEB)

    Breger, M.; Montgomery, M. H. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2014-03-10

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  19. Pseudo-orbit approach to trajectories of resonances in quantum graphs with general vertex coupling: Fermi rule and high-energy asymptotics

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Lipovský, J.

    2017-01-01

    Roč. 58, č. 4 (2017), č. článku 042101. ISSN 0022-2488 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : self-adjoint coupling * high-energy regime * resonances in quantum graphs Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.077, year: 2016

  20. Dresselhaus spin-orbit coupling induced spin-polarization and resonance-split in n-well semiconductor superlattices

    International Nuclear Information System (INIS)

    Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.

    2009-01-01

    Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure

  1. Wireless Power Supply via Coupled Magnetic Resonance for on-line Monitoring Wireless Sensor of High-voltage Electrical Equipment

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Yudi, Xiao

    2016-01-01

    On-line monitoring of high-voltage electrical equipment (HV-EE) aiming to detect faults effectively has become crucial to avoid serious accidents. Moreover, highly reliable power supplies are the key component for the wireless sensors equipped in such on-line monitoring systems. Therefore......, in this paper, the wireless power supply via coupled magnetic resonance (MR-WPS) is proposed for powering the wireless sensor and the associated wireless sensor solution is also proposed. The key specifications of the MR-WPS working in switchgear cabinet with a harsh operation environment are analyzed...... power is able to be delivered to the wireless sensor through the designed MR-WPS, and therefore the theoretical analysis and design is verified....

  2. Resonant mode for a dc plasma spray torch by means of pressure–voltage coupling: application to synchronized liquid injection

    International Nuclear Information System (INIS)

    Krowka, J; Rat, V; Coudert, J F

    2013-01-01

    Electric arc instabilities in dc plasma torches result in non-homogeneous treatment of nanosized solid particles injected into the plasma jets. In the particular case of suspension plasma spraying, large discrepancies in the particles trajectories and thermal histories make the control of coating properties more difficult to achieve. In this paper, a new approach of arc dynamics highlights the existence of different resonant modes and the possibility of their coupling. This study leads us to design a special plasma torch working in a very regular pulsed regime. Then, an innovative injection system based on the drop-on-demand method synchronized with the plasma oscillations is presented as an efficient method to control the dynamics of plasma/particles interactions. (paper)

  3. Cavity quantum electrodynamics using a near-resonance two-level system: Emergence of the Glauber state

    Energy Technology Data Exchange (ETDEWEB)

    Sarabi, B.; Ramanayaka, A. N. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Burin, A. L. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Wellstood, F. C. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Osborn, K. D. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)

    2015-04-27

    Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm{sup 3}), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.

  4. A dyadic analysis of relationships and health: does couple-level context condition partner effects?

    Science.gov (United States)

    Barr, Ashley B; Simons, Ronald L

    2014-08-01

    Adding to the growing literature explicating the links between romantic relationships and health, this study examined how both couple-level characteristics, particularly union type (e.g., dating, cohabiting, or marriage) and interracial pairing, and interpersonal characteristics (e.g., partner strain and support), predicted young adults' physical and mental health. Using dyadic data from a sample of 249 young, primarily Black couples, we hypothesized and found support for the importance of couple-level context, partner behavior, and their interaction in predicting health. Interracial couples (all Black/non-Black pairings) reported worse health than monoracial Black couples. Union type, however, did not directly predict health but was a significant moderator of partner strain. That is, the negative association between partner strain and self-reported health was stronger for cohabiting and married couples versus their dating counterparts, suggesting that coresidence, more so than marital status, may be important for understanding partner effects on physical health. For psychological distress, however, partner support proved equally beneficial across union types.

  5. A Dyadic Analysis of Relationships and Health: Does Couple-Level Context Condition Partner Effects?

    Science.gov (United States)

    Barr, Ashley B.; Simons, Ronald L.

    2014-01-01

    Adding to the growing literature explicating the links between romantic relationships and health, this study examined how both couple-level characteristics, particularly union type (e.g. dating, cohabiting, or marriage) and interracial pairing, and interpersonal characteristics (e.g. partner strain and support) predicted young adults’ physical and mental health. Using dyadic data from a sample of 249 young, primarily African American couples, we hypothesized and found support for the importance of couple-level context, partner behavior, and their interaction in predicting health. Interracial couples (all Black/non-Black pairings) reported worse health than monoracial Black couples. Union type, however, did not directly predict health but was a significant moderator of partner strain. That is, the negative association between partner strain and self-reported health was stronger for cohabiting and married couples versus their dating counterparts, suggesting that coresidence more so than marital status may be important for understanding partner effects on physical health. For psychological distress, however, partner support proved equally beneficial across union types. PMID:25090254

  6. A low-level rf control system for a quarter-wave resonator

    Science.gov (United States)

    Kim, Jongwon; Hwang, Churlkew

    2012-06-01

    A low-level rf control system was designed and built for an rf deflector, which is a quarter wave resonator, and was designed to deflect a secondary electron beam to measure the bunch length of an ion beam. The deflector has a resonance frequency near 88 MHz, its required phase stability is approximately ±1° and its amplitude stability is less than ±1%. The control system consists of analog input and output components and a digital system based on a field-programmable gate array for signal processing. The system is cost effective, while meeting the stability requirements. Some basic properties of the control system were measured. Then, the capability of the rf control was tested using a mechanical vibrator made of a dielectric rod attached to an audio speaker system, which could induce regulated perturbations in the electric fields of the resonator. The control system was flexible so that its parameters could be easily configured to compensate for the disturbance induced in the resonator.

  7. Coupling of sea level and tidal range changes, with implications for future water levels.

    Science.gov (United States)

    Devlin, Adam T; Jay, David A; Talke, Stefan A; Zaron, Edward D; Pan, Jiayi; Lin, Hui

    2017-12-05

    Are perturbations to ocean tides correlated with changing sea-level and climate, and how will this affect high water levels? Here, we survey 152 tide gauges in the Pacific Ocean and South China Sea and statistically evaluate how the sum of the four largest tidal constituents, a proxy for the highest astronomical tide (HAT), changes over seasonal and interannual time scales. We find that the variability in HAT is significantly correlated with sea-level variability; approximately 35% of stations exhibit a greater than ±50 mm tidal change per meter sea-level fluctuation. Focusing on a subset of three stations with long records, probability density function (PDF) analyses of the 95% percentile exceedance of total sea level (TSL) show long-term changes of this high-water metric. At Hong Kong, the increase in tides significantly amplifies the risk caused by sea-level rise. Regions of tidal decrease and/or amplification highlight the non-linear response to sea-level variations, with the potential to amplify or mitigate against the increased flood risk caused by sea-level rise. Overall, our analysis suggests that in many regions, local flood level determinations should consider the joint effects of non-stationary tides and mean sea level (MSL) at multiple time scales.

  8. Biosensing with Förster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes

    Directory of Open Access Journals (Sweden)

    Shaowei Ding

    2015-06-01

    Full Text Available Nanocarbon allotropes (NCAs, including zero-dimensional carbon dots (CDs, one-dimensional carbon nanotubes (CNTs and two-dimensional graphene, exhibit exceptional material properties, such as unique electrical/thermal conductivity, biocompatibility and high quenching efficiency, that make them well suited for both electrical/electrochemical and optical sensors/biosensors alike. In particular, these material properties have been exploited to significantly enhance the transduction of biorecognition events in fluorescence-based biosensing involving Förster resonant energy transfer (FRET. This review analyzes current advances in sensors and biosensors that utilize graphene, CNTs or CDs as the platform in optical sensors and biosensors. Widely utilized synthesis/fabrication techniques, intrinsic material properties and current research examples of such nanocarbon, FRET-based sensors/biosensors are illustrated. The future outlook and challenges for the research field are also detailed.

  9. Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: t.kobayashi@unsw.edu.au; Heijden, J. van der; House, M. G.; Hile, S. J.; Asshoff, P.; Simmons, M. Y.; Rogge, S. [Centre for Quantum Computation and Communication Technology, University of New South Wales, Sydney 2052 New South Wales (Australia); Gonzalez-Zalba, M. F. [Hitachi Cambridge Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Vinet, M. [Université Grenoble-Alpes and CEA, LETI, MINATEC, 38000 Grenoble (France)

    2016-04-11

    We report on electronic transport measurements through a silicon double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO{sub 2} interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160 and 240 μeV with an electric field dependence 1.2 ± 0.2 meV/(MV/m). A large valley splitting is an essential requirement for implementing a physical electron spin qubit in a silicon quantum dot.

  10. Effect of coupling behavior on groundwater flow for geological disposal of radioactive high level waste

    International Nuclear Information System (INIS)

    Kurikami, Hiroshi; Kobayashi, Akira; Ohnishi, Yuzo; Chijimatsu, Masakazu

    2003-01-01

    In order to estimate the effects of coupled thermal-hydraulic-mechanical phenomena in near-field for geological disposal of high-level radioactive waste on a vast groundwater flow system, a far-field analysis was simulated based on the results of the simulation of coupled phenomena in near-field using averaged tensor and heat flux. From the results of the coupled analyses of near-field and far-field it was clarified that groundwater flow system was influenced by coupled phenomena in near-field. Moreover, it can be said that groundwater flux into a disposal tunnel is regarded as a complement to safety assessment of a disposal because it strongly correlates with traveling time of groundwater. (author)

  11. Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings

    Science.gov (United States)

    Szalai, A.; Szekeres, G.; Balázs, J.; Somogyi, A.; Csete, Maria

    2013-09-01

    Theoretical investigation of rotated grating coupling phenomenon was performed on a multilayer comprising 416-nmperiodic shallow rectangular polymer grating on bimetal film made of gold and silver layers. During the multilayer illumination by 532 nm wavelength p-polarized light the polar and azimuthal angles were varied. In presence of 0-35 nm, 0-50 nm and 15-50 nm thick polymer-layers at the valleys and hills splitting was observed on the dual-angle dependent reflectance in two regions: (i) close to 0° azimuthal angle corresponding to incidence plane parallel to the periodic pattern (P-orientation); and (ii) around ~33.5°/29°/30° azimuthal angle (C-orientation), in agreement with our previous experimental studies. The near-field study revealed that in P-orientation the E-field is enhanced at the glass side with p/2 periodicity at the first minimum appearing at 49°/50°/52° polar angles, and comprises maxima below both the valleys and hills; while E-field enhancement is observable both at the glass and polymer side with p-periodicity at the second minimum developing at 55°/63/64° tilting, comprising maxima intermittently below the valleys or above the hills. In Corientation coupled plasmonic modes are observable, involving modes propagating along the valleys at the secondary maxima appearing at ~35°/32°/32° azimuthal and ~49°/51°/56° polar angles, while modes confined along the polymer hills are observable at the primary minima, which are coupled most strongly at the ~31.5°/25°/28° azimuthal and ~55°/63°/66° polar angles. The secondary peak observable in C-orientation is proposed for biosensing applications, since the supported modes are confined along the valleys, where biomolecules prefer to attach.

  12. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    Science.gov (United States)

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  13. Wireless Power Transmission to Organic Light Emitting Diode Lighting Panel with Magnetically Coupled Resonator

    Science.gov (United States)

    Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong

    2012-09-01

    We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.

  14. Non-linear interactions of multi-level atoms with a near-resonant standing wave

    International Nuclear Information System (INIS)

    O'Kane, T.J.; Scholten, R.E.; Walkiewicz, M.R.; Farrell, P.M.

    1998-01-01

    Using a semiclassical density matrix formalism we have calculated the behavior of multi-level atoms interacting with a standing wave field, and show how complex non-linear phenomena, including multi-photon effects, combine to produce saturation spectra as observed in experiments. We consider both 20-level sodium and 24-level rubidium models, contrasting these with a simple 2-level case. The influence of parameters such as atomic trajectory and the time the atom remains in the beam are shown to have a critical effect on the lineshape of these resonances and the emission/absorption processes. Stable oscillations in the excited state populations for both the two-level and multi-level cases are shown to be limit cycles. These limit cycles undergo period doubling as the system evolves into chaos. Finally, using a Monte Carlo treatment, these processes average to produce saturated absorption spectra complete with power and Doppler broadening effects consistent with experiment. (authors)

  15. A discussion of coupling and resonance effects for integrated systems consisting of subsystems

    International Nuclear Information System (INIS)

    Lin, C.W.; Liu, T.H.

    1975-01-01

    Three representative cases are studied to evaluate the interaction effect and to establish the need to include both stiffness and mass of the interacting systems in the system model. The first case is a supported system supported by a two-degrees-of-freedom supporting system. The second case represents two single degree of freedom systems, each supported by itself, but interconnected by a spring. The third case is a single degree of freedom system supported by another single degree of freedom supporting system. In each of the three case studied, the interaction effect is first measured by the difference in their natural frequencies for both the coupled system and the uncoupled systems. Although natural frequencies are important to the dynamic analysis of a system, the ultimate decision of whether the mathematical model is realistic depends on the result of the system response it predicts. With this in mind, case three is then studied with a white noise input. It is found that the root mean square response of both the supporting systems are substantially lower when coupled than when the systems are analyzed separately. Based on the results of this study, guidelines are provided for the subdivision into subsystems. (orig./HP) [de

  16. Controlling the optical bistability beyond the multi-photon resonance condition in a three-level closed-loop atomic system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Nozari, Narges; Vafafard, Azar; Sahrai, Mostafa

    2012-01-01

    We investigate the optical bistability behavior of a three-level closed-loop atomic system beyond the multi-photon resonance condition. Using the Floquet decomposition, we solve the time-dependent equations of motion, beyond the multi-photon resonance condition. By identifying the different scattering processes contributing to the medium response, it is shown that in general the optical bistability behavior of the system is not phase-dependent. The phase dependence is due to the scattering of the driving and coupling fields into the probe field at a frequency, which, in general, differs from the probe field frequency. - Highlights: → We investigate optical bistability of a three-level closed-loop atomic system, beyond the multi-photon resonance condition. → By applying Floquet decomposition to the equation of motion, the different scattering processes contributing to the medium response are determined. → It is shown that the phase dependence of optical bistability arises from the scattering of the driving and coupling fields into the probe field frequency.

  17. Proton resonance spectroscopy

    International Nuclear Information System (INIS)

    Shriner, J.F. Jr.

    1991-11-01

    This report discusses the following topics: Complete Level Scheme for 30 P; A Search for Resonances Suitable for Tests of Detailed-Balance Violation; The Fourier Transform as a Tool for Detecting Chaos; Entrance Channel Correlations in p + 27 Al; The Parity Dependence of Level Densities in 49 V; and A Computer Program for the Calculation of Angular Momentum Coupling

  18. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber.

    Science.gov (United States)

    Rossi, Stefano; Gazzola, Enrico; Capaldo, Pietro; Borile, Giulia; Romanato, Filippo

    2018-05-18

    Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30⁻50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration.

  19. Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs

    Science.gov (United States)

    Wang, Guo-You; Guo, You-Neng; Zeng, Ke

    2015-11-01

    We consider the optimal parameter estimation for a two-level system coupled to multiple bosonic reservoirs. By using quantum Fisher information (QFI), we investigate the effect of the Markovian reservoirs’ number N on QFI in both weak and strong coupling regimes for a two-level system surrounded by N zero-temperature reservoirs of field modes initially in the vacua. The results show that the dynamics of QFI non-monotonically decays to zero with revival oscillations at some time in the weak coupling regime depending on the reservoirs’ parameters. Furthermore, we also present the relations between the QFI flow, the flows of energy and information, and the sign of the decay rate to gain insight into the physical processes characterizing the dynamics. Project supported by the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2014B194) and the Scientific Research Foundation of Hunan Provincial Education Department, China (Grant No. 13C039).

  20. ESTIMA, Neutron Width Level Spacing, Neutron Strength Function of S- Wave, P-Wave Resonances

    International Nuclear Information System (INIS)

    Fort, E.

    1982-01-01

    1 - Description of problem or function: ESTIMA calculates level spacing and neutron strength function of a mixed sequence of s- and p-wave resonances given a set of neutron widths as input parameters. Three algorithms are used, two of which calculate s-wave average parameters and assume that the reduced widths obey a Porter-Thomas distribution truncated by a minimum detection threshold. The third performs a maximum likelihood fit to a truncated chi-squared distribution of any specified number of degrees of freedom, i.e. it can be used for calculating s-wave or p-wave average parameters. Resonances of undeclared angular orbital momentum are divided into groups of probable s-wave and probable p-wave by a simple application of Bayes' Theorem. 2 - Method of solution: Three algorithms are used: i) GAMN method, based on simple moments properties of a Porter-Thomas distribution. ii) Missing Level Estimator, a simplified version of the algorithm used by the program BAYESZ. iii) ESTIMA, a maximum likelihood fit. 3 - Restrictions on the complexity of the problem: A maximum of 400 resonances is allowed in the version available from NEADB, however this restriction can be relaxed by increasing array dimensions

  1. ΛN-ΣN interaction with isobar coupling and six-quark resonances

    International Nuclear Information System (INIS)

    Greenberg, W.R.; Lomon, E.L.

    1993-01-01

    The long-range ΛN-ΣN interaction is modeled by a configuration-space meson-exchange potential matrix coupling to channels with Δ and Σ(1385) isobars. An inner boundary condition, based on R-matrix theory, replaces form factors for short-range effects and includes the effects of free quark configurations. An excellent fit is obtained to the available data, with only the energy-independent boundary conditions as free parameters. The effect of isobar thresholds is shown to be substantial in several partial waves and is crucial to the understanding of the higher-energy ΛN elastic scattering data. The positions and widths of [q(1s 1/2 )] 5 s(1s 1/2 ) quark exotics are predicted

  2. Optimum Design of a Nonlinear Vibration Absorber Coupled to a Resonant Oscillator: A Case Study

    Directory of Open Access Journals (Sweden)

    H. F. Abundis-Fong

    2018-01-01

    Full Text Available This paper presents the optimal design of a passive autoparametric cantilever beam vibration absorber for a linear mass-spring-damper system subject to harmonic external force. The design of the autoparametric vibration absorber is obtained by using an approximation of the nonlinear frequency response function, computed via the multiple scales method. Based on the solution given by the perturbation method mentioned above, a static optimization problem is formulated in order to determine the optimum parameters (mass and length of the nonlinear absorber which minimizes the steady state amplitude of the primary mass under resonant conditions; then, a PZT actuator is cemented to the base of the beam, so the nonlinear absorber is made active, thus enabling the possibility of controlling the effective stiffness associated with the passive absorber and, as a consequence, the implementation of an active vibration control scheme able to preserve, as possible, the autoparametric interaction as well as to compensate varying excitation frequencies and parametric uncertainty. Finally, some simulations and experimental results are included to validate and illustrate the dynamic performance of the overall system.

  3. Resonance Fluorescence of a Trapped Four-Level Atom with Bichromatic Driving

    International Nuclear Information System (INIS)

    Bergou, J.; Jakob, M.; Abranyos, Y.

    1999-01-01

    The resonance fluorescence spectrum of a bichromatically driven four-level atom is polarization dependent. Very narrow lines occur in the incoherent parts of the spectrum for polarization directions which are different from that of the driving fields. The degree of squeezing has a maximum of 56% which should make it easily observable. The second-order correlation function exhibits anti bunching for zero time delay and strong super bunching for certain values of the interaction parameter and time delay. For these parameters resonant two-photon emission takes place in the form of polarization entangled photon pairs. The system can be a novel source of photons in the EPR and/or Bell states. Some experiments will be proposed which make use of this unique source. (Authors)

  4. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems bot...

  5. Calculations of the giant-dipole-resonance photoneutrons using a coupled EGS4-morse code

    International Nuclear Information System (INIS)

    Liu, J.C.; Nelson, W.R.; Kase, K.R.; Mao, X.S.

    1995-10-01

    The production and transport of the photoneutrons from the giant-dipoleresonance reaction have been implemented in a coupled EGS4-MORSE code. The total neutron yield (including both the direct neutron and evaporation neutron components) is calculated by folding the photoneutron yield cross sections with the photon track length distribution in the target. Empirical algorithms based on the measurements have been developed to estimate the fraction and energy of the direct neutron component for each photon. The statistical theory in the EVAP4 code, incorporated as a MORSE subroutine, is used to determine the energies of the evaporation neutrons. These represent major improvements over other calculations that assumed no direct neutrons, a constant fraction of direct neutrons, monoenergetic direct neutron, or a constant nuclear temperature for the evaporation neutrons. It was also assumed that the slow neutrons ( 2 θ, which have a peak emission at 900. Comparisons between the calculated and the measured photoneutron results (spectra of the direct, evaporation and total neutrons; nuclear temperatures; direct neutron fractions) for materials of lead, tungsten, tantalum and copper have been made. The results show that the empirical algorithms, albeit simple, can produce reasonable results over the interested photon energy range

  6. Is the fact of parenting couples cohabitation affecting the serum levels of persistent organohalogen pollutants?

    DEFF Research Database (Denmark)

    Góralczyk, Katarzyna; Struciński, Paweł; Wojtyniak, Bogdan

    2015-01-01

    Organohalogen compounds constitute one of the important groups of persistent organic pollutants (POPs). Among them, due to their long-term health effects, one should pay attention on organochlorine pesticides, polychlorinated biphenyls (PCBs) and perfluoroalkylated substances (PFASs). This paper...... is an attempt to answer the question about relation between the fact of cohabitation by couples expecting a child and the level of the organohalogen compounds in the blood serum of both parents. The study was done on a population of parent couples from Greenland, Poland and Ukraine, from whom blood samples were...

  7. Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays

    Science.gov (United States)

    Hofmann, Ulrich; Oldsen, Marten; Quenzer, Hans-Joachim; Janes, Joachim; Heller, Martin; Weiss, Manfred; Fakas, Georgios; Ratzmann, Lars; Marchetti, Eleonora; D'Ascoli, Francesco; Melani, Massimiliano; Bacciarelli, Luca; Volpi, Emilio; Battini, Francesco; Mostardini, Luca; Sechi, Francesco; De Marinis, Marco; Wagner, Bernd

    2008-02-01

    Scanning laser projection using resonant actuated MEMS scanning mirrors is expected to overcome the current limitation of small display size of mobile devices like cell phones, digital cameras and PDAs. Recent progress in the development of compact modulated RGB laser sources enables to set up very small laser projection systems that become attractive not only for consumer products but also for automotive applications like head-up and dash-board displays. Within the last years continuous progress was made in increasing MEMS scanner performance. However, only little is reported on how mass-produceability of these devices and stable functionality even under harsh environmental conditions can be guaranteed. Automotive application requires stable MEMS scanner operation over a wide temperature range from -40° to +85°Celsius. Therefore, hermetic packaging of electrostatically actuated MEMS scanning mirrors becomes essential to protect the sensitive device against particle contamination and condensing moisture. This paper reports on design, fabrication and test of a resonant actuated two-dimensional micro scanning mirror that is hermetically sealed on wafer level. With resonant frequencies of 30kHz and 1kHz, an achievable Theta-D-product of 13mm.deg and low dynamic deformation <20nm RMS it targets Lissajous projection with SVGA-resolution. Inevitable reflexes at the vacuum package surface can be seperated from the projection field by permanent inclination of the micromirror.

  8. A theoretical study of exciton energy levels in laterally coupled quantum dots

    International Nuclear Information System (INIS)

    Barticevic, Z; Pacheco, M; Duque, C A; Oliveira, L E

    2009-01-01

    A theoretical study of the electronic and optical properties of laterally coupled quantum dots, under applied magnetic fields perpendicular to the plane of the dots, is presented. The exciton energy levels of such laterally coupled quantum-dot systems, together with the corresponding wavefunctions and eigenvalues, are obtained in the effective-mass approximation by using an extended variational approach in which the magnetoexciton states are simultaneously obtained. One achieves the expected limits of one single quantum dot, when the distance between the dots is zero, and of two uncoupled quantum dots, when the distance between the dots is large enough. Moreover, present calculations-with appropriate structural dimensions of the two-dot system-are shown to be in agreement with measurements in self-assembled laterally aligned GaAs quantum-dot pairs and naturally/accidentally occurring coupled quantum dots in GaAs/GaAlAs quantum wells.

  9. Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines

    Science.gov (United States)

    Qian, Wei; Werner, Wendelin

    2018-06-01

    We point out a new simple way to couple the Gaussian Free Field (GFF) with free boundary conditions in a two-dimensional domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary-touching zero-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free boundary GFF. Constructions and couplings of the free boundary GFF and its level lines via soups of reflected Brownian loops and their clusters are also discussed. Such considerations show for instance that in a domain with an axis of symmetry, if one looks at the overlay of a single usual Conformal Loop Ensemble CLE3 with its own symmetric image, one obtains the CLE4-type collection of level lines of a GFF with mixed zero/free boundary conditions in the half-domain.

  10. Reproductive goals and family planning attitudes in Pakistan: a couple-level analysis.

    Science.gov (United States)

    Mahmood, N

    1998-01-01

    This paper examined reproductive goals and family planning attitudes at the couple level in Pakistan. Data were based on the responses of the 1260 matched couples in the 1990-91 Pakistan Demographic and Health Survey. The questions integrated in the interview were on desired fertility, family size ideas, son preference, and family planning attitude. Findings of the analysis showed that about 60% of the couples have given similar responses (agreeing either positively or negatively) to several fertility-related questions, whereas the remaining 40% differ in their attitudes. This divergence may partly be of the environmental factors such as spouse rural background, lack of education, and minimal communication between spouses. This implies that a couple's joint approval, discussion of family planning, and husband's desire for no more children have the strongest effect on promoting contraceptive use. Thus, it is concluded that the role of couple agreement is important in promoting the use of family planning, and men should be made equal targets of such programs in Pakistan.

  11. Spontaneous emission spectrum of a four-level atom coupled by three kinds of reservoirs

    International Nuclear Information System (INIS)

    Yang Dong; Wang Jian; Zhang, Hanzhuang; Yao Jinbo

    2007-01-01

    A model of a four-level atom embedded in a double-band photonic crystal (PC) is presented. The atomic transitions from the upper two levels to the lower two levels are coupled by the same reservoir which is assumed in turn to be isotropic PC modes, anisotropic PC modes and free vacuum modes. The effects of the fine structure of the atomic ground state levels and the quantum interference on the spontaneous emission spectrum of an atom are investigated in detail. Most interestingly, it is shown for the first time that new spontaneous emission lines are produced from the fine splitting of atomic ground state levels in the isotropic PC case. Quantum interference induces additional narrow spontaneous lines near the transition from the empty upper level to the lower levels

  12. State-level marriage equality and the health of same-sex couples.

    Science.gov (United States)

    Kail, Ben Lennox; Acosta, Katie L; Wright, Eric R

    2015-06-01

    We assessed the association between the health of people in same-sex relationships and the degree and nature of the legal recognition of same-sex relationships offered in the states in which they resided. We conducted secondary data analyses on the 2010 to 2013 Current Population Survey and publicly available data from Freedom to Marry, Inc. We estimated ordered logistic regression models in a 4-level framework to assess the impact of states' legal stances toward same-sex marriage on self-assessed health. Our findings indicated, relative to states with antigay constitutional amendments, that same-sex couples living in states with legally sanctioned marriage reported higher levels of self-assessed health. Our findings suggested that full legal recognition of same-sex relationships through marriage might be an important legal and policy strategy for improving the health of same-sex couples.

  13. A 5-μm pitch charge-coupled device optimized for resonant inelastic soft X-ray scattering

    Science.gov (United States)

    Andresen, N. C.; Denes, P.; Goldschmidt, A.; Joseph, J.; Karcher, A.; Tindall, C. S.

    2017-08-01

    We have developed a charge-coupled device (CCD) with 5 μm × 45 μm pixels on high-resistivity silicon. The fully depleted 200 μm-thick silicon detector is back-illuminated through a 10 nm-thick in situ doped polysilicon window and is thus highly efficient for soft through >8 keV hard X-rays. The device described here is a 1.5 megapixel CCD with 2496 × 620 pixels. The pixel and camera geometry was optimized for Resonant Inelastic X-ray Scattering (RIXS) and is particularly advantageous for spectrometers with limited arm lengths. In this article, we describe the device architecture, construction and operation, and its performance during tests at the Advance Light Source (ALS) 8.0.1 RIXS beamline. The improved spectroscopic performance, when compared with a current standard commercial camera, is demonstrated with a ˜280 eV (CK) X-ray beam on a graphite sample. Readout noise is typically 3-6 electrons and the point spread function for soft CK X-rays in the 5 μm direction is 4.0 μm ± 0.2 μm. The measured quantum efficiency of the CCD is greater than 75% in the range from 200 eV to 1 keV.

  14. Metabolic profile of Kudiezi injection in rats by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Zhang, Jingdan; Zhang, Xiaoxue; Zhao, Yangyang; Song, Aihua; Sun, Wei; Yin, Ran

    2018-02-01

    In this study, a reliable and sensitive ultra-high performance liquid chromatography coupled with fourier transform ion cyclotron resonance mass spectrometry method was developed for the systematic study of the metabolic profile of Kudiezi injection in rat plasma, bile, urine, and feces after intravenous administration of a single dose. The chromatographic separation was performed on an Agilent Eclipse Plus C 18 column (4.6 mm × 50 mm, 1.8 μm) and the identification of prototype components and metabolites was achieved on a Bruker Solarix 7.0 T ultra-high resolution spectrometer in negative ion mode. Results indicated that a total of 76 constituents including 29 prototype compounds and 47 metabolites (10 phase I metabolites and 37 phase II metabolites) were tentatively identified. And the metabolic pathways of these prototype compounds including hydroxylation, dehydrogenation, glucuronidation, and sulfate conjugation. In conclusion, the developed method with high resolution and sensitivity was effective for screening and identification of prototypes and metabolites of Kudiezi injection in vivo. Moreover, these results would provide significant information for further pharmacokinetic and pharmacological research of Kudiezi injection in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

    Directory of Open Access Journals (Sweden)

    Sungyoun Hwang

    2018-04-01

    Full Text Available In this paper, a method of designing a Vivaldi type phased array antenna (PAA which operates at S-band (2.8–3.3 GHz is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a 1 × 8 array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ±53° based on a −10 dB active reflection coefficient. The operation of the scan angle is possible within ±60° with a little larger reflection coefficient (−7 dB to −8 dB. The proposed design with BC-SRRs is expected to be useful for PAA applications.

  16. A 5-μm pitch charge-coupled device optimized for resonant inelastic soft X-ray scattering.

    Science.gov (United States)

    Andresen, N C; Denes, P; Goldschmidt, A; Joseph, J; Karcher, A; Tindall, C S

    2017-08-01

    We have developed a charge-coupled device (CCD) with 5 μm × 45 μm pixels on high-resistivity silicon. The fully depleted 200 μm-thick silicon detector is back-illuminated through a 10 nm-thick in situ doped polysilicon window and is thus highly efficient for soft through >8 keV hard X-rays. The device described here is a 1.5 megapixel CCD with 2496 × 620 pixels. The pixel and camera geometry was optimized for Resonant Inelastic X-ray Scattering (RIXS) and is particularly advantageous for spectrometers with limited arm lengths. In this article, we describe the device architecture, construction and operation, and its performance during tests at the Advance Light Source (ALS) 8.0.1 RIXS beamline. The improved spectroscopic performance, when compared with a current standard commercial camera, is demonstrated with a ∼280 eV (C K ) X-ray beam on a graphite sample. Readout noise is typically 3-6 electrons and the point spread function for soft C K X-rays in the 5 μm direction is 4.0 μm ± 0.2 μm. The measured quantum efficiency of the CCD is greater than 75% in the range from 200 eV to 1 keV.

  17. BAYESZ, S-Wave, P-Wave Resonance Level Spacing and Strength Functions

    International Nuclear Information System (INIS)

    Moore, M.S.

    1982-01-01

    A - Description of problem or function: BAYESZ calculates average s- and p-wave level spacings, strength functions, and average radiation widths of a mixed sequence of s- and p-wave resonances whose parameters are supplied as input. The code is based on two physical assumptions: 1) The neutron reduced width distribution for each open channel is a chi-squared distribution with one degree of freedom, i.e. Porter-Thomas. 2) The spacing distribution follows the Gaussian Orthogonal Ensemble. This property is used, however, only to fix the s- to p-wave level density ratio as proportional to (2J+1) with a spin cut-off correction. B - Method of solution: The method used is an extension of that described by Moore et al. in reference (1), and is based on the method of moments of a truncated Porter-Thomas distribution. C - Restrictions on the complexity of the problem: Parameters for a maximum of 500 individual resonances can be specified. This restriction can be relaxed by increasing array dimensions

  18. Simulation of Water Level Fluctuations in a Hydraulic System Using a Coupled Liquid-Gas Model

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2015-08-01

    Full Text Available A model for simulating vertical water level fluctuations with coupled liquid and gas phases is presented. The Preissmann implicit scheme is used to linearize the governing equations for one-dimensional transient flow for both liquid and gas phases, and the linear system is solved using the chasing method. Some classical cases for single liquid and gas phase transients in pipelines and networks are studied to verify that the proposed methods are accurate and reliable. The implicit scheme is extended using a dynamic mesh to simulate the water level fluctuations in a U-tube and an open surge tank without consideration of the gas phase. Methods of coupling liquid and gas phases are presented and used for studying the transient process and interaction between the phases, for gas phase limited in a chamber and gas phase transported in a pipeline. In particular, two other simplified models, one neglecting the effect of the gas phase on the liquid phase and the other one coupling the liquid and gas phases asynchronously, are proposed. The numerical results indicate that the asynchronous model performs better, and are finally applied to a hydropower station with surge tanks and air shafts to simulate the water level fluctuations and air speed.

  19. Resonantly enhanced production of excited fragments of gaseous molecules following core-level excitation

    International Nuclear Information System (INIS)

    Chen, J.M.; Lu, K.T.; Lee, J.M.; Ho, S.C.; Chang, H.W.; Lee, Y.Y.

    2005-01-01

    State-selective dissociation dynamics for the excited fragments of gaseous Si(CH 3 ) 2 Cl 2 following Cl 2p and Si 2p core-level excitations have been investigated by resonant photoemission spectroscopy and dispersed UV/optical fluorescence spectroscopy. The main features in the gaseous Si(CH 3 ) 2 Cl 2 fluorescence spectrum are identified as the emission from excited Si*, Si + *, CH* and H*. The core-to-Rydberg excitations at both Si 2p and Cl 2p edges lead to a noteworthy production of not only the excited atomic fragments, neutral and ionic (Si*, Si + *) but also the excited diatomic fragments (CH*). In particular, the excited neutral atomic fragments Si* are significantly reinforced. The experimental results provide deeper insight into the state-selective dissociation dynamics for the excited fragments of molecules via core-level excitation

  20. Pancreas Oxygen Persufflation Increases ATP Levels as Shown by Nuclear Magnetic Resonance

    Science.gov (United States)

    Scott, W.E.; Weegman, B.P.; Ferrer-Fabrega, J.; Stein, S.A.; Anazawa, T.; Kirchner, V.A.; Rizzari, M.D.; Stone, J.; Matsumoto, S.; Hammer, B.E.; Balamurugan, A.N.; Kidder, L.S.; Suszynski, T.M.; Avgoustiniatos, E.S.; Stone, S.G.; Tempelman, L.A.; Sutherland, D.E.R.; Hering, B.J.; Papas, K.K.

    2010-01-01

    Background Islet transplantation is a promising treatment for type 1 diabetes. Due to a shortage of suitable human pancreata, high cost, and the large dose of islets presently required for long-term diabetes reversal; it is important to maximize viable islet yield. Traditional methods of pancreas preservation have been identified as suboptimal due to insufficient oxygenation. Enhanced oxygen delivery is a key area of improvement. In this paper, we explored improved oxygen delivery by persufflation (PSF), ie, vascular gas perfusion. Methods Human pancreata were obtained from brain-dead donors. Porcine pancreata were procured by en bloc viscerectomy from heparinized donation after cardiac death donors and were either preserved by either two-layer method (TLM) or PSF. Following procurement, organs were transported to a 1.5-T magnetic resonance (MR) system for 31P nuclear magnetic resonance spectroscopy to investigate their bioenergetic status by measuring the ratio of adenosine triphosphate to inorganic phosphate (ATP:Pi) and for assessing PSF homogeneity by MRI. Results Human and porcine pancreata can be effectively preserved by PSF. MRI showed that pancreatic tissue was homogeneously filled with gas. TLM can effectively raise ATP:Pi levels in rat pancreata but not in larger porcine pancreata. ATP:Pi levels were almost undetectable in porcine organs preserved with TLM. When human or porcine organs were preserved by PSF, ATP:Pi was elevated to levels similar to those observed in rat pancreata. Conclusion The methods developed for human and porcine pancreas PSF homogeneously deliver oxygen throughout the organ. This elevates ATP levels during preservation and may improve islet isolation outcomes while enabling the use of marginal donors, thus expanding the usable donor pool. PMID:20692395

  1. Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Gross, R.; Huebl, H.; Goennenwein, S. T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Munich (Germany); Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T2N2 (Canada)

    2016-08-15

    Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

  2. Gravitoelectromagnetic resonances

    International Nuclear Information System (INIS)

    Tsagas, Christos G.

    2011-01-01

    The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski background, which also applies to astrophysical environments where gravity is weak, at the second perturbative level. We use covariant methods that describe gravitational waves via the transverse component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravitationally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging, gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our Minkowski space study to cosmology and discuss analogies and differences in the physics and in the phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.

  3. Multiple photon resonances

    International Nuclear Information System (INIS)

    Elliott, C.J.; Feldman, B.J.

    1979-02-01

    A detailed theoretical analysis is presented of the interaction of intense near-resonant monochromatic radiation with an N-level anharmonic oscillator. In particular, the phenomenon of multiple photon resonance, the process by which an N-level system resonantly absorbs two or more photons simultaneously, is investigated. Starting from the Schroedinger equation, diagrammatic techniques are developed that allow the resonant process to be analyzed quantitatively, in analogy with well-known two-level coherent phenomena. In addition, multiple photon Stark shifts of the resonances, shifts absent in two-level theory, are obtained from the diagrams. Insights into the nature of multiple photon resonances are gained by comparing the quantum mechanical system with classical coupled pendulums whose equations of motion possess identical eigenvalues and eigenvectors. In certain limiting cases, including that of the resonantly excited N-level harmonic oscillator and that of the equally spaced N-level system with equal matrix elements, analytic results are derived. The influence of population relaxation and phase-disrupting collisions on the multiple photon process are also analyzed, the latter by extension of the diagrammatic technique to the density matrix equations of motion. 11 figures

  4. Level of conus medullaris termination in adult population analyzed by kinetic magnetic resonance imaging.

    Science.gov (United States)

    Liu, An; Yang, Kaixiang; Wang, Daling; Li, Changqing; Ren, Zhiwei; Yan, Shigui; Buser, Zorica; Wang, Jeffrey C

    2017-07-01

    To investigate the change of conus medullaris termination (CMT) level in neutral, flexion and extension positions and to analyze the effects of age and gender on the CMT level. The midline sagittal T2-weighted kinetic magnetic resonance imaging (kMRI) study of 585 patients was retrospectively reviewed to identify the level of CMT. All patients were in an upright position. A straight line perpendicular to the long axis of the cord was drawn from the tip of the cord and then subtended to the adjacent vertebra or disk space. The CMT level was labeled in relation to the upper, middle and lower segments of adjacent vertebra or disk space and assigned values from 0 to 12 [0 = upper third of T12 (T12U), and 12 = upper third of L3 (L3U)]. All parameters were collected for neutral, flexion and extension positions. The level of CMT had the highest incidence (17.61%) at L1 lower (L1L) in neutral position, 17.44% at L1 upper (L1U) in flexion, and 16.92% at L1 middle (L1M) in extension with no significant differences among three positions (p > 0.05) in weight-bearing status. Moreover, the level of CMT was not correlated with age (p > 0.05). In terms of gender, the level of CMT was lower in women than in men in neutral position, flexion, and extension (p level of CMT in the neutral position was in accordance with previous cadaveric and supine-position MRI studies, and it did not change with flexion and extension. Women had lower CMT level than men, especially in the older population. This information can be very valuable when performing spinal anesthesia and spinal punctures.

  5. Analysis, Design and Implementation of a Quasi-Proportional-Resonant Controller for a Multifunctional Capacitive-Coupling Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Ye, Tao; Dai, Ning-Yi; Lam, Chi-Seng

    2016-01-01

    to compensate reactive power and transfer active power simultaneously. It is a promising solution for micro-grid and building-integrated distributed generator systems. A quasiproportional- resonant (quasi-PR) controller is applied to reduce steady-state current tracking errors of the CGCI in this paper......The capacitive-coupling grid-connected inverter (CGCI) is coupled to the point of common coupling via a second-order LC branch. Its operational voltage is much lower than that of a conventional inductive-coupling grid-connected inverter (IGCI) when it serves as a multifunctional inverter...... tracking errors are greatly reduced when the quasi-PR controller rather than the proportional-integration controller is applied. Experimental results are also provided to validate the CGCI as a multifunctional grid-connected inverter....

  6. Energy levels of a spin-orbit-coupled Bose-Einstein condensate in a double-well potential

    Science.gov (United States)

    Wang, Wen-Yuan; Cao, Hui; Zhu, Shi-Liang; Liu, Jie; Fu, Li-Bin

    2015-02-01

    We investigate the energy levels of a spin-orbit-coupled Bose-Einstein condensate in a double-well potential under the mean-field approximation. We find that the energy levels of the system can be significantly influenced by the atomic interactions. Without atomic interaction, four energy levels change linearly with the tunneling amplitude, the Raman coupling, and the spin-orbit coupling. However, whenever atomic interaction is considered, three more energy levels will appear, which have a nonlinear dependence on those parameters above. These three energy levels are multi-degenerate and related to the macro-symmetry of the system.

  7. Energy levels of a spin–orbit-coupled Bose–Einstein condensate in a double-well potential

    International Nuclear Information System (INIS)

    Wang, Wen-Yuan; Liu, Jie; Cao, Hui; Fu, Li-Bin; Zhu, Shi-Liang

    2015-01-01

    We investigate the energy levels of a spin–orbit-coupled Bose–Einstein condensate in a double-well potential under the mean-field approximation. We find that the energy levels of the system can be significantly influenced by the atomic interactions. Without atomic interaction, four energy levels change linearly with the tunneling amplitude, the Raman coupling, and the spin–orbit coupling. However, whenever atomic interaction is considered, three more energy levels will appear, which have a nonlinear dependence on those parameters above. These three energy levels are multi-degenerate and related to the macro-symmetry of the system. (paper)

  8. Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels.

    Science.gov (United States)

    Bai, Jing; Citrin, D S

    2008-08-18

    In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency chi(3)( omega; omega, omega,-omega). Resonant two-photon processes are found to have almost equal contributions to chi(3)( omega; omega, omega,-omega) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2 approximately 10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change (delta)n of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.

  9. Sea level driven marsh expansion in a coupled model of marsh erosion and migration

    Science.gov (United States)

    Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel

    2016-01-01

    Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

  10. Differentiating benign from malignant bone tumors using fluid-fluid level features on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hong; Cui, Jian Ling; Cui, Sheng Jie; Sun, Ying Cal; Cui, Feng Zhen [Dept. of Radiology, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laborary of Orthopedics, Shijiazhuang, Hebei (China)

    2014-12-15

    To analyze different fluid-fluid level features between benign and malignant bone tumors on magnetic resonance imaging (MRI). This study was approved by the hospital ethics committee. We retrospectively analyzed 47 patients diagnosed with benign (n = 29) or malignant (n = 18) bone tumors demonstrated by biopsy/surgical resection and who showed the intratumoral fluid-fluid level on pre-surgical MRI. The maximum length of the largest fluid-fluid level and the ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane were investigated for use in distinguishing benign from malignant tumors using the Mann-Whitney U-test and a receiver operating characteristic (ROC) analysis. Fluid-fluid level was categorized by quantity (multiple vs. single fluid-fluid level) and by T1-weighted image signal pattern (high/low, low/high, and undifferentiated), and the findings were compared between the benign and malignant groups using the chi2 test. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of bone tumors in the sagittal plane that allowed statistically significant differentiation between benign and malignant bone tumors had an area under the ROC curve of 0.758 (95% confidence interval, 0.616-0.899). A cutoff value of 41.5% (higher value suggests a benign tumor) had sensitivity of 73% and specificity of 83%. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane may be useful to differentiate benign from malignant bone tumors.

  11. Differentiating benign from malignant bone tumors using fluid-fluid level features on magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yu, Hong; Cui, Jian Ling; Cui, Sheng Jie; Sun, Ying Cal; Cui, Feng Zhen

    2014-01-01

    To analyze different fluid-fluid level features between benign and malignant bone tumors on magnetic resonance imaging (MRI). This study was approved by the hospital ethics committee. We retrospectively analyzed 47 patients diagnosed with benign (n = 29) or malignant (n = 18) bone tumors demonstrated by biopsy/surgical resection and who showed the intratumoral fluid-fluid level on pre-surgical MRI. The maximum length of the largest fluid-fluid level and the ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane were investigated for use in distinguishing benign from malignant tumors using the Mann-Whitney U-test and a receiver operating characteristic (ROC) analysis. Fluid-fluid level was categorized by quantity (multiple vs. single fluid-fluid level) and by T1-weighted image signal pattern (high/low, low/high, and undifferentiated), and the findings were compared between the benign and malignant groups using the chi2 test. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of bone tumors in the sagittal plane that allowed statistically significant differentiation between benign and malignant bone tumors had an area under the ROC curve of 0.758 (95% confidence interval, 0.616-0.899). A cutoff value of 41.5% (higher value suggests a benign tumor) had sensitivity of 73% and specificity of 83%. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane may be useful to differentiate benign from malignant bone tumors.

  12. Cerebral Magnesium Levels in Preeclampsia; A Phosphorus Magnetic Resonance Spectroscopy Study.

    Science.gov (United States)

    Nelander, Maria; Weis, Jan; Bergman, Lina; Larsson, Anders; Wikström, Anna-Karin; Wikström, Johan

    2017-07-01

    Magnesium sulfate (MgSO4) is used as a prophylaxis for eclamptic seizures. The exact mechanism of action is not fully established. We used phosphorus magnetic resonance spectroscopy (31P-MRS) to investigate if cerebral magnesium (Mg2+) levels differ between women with preeclampsia, normal pregnant, and nonpregnant women. This cross-sectional study comprised 28 women with preeclampsia, 30 women with normal pregnancies in corresponding gestational week (range: 23-41 weeks) and 11 nonpregnant healthy controls. All women underwent 31P-MRS from the parieto-occipital region of the brain and were interviewed about cerebral symptoms. Differences between groups were assessed by analysis of variance and Tukey's post-hoc test. Correlations between Mg2+ levels and specific neurological symptoms were estimated with Spearman's rank test. Mean maternal cerebral Mg2+ levels were lower in women with preeclampsia (0.12 mM ± 0.02) compared to normal pregnant controls (0.14 mM ± 0.03) (P = 0.04). Nonpregnant and normal pregnant women did not differ in Mg2+ levels. Among women with preeclampsia, lower Mg2+ levels correlated with presence of visual disturbances (P = 0.04). Plasma levels of Mg2+ did not differ between preeclampsia and normal pregnancy. Women with preeclampsia have reduced cerebral Mg2+ levels, which could explain the potent antiseizure prophylactic properties of MgSO4. Within the preeclampsia group, women with visual disturbances have lower levels of Mg2+ than those without such symptoms. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Phase diagram of a QED-cavity array coupled via a N-type level scheme

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiasen; Rossini, Davide [CNR, NEST, Scuola Normale Superiore and Istituto di Nanoscienze, Pisa (Italy); Fazio, Rosario [CNR, NEST, Scuola Normale Superiore and Istituto di Nanoscienze, Pisa (Italy); National University of Singapore, Center for Quantum Technologies, Singapore (Singapore)

    2015-01-01

    We study the zero-temperature phase diagram of a one-dimensional array of QED cavities where, besides the single-photon hopping, an additional coupling between neighboring cavities is mediated by an N-type four-level system. By varying the relative strength of the various couplings, the array is shown to exhibit a variety of quantum phases including a polaritonic Mott insulator, a density-wave and a superfluid phase. Our results have been obtained by means of numerical density-matrix renormalization group calculations. The phase diagram was obtained by analyzing the energy gaps for the polaritons, as well as through a study of two-point correlation functions. (orig.)

  14. Highly sensitive digital optical sensor with large measurement range based on the dual-microring resonator with waveguide-coupled feedback

    International Nuclear Information System (INIS)

    Xiang Xing-Ye; Wang Kui-Ru; Yuan Jin-Hui; Jin Bo-Yuan; Sang Xin-Zhu; Yu Chong-Xiu

    2014-01-01

    We propose a novel high-performance digital optical sensor based on the Mach—Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of a conventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case

  15. Bit-level plane image encryption based on coupled map lattice with time-varying delay

    Science.gov (United States)

    Lv, Xiupin; Liao, Xiaofeng; Yang, Bo

    2018-04-01

    Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.

  16. Vertebral artery variations at the C1-2 level diagnosed by magnetic resonance angiography

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Akira; Saito, Naoko; Watadani, Takeyuki; Okada, Yoshitaka; Kozawa, Eito; Nishi, Naoko; Mizukoshi, Waka; Inoue, Kaiji; Nakajima, Reiko; Takahashi, Masahiro [Saitama Medical University International Medical Center, Department of Diagnostic Radiology, Hidaka, Saitama (Japan)

    2012-01-15

    The craniovertebral junction is clinically important. The vertebral artery (VA) in its several variations runs within this area. We report the prevalence of these VA variations on magnetic resonance angiography (MRA). We retrospectively reviewed MRA images, obtained using two 1.5-T imagers, of 2,739 patients, and paid special attention to the course and branching of the VA at the level of the C1-2 vertebral bodies. There were three types of VA variation at the C1-2 level: (1) persistent first intersegmental artery (FIA), (2) VA fenestration, and (3) posterior inferior cerebellar artery (PICA) originating from the C1/2 level. The overall prevalence of these three variations was 5.0%. There was no laterality in frequency, but we found female predominance (P < 0.05). We most frequently observed the persistent FIA (3.2%), which was sometimes bilateral. We found VA fenestration (0.9%) and PICA of C1/2 origin (1.1%) with almost equal frequency. Two PICAs of C1/2 origin had no normal VA branch. We frequently observed VA variations at the C1-2 level and with female predominance. The persistent FIA was most prevalent and sometimes seen bilaterally. Preoperative identification of these variations in VA is necessary to avoid complications during surgery at the craniovertebral junction. (orig.)

  17. Electron paramagnetic resonance study of exchange coupled Ce.sup.3+./sup. ions in Lu.sub.2./sub.SiO.sub.5./sub. single crystal scintillator

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Laguta, Valentyn; Rosa, Jan; Nikl, Martin

    2016-01-01

    Roč. 90, Jul (2016), s. 23-26 ISSN 1350-4487 R&D Projects: GA ČR GAP204/12/0805; GA MŠk(CZ) LM2011029; GA MŠk LO1409 Institutional support: RVO:68378271 Keywords : electron paramagnetic resonance * scintillators * lutetium oxyorthosilicate * exchange coupled ions * cerium ions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016

  18. Synchronization of Two Non-Identical Coupled Exciters in a Non-Resonant Vibrating System of Linear Motion. Part II: Numeric Analysis

    Directory of Open Access Journals (Sweden)

    Chunyu Zhao

    2009-01-01

    Full Text Available The paper focuses on the quantitative analysis of the coupling dynamic characteristics of two non-identical exciters in a non-resonant vibrating system. The load torque of each motor consists of three items, including the torque of sine effect of phase angles, that of coupling sine effect and that of coupling cosine effect. The torque of frequency capture results from the torque of coupling cosine effect, which is equal to the product of the coupling kinetic energy, the coefficient of coupling cosine effect, and the sine of phase difference of two exciters. The motions of the system excited by two exciters in the same direction make phase difference close to π and that in opposite directions makes phase difference close to 0. Numerical results show that synchronous operation is stable when the dimensionless relative moments of inertia of two exciters are greater than zero and four times of their product is greater than the square of their coefficient of coupling cosine effect. The stability of the synchronous operation is only dependent on the structural parameters of the system, such as the mass ratios of two exciters to the vibrating system, and the ratio of the distance between an exciter and the centroid of the system to the equivalent radius of the system about its centroid.

  19. YBa{sub 2}Cu{sub 3}O{sub 7} microwave resonators for strong collective coupling with spin ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Ghirri, A., E-mail: alberto.ghirri@nano.cnr.it [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/a, 41125 Modena (Italy); Bonizzoni, C.; Affronte, M. [Dipartimento Fisica, Informatica e Matematica, Università di Modena e Reggio Emilia and Istituto Nanoscienze - CNR, Centro S3, via Campi 213/a, 41125 Modena (Italy); Gerace, D.; Sanna, S. [Dipartimento di Fisica, Università di Pavia, via Bassi 6, 27100 Pavia (Italy); Cassinese, A. [CNR-SPIN and Dipartimento di Fisica, Università di Napoli Federico II, 80138 Napoli (Italy)

    2015-05-04

    Coplanar microwave resonators made of 330 nm-thick superconducting YBa{sub 2}Cu{sub 3}O{sub 7} have been realized and characterized in a wide temperature (T, 2–100 K) and magnetic field (B, 0–7 T) range. The quality factor (Q{sub L}) exceeds 10{sup 4} below 55 K and it slightly decreases for increasing fields, remaining 90% of Q{sub L}(B=0) for B = 7 T and T = 2 K. These features allow the coherent coupling of resonant photons with a spin ensemble at finite temperature and magnetic field. To demonstrate this, collective strong coupling was achieved by using di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium organic radical placed at the magnetic antinode of the fundamental mode: the in-plane magnetic field is used to tune the spin frequency gap splitting across the single-mode cavity resonance at 7.75 GHz, where clear anticrossings are observed with a splitting as large as ∼82 MHz at T = 2 K. The spin-cavity collective coupling rate is shown to scale as the square root of the number of active spins in the ensemble.

  20. Fully quantum-mechanical dynamic analysis of single-photon transport in a single-mode waveguide coupled to a traveling-wave resonator

    International Nuclear Information System (INIS)

    Hach, Edwin E. III; Elshaari, Ali W.; Preble, Stefan F.

    2010-01-01

    We analyze the dynamics of single-photon transport in a single-mode waveguide coupled to a micro-optical resonator by using a fully quantum-mechanical model. We examine the propagation of a single-photon Gaussian packet through the system under various coupling conditions. We review the theory of single-photon transport phenomena as applied to the system and we develop a discussion on the numerical technique we used to solve for dynamical behavior of the quantized field. To demonstrate our method and to establish robust single-photon results, we study the process of adiabatically lowering or raising the energy of a single photon trapped in an optical resonator under active tuning of the resonator. We show that our fully quantum-mechanical approach reproduces the semiclassical result in the appropriate limit and that the adiabatic invariant has the same form in each case. Finally, we explore the trapping of a single photon in a system of dynamically tuned, coupled optical cavities.

  1. Determining the Level of the Dural Sac Tip: Magnetic Resonance Imaging in an Adult Population

    International Nuclear Information System (INIS)

    Binokay, F.; Akgul, E.; Bicakci, K.; Soyupak, S.; Aksungur, E.; Sertdemir, Y.

    2006-01-01

    Purpose: To determine the variation in the location of the dural sac (DS) in a living adult population and to correlate this position with age and sex. Material and Methods: T2-weighted, midline, sagittal, spin-echo magnetic resonance imaging (MRI) studies of 743 patients were assessed to identify the tip of the DS. This location was recorded in relation to the upper, middle, or lower third of the adjacent vertebral body or the adjacent intervertebral disk. Results: Frequency distribution for levels of termination of the DS on MRI demonstrated that the end of the DS was usually located at the upper one-third of S2 (25.2%). The mean level in females was also the upper one-third of S2 (26.5%) and in males the lower one-third of S2 (24.1%). The overall mean DS position was mostly at the upper one-third of S2. No significant differences in DS position were seen between male and female patients or with increasing age. Conclusion: It is important to know the possible range for the termination level of the DS when performing caudal anesthesia and craniospinal irradiation in some clinical situations. The distribution of DS location in a large adult population was shown to range from the L5-S1 intervertebral disk to the upper third of S3 vertebrae

  2. Frequency of Low-level Mosaicism in X-Cromosome in Couples with Antecedent of Recurrent Miscarriages

    OpenAIRE

    Forero C., Maribel; Lucena Q, Elkin; Esteban Pérez, Clara

    2010-01-01

    Recurrent miscarriage occurs in around 1 to 7 percent of couples. The etiology involves genetic, immunologic, anatomic, hormonal, metabolic, thrombophilic and infectious factors. With the aim of establishing the frequency of low-level mosaicism in the X-chromosome, in a population of couples with prior recurrent miscarriages, a prospective case-control cytogenetic study took place on 20 couples, at the biogenetic laboratory in CECOLFES (Colombian Center of Fertility and Sterility). Clinical p...

  3. Metal-Organic Frameworks for Resonant-Gravimetric Detection of Trace-Level Xylene Molecules.

    Science.gov (United States)

    Xu, Tao; Xu, Pengcheng; Zheng, Dan; Yu, Haitao; Li, Xinxin

    2016-12-20

    As one of typical VOCs, xylene is seriously harmful to human health. Nowadays, however, there is really lack of portable sensing method to directly detect environmental xylene that has chemical inertness. Especially when the concentration of xylene is lower than the human olfactory threshold of 470 ppb, people are indeed hard to be aware of and avoid this harmful vapor. Herein the metal-organic framework (MOF) of HKUST-1 is first explored for sensing to the nonpolar molecule of p-xylene. And the sensing mechanism is identified that is via host-guest interaction of MOF with xylene molecule. By loading MOFs on mass-gravimetric resonant-cantilevers, sensing experiments for four MOFs of MOF-5, HKUST-1, ZIF-8, and MOF-177 approve that HKUST-1 has the highest sensitivity to p-xylene. The resonant-gravimetric sensing experiments with our HKUST-1 based sensors have demonstrated that trace-level p-xylene of 400 ppb can be detected that is lower than the human olfactory threshold of 470 ppb. We analyze that the specificity of HKUST-1 to xylene comes from Cu 2+ -induced moderate Lewis acidity and the "like dissolves like" interaction of the benzene ring. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to elucidate the adsorbing/sensing mechanism of HKUST-1 to p-xylene, where p-xylene adsorbing induced blue-shift phenomenon is observed that confirms the sensing mechanism. Our study also indicates that the sensor shows good selectivity to various kinds of common interfering gases. And the long-term repeatability and stability of the sensing material are also approved for the usage/storage period of two months. This research approves that the MOF materials exhibit potential usages for high performance chemical sensors applications.

  4. Circuit electromechanics with single photon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  5. Serum phthalate levels and time to pregnancy in couples from Greenland, Poland and Ukraine.

    Directory of Open Access Journals (Sweden)

    Ina Olmer Specht

    Full Text Available Phthalates are ubiquitous industrial chemicals that have been associated with altered reproductive function in rodents. Several human studies have reported an inverse association between male testosterone and phthalate levels. Our aim was to investigate time to pregnancy (TTP according to serum levels of diethylhexyl phthalate (DEHP and diisononyl phthalate (DiNP metabolites in both partners. In 2002-2004 we enrolled 938 pregnant women and 401 male spouses from Greenland, Poland and Ukraine. Six oxidized metabolites of DEHP and DiNP were summarized for each of the two parent compounds to provide proxies of the internal exposure. We used Cox discrete-time models to estimate fecundability ratios (FR and 95% confidence intervals (95% CIs for men and women according to their proxy-DEHP or -DiNP serum levels adjusted for a fixed set of covariates. The FR was slightly elevated among women with high levels of DEHP (FR=1.14, 95% CI 1.00;1.30 suggesting a shorter TTP in these women. The FR was unrelated to DiNP in women, whereas the results for men were inconsistent pointing in opposite directions. First-time pregnant women from Greenland with high serum DiNP levels had a longer TTP. This study spanning large contrast in environmental exposure does not indicate adverse effects of phthalates on couple fecundity. The shorter TTP in women with high levels of DEHP metabolites is unexplained and needs further investigation.

  6. Social and productive activities and health among partnered older adults: A couple-level analysis.

    Science.gov (United States)

    Lam, Jack; Bolano, Danilo

    2018-04-16

    We theorize and test the health of older adults as a result of their activity engagement, as well as a product of their spouse's engagement. We draw on 15 waves of couple-level data from the Household, Income and Labour Dynamics in Australia (HILDA) Survey. Using responses of time engaged in nine different activities, we estimate Latent Class Models to describe activity profiles of partnered older adults. Given potential health selections into activity engagement, we lag older adults' activity engagement by one wave to examine its association with subsequent health. We then investigate associations between the lag of the spouse's activities with respondents' health, controlling for their own activity engagement at the previous wave. We find four activity profiles for men, and three for women. Respondents who were predominantly engaged in community activities generally report better subsequent health. Beyond their own activity engagement, for both older men and women, having a partner who was also community engaged associate with better subsequent health, though for older women, there were little differences between having a husband who was community engaged or inactive. Our findings highlight the value of considering activities of partnered older adults at the couple level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Electron energy transfer effect in Au NS/CH3NH3PbI3-xClx heterostructures via localized surface plasmon resonance coupling.

    Science.gov (United States)

    Cai, Chunfeng; Zhai, Jizhi; Bi, Gang; Wu, Huizhen

    2016-09-15

    Localized surface plasmon resonance coupling effects (LSPR) have attracted much attention due to their interesting properties. This Letter demonstrates significant photoluminescence (PL) enhancement in the Au NS/CH3NH3PbI3-xClx heterostructures via the LSPR coupling. The observed PL emission enhancement is mainly attributed to the hot electron energy transfer effect related to the LSPR coupling. For the energy transfer effect, photo-generated electrons will be directly extracted into Au SPs, rather than relaxed into exciton states. This energy transfer process is much faster than the diffusion and relaxation time of free electrons, and may provide new ideas on the design of high-efficiency solar cells and ultrafast response photodetectors.

  8. Evidence of G-protein-coupled receptor and substrate transporter heteromerization at a single molecule level.

    Science.gov (United States)

    Fischer, Jana; Kleinau, Gunnar; Rutz, Claudia; Zwanziger, Denise; Khajavi, Noushafarin; Müller, Anne; Rehders, Maren; Brix, Klaudia; Worth, Catherine L; Führer, Dagmar; Krude, Heiko; Wiesner, Burkhard; Schülein, Ralf; Biebermann, Heike

    2018-06-01

    G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of G q/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.

  9. Strongly correlated photons generated by coupling a three- or four-level system to a waveguide

    Science.gov (United States)

    Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.

    2012-04-01

    We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.

  10. A Continuous Liquid-Level Sensor for Fuel Tanks Based on Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Antonio M. Pozo

    2016-05-01

    Full Text Available A standard problem in large tanks at oil refineries and petrol stations is that water and fuel usually occupy the same tank. This is undesirable and causes problems such as corrosion in the tanks. Normally, the water level in tanks is unknown, with the problems that this entails. We propose herein a method based on surface plasmon resonance (SPR to detect in real time the interfaces in a tank which can simultaneously contain water, gasoline (or diesel and air. The plasmonic sensor is composed of a hemispherical glass prism, a magnesium fluoride layer, and a gold layer. We have optimized the structural parameters of the sensor from the theoretical modeling of the reflectance curve. The sensor detects water-fuel and fuel-air interfaces and measures the level of each liquid in real time. This sensor is recommended for inflammable liquids because inside the tank there are no electrical or electronic signals which could cause explosions. The sensor proposed has a sensitivity of between 1.2 and 3.5 RIU−1 and a resolution of between 5.7 × 10−4 and 16.5 × 10−4 RIU.

  11. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits

    NARCIS (Netherlands)

    Jimenez-Sainz, MC; Murga, C; Kavelaars, A; Jurado-Pueyo, M; Krakstad, BF; Heijnen, CJ; Mayor, F; Aragay, AM

    The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes ligand-activated G protein-coupled-receptors. Here, evidence is shown for a novel role of GRK2 in regulating chemokine-mediated signals. The presence of increased levels of GRK2 in human embryonic kidney (HEK) 293 cells

  12. Progress and challenges in the development and qualification of multi-level multi-physics coupled methodologies for reactor analysis

    International Nuclear Information System (INIS)

    Ivanov, K.; Avramova, M.

    2007-01-01

    Current trends in nuclear power generation and regulation as well as the design of next generation reactor concepts along with the continuing computer technology progress stimulate the development, qualification and application of multi-physics multi-scale coupled code systems. The efforts have been focused on extending the analysis capabilities by coupling models, which simulate different phenomena or system components, as well as on refining the scale and level of detail of the coupling. This paper reviews the progress made in this area and outlines the remaining challenges. The discussion is illustrated with examples based on neutronics/thermohydraulics coupling in the reactor core modeling. In both fields recent advances and developments are towards more physics-based high-fidelity simulations, which require implementation of improved and flexible coupling methodologies. First, the progresses in coupling of different physics codes along with the advances in multi-level techniques for coupled code simulations are discussed. Second, the issues related to the consistent qualification of coupled multi-physics and multi-scale code systems for design and safety evaluation are presented. The increased importance of uncertainty and sensitivity analysis are discussed along with approaches to propagate the uncertainty quantification between the codes. The incoming OECD LWR Uncertainty Analysis in Modeling (UAM) benchmark is the first international activity to address this issue and it is described in the paper. Finally, the remaining challenges with multi-physics coupling are outlined. (authors)

  13. Progress and challenges in the development and qualification of multi-level multi-physics coupled methodologies for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, K.; Avramova, M. [Pennsylvania State Univ., University Park, PA (United States)

    2007-07-01

    Current trends in nuclear power generation and regulation as well as the design of next generation reactor concepts along with the continuing computer technology progress stimulate the development, qualification and application of multi-physics multi-scale coupled code systems. The efforts have been focused on extending the analysis capabilities by coupling models, which simulate different phenomena or system components, as well as on refining the scale and level of detail of the coupling. This paper reviews the progress made in this area and outlines the remaining challenges. The discussion is illustrated with examples based on neutronics/thermohydraulics coupling in the reactor core modeling. In both fields recent advances and developments are towards more physics-based high-fidelity simulations, which require implementation of improved and flexible coupling methodologies. First, the progresses in coupling of different physics codes along with the advances in multi-level techniques for coupled code simulations are discussed. Second, the issues related to the consistent qualification of coupled multi-physics and multi-scale code systems for design and safety evaluation are presented. The increased importance of uncertainty and sensitivity analysis are discussed along with approaches to propagate the uncertainty quantification between the codes. The incoming OECD LWR Uncertainty Analysis in Modeling (UAM) benchmark is the first international activity to address this issue and it is described in the paper. Finally, the remaining challenges with multi-physics coupling are outlined. (authors)

  14. Rovibrational coupling in molecular nitrogen at high temperature: An atomic-level study

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Paolo, E-mail: vale0142@umn.edu; Norman, Paul, E-mail: norma198@umn.edu; Zhang, Chonglin, E-mail: zhang993@umn.edu; Schwartzentruber, Thomas E., E-mail: schwart@aem.umn.edu [Department of Aerospace Engineering and Mechanics, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-05-15

    This article contains an atomic-level numerical investigation of rovibrational relaxation in molecular nitrogen at high temperature (>4000 K), neglecting dissociation. We conduct our study with the use of pure Molecular Dynamics (MD) and Classical Trajectory Calculations (CTC) Direct Simulation Monte Carlo (DSMC), verified to produce statistically identical results at the conditions of interest here. MD and CTC DSMC solely rely on the specification of a potential energy surface: in this work, the site-site Ling-Rigby potential. Additionally, dissociation is prevented by modeling the N–N bond either as a harmonic or an anharmonic spring. The selected molecular model was shown to (i) recover the shear viscosity (obtained from equilibrium pure MD Green-Kubo calculations) of molecular nitrogen over a wide range of temperatures, up to dissociation; (ii) predict well the near-equilibrium rotational relaxation behavior of N{sub 2}; (iii) reproduce vibrational relaxation times in excellent accordance with the Millikan-White correlation and previous semi-classical trajectory calculations in the low temperature range, i.e., between 4000 K and 10 000 K. By simulating isothermal relaxations in a periodic box, we found that the traditional two-temperature model assumptions become invalid at high temperatures (>10 000 K), due to a significant coupling between rotational and vibrational modes for bound states. This led us to add a modification to both the Jeans and the Landau-Teller equations to include a coupling term, essentially described by an additional relaxation time for internal energy equilibration. The degree of anharmonicity of the N{sub 2} bond determines the strength of the rovibrational coupling. Although neglecting N{sub 2} dissociation only provides a partial description of a nitrogen system at very high temperatures, high-energy trends for bound-bound transitions are essential to understand nonequilibrium gas flows, with possible implications on rovibration

  15. Rovibrational coupling in molecular nitrogen at high temperature: An atomic-level study

    International Nuclear Information System (INIS)

    Valentini, Paolo; Norman, Paul; Zhang, Chonglin; Schwartzentruber, Thomas E.

    2014-01-01

    This article contains an atomic-level numerical investigation of rovibrational relaxation in molecular nitrogen at high temperature (>4000 K), neglecting dissociation. We conduct our study with the use of pure Molecular Dynamics (MD) and Classical Trajectory Calculations (CTC) Direct Simulation Monte Carlo (DSMC), verified to produce statistically identical results at the conditions of interest here. MD and CTC DSMC solely rely on the specification of a potential energy surface: in this work, the site-site Ling-Rigby potential. Additionally, dissociation is prevented by modeling the N–N bond either as a harmonic or an anharmonic spring. The selected molecular model was shown to (i) recover the shear viscosity (obtained from equilibrium pure MD Green-Kubo calculations) of molecular nitrogen over a wide range of temperatures, up to dissociation; (ii) predict well the near-equilibrium rotational relaxation behavior of N 2 ; (iii) reproduce vibrational relaxation times in excellent accordance with the Millikan-White correlation and previous semi-classical trajectory calculations in the low temperature range, i.e., between 4000 K and 10 000 K. By simulating isothermal relaxations in a periodic box, we found that the traditional two-temperature model assumptions become invalid at high temperatures (>10 000 K), due to a significant coupling between rotational and vibrational modes for bound states. This led us to add a modification to both the Jeans and the Landau-Teller equations to include a coupling term, essentially described by an additional relaxation time for internal energy equilibration. The degree of anharmonicity of the N 2 bond determines the strength of the rovibrational coupling. Although neglecting N 2 dissociation only provides a partial description of a nitrogen system at very high temperatures, high-energy trends for bound-bound transitions are essential to understand nonequilibrium gas flows, with possible implications on rovibration

  16. Development of a Coupled Hydrological/Sediment Yield Model for a Watershed at Regional Level

    Science.gov (United States)

    Rajbhandaril, Narayan; Crosson, William; Tsegaye, Teferi; Coleman, Tommy; Liu, Yaping; Soman, Vishwas

    1998-01-01

    Development of a hydrologic model for the study of environmental conservation requires a comprehensive understanding of individual-storm affecting hydrologic and sedimentologic processes. The hydrologic models that we are currently coupling are the Simulator for Hydrology and Energy Exchange at the Land Surface (SHEELS) and the Distributed Runoff Model (DRUM). SHEELS runs continuously to estimate surface energy fluxes and sub-surface soil water fluxes, while DRUM operates during and following precipitation events to predict surface runoff and peak flow through channel routing. The lateral re-distribution of surface water determined by DRUM is passed to SHEELS, which then adjusts soil water contents throughout the profile. The model SHEELS is well documented in Smith et al. (1993) and Laymen and Crosson (1995). The model DRUM is well documented in Vieux et al. (1990) and Vieux and Gauer (1994). The coupled hydrologic model, SHEELS/DRUM, does not simulate sedimentologic processes. The simulation of the sedimentologic process is important for environmental conservation planning and management. Therefore, we attempted to develop a conceptual frame work for coupling a sediment yield model with SHEELS/DRUM to estimate individual-storm sediment yield from a watershed at a regional level. The sediment yield model that will be used for this study is the Universal Soil Loss Equation (USLE) with some modifications to enable the model to predict individual-storm sediment yield. The predicted sediment yield does not include wind erosion and erosion caused by irrigation and snow melt. Units used for this study are those given by Foster et al. (1981) for SI units.

  17. Stretchable Complementary Split Ring Resonator (CSRR-Based Radio Frequency (RF Sensor for Strain Direction and Level Detection

    Directory of Open Access Journals (Sweden)

    Seunghyun Eom

    2016-10-01

    Full Text Available In this paper, we proposed a stretchable radio frequency (RF sensor to detect strain direction and level. The stretchable sensor is composed of two complementary split ring resonators (CSRR with microfluidic channels. In order to achieve stretchability, liquid metal (eutectic gallium-indium, EGaIn and Ecoflex substrate are used. Microfluidic channels are built by Ecoflex elastomer and microfluidic channel frames. A three-dimensional (3D printer is used for fabrication of microfluidic channel frames. Two CSRR resonators are designed to resonate 2.03 GHz and 3.68 GHz. When the proposed sensor is stretched from 0 to 8 mm along the +x direction, the resonant frequency is shifted from 3.68 GHz to 3.13 GHz. When the proposed sensor is stretched from 0 to 8 mm along the −x direction, the resonant frequency is shifted from 2.03 GHz to 1.78 GHz. Therefore, we can detect stretched length and direction from independent variation of two resonant frequencies.

  18. Individual and couple-level risk factors for hepatitis C infection among heterosexual drug users: a multilevel dyadic analysis.

    Science.gov (United States)

    McMahon, James M; Pouget, Enrique R; Tortu, Stephanie

    2007-06-01

    Hepatitis C virus (HCV) is the most common bloodborne pathogen in the United States and is a leading cause of liver-related morbidity and mortality. Although it is known that HCV is most commonly transmitted among injection drug users, the role of sexual transmission in the spread of HCV remains controversial because of inconsistent findings across studies involving heterosexual couples. A novel multilevel modeling technique designed to overcome the limitations of previous research was performed to assess multiple risk factors for HCV while partitioning the source of risk at the individual and couple level. The analysis was performed on risk exposure and HCV screening data obtained from 265 drug-using couples in East Harlem, New York City. In multivariable analysis, significant individual risk factors for HCV included a history of injection drug use, tattooing, and older age. At the couple level, HCV infection tended to cluster within couples, and this interdependence was accounted for by couples' drug-injection behavior. Individual and couple-level sexual behavior was not associated with HCV infection. Our results are consistent with prior research indicating that sexual contact plays little role in HCV transmission. Rather, couples' injection behavior appears to account for the clustering of HCV within heterosexual dyads.

  19. Investigation of High-Efficiency Wireless Power Transfer Criteria of Resonantly-Coupled Loops and Dipoles through Analysis of the Figure of Merit

    Directory of Open Access Journals (Sweden)

    Charles Moorey

    2015-10-01

    Full Text Available The efficiency of a Wireless Power Transfer (WPT system is greatly dependent on both the geometry and operating frequency of the transmitting and receiving structures. By using Coupled Mode Theory (CMT, the figure of merit is calculated for resonantly-coupled loop and dipole systems. An in-depth analysis of the figure of merit is performed with respect to the key geometric parameters of the loops and dipoles, along with the resonant frequency, in order to identify the key relationships leading to high-efficiency WPT. For systems consisting of two identical single-turn loops, it is shown that the choice of both the loop radius and resonant frequency are essential in achieving high-efficiency WPT. For the dipole geometries studied, it is shown that the choice of length is largely irrelevant and that as a result of their capacitive nature, low-MHz frequency dipoles are able to produce significantly higher figures of merit than those of the loops considered. The results of the figure of merit analysis are used to propose and subsequently compare two mid-range loop and dipole WPT systems of equal size and operating frequency, where it is shown that the dipole system is able to achieve higher efficiencies than the loop system of the distance range examined.

  20. Using assistive technology services at differing levels of care: healthy older couples' perceptions.

    Science.gov (United States)

    Harrefors, Christina; Axelsson, Karin; Sävenstedt, Stefan

    2010-07-01

    The aim of the study was to describe healthy older couples' perceptions of using assistive technology services when needing assistance with care. The use of information technology-based assistive technology services in elder care has increased as a result of an increase of care performed in private homes. The use of assistive technology services in care of older people at home has been evaluated as something positive by patients, relatives and nursing staff, while as resistance to their increased use has also been noted. Twelve healthy couples, aged over 70 years, from northern Sweden were interviewed in 2005 about their perceptions of using assistive technology services in the case of being in need of assistance with personal care. Open, individual semi-structured interviews supported by written vignettes describing three levels of caring needs were used and the data analysed with content analysis. The findings were interpreted as one main theme with three categories: Asset or threat depends on caring needs and abilities. Three categories were identified within the theme: Assistive technology services provide an opportunity; The consequences of using assistive technology services are hard to anticipate; and Fear of assistive technology services when completely dependent on care. Trust and security in the care of older people who are severely ill, dependent on care and living at home should be a hallmark in using assistive technology services. Human presence is an important dimension and must be considered when developing concepts for use of assistive technology services.

  1. Quantum complementarity of cavity photons coupled to a three-level system

    International Nuclear Information System (INIS)

    Vilardi, R.; Savasta, S.; Di Stefano, O.; Ridolfo, A.; Portolan, S.

    2011-01-01

    Recently a device enabling the ultrafast all-optical control of the wave-particle duality of light was proposed [Ridolfo et al., Phys. Rev. Lett. 106, 013601 (2011)]. It is constituted by a three-level quantum emitter strongly coupled to a microcavity and can be realized by exploiting a great variety of systems ranging from atomic physics and semiconductor quantum dots to intersubband polaritons and Cooper pair boxes. Control pulses with specific arrival times, performing which-path and quantum-eraser operations, are able to destroy and recover interference almost instantaneously. Here we show that the coherence sudden death implies the sudden birth of a higher order correlation function storing coherence. Such storing enables coherence rebirth after the arrival of an additional suitable control pulse. We derive analytical calculations describing the all-optical control of the wave-particle duality and the entanglement-induced switch-off of the strong coupling regime. We also present analytical calculations describing a homodynelike method exploiting pairs of phase locked pulses with precise arrival times to probe the optical control of wave-particle duality of this system. Within such a method the optical control of wave-particle duality can be directly probed by just detecting the photons escaping the microcavity.

  2. Multiple electromechanically-induced-transparency windows and Fano resonances in hybrid nano-electro-optomechanics

    Science.gov (United States)

    Ullah, Kamran; Jing, Hui; Saif, Farhan

    2018-03-01

    We show multiple electromechanically-induced transparency (EMIT) windows in a hybrid nano-electro-optomechanical system in the presence of two-level atoms coupled to a single-mode cavity field. The multiple EMIT-window profile can be observed by controlling the atom field coupling as well as Coulomb coupling between the two charged mechanical resonators. We derive the analytical expression of the multiple-EMIT-windows profile and describe the splitting of multiple EMIT windows as a function of optomechanical coupling, atom-field coupling, and Coulomb coupling. In particular, we discuss the robustness of the system against the cavity decay rate. We compare the results of identical mechanical resonators to different mechanical resonators. We further show how the hybrid nano-electro-optomechanics coupled system can lead to the splitting of the multiple Fano resonances (MFR). The Fano resonances are very sensitive to decay terms in such systems, i.e., atoms, cavities, and the mechanical resonators.

  3. Muon level crossing resonance spectroscopy applied to free-radical formation

    International Nuclear Information System (INIS)

    Venkateswaran, K.; Barnabas, M.V.; Walker, D.C.

    1989-01-01

    Muon Level Crossing Resonance Spectroscopy has been used to explore two aspects of muonium chemistry: unique free radicals and muonated radical yields. (1) A variety of new free-radicals have been seen by LCR. For instance, in thioacetamide the only radical produced from muonium is the S sm-bullet radical formed when Mu adds to the C of the C=S bond. In allylbenzene a whole range of radicals form with substantial yields (two side-chain and three ring additions); whereas in styrene, 85% of the radicals have Mu bonded to the end C of the side-chain and there is no meta-adduct at all. (2) Absolute yields of the radicals formed by interaction of muonium atoms in water with acrylamide as a solute (and with benzene in n-hexane) have shown that all muons not directly incorporated into diamagnetic molecules (such as MuH) appear as muonated free radicals. i.e. the missing fraction is found

  4. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    Science.gov (United States)

    Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran

    2015-12-01

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  5. Anterior insula GABA levels correlate with emotional aspects of empathy: a proton magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Qianfeng Wang

    Full Text Available Empathy is a multidimensional construct referring to the capacity to understand and share the emotional and affective states of another person. Cerebral γ-aminobutyric acid (GABA-ergic levels are associated with a variety of neurological and psychiatric disorders. However, the role of the GABA system in different dimensions of empathy has not been investigated.Thirty-two right-handed healthy volunteers took part in this study. We used proton magnetic resonance spectroscopy to determine GABA concentrations in the anterior insula (AI and the anterior cingulate cortex (ACC and to examine the relationship between the GABA concentrations and the subcomponents of empathy evaluated by the Interpersonal Reactivity Index (IRI.Pearson correlation analyses (two-tailed showed that AI GABA was significantly associated with the empathy concern score (r = 0.584, p<0.05 and the personal distress score (r = 0.538, p<0.05 but not significantly associated with other empathy subscales. No significant correlation was found between ACC GABA and empathy subscores.Left AI GABA was positively correlated with the emotional aspects of empathy. These preliminary findings call into question whether AI GABA alterations might predict empathy dysfunction in major psychiatric disorders such as autism and schizophrenia, which have been described as deficits in emotional empathic abilities.

  6. Nuclear magnetic resonance at the picomole level of a DNA adduct.

    Science.gov (United States)

    Kautz, Roger; Wang, Poguang; Giese, Roger W

    2013-10-21

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the picomole level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene 5'-monophosphate (AAF-dGMP), in 1.5 μL of D₂O with 10% methanol-d₄, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a severalfold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample to the observed volume produce the full theoretical mass sensitivity of a microcoil, comparable to that of a microcryo probe. With 80 ng, an NMR spectrum acquired over 40 h showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a signal-to-noise ratio of at least 10, despite broadening due to previously noted effects of conformational exchange. Even with this broadening to 5 Hz, a two-dimensional total correlation spectroscopy spectrum was acquired on 1.6 μg in 18 h. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct.

  7. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  8. Inductively coupled plasma induced deep levels in epitaxial n-GaAs

    International Nuclear Information System (INIS)

    Auret, F.D.; Janse van Rensburg, P.J.; Meyer, W.E.; Coelho, S.M.M.; Kolkovsky, Vl.; Botha, J.R.; Nyamhere, C.; Venter, A.

    2012-01-01

    The electronic properties of defects introduced by low energy inductively coupled Ar plasma etching of n-type (Si doped) GaAs were investigated by deep level transient spectroscopy (DLTS) and Laplace DLTS. Several prominent electron traps (E c —0.046 eV, E c —0.186 eV, E c —0.314 eV. E c —0.528 eV and E c —0.605 eV) were detected. The metastable defect E c —0.046 eV having a trap signature similar to E1 is observed for the first time. E c —0.314 eV and E c —0.605 eV are metastable and appear to be similar to the M3 and M4 defects present in dc H-plasma exposed GaAs.

  9. Transport equations, Level Set and Eulerian mechanics. Application to fluid-structure coupling

    International Nuclear Information System (INIS)

    Maitre, E.

    2008-11-01

    My works were devoted to numerical analysis of non-linear elliptic-parabolic equations, to neutron transport equation and to the simulation of fabrics draping. More recently I developed an Eulerian method based on a level set formulation of the immersed boundary method to deal with fluid-structure coupling problems arising in bio-mechanics. Some of the more efficient algorithms to solve the neutron transport equation make use of the splitting of the transport operator taking into account its characteristics. In the present work we introduced a new algorithm based on this splitting and an adaptation of minimal residual methods to infinite dimensional case. We present the case where the velocity space is of dimension 1 (slab geometry) and 2 (plane geometry) because the splitting is simpler in the former

  10. Street-level classification of illicit heroin using inorganic elements coupled with pattern monitoring

    Directory of Open Access Journals (Sweden)

    Kar-Weng Chan

    2016-09-01

    Full Text Available A total of 96 illicit heroin samples seized in 2013–2014 were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS to determine 16 inorganic elements at parts-per-billion (ppb level. Of eleven submissions, two or three samples with similar appearance were taken from the same seizure to form related samples. These samples were used to monitor the clustering outcome suggested by principal component analysis (PCA. They provided hints regarding the acceptance of within-seizure variability in-situ. The previously established data pretreatment method (N+4R did not function well with the present data probably due to the higher concentrations reported for the current samples. With the aid of the above-cited related samples for pattern monitoring, a better outcome was achieved when the pretreatment method was modified to employ solely standardization (S to optimize the necessary variability for sample classification.

  11. Speciation of the plutonium at trace levels by capillary electrophoresis-ICP-MS coupling

    International Nuclear Information System (INIS)

    Ambard, Ch.

    2007-01-01

    The CE-ICP-MS coupling allowed the development of new analytical methods for the study of plutonium (Pu) speciation at trace levels including complexation studies of this element by organic and inorganic ligands. First, a method, called dual detection, based on the simultaneous use of the UV-Visible spectrophotometer integrated in the capillary electrophoresis and the ICP-MS was developed and validated. It allows the unambiguous determination of electrophoretic mobilities for separated chemical species and gives a powerful tool for speciation studies. Then, the influence on Pu redox speciation of the buffer from the background electrolyte was evaluated. This study showed the implications of the electrolyte constituents' choice on Pu redox equilibrium in the sample. Furthermore, the CE-ICP-MS coupling was used for studying the Pu complexation at trace levels by some organic (NTA and DTPA) and inorganic ligands (carbonates). The behaviour of Pu valence +III, +IV and +VI was studied in the presence of buffer at near neutral pH. Different species of Pu were observed depending on the initial oxidation state of the plutonium. The study showed the potential of poly-amino-carboxylic acids, such as NTA and DTPA, for dissolving Pu precipitates, regardless its initial speciation. Finally, the carbonation of pentavalent neptunium, as an analogue of Pu(V), was achieved at very low concentration of Np (10 -8 mol.L -1 ). The formation of NpO 2 (CO 3 ) - at 25 C and 2,5*10 -2 mol.L -1 ionic strength was measured by CE-ICP-MS and found to consistent with literature data. (author)

  12. Speciation of the plutonium at trace levels by capillary electrophoresis-ICP-MS coupling

    International Nuclear Information System (INIS)

    Ambard, Ch.

    2007-01-01

    The CE-ICP-MS coupling allowed the development of new analytical methods for the study of plutonium speciation at trace levels including complexation studies of this element by organic and inorganic ligands. First, a method, called dual detection, based on the simultaneous use of the UV-Visible spectrophotometer integrated in the capillary electrophoresis and the ICPMS was developed and validated. It allows the unambiguous determination of electrophoretic mobilities for separated chemical species and gives a powerful tool for speciation studies. Then, the influence on plutonium redox speciation of the buffer from the background electrolyte was evaluated. This study showed the implications of the electrolyte constituents' choice on plutonium redox equilibrium in the sample. Furthermore, the CE-ICP-MS coupling was used for studying the plutonium complexation at trace levels by some organic (NTA and DTPA) and inorganic ligands (carbonates). The behaviour of plutonium valence +III, +IV and +VI was studied in the presence of buffer at near neutral pH. Different species of plutonium were observed depending on the initial oxidation state of the plutonium. This study showed the potential of poly-amino-carboxylic acids, such as NTA and DTPA, for dissolving plutonium precipitates, regardless its initial speciation. Finally, the carbonation of pentavalent neptunium, as an analogue of Pu(V), was achieved at very low concentration of Np (10 -8 mol.L -1 ). The formation constant of NpO 2 (CO 3 )- at 25 deg. C and 2,5 x 10 -2 mol.L -1 ionic strength was measured by CE-ICP-MS and found to be consistent with literature data. (author)

  13. A Coupled Community-Level Assessment of Social and Physical Vulnerability to Hurricane Disasters

    Science.gov (United States)

    Kim, J. H.; Sutley, E. J.; Chowdhury, A. G.; Hamideh, S.

    2017-12-01

    A significant portion of the U.S. building inventory exists in hurricane- and flood-prone regions. The accompanying storm surge and rising water levels often result in the inundation of residential homes, particularly those occupied by low income households and forcing displacement. In order to mitigate potential damages, a popular design technique is to elevate the structure using piers or piles to above the base flood elevation. This is observed for single-family and multi-family homes, including manufactured homes and post-disaster temporary housing, albeit at lower elevations. Although this design alleviates potential flood damage, it affects the wind-structure interaction by subjecting the structure to higher wind speeds due to its increased height and also having a path for the wind to pass underneath the structure potentially creating new vulnerabilities to wind loading. The current ASCE 7 Standard (2016) does not include a methodology for addressing the modified aerodynamics and estimating wind loads for elevated structures, and thus the potential vulnerability during high wind events is unaccounted for in design. Using experimentally measured wind pressures on elevated and non-elevated residential building models, tax data, and census data, a coupled vulnerability assessment is performed at the community-level. Galveston, Texas is selected as the case study community. Using the coupled assessment model, a hindcast of 2008 Hurricane Ike is used for predicting physical damage and household dislocation. The predicted results are compared with the actual outcomes of the 2008 hurricane disaster. Recommendations are made (1) for code adoption based on the experimentally measured wind loads, and (2) for mitigation actions and policies that would could decrease population dislocation and promote recovery.

  14. N-Acetylcysteine Normalizes Glutamate Levels in Cocaine-Dependent Patients: A Randomized Crossover Magnetic Resonance Spectroscopy Study

    NARCIS (Netherlands)

    Schmaal, Lianne; Veltman, Dick J.; Nederveen, Aart; van den Brink, Wim; Goudriaan, Anna E.

    2012-01-01

    Treatment with N-acetylcysteine (NAC) normalizes glutamate (Glu) homeostasis and prevents relapse in drug-dependent animals. However, the effect of NAC on brain Glu levels in substance-dependent humans has not yet been investigated. Proton magnetic resonance spectroscopy (H-1 MRS) was used to

  15. N-Acetylcysteine Normalizes Glutamate Levels in Cocaine-Dependent Patients: A Randomized Crossover Magnetic Resonance Spectroscopy Study

    NARCIS (Netherlands)

    Schmaal, L.; Veltman, D.J.; Nederveen, A.; van den Brink, W.; Goudriaan, A.E.

    2012-01-01

    Treatment with N-acetylcysteine (NAC) normalizes glutamate (Glu) homeostasis and prevents relapse in drug-dependent animals. However, the effect of NAC on brain Glu levels in substance-dependent humans has not yet been investigated. Proton magnetic resonance spectroscopy (1 H MRS) was used to

  16. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  17. Levels of Essential Elements in Different Medicinal Plants Determined by Using Inductively Coupled Plasma Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Eid I. Brima

    2018-01-01

    Full Text Available The objective of this study was to investigate the content of essential elements in medicinal plants in the Kingdom of Saudi Arabia (KSA. Five different medical plants (mahareeb (Cymbopogon schoenanthus, sheeh (Artemisia vulgaris, harjal (Cynanchum argel delile, nabipoot (Equisetum arvense, and cafmariam (Vitex agnus-castus were collected from Madina city in the KSA. Five elements Fe, Mn, Zn, Cu, and Se were determined by using inductively coupled plasma mass spectrometry (ICP-MS. Fe levels were the highest and Se levels were the lowest in all plants. The range levels of all elements in all plants were as follows: Fe 193.4–1757.9, Mn 23.6–143.7, Zn 15.4–32.7, Se 0.13–0.92, and Cu 11.3–21.8 µg/g. Intakes of essential elements from the medical plants in infusion were calculated: Fe 4.6–13.4, Mn 6.7–123.2, Zn 7.0–42.7, Se 0.14–1.5, and Cu 1.5–5.0 µg/dose. The calculated intakes of essential elements for all plants did not exceed the daily intake set by the World Health Organization (WHO and European Food Safety Authority (EFSA. These medicinal plants may be useful sources of essential elements, which are vital for health.

  18. Inducing Strong Non-Linearities in a Phonon Trapping Quartz Bulk Acoustic Wave Resonator Coupled to a Superconducting Quantum Interference Device

    Directory of Open Access Journals (Sweden)

    Maxim Goryachev

    2018-04-01

    Full Text Available A quartz Bulk Acoustic Wave resonator is designed to coherently trap phonons in such a way that they are well confined and immune to suspension losses so they exhibit extremely high acoustic Q-factors at low temperature, with Q × f products of order 10 18 Hz. In this work we couple such a resonator to a Superconducting Quantum Interference Device (SQUID amplifier and investigate effects in the strong signal regime. Both parallel and series connection topologies of the system are investigated. The study reveals significant non-Duffing response that is associated with the nonlinear characteristics of Josephson junctions. The nonlinearity provides quasi-periodic structure of the spectrum in both incident power and frequency. The result gives an insight into the open loop behaviour of a future Cryogenic Quartz Oscillator in the strong signal regime.

  19. Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model

    Science.gov (United States)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-12-01

    As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.

  20. Projections of tsunami inundation area coupled with impacts of sea level rise in Banda Aceh, Indonesia

    Science.gov (United States)

    Tursina, Syamsidik, Kato, Shigeru

    2017-10-01

    In a long term, sea level rise is anticipated to give devastating effects on Banda Aceh, as one of the coastal cities in the northern tip of Sumatra. The growth of the population and buildings in the city has come to the stage where the coastal area is vulnerable to any coastal hazard. Some public facilities and settlements have been constructed and keep expanding in the future. According to TOPEX/POSEIDON satellite images, 7 mm/year the sea level has been risen between 1992 and 2015 in this area. It is estimated that in the next 100 years, there will be 700 mm additional sea level rise which will give a setback more over to a rather flat area around the coast. This research is aim at investigating the influence of sea level rise toward the tsunami inundation on the land area particularly the impacts on Banda Aceh city. Cornell Multigrid Coupled Tsunami Model (COMCOT) simulation numerically generated tsunami propagation. Topography and bathymetry data were collected from GEBCO and updated with the available nautical chart (DISHIDROS, JICA, and field measurements). Geological movement of the underwater fault was generated using Piatanesi and Lorito of 9.15 Mw 2004 multi-fault scenario. The inundation area produced by COMCOT revealed that the inundation area was expanded to several hundred meters from the shoreline. To investigate the impacts of tsunami wave on Banda Aceh, the inundation area were digitized and analyzed with Quantum GIS spatial tools. The Quantum GIS analyzed inundations area affected by the projected tsunami. It will give a new tsunami-prone coastal area map induced by sea level rise in 100 years.

  1. Muonated cyclohexadienyl radicals observed by level crossing resonance in dilute solutions of benzene in hexane subjected to muon-irradiation

    International Nuclear Information System (INIS)

    Walker, D.C.; Barnabas, M.V.; Venkateswaran, K.

    1988-11-01

    Benzene is used here as a scavenger of muonium to produce the muonated cyclohexadienyl radical in dilute solutions in n-hexane. The radical was identified by level crossing resonance spectroscopy (LCR) by observing the proton resonance of the -CHMu group occurring at 2.059T. Its yield is found to equal the sum of the muonium atom yield and the 'missing' muon yield in hexane (total 35% of the incident muons). Consequently, the complete dispersement of muons in different chemical associations is now accounted for in a saturated hydrocarbon liquid, and is seen to be similar to that in water

  2. Amplitude saturation of MEMS resonators explained by autoparametric resonance

    International Nuclear Information System (INIS)

    Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M; Van der Hout, R; Hulshof, J; Fey, R H B

    2010-01-01

    This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators

  3. Amplitude saturation of MEMS resonators explained by autoparametric resonance

    Energy Technology Data Exchange (ETDEWEB)

    Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M [NXP Research, Eindhoven (Netherlands); Van der Hout, R; Hulshof, J [Department of Mathematics, VU University—Faculty of Sciences, De Boelelaan 1081a, 1081 HV Amsterdam (Netherlands); Fey, R H B, E-mail: cas.van.der.avoort@nxp.com [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands)

    2010-10-15

    This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators.

  4. Experimental Determination of Operating and Maximum Power Transfer Efficiencies at Resonant Frequency in a Wireless Power Transfer System using PP Network Topology with Top Coupling

    Science.gov (United States)

    Ramachandran, Hema; Pillai, K. P. P.; Bindu, G. R.

    2017-08-01

    A two-port network model for a wireless power transfer system taking into account the distributed capacitances using PP network topology with top coupling is developed in this work. The operating and maximum power transfer efficiencies are determined analytically in terms of S-parameters. The system performance predicted by the model is verified with an experiment consisting of a high power home light load of 230 V, 100 W and is tested for two forced resonant frequencies namely, 600 kHz and 1.2 MHz. The experimental results are in close agreement with the proposed model.

  5. Direct coupling of a liquid chromatograph to a continuous flow hydrogen nuclear magnetic resonance detector for analysis of petroleum and synthetic fuels

    International Nuclear Information System (INIS)

    Haw, J.F.; Glass, T.E.; Hausler, D.W.; Motell, E.; Dorn, H.C.

    1980-01-01

    Initial results obtained for a flow 1 H nuclear magnetic resonance (NMR) detector directly coupled to a liquid chromatography unit are described. Results achieved for a model mixture and several jet fuel samples are discussed. Chromatographic separation of alkanes, alkylbenzenes, and substituted naphthalenes present in the jet fuel samples are easily identified with the 1 H NMR detector. Results with our present flow 1 H NMR insert indicate that 5-Hz linewidths are readily obtainable for typical chromatographic flow rates. The limitations and advantages of this liquid chromatography detector are compared with more commonly employed detectors (e.g., refractive index detectors). 11 figures

  6. Anti-resonance scattering at defect levels in the quantum conductance of a one-dimensional system

    Science.gov (United States)

    Sun, Z. Z.; Wang, Y. P.; Wang, X. R.

    2002-03-01

    For the ballistic quantum transport, the conductance of one channel is quantized to a value of 2e^2/h described by the Landauer formula. In the presence of defects, electrons will be scattered by these defects. Thus the conductance will deviate from the values of the quantized conductance. We show that an anti-resonance scattering can occur when an extra defect level is introduced into a conduction band. At the anti-resonance scattering, exact one quantum conductance is destroyed. The conductance takes a non-zero value when the Fermi energy is away from the anti-resonance scattering. The result is consistent with recent numerical calculations given by H. J. Choi et al. (Phys. Rev. Lett. 84, 2917(2000)) and P. L. McEuen et al. (Phys. Rev. Lett. 83, 5098(1999)).

  7. An online-coupled NWP/ACT model with conserved Lagrangian levels

    Science.gov (United States)

    Sørensen, B.; Kaas, E.; Lauritzen, P. H.

    2012-04-01

    Numerical weather and climate modelling is under constant development. Semi-implicit semi-Lagrangian (SISL) models have proven to be numerically efficient in both short-range weather forecasts and climate models, due to the ability to use long time steps. Chemical/aerosol feedback mechanism are becoming more and more relevant in NWP as well as climate models, since the biogenic and anthropogenic emissions can have a direct effect on the dynamics and radiative properties of the atmosphere. To include chemical feedback mechanisms in the NWP models, on-line coupling is crucial. In 3D semi-Lagrangian schemes with quasi-Lagrangian vertical coordinates the Lagrangian levels are remapped to Eulerian model levels each time step. This remapping introduces an undesirable tendency to smooth sharp gradients and creates unphysical numerical diffusion in the vertical distribution. A semi-Lagrangian advection method is introduced, it combines an inherently mass conserving 2D semi-Lagrangian scheme, with a SISL scheme employing both hybrid vertical coordinates and a fully Lagrangian vertical coordinate. This minimizes the vertical diffusion and thus potentially improves the simulation of the vertical profiles of moisture, clouds, and chemical constituents. Since the Lagrangian levels suffer from traditional Lagrangian limitations caused by the convergence and divergence of the flow, remappings to the Eulerian model levels are generally still required - but this need only be applied after a number of time steps - unless dynamic remapping methods are used. For this several different remapping methods has been implemented. The combined scheme is mass conserving, consistent, and multi-tracer efficient.

  8. Methods of Blood Oxygen Level-Dependent Magnetic Resonance Imaging Analysis for Evaluating Renal Oxygenation

    Directory of Open Access Journals (Sweden)

    Fen Chen

    2018-03-01

    Full Text Available Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI has recently been utilized as a noninvasive tool for evaluating renal oxygenation. Several methods have been proposed for analyzing BOLD images. Regional ROI selection is the earliest and most widely used method for BOLD analysis. In the last 20 years, many investigators have used this method to evaluate cortical and medullary oxygenation in patients with ischemic nephropathy, hypertensive nephropathy, diabetic nephropathy, chronic kidney disease (CKD, acute kidney injury and renal allograft rejection. However, clinical trials of BOLD MRI using regional ROI selection revealed that it was difficult to distinguish the renal cortico-medullary zones with this method, and that it was susceptible to observer variability. To overcome these deficiencies, several new methods were proposed for analyzing BOLD images, including the compartmental approach, fractional hypoxia method, concentric objects (CO method and twelve-layer concentric objects (TLCO method. The compartmental approach provides an algorithm to judge whether the pixel belongs to the cortex or medulla. Fractional kidney hypoxia, measured by using BOLD MRI, was negatively correlated with renal blood flow, tissue perfusion and glomerular filtration rate (GFR in patients with atherosclerotic renal artery stenosis. The CO method divides the renal parenchyma into six or twelve layers of thickness in each coronal slice of BOLD images and provides a R2* radial profile curve. The slope of the R2* curve associated positively with eGFR in CKD patients. Indeed, each method invariably has advantages and disadvantages, and there is generally no consensus method so far. Undoubtedly, analytic approaches for BOLD MRI with better reproducibility would assist clinicians in monitoring the degree of kidney hypoxia and thus facilitating timely reversal of tissue hypoxia.

  9. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    Energy Technology Data Exchange (ETDEWEB)

    Kidon, Lyran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Wilner, Eli Y. [School of Physics and Astronomy, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Rabani, Eran [The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Chemistry, University of California and Lawrence Berkeley National Laboratory, Berkeley California 94720-1460 (United States)

    2015-12-21

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  10. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    Science.gov (United States)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  11. Dynamic correlation of photo-excited electrons: Anomalous levels induced by light–matter coupling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiankai [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); Song, Bo, E-mail: bosong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China)

    2014-04-01

    Nonlinear light–matter coupling plays an important role in many aspects of modern physics, such as spectroscopy, photo-induced phase transition, light-based devices, light-harvesting systems, light-directed reactions and bio-detection. However, excited states of electrons are still unclear for nano-structures and molecules in a light field. Our studies unexpectedly present that light can induce anomalous levels in the electronic structure of a donor–acceptor nanostructure with the help of the photo-excited electrons transferring dynamically between the donor and the acceptor. Furthermore, the physics underlying is revealed to be the photo-induced dynamical spin–flip correlation among electrons. These anomalous levels can significantly enhance the electron current through the nanostructure. These findings are expected to contribute greatly to the understanding of the photo-excited electrons with dynamic correlations, which provides a push to the development and application of techniques based on photosensitive molecules and nanostructures, such as light-triggered molecular devices, spectroscopic analysis, bio-molecule detection, and systems for solar energy conversion.

  12. Stoichiometry of mitochondrial H+ translocation coupled to succinate oxidation at level flow.

    Science.gov (United States)

    Costa, L E; Reynafarje, B; Lehninger, A L

    1984-04-25

    The mechanistic stoichiometry of vectorial H+ translocation coupled to succinate oxidation by rat liver mitochondria in the presence of a permeant cation has been determined under level flow conditions with a membraneless fast responding O2 electrode kinetically matched with a glass pH electrode. The reactions were initiated by rapid injection of O2 into the anaerobically preincubated test system under conditions in which interfering H+ backflow was minimized. The rates of O2 uptake and H+ ejection, obtained from computer-fitted regression lines, were monotonic and first order over 75% of the course of O2 consumption. Extrapolation of the observed rates to zero time, at which zero delta mu H+ and thus level flow prevails, yielded vectorial H+/O flow ratios above 7 and closely approaching 8. The mitochondria undergo no irreversible change and give identical H+/O ratios on repeated tests. In a further refinement, the lower and upper limits of the mechanistic H+/O ratio were determined to be 7.55 and 8.56, respectively, from plots of the rates of O2 uptake versus H+ ejection at increasing malonate and increasing valinomycin concentrations, respectively. It is therefore concluded that the mechanistic H+/O ratio for energy-conserving sites 2 + 3 is 8, in confirmation of earlier measurements. KCl concentration is critical for maximal observed H+/O ratios. Optimum conditions and possible errors in determination of mechanistic H+/O translocation ratios are discussed.

  13. An application of coherence resonances in molecular transition identification

    International Nuclear Information System (INIS)

    Alekseev, V.A.; Salomaa, R.

    1978-01-01

    In Λ-type three level configurations having long lived lower levels extremely sharp two photon resonances occur. We want to draw attention to the use of these resonances for distinguishing the hyperfine splitting of lower and upper set of levels of molecular transitions. A new feature in the theoretical model is that the saturator and probe beams are coupled to both transitions rendering possible the appearance of interference between the resonances. (author)

  14. Power distribution and substrate noise coupling investigations on the behavioral level for photon counting imaging readout circuits

    International Nuclear Information System (INIS)

    Lundgren, Jan; Abdalla, Suliman; O'Nils, Mattias; Oelmann, Bengt

    2007-01-01

    In modern mixed-signal system design, there are increasing problems associated with noise coupling caused by switching digital parts to sensitive analog parts. As a consequence, there is a growing necessity to understand these problems. In order to avoid costly design iterations, noise coupling simulations should be initiated as early as possible in the design chain. The problems associated with on-chip noise coupling have been discovered in photon counting pixel detector readout systems, where the level of integration of analog and digital circuits is very high on a very small area, and it would appear that these problems will continue to increase for future system designs in this field. This paper deals with the functionality of utilizing behavioral level models for simulating noise coupling in these readout systems. The methods and models are described and simulation results are shown for a photon counting pixel detector readout system

  15. Analysis, design and implementation of a quasi-proportional-resonant controller for multifunctional capacitive-coupling grid-connected inverter

    DEFF Research Database (Denmark)

    Ye, Tao; Dai, Ning-Yi; Lam, Chi-Seng

    2015-01-01

    . A Quasi-proportional-resonant (Quasi-PR) current controller is designed for the CGCI in this paper. Its modeling and parameter selection are studied in detail. In contrast with proportional-integration (PI) current controller, the Quasi-PR controller reduces steady-state error. It also generates a voltage...

  16. On the modeling of bubble evolution and transport using coupled level-set/CFD method

    International Nuclear Information System (INIS)

    Bartlomiej Wierzbicki; Steven P Antal; Michael Z Podowski

    2005-01-01

    Full text of publication follows: The ability to predict the shape of the gas/liquid/solid interfaces is important for various multiphase flow and heat transfer applications. Specific issues of interest to nuclear reactor thermal-hydraulics, include the evolution of the shape of bubbles attached to solid surfaces during nucleation, bubble surface interactions in complex geometries, etc. Additional problems, making the overall task even more complicated, are associated with the effect of material properties that may be significantly altered by the addition of minute amounts of impurities, such as surfactants or nano-particles. The present paper is concerned with the development of an innovative approach to model time-dependent shape of gas/liquid interfaces in the presence of solid walls. The proposed approach combines a modified level-set method with an advanced CFD code, NPHASE. The coupled numerical solver can be used to simulate the evolution of gas/liquid interfaces in two-phase flows for a variety of geometries and flow conditions, from individual bubbles to free surfaces (stratified flows). The issues discussed in the full paper will include: a description of the novel aspects of the proposed level-set concept based method, an overview of the NPHASE code modeling framework and a description of the coupling method between these two elements of the overall model. A particular attention will be give to the consistency and completeness of model formulation for the interfacial phenomena near the liquid/gas/solid triple line, and to the impact of the proposed numerical approach on the accuracy and consistency of predictions. The accuracy will be measured in terms of both the calculated shape of the interfaces and the gas and liquid velocity fields around the interfaces and in the entire computational domain. The results of model testing and validation will also be shown in the full paper. The situations analyzed will include: bubbles of different sizes and varying

  17. System-Level Coupled Modeling of Piezoelectric Vibration Energy Harvesting Systems by Joint Finite Element and Circuit Analysis

    Directory of Open Access Journals (Sweden)

    Congcong Cheng

    2016-01-01

    Full Text Available A practical piezoelectric vibration energy harvesting (PVEH system is usually composed of two coupled parts: a harvesting structure and an interface circuit. Thus, it is much necessary to build system-level coupled models for analyzing PVEH systems, so that the whole PVEH system can be optimized to obtain a high overall efficiency. In this paper, two classes of coupled models are proposed by joint finite element and circuit analysis. The first one is to integrate the equivalent circuit model of the harvesting structure with the interface circuit and the second one is to integrate the equivalent electrical impedance of the interface circuit into the finite element model of the harvesting structure. Then equivalent circuit model parameters of the harvesting structure are estimated by finite element analysis and the equivalent electrical impedance of the interface circuit is derived by circuit analysis. In the end, simulations are done to validate and compare the proposed two classes of system-level coupled models. The results demonstrate that harvested powers from the two classes of coupled models approximate to theoretic values. Thus, the proposed coupled models can be used for system-level optimizations in engineering applications.

  18. Influence of climate change and trophic coupling across four trophic levels in the Celtic Sea.

    Directory of Open Access Journals (Sweden)

    Valentina Lauria

    Full Text Available Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect 'bottom-up' climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986-2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO, the decadal mean Sea Surface Temperature (SST in the Celtic Sea increased by 0.66 ± 0.02 °C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group and spring SST (0-group: p = 0.02, slope = -0.305 ± 0.125; 1-group: p = 0.04, slope = -0.410 ± 0.193. Seabird demographics showed complex species-specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314 ± 0.014 as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = -0.144 ± 0.05. Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea, emphasizing the need for more research at regional scales.

  19. Influence of Climate Change and Trophic Coupling across Four Trophic Levels in the Celtic Sea

    Science.gov (United States)

    Lauria, Valentina; Attrill, Martin J.; Pinnegar, John K.; Brown, Andrew; Edwards, Martin; Votier, Stephen C.

    2012-01-01

    Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect ‘bottom-up’ climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986–2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66±0.02°C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST (0-group: p = 0.02, slope = −0.305±0.125; 1-group: p = 0.04, slope = −0.410±0.193). Seabird demographics showed complex species–specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314±0.014) as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = −0.144±0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales. PMID:23091621

  20. Connection of off-diagonal radiative-decay coupling to electromagnetically induced transparency and amplification without inversion in a three-level atomic system

    International Nuclear Information System (INIS)

    Cardimona, D.A.; Huang Danhong

    2002-01-01

    The equivalence between the off-diagonal radiative-decay coupling (ODRDC) effect in the bare-atom picture of a three-level atomic system [see Cardimona et al., J. Phys. B 15, 55 (1982)] and the electromagnetically induced transparency (EIT) effect in the dressed-atom picture [see Imamoglu et al., Opt. Lett. 14, 1344 (1989)] is uncovered and a full comparison of their physical origins is given. The mechanism for both ODRDC and Harris' EIT is found to be a consequence of the quantum interference between a direct absorption path and an indirect absorption path mediated by either a self absorption of spontaneous photons or a Fano-type coupling. A connection is then pointed out between the effects of probe-field gain (PFG) based on an ODRDC process [see Huang et al., Phys. Rev. A 64, 013822 (2001)] and amplification without inversion (AWI) [see Fearn et al., Opt. Commun. 87, 323 (1992)] in the bare-atom picture of a three-level atomic system. The PFG effect is found as a result of transferring electrons between the two upper levels due to the phase-sensitive coherence provided by a laser-induced ODRDC process, while the AWI effect to one of the two probe fields is attributed to its coupling to a strong laser field generating an off-resonant gain through an induced nonlinearity in the other probe field. Both the advantages and disadvantages as well as the limitations of the ODRDC, EIT, PFG, and AWI effects are discussed and compared

  1. Terahertz plasmon-induced transparency based on asymmetric dual-disk resonators coupled to a semiconductor InSb waveguide and its biosensor application

    Science.gov (United States)

    Shahamat, Yadollah; Vahedi, Mohammad

    2017-06-01

    An ultracompact double eight-shaped plasmonic structure for the realization of plasmon-induced transparency (PIT) in the terahertz (THz) region has been studied. The device consists of a semiconductor-insulator-semiconductor bus waveguide coupled to the dual-disk resonators. Indium antimonide is employed to excite SPP in the THz region. The transmission characteristics of the proposed device are simulated numerically by the finite-difference time-domain method. In addition, a theoretical analysis based on the coupled-mode theory for transmission features is presented and compared with the numerical results. Results are in good agreement. Also, the dependence of PIT frequency characteristics on the radius of the outer disk is discussed in detail. In addition, by removing one of the outer disk resonators, double-PIT peaks can be observed in the transmission spectrum, and the physical mechanism of the appeared peaks is investigated. Finally, an application of the proposed structure for distinguishing different states of DNA molecules is discussed. Results show that the maximum sensitivity with 654 GHz/RIU-1 could be obtained for a single PIT structure. The frequency shifts equal to 37 and 99 GHz could be observed for the denatured and the hybridized DNA states, respectively.

  2. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    Science.gov (United States)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-01

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  3. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    Directory of Open Access Journals (Sweden)

    Sai Ho Yeung

    2015-09-01

    Full Text Available Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC stimulation, magnetic stimulation (MS and transcutaneous electrical nerve stimulation (TENS are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  4. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-09-15

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  5. The resonance susceptibility of two-layer exchange-coupled ferromagnetic film with a combined uniaxial and cubic anisotropy in the layers

    Energy Technology Data Exchange (ETDEWEB)

    Shul’ga, N.V., E-mail: shulga@anrb.ru; Doroshenko, R.A.

    2016-12-01

    A numerical investigation of the resonance dynamic susceptibility of ferromagnetic exchange-coupled two-layer films with a combined cubic and uniaxial magnetic anisotropy of the layers has been performed. It has been found that the presence of cubic anisotropy leads to the fact that much of the off-diagonal components of the dynamic susceptibility are nonzero. The change of the ferromagnetic resonance frequencies and dynamic susceptibility upon the magnetization along the [100], [010], and [011] directions have been calculated. The evolution of the profile of the dynamic susceptibility occurring during the magnetization has been described. The impact of changes in the distribution of equilibrium and dynamic components of the magnetization on the dependences of the components of the dynamic susceptibility and the ferromagnetic resonance frequency on the external magnetic fields has been discussed. - Highlights: • The extremes in the dependences of integrated dynamic susceptibility components are observed at low fields. • Lower extremes can be observed at a shift of the localization of the lower FMR mode toward the interface between the layers. • The features of the distribution of the dynamic susceptibility over the thickness have been discussed. • The cubic anisotropy leads to the fact that the off-diagonal integrated dynamic susceptibility components are essential. • FMR signal can be excited in vicinity of the interlayer boundary.

  6. Inductively coupled plasma induced deep levels in epitaxial n-GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Auret, F.D.; Janse van Rensburg, P.J.; Meyer, W.E.; Coelho, S.M.M. [Department of Physics, University of the Pretoria, Lynnwood Road, Pretoria 0002 (South Africa); Kolkovsky, Vl. [Technische Universitaet, Dresden, 01062 Dresden (Germany); Botha, J.R.; Nyamhere, C. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Venter, A., E-mail: andre.venter@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    The electronic properties of defects introduced by low energy inductively coupled Ar plasma etching of n-type (Si doped) GaAs were investigated by deep level transient spectroscopy (DLTS) and Laplace DLTS. Several prominent electron traps (E{sub c}-0.046 eV, E{sub c}-0.186 eV, E{sub c}-0.314 eV. E{sub c}-0.528 eV and E{sub c}-0.605 eV) were detected. The metastable defect E{sub c}-0.046 eV having a trap signature similar to E1 is observed for the first time. E{sub c}-0.314 eV and E{sub c}-0.605 eV are metastable and appear to be similar to the M3 and M4 defects present in dc H-plasma exposed GaAs.

  7. Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes

    Science.gov (United States)

    Baghshahi, Hamid Reza; Tavassoly, Mohammad Kazem; Faghihi, Mohammad Javad

    2015-08-01

    In this paper, we study the interaction between two two-level atoms and two coupled modes of a quantized radiation field in the form of parametric frequency converter injecting within an optical cavity enclosed by a medium with Kerr nonlinearity. It is demonstrated that, by applying the Bogoliubov-Valatin canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Then, under particular initial conditions for the atoms (in a coherent superposition of its ground and upper states) and the fields (in a standard coherent state) which may be prepared, the time evolution of state vector of the entire system is analytically evaluated. In order to understand the degree of entanglement between subsystems (atom-field and atom-atom), the dynamics of entanglement through different measures, namely, von Neumann reduced entropy, concurrence and negativity is evaluated. In each case, the effects of Kerr nonlinearity and detuning parameter on the above measures are numerically analyzed, in detail. It is illustrated that the amount of entanglement can be tuned by choosing the evolved parameters, appropriately.

  8. A couple-level analysis of participation in physical activity during unemployment.

    Science.gov (United States)

    Gough, Margaret

    2017-12-01

    There is a well-documented negative correlation between unemployment and health. Yet, little research has examined how unemployment relates to participation in physical activity, and few researchers have considered how an individual's unemployment may affect the health of their spouse or partner. The purpose of this study is to answer three questions: 1. Is one's own unemployment associated with changes in physical activity participation? 2. Is one's partner's unemployment associated with changes in physical activity participation? 3. Do changes in physical activity behaviors associated with unemployment differ by gender? This study uses nationally representative, longitudinal data on couples in the United States, covering the period 1999-2013. These data, obtained from the Panel Study of Income Dynamics, are used to estimate fixed-effects models of the relationships between one's own, and one's partner's, unemployment and participation in physical activity. I find that for men unemployment is not associated with changes in physical activity time. For women, own unemployment is associated with increases in physical activity, whereas a partner's unemployment is associated with decreases in physical activity. I argue that unemployed women, unlike men, are able to take advantage of the increased availability of time through reduced labor supply to invest in their health during unemployment, which could have positive long-run consequences. Results suggest the importance of studying unemployment and health at the household level and suggest a need for further investigation into gender differences in unemployment and health.

  9. Coupled thermo-mechanical analysis of granite for high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Liu Wengang; Wang Ju; Zhou Hongwei; Jiang Pengfei; Yang Chunhe

    2008-01-01

    High-level radioactive wastes (HLW) repository is a special deep underground engineering, and in the stages of site selection, designing, constructing ,the stability evaluation, lots of important rock mechanics problems need to be resolved. During the decay of nuclear waste, enormous thermal energy was released and temperature variation caused dynamic distribution of stress and deformation field of surrounding rock of repository. BeiShan region of Gansu province was selected to be the repository field in the future, it is of practical significance to do research on granite in this region. Based on the concept model of HLW repository, this thesis calculates temperature field, stress field and deformation field of HLW repository surrounding rock under the condition of TM coupled with applying the finite difference FLAC 3D . From this study, thermo-mechanical characteristic of granite is obtained primarily under given canister heat source and given decay law function. And these results show that the reasonable space between disposal hole is 8 m-12 m, and the peak temperature of the canister surface is 130 ℃, the centerline temperature between pits is about 40 ℃ which is maintained for about hundreds of years under given heating output at -500 m depth. (authors)

  10. A couple-level analysis of participation in physical activity during unemployment

    Directory of Open Access Journals (Sweden)

    Margaret Gough

    2017-12-01

    Full Text Available There is a well-documented negative correlation between unemployment and health. Yet, little research has examined how unemployment relates to participation in physical activity, and few researchers have considered how an individual's unemployment may affect the health of their spouse or partner. The purpose of this study is to answer three questions: 1. Is one's own unemployment associated with changes in physical activity participation? 2. Is one's partner's unemployment associated with changes in physical activity participation? 3. Do changes in physical activity behaviors associated with unemployment differ by gender? This study uses nationally representative, longitudinal data on couples in the United States, covering the period 1999–2013. These data, obtained from the Panel Study of Income Dynamics, are used to estimate fixed-effects models of the relationships between one's own, and one's partner's, unemployment and participation in physical activity. I find that for men unemployment is not associated with changes in physical activity time. For women, own unemployment is associated with increases in physical activity, whereas a partner's unemployment is associated with decreases in physical activity. I argue that unemployed women, unlike men, are able to take advantage of the increased availability of time through reduced labor supply to invest in their health during unemployment, which could have positive long-run consequences. Results suggest the importance of studying unemployment and health at the household level and suggest a need for further investigation into gender differences in unemployment and health.

  11. Level population measurements on analyte atom and ion excited states in the inductively coupled plasma

    International Nuclear Information System (INIS)

    Walker, Z.H.; Blades, M.W.

    1986-01-01

    During the past decade a number of publications dealing with fundamental studies of the inductively coupled plasma (ICP) have appeared in the literature. The purpose of many of these investigations has been to understand the nature of the interaction between the plasma gas and the analyte. The general conclusion drawn from these studies has been that the ICP is very close to Local Thermodynamic Equilibrium (LTE), but that some deviations from LTE do occur. Recent studies by the authors' have been directed towards the measurement of analyte atom and ion excited state level populations with the objective of obtaining a better understanding of both ionization and excitation in the ICP discharge and the extent to which such processes contribute to a non-equilibrium state. Further discussion is drawn from similar measurements made on elements with low ionization potentials, such as Barium, as well as on elements such as Iron in the presence of Easily Ionizable Elements (EIE's). The spatial and power dependences of such measurements are also discussed

  12. Determination of serum calcium levels by 42Ca isotope dilution inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Han, Bingqing; Ge, Menglei; Zhao, Haijian; Yan, Ying; Zeng, Jie; Zhang, Tianjiao; Zhou, Weiyan; Zhang, Jiangtao; Wang, Jing; Zhang, Chuanbao

    2017-11-27

    Serum calcium level is an important clinical index that reflects pathophysiological states. However, detection accuracy in laboratory tests is not ideal; as such, a high accuracy method is needed. We developed a reference method for measuring serum calcium levels by isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS), using 42Ca as the enriched isotope. Serum was digested with 69% ultrapure nitric acid and diluted to a suitable concentration. The 44Ca/42Ca ratio was detected in H2 mode; spike concentration was calibrated by reverse IDMS using standard reference material (SRM) 3109a, and sample concentration was measured by a bracketing procedure. We compared the performance of ID ICP-MS with those of three other reference methods in China using the same serum and aqueous samples. The relative expanded uncertainty of the sample concentration was 0.414% (k=2). The range of repeatability (within-run imprecision), intermediate imprecision (between-run imprecision), and intra-laboratory imprecision were 0.12%-0.19%, 0.07%-0.09%, and 0.16%-0.17%, respectively, for two of the serum samples. SRM909bI, SRM909bII, SRM909c, and GBW09152 were found to be within the certified value interval, with mean relative bias values of 0.29%, -0.02%, 0.10%, and -0.19%, respectively. The range of recovery was 99.87%-100.37%. Results obtained by ID ICP-MS showed a better accuracy than and were highly correlated with those of other reference methods. ID ICP-MS is a simple and accurate candidate reference method for serum calcium measurement and can be used to establish and improve serum calcium reference system in China.

  13. Application of electron spin resonance for evaluation of the level of ...

    Indian Academy of Sciences (India)

    Abstract. In order to identify and quantify free radicals in the tissues of patients with normal physiological and pathological states of births, we developed a method to evaluate the amount of free radicals in myometrium of subplacental area and from body of uterus, using electron spin resonance spectroscopy. Analysis of the ...

  14. Proper Resonance Depiction of Acylium Cation: A High-Level and Student Computational Investigation

    Science.gov (United States)

    Esselman, Brian J.; Hill, Nicholas J.

    2015-01-01

    The electronic and molecular structure of the acylium cation ([CH[subscript 3]CO][superscript +], 1) receives varied treatment in undergraduate textbooks and online resources. The overall structure of 1 is typically represented as an equal combination of resonance structures containing C-O triple and double bonds, the latter structure occasionally…

  15. Multichannel all–optical switch based on a thin slab of resonant two–level emitters

    Directory of Open Access Journals (Sweden)

    Malikov Ramil

    2017-01-01

    Full Text Available We discuss the possibility of using a thin layer of inhomogeneously broadened resonant emitters as a multichannel all–optical switch. Switching time from the lower stable branch of the system's bistable characteristics to the upper one and vice versa, which determines the speed of operation of a bistable device, is studied.

  16. Effect of galvanic coupling between overpack materials for high-level nuclear waste containers

    International Nuclear Information System (INIS)

    Dunn, D.S.; Cragnolino, G.A.; Sridhar, N.

    1998-01-01

    The effect of environmental parameters and area ratio on the galvanic protection of Alloy 825 by A516 steel was studied. A simplified model was used to calculate the potential and corrosion current density of the bimetallic couple as a function of the galvanic coupling efficiency. Galvanic corrosion tests were performed to gain confidence in the calculated values. Both the calculations and laboratory testing indicate that, with highly efficient coupling, the potential of the galvanic couple is maintained below the repassivation potential for Alloy 825 in chloride-containing solutions. As a result, the initiation of localized corrosion on Alloy 825 is prevented. The formation of oxides, scales, and corrosion product layers between the barriers is shown to reduce the efficiency of the galvanic couple, which may result in conditions under which the localized corrosion of the inner corrosion resistant barrier can occur

  17. Stark effect investigations of excited cadmium, ytterbium, and thulium I-levels using the methods of double resonance and level crossing

    International Nuclear Information System (INIS)

    Rinkleff, R.H.

    1977-01-01

    Using the method of optical double resonance, the 5s5p 3 P 1 level tensor polarizability of Cadmium has been measured. For this state, various authors have published different results, using different experimental methods. The experimental result presented here is in excellent agreement with the value of Happer, based on level crossing investigations, and agrees well with the theoretical result of Robinson based on a modified Sternheimer approximation, and so gives a reliable value for the tensor polarizability. Furthermore the tensor polarizability of the 6s6p 3 P 1 - level of the even Ytterbium isotopes and the odd Ytterbium 171 nucleus have been measured with the optical double resonance method, and the Stark constant has been calculated based on a given theory and oscillator strengths. Using the methods of optical double resonance and level crossing, the tensor polarizability of 5 excited levels of the Thulium configurations 4f 13 6s6p + 4f 12 5d6s 2 have been measured. From the experimental Stark constants and the angular coefficients of the eigenfunctions calculated by Camus, the radial integrals I(5d, 5p) and I(6p, 5d) are calculated for electric dipole transitions between levels of the configurations 4f 12 5d6s 2 + 4f 13 6s6p and levels of the 4f 12 6p6s 2 + 4f 13 6s5d configurations. The tensor polarizability calculated with these radial integrals show very good agreement with the experimental values. (orig./LH) [de

  18. Optically transmitted and inductively coupled electric reference to access in vivo concentrations for quantitative proton-decoupled ¹³C magnetic resonance spectroscopy.

    Science.gov (United States)

    Chen, Xing; Pavan, Matteo; Heinzer-Schweizer, Susanne; Boesiger, Peter; Henning, Anke

    2012-01-01

    This report describes our efforts on quantification of tissue metabolite concentrations in mM by nuclear Overhauser enhanced and proton decoupled (13) C magnetic resonance spectroscopy and the Electric Reference To access In vivo Concentrations (ERETIC) method. Previous work showed that a calibrated synthetic magnetic resonance spectroscopy-like signal transmitted through an optical fiber and inductively coupled into a transmit/receive coil represents a reliable reference standard for in vivo (1) H magnetic resonance spectroscopy quantification on a clinical platform. In this work, we introduce a related implementation that enables simultaneous proton decoupling and ERETIC-based metabolite quantification and hence extends the applicability of the ERETIC method to nuclear Overhauser enhanced and proton decoupled in vivo (13) C magnetic resonance spectroscopy. In addition, ERETIC signal stability under the influence of simultaneous proton decoupling is investigated. The proposed quantification method was cross-validated against internal and external reference standards on human skeletal muscle. The ERETIC signal intensity stability was 100.65 ± 4.18% over 3 months including measurements with and without proton decoupling. Glycogen and unsaturated fatty acid concentrations measured with the ERETIC method were in excellent agreement with internal creatine and external phantom reference methods, showing a difference of 1.85 ± 1.21% for glycogen and 1.84 ± 1.00% for unsaturated fatty acid between ERETIC and creatine-based quantification, whereas the deviations between external reference and creatine-based quantification are 6.95 ± 9.52% and 3.19 ± 2.60%, respectively. Copyright © 2011 Wiley Periodicals, Inc.

  19. Resonance rotational level crossing in the fluorosulfate radical FSO3rad and experimental determination of the rotational A and the centrifugal distortion DK constants

    Science.gov (United States)

    Kolesniková, Lucie; Koucký, Jan; Kania, Patrik; Uhlíková, Tereza; Beckers, Helmut; Urban, Štěpán

    2018-01-01

    The resonance crossing of rotational levels with different fine-structure components and different k rotational quantum numbers was observed in the rotational spectra of the symmetric top fluorosulfate radical FSO3rad. Detailed measurements were performed to analyze these weak resonances as well as the A1-A2 splittings of the K = 3 and K = 6 transitions. The resonance level crossing enabled the experimental determination of "forbidden" parameters, the rotational A and the centrifugal distortion DK constants as well as the corresponding resonance off-diagonal matrix element.

  20. Maximum coherent superposition state achievement using a non-resonant pulse train in non-degenerate three-level atoms

    International Nuclear Information System (INIS)

    Deng, Li; Niu, Yueping; Jin, Luling; Gong, Shangqing

    2010-01-01

    The coherent superposition state of the lower two levels in non-degenerate three-level Λ atoms is investigated using the accumulative effects of non-resonant pulse trains when the repetition period is smaller than the decay time of the upper level. First, using a rectangular pulse train, the accumulative effects are re-examined in the non-resonant two-level atoms and the modified constructive accumulation equation is analytically given. The equation shows that the relative phase and the repetition period are important in the accumulative effect. Next, under the modified equation in the non-degenerate three-level Λ atoms, we show that besides the constructive accumulation effect, the use of the partial constructive accumulation effect can also achieve the steady state of the maximum coherent superposition state of the lower two levels and the latter condition is relatively easier to manipulate. The analysis is verified by numerical calculations. The influence of the external levels in such a case is also considered and we find that it can be avoided effectively. The above analysis is also applicable to pulse trains with arbitrary envelopes.