Direct excitation of resonant torsional Alfven waves by footpoint motions
Ruderman, M. S.; Berghmans, D.; Goossens, M.; Poedts, S.
1997-01-01
The present paper studies the heating of coronal loops by linear resonant Alfven waves that are excited by the motions of the photospheric footpoints of the magnetic field lines. The analysis is restricted to torsionally polarised footpoint motions in an axially symmetric system so that only
Kuridze, D
2007-01-01
Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.
Behavior of Torsional Alfven Waves and Field Line Resonance on Rotating Magnetars
Kojima, T O Y
2005-01-01
Torsional Alfven waves are likely excited with bursts in rotating magnetars. These waves are probably propagated through corotating atmospheres toward a vacuum exterior. We have studied the physical effects of the azimuthal wave number and the characteristic height of the plasma medium on wave transmission. In this work, explicit calculations were carried out based on the three-layered cylindrical model. We found that the coupling strength between the internal shear and the external Alfven modes is drastically enhanced, when resonance occurs in the corotating plasma cavity. The spatial structure of the electromagnetic fields in the resonance cavity is also investigated when Alfven waves exhibit resonance.
The Modulation of Ionospheric Alfven Resonator on Heating HF Waves and the Doppler Effect
Institute of Scientific and Technical Information of China (English)
NiBin-bin; ZhaoZheng-yu; XieShu-guo
2003-01-01
The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature varia-tions on the Alfven resonant field, We discuss the mechanism of the modulation effect and lucubrate possible reasons for the Doppler effect. The results show that the Alfven resonant field can have an observable modulation effect on HF waves while its mechanism is quite different from that of Schumann resonant field on HF waves. The depth of modulation of IAR on HF waves has a quasi-quadratic relation with the Alfven field, which directly inspires the formation of cross-spectrum between ULF waves and HF waves and results in spectral peaks at some gyro-frequencies of IAR. With respect to the Doppler effect during the propagation of HF waves in IAR, it is mainly caused by the motion of the high-speed flyer and the drifting electrons and the frequency shift from the phase vari-ation of the reflected waves can be neglected when the frequency of HF incident wave is high enough.
Effect of Alfven resonance on low-frequency fast wave current drive
Energy Technology Data Exchange (ETDEWEB)
Wang, C.Y.; Batchelor, D.B.; Carter, M.D.; Jaeger, E.F.; Stallings, D.C. [Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
1995-07-01
The Alfven resonances may occur on the low- and high-field sides for a low-frequency fast wave current drive scenario proposed for the International Thermonuclear Experimental Reactor (ITER) [Nucl. Fusion {bold 31}, 1135 (1991)]. At the resonance on the low-field side, the fast wave may be mode converted into a short-wavelength slow wave, which can be absorbed by electrons at the plasma edge, before the fast wave propagates into the core area of the plasma. Such absorption may cause a significant parasitic power loss. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Resonant Alfven waves in partially ionized plasmas of the solar atmosphere
Soler, R; Goossens, M
2011-01-01
Context. Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. In magnetic waveguides resonant absorption due to plasma inhomogeneity naturally transfers wave energy from large-scale motions to small-scale motions. In the cooler parts of the solar atmosphere as, e.g., the chromosphere, effects due to partial ionization may be relevant for wave dynamics and heating. Aims. We study resonant Alfven waves in partially ionized plasmas. Methods. We use the multifluid equations in the cold plasma approximation. We investigate propagating resonant MHD waves in partially ionized flux tubes. We use approximate analytical theory based on normal modes in the thin tube and thin boundary approximations along with numerical eigenvalue computations. Results. We find that the jumps of the wave perturbations across the resonant layer are the same as in fully ionized plasmas. The damping length due to resonant absorption is inversely proportional to the frequency, while that due to ion-neutral collisions is in...
Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes
Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.
1995-01-01
The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.
Clack, C T M; Douglas, M
2010-01-01
Resonant absorption of fast magnetoacoustic (FMA) waves in an inhomogeneous, weakly dissipative, one-dimensional planar, strongly anisotropic and dispersive plasma is investigated. The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the inhomogeneous slab interacting with the localised slow or Alfven waves present in the inhomogeneous layer and are partly reflected, dissipated and transmitted by this region. The presented research aims to find the coefficient of wave energy absorption under solar chromospheric and coronal conditions. Numerical results are analyzed to find the coefficient of wave energy absorption at both the slow and Alfven resonance positions. The mathematical derivations are based on the two simplifying assumptions that (i) nonlinearity is weak, and (ii) the thickness of the inhomogeneous layer is small in comparison to the wavelength of the wave, i.e. we empl...
Nonlinear Landau damping and Alfven wave dissipation
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Kinetic Alfven wave instability in a Lorentzian dusty plasma: Non-resonant particle approach
Energy Technology Data Exchange (ETDEWEB)
Rubab, N.; Biernat, H. K. [Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz (Austria); Institute of Physics, University of Graz, Universitaetplatz 5, A-8010 Graz (Austria); Erkaev, V. [Institute of Computational Modelling, 660036 Krasnoyarsk, Russia and Siberian Federal University, 660041 Krasnoyarsk (Russian Federation); Langmayr, D. [Virtual Vehicle Competence Center (vif), Inffeldgasse 21a, 8010 Graz (Austria)
2011-07-15
Analysis of the electromagnetic streaming instability is carried out which is related to the cross field drift of kappa distributed ions. The linear dispersion relation for electromagnetic wave using Vlasov-fluid equations in a dusty plasma is derived. Modified two stream instability (MTSI) in a dusty plasma has been discussed in the limit {omega}{sub pd}{sup 2}/c{sup 2}k{sub perpendicular}{sup 2}<<1. Numerical calculations of the growth rate of instability have been carried out. Growth rates of kinetic Alfven instability are found to be small as compared to MTSI. Maximum growth rates for both instabilities occur in oblique directions for V{sub 0}{>=}V{sub A}. It is shown that the presence of both the charged dust particles and perpendicular ion beam sensibly modify the dispersion relation of low-frequency electromagnetic wave. The dispersion characteristics are found to be insensible to the superthermal character of the ion distribution function. Applications to different intersteller regions are discussed.
Interchange Reconnection Alfven Wave Generation
Lynch, B J; Li, Y
2014-01-01
Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we present further analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restructuring by interchange reconnection is carried throughout the system by Alfven waves propagating away from the reconnection region, distributing the shear and twist imparted by the driving flows, including shedding the injected stress-energy and accumulated magnetic helicity along newly-open field lines. We quantify the properties of the reconnection-generated wave activity in the simulation. There is a localized high frequency component associated with the current sheet/reconnection site and an extended low frequency component associ...
Garcia-Munoz, M.; Hicks, N.; van Voornveld, R.; Classen, I.G.J.; Bilato, R.; Bobkov, V.; Bruedgam, M.; Fahrbach, H. U.; Igochine, V.; Jaemsae, S.; Maraschek, M.; Sassenberg, K.
2010-01-01
We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfven waves in a magnetically confined fusion plasma. While single toroidal Alfven eigenmodes (TAE) and Alfven cascades (AC) eject resonant fast ions in a convective process
Alfven Wave Tomography for Cold MHD Plasmas
Energy Technology Data Exchange (ETDEWEB)
I.Y. Dodin; N.J. Fisch
2001-09-07
Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.
Kinetic Alfven wave turbulence in space plasmas
Energy Technology Data Exchange (ETDEWEB)
Sharma, R.P. [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India); Kumar, Sachin, E-mail: dynamicalfven@gmail.co [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India)
2010-07-26
This work presents the derivation of nonlinear coupled equations for the evolution of solar wind turbulence. These equations are governing the coupled dynamics of kinetic Alfven wave and ion acoustic wave. Numerical simulation of these equations is also presented. The ponderomotive nonlinearity is incorporated in the wave dynamics. Filamentation of kinetic Alfven wave and the turbulent spectra are presented in intermediate-{beta} plasmas at heliocentric distances (0.3 AU{<=}r<1.0 AU). The growing filaments and steeper turbulent spectra (of power law k{sup -S}, 5/3{<=}S{<=}3) can be responsible for plasma heating and particle acceleration in solar wind.
Alfven Wave-Driven Supernova Explosion
Suzuki, T K; Yamada, S
2007-01-01
We investigate the role of Alfven waves in the core-collapse supernova (SN) explosion. We assume that Alfven waves are generated by convections inside a proto-neutron star (PNS) and emitted from its surface. Then these waves propagate outwards and dissipate via nonlinear processes and heat up matter around a stalled prompt shock. To quantitatively assess the importance of this process for revival of the stalled shock, we perform 1D time-dependent hydrodynamical simulations, taking into account the heating via the dissipation of Alfven waves. We show that the shock revival occurs if the surface field strength is larger than ~2x10^{15}G and if the amplitude of velocity fluctuation at the PNS surface is larger than ~ 20% of the local sound speed. Interestingly, the Alfven wave mechanism is self-regulating in the sense that the explosion energy is not very sensitive to the surface field strength and initial amplitude of Alfven waves as long as they are larger than the threshold values given above. It should be em...
Nonlinear Landau damping of Alfven waves.
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
The role of torsional Alfven waves in coronal heating
Antolin, P
2009-01-01
In the context of coronal heating, among the zoo of MHD waves that exist in the solar atmosphere, Alfven waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption or turbulent cascade in order to heat the plasma. New observations with polarimetric, spectroscopic and imaging instruments such as those on board of the japanese satellite Hinode, or the SST or CoMP, are bringing strong evidence for the existence of energetic Alfven waves in the solar corona. In order to assess the role of Alfven waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfven wave heating through the mode conversion mechanism. Using a 1.5-dimensional MHD code we carry out a paramete...
Nonlinear Evolution of Alfvenic Wave Packets
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Analysis of Magnetic Fields in Inertial Alfven Wave Collisions
Drake, Dereth J; Shanken, Brian C; Howes, Gregory G; Skiff, Frederick; Kletzing, Craig A; Carter, Troy A; Dorfman, Seth
2014-01-01
Turbulence in astrophysical and space plasmas is dominated by the nonlinear interaction of counterpropagating Alfven waves. Most Alfven wave turbulence theories have been based on ideal plasma models, such as incompressible MHD, for Alfven waves at large scales. However, in the inertial Alfven wave regime (vA > vthe), relevant to magnetospheric plasmas, how the turbulent nonlinear interactions are modified by the dispersive nature of the waves remains to be explored. Here we present the first laboratory evidence of the nonlinear interaction in the inertial regime. A comparison is made with the theory for MHD Alfven waves.
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
Riemann solvers and Alfven waves in black hole magnetospheres
Punsly, Brian; Balsara, Dinshaw; Kim, Jinho; Garain, Sudip
2016-09-01
In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. Thus, it is important for numerical simulations of black hole magnetospheres to minimize the dissipation of Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, numerical dissipation can affect how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. In order to help minimize dissipation of Alfven waves in relativistic numerical simulations we have formulated a one-dimensional Riemann solver, called HLLI, which incorporates the Alfven discontinuity and the contact discontinuity. We have also formulated a multidimensional Riemann solver, called MuSIC, that enables low dissipation propagation of Alfven waves in multiple dimensions. The importance of higher order schemes in lowering the numerical dissipation of Alfven waves is also catalogued.
Torsional Alfven waves in stratified and expanding magnetic flux tubes
2011-01-01
The effects of both density stratification and magnetic field expansion on torsional Alfven waves in magnetic flux tubes are studied. The frequencies, the period ratio P1/P2 of the fundamental and its first-overtone, and eigenfunctions of torsional Alfven modes are obtained. Our numerical results show that the density stratification and magnetic field expansion have opposite effects on the oscillating properties of torsional Alfven waves.
Adiabatic trapping in coupled kinetic Alfven-acoustic waves
Energy Technology Data Exchange (ETDEWEB)
Shah, H. A.; Ali, Z. [Department of Physics, G.C. University, 54000 Lahore (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, P. O. Nilore, Islamabad (Pakistan)
2013-03-15
In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.
Global Alfven Waves in Solar Physics: Coronal Heating
de Azevedo, C. A.; de Assis, A. S.
1990-11-01
RESUMEN. Se ha demostrado que Ia onda discreta de Alfven puede generar por lo memos un 20% de la energia coronal requerida con densidad de flujo de lO- erg 5 . Las ondas discretas de Alfven son una nueva clase `de ondas de Alfven las cuales pueden describirse por el modelo con que incluye un i6n finito, con frecuencia ciclotr6nica ( /uci # 0) y los efectos del equilibrio de plasma mostrados por Appert, Vaclavik and Villar 1984. ABSTRACT. It has been shown that the Discrete Alfven wave can power at least 20% of the required coronal energy flux density iO- Discrete Alfven waves are a new class of Alfven waves wich can be described by the model with the inclusion of finite ion cyclotron frequency (w/wci 0) and the equilibrium plasma current effects as shown by Appert, Vaclavik and Villar 1984. o,t :, HYDROMAGNETICS - SUN-CORONA
Alfven wave in higher dimensional space time
Panigrahi, D; Chatterjee, S
2009-01-01
Following the wellknown spacetime decomposition technique as applied to (d+1) dimensions we write down the equations of magnetohydrodynamics (MHD) in a spatially at generalised FRW universe. Assuming an equation of state for the background cosmic fluid we find solutions in turn for acous- tic waves and also for Alfven waves in a warm (cold) magnetised plasma. Interestingly the different plasma modes closely resemble the at space coun- terparts except that here the field variables all redshift with their time due to the expansion of the background. It is observed that in the ultrarelativistic limit the field parameters all scale as the free photon. The situation changes in the prerelativistic limit where the frequencies change in a bizarre fashion depending on initial conditions. It is observed that for a fixed magnetic field in a particular medium the Alfven wave velocity decreases with the number of dimensions, being the maximum in the usual 4D. Further for a fixed dimension the velocity attenuation is more ...
Nonlinear propagation of short wavelength drift-Alfven waves
DEFF Research Database (Denmark)
Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens
1986-01-01
Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...
Alfv\\'en Wave Driven High Frequency Waves in the Solar Atmosphere: Implications for Ion Heating
Kaghashvili, Edisher Kh
2014-01-01
This work is an extension of Kaghashvili [1999] where ion-cyclotron wave dissipation channel for Alfv\\'en waves was discussed. While our earlier study dealt with the mode coupling in the commonly discussed sense, here we study changes in the initial waveform due to interaction of the initial driver Alfv\\'en wave and the plasma inhomogeneity, which are implicitly present in the equations, but were not elaborated in Kaghashvili [1999]. Using a cold plasma approximation, we show how high frequency waves (higher than the initial driver Alfv\\'en wave frequency) are generated in the inhomogeneous solar plasma flow. The generation of the high frequency forward and backward propagating modified fast magnetosonic/whistler waves as well as the generation of the driven Alfv\\'en waves is discussed in the solar atmosphere. The generated high frequency waves have a shorter dissipation timescale, and they can also resonant interact with particles using both the normal cyclotron and anomalous cyclotron interaction channels. ...
Damping of visco-resistive Alfven waves in solar spicules
Directory of Open Access Journals (Sweden)
Z Fazel
2014-12-01
Full Text Available Interaction of Alfven waves with plasma inhomogeneity generates phase mixing which can cause the dissipation of Alfven waves. We investigated the dissipation of standing Alfven waves due to phase mixing at the presence of steady flow and sheared magnetic field in solar spicules. Moreover, the transition region between chromosphere and corona was considered. Our numerical simulation showed that the phase mixing and dissipation rate of Alfven waves are enhanced relative to viscosity and resistivity gradients. Comparison of the results of our models with and without these gradients illustrated a significant difference between them. In other words, with these assumptions, Alfven waves may transfer the photospheric energy to the corona during timescales corresponding to the observed lifetimes of spicules. It should be noted that the results of our numerical simulation were in good agreement with observational scaling law obtained by Kuridze et al. [1
Numerical Simulation of Solitary Kinetic Alfven Waves
Institute of Scientific and Technical Information of China (English)
DING Jian; LI Yi; WANG Shui
2008-01-01
Using the two-fluid model in the case of α1 (α=β/2Q, β is the ratio of thermal pressure to magnetic pressure, and Q=m,e/m,I), we numerically investigate the interactions between two solitary kinetic Alfven waves (SKAWs) and between an SKAW and a density discontinuity. The results show that the two SKAWs would remain in their original shapes and propagate at their initiating speeds, which indicates that SKAWs behave just like standard solitons. The simulation also shows that SKAWs will reflect and refract when crossing a discontinuity and propagating into a higher density region. The transmission wave is an SKAW with increasing density, and the reverberation is a disturbance with lower amplitude.
Alfven Wave Solar Model: Part 1, Coronal Heating
van der Holst, Bart; Meng, Xing; Jin, Meng; Manchester, Ward B; Toth, Gabor; Gombosi, Tamas I
2013-01-01
We present the new Alfven Wave Solar Model (AWSoM), a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfven wave turbulence. The injection of Alfven wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics includes: (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfven waves are partially reflected by the Alfven speed gradient and the vorticity along the field lines. The resulting counter-propagat...
HLL Riemann Solvers and Alfven Waves in Black Hole Magnetospheres
Punsly, Brian; Kim, Jinho; Garain, Sudip
2016-01-01
In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. However, numerical simulations of black hole magnetospheres are often based on 1-D HLL Riemann solvers that readily dissipate Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, it is unclear how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. The HLL Riemann solver is also notorious for producing large recurring...
Energy Technology Data Exchange (ETDEWEB)
Carrion, P.M.; Hasegawa, A.; Patton, W.; Prakash, M.
1988-06-01
A set of linearized magnetohydrodynamic equations was reduced to the reflectivity equation for the compressional magnetic perturbations in the framework of the Radoski model. It is shown that the reflection coeficient is a function of the inhomogeneities of the magnetic field, and the inhomogeneities of the Alfven velocity. An interesting property of the reflectivity equation is that, near Alfven resonant magnetic-force lines, this equation reduces to the curvature-free Budden equation. Near Alfven resonances, the curvature does not play a significant role and Budden's asymptotics in time can be applied to the wave field near the magnetic-force lines where the Alfven dispersion relation holds.
On reflection of Alfven waves in the solar wind
Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Moore, R. L.; Nerney, S. F.
1993-01-01
We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfven wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity and magnetic field strength on the waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7) cm(exp -3). In these models as well as in the models with lower temperatures and higher densities, Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective in accelerating the
A laboratory search for plasma erosion by Alfven waves
Vincena, S.; Gekelman, W.; Pribyl, P.
2007-12-01
Obliquely propagating shear Alfven waves with transverse wavelengths on the order of the electron inertial length or even the ion gyro-radius are commonly observed in the earth's low-altitude auroral zones. These regions are also replete with observations of electron beams and transversely heated ions. A kinetic treatment of shear Alfven wave-particle interaction reveals how these waves can be responsible for some of the observed particle acceleration. The auroral plasma environment is further enriched by the presence of field-aligned depletions in plasma density, and it has been suggested* that the Alfven waves may, in fact, be the cause of the erosion of ionospheric density. In this laboratory experiment, shear waves will be launched using a variety of proven antennas, and also allowed to grow spontaneously as Drift-Alfven modes in seeded density depletions**. Detailed measurements of the wave magnetic fields in the perpendicular density gradient regions will be presented which demonstrate the generation of short perpendicular wave scales due to the perpendicular gradient in parallel wave phase speed. Miniature in-situ particle diagnostics will also be used to look for electron and ion acceleration. The waves will also be launched into an increasing region of background magnetic field in an attempt to model the ratios of Alfven speed to electron thermal speed, and density gradient scale length to electron inertial length appropriate to the earth's auroral zone. Preliminary results will be presented on the efficacy of shear Alfven waves to self-generate plasma density depletions, or deepen ambient density inhomogeneities. The experiments are conducted at UCLA's Basic Plasma Science Facility in the Large Plasma Device. *Chaston, et al., "Ionospheric erosion by Alfven Waves," JGR, V 111, A03206, 2006. **Penano, et al., "Drift-Alfven fluctuations associated with a narrow pressure striation," Phys. Plasmas, V 7, Issue 1, pp. 144-157 (2000).
Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation
Nariyuki, Y; Kumashiro, T; Hada, T
2009-01-01
Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.
Emission of radiation induced by pervading Alfven waves
Energy Technology Data Exchange (ETDEWEB)
Zhao, G. Q. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wu, C. S. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Institute of Space Science, National Central University, Zhongli, Taiwan (China)
2013-03-15
It is shown that under certain conditions, propagating Alfven waves can energize electrons so that consequently a new cyclotron maser instability is born. The necessary condition is that the plasma frequency is lower than electron gyrofrequency. This condition implies high Alfven speed, which can pitch-angle scatter electrons effectively and therefore the electrons are able to acquire free energy which are needed for the instability.
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Matsumoto, Takuma
2010-01-01
We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/SOT. It is shown that the total energy flux at the corona becomes larger and the transition region height becomes higher in the case when we use the observed spectrum rather than white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3 and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explai...
Quantum effects on compressional Alfven waves in compensated semiconductors
Energy Technology Data Exchange (ETDEWEB)
Amin, M. R. [Department of Electronics and Communications Engineering, East West University, Aftabnagar, Dhaka 1212 (Bangladesh)
2015-03-15
Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.
Swirling astrophysical flows - efficient amplifiers of Alfven waves
Rogava, A D; Bodo, G; Massaglia, S; Rogava, Andria D.; Mahajan, Swadesh M.; Bodo, Gianluigi; Massaglia, Silvano
2003-01-01
We show that a helical shear flow of a magnetized plasma may serve as an efficient amplifier of Alfven waves. We find that even when the flow is purely ejectional (i.e., when no rotation is present) Alfven waves are amplified through the transient, shear-induced, algebraic amplification process. Series of transient amplifications, taking place sequentially along the flow, may result in a cascade amplification of these waves. However, when a flow is swirling or helical (i.e., some rotation is imposed on the plasma motion), Alfven waves become subject to new, much more powerful shear instabilities. In this case, depending on the type of differential rotation, both usual and parametric instabilities may appear. We claim that these phenomena may lead to the generation of large amplitude Alfven waves and the mechanism may account for the appearance of such waves in the solar atmosphere, in accretion-ejecion flows and in accretion columns. These processes may also serve as an important initial (linear and nonmodal)...
Alfven waves in the solar atmosphere. III - Nonlinear waves on open flux tubes
Hollweg, J. V.; Jackson, S.; Galloway, D.
1982-01-01
Consideration is given the nonlinear propagation of Alfven waves on solar magnetic flux tubes, where the tubes are taken to be vertical, axisymmetric and initially untwisted and the Alfven waves are time-dependent axisymmetric twists. The propagation of the waves into the chromosphere and corona is investigated through the numerical solution of a set of nonlinear, time-dependent equations coupling the Alfven waves into motions that are parallel to the initial magnetic field. It is concluded that Alfven waves can steepen into fast shocks in the chromosphere, pass through the transition region to produce high-velocity pulses, and then enter the corona, which they heat. The transition region pulses have amplitudes of about 60 km/sec, and durations of a few tens of seconds. In addition, the Alfven waves exhibit a tendency to drive upward flows, with many of the properties of spicules.
Nonlinear Alfv\\'en waves in extended magnetohydrodynamics
Abdelhamid, Hamdi M
2015-01-01
Large-amplitude Alfv\\'en waves are observed in various systems in space and laboratories, demonstrating an interesting property that the wave shapes are stable even in the nonlinear regime. The ideal magnetohydrodynamics (MHD) model predicts that an Alfv\\'en wave keeps an arbitrary shape constant when it propagates on a homogeneous ambient magnetic field. However, such arbitrariness is an artifact of the idealized model that omits the dispersive effects. Only special wave forms, consisting of two component sinusoidal functions, can maintain the shape; we derive fully nonlinear Alfv\\'en waves by an extended MHD model that includes both the Hall and electron inertia effects. Interestingly, these \\small-scale effects" change the picture completely; the large-scale component of the wave cannot be independent of the small scale component, and the coexistence of them forbids the large scale component to have a free wave form. This is a manifestation of the nonlinearity-dispersion interplay, which is somewhat differ...
Alfven waves in a partially ionized two-fluid plasma
Soler, R; Ballester, J L; Terradas, J
2013-01-01
Alfv\\'en waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfv\\'en waves is affected by the interaction between ionized and neutral species. Here we study Alfv\\'en waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cut-off values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mo...
Experimental evidence of Alfv\\'en wave propagation in a Gallium alloy
Alboussiere, Thierry; Debray, François; La Rizza, Patrick; Masson, Jean-Paul; Plunian, Franck; Ribeiro, Adolfo; Schmitt, Denys
2011-01-01
Experiments with a liquid metal alloy, galinstan, are reported and show clear evidence of Alfv\\'en wave propagation as well as resonance of Alfv\\'en modes. Galinstan is liquid at room temperature, and although its electrical conductivity is not as large as that of liquid sodium or NaK, it has still been possible to study Alfv\\'en waves, thanks to the use of intense magnetic fi elds, up to 13 teslas. The maximal values of Lundquist number, around 60, are similar to that of the reference experimental study by Jameson [1]. The generation mechanism for Alfv\\'en waves and their refl ection is studied carefully. Numerical simulations have been performed and have been able to reproduce the experimental results despite the fact that the simulated magnetic Prandtl number was much larger than that of galinstan. An originality of the present study is that a poloidal disturbance (magnetic and velocity fields) is generated, allowing us to track its propagation from outside the conducting domain, hence without interfering.
Energy Technology Data Exchange (ETDEWEB)
Biglari, H.; Zonca, F.; Chen, L.
1991-10-01
Toroidal Alfven eigenmodes are shown to be resonantly destabilized by both circulating and trapped energetic ions/alpha particles. In particular, the energetic circulating ions are shown to resonate with the mode not only at the Alfven speed ({upsilon}{sub A}), but also one-third of this speed, while resonances exist between trapped energetic ions and the wave when {upsilon} = {upsilon}{sub A}/21{epsilon}{sup {1/2}} (l=integer, {epsilon}=r/R is the local inverse aspect ratio), although the instability becomes weaker for resonances other than the fundamental. The oft-quoted criterion that instability requires super-Alfvenic ion velocities is thus sufficient but not necessary. 14 refs.
Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas
2012-01-01
It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore in the high-beta solar wind plasma whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave turbulence creates a plateau by quasilinear diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only ~10^-3 that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.
Simulation of the interaction between Alfven waves and fast particles
Energy Technology Data Exchange (ETDEWEB)
Feher, Tamas Bela
2014-02-18
There is a wide variety of Alfven waves in tokamak and stellarator plasmas. While most of them are damped, some of the global eigenmodes can be driven unstable when they interact with energetic particles. By coupling the MHD code CKA with the gyrokinetic code EUTERPE, a hybrid kinetic-MHD model is created to describe this wave-particle interaction in stellarator geometry. In this thesis, the CKA-EUTERPE code package is presented. This numerical tool can be used for linear perturbative stability analysis of Alfven waves in the presence of energetic particles. The equations for the hybrid model are based on the gyrokinetic equations. The fast particles are described with linearized gyrokinetic equations. The reduced MHD equations are derived by taking velocity moments of the gyrokinetic equations. An equation for describing the Alfven waves is derived by combining the reduced MHD equations. The Alfven wave equation can retain kinetic corrections. Considering the energy transfer between the particles and the waves, the stability of the waves can be calculated. Numerically, the Alfven waves are calculated using the CKA code. The equations are solved as an eigenvalue problem to determine the frequency spectrum and the mode structure of the waves. The results of the MHD model are in good agreement with other sophisticated MHD codes. CKA results are shown for a JET and a W7-AS example. The linear version of the EUTERPE code is used to study the motion of energetic particles in the wavefield with fixed spatial structure, and harmonic oscillations in time. In EUTERPE, the gyrokinetic equations are discretized with a PIC scheme using the delta-f method, and both full orbit width and finite Larmor radius effects are included. The code is modified to be able to use the wavefield calculated externally by CKA. Different slowing-down distribution functions are also implemented. The work done by the electric field on the particles is measured to calculate the energy transfer
Detection of Ionospheric Alfven Resonator Signatures Onboard C/NOFS: Implications for IRI Modeling
Simoes, F.; Klenzing, J.; Ivanov, S.; Pfaff, R.; Rowland, D.; Bilitza, D.
2011-01-01
The 2008-2009 long-lasting solar minimum activity has been the one of its kind since the dawn of space age, offering exceptional conditions for investigating space weather in the near-Earth environment. First ever detection of Ionospheric Alfven Resonator (IAR) signatures in orbit offers new means for investigating ionospheric electrodynamics, namely MHD (MagnetoHydroDynamics) wave propagation, aeronomy processes, ionospheric dynamics, and Sun-Earth connection mechanisms at a local scale. Local and global plasma density heterogeneities in the ionosphere and magnetosphere allow for formation of waveguides and resonators where magnetosonic and shear Alfven waves propagate. The ionospheric magnetosonic waveguide results from complete magnetosonic wave reflection about the ionospheric F-region peak, where the Alfven index of refraction presents a maximum. MHD waves can also be partially trapped in the vertical direction between the lower boundary of the ionosphere and the magnetosphere, a resonance mechanism known as IAR. In this work we present C/NOFS (Communications/Navigation Outage Forecasting System) Extremely Low Frequency (ELF) electric field measurements related to IAR signatures, discuss the resonance and wave propagation mechanisms in the ionosphere, and address the electromagnetic inverse problem from which electron/ion distributions can be derived. These peculiar IAR electric field measurements provide new, complementary methodologies for inferring ionospheric electron and ion density profiles, and also contribute for the investigation of ionosphere dynamics and space weather monitoring. Specifically, IAR spectral signatures measured by C/NOFS contribute for improving the International Reference Ionosphere (IRI) model, namely electron density and ion composition.
Kelvin-Helmholtz instability in an Alfven resonant layer of a solar coronal loop
Uchimoto, E.; Strauss, H. R.; Lawson, W. S.
1991-01-01
A Kelvin-Helmholtz instability has been identified numerically on an azimuthally symmetric Alfven resonant layer in an axially bounded, straight cylindrical coronal loop. The set of equations is solved numerically as an initial value problem. The linear growth rate of this instability is shown to be approximately proportional to the Alfven driving amplitude and inversely proportional to the width of the Alfven resonant layer. It is also shown that the linear growth rate increases linearly with m - 1 up to a certain m, reaches its maximum value for the mode whose half wavelength is comparable to the Alfven resonant layer width, and decreases at higher azimuthal mode number.
Roles of Fast-Cyclotron and Alfven-Cyclotron Waves for the Multi-Ion Solar Wind
Xiong, Ming
2012-01-01
Using linear Vlasov theory of plasma waves and quasi-linear theory of resonant wave-particle interaction, the dispersion relations and the electromagnetic field fluctuations of fast and Alfven waves are studied for a low-beta multi-ion plasma in the inner corona. Their probable roles in heating and accelerating the solar wind via Landau and cyclotron resonances are quantified. We assume that (1) low-frequency Alfven and fast waves have the same spectral shape and the same amplitude of power spectral density; (2) these waves eventually reach ion cyclotron frequencies due to a turbulence cascade; (3) kinetic wave-particle interaction powers the solar wind. The existence of alpha particles in a dominant proton/electron plasma can trigger linear mode conversion between oblique fast-whistler and hybrid alpha-proton cyclotron waves. The fast-cyclotron waves undergo both alpha and proton cyclotron resonances. The alpha cyclotron resonance in fast-cyclotron waves is much stronger than that in Alfven-cyclotron waves. ...
Characteristics of Short-wavelength Oblique Alfven and Slow waves
Zhao, J S; Yu, M Y; Lu, J Y; Wu, D J
2014-01-01
Linear properties of kinetic Alfv\\'en waves (KAWs) and kinetic slow waves (KSWs) are studied in the framework of two-fluid magnetohydrodynamics. We obtain the wave dispersion relations that are valid in a wide range of the wave frequency {\\omega} and plasma-to-magnetic pressure ratio {\\beta}. The KAW frequency can reach and exceed the ion cyclotron frequency at ion kinetic scales, whereas the KSW frequency remains sub-cyclotron. At {\\beta}\\sim1, the plasma and magnetic pressure perturbations of both modes are in anti-phase, so that there is nearly no total pressure perturbations. However, these modes exhibit several different properties. At high {\\beta}, the electric field polarization of KAW and KSW is opposite at the ion gyroradius scale, where KAWs are polarized in sense of electron gyration (right-hand polarized) and KSWs are left-hand polarized. The magnetic helicity {\\sigma}\\sim1 for KAWs and {\\sigma}\\sim-1 for KSWs, and the ion Alfv\\'en ratio R_{Ai}\\ll 1 for KAWs and R_{Ai}\\gg 1 for KSWs. We also found...
Phase Mixing of Alfv\\'en Waves Near a 2D Magnetic Null Point
McLaughlin, J A
2014-01-01
The propagation of linear Alfv\\'en wave pulses in an inhomogeneous plasma near a 2D coronal null point is investigated. When a uniform plasma density is considered, it is seen that an initially planar Alfv\\'en wavefront remains planar, despite the varying equilibrium Alfv\\'en speed, and that all the wave collects at the separatrices. Thus, in the non-ideal case, these Alfv\\'enic disturbances preferentially dissipate their energy at these locations. For a non-uniform equilibrium density, it is found that the Alfv\\'en wavefront is significantly distorted away from the initially planar geometry, inviting the possibility of dissipation due to phase mixing. Despite this however, we conclude that for the Alfv\\'en wave, current density accumulation and preferential heating still primarily occur at the separatrices, even when an extremely non-uniform density profile is considered.
Effects of compressional magnetic perturbation on kinetic Alfven waves
Dong, Ge; Bhattacharjee, Amitava; Lin, Zhihong
2016-10-01
Kinetic Alfven waves play a very important role in the dynamics of fusion as well as space and astrophysical plasmas. The compressional magnetic perturbation δB|| can play important role in kinetic Alfven waves (KAW) and various instabilities at large plasma β. It could affect the nonlinear behavior of these modes significantly even at small β. In this study, we have implemented δB|| in gyrokinetic toroidal code (GTC). The perpendicular Ampere's law is solved as a force balance equation. Double gyroaveraging is incorporated in the code to treat the finite Larmor radius effects related to δB|| terms. KAW is studied in slab geometry as a benchmark case. A scan in β for the KAW dispersion relation shows that as β approaches 1 (>0.3), the effects of δB|| becomes important. Connections are made with other existing studies of KAWs in the fusion and space plasma literature. This new capability of including δB|| in GTC could be applied to nonlinear simulations of modes such as kinetic ballooning and tearing modes. This research is supported by DOE Contract No. DE-AC02-09CH11466.
Sabeen, A.; Masood, W.; Qureshi, M. N. S.; Shah, H. A.
2017-07-01
In this paper, linear and nonlinear coupling of kinetic Alfven and acoustic waves has been studied in a dusty plasma in the presence of trapping and self-gravitation effects. In this regard, we have derived the linear dispersion relations for positively and negatively coupled dust kinetic Alfven-acoustic waves. Stability analysis of the coupled dust kinetic Alfven-acoustic wave has also been presented. The formation of solitary structures has been investigated following the Sagdeev potential approach by using the two-potential theory. Numerical results show that the solitary structures can be obtained only for sub-Alfvenic regimes in the scenario of space plasmas.
Parametric instabilities of large-amplitude parallel propagating Alfven waves: 2-D PIC simulation
Nariyuki, Yasuhiro; Hada, Tohru
2008-01-01
We discuss the parametric instabilities of large-amplitude parallel propagating Alfven waves using the 2-D PIC simulation code. First, we confirmed the results in the past study [Sakai et al, 2005] that the electrons are heated due to the modified two stream instability and that the ions are heated by the parallel propagating ion acoustic waves. However, although the past study argued that such parallel propagating longitudinal waves are excited by transverse modulation of parent Alfven wave, we consider these waves are more likely to be generated by the usual, parallel decay instability. Further, we performed other simulation runs with different polarization of the parent Alfven waves or the different ion thermal velocity. Numerical results suggest that the electron heating by the modified two stream instability due to the large amplitude Alfven waves is unimportant with most parameter sets.
Vlasov simulations of Kinetic Alfv\\'en Waves at proton kinetic scales
Vasconez, C L; Camporeale, E; Veltri, P
2014-01-01
Kinetic Alfv\\'en waves represent an important subject in space plasma physics, since they are thought to play a crucial role in the development of the turbulent energy cascade in the solar wind plasma at short wavelengths (of the order of the proton inertial length $d_p$ and beyond). A full understanding of the physical mechanisms which govern the kinetic plasma dynamics at these scales can provide important clues on the problem of the turbulent dissipation and heating in collisionless systems. In this paper, hybrid Vlasov-Maxwell simulations are employed to analyze in detail the features of the kinetic Alfv\\'en waves at proton kinetic scales, in typical conditions of the solar wind environment. In particular, linear and nonlinear regimes of propagation of these fluctuations have been investigated in a single-wave situation, focusing on the physical processes of collisionless Landau damping and wave-particle resonant interaction. Interestingly, since for wavelengths close to $d_p$ and proton plasma beta $\\bet...
Transfer of Energy, Potential, and Current by Alfv\\'en Waves in Solar Flares
Melrose, D B
2013-01-01
Alfv\\'en waves play three related roles in the impulsive phase of a solar flare: they transport energy from a generator region to an acceleration region; they map the cross-field potential (associated with the driven energy release) from the generator region onto the acceleration region; and within the acceleration region they damp by setting up a parallel electric field that accelerates electrons and transfers the wave energy to them. The Alfv\\'en waves may also be regarded as setting up new closed current loops, with field-aligned currents that close across field lines at boundaries. A model is developed for large-amplitude Alfv\\'en waves that shows how Alfv\\'en waves play these roles in solar flares. A picket-fence structure for the current flow is incorporated into the model to account for the "number problem" and the energy of the accelerated electrons.
Drake, D J; Howes, G G; Kletzing, C A; Skiff, F; Carter, T A; Auerbach, D W
2013-01-01
Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfven waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfven waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfven wave generated nonlinearly by a collision between counterpropagating Alfven waves.
Alfven Waves in a Plasma Sheet Boundary Layer Associated with Near-Tail Magnetic Reconnection
Institute of Scientific and Technical Information of China (English)
YUAN Zhi-Gang; DENG Xiao-Hua; PANG Ye; LI Shi-You; WANG Jing-Fang
2007-01-01
We report observations from Geotail satellite showing that large Poynting fluxes associated with Alfven waves in the plasma sheet boundary layer(PSBL) occur in the vicinity of the near-tail reconnection region on 10 December 1996.During the period of large Poynting fluxex,Geotail also observed strong tailward plasma flws.These observations demonstrate the importance of near-tail reconnection process as the energy source of Alfven waves in the PSBL.Strong tailward(Earthward)plasma flows ought to be an important candidate in generating Alfven waves.Furthermore,the strong pertutbations not only of the magnetic field but also of the electric field observed in the PSBL indicate that the PSBL plays an important role in the generation and propagation of the energy flux associated with Alfven waves.
Heating of the Solar Corona by Alfven Waves: Self-Induced Opacity
Zahariev, N I
2011-01-01
There have been derived equations describing the static distributions of temperature and wind velocity at the transition region within the framework of the magnetohydrodynamics (MHD) of fully ionized hydrogen plasma . We have also calculated the width of the transition between the chromosphere and corona as a self-induced opacity of the high-frequency Alfven waves (AWs). The domain wall is a direct consequence of the self-consistent MHD treatment of AWs propagation. We predict considerable spectral density of the high-frequency AWs in the photosphere. The idea that Alfven waves might heat the solar corona belong to Alfven - we simply derived the corresponding MHD equations. The comparison of the solutions to those equations with the observational/measured data will be crucial for revealing the heating mechanism. The analysis of those solutions will explain how Alfven waves brick unto the corona and dissipate their energy there.
Observation of an Alfv\\'en Wave Parametric Instability in a Laboratory Plasma
Dorfman, S
2016-01-01
A shear Alfv\\'en wave parametric instability is observed for the first time in the laboratory. When a single finite $\\omega/\\Omega_i$ kinetic Alfv\\'en wave (KAW) is launched in the Large Plasma Device above a threshold amplitude, three daughter modes are produced. These daughter modes have frequencies and parallel wave numbers that are consistent with copropagating KAW sidebands and a low frequency nonresonant mode. The observed process is parametric in nature, with the frequency of the daughter modes varying as a function of pump wave amplitude. The daughter modes are spatially localized on a gradient of the pump wave magnetic field amplitude in the plane perpendicular to the background field, suggesting that perpendicular nonlinear forces (and therefore $k_{\\perp}$ of the pump wave) play an important role in the instability process. Despite this, modulational instability theory with $k_{\\perp}=0$ has several features in common with the observed nonresonant mode and Alfv\\'en wave sidebands.
Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru
2006-01-01
Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfven waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfven waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation.
Nonlinear Alfv\\'en wave dynamics at a 2D magnetic null point: ponderomotive force
Thurgood, J O
2013-01-01
Context : In the linear, {\\beta}=0 MHD regime, the transient properties of MHD waves in the vicinity of 2D null points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate at the null point; whereas Alfv\\'en waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at regions of inhomogeneous Alfv\\'en speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime. Aims: We investigate the behaviour of low-amplitude Alfv\\'en waves about a 2D magnetic null point in nonlinear, {\\beta}= 0 MHD. Methods: We numerically simulate the introduction of low-amplitude Alfv\\'en waves into the vicinity of a magnetic null point using the nonlinear LARE2D code. Results: Unlike in the linear regime, we find that the Alfv\\'en wave sustains cospatial daughter disturbances, manifest in the transverse and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. t...
Numerical simulations of impulsively generated Alfv\\'en waves in solar magnetic arcades
Chmielewski, P; Musielak, Z E; Srivastava, A K
2014-01-01
We perform numerical simulations of impulsively generated Alfv\\'en waves in an isolated solar arcade, which is gravitationally stratified and magnetically confined. We study numerically the propagation of Alfv\\'en waves along such magnetic structure that extends from the lower chromosphere, where the waves are generated, to the solar corona, and analyze influence of the arcade size and width of the initial pulses on the wave propagation and reflection. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical VAL-C model and specifying the curved magnetic field lines that constitute the asymmetric magnetic arcade. The propagation and reflection of Alfv\\'en waves in this arcade is described by 2.5D magnetohydrodynamic equations that are numerically solved by the FLASH code. Our numerical simulations reveal that the Alfv\\'en wave amplitude decreases as a result of a partial reflection of Alfv\\'en waves in the solar transition region, and that the waves...
Alfv\\'enic Wave Heating of the Upper Chromosphere in Flares
Reep, Jeffrey W
2016-01-01
We have developed a numerical model of flare heating due to the dissipation of Alfv\\'enic waves propagating from the corona to the chromosphere. With this model, we present an investigation of the key parameters of these waves on the energy transport, heating, and subsequent dynamics. For sufficiently high frequencies and perpendicular wave numbers, the waves dissipate significantly in the upper chromosphere, strongly heating it to flare temperatures. This heating can then drive strong chromospheric evaporation, bringing hot and dense plasma to the corona. We therefore find three important conclusions: (1) Alfv\\'enic waves, propagating from the corona to the chromosphere, are capable of heating the upper chromosphere and the corona, (2) the atmospheric response to heating due to the dissipation of Alfv\\'enic waves can be strikingly similar to heating by an electron beam, and (3) this heating can produce explosive evaporation.
Disperson relation of finite amplitude Alfven wave in a relativistic electron- positron plasma
Hada, T; Muñoz, V; Hada, Tohru; Matsukiyo, Shuichi; Munoz, Victor
2004-01-01
The linear dispersion relation of a finite amplitude, parallel, circularly polarized Alfv\\'en wave in a relativistic electron-positron plasma is derived. In the nonrelativistic regime, the dispersion relation has two branches, one electromagnetic wave, with a low frequency cutoff at $\\sqrt{1+2\\omega_p^2/\\Omega_p^2}$ (where $\\omega_p=(4\\pi n e^2/m)^{1/2}$ is the electron/positron plasma frequency), and an Alfv\\'en wave, with high frequency cutoff at the positron gyrofrequency $\\Omega_p$. There is only one forward propagating mode for a given frequency. However, due to relativistic effects, there is no low frequency cutoff for the electromagnetic branch, and there appears a critical wave number above which the Alfv\\'en wave ceases to exist. This critical wave number is given by $ck_c/\\Omega_p=a/\\eta$, where $a=\\omega_p^2/\\Omega_p^2$ and $\\eta$ is the ratio between the Alfv\\'en wave magnetic field amplitude and the background magnetic field. In this case, for each frequency in the Alfv\\'en branch, two additional...
Zaqarashvili, T V; Soler, R
2012-01-01
Ion-neutral collisions may lead to the damping of Alfven waves in chromospheric and prominence plasmas. Neutral helium atoms enhance the damping in certain temperature interval, where the ratio of neutral helium and neutral hydrogen atoms is increased. Therefore, the height-dependence of ionization degrees of hydrogen and helium may influence the damping rate of Alfven waves. We aim to study the effect of neutral helium in the damping of Alfven waves in stratified partially ionized plasma of the solar chromosphere. We consider a magnetic flux tube, which is expanded up to 1000 km height and then becomes vertical due to merging with neighboring tubes, and study the dynamics of linear torsional Alfven waves in the presence of neutral hydrogen and neutral helium atoms. We start with three-fluid description of plasma and consequently derive single-fluid magnetohydrodynamic (MHD) equations for torsional Alfven waves. Thin flux tube approximation allows to obtain the dispersion relation of the waves in the lower pa...
Impulsively Generated Linear and Non-linear Alfven Waves in the Coronal Funnels
Chmielewski, P; Murawski, K; Musielak, Z E
2014-01-01
We present simulation results of the impulsively generated linear and non-linear Alfven waves in the weakly curved coronal magnetic flux-tubes (coronal funnels) and discuss their implications for the coronal heating and solar wind acceleration. We solve numerically the time-dependent magnetohydrodynamic equations to find the temporal signatures of the small and large-amplitude Alfven waves in the model atmosphere of open and expanding magnetic field configuration with a realistic temperature distribution. We compute the maximum transversal velocity of both linear and non-linear Alfven waves at different heights of the model atmosphere, and study their response in the solar corona during the time of their propagation. We infer that the pulse-driven non-linear Alfven waves may carry sufficient wave energy fluxes to heat the coronal funnels and also to power the solar wind that originates in these funnels. Our study of linear Alfven waves show that they can contribute only to the plasma dynamics and heating of t...
Pulse-driven nonlinear Alfv\\'en waves and their role in the spectral line broadening
Chmielewski, P; Murawski, K; Musielak, Z E
2012-01-01
We study the impulsively generated non-linear Alfv\\'en waves in the solar atmosphere, and describe their most likely role in the observed non-thermal broadening of some spectral lines in solar coronal holes. We solve numerically the time-dependent magnetohydrodynamic equations to find temporal signatures of large-amplitude Alfv\\'en waves in the model atmosphere of open and expanding magnetic field configuration, with a realistic temperature distribution. We calculate the temporally and spatially averaged, instantaneous transversal velocity of non-linear Alfv\\'en waves at different heights of the model atmosphere, and estimate its contribution to the unresolved non-thermal motions caused by the waves. We find that the pulse-driven nonlinear Alfv\\'en waves with the amplitude $A_{\\rm v}$=50 km s$^{-1}$ are the most likely candidates for the non-thermal broadening of Si VIII $\\lambda$1445.75 \\AA\\ line profiles in the polar coronal hole as reported by Banerjee et al. (1998). We also demonstrate that the Alfv\\'en w...
Exploring the Use of Alfven Waves in Magnetometer Calibration at Geosynchronous Orbit
Bentley, John; Sheppard, David; RIch, Frederick; Redmon, Robert; Loto'aniu, Paul; Chu, Donald
2016-01-01
An Alfven wave is a type magnetohydrodynamicwave that travels through a conducting fluid under the influence of a magnetic field. Researchers have successfully calculated offset vectors of magnetometers in interplanetary space by optimizing the offset to maximize certain Alfvenic properties of observed waves (Leinweber, Belcher). If suitable Alfven waves can be found in the magnetosphere at geosynchronous altitude then these techniques could be used to augment the overall calibration plan for magnetometers in this region such as on the GOES spacecraft, possibly increasing the time between regular maneuvers. Calibration maneuvers may be undesirable because they disrupt the activities of other instruments. Various algorithms to calculate an offset using Alfven waves were considered. A new variation of the Davis-Smith method was derived because it can be mathematically shown that the Davis-Smith method tolerates filtered data, which expands potential applications. The variant developed was designed to find only the offset in the plane normal to the main field because the overall direction of Earth's magnetic field rarely changes, and theory suggests the Alfvenic disturbances occur transverse to the main field. Other variations of the Davis-Smith method encounter problems with data containing waves that propagate in mostly the same direction. A searching algorithm was then designed to look for periods of time with potential Alfven waves in GOES 15 data based on parameters requiring that disturbances be normal to the main field and not change field magnitude. Final waves for calculation were hand-selected. These waves produced credible two-dimensional offset vectors when input to the Davis-Smith method. Multiple two-dimensional solutions in different planes can be combined to get a measurement of the complete offset. The resulting three dimensional offset did not show sufficient precision over several years to be used as a primary calibration method, but reflected
Experimental evidence of Alfven wave propagation in a Gallium alloy
2011-01-01
10p.; International audience; Experiments with a liquid metal alloy, galinstan, are reported and show clear evidence of Alfvén wave propagation as well as resonance of Alfvén modes. Galinstan is liquid at room temperature, and although its electrical conductivity is not as large as that of liquid sodium or NaK, it has still been possible to study Alfvén waves, thanks to the use of intense magnetic fi elds, up to 13 teslas. The maximal values of Lundquist number, around 60, are similar to that...
Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma
Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud
2016-11-01
We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.
Medina-Tanco, G. A.; Opher, R.
1990-11-01
RESUMEN. Se presentan resultados numericos para un modelo hidrodinamico de cuatro componentes (plasma de fondo, particulas energeticas, ondas de Alfven autogeneradas y campo magnetico) para choques oblicuos. ABSTRACT. Numerical results of a four component hydrodynamic model (background plasma, energetic particles, self-generated Alfven waves and magnetic field) for oblique shocks are presented. Keq wo't : COSMIC RAY-GENERAL - PLASMAS - SHOCK WAVES
Quantum Treatment of Kinetic Alfv\\'en Waves instability in a dusty plasma: Magnetized ions
Rubab, N
2016-01-01
The dispersion relation of kinetic Alfv\\'en wave in inertial regime is studied in a three component non-degenerate streaming plasma. A lin- ear dispersion relation using fluid- Vlasov equation for quantum plasma is also derived. The quantum correction CQ raised due to the insertion of Bohm potential in Vlasov model causes the suppression in the Alfven wave frequency and the growth rates of instability. A number of analytical expressions are derived for various modes of propagation. It is also found that many system parameters, i.e, streaming velocity, dust charge, num- ber density and quantum correction significantly influence the dispersion relation and the growth rate of instability.
Energy Technology Data Exchange (ETDEWEB)
Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)
2001-02-01
In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.
Wang, C B; Lee, L C
2014-01-01
A scenario is proposed to explain the preferential heating of minor ions and differential streaming velocity between minor ions and protons observed in the solar corona and in the solar wind. It is demonstrated by test particle simulations that minor ions can be nearly fully picked up by intrinsic Alfv\\'en-cyclotron waves observed in the solar wind based on the observed wave energy density. Both high frequency ion-cyclotron waves and low frequency Alfv\\'en waves play crucial roles in the pickup process. A minor ion can first gain a high magnetic moment through the resonant wave-particle interaction with ion-cyclotron waves, and then this ion with a large magnetic moment can be trapped by magnetic mirror-like field structures in the presence of the lower-frequency Alfv\\'en waves. As a result, the ion is picked up by these Alfv\\'en-cyclotron waves. However, minor ions can only be partially picked up in the corona due to low wave energy density and low plasma beta. During the pickup process, minor ions are stoch...
Heating and Acceleration of the Fast Solar Wind by Alfv\\'{e}n Wave Turbulence
van Ballegooijen, A A
2016-01-01
We present numerical simulations of reduced magnetohydrodynamic (RMHD) turbulence in a magnetic flux tube at the center of a polar coronal hole. The model for the background atmosphere is a solution of the momentum equation, and includes the effects of wave pressure on the solar wind outflow. Alfv\\'{e}n waves are launched at the coronal base, and reflect at various heights due to variations in Alfv\\'{e}n speed and outflow velocity. The turbulence is driven by nonlinear interactions between the counter-propagating Alfv\\'{e}n waves. Results are presented for two models of the background atmosphere. In the first model the plasma density and Alfv\\'{e}n speed vary smoothly with height, resulting in minimal wave reflections and low energy dissipation rates. We find that the dissipation rate is insufficient to maintain the temperature of the background atmosphere. The standard phenomenological formula for the dissipation rate significantly overestimates the rate derived from our RMHD simulations, and a revised formu...
Stability of Global Alfven Waves (Tae, Eae) in Jet Tritium Discharges
Kerner, W.; Borba, D.; Huysmans, G. T. A.; Porcelli, F.; Poedts, S.; Goedbloed, J. P.; Betti, R.
1994-01-01
The interaction of alpha-particles in JET tritium discharges with global Alfven waves via inverse Landau damping is analysed. It is found that alpha-particle driven eigenmodes were stable in the PTE1 and should also be stable in a future 50:50 deuterium-tritium mix discharge aiming at Q(DT) = 1,
Overdamped Alfven waves due to ion-neutral collisions in the solar chromosphere
Soler, R; Zaqarashvili, T V
2014-01-01
Alfvenic waves are ubiquitous in the solar atmosphere and their dissipation may play an important role in atmospheric heating. In the partially ionized solar chromosphere, collisions between ions and neutrals are an efficient dissipative mechanism for Alfven waves with frequencies near the ion-neutral collision frequency. The collision frequency is proportional to the ion-neutral collision cross section for momentum transfer. Here, we investigate Alfven wave damping as a function of height in a simplified chromospheric model and compare the results for two sets of collision cross sections, namely those of the classic hard-sphere model and those based on recent quantum-mechanical computations. We find important differences between the results for the two sets of cross sections. There is a critical interval of wavelengths for which impulsively excited Alfven waves are overdamped as a result of the strong ion-neutral dissipation. The critical wavelengths are in the range from 1 km to 50 km for the hard-sphere cr...
Prokopov, P. A.; Zakharov, Yu P.; Tishchenko, V. N.; Shaikhislamov, I. F.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Terekhin, V. A.
2016-11-01
Generation of Alfven waves propagating along external magnetic field B0 and Collisionless Shock Waves propagating across B0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field Eφ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field Bφ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number MA∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*1013 cm-3 is observed. At the same conditions but smaller MA ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B0∼100÷500 G for a distance of ∼2.5 m is studied.
Reflection and dissipation of Alfv\\'en waves in interstellar clouds
Pinto, C; Galli, D; Velli, M
2012-01-01
Context: Supersonic nonthermal motions in molecular clouds are often interpreted as long-lived magnetohydrodynamic (MHD) waves. The propagation and amplitude of these waves is affected by local physical characteristics, most importantly the gas density and the ionization fraction. Aims: We study the propagation, reflection and dissipation of Alfv\\'en waves in molecular clouds deriving the behavior of observable quantities such as the amplitudes of velocity fluctuations and the rate of energy dissipation. Methods: We formulated the problem in terms of Els\\"asser variables for transverse MHD waves propagating in a one-dimensional inhomogeneous medium, including the dissipation due to collisions between ions and neutrals and to a nonlinear turbulent cascade treated in a phenomenological way. We considered both steady-state and time-dependent situations and solved the equations of the problem numerically with an iterative method and a Lax-Wendroff scheme, respectively. Results: Alfv\\'en waves incident on overdens...
Effects of electron drift on the collisionless damping of kinetic Alfv\\'en waves in the solar wind
Tong, Yuguang; Chen, Christopher H K; Salem, Chadi S; Verscharen, Daniel
2015-01-01
The collisionless dissipation of anisotropic Alfv\\'enic turbulence is a promising candidate to solve the solar wind heating problem. Extensive studies examined the kinetic properties of Alfv\\'en waves in simple Maxwellian or bi-Maxwellian plasmas. However, the observed electron velocity distribution functions in the solar wind are more complex. In this study, we analyze the properties of kinetic Alfv\\'en waves in a plasma with two drifting electron populations. We numerically solve the linearized Maxwell-Vlasov equations and find that the damping rate and the proton-electron energy partition for kinetic Alfv\\'en waves are significantly modified in such plasmas, compared to plasmas without electron drifts. We suggest that electron drift is an important factor to take into account when considering the dissipation of Alfv\\'enic turbulence in the solar wind or other $\\beta \\sim 1$ astrophysical plasmas.
Cut-off wavenumber of Alfven waves in partially ionized plasmas of the solar atmosphere
Zaqarashvili, T V; Ballester, J L; Khodachenko, M L
2012-01-01
Alfven wave dynamics in partially ionized plasmas of the solar atmosphere shows that there is indeed a cut-off wavenumber, i.e. the Alfven waves with wavenumbers higher than the cut-off value are evanescent. The cut-off wavenumber appears in single-fluid magnetohydrodynamic (MHD) approximation but it is absent in a multi-fluid approach. Up to now, an explanation for the existence of the cut-off wavenumber is still missing. The aim of this paper is to point out the reason for the appearance of a cut-off wavenumber in single-fluid MHD. Beginning with three-fluid equations (with electrons, protons and neutral hydrogen atoms), we performed consecutive approximations until we obtained the usual single-fluid description is obtained. We solved the dispersion relation of linear Alfven waves at each step and sought the approximation responsible of the cut-off wavenumber appearance. We have found that neglecting inertial terms significantly reduces the real part of the Alfven frequency although it never becomes zero. T...
Alfven wave coupled with flow-driven fluid instability in interpenetrating plasmas
Vranjes, J
2015-01-01
The Alfven wave is analyzed in case of one quasineutral plasma propagating with some constant speed $v_0$ through another static quasineutral plasma. A dispersion equation is derived describing the Alfven wave coupled with the flow driven mode $\\omega= k v_0$ and solutions are discussed analytically and numerically. The usual solutions for two oppositely propagating Alfv\\'en waves are substantially modified due to the flowing plasma. More profound is modification of the solution propagating in the negative direction with respect to the magnetic field and the plasma flow. For a large enough flow speed (exceeding the Alfven speed in the static plasma), this negative solution may become non-propagating, with frequency equal to zero. In this case it represents a spatial variation of the electromagnetic field. For greater flow speed it becomes a forward mode, and it may merge with the positive one. This merging of the two modes represents the starting point for a flow-driven instability, with two complex-conjugate...
3D Alfven wave behaviour around proper and improper magnetic null points
Thurgood, J O
2013-01-01
Context: MHD waves and magnetic null points are both prevalent in many astrophysical plasmas, including the solar atmosphere. Interaction between waves and null points has been implicated as a possible mechanism for localised heating events. Aims: Here we investigate the transient behaviour of the Alfven wave about fully 3D proper and improper 3D magnetic null points. Previously, the behaviour of fast magnetoacoustic waves at null points in 3D, cold MHD was considered by Thurgood & McLaughlin (Astronomy & Astrophysics, 2012, 545, A9). Methods: We introduce an Alfven wave into the vicinity of both proper and improper null points by numerically solving the ideal, $\\beta=0$ MHD equations using the LARE3D code. A magnetic fieldline and flux-based coordinate system permits the isolation of resulting wave-modes and the analysis of their interaction. Results: We find that the Alfven wave propagates throughout the region and accumulates near the fan-plane, causing current build up. For different values of nul...
Small scales formation via Alfven wave propagation in compressible nonuniform media
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. The possibility to produce small scales has been studied by Malara et al. in the case of MHD disturbances propagating in an incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend the work of Malara et al. to include both compressibility and the third component for vector quantities. Using numerical simulations we show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. Moreover, the interaction between the initial Alfven wave and the inhomogeneity gives rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. A rough estimate of the typical times which the various dynamical processes take to produce small scales and then to dissipate the energy show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin.
Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru
2006-01-01
Parametric instabilities of parallel propagating,circularly polarized Alfv\\'en waves in a uniform background plasma is studied, within a framework of one-dimensional Vlasov equation for ions and massless electron fluid, so that kinetic perturbations in the longitudinal direction (ion Landau damping) are included. The present formulation also includes the Hall effect. The obtained results agree well with relevant analysis in the past, suggesting that kinetic effects in the longitudinal direction play essential roles in the parametric instabilities of Alfven waves when the kinetic effects react "passively". Furthermore, existence of the kinetic parametric instabilities is confirmed for the regime with small wave number daughter waves. Growth rates of these instabilities are sensitive to ion temperature.
Arbitrary amplitude kinetic Alfven solitary waves in two temperature electron superthermal plasma
Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika
2016-07-01
Through various satellite missions it is observed that superthermal velocity distribution for particles is more appropriate for describing space and astrophysical plasmas. So it is appropriate to use superthermal distribution, which in the limiting case when spectral index κ is very large ( i.e. κ→∞), shifts to Maxwellian distribution. Two temperature electron plasmas have been observed in auroral regions by FAST satellite mission, and also by GEOTAIL and POLAR satellite in the magnetosphere. Kinetic Alfven waves arise when finite Larmor radius effect modifies the dispersion relation or characteristic perpendicular wavelength is comparable to electron inertial length. We have studied the kinetic Alfven waves (KAWs) in a plasma comprising of positively charged ions, superthermal hot electrons and Maxwellian distributed cold electrons. Sagdeev pseudo-potential has been employed to derive an energy balance equation. The critical Mach number has been determined from the expression of Sagdeev pseudo-potential to see the existence of solitary structures. It is observed that sub-Alfvenic compressive solitons and super-Alfvenic rarefactive solitons exist in this plasma model. It is also observed that various parameters such as superthermality of hot electrons, relative concentration of cold and hot electron species, Mach number, plasma beta, ion to cold electron temperature ratio and ion to hot electron temperature ratio have significant effect on the amplitude and width of the KAWs. Findings of this investigation may be useful to understand the dynamics of coherent non-linear structures (i.e. KAWs) in space and astrophysical plasmas.
A global 3-D MHD model of the solar wind with Alfven waves
Usmanov, A. V.
1995-01-01
A fully three-dimensional solar wind model that incorporates momentum and heat addition from Alfven waves is developed. The proposed model upgrades the previous one by considering self-consistently the total system consisting of Alfven waves propagating outward from the Sun and the mean polytropic solar wind flow. The simulation region extends from the coronal base (1 R(sub s) out to beyond 1 AU. The fully 3-D MHD equations written in spherical coordinates are solved in the frame of reference corotating with the Sun. At the inner boundary, the photospheric magnetic field observations are taken as boundary condition and wave energy influx is prescribed to be proportional to the magnetic field strength. The results of the model application for several time intervals are presented.
Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands
Vinas, A. F.; Goldstein, M. L.
1992-01-01
This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.
On the reflection of Alfv\\'en waves and its implication for Earth's core modeling
Schaeffer, Nathanaël; Cardin, Philippe; Marie, Drouard
2011-01-01
Alfv\\'en waves propagate in electrically conducting fluids in the presence of a magnetic field. Their reflection properties depend on the ratio between the kinematic viscosity and the magnetic diffusivity of the fluid, also known as the magnetic Prandtl number Pm. In the special case Pm=1, there is no reflection on an insulating, no-slip boundary, and the wave energy is entirely dissipated in the boundary layer. We investigate the consequences of this remarkable behaviour for the numerical modeling of torsional Alfv\\'en waves (also known as torsional oscillations), which represent a special class of Alfv\\'en waves, in rapidly rotating spherical shells. They consist of geostrophic motions and are thought to exist in the fluid cores of planets with internal magnetic field. In the geophysical limit Pm 0.3, which is the range of values for which geodynamo numerical models operate. As a result, geodynamo models with no-slip boundary conditions cannot exhibit torsional oscillation normal modes.
Kinetic Alfv\\'en waves generation by large-scale phase-mixing
Vasconez, C L; Valentini, F; Servidio, S; Matthaeus, W H; Malara, F
2015-01-01
One view of the solar-wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length $d_p$ may be considered as Kinetic Alfv\\'en waves (KAWs). In the present paper, we show how phase-mixing of large-scale parallel propagating Alfv\\'en waves is an efficient mechanism for the production of KAWs at wavelengths close to $d_p$ and at large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall-Magnetohydrodynamic (HMHD), and hybrid Vlasov-Maxwell (HVM) simulations modeling the propagation of Alfv\\'en waves in inhomogeneous plasmas are performed. In linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase-mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave group velocity with analytical linear predictions. In the nonlinear regime, comparison of HMHD and HVM simulations allows to point out the role of kinetic effe...
Torsional Alfven Waves in Solar Magnetic Flux Tubes of Axial Symmetry
Murawski, K; Musielak, Z E; Srivastava, A K; Kraskiewicz, J
2015-01-01
Aims: Propagation and energy transfer of torsional Alfv\\'en waves in solar magnetic flux tubes of axial symmetry is studied. Methods: An analytical model of a solar magnetic flux tube of axial symmetry is developed by specifying a magnetic flux and deriving general analytical formulae for the equilibrium mass density and a gas pressure. The main advantage of this model is that it can be easily adopted to any axisymmetric magnetic structure. The model is used to simulate numerically the propagation of nonlinear Alfv\\'en waves in such 2D flux tubes of axial symmetry embedded in the solar atmosphere. The waves are excited by a localized pulse in the azimuthal component of velocity and launched at the top of the solar photosphere, and they propagate through the solar chromosphere, transition region, and into the solar corona. Results: The results of our numerical simulations reveal a complex scenario of twisted magnetic field lines and flows associated with torsional Alfv\\'en waves as well as energy transfer to t...
Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium
Belcher, J. W.; Burchsted, R.
1974-01-01
Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.
Inbound waves in the solar corona: a direct indicator of Alfv\\'en Surface location
DeForest, C E; McComas, D J
2014-01-01
The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary -- the Alfv\\'en surface -- that marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfv\\'en surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfv\\'en speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar corona, and the inner boundary of interplanetary space. Using a new and unique motion analysis to separate inbound and outbound motions in synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft, we have identified inbound wave motion in the outer corona beyond 6 solar radii for the first time, and used it to determine that the Alfv\\'en surface is at least 12.5 solar radii from the Sun over the polar coronal holes and 17 solar radii in the streamer belt, well beyond ...
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments
Energy Technology Data Exchange (ETDEWEB)
Boldyrev, Stanislav; Perez, Jean Carlos
2013-11-29
The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the
Alfv\\'en Wave Heating of the Solar Chromosphere: 1.5D models
Arber, T D; Shelyag, S
2015-01-01
Physical processes which may lead to solar chromospheric heating are analyzed using high-resolution 1.5D non-ideal MHD modelling. We demonstrate that it is possible to heat the chromospheric plasma by direct resistive dissipation of high-frequency Alfv\\'en waves through Pedersen resistivity. However this is unlikely to be sufficient to balance radiative and conductive losses unless unrealistic field strengths or photospheric velocities are used. The precise heating profile is determined by the input driving spectrum since in 1.5D there is no possibility of Alfv\\'en wave turbulence. The inclusion of the Hall term does not affect the heating rates. If plasma compressibility is taken into account, shocks are produced through the ponderomotive coupling of Alfv\\'en waves to slow modes and shock heating dominates the resistive dissipation. In 1.5D shock coalescence amplifies the effects of shocks and for compressible simulations with realistic driver spectra the heating rate exceeds that required to match radiative...
Spectroscopic Observations and Modelling of Impulsive Alfv\\'en Waves Along a Polar Coronal Jet
Jelínek, P; Murawski, K; Kayshap, P; Dwivedi, B N
2015-01-01
Using the Hinode/EIS 2$"$ spectroscopic observations, we study the intensity, velocity, and FWHM variations of the strongest Fe XII 195.12 \\AA\\ line along the jet to find the signature of Alfv\\'en waves. We simulate numerically the impulsively generated Alfv\\'en waves within the vertical Harris current-sheet, forming the jet plasma flows, and mimicking their observational signatures. Using the FLASH code and the atmospheric model with embedded weakly expanding magnetic field configuration within a vertical Harris current-sheet, we solve the two and half-dimensional (2.5-D) ideal magnetohydrodynamic (MHD) equations to study the evolution of Alfv\\'en waves and vertical flows forming the plasma jet. At a height of $\\sim 5~\\mathrm{Mm}$ from the base of the jet, the red-shifted velocity component of Fe XII 195.12 \\AA\\ line attains its maximum ($5~\\mathrm{km\\,s}^{-1}$) which converts into a blue-shifted one between the altitude of $5-10~\\mathrm{Mm}$. The spectral intensity continously increases up to $10~\\mathrm{Mm...
Shukla, P K
2012-01-01
It is shown that a three-dimensional (3D) modified-kinetic Alfv\\'en waves (m-KAWs) can propagate in the form of Alfv\\'enic tornadoes characterized by plasma density whirls or magnetic flux ropes carrying orbital angular momentum (OAM). By using the two fluid model, together with Amp\\`ere's law, we derive the wave equation for a 3D m-KAWs in a magnetoplasma with $m_e/m_i \\ll \\beta \\ll 1$, where $m_e$ $(m_i)$ is the electron (ion) mass, $\\beta =4 \\pi n_0 k_B (T_e + T_i)/B_0^2$, $n_0$ the unperturbed plasma number density, $k_B$ the Boltzmann constant, $T_e (T_e)$ the electron (ion) temperature, and $B_0$ the strength of the ambient magnetic field. The 3D m-KAW equation admits solutions in the form of a Laguerre-Gauss (LG) Alfv\\'enic vortex beam or Alfv\\'enic tornadoes with plasma density whirls that support the dynamics of Alfv\\'en magnetic flux ropes.
The role of Alfv\\'en wave heating in solar prominences
Soler, Roberto; Oliver, Ramon; Ballester, Jose Luis
2016-01-01
Observations have shown that magnetohydrodynamic waves over a large frequency range are ubiquitous in solar prominences. The waves are probably driven by photospheric motions and may transport energy up to prominences suspended in the corona. Dissipation of wave energy can lead to heating of the cool prominence plasma, so contributing to the local energy balance within the prominence. Here we discuss the role of Alfv\\'en wave dissipation as a heating mechanism for the prominence plasma. We consider a slab-like quiescent prominence model with a transverse magnetic field embedded in the solar corona. The prominence medium is modelled as a partially ionized plasma composed of a charged ion-electron single fluid and two separate neutral fluids corresponding to neutral hydrogen and neutral helium. Friction between the three fluids acts as a dissipative mechanism for the waves. The heating caused by externally-driven Alfv\\'en waves incident on the prominence slab is analytically explored. We find that the dense pro...
Plastic damping of Alfv\\'en waves in magnetar flares and delayed afterglow emission
Li, Xinyu
2015-01-01
Magnetar flares generate Alfv\\'en waves bouncing in the closed magnetosphere with energy up to $\\sim 10^{46}$ erg. We show that on a 10-ms timescale the waves are transmitted into the star and form a compressed packet of high energy density. This packet strongly shears the stellar crust and initiates a plastic flow, heating the crust and melting it hundreds of meters below the surface. A fraction of the deposited plastic heat is eventually conducted to the stellar surface, contributing to the surface afterglow months to years after the flare. A large fraction of heat is lost to neutrino emission or conducted into the core of the neutron star.
Stimulated emission of fast Alfv\\'en waves within magnetically confined fusion plasmas
Cook, J W S; Chapman, S C
2016-01-01
A fast Alfv\\'en wave with finite amplitude is shown to grow by a stimulated emission process that we propose for exploitation in toroidal magnetically confined fusion plasmas. Stimulated emission occurs while the wave propagates inward through the outer mid-plane plasma, where a population inversion of the energy distribution of fusion-born ions is observed to arise naturally. Fully nonlinear first principles simulations, which self-consistently evolve particles and fields under the Maxwell-Lorentz system, demonstrate this novel "alpha-particle channelling" scenario for the first time.
Role of Convective Cells in Nonlinear Interaction of Kinetic Alfven Waves
Luk, Onnie
The convective cells are observed in the auroral ionosphere and they could play an important role in the nonlinear interaction of Alfven waves and disrupt the kinetic Alfven wave (KAW) turbulence. Zonal fields, which are analogous to convective cells, are generated by microturbulence and regulate microturbulence inside toroidally confined plasmas. It is important to understand the role of convective cells in the nonlinear interaction of KAW leading to perpendicular cascade of spectral energy. A nonlinear gyrokinetic particle simulation has been developed to study the perpendicular spectral cascade of kinetic Alfven wave. However, convective cells were excluded in the study. In this thesis project, we have modified the formulation to implement the convective cells to study their role in the nonlinear interactions of KAW. This thesis contains detail description of the code formulation and convergence tests performed, and the simulation results on the role of convective cells in the nonlinear interactions of KAW. In the single KAW pump wave simulations, we observed the pump wave energy cascades to waves with shorter wavelengths, with three of them as dominant daughter waves. Convective cells are among those dominant daughter waves and they enhance the rate of energy transfer from pump to daughter waves. When zonal fields are present, the growth rates of the dominant daughter waves are doubled. The convective cell (zonal flow) of the zonal fields is shown to play a major role in the nonlinear wave interaction, while the linear zonal vector potential has little effects. The growth rates of the daughter waves linearly depends on the pump wave amplitude and the square of perpendicular wavenumber. On the other hand, the growth rates do not depend on the parallel wavenumber in the limit where the parallel wavenumber is much smaller than the perpendicular wavenumber. The nonlinear wave interactions with various perpendicular wavenumbers are also studied in this work. When
Plasma acceleration by the interaction of parallel propagating Alfv\\'en waves
Mottez, Fabrice
2014-01-01
It is shown that two circularly polarised Alfv\\'en waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. The analytical computations are done for two counter-propagating monochromatic waves. The simulations are done with monochromatic waves and with wave packets. The simulations show parallel electromagnetic fields consistent with the theory, and they show that the particle acceleration result in plasma cavities and, if the waves amplitudes are high enough, in ion beams. These acceleration processes could be relevant in space plasmas. For instance, they could be at work in the auroral zone and in the radiation belts of the Earth magnetosphere. In particular, they may explain the origin of the deep plasma...
Parametric decay of parallel and oblique Alfven waves in the expanding solar wind
Del Zanna, L; Landi, S; Verdini, A; Velli, M
2014-01-01
The long-term evolution of large-amplitude Alfven waves propagating in the solar wind is investigated by performing two-dimensional MHD simulations within the expanding box model. The linear and nonlinear phases of the parametric decay instability are studied for both circularly polarized waves in parallel propagation and for arc-polarized waves in oblique propagation. The non-monochromatic case is also considered. In the oblique case, the direct excitation of daughter modes transverse to the local background field is found for the first time in an expanding environment, and this transverse cascade seems to be favored for monochromatic mother waves. The expansion effect reduces the instability growth rate, and it can even suppress its onset for the lowest frequency modes considered here, possibly explaining the persistence of these outgoing waves in the solar wind.
Kinetic Alfv\\'{e}n solitary and rogue waves in superthermal plasmas
Bains, A; Xia, L -D
2014-01-01
We investigate the small but finite amplitude solitary Kinetic Alfv\\'{e}n waves (KAWs) in low $\\beta$ plasmas with superthermal electrons modeled by a kappa-type distribution. A nonlinear Korteweg-de Vries (KdV) equation describing the evolution of KAWs is derived by using the standard reductive perturbation method. Examining the dependence of the nonlinear and dispersion coefficients of the KdV equation on the superthermal parameter $\\kappa$, plasma $\\beta$ and obliqueness of propagation, we show that these parameters may change substantially the shape and size of solitary KAW pulses. Only sub-Alfv\\'enic, compressive solitons are supported. We then extend the study to examine kinetic Alfv\\'en rogue waves by deriving a nonlinear Schr\\"{o}dinger equation from {the KdV} equation. Rational solutions that form rogue wave envelopes are obtained. We examine how the behavior of rogue waves depends on the plasma parameters in question, finding that the rogue envelopes are lowered with increasing electron superthermal...
Burgulence and Alfv\\'en waves heating mechanism of solar corona
Mishonov, T M
2006-01-01
Heating of magnetized turbulent plasma is calculated in the framework of Burgers turbulence [A.M. Polyakov, Phys. Rev. E. 52, 6183, (1995)]. There is calculated the energy flux of Alfv\\'en waves along the magnetic field. The Alfven waves are considered as intermediary between the turbulent energy and the heat. The derived results are related to wave channel of the heating of solar corona. After incorporating dissipation of convective plasma waves instabilities [G.D. Chagelishvili, R.G. Chanishvili, T.S. Hristov, and J.G. Lominadze, Phys. Rev. E 47, 366 (1993)] and [A.D. Rogava, S.M. Mahajan, G. Bodo, and S. Marsaglia, Astronomy & Astrophysics, 399, 421-431 (2003)] the suggested model of heating can be applied to analysis of the missing viscosity of accretion discs and to reveal why the quasars are the most powerful sources of light in the universe. We suppose that applied Langevin-Burgers approach to turbulence can be helpful for other systems where we have intensive interaction between a stochastic turbu...
Upper-hybrid wave driven Alfvenic turbulence in magnetized dusty plasmas
Misra, A P
2010-01-01
The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations [J.Plasma Phys. 73, 3 (2006)] that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs is solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths which, in turn, ...
Nonlinear reflection process of linearly-polarized, broadband Alfv\\'en waves in the fast solar wind
Shoda, Munehito
2016-01-01
Using one-dimensional numerical simulations, we study the elementary process of Alfv\\'{e}n wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfv\\'{e}n wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave-wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfv\\'{e}n wave. In this study we consider a linearly polarized Alfv\\'en wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfv\\...
Shukla, P. K.
2012-01-01
It is shown that a three-dimensional (3D) modified-kinetic Alfv\\'en waves (m-KAWs) can propagate in the form of Alfv\\'enic tornadoes characterized by plasma density whirls or magnetic flux ropes carrying orbital angular momentum (OAM). By using the two fluid model, together with Amp\\`ere's law, we derive the wave equation for a 3D m-KAWs in a magnetoplasma with $m_e/m_i \\ll \\beta \\ll 1$, where $m_e$ $(m_i)$ is the electron (ion) mass, $\\beta =4 \\pi n_0 k_B (T_e + T_i)/B_0^2$, $n_0$ the unpert...
Studies of the Jet in BL Lacertae. II. Superluminal Alfv\\'en Waves
Cohen, M H; Arshakian, T G; Clausen-Brown, E; Homan, D C; Hovatta, T; Kovalev, Y Y; Lister, M L; Pushkarev, A B; Richards, J L; Savolainen, T
2014-01-01
Ridge lines on the pc-scale jet of the active galactic nucleus BL Lac display transverse patterns that move superluminally downstream. The patterns are not ballistic, but are analogous to waves on a whip. Their apparent speeds $\\beta_\\mathrm{app}$ (units of $c$) range from 4.2 to 13.5, corresponding to $\\beta_\\mathrm{wave}^\\mathrm{gal}= 0.981 - 0.998$ in the galaxy frame. We show that the magnetic field in the jet is well-ordered with a strong transverse component, and assume that it is helical and that the transverse patterns are longitudinal Alfv\\'en waves. The wave-induced transverse speed of the jet is non-relativistic ($\\beta_\\mathrm{tr}^\\mathrm{gal}\\sim 0.09$) and in agreement with our assumption of low-amplitude waves. In 2010 the wave activity subsided and the jet displayed a mild wiggle that had a complex oscillatory behavior. The waves are excited by changes in the position angle of the recollimation shock, in analogy to exciting a wave on a whip by shaking it. Simple models of the system are presen...
Entanglement of helicity and energy in kinetic Alfven wave/whistler turbulence
Galtier, S
2014-01-01
The role of magnetic helicity is investigated in kinetic Alfv\\'en wave and oblique whistler turbulence in presence of a relatively intense external magnetic field $b_0 {\\bf e_\\parallel}$. In this situation, turbulence is strongly anisotropic and the fluid equations describing both regimes are the reduced electron magnetohydrodynamics (REMHD) whose derivation, originally made from the gyrokinetic theory, is also obtained here from compressible Hall MHD. We use the asymptotic equations derived by Galtier \\& Bhattacharjee (2003) to study the REMHD dynamics in the weak turbulence regime. The analysis is focused on the magnetic helicity equation for which we obtain the exact solutions: they correspond to the entanglement relation, $n+\\tilde n = -6$, where $n$ and $\\tilde n$ are the power law indices of the perpendicular (to ${\\bf b_0}$) wave number magnetic energy and helicity spectra respectively. Therefore, the spectra derived in the past from the energy equation only, namely $n=-2.5$ and $\\tilde n = - 3.5$,...
Propagation of Alfv\\'enic Waves From Corona to Chromosphere and Consequences for Solar Flares
Russell, Alexander J B
2013-01-01
How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a 2-fluid model (of plasma and neutrals) and used it to perform 1D simulations of Alfv\\'en waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of one second or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 seconds or longer pass through the chromosphere with relatively little damping, however, for periods of 1 second or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid and upper chromosphere, with electron resistivity playing some role in the lower ch...
Solitary Kinetic Alfven Waves in a Low-β Dusty Plasma
Institute of Scientific and Technical Information of China (English)
CHEN Yin-Hua; LU Wei
2000-01-01
The nonlinear kinetic Alfven waves in a low-β(0<β<1)dusty plasma have been investigated with the fluid model of three-component plasma. The nonlinear equation governing the perturbation density of electrons in a form of the energy integral has been derived. In the approximation of small amplitude, the soliton solution for the perturbation density of electrons is found, and the characteristics of solitons in different range of plasma parameters is studied numerically. The results show that the density dip or hump can be formed in a dusty plasma for different ranges of parameters, the amplitude of density dip is enhanced and the amplitude of density hump is reduced with increasing dust grain content.
Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity
Fatuzzo, Marco; Melia, Fulvio
1993-01-01
Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.
Energy Technology Data Exchange (ETDEWEB)
Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)
2012-09-10
The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Threaded-Field-Lines Model for the Low Solar Corona Powered by the Alfven Wave Turbulence
Sokolov, Igor V; Manchester, Ward B; Ozturk, Doga Can Su; Szente, Judit; Taktakishvili, Aleksandre; Tóth, Gabor; Jin, Meng; Gombosi, Tamas I
2016-01-01
We present an updated global model of the solar corona, including the transition region. We simulate the realistic tree-dimensional (3D) magnetic field using the data from the photospheric magnetic field measurements and assume the magnetohydrodynamic (MHD) Alfv\\'en wave turbulence and its non-linear dissipation to be the only source for heating the coronal plasma and driving the solar wind. In closed field regions the dissipation efficiency in a balanced turbulence is enhanced. In the coronal holes we account for a reflection of the outward propagating waves, which is accompanied by generation of weaker counter-propagating waves. The non-linear cascade rate degrades in strongly imbalanced turbulence, thus resulting in colder coronal holes. The distinctive feature of the presented model is the description of the low corona as almost-steady-state low-beta plasma motion and heat flux transfer along the magnetic field lines. We trace the magnetic field lines through each grid point of the lower boundary of the g...
Alfv\\'en wave phase-mixing and damping in the ion cyclotron range of frequencies
Threlfall, J W; De Moortel, I
2010-01-01
Aims. To determine the effect of the Hall term in the generalised Ohm's law on the damping and phase mixing of Alfv\\'en waves in the ion cyclotron range of frequencies in uniform and non-uniform equilibrium plasmas. Methods. Wave damping in a uniform plasma is treated analytically, whilst a Lagrangian remap code (Lare2d) is used to study Hall effects on damping and phase mixing in the presence of an equilibrium density gradient. Results. The magnetic energy associated with an initially Gaussian field perturbation in a uniform resistive plasma is shown to decay algebraically at a rate that is unaffected by the Hall term to leading order in k^2di^2 where k is wavenumber and di is ion skin depth. A similar algebraic decay law applies to whistler perturbations in the limit k^2di^2>>1. In a non-uniform plasma it is found that the spatially-integrated damping rate due to phase mixing is lower in Hall MHD than it is in MHD, but the reduction in the damping rate, which can be attributed to the effects of wave dispers...
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Effect of dust particles on kinetic Alfven wave in earth's magnetoplasma
Energy Technology Data Exchange (ETDEWEB)
Varma, P; Shukla, Nidhi; Agarwal, Priyanka; Tiwari, M S, E-mail: poornimavarma@yahoo.co, E-mail: tiwarims@rediffmail.co [Department of Physics and Electronics, Dr. H .S. Gour University, Sagar (M.P.) - 470003 (India)
2010-02-01
Kinetic Alfve'n waves are examined in the presence of density and charge of dust particles with bi-Maxwellian distribution function. The theory of particle aspect analysis is used to evaluate the dispersion relation and growth rate. It is assumed that a low {beta} (ratio of plasma pressure to magnetic pressure) plasma consist the resonant and non-resonant particles. The resonant particles participate in the energy exchange with the wave whereas non-resonant particles support the oscillatory motion of the wave. It is assumed that the dusty plasma model modify the scenario of the KAW. The density of dust particles enhanced the frequency of the KAW. The presence of charged dust grains gives rise to new kinds of waves. The finding may be applicable for the laboratory plasma and has wide applications in magnetosphere as well as space plasma which modify the propagational characteristics of KAW.
Explaining Signatures of Auroral Arcs based on the Stationary Inertial Alfven Wave
Nogami, Sh; Koepke, Me; Knudsen, Dj; Gillies, Dm; Donovan, E.; Vincena, S.
2016-10-01
Optical emission data from the THEMIS array of All Sky Imagers are analyzed to determine the lifetime of an auroral arc (i.e., the elapsed time during which an arc is visible). Lifetime is an important temporal signature related to the arc generation mechanism, by which arcs can be distinguished. An arc with a lifetime greater than ten minutes is consistent with arc generation by Stationary Inertial Alfven Wave (StIAW) which supports a steady-state wave electric field component parallel to a background magnetic field. An StIAW is a non-fluctuating, non-travelling, spatially periodic pattern of perturbed ion density that is static in the laboratory frame. StIAWs are the predicted result of the interaction between a magnetic-field-aligned electron current and plasma convection perpendicular to a background magnetic field. Electrostatic probes measure the fixed pattern of perturbed ion density in LAPD-U. Electron acceleration due to StIAWs is being investigated as a mechanism for the formation and support of long-lived auroral arcs. Preliminary evidence of electron acceleration from laboratory experiment is reported. This work was supported by NSF Grant PHY-130-1896, Grants from the Canadian Space Agency, and the THEMIS ASI teams at UCalgary and UC Berkeley. Facility use and experimental assistance from BaPSF is gratefully acknowledged.
Study of kinetic Alfven wave (KAW) in plasma - sheet-boundary- layer
Energy Technology Data Exchange (ETDEWEB)
Shukla, Nidhi; Varma, P; Tiwari, M S, E-mail: tiwarims@rediffmail.co, E-mail: poornimavarma@yahoo.co, E-mail: nidhiphy.shukla@gmail.co [Department of Physics and Electronics, Dr. H. S. Gour University, Sagar (M.P.), 470003 (India)
2010-02-01
The effect of parallel electric field with general loss-cone distribution function on the dispersion relation and damping rate/growth rate of the kinetic Alfven wave (KAW) is evaluated by kinetic approach. The generation of KAW by the combined effect of parallel electric field and loss-cone distribution indices (J) at a particular range of k{sub p}erpendicular{rho}{sub i} (k{sub p}erpendicular{rho}{sub i} <1 and k{sub p}erpendicular{rho}{sub i} >1) is noticed, where k{sub p}erpendicular is perpendicular wave number and {rho}{sub i} is the ion-gyro radius. Thus the propagation of KAW and loss of the Poynting flux from plasma sheet boundary layer (PSBL) to the ionosphere can be explained on the basis of present investigation. It is found that the present study also shows that the loss-cone distribution index is an important parameter to study KAW in the PSBL.
James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves
Chen, Liu
2012-10-01
Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.
Rankin, R.; Sydorenko, D.
2015-12-01
Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.
Pressure-gradient-induced Alfven eigenmodes: 2. Kinetic excitation with ion temperature gradient
Bierwage, Andreas; Zonca, Fulvio
2009-01-01
The kinetic excitation of ideal magnetohydrodynamic (MHD) discrete Alfven eigenmodes in the second MHD ballooning stable domain is studied in the presence of a thermal ion temperature gradient (ITG), using linear gyrokinetic particle-in-cell simulations of a local flux tube in shifted-circle tokamak geometry. The instabilities are identified as alpha-induced toroidal Alfven eigenmodes (alphaTAE); that is, bound states trapped between pressure-gradient-induced potential barriers of the Schroedinger equation for shear Alfven waves. Using numerical tools, we examine in detail the effect of kinetic thermal ion compression on alphaTAEs; both non-resonant coupling to ion sound waves and wave-particle resonances. It is shown that the Alfvenic ITG instability thresholds (e.g., the critical temperature gradient) are determined by two resonant absorption mechanisms: Landau damping and continuum damping. The numerical results are interpreted on the basis of a theoretical framework previously derived from a variational f...
Matsumoto, Takuma
2011-01-01
We report the results of the first two-dimensional self-consistent simulations directly covering from the photosphere to the interplanetary space. We carefully set up grid points with spherical coordinate to treat Alfv\\'enic waves in the atmosphere with the huge density contrast, and successfully simulate hot coronal wind streaming out as a result of surface convective motion. Footpoint motion excites upwardly propagating Alfv\\'enic waves along an open magnetic flux tube. These waves, traveling in non-uniform medium, suffer reflection, nonlinear mode conversion to compressive modes, and turbulent cascade. Combination of these mechanisms, the Alfv\\'enic waves eventually dissipate to accelerate the solar wind. While the shock heating by the dissipation of the compressive wave plays a primary role in the coronal heating, both turbulent cascade and shock heating contribute to drive the solar wind.
Precession resonance in water waves
Lucas, Dan; Perlin, Marc
2016-01-01
We describe the theory and present numerical evidence for a new type of nonlinear resonant interaction between gravity waves on the surface of deep water. The resonance constitutes a generalisation of the usual 'exact' resonance as we show that exchanges of energy between the waves can be enhanced when the interaction is three-wave rather than four and the linear frequency mismatch, or detuning, is non-zero i.e. $\\omega_1\\pm\\omega_2\\pm\\omega_3 \
Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.
1991-01-01
The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.
Resonant Heating of Ions by Parallel Propagating Alfvén Waves in Solar Coronal Holes
Institute of Scientific and Technical Information of China (English)
Tian-Xi Zhang; Jing-Xiu Wang; Chi-Jie Xiao
2005-01-01
Resonant heating of H, O+5, and Mg+9 by parallel propagating ioncyclotron Alfven waves in solar coronal holes at a heliocentric distance is studied using the heating rate derived from the quasilinear theory. It is shown that the particle-Alfven-wave interaction is a significant microscopic process. The temperatures of the ions are rapidly increased up to the observed order in only microseconds, which implies that simply inserting the quasilinear heating rate into the fluid/MHD energy equation to calculate the radial dependence of ion temperatures may cause errors as the time scales do not match. Different species ions are heated by Alfven waves with a power law spectrum in approximately a mass order.To heat O+5 over Mg+9 as measured by the Ultraviolet Coronagraph Spectrometer (UVCS) in the solar coronal hole at a region≥ 1.9R⊙, the energy density of Alfven waves with a frequency close to the O+5-cyclotron frequency must be at least double of that at the Mg+9-cyclotron frequency. With an appropriate wave-energy spectrum, the heating of H, O+5 and Mg+9 can be consistent with the UVCS measurements in solar coronal holes at a heliocentric distance.
Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets
Jafelice, L. C.; Opher, R.
1990-11-01
evident that both problems are intimately related to one another. Jafe- lice and Opher (1987a)(Astrophys. Space Sci. 137, 303)showed that an abundant generation of kinetic Alfven waves (KAw) within EJ and ERS is expected. In the present work we study the chain of processes: a) KAW accelerate thermal electrons along the background magnetic field producing suprathermal runaway electrons; b) which generate Langmuir waves and c) which in turn further accelerate a fraction of the runaway electrons to moderately relativistic energies. We show that assuming that there is no other source of a thermal population but the original one, the above sequence of processes can account for the consumption of thermal electrons in a time scale the source lifetime. Key o : GALAXIES-JETS - HYDROMAGNETICS
Clack, C
2009-01-01
The nonlinear theory of driven magnetohydrodynamics (MHD) waves in strongly anisotropic and dispersive plasmas, developed for slow resonance by Clack and Ballai [Phys. Plasmas, 15, 2310 (2008)] and Alfv\\'en resonance by Clack \\emph{et al.} [A&A,494, 317 (2009)], is used to study the weakly nonlinear interaction of fast magnetoacoustic (FMA) waves in a one-dimensional planar plasma. The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the inhomogeneous slab interacting with the localized slow or Alfv\\'{e}n dissipative layer and are partly reflected, dissipated and transmitted by this region. The nonlinearity parameter defined by Clack and Ballai (2008) is assumed to be small and a regular perturbation method is used to obtain analytical solutions in the slow dissipative layer. The effect of dispersion in the slow dissipative layer is to further decrease the coefficient of ener...
Energy Technology Data Exchange (ETDEWEB)
Shukla, Nidhi; Mishra, Ruchi; Varma, P; Tiwari, M S [Department of Physics and Electronics, Dr H S Gour University, Sagar (MP) 470003 (India)
2008-02-15
This work studies the effect of ion and electron beam on kinetic Alfven wave (KAW) with general loss-cone distribution function. The kinetic theory has been adopted to evaluate the dispersion relation and damping rate of the wave in the presence of loss-cone distribution indices J. The variations in wave frequency {omega} and damping rate with perpendicular wave number k{sub perpendicular}{rho}{sub i} (k{sub perpendicular} is perpendicular wave number and {rho}{sub i} is ion gyroradius) and parallel wave number k{sub parallel} are studied. It is found that the distribution index J and ion beam velocity enhance the wave frequency at lower k{sub perpendicular}{rho}{sub i}, whereas the electron beam velocity enhances the wave frequency at higher k{sub perpendicular}{rho}{sub i}. The calculated values of frequency correspond to the observed values in the range 0.1-4 Hz. Increase in damping rate due to higher distribution indices J and ion beam velocity is observed. The effect of electron beam is to reduce the damping rate at higher k{sub perpendicular}{rho}{sub i}. The plasma parameters appropriate to plasma sheet boundary layer are used. The results may explain the transfer of Poynting flux from the magnetosphere to the ionosphere. It is also found that in the presence of the loss-cone distribution function the ion beam becomes a sensitive parameter to reduce the Poynting flux of KAW propagating towards the ionosphere.
2D continuous spectrum of shear Alfven waves in the presence of a magnetic island
Biancalani, Alessandro; Pegoraro, Francesco; Zonca, Fulvio
2010-01-01
The radial structure of the continuous spectrum of shear Alfven modes is calculated in the presence of a magnetic island in tokamak plasmas. Modes with the same helicity of the magnetic island are considered in a slab model approximation. In this framework, with an appropriate rotation of the coordinates the problem reduces to 2 dimensions. Geometrical effects due to the shape of the flux surfaceâs cross section are retained to all orders. On the other hand, we keep only curvature effects responsible of the beta induced gap in the low-frequency part of the continuous spectrum. New continuum accumulation points are found at the O-point of the magnetic island. The beta-induced Alfven Eigenmodes (BAE) continuum accumulation point is found to be positioned at the separatrix flux surface. The most remarkable result is the nonlinear modification of the BAE continuum accumulation point frequency.
Hahn, Michael
2013-01-01
We present a measurement of the energy carried and dissipated by Alfv\\'en waves in a polar coronal hole. Alfv\\'en waves have been proposed as the energy source that heats the corona and drives the solar wind. Previous work has shown that line widths decrease with height in coronal holes, which is a signature of wave damping, but have been unable to quantify the energy lost by the waves. This is because line widths depend on both the non-thermal velocity v_nt and the ion temperature T_i. We have implemented a means to separate the T_i and v_nt contributions using the observation that at low heights the waves are undamped and the ion temperatures do not change with height. This enables us to determine the amount of energy carried by the waves at low heights, which is proportional to v_nt. We find the initial energy flux density present was 6.7 +/- 0.7 x 10^5 erg cm^-2 s^-1, which is sufficient to heat the coronal hole and acccelerate the solar wind during the 2007 - 2009 solar minimum. Additionally, we find tha...
Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis
2014-07-01
We introduce Bloch-wave beatings in arrays of multimode periodically bent waveguides with a transverse refractive index gradient. The new phenomenon manifests itself in the periodic drastic increase of the amplitude of the Bloch oscillations that accompanies resonant conversion of modes guided by the individual waveguides. The Bloch-wave beatings are found to be most pronounced when the length of the resonant mode conversion substantially exceeds the longitudinal period of the Bloch oscillations. The beating frequency decreases when the amplitude of waveguide bending decreases, while the beating amplitude is restricted by the amplitude of the Bloch oscillations that emerge from the second allowed band of the Floquet-Bloch lattice spectrum.
Kartashov, Yaroslav V; Torner, Lluis
2014-01-01
We introduce Bloch-wave beatings in arrays of multimode periodically bent waveguides with a transverse refractive index gradient. The new phenomenon manifests itself in the periodic drastic increase of the amplitude of the Bloch oscillations that accompanies resonant conversion of modes guided by the individual waveguides. The Bloch-wave beatings are found to be most pronounced when the length of the resonant mode conversion substantially exceeds the longitudinal period of the Bloch oscillations. The beating frequency decreases when the amplitude of waveguide bending decreases, while the beating amplitude is restricted by the amplitude of the Bloch oscillations that emerge from the second allowed band of the Floquet-Bloch lattice spectrum.
Chandran, Benjamin D G; Quataert, Eliot; Bale, Stuart D
2011-01-01
We develop a 1D solar-wind model that includes separate energy equations for the electrons and protons, proton temperature anisotropy, collisional and collisionless heat flux, and an analytical treatment of low-frequency, reflection-driven, Alfven-wave turbulence. To partition the turbulent heating between electron heating, parallel proton heating, and perpendicular proton heating, we employ results from the theories of linear wave damping and nonlinear stochastic heating. We account for mirror and oblique firehose instabilities by increasing the proton pitch-angle scattering rate when the proton temperature anisotropy exceeds the threshold for either instability. We numerically integrate the equations of the model forward in time until a steady state is reached, focusing on two fast-solar-wind-like solutions. These solutions are consistent with a number of observations, supporting the idea that Alfven-wave turbulence plays an important role in the origin of the solar wind.
Hansen, Shelley C
2012-01-01
Alfv\\'en waves may be difficult to excite at the photosphere due to low ionization fraction and suffer near-total reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting fast magnetohydrodynamic waves, and that Alfv\\'enic transition region reflection is greatly reduced if the fast reflection point is within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is also explored. This phase can potentially be misinterpreted as a travel speed perturbation, with implications for the practical seismic probing of active regions.
Tsiklauri, D
2015-01-01
Our magnetohydrodynamic (MHD) simulations and analytical calculations show that, when a background flow is present, mathematical expressions for the Alfv\\'en wave (AW) damping via phase mixing are modified by a following substitution $C_A^\\prime(x) \\to C_A^\\prime(x)+V_0^\\prime(x)$, where $C_A$ and $V_0$ are AW phase and the flow speeds and prime denotes derivative in the direction across the background magnetic field. In uniform magnetic field and over-dense plasma structures, in which $C_A$ is smaller compared to surrounding plasma, the flow, that is confined to the structure, in the same direction as the AW, reduces the effect of phase mixing, because on the edges of the structure $C_A^\\prime$ and $V_0^\\prime$ have opposite sign. Thus, the wave damps via phase mixing {\\it slower} compared to the case without the flow. This is the consequence of the co-directional flow reducing the wave front stretching in the transverse direction. Although, the result is generic and is applicable to different laboratory or ...
Alfven波在微电离大气中的衰减特性研究%Attenuation of Alfven Waves in Weakly Ionized Near Earth Atmosphere
Institute of Scientific and Technical Information of China (English)
刘元涛; 赵华; 李磊; 王劲东; 周斌; 冯永勇
2011-01-01
利用简单的偶极子地磁场模型以及大气电子密度和电导率模式,分析地面产生的磁扰动以Alfven波的模式传播到近地空间区域.这种地面的磁扰动可能干扰近地空间卫星对空间磁扰动的观测.通过对地面磁扰动Alfven 波模式1000km高度内的衰减情况进行模拟,认为在近地空间采用地磁偶极子模型是合理的.由于衰减随扰动频率的增大而急剧增强,分析还得到了近地卫星能够探测到地面磁扰动的最大频率.计算结果表明,Alfven波的衰减主要集中在高度50km以下,这个区域内的大气电导率极其微弱,使Alfven波的传播受到极大衰减.0.4Hz 以下的Alfven波沿磁力线传播到1000 km高度后衰减结为原来扰动幅度的千分之一,因此频率在0.4 Hz以下的Alfven波可能会干扰低轨卫星探测磁场脉动.%Alfven waves, produced on the ground by artificial or by soundstorm, propagating to the near-earth space along the geomagnetic field lines, would decay greatly with distance.A dipole geomagnetic field model in near earth space, plasma density and conductivity models derived from observational data are used in this study to investigate the attenuation of Alfven waves below 1000 km altitude by numerical simulation methods.The frequency that would be detected by magnetometer carried by satellite was also found.The result showed that: Alfven waves will decay sharply in the height of less than 50 km for the much weak electrical conductivity in this region; it is 0.4 Hz Alfven waves, when transmitted to 1000 km, that becomes about one-thousandth of the original, so Alfven waves below 0.4 Hz can be detected by LEO satellites.
Evanescent Waves Nuclear Magnetic Resonance
DEFF Research Database (Denmark)
Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad
2016-01-01
Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to char...... a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging....
Optical evidence for Alfven wave breaking in the near-Earth magnetosphere
Semeter, J.; Blixt, M.
2006-12-01
Alfvén waves propagating obliquely to the Earth's magnetic lines of force become dispersive when the perpendicular wavelength approaches the collisionless electron skin depth. The dispersion results in two simultaneous effects: (1) wave energy becomes coupled to particle kinetic energy such that parallel acceleration of electrons is possible, and (2) wave energy spreads azimuthally across the background magnetic field, with phase- and group-velocities oppositely directed. Validation of this mechanism requires two-dimensional, time-dependent measurements of the dispersing wave packet. Such evidence should be available in video measurements of the aurora-borealis. An analysis of high-speed, narrow-field, intensified video of dynamic aurora event is presented, confirming the salient predictions for inertial Alfvén wave dispersion.
Nature and dynamics of overreflection of Alfven waves in MHD shear flows
Gogichaishvili, D; Chanishvili, R; Lominadze, J
2014-01-01
Our goal is to gain new insights into the physics of wave overreflection phenomenon in MHD nonuniform/shear flows changing the existing trend/approach of the phenomenon study. The performed analysis allows to separate from each other different physical processes, grasp their interplay and, by this way, construct the basic physics of the overreflection in incompressible MHD flows with linear shear of mean velocity, ${\\bf U}_0=(Sy,0,0)$, that contain two different types of Alfv${\\rm \\acute{e}}$n waves. These waves are reduced to pseudo- and shear shear-Alfv${\\rm \\acute{e}}$n waves when wavenumber along $Z$-axis equals zero (i.e., when $k_z=0$). Therefore, for simplicity, we labelled these waves as: P-Alfv${\\rm \\acute{e}}$n and S-Alfv${\\rm \\acute{e}}$n waves (P-AWs and S-AWs). We show that: (1) the linear coupling of counter-propagating waves determines the overreflection, (2) counter-propagating P-AWs are coupled with each other, while counter-propagating S-AWs are not coupled with each other, but are asymmetri...
Energy Technology Data Exchange (ETDEWEB)
Yamaguchi, Y [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Ichimura, M [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Higaki, H [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Kakimoto, S [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nakagome, K [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nemoto, K [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Katano, M [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nakajima, H [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Fukuyama, A [Department of Nuclear Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Cho, T [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)
2006-08-15
The formation of eigenmodes with the m = 1 fast Alfven waves in the ion-cyclotron range of frequency are investigated in the axisymmetric central cell of the GAMMA 10 tandem mirror. When the fast waves with frequencies near the fundamental ion-cyclotron frequency have been used for the plasma production, the saturation in the density has been observed. The spatial structure of the excited wave field is calculated in the central cell using a two-dimensional full wave code. The results of numerical analysis indicate that the increase in plasma density depends strongly on the eigenmode formations associated with the boundary conditions. The results of numerical analysis are compared with the results of measurements of the waves with magnetic probes. A very good degree of agreement is found between the theoretical results and the experimental results. It is suggested that the simultaneous excitation of several radial eigenmodes with high-harmonic fast waves is effective for higher density plasma production.
Sahraoui, Fouad; Goldstein, Melvyn L.
2010-01-01
Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.
Impulsively Generated Linear and Non-linear Alfven Waves in the Coronal Funnels
Chmielewski, P.; Srivastava, A. K.; Murawski, K.; Musielak, Z. E.
2014-01-01
We present simulation results of the impulsively generated linear and non-linear Alfvén waves in the weakly curved coronal magnetic flux-tubes (coronal funnels) and discuss their implications for the coronal heating and solar wind acceleration. We solve numerically the time-dependent magnetohydrodynamic equations to find the temporal signatures of the small and large-amplitude Alfvén waves in the model atmosphere of open and expanding magnetic field configuration with a realistic temperature distribution. We compute the maximum transversal velocity of both linear and non-linear Alfvén waves at different heights of the model atmosphere, and study their response in the solar corona during the time of their propagation. We infer that the pulse-driven non-linear Alfvén waves may carry sufficient wave energy fluxes to heat the coronal funnels and also to power the solar wind that originates in these funnels. Our study of linear Alfvén waves shows that they can contribute only to the plasma dynamics and heating of the funnel-like magnetic flux-tubes associated with the polar coronal holes.
Resonance wave pumping: wave mass transport pumping
Carmigniani, Remi; Violeau, Damien; Gharib, Morteza
2016-11-01
It has been previously reported that pinching at intrinsic resonance frequencies a valveless pump (or Liebau pump) results in a strong pulsating flow. A free-surface version of the Liebau pump is presented. The experiment consists of a closed tank with a submerged plate separating the water into a free-surface and a recirculation section connected through two openings at each end of the tank. A paddle is placed at an off-centre position at the free-surface and controlled in a heaving motion with different frequencies and amplitudes. Near certain frequencies identified as resonance frequencies through a linear potential theory analysis, the system behaves like a pump. Particle Image Velocimetry (PIV) is performed in the near free surface region and compared with simulations using Volume of Fluid (VOF) method. The mean eulerian mass flux field (ρ) is extracted. It is observed that the flow is located in the vicinity of the surface layer suggesting Stokes Drift (or Wave Mass Transport) is the source of the pumping. A model is developped to extend the linear potential theory to the second order to take into account these observations. The authors would like to acknowledge the Gordon and Betty Moore Foundation for their generous support.
Resonance Van Hove Singularities in Wave Kinetics
Shi, Yi-Kang
2015-01-01
Wave kinetic theory has been developed to describe the statistical dynamics of weakly nonlinear, dispersive waves. However, we show that systems which are generally dispersive can have resonant sets of wave modes with identical group velocities, leading to a local breakdown of dispersivity. This shows up as a geometric singularity of the resonant manifold and possibly as an infinite phase measure in the collision integral. Such singularities occur widely for classical wave systems, including acoustical waves, Rossby waves, helical waves in rotating fluids, light waves in nonlinear optics and also in quantum transport, e.g. kinetics of electron-hole excitations (matter waves) in graphene. These singularities are the exact analogue of the critical points found by Van Hove in 1953 for phonon dispersion relations in crystals. The importance of these singularities in wave kinetics depends on the dimension of phase space $D=(N-2)d$ ($d$ physical space dimension, $N$ the number of waves in resonance) and the degree ...
Energy Technology Data Exchange (ETDEWEB)
Rehman, M. A.; Qureshi, M. N. S. [Department of Physics, GC University, Kachery Road, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Ferozepur Road, Lahore 54600 (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP) Shahdra Valley Road, Islamabad (Pakistan)
2015-10-15
Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.
Erkaev, NV; Shaidurov, VA; Semenov, VS; Biernat, HK; Heidorn, D; Lakhina, GS
2006-01-01
A ratio of the maximal and minimal cross sections of the magnetic tube (contraction ratio) is a crucial parameter which affects very strongly on reflections of MHD wave pulses propagating along a narrowing magnetic flux tube. In cases of large contraction ratios of magnetospheric magnetic tubes, the
Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles
Heeter, R F
1999-01-01
In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode-Converted Ion Bernstein Waves (MCIBWs) and Alfvén Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control. A reasonable reactor power scaling is derived. To study AEs, existing magnetic fluctuation probes at the Joint European Torus (JET) have been absolutely calibrated from 30–500 kHz for the first time, allowing fluctuation measurements with &vbm0;dBpol&vbm0;/B0&am...
Relativistic particle acceleration in developing Alfv\\'{e}n turbulence
Matsukiyo, S; 10.1088/0004-637X/692/2/1004
2009-01-01
A new particle acceleration process in a developing Alfv\\'{e}n turbulence in the course of successive parametric instabilities of a relativistic pair plasma is investigated by utilyzing one-dimensional electromagnetic full particle code. Coherent wave-particle interactions result in efficient particle acceleration leading to a power-law like energy distribution function. In the simulation high energy particles having large relativistic masses are preferentially accelerated as the turbulence spectrum evolves in time. Main acceleration mechanism is simultaneous relativistic resonance between a particle and two different waves. An analytical expression of maximum attainable energy in such wave-particle interactions is derived.
Proton heating and beam formation via parametrically unstable Alfven-cyclotron waves
Marsch, Eckart; Araneda, Jaime; -Vinas, Adolfo F.
Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities of Alfvén/cyclotron waves have on proe ton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the dise tribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that even in the parameter regime, where fluid theory appears to be appropriate, strong kinetic effects still prevail.
Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow
Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi
1992-01-01
The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.
Interpreting Ulysses data using inverse scattering theory: Oblique Alfv\\'en waves
Wheeler, Harry R; Hamilton, R L
2015-01-01
Solitary wave structures observed by the Ulysses spacecraft in the solar wind were analyzed using both inverse scattering theory as well as direct numerical integration of the derivative nonlinear Schr\\"odinger (DNLS) equation. Several of these structures were found to be consistent with soliton solutions of the DNLS equation. Such solitary structures have been commonly observed in the space plasma environment and may, in fact, be long-lived solitons. While the generation of these solitons may be due to an instability mechanism, e.g., the mirror instability, they may be observable far from the source region due to their coherent nature.
Coffey, Victoria; Chandler, Michael; Singh, Nagendra
2008-01-01
The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.
Brady, C S
2016-01-01
Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estmates of the required chromospheric heating, based on radiative and conductive losses suggest a rate of $\\sim 0.1 \\mathrm{\\:erg\\:cm^{-3}\\:s^{-1}}$ in the lower chromosphere dropping to $\\sim 10^{-3} \\mathrm{\\:erg\\:cm^{-3}\\:s^{-1}}$ in the upper chromosphere (\\citet{Avrett1981}). The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of $\\sim 10-20 \\mathrm{\\:km\\:s^{-1}}$, for so called Type-I spicules (\\citet{Pereira2012,Zhang2012}, reaching heights of $\\sim 3000-5000 \\mathrm{\\:km}$ above the photosphere. A clearer understanding of chromospheric dynamics, its heating and the formation of spicules, is thus of central importance to solar atmospheric science. For over thirty years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This ...
Surface acoustic wave mode conversion resonator
Martin, S. J.; Gunshor, R. L.; Melloch, M. R.; Datta, S.; Pierret, R. F.
1983-08-01
The fact that a ZnO-on-Si structure supports two distinct surface waves, referred to as the Rayleigh and the Sezawa modes, if the ZnO layer is sufficiently thick is recalled. A description is given of a unique surface wave resonator that operates by efficiently converting between the two modes at the resonant frequency. Since input and output coupling is effected through different modes, the mode conversion resonator promises enhanced out-of-band signal rejection. A Rayleigh wave traversing the resonant cavity in one direction is reflected as a Sezawa wave. It is pointed out that the off-resonance rejection of the mode conversion resonator could be enhanced by designing the transducers to minimize the level of cross coupling between transducers and propagating modes.
Formation of quasiparallel Alfven solitons
Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.
1992-01-01
The formation of quasi-parallel Alfven solitons is investigated through the inverse scattering transformation (IST) for the derivative nonlinear Schroedinger (DNLS) equation. The DNLS has a rich complement of soliton solutions consisting of a two-parameter soliton family and a one-parameter bright/dark soliton family. In this paper, the physical roles and origins of these soliton families are inferred through an analytic study of the scattering data generated by the IST for a set of initial profiles. The DNLS equation has as limiting forms the nonlinear Schroedinger (NLS), Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (MKdV) equations. Each of these limits is briefly reviewed in the physical context of quasi-parallel Alfven waves. The existence of these limiting forms serves as a natural framework for discussing the formation of Alfven solitons.
Simulations of the Mg II k and Ca II 8542 lines from an Alfv\\'en Wave-heated flare chromosphere
Kerr, Graham S; Russell, Alexander J B; Allred, Joel C
2016-01-01
We use radiation hydrodynamic simulations to examine two models of solar flare chromospheric heating: Alfv\\'en wave dissipation and electron beam collisional losses. Both mechanisms are capable of strong chromospheric heating, and we show that the distinctive atmospheric evolution in the mid-to-upper chromosphere results in Mg II k-line emission that should be observably different between wave-heated and beam-heated simulations. We also present Ca II 8542A profiles which are formed slightly deeper in the chromosphere. The Mg II k-line profiles from our wave-heated simulation are quite different from those from a beam-heated model and are more consistent with IRIS observations. The predicted differences between the Ca II 8542A in the two models are small. We conclude that careful observational and theoretical study of lines formed in the mid-to-upper chromosphere holds genuine promise for distinguishing between competing models for chromospheric heating in flares.
A self-consistent theory of collective alpha particle losses induced by Alfvenic turbulence
Energy Technology Data Exchange (ETDEWEB)
Biglari, H. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Diamond, P.H. (California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics)
1992-01-01
The nonlinear dynamics of kinetic Alfven waves, resonantly excited by energetic ions/alpha particles, is investigated. It is shown that {alpha}-particles govern both linear instability and nonlinear saturation dynamics, while the background MHD turbulence results only in a nonlinear real frequency shift. The most efficient saturation mechanism is found to be self-induced profile modification. Expressions for the fluctuation amplitudes and the {alpha}-particle radial flux are self-consistently derived. The work represents the first self-consistent, turbulent treatment of collective {alpha}-particle losses by Alfvenic fluctuations.
Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models
Rosenthal, C. S.
1992-01-01
Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.
Energy Technology Data Exchange (ETDEWEB)
Testa, D [CRPP, Association EURATOM-Confederation Suisse, EPFL, Lausanne (Switzerland); Fasoli, A [CRPP, Association EURATOM-Confederation Suisse, EPFL, Lausanne (Switzerland); Borba, D [Associacao EURATOM/IST (Portugal); EDFA-CSU, Culham Science Centre (United Kingdom); Baar, M de [FOM-Instituut Voor Plasmafysica, Rijnhuizen (Netherlands); Bigi, M [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Brzozowski, J [NADA VR-Euratom Association, Royal Institute of Technology, Stockholm (Sweden); Vries, P de [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom)
2004-07-01
We have investigated the effect of different ion cyclotron resonance frequency (ICRF) heating schemes, of error field modes, of the plasma shape and edge magnetic shear, and of the ion {nabla}B drift direction on the stability of Alfven eigenmodes (AEs). The use of multi-frequency or 2nd harmonic minority ICRF heating at high plasma density gives rise to a lower fast ion pressure gradient in the plasma core and to a reduced mode activity in the Alfven frequency range. Externally excited low-amplitude error fields lead to a much larger AE instability threshold, which we attribute to a moderate radial redistribution of the fast ions. The edge plasma shape has a clear stabilizing effect on high-n, radially localized AEs. The damping rate of n = 1 toroidal AEs is a factor 3 higher when the ion {nabla}B drift is directed towards the divertor. These results represent a useful step towards the extrapolation of current scenarios to the inclusion of fusion-born alpha particles in ITER, with possible application for feedback control schemes for the various ITER operating regimes.
Alfven cyclotron instability and ion cyclotron emission
Energy Technology Data Exchange (ETDEWEB)
Gorelenkov, N.N.; Cheng, C.Z.
1995-07-01
Two-dimensional solutions of compressional Alfven eigenmodes (CAE) are studied in the cold plasma approximation. For finite inverse aspect ratio tokamak plasmas the two-dimensional eigenmode envelope is localized at the low magnetic field side with the radial and poloidal localization on the order of a/{radical}m and a/(fourth root of m), respectively, where m is the dominant poloidal mode number. Charged fusion product driven Alfven Cyclotron Instability (ACI) of the compressional Alfven eigenmodes provides the explanation for the ion cyclotron emission (ICE) spectrum observed in tokamak experiments. The ACI is excited by fast charged fusion products via Doppler shifted cyclotron wave-particle resonances. The ion cyclotron and electron Landau dampings and fast particle instability drive are calculated perturbatively for deuterium-deuterium (DD) and deuterium-tritium (DT) plasmas. Near the plasma edge at the low field side the velocity distribution function of charged fusion products is localized in both pitch angle and velocity. The poloidal localization of the eigenmode enhances the ACI growth rates by a factor of {radical}m in comparison with the previous results without poloidal envelope. The thermal ion cyclotron damping determines that only modes with eigenfrequencies at multiples of the edge cyclotron frequency of the background ions can be easily excited and form an ICE spectrum similar to the experimental observations. Theoretical understanding is given for the results of TFTR DD and DT experiments with {upsilon}{sub {alpha}0}/{upsilon}{sub A} < 1 and JET experiments with {upsilon}{sub {alpha}0}/{upsilon}{sub A} > 1.
Resonance Van Hove singularities in wave kinetics
Shi, Yi-Kang; Eyink, Gregory L.
2016-10-01
Wave kinetic theory has been developed to describe the statistical dynamics of weakly nonlinear, dispersive waves. However, we show that systems which are generally dispersive can have resonant sets of wave modes with identical group velocities, leading to a local breakdown of dispersivity. This shows up as a geometric singularity of the resonant manifold and possibly as an infinite phase measure in the collision integral. Such singularities occur widely for classical wave systems, including acoustical waves, Rossby waves, helical waves in rotating fluids, light waves in nonlinear optics and also in quantum transport, e.g. kinetics of electron-hole excitations (matter waves) in graphene. These singularities are the exact analogue of the critical points found by Van Hove in 1953 for phonon dispersion relations in crystals. The importance of these singularities in wave kinetics depends on the dimension of phase space D =(N - 2) d (d physical space dimension, N the number of waves in resonance) and the degree of degeneracy δ of the critical points. Following Van Hove, we show that non-degenerate singularities lead to finite phase measures for D > 2 but produce divergences when D ≤ 2 and possible breakdown of wave kinetics if the collision integral itself becomes too large (or even infinite). Similar divergences and possible breakdown can occur for degenerate singularities, when D - δ ≤ 2, as we find for several physical examples, including electron-hole kinetics in graphene. When the standard kinetic equation breaks down, then one must develop a new singular wave kinetics. We discuss approaches from pioneering 1971 work of Newell & Aucoin on multi-scale perturbation theory for acoustic waves and field-theoretic methods based on exact Schwinger-Dyson integral equations for the wave dynamics.
Guided-mode resonant wave plates.
Magnusson, Robert; Shokooh-Saremi, Mehrdad; Johnson, Eric G
2010-07-15
We introduce half-wave and quarter-wave retarders based on the dispersion properties of guided-mode resonance elements. We design the wave plates using numerical electromagnetic models joined with the particle swarm optimization method. The wave plates operate in reflection. We provide computed results for reflectance and phase in the telecommunication spectral region near 1.55 microm wavelength. A surface-relief grating etched in glass and overcoated with silicon yields a half-wave plate with nearly equal amplitudes of the TE and TM polarization components and pi phase difference across a bandwidth exceeding 50 nm. Wider operational bandwidths are obtainable with more complex designs involving glass substrates and mixed silicon/hafnium dioxide resonant gratings. The results indicate a potential new approach to fashion optical retarders.
Fabry-Perot resonance of water waves.
Couston, Louis-Alexandre; Guo, Qiuchen; Chamanzar, Maysamreza; Alam, Mohammad-Reza
2015-10-01
We show that significant water wave amplification is obtained in a water resonator consisting of two spatially separated patches of small-amplitude sinusoidal corrugations on an otherwise flat seabed. The corrugations reflect the incident waves according to the so-called Bragg reflection mechanism, and the distance between the two sets controls whether the trapped reflected waves experience constructive or destructive interference within the resonator. The resulting amplification or suppression is enhanced with increasing number of ripples and is most effective for specific resonator lengths and at the Bragg frequency, which is determined by the corrugation period. Our analysis draws on the analogous mechanism that occurs between two partially reflecting mirrors in optics, a phenomenon named after its discoverers Charles Fabry and Alfred Perot.
Origin of coda waves: earthquake source resonance
Liu, Yinbin
2015-01-01
Seismic coda in local earthquake exhibits the characteristics of uniform spatial distribution energy, selective frequency, and slow temporal decay oscillation. It is usually assumed to be the incoherent waves scattered from random heterogeneity in the earth's lithosphere. Here I show by wave field modeling for 1D heterogeneity that seismic coda is related to the natural resonance of earthquake source around the earthquake's focus. This natural resonance is a kind of wave coherent scattering enhancement phenomenon or coupling oscillations happened in steady state regime in strong small-scale heterogeneity. Its resonance frequency is inversely proportional to the heterogeneous scale and contrast and will shift toward lower frequency with increasing random heterogeneous scale and velocity fluctuations. Its energy weakens with decreasing impedance contrast and increasing random heterogeneous scale and velocity fluctuations.
Evanescent Waves Nuclear Magnetic Resonance
DEFF Research Database (Denmark)
Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad
2016-01-01
Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order...
Ly, Aliou; Bretenaker, Fabien
2015-01-01
We present an experimental technique allowing to stabilize the frequency of the non resonant wave in a singly resonant optical parametric oscillator (SRO) down to the kHz level, much below the pump frequency noise level. By comparing the frequency of the non resonant wave with a reference cavity, the pump frequency noise is imposed to the frequency of the resonant wave, and is thus subtracted from the frequency of the non resonant wave. This permits the non resonant wave obtained from such a SRO to be simultaneously powerful and frequency stable, which is usually impossible to obtain when the resonant wave frequency is stabilized.
Programming of inhomogeneous resonant guided wave networks.
Feigenbaum, Eyal; Burgos, Stanley P; Atwater, Harry A
2010-12-06
Photonic functions are programmed by designing the interference of local waves in inhomogeneous resonant guided wave networks composed of power-splitting elements arranged at the nodes of a nonuniform waveguide network. Using a compact, yet comprehensive, scattering matrix representation of the network, the desired photonic function is designed by fitting structural parameters according to an optimization procedure. This design scheme is demonstrated for plasmonic dichroic and trichroic routers in the infrared frequency range.
Resonant speed meter for gravitational wave detection
Nishizawa, Atsushi; Sakagami, Masa-aki
2008-01-01
Gravitational-wave detectors have been well developed and operated with high sensitivity. However, they still suffer from mirror displacement noise. In this paper, we propose a resonant speed meter, as a displacement noise-canceled configuration based on a ring-shaped synchronous recycling interferometer. The remarkable feature of this interferometer is that, at certain frequencies, gravitational-wave signals are amplified, while displacement noises are not.
Highly Alfvenic Slow Solar Wind
Roberts, D. Aaron
2010-01-01
It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.
Electron waves and resonances in bounded plasmas
Vandenplas, Paul E
1968-01-01
General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.
Pfaff, R. F.
2009-01-01
On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.
Discrete control of resonant wave energy devices.
Clément, A H; Babarit, A
2012-01-28
Aiming at amplifying the energy productive motion of wave energy converters (WECs) in response to irregular sea waves, the strategies of discrete control presented here feature some major advantages over continuous control, which is known to require, for optimal operation, a bidirectional power take-off able to re-inject energy into the WEC system during parts of the oscillation cycles. Three different discrete control strategies are described: latching control, declutching control and the combination of both, which we term latched-operating-declutched control. It is shown that any of these methods can be applied with great benefit, not only to mono-resonant WEC oscillators, but also to bi-resonant and multi-resonant systems. For some of these applications, it is shown how these three discrete control strategies can be optimally defined, either by analytical solution for regular waves, or numerically, by applying the optimal command theory in irregular waves. Applied to a model of a seven degree-of-freedom system (the SEAREV WEC) to estimate its annual production on several production sites, the most efficient of these discrete control strategies was shown to double the energy production, regardless of the resource level of the site, which may be considered as a real breakthrough, rather than a marginal improvement.
Antolin, Patrick; Van Doorsselaere, Tom; Yokoyama, Takaaki
2016-01-01
In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfv\\'en waves. Due to its localised nature, a direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction, recent observations indicate that in the low amplitude regime such transverse MHD waves can also appear decay-less, a yet unsolved phenomenon. Recent numerical work has shown that Kelvin-Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work, we combine 3D MHD simulations and forward modelling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant abs...
Local Runup Amplification By Resonant Wave Interactions
Stefanakis, Themistoklis; Dutykh, Denys
2011-01-01
Until now the analysis of long wave runup on a plane beach has been focused on finding its maximum value, failing to capture the existence of resonant regimes. One-dimensional numerical simulations in the framework of the Nonlinear Shallow Water Equations (NSWE) are used to investigate the Boundary Value Problem (BVP) for plane and non-trivial beaches. Monochromatic waves, as well as virtual wave-gage recordings from real tsunami simulations, are used as forcing conditions to the BVP. Resonant phenomena between the incident wavelength and the beach slope are found to occur, which result in enhanced runup of non-leading waves. The evolution of energy reveals the existence of a quasi-periodic state for the case of sinusoidal waves, the energy level of which, as well as the time required to reach that state, depend on the incident wavelength for a given beach slope. Dispersion is found to slightly reduce the value of maximum runup, but not to change the overall picture. Runup amplification occurs for both leadin...
Gas lasers with wave-chaotic resonators
Zaitsev, Oleg
2010-01-01
Semiclassical multimode laser theory is extended to gas lasers with open two-dimensional resonators of arbitrary shape. The Doppler frequency shift of the linear-gain coefficient leads to an additional linear coupling between the modes, which, however, is shown to be negligible. The nonlinear laser equations simplify in the special case of wave-chaotic resonators. In the single-mode regime, the intensity of a chaotic laser, as a function of the mode frequency, displays a local minimum at the frequency of the atomic transition. The width of the minimum scales with the inhomogeneous linewidth, in contrast to the Lamb dip in uniaxial resonators whose width is given by the homogeneous linewidth.
Observation of resonant interactions among surface gravity waves
Bonnefoy, F; Michel, G; Semin, B; Humbert, T; Aumaître, S; Berhanu, M; Falcon, E
2016-01-01
We experimentally study resonant interactions of oblique surface gravity waves in a large basin. Our results strongly extend previous experimental results performed mainly for perpendicular or collinear wave trains. We generate two oblique waves crossing at an acute angle, while we control their frequency ratio, steepnesses and directions. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory with no fitting parameter. Off-resonance experiments are also reported and the relevant theoretical analysis is conducted and validated.
Magnetosonic resonances in the magnetospheric plasma
Leonovich, A. S.; Kozlov, D. A.
2013-05-01
A problem of coupling between fast and slow magnetosonic waves in Earth's magnetosphere (magnetosonic resonance) is examined. Propagation both slow magnetosonic wave and Alfven wave can easily be canalized along the magnetic field line direction. The main difference between the two is that slow magnetosonic waves dissipate strongly due to their interaction with the background plasma ions, whose temperature is above the electron temperature. In Earth's magnetosphere, however, there is a region where the dissipation of slow magnetosonic waves can be weak—the inner plasmasphere. The slow magnetosonic waves generated there can be registered directly. In other regions, with strong dissipation of slow magnetosonic waves, their signature may be detected through their impact on the Alfven resonance at frequencies for which the resonant Alfven and slow magnetosonic waves exist simultaneously in the magnetosphere. Owing to their strong coupling with the background plasma ions, resonant slow magnetosonic waves can transfer the energy and impulse from the solar wind to the magnetospheric plasma ions via fast magnetosonic waves penetrating into the tail lobes. A problem of resonant conversion of fast magnetosonic waves into slow magnetosonic oscillations in a magnetosphere with dipole-like magnetic field is also examined.
The period ratio P_1/P_2 of torsional Alfv\\'en waves with steady flows in spicules
Ebadi, H; Farahani, S Vasheghani
2016-01-01
The aim here is to model the standing torsional oscillations in solar spicules in the presence of density stratification, magnetic field expansion, and steady flows. By implementing cylindrical geometry, the eigenfrequencies, eigenfunctions, and the period ratio P_1/P_2 of these waves is obtained for finite plasma-beta. The shifts created by the steady flow justifies the divergence of the observed period ratio for the first and second periods from the number 2.
Dispersive radiation induced by shock waves in passive resonators.
Malaguti, Stefania; Conforti, Matteo; Trillo, Stefano
2014-10-01
We show that passive Kerr resonators pumped close to zero dispersion wavelengths on the normal dispersion side can develop the resonant generation of linear waves driven by cavity (mixed dispersive-dissipative) shock waves. The resonance mechanism can be successfully described in the framework of the generalized Lugiato-Lefever equation with higher-order dispersive terms. Substantial differences with radiation from cavity solitons and purely dispersive shock waves dispersion are highlighted.
Resonant surface acoustic wave chemical detector
Energy Technology Data Exchange (ETDEWEB)
Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.
2017-08-08
Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.
Resonant absorption of kink MHD waves by magnetic twist in coronal loops
Ebrahimi, Z
2015-01-01
There is ample evidences of twisted magnetic structures in the corona. This motivates us to consider the magnetic twist as the cause of Alfven frequency continuum in coronal loops, which can support the resonant absorption as the rapid damping mechanism for the observed coronal kink MHD oscillations. For a straight cylindrical compressible zero-beta thin flux tube with a magnetic twist in a thin boundary and straight magnetic field in the interior and exterior regions as well as a step-like radial density profile, we derive the dispersion relation and solve it analytically. Consequently, we obtain the frequencies and damping rates of the fundamental (l=1) and first/second overtones (l=2,3) kink (m=1) MHD modes. We conclude that the resonant absorption by the magnetic twist can justify the rapid damping of kink MHD waves observed in coronal loops. Furthermore, the magnetic twist in the inhomogeneous layer can achieve deviations from P_1/P_2=2 and P_1/P_3=3 of the same order of magnitude as in the observations.
Resonant dispersive waves generated with multi-input femtosecond pulses
Wang, Kai; Peng, Jiahui; Sokolov, Alex
2010-10-01
We investigated the resonant dispersive waves generated by high-order dispersion theoretically. We considered different femtosecond pulses propagating in the kagome-lattice hollow-core photonics crystal fibers. The two third order and fourth order resonant dispersive waves would be produced in the visible range to produce the ultrashort pulse.
Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction
Colquitt, D J; Craster, R V; Roux, P; Guenneau, S R L
2016-01-01
We consider the canonical problem of an array of rods, which act as resonators, placed on an elastic substrate; the substrate being either a thin elastic plate or an elastic half-space. In both cases the flexural plate, or Rayleigh surface, waves in the substrate interact with the resonators to create interesting effects such as effective band-gaps for surface waves or filters that transform surface waves into bulk waves; these effects have parallels in the field of optics where such sub-wavelength resonators create metamaterials, and metasurfaces, in the bulk and at the surface respectively. Here we carefully analyse this canonical problem by extracting the dispersion relations analytically thereby examining the influence of both the flexural and compressional resonances on the propagating wave. For an array of resonators atop an elastic half-space we augment the analysis with numerical simulations. Amongst other effects, we demonstrate the striking effect of a dispersion curve that transitions from Rayleigh...
Low Frequency Scattering Resonance Wave in Strong Heterogeneity
Liu, Yinbin
2015-01-01
Multiple scattering of wave in strong heterogeneity can cause resonance-like wave phenomenon where signal exhibits low frequency, high intensity, and slowly propagating velocity. For example, long period event in volcanic seismology and surface plasmon wave and quantum Hall effect in wave-particle interactions. Collective behaviour in a many-body system is usually thought to be the source for generating the anomaly. However, the detail physical mechanism is not fully understood. Here I show by wave field modeling for microscopic bubble cloud model and 1D heterogeneity that the anomaly is related to low frequency scattering resonance happened in transient regime. This low frequency resonance is a kind of wave coherent scattering enhancement phenomenon in strongly-scattered small-scale heterogeneity. Its resonance frequency is inversely proportional to heterogeneous scale and contrast and will further shift toward lower frequency with random heterogeneous scale and velocity fluctuations. Low frequency scatterin...
Opportunities for shear energy scaling in bulk acoustic wave resonators.
Jose, Sumy; Hueting, Raymond J E
2014-10-01
An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.
Three-dimensional freak waves and higher-order wave-wave resonances
Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.
2012-04-01
Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover
Long wave-short wave resonance in nonlinear negative refractive index media.
Chowdhury, Aref; Tataronis, John A
2008-04-18
We show that long wave-short wave resonance can be achieved in a second-order nonlinear negative refractive index medium when the short wave lies on the negative index branch. With the medium exhibiting a second-order nonlinear susceptibility, a number of nonlinear phenomena such as solitary waves, paired solitons, and periodic wave trains are possible or enhanced through the cascaded second-order effect. Potential applications include the generation of terahertz waves from optical pulses.
Orbital Stability of Solitary Waves of The Long Wave—Short Wave Resonance Equations
Institute of Scientific and Technical Information of China (English)
BolingGUO; LinCHEN
1996-01-01
This paper concerns the orbital stability for soliary waves of the long wave short wave resonance equations.By using a different method from[15] ,applying the abstract rsults of Grillakis et al.[8][9] and detailed spectral analysis.we obtain the necessary and sufficient condition for the stability of the solitary waves.
Global Structures of Alfven-Ballooning Modes in Magnetospheric Plasmas.
Vetoulis, Georgios
1995-01-01
The problem of radial localization of kinetically excited Alfven-type waves in the terrestial magnetosphere is examined using WKB approximations in the radial direction. These modes have been called drift Alfven ballooning modes (DABM) by CHEN and HASEGAWA, (1991)^1 and are the prime candidates to explain Pc4-Pc5 waves observed during storms. Pc4-5 type geomagnetic oscillations are long-lasting pulsations with large amplitudes and periods on the order of 500 sec. They are typically observed in the inner magnetosphere. Up to now, work on the theory of these pulsations has been done in one dimension, along the equilibrium magnetic field. In this dissertation, we include the effects of both parallel and perpendicular plasma inhomogeneities and investigate the issue of whether such a wave can be radially localized. In the first part, we formulate the theoretical approach neglecting the wave -particle resonances and using the one-fluid MHD limit. A local dispersion relationship is found on each flux surface of the equilibrium, and a global quantization condition is derived. To each flux surface correspond certain characteristic frequencies, (determined as eigenvalues of appropriate one-dimensional problems along the equilibrium magnetic field), and if the appropriate frequency matches the global mode frequency, then this surface is called resonant. In the picture developed here, the global mode is trapped at the outer side of a storm-time ring current by a steep pressure gradient. At the same time, energy from it tunnels through a barrier, and gets absorbed at its corresponding resonant flux surface, which in space physics terminology is called field line resonance. This energy absorption would lead to the damping of the mode, in the absence of an excitation mechanism. A strong dependence of the damping rate on the azimuthal wave number m is established, as well as on the equilibrium profile. First, it is found that the equilibrium pressure gradient has to be steeper
Velli, M.; Liewer, P. C.; Goldstein, B. E.
2000-05-01
We present simulations of parallel propagating Alfvén waves in the accelerating solar wind and their interactions with protons, alpha particles, and minor ions using an expanding box hybrid code (Liewer et al., 1999). In this model, the average solar wind flow speed is a given external function, and the simulation domain follows a plasma parcel as it expands both in the radial and transverse directions accordingly: the decrease of Alfvén speed and density with distance from the Sun are taken into account self-consistently. It is therefore possible to carry out a detailed study of frequency drifting and the coming into resonance with the waves at different radial locations of particles with differing charge to mass ratios. Simulations of monochromatic waves as well as waves with well-developed spectra are presented for plasmas with one, two and three ion species. We observe preferential heating and acceleration of protons and minor ions. Under some conditions, we obtain the scaling observed in coronal hole solar wind: the heavy ion temperature is proportional to its mass (Liewer et al., 2000). A comparison with predictions from models based on such quasi-linear or linear analyses will also be presented. P. C. Liewer, M. Velli and B. E. Goldstein, in Solar Wind Nine, S. Habbal, R. Esser, J. V. Hollweg, P. A. Isenberg, eds., (AIP Conference Proceedings 471, 1999) 449. P. C. Liewer, M. Velli, and B. E. Goldstein, in Proc. ACE 2000 Conference (2000) to be published.
Multi-resonance tunneling of acoustic waves in two-dimensional locally-resonant phononic crystals
Yang, Aichao; He, Wei; Zhang, Jitao; Zhu, Liang; Yu, Lingang; Ma, Jian; Zou, Yang; Li, Min; Wu, Yu
2017-03-01
Multi-resonance tunneling of acoustic waves through a two-dimensional phononic crystal (PC) is demonstrated by substituting dual Helmholtz resonators (DHRs) for acoustically-rigid scatterers in the PC. Due to the coupling of the incident waves with the acoustic multi-resonance modes of the DHRs, acoustic waves can tunnel through the PC at specific frequencies which lie inside the band gaps of the PC. This wave tunneling transmission can be further broadened by using the multilayer Helmholtz resonators. Thus, a PC consisting of an array of dual/multilayer Helmholtz resonators can serve as an acoustic band-pass filter, used to pick out acoustic waves with certain frequencies from noise.
Synthesis and characterization of plasmonic resonant guided wave networks.
Burgos, Stanley P; Lee, Ho W; Feigenbaum, Eyal; Briggs, Ryan M; Atwater, Harry A
2014-06-11
Composed of optical waveguides and power-splitting waveguide junctions in a network layout, resonant guided wave networks (RGWNs) split an incident wave into partial waves that resonantly interact within the network. Resonant guided wave networks have been proposed as nanoscale distributed optical networks (Feigenbaum and Atwater, Phys. Rev. Lett. 2010, 104, 147402) that can function as resonators and color routers (Feigenbaum et al. Opt. Express 2010, 18, 25584-25595). Here we experimentally characterize a plasmonic resonant guided wave network by demonstrating that a 90° waveguide junction of two v-groove channel plasmon polariton (CPP) waveguides operates as a compact power-splitting element. Combining these plasmonic power splitters with CPP waveguides in a network layout, we characterize a prototype plasmonic nanocircuit composed of four v-groove waveguides in an evenly spaced 2 × 2 configuration, which functions as a simple, compact optical logic device at telecommunication wavelengths, routing different wavelengths to separate transmission ports due to the resulting network resonances. The resonant guided wave network exhibits the full permutation of Boolean on/off values at two output ports and can be extended to an eight-port configuration, unlike other photonic crystal and plasmonic add/drop filters, in which only two on/off states are accessible.
Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material
Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,
2013-09-03
A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.
Ray and wave chaos in asymmetric resonant optical cavities
Nöckel, J U; Noeckel, Jens U.
1998-01-01
Optical resonators are essential components of lasers and other wavelength-sensitive optical devices. A resonator is characterized by a set of modes, each with a resonant frequency omega and resonance width Delta omega=1/tau, where tau is the lifetime of a photon in the mode. In a cylindrical or spherical dielectric resonator, extremely long-lived resonances are due to `whispering gallery' modes in which light circulates around the perimeter trapped by total internal reflection. These resonators emit light isotropically. Recently, a new category of asymmetric resonant cavities (ARCs) has been proposed in which substantial shape deformation leads to partially chaotic ray dynamics. This has been predicted to give rise to a universal, frequency-independent broadening of the whispering-gallery resonances, and highly anisotropic emission. Here we present solutions of the wave equation for ARCs which confirm many aspects of the earlier ray-optics model, but also reveal interesting frequency-dependent effects charac...
Cantor families of periodic solutions for completely resonant wave equations
Institute of Scientific and Technical Information of China (English)
2008-01-01
We present recent existence results of Cantor families of small amplitude periodic solutions for completely resonant nonlinear wave equations. The proofs rely on the Nash-Moser implicit function theory and variational methods.
Resonance-Assisted Decay of Nondispersive Wave Packets
Wimberger, S.; Schlagheck, P.; Eltschka, C.; Buchleitner, A.
2006-01-01
We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.
The arithmetic geometry of resonant Rossby wave triads
Kopp, Gene S
2016-01-01
Linear wave solutions to the Charney-Hasegawa-Mima partial differential equation with periodic boundary conditions have two physical interpretations: Rossby (atmospheric) waves, and drift (plasma) waves in a tokamak. These waves display resonance in triads. In the case of infinite Rossby deformation radius, the set of resonant triads may be described as the set of integer solutions to a particular homogeneous Diophantine equation, or as the set of rational points on a projective surface. We give a rational parametrization of the smooth points on this surface, answering the question: What are all resonant triads? We also give a fiberwise description, yielding a procedure to answer the question: For fixed $r \\in \\mathbb{Q}$, what are all wavevectors $(x,y)$ that resonate with a wavevector $(a,b)$ with $a/b = r$?
Xiong-Hua, Zheng; Bao-Fu, Zhang; Zhong-Xing, Jiao; Biao, Wang
2016-01-01
We present a continuous-wave singly-resonant optical parametric oscillator with 1.5% output coupling of the resonant signal wave, based on an angle-polished MgO-doped periodically poled lithium niobate (MgO:PPLN), pumped by a commercial Nd:YVO4 laser at 1064 nm. The output-coupled optical parametric oscillator delivers a maximum total output power of 4.19 W with 42.8% extraction efficiency, across a tuning range of 1717 nm in the near- and mid-infrared region. This indicates improvements of 1.87 W in output power, 19.1% in extraction efficiency and 213 nm in tuning range extension in comparison with the optical parametric oscillator with no output coupling, while at the expense of increasing the oscillation threshold by a factor of ˜ 2. Moreover, it is confirmed that the finite output coupling also contributes to the reduction of the thermal effects in crystal. Project supported by the National Natural Science Foundation of China (Grant Nos. 61308056, 11204044, 11232015, and 11072271), the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20120171110005 and 20130171130003), the Fundamental Research Funds for the Central Universities of China (Grant No. 14lgpy07), and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201203).
Hybrid localized waves supported by resonant anisotropic metasurfaces
DEFF Research Database (Denmark)
Bogdanov, A. A.; Yermakov, O. Y.; Ovcharenko, A. I.
2016-01-01
We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime.......We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime....
Asymmetric Wave Transmission During Electron-Cyclotron Resonant Heating
Peeters, A.G.; Smits, F. M. A.; Giruzzi, G.; Oomens, A. A. M.; Westerhof, E.
1995-01-01
In low density plasmas in the RTP tokamak the single-pass absorption of O-mode waves at the fundamental electron cyclotron resonance is observed to be toroidally asymmetric. The absorption is highest for waves travelling in the direction opposite to the toroidal plasma current. Fokker-Planck
Characteristics of Short Wavelength Compressional Alfven Eigenmodes
Energy Technology Data Exchange (ETDEWEB)
Fredrickson, E D; Podesta, M; Bortolon, A; Crocker, N A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M
2012-12-19
Most Alfvenic activity in the frequency range between Toroidal Alfven Eigenmodes and roughly one half of the ion cyclotron frequency on NSTX [M. Ono, et al., Nucl. Fusion 40 (2000) 557], that is, approximately 0.3 MHz up to ≈ 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n=1 kink-like mode. In this paper we present measurements of the spectrum of these high frequency CAE (hfCAE), and their mode structure. We compare those measurements to a simple model of CAE and present evidence of a curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of
Electromagnetic resonance waves. Resonancias de ondas electromagneticas
Energy Technology Data Exchange (ETDEWEB)
Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.
1994-01-01
We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs.
Optical Leaky-Wave Antenna Integrated in Ring Resonator
Guclu, Caner; Boyraz, Ozdal; Capolino, Filippo
2014-01-01
A leaky-wave antenna at optical frequencies is designed and integrated with a ring resonator at 1550 nm wavelength. The leaky wave is generated by using periodic perturbations in the integrated dielectric waveguide that excite the -1 spatial harmonic. The antenna consists of a dielectric waveguides with semiconductor corrugations, and it is compatible with CMOS fabrication technology. We show that integrating the leaky wave antenna in an optical ring resonator that is fed by directional couplers, we can improve the electronic control of the radiation through carrier injection into the semiconductor corrugations.
Thermal effects on parallel resonance energy of whistler mode wave
Indian Academy of Sciences (India)
Devendraa Siingh; Shubha Singh; R P Singh
2006-02-01
In this short communication, we have evaluated the effect of thermal velocity of the plasma particles on the energy of resonantly interacting energetic electrons with the propagating whistler mode waves as a function of wave frequency and -value for the normal and disturbed magnetospheric conditions. During the disturbed conditions when the magnetosphere is depleted in electron density, the resonance energy of the electron enhances by an order of magnitude at higher latitudes, whereas the effect is small at low latitudes. An attempt is made to explain the enhanced wave activity observed during magnetic storm periods.
Electron acceleration by Landau resonance with whistler mode wave packets
Gurnett, D. A.; Reinleitner, L. A.
1983-01-01
Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.
Resonant mode for gravitational wave detectors based on atom interferometry
Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet
2016-11-01
We describe an atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wave packets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes. For instance, a binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to ΩGW˜10-14 for a two-satellite space-based detector.
Slow waves in locally resonant metamaterials line defect waveguides
Kaina, Nadège; Bourlier, Yoan; Fink, Mathias; Berthelot, Thomas; Lerosey, Geoffroy
2016-01-01
The ability of electromagnetic waves to interact with matter governs many fascinating effects involved in fundamental and applied, quantum and classical physics. It is necessary to enhance these otherwise naturally weak effects by increasing the probability of wave/matter interactions, either through field confinement or slowing down of waves. This is commonly achieved with structured materials such as photonic crystal waveguides or coupled resonator optical waveguides. Yet their minimum structural scale is limited to the order of the wavelength which not only forbids ultra-small confinement but also severely limits their performance for slowing down waves. Here we show that line defect waveguides in locally resonant metamaterials can outperform these proposals due to their deep subwavelength scale. We experimentally demonstrate our approach in the microwave domain using 3D printed resonant wire metamaterials, achieving group indices ng as high as 227 over relatively wide frequency bands. Those results corres...
Numerical simulation of the resonantly excited capillary-gravity waves
Hanazaki, Hideshi; Hirata, Motonori; Okino, Shinya
2015-11-01
Capillary gravity waves excited by an obstacle are investigated by a direct numerical simulation. In the flow without capillary effects, it is well known that large-amplitude upstream advancing solitary waves are generated periodically under the resonant condition, i.e., when the phase velocity of the long surface waves and the mean flow velocity agrees. With capillary effects, solutions of the Euler equations show the generation of very short waves further upstream of the solitary waves and also in the depression region downstream of the obstacle. The overall characteristics of these waves agree with the solutions of the forced fifth-order KdV equation, while the weakly nonlinear theory generally overestimates the wavelength of the short waves.
Observation of thermoacoustic shock waves in a resonance tube.
Biwa, Tetsushi; Sobata, Kazuya; Otake, Shota; Yazaki, Taichi
2014-09-01
This paper reports thermally induced shock waves observed in an acoustic resonance tube. Self-sustained oscillations of a gas column were created by imposing an axial temperature gradient on the short stack of plates installed in the resonance tube filled with air at atmospheric pressure. The tube length and axial position of the stack were examined so as to make the acoustic amplitude of the gas oscillations maximum. The periodic shock wave was observed when the acoustic pressure amplitude reached 8.3 kPa at the fundamental frequency. Measurements of the acoustic intensity show that the energy absorption in the stack region with the temperature gradient tends to prevent the nonlinear excitation of harmonic oscillations, which explains why the shock waves had been unfavorable in the resonance tube thermoacoustic systems.
SILICON COMPATIBLE ACOUSTIC WAVE RESONATORS: DESIGN, FABRICATION AND PERFORMANCE
Directory of Open Access Journals (Sweden)
Aliza Aini Md Ralib
2014-12-01
Full Text Available ABSTRACT: Continuous advancement in wireless technology and silicon microfabrication has fueled exciting growth in wireless products. The bulky size of discrete vibrating mechanical devices such as quartz crystals and surface acoustic wave resonators impedes the ultimate miniaturization of single-chip transceivers. Fabrication of acoustic wave resonators on silicon allows complete integration of a resonator with its accompanying circuitry. Integration leads to enhanced performance, better functionality with reduced cost at large volume production. This paper compiles the state-of-the-art technology of silicon compatible acoustic resonators, which can be integrated with interface circuitry. Typical acoustic wave resonators are surface acoustic wave (SAW and bulk acoustic wave (BAW resonators. Performance of the resonator is measured in terms of quality factor, resonance frequency and insertion loss. Selection of appropriate piezoelectric material is significant to ensure sufficient electromechanical coupling coefficient is produced to reduce the insertion loss. The insulating passive SiO2 layer acts as a low loss material and aims to increase the quality factor and temperature stability of the design. The integration technique also is influenced by the fabrication process and packaging. Packageless structure using AlN as the additional isolation layer is proposed to protect the SAW device from the environment for high reliability. Advancement in miniaturization technology of silicon compatible acoustic wave resonators to realize a single chip transceiver system is still needed. ABSTRAK: Kemajuan yang berterusan dalam teknologi tanpa wayar dan silikon telah menguatkan pertumbuhan yang menarik dalam produk tanpa wayar. Saiz yang besar bagi peralatan mekanikal bergetar seperti kristal kuarza menghalang pengecilan untuk merealisasikan peranti cip. Silikon serasi gelombang akustik resonator mempunyai potensi yang besar untuk menggantikan unsur
Optical rogue waves in whispering-gallery-mode resonators
Coillet, Aurélien; Dudley, John; Genty, Goëry; Larger, Laurent; Chembo, Yanne K.
2014-01-01
We report a theoretical study showing that rogue waves can emerge in whispering-gallery-mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering-gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we give evidence of a range of parameters where rare and extreme events associated with non-Gaussian statistics of the field maxima are observed.
Optical Rogue Waves in Whispering-Gallery-Mode Resonators
Coillet, Aurélien; Genty, Goery; Larger, Laurent; Chembo, Yanne K
2014-01-01
We report a theoretical study showing that rogue waves can emerge in whispering gallery mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we evidence a range of parameters where rare and extreme events associated with a non-gaussian statistics of the field maxima are observed.
Sensitivity limits of capacitive transducer for gravitational wave resonant antennas
Energy Technology Data Exchange (ETDEWEB)
Bassan, M.; Pizzella, G. [Rome Tor Vergata Univ. (Italy). Dip. di Fisica
1996-12-01
It is analyzed the performance of a resonant gravitational wave antenna equipped with a resonant, d.c. biased capacitive transducer, an untuned superconducting matching circuit and a d.c. Squid. It is derived simple relations for the detector energy sensitivity that serve as guidelines for device development and it is shown that, with reasonable improvements in Squid technology, an effective temperature for burst detection of 2miK can be achieved.
Resonance Caused by the Gravitational waves On an Earth Satellite
Directory of Open Access Journals (Sweden)
Mohamad Radwan
2008-01-01
Full Text Available The present work deals with the motion of an Earth satellite taking into account the oblateness of the Earth and of a passing Gravitational wave. The oblateness of the Earth is truncated beyond the second zonal harmonic, J2, which plays the role of the small parameter of the problem. The conditions for resonance are determined and the resonance resulting from the commensurabilities between the wave frequency and the mean motions of the satellite, the nodal regression, and the apsidal rotation are analyzed.
Nonlinear mhd simulations of wave dissipation in flux tubes
Poedts, S.; Toth, G.; Belien, A. J. C.; Goedbloed, J. P.
1997-01-01
The phase mixing and resonant dissipation of Alfven waves is studied in both the 'closed' magnetic loops and the 'open' coronal holes observed in the hot solar corona. The resulting energy transfer from large to small length scales contributes to the heating of these magnetic str
Graphene-based waveguide resonators for submillimeter-wave applications
Ilić, Andjelija Ž.; Bukvić, Branko; Ilić, Milan M.; Budimir, Djuradj
2016-08-01
Utilization of graphene covered waveguide inserts to form tunable waveguide resonators is theoretically explained and rigorously investigated by means of full-wave numerical electromagnetic simulations. Instead of using graphene-based switching elements, the concept we propose incorporates graphene sheets as parts of a resonator. Electrostatic tuning of the graphene surface conductivity leads to changes in the electromagnetic field boundary conditions at the resonator edges and surfaces, thus producing an effect similar to varying the electrical length of a resonator. The presented outline of the theoretical background serves to give phenomenological insight into the resonator behavior, but it can also be used to develop customized software tools for design and optimization of graphene-based resonators and filters. Due to the linear dependence of the imaginary part of the graphene surface impedance on frequency, the proposed concept was expected to become effective for frequencies above 100 GHz, which is confirmed by the numerical simulations. A frequency range from 100 GHz up to 1100 GHz, where the rectangular waveguides are used, is considered. Simple, all-graphene-based resonators are analyzed first, to assess the achievable tunability and to check the performance throughout the considered frequency range. Graphene-metal combined waveguide resonators are proposed in order to preserve the excellent quality factors typical for the type of waveguide discontinuities used. Dependence of resonator properties on key design parameters is studied in detail. Dependence of resonator properties throughout the frequency range of interest is studied using eight different waveguide sections appropriate for different frequency intervals. Proposed resonators are aimed at applications in the submillimeter-wave spectral region, serving as the compact tunable components for the design of bandpass filters and other devices.
The Berk-Breizman Model as a Paradigm for Energetic Particle-driven Alfven Eigenmodes
Lesur, Maxime
2011-01-01
The achievement of sustained nuclear fusion in magnetically confined plasma relies on efficient confinement of high-energy ions produced by the fusion reaction. Such particles can excite Alfven Eigenmodes (AEs), which significantly degrade their confinement and threatens the vacuum vessel of future reactors. To develop diagnostics and control schemes, a better understanding of linear and nonlinear features of resonant interactions between plasma waves and high-energy particles, is required. In the case of an isolated single resonance, the problem is homothetic to the so-called Berk-Breizman (BB) problem, which is an extension of the classic bump-on-tail electrostatic problem, including external damping to a thermal plasma, and collisions. A semi-Lagrangian simulation code, COBBLES, is developed to solve the initial-value BB problem. The nonlinear behavior of instabilities in experimentally-relevant conditions is categorized into steady-state, periodic, chaotic, and frequency-sweeping (chirping) regimes. The c...
From stochastic resonance to brain waves
Balázsi, G.; Kish, L. B.
2000-01-01
Biological neurons are good examples of a threshold device - this is why neural systems are in the focus when looking for realization of Stochastic Resonance (SR) and spatio-temporal stochastic resonance (STSR) phenomena. In this Letter a simple integrate-and fire model is used to demonstrate the possibility of STSR in a chain of neurons. The theoretical and computational models so far suggest that SR and STSR could occur in neural systems. However, how significant is the role played by these phenomena and what implications might they have on neurobiology is still a question. Because the direct biological proof of SR and STSR seems to be a tough issue one might look at indirect ways to decide whether the internal noise plays any constructive role in the nervous system. A loop of neurons is shown to have interesting features (frequency selection) which might supply a clue for answering the previous question.
Diffusive shock acceleration with magnetic field amplification and Alfvenic drift
Kang, Hyesung
2012-01-01
We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfvenic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is greater than 2x10^{-4}, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfven speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfvenic drift predicts that the postshock CR pressure saturates roughly at 10 % of the shock ram pressure for strong shocks...
Two Mode Resonator and Contact Model for Standing Wave Piezomotor
DEFF Research Database (Denmark)
Andersen, B.; Blanke, Mogens; Helbo, J.
2001-01-01
The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailled simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...
Surface acoustic wave vapor sensors based on resonator devices
Grate, Jay W.; Klusty, Mark
1991-05-01
Surface acoustic wave (SAW) devices fabricated in the resonator configuration have been used as organic vapor sensors and compared with delay line devices more commonly used. The experimentally determined mass sensitivities of 200, 300, and 400 MHz resonators and 158 MHz delay lines coated with Langmuir-Blodgett films of poly(vinyl tetradecanal) are in excellent agreement with theoretical predictions. The response of LB- and spray-coated sensors to various organic vapors were determined, and scaling laws for mass sensitivities, vapor sensitivities, and detection limits are discussed. The 200 MHz resonators provide the lowest noise levels and detection limits of all the devices examined.
Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator
Directory of Open Access Journals (Sweden)
N. I. Polzikova
2016-05-01
Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.
Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator
Energy Technology Data Exchange (ETDEWEB)
Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P. [Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, building 7, Moscow, 125009 (Russian Federation)
2016-05-15
We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.
TEMPERATURE CONTROL CIRCUIT FOR SURFACE ACOUSTIC WAVE (SAW RESONATORS
Directory of Open Access Journals (Sweden)
Zainab Mohamad Ashari
2011-10-01
Full Text Available Surface Acoustic Wave (SAW resonators are key components in oscillators, frequency synthesizers and transceivers. One of the drawbacks of SAW resonators are that its piezoelectric substrates are highly sensitive to ambient temperature resulting in performance degradation. This work propose a simple circuit design which stabalizes the temperature of the SAW resonator, making it independet of temperature change. This circuit is based on the oven control method which elevates the temperature of the resonator to a high temperature, making it tolerant to minor changes in ambient temperature.This circuit consist of a temperature sensor, heaters and a comparator which turn the heater on or off depending on the ambient temperature. Several SAW resonator were tested using this circuit. Experimental results indicate the temperature coefficient of frequency (TCF decreases from maximum of 130.44/°C to a minimum of -1.11/°C.
Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M
2014-11-01
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.
Two-wave interaction in ideal magnetohydrodynamics
T. V. Zaqarashvili; Roberts, B.
2006-01-01
The weakly nonlinear interaction of sound and linearly polarised Alfv{\\'e}n waves propagating in the same direction along an applied magnetic field is studied. It is found that a sound wave is coupled to the Alfv{\\'e}n wave with double period and wavelength when the sound and Alfv{\\'e}n speeds are equal. The Alfv{\\'e}n wave drives the sound wave through the ponderomotive force, while the sound wave returns energy back to the Alfv{\\'e}n wave through the parametric (swing) influence. As a resul...
Identification of resonance waves in open water channels
This article presents a procedure to determine the characteristics of open water channels required for controller and filter design, with special focus on the resonance waves. Also, a new simplified model structure for open water channels is proposed. The procedure applies System Identification tool...
Temperature-compensated aluminum nitride lamb wave resonators.
Lin, Chih-Ming; Yen, Ting-Ta; Lai, Yun-Ju; Felmetsger, Valery V; Hopcroft, Matthew A; Kuypers, Jan H; Pisano, Albert P
2010-03-01
In this paper, the temperature compensation of AlN Lamb wave resonators using edge-type reflectors is theoretically studied and experimentally demonstrated. By adding a compensating layer of SiO2 with an appropriate thickness, a Lamb wave resonator based on a stack of AlN and SiO2 layers can achieve a zero first-order temperature coefficient of frequency (TCF). Using a composite membrane consisting of 1 microm AlN and 0.83 microm SiO2, a Lamb wave resonator operating at 711 MHz exhibits a first-order TCF of -0.31 ppm/degrees C and a second-order TCF of -22.3 ppb/degrees C(2) at room temperature. The temperature-dependent fractional frequency variation is less than 250 ppm over a wide temperature range from -55 degrees C to 125 degrees C. This temperature-compensated AlN Lamb wave resonator is promising for future applications including thermally stable oscillators, filters, and sensors.
Sine-wave three phase resonance inverter for operation of ...
African Journals Online (AJOL)
naeema
Sine-wave three phase resonance inverter for operation of renewable energy systemsR .... performance in this application [8]. Also it was ... A circuit implementation of the three phase boost dc–ac converter with two switches, two diodes, two.
Artificial excitation of ELF waves with frequency of Schumann resonance
Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.
2014-11-01
We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.
Wave-particle resonance condition test for ion-kinetic waves in the solar wind
Energy Technology Data Exchange (ETDEWEB)
Narita, Y. [Austrian Academy of Sciences, Graz (Austria). Space Research Inst.; Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Marsch, E. [Kiel Univ. (Germany). Inst fuer Experimentelle und Angewandte Physik; Perschke, C. [Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Technische Univ. Braunschweig (Germany). Inst. fuer Theoretische Physik; Glassmeier, K.H. [Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Max-Planck-Institut fuer Sonnensystemforschung, Goettingen (Germany); Motschmann, U. [Technische Univ. Braunschweig (Germany). Inst. fuer Theoretische Physik; Deutsches Zentrum fuer Luft- und Raumfahrt, Berlin (Germany). Inst. fuer Planetenforschung; Comisel, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Theoretische Physik; Institute for Space Sciences, Bucharest-Magurele (Romania)
2016-08-01
Conditions for the Landau and cyclotron resonances are tested for 543 waves (identified as local peaks in the energy spectra) in the magnetic field fluctuations of the solar wind measured by the Cluster spacecraft on a tetrahedral scale of 100 km. The resonance parameters are evaluated using the frequencies in the plasma rest frame, the parallel components of the wavevectors, the ion cyclotron frequency, and the ion thermal speed. The observed waves show a character of the sideband waves associated with the ion Bernstein mode, and are in a weak agreement with the fundamental electron cyclotron resonance in spite of the ionkinetic scales. The electron cyclotron resonance is likely taking place in solar wind turbulence near 1AU (astronomical unit).
Wave-particle resonance condition test for ion-kinetic waves in the solar wind
Narita, Y.; Marsch, E.; Perschke, C.; Glassmeier, K.-H.; Motschmann, U.; Comişel, H.
2016-04-01
Conditions for the Landau and cyclotron resonances are tested for 543 waves (identified as local peaks in the energy spectra) in the magnetic field fluctuations of the solar wind measured by the Cluster spacecraft on a tetrahedral scale of 100 km. The resonance parameters are evaluated using the frequencies in the plasma rest frame, the parallel components of the wavevectors, the ion cyclotron frequency, and the ion thermal speed. The observed waves show a character of the sideband waves associated with the ion Bernstein mode, and are in a weak agreement with the fundamental electron cyclotron resonance in spite of the ion-kinetic scales. The electron cyclotron resonance is likely taking place in solar wind turbulence near 1 AU (astronomical unit).
Probabilistic approach to nonlinear wave-particle resonant interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2017-02-01
In this paper we provide a theoretical model describing the evolution of the charged-particle distribution function in a system with nonlinear wave-particle interactions. Considering a system with strong electrostatic waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic equation (or generalized Fokker-Planck equation) modeling the long-term evolution of the particle distribution. In this equation, effects of charged-particle trapping and transport in phase space are simulated with a nonlocal operator. We demonstrate that solutions of the derived kinetic equations agree with results of test-particle tracing. The applicability of the proposed approach for the description of space and laboratory plasma systems is also discussed.
Tuneable film bulk acoustic wave resonators
Gevorgian, Spartak Sh; Vorobiev, Andrei K
2013-01-01
To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high. Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the softwa...
Spoof surface plasmon Fabry-Perot open resonators in a surface-wave photonic crystal
Gao, Zhen; Xu, Hongyi; Zhang, Youming; Zhang, Baile
2016-01-01
We report on the proposal and experimental realization of a spoof surface plasmon Fabry-Perot (FP) open resonator in a surface-wave photonic crystal. This surface-wave FP open resonator is formed by introducing a finite line defect in a surface-wave photonic crystal. The resonance frequencies of the surface-wave FP open resonator lie exactly within the forbidden band gap of the surface-wave photonic crystal and the FP open resonator uses this complete forbidden band gap to concentrate surface waves within a subwavelength cavity. Due to the complete forbidden band gap of the surface-wave photonic crystal, a new FP plasmonic resonance mode that exhibits monopolar features which is missing in traditional FP resonators and plasmonic resonators is demonstrated. Near-field response spectra and mode profiles are presented in the microwave regime to characterize properties of the proposed FP open resonator for spoof surface plasmons.
Quark mass dependence of s-wave baryon resonances
Energy Technology Data Exchange (ETDEWEB)
Garcia-Recio, C.; Nieves, J. [Granada Univ. (Spain). Dept. de Fisica Moderna; Lutz, M.F.M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)
2003-06-01
We study the quark mass dependence of J{sup P} = 1/2{sup -} s-wave baryon resonances. Parameter free results are obtained in terms of the leading order chiral Lagrangian. In the 'heavy' SU(3) limit with m{sub {pi}} = m{sub K} {approx_equal} 500 MeV the resonances turn into bound states forming two octets plus a singlet representations of the SU(3) group. A contrasted result is obtained in the 'light' SU(3) limit with m{sub {pi}} = m{sub K} {approx_equal} 140 MeV for which no resonances exist. Using physical quark masses our analysis suggests to assign to the S = -2 resonances {xi}(1690) and {xi}(1620) the quantum numbers J{sup P} = 1/2{sup -}. (orig.)
Can Resonant Oscillations of the Earth Ionosphere Influence the Human Brain Biorhythm?
Rusov, V D; Zelentsova, T N; Linnik, E P; Beglaryan, M E; Smolyar, V P; Filippov, M; Vachev, B
2012-01-01
Within the frames of Alfv\\'en sweep maser theory the description of morphological features of geomagnetic pulsations in the ionosphere with frequencies (0.1-10 Hz) in the vicinity of Schumann resonance (7.83 Hz) is obtained. It is shown that the related regular spectral shapes of geomagnetic pulsations in the ionosphere determined by "viscosity" and "elasticity" of magneto-plasma medium that control the nonlinear relaxation of energy and deviation of Alfv\\'en wave energy around its equilibrium value. Due to the fact that the frequency bands of Alfv\\'{e}n maser resonant structures practically coincide with the frequency band delta- and partially theta-rhythms of human brain, the problem of degree of possible impact of electromagnetic "pearl" type resonant structures (0.1-5 Hz) onto the brain bio-rhythms stability is discussed.
Instability of subharmonic resonances in magnetogravity shear waves.
Salhi, A; Nasraoui, S
2013-12-01
We study analytically the instability of the subharmonic resonances in magnetogravity waves excited by a (vertical) time-periodic shear for an inviscid and nondiffusive unbounded conducting fluid. Due to the fact that the magnetic potential induction is a Lagrangian invariant for magnetohydrodynamic Euler-Boussinesq equations, we show that plane-wave disturbances are governed by a four-dimensional Floquet system in which appears, among others, the parameter ɛ representing the ratio of the periodic shear amplitude to the vertical Brunt-Väisälä frequency N(3). For sufficiently small ɛ and when the magnetic field is horizontal, we perform an asymptotic analysis of the Floquet system following the method of Lebovitz and Zweibel [Astrophys. J. 609, 301 (2004)]. We determine the width and the maximal growth rate of the instability bands associated with subharmonic resonances. We show that the instability of subharmonic resonance occurring in gravity shear waves has a maximal growth rate of the form Δ(m)=(3√[3]/16)ɛ. This instability persists in the presence of magnetic fields, but its growth rate decreases as the magnetic strength increases. We also find a second instability involving a mixing of hydrodynamic and magnetic modes that occurs for all magnetic field strengths. We also elucidate the similarity between the effect of a vertical magnetic field and the effect of a vertical Coriolis force on the gravity shear waves considering axisymmetric disturbances. For both cases, plane waves are governed by a Hill equation, and, when ɛ is sufficiently small, the subharmonic instability band is determined by a Mathieu equation. We find that, when the Coriolis parameter (or the magnetic strength) exceeds N(3)/2, the instability of the subharmonic resonance vanishes.
Extended Long Wave Hindcast inside Port Solutions to Minimize Resonance
Directory of Open Access Journals (Sweden)
Gabriel Diaz-Hernandez
2016-02-01
Full Text Available The present study shows a methodology to carry out a comprehensive study of port agitation and resonance analysis in Geraldton Harbor (Western Australia. The methodology described and applied here extends the short and long wave hindcast outside the harbor and towards the main basin. To perform such an analysis, and as the first stage of the methodology, it is necessary to determine, in detail, both the long and short wave characteristics, through a comprehensive methodology to obtain and to hindcast the full spectral data (short waves + long waves, for frequencies between 0.005 and 1 Hz. Twelve-year spectral hindcast wave data, at a location before the reef, have been modified analytically to include the energy input associated with infragravity waves. A decomposition technique based on the energy balance of the radiation stress of short waves is followed. Predictions for long wave heights and periods at different harbor locations are predicted and validated with data recorded during 2004 to 2009. This new database will ensure an accurate and reliable assessment of long wave hourly data (height, period and currents in any area within the main basin of the Port of Geraldton, for its present geometry. With this information, two main task will be completed: (1 undertake a forensic diagnosis of the present response of the harbor, identifying those forcing characteristics related to inoperability events; and (2 propose any layout solutions to minimize, change, dissipate/fade/vanish or positively modify the effects of long waves in the harbor, proposing different harbor geometry modifications. The goal is to identify all possible combinations of solutions that would minimize the current inoperability in the harbor. Different pre-designs are assessed in this preliminary study in order to exemplify the potential of the methodology.
Three-Wave Resonance Modulation and Fine Structures in the Solar Short Centimeter Wave Bursts
Institute of Scientific and Technical Information of China (English)
王德焴; 吴洪敖; 秦至海
1994-01-01
A theoretical model is presented. We propose that when the radiation of solar radio bursts propagates outward as a pump wave through the conora, the three-wave resonance interaction would occur if the radio emission interacts with the MHD wave and scattering wave in the conora. This process induces a nonlinear modulation in the emission flux S. The statistical relations between the repetition rates R and S and between the modulation amplitude △S and S, observed from 1.36cm, 2cm and 3.2cm solar radio bursts could be well interpreted by this model under the conditions of imperfect matching and k2≠0. The appreciable difference in the modulation periods among the 2cm, 3.2cm and 1.36cm waves might be caused by the differences in the MHD waves joining in the modulation. Several theoretical expectations have been made from this model, which may be inspected in further observation.
Chiral dynamics of S-wave baryon resonances
Long, Bingwei
2015-01-01
As the pion mass approaches a critical value $m_\\pi^\\star$ from below, an $S$-wave resonance crosses pion-baryon threshold and becomes a bound state with arbitrarily small binding energy, thus driving the scattering length to diverge. I explore the consequences of chiral symmetry for the values of $m_\\pi$ close to $m_\\pi^\\star$. It turns out that chiral symmetry is crucial for an $S$-wave resonance to be able to stand very near threshold and in the meantime to remain narrow, provided that the mass splitting is reasonably small. The effective range of pion-baryon scattering is unexpectedly large, proportional to $ 4\\pi f_\\pi^2/m_\\pi^3$ when $m_\\pi$ is around $m_\\pi^\\star$. As a result, this unexpected large length scale causes universality relations to break down much sooner than naively expected.
High conversion efficiency in resonant four-wave mixing processes.
Lee, Chin-Yuan; Wu, Bo-Han; Wang, Gang; Chen, Yong-Fang; Chen, Ying-Cheng; Yu, Ite A
2016-01-25
We propose a new scheme of the resonant four-wave mixing (FWM) for the frequency up or down conversion, which is more efficient than the commonly-used scheme of the non-resonant FWM. In this new scheme, two control fields are spatially varied such that a probe field at the input can be converted to a signal field at the output. The efficiency of probe-to-signal energy conversion can be 90% at medium's optical depth of about 100. Our proposed scheme works for both the continuous-wave and pulse cases, and is flexible in choosing the control field intensity. This work provides a very useful tool in the nonlinear frequency conversion.
Kinetic equation for nonlinear resonant wave-particle interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
Investigation of Relativistic Electron Resonance with EMIC Waves
Woodger, L. A.; Millan, R. M.; Denton, R. E.
2008-12-01
Wave-particle interaction of relativistic electrons with EMIC waves has been proposed as an important loss mechanism for radiation belt electrons (e.g. Thorne and Andreoli, 1980). Lorentzen et al (2000) and Millan et al (2002) suggested this mechanism to be responsible for dusk side relativistic electron precipitation (REP) detected by balloon borne instrumentation. This study will use the linear electromagnetic dispersion code WHAMP to investigate the effects of density, magnetic field, anisotropy, and heavy ions on the minimum resonance energy for relativistic electrons with EMIC waves. Results will be compared with observations of REP during the MAXIS balloon campaign on Jan. 19, 2000 and the MINIS balloon campaign on Jan. 21, 2005.
Non-resonant wave front reversal of spin waves used for microwave signal processing
Energy Technology Data Exchange (ETDEWEB)
Vasyuchka, V I; Chumak, A V; Hillebrands, B [Fachbereich Physik and Forschungszentrum OPTIMAS, Technische Universitaet Kaiserslautern, 67663 Kaiserslautern (Germany); Melkov, G A; Moiseienko, V A [Department of Radiophysics, National Taras Shevchenko University of Kiev, 01033 Kiev (Ukraine); Slavin, A N, E-mail: vasyuchka@physik.uni-kl.d [Department of Physics, Oakland University, Rochester, MI 48309 (United States)
2010-08-18
It is demonstrated that non-resonant ({omega}{sub s} {ne} {omega}{sub p}/2) wave front reversal (WFR) of spin-wave pulses (carrier frequency {omega}{sub s}) caused by pulsed parametric pumping (carrier frequency {omega}{sub p}) can be effectively used for microwave signal processing. When the spectral width {Omega}{sub s} of the signal is wider than the frequency band {Omega}{sub p} of signal amplification by pumping ({Omega}{sub s} >> {Omega}{sub p}), the non-resonant WFR can be used for the analysis of the signal spectrum. In the opposite case ({Omega}{sub s} << {Omega}{sub p}) the non-resonant WFR can be used for active (with amplification) filtering of the input signal.
Tian, Hui; McIntosh, Scott W.; Wang, Tongjiang; Offman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi
2012-01-01
Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfv´en waves rather than flows. In a few cases, there seems to be a p/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfv´enic oscillations. In this scenario, the intensity oscillations associated with Alfv´enic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.
Attractors of magnetohydrodynamic flows in an Alfvenic state
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel; Sanz, Javier [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
1999-08-13
We present a simplified form of the magnetohydrodynamic system which describes the evolution of a plasma where the small-scale velocity and magnetic field are aligned in the form of Alfven waves, such as happens in several turbulent situations. Bounds on the dimension of the global attractor are found, and are shown to be an improvement of the standard ones for the full magnetohydrodynamic equations. (author)
Thin film characterization by resonantly excited internal standing waves
Energy Technology Data Exchange (ETDEWEB)
Di Fonzio, S. [SINCROTRONE TRIESTE, Trieste (Italy)
1996-09-01
This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.
Parametric resonance in ideal magnetohydrodynamics
Zaqarashvili
2000-08-01
We show that an external nonelectromagnetic periodic inhomogeneous force sets up a parametric resonance in an ideal magnetohydrodynamics. Alfven waves with certain wavelengths grow exponentially in amplitude. Nonlinear interaction between the resonant harmonics produces the long-term modulation of amplitudes. The mechanism of the energy transformation from an external nonelectromagnetic force to magnetic oscillations of the system presented here can be used in understanding the physical background of the gravitational action on the magnetized medium. Future application of this theory to several astrophysical problems is briefly discussed.
Parity violation in p-wave neutron resonances
Sharapov, E I; Penttilae, S I; Mitchell, G E
2001-01-01
Parity violation in p-wave resonances has been studied by measuring the cross section longitudinal asymmetries at neutron energies up to 300-2000 eV. The measurements were performed using the polarization set-up at the pulsed spallation neutron source of the Los Alamos Neutron Science Centre. Parity violations were observed in 75 resonances of Br, Rh, Pd, Ag, Sn, In, Sb, I, Cs, Xe, La, Th, and U. Statistical methods were developed to determine the weak interaction r. m. s. matrix elements and the corresponding widths GAMMA subomega. The average value of GAMMA subomega is about 1.8 x 10 sup - sup 7 eV. The individual GAMMA subomega are consistent with a constant varying mass dependence at the availability of fluctuations
Travelling Wave Magnetic Resonance Imaging at 3 Tesla
Vazquez, F; Marrufo, O; Rodriguez, A O
2013-01-01
Waveguides have been successfully used to generate magnetic resonance images at 7 T with whole-body systems. The bore limits the magnetic resonance signal transmitted because its specific cut-off frequency is greater than the majority of resonant frequencies. This restriction can be overcome by using a parallel-plate waveguide whose cut-off frequency is zero for the transversal electric modes and it can propagate any frequency. To investigate the potential benefits for whole-body imaging at 3 T, we compare numerical simulations at 1.5 T, 3 T, 7 T, and 9 T via the propagation of the parallel-plate waveguide principal mode filled with a cylindrical phantom and two surface coils. B1 mapping was computed to investigate the feasibility of this approach at 3T. The point spread function method was used to measure the imager performance for the traveling-wave magnetic resonance imaging experiment. Human leg images were acquired to experimentally validate this approach. The principal mode shows very little field magni...
Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation
Directory of Open Access Journals (Sweden)
Siegfried Hohmann
2015-05-01
Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.
Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.
Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin
2015-05-21
We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.
Drift-Alfven instabilities of a finite beta plasma shear flow along a magnetic field
Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June
2016-02-01
It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows.
Spontaneous four-wave mixing in lossy microring resonators
Vernon, Z
2015-01-01
We develop a general Hamiltonian treatement of spontaneous four-wave mixing in a microring resonator side-coupled to a channel waveguide. The effect of scattering losses in the ring is included, as well as parasitic nonlinear effects including self- and cross-phase modulation. A procedure for computing the output of such a system for arbitrary parameters and pump states is presented. For the limit of weak pumping an expression for the joint spectral intensity of generated photon pairs, as well as the singles-to-coincidences ratio, is derived.
Binary Systems as Resonance Detectors for Gravitational Waves
Hui, Lam; Yang, I-Sheng
2012-01-01
Gravitational waves at suitable frequencies can resonantly interact with a binary system, inducing changes to its orbit. A stochastic gravitational-wave background causes the orbital elements of the binary to execute a classic random walk -- with the variance of orbital elements growing with time. The lack of such a random walk in binaries that have been monitored with high precision over long time-scales can thus be used to place an upper bound on the gravitational-wave background. Using periastron time data from the Hulse-Taylor binary pulsar spanning ~30 years, we obtain a bound of h_c < 7.9 x 10^-14 at ~10^-4 Hz, where h_c is the strain amplitude per logarithmic frequency interval. Our constraint complements those from pulsar timing arrays, which probe much lower frequencies, and ground-based gravitational-wave observations, which probe much higher frequencies. Interesting sources in our frequency band, which overlaps the lower sensitive frequencies of proposed space-based observatories, include white-...
Shear wave induced resonance elastography of spherical masses with polarized torsional waves
Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy
2012-03-01
Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.
Energy Technology Data Exchange (ETDEWEB)
Ohta, N; Niki, T; Kirihara, S, E-mail: n-ohta@jwri.osaka-u.ac.jp [Smart Processing Research Center, Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka, 567-0047 (Japan)
2011-05-15
Terahertz wave resonators composed of alumina photonic crystals with diamond lattice structures were designed and fabricated by using micro stereolithography. These three dimensional periodic structures can reflect perfectly electromagnetic waves through Bragg diffraction. A micro glass cell including water solutions was put between the photonic crystals as a novel resonance sensor with terahertz frequency range. The localized and amplified waves in the resonators were measured by a spectroscopy, and visualized by theoretical simulations.
Multimode filter composed of single-mode surface acoustic wave/bulk acoustic wave resonators
Huang, Yulin; Bao, Jingfu; Tang, Gongbin; Wang, Yiling; Omori, Tatsuya; Hashimoto, Ken-ya
2017-07-01
This paper discusses the possibility of realizing multimode filters composed of multiple single-mode resonators by using radio frequency surface and bulk acoustic wave (SAW/BAW) technologies. First, the filter operation and design principle are given. It is shown that excellent filter characteristics are achievable by combining multiple single-mode resonators with identical capacitance ratios provided that their resonance frequencies and clamped capacitances are set properly. Next, the effect of balun performance is investigated. It is shown that the total filter performance is significantly degraded by balun imperfections such as the common-mode rejection. Then, two circuits are proposed to improve the common-mode rejection, and their effectiveness is demonstrated.
An Experimental Study of Nonlinear Standing Waves in Resonators with Numerical Comparison
Finkbeiner, Joshua R.; Raman, Ganesh; Li, Xiaofan; Steinetz, Bruce M.; Daniels, Christopher; Huff, Dennis (Technical Monitor)
2002-01-01
Lawrenson et. al. [Journal of the Acoustic Society of America, Nov. 1998] described the generation of shock-free high-amplitude pressure waves in closed cavities using large equipment and resonators to produce the reported effects. An attempt is made to generate shock-free high-amplitude pressure waves using relatively small resonators. Ambient air is used as the working fluid. A small cylindrical resonator is tested resulting in the lack of a shocked waveform while a larger model of the same shape produces shock waves. A small conical resonator produces shock-free pressure waves at resonance, but the amplitude of these waves is small. A larger cone resonator model produces shock-free pressure waves of higher amplitude. A large horn-cone resonator also produces shock-free high amplitude pressure waves, A numerical model is used to compare the experimental results to theoretical results. The effects of structural resonances on the production of shock-free high-amplitude pressure waves are discussed, especially concerning difficulties encountered when these resonances were in the frequency ranges of interest. Identifying features of a structural resonance are presented.
Record Balkan floods of 2014 linked to planetary wave resonance.
Stadtherr, Lisa; Coumou, Dim; Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan
2016-04-01
In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics. We study the climatic and meteorological factors that influenced the catastrophic flooding in the Balkans, where we focus on large-scale circulation. We show that the Vb cyclone was unusually stationary, bringing extreme rainfall for several consecutive days, and that this situation was likely linked to a quasi-stationary circumglobal Rossby wave train. We provide evidence that this quasi-stationary wave was amplified by wave resonance. Statistical analysis of daily spring rainfall over the Balkan region reveals significant upward trends over 1950-2014, especially in the high quantiles relevant for flooding events. These changes cannot be explained by simple thermodynamic arguments, and we thus argue that dynamical processes likely played a role in increasing flood risks over the Balkans.
A Note on the Resonant Interaction of a Surface Wave With two Interfacial Waves
Jamali, M.; Lawrence, G. A.; Seymour, B. R.
2002-12-01
Recently Hill and Foda (1998) and Jamali (1998) have performed theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings of the two studies there is one seemingly major difference. The analysis of Hill and Foda (1998) indicated that there are only narrow bands of frequency, density ratio, and direction angle within which growth is possible. On the other hand Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that second order representation of the dynamic interfacial boundary condition of Hill and Foda (1998) is missing a term proportional to the velocity shear across the interface. When this missing term is included in the analysis the resulting predictions are consistent with the laboratory experiments.
A note on the resonant interaction between a surface wave and two interfacial waves
Jamali, Mirmosadegh; Lawrence, Gregory A.; Seymour, Brian
2003-09-01
Hill & Foda (1998) and Jamali (1998) have presented theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings there is one seemingly major difference. Hill & Foda's (1998) analysis indicated that there are only narrow bands of frequency, density ratio and direction angle within which growth is possible. On the other hand, Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that Hill & Foda's (1998) second-order representation of the dynamic interfacial boundary condition is missing a term proportional to the time derivative of the square of the velocity shear across the interface. When this missing term is included in the analysis, the resulting predictions are consistent with the laboratory experiments.
Three-Wave Resonant Interactions in Self-Defocusing Optical Media
Institute of Scientific and Technical Information of China (English)
崔维娜; 黄国翔; 孙春柳
2003-01-01
A three-wave resonant interaction for nonlinear excitations created from a continuous-wave background is shown to be possible in an isotropic optical medium with a self-defocusing cubic nonlinearity. Under suitable phasematching conditions the nonlinear envelope equations for the resonant interaction are derived by using a method of multiple-scales. Some explicit three-wave solitary wave and lump solutions are discussed.
Extreme Wave-Induced Oscillation in Paradip Port Under the Resonance Conditions
Kumar, Prashant; Gulshan
2017-08-01
A mathematical model is constructed to analyze the long wave-induced oscillation in Paradip Port, Odisha, India under the resonance conditions to avert any extreme wave hazards. Boundary element method (BEM) with corner contribution is utilized to solve the Helmholtz equation under the partial reflection boundary conditions. Furthermore, convergence analysis is also performed for the boundary element scheme with uniform and non-uniform discretization of the boundary. The numerical scheme is also validated with analytic approximation and existing studies based on harbor resonance. Then, the amplification factor is estimated at six key record stations in the Paradip Port with multidirectional incident waves and resonance modes are also estimated at the boundary of the port. Ocean surface wave field is predicted in the interior of Paradip Port for the different directional incident wave at various resonance modes. Moreover, the safe locations in the port have been identified for loading and unloading of moored ship with different resonance modes and directional incident waves.
Bounce resonance scattering of radiation belt electrons by H+ band EMIC waves
Cao, Xing; Ni, Binbin; Summers, Danny; Bortnik, Jacob; Tao, Xin; Shprits, Yuri Y.; Lou, Yuequn; Gu, Xudong; Fu, Song; Shi, Run; Xiang, Zheng; Wang, Qi
2017-02-01
We perform a detailed analysis of bounce-resonant pitch angle scattering of radiation belt electrons due to electromagnetic ion cyclotron (EMIC) waves. It is found that EMIC waves can resonate with near-equatorially mirroring electrons over a wide range of L shells and energies. H+ band EMIC waves efficiently scatter radiation belt electrons of energy >100 keV from near 90° pitch angles to lower pitch angles where the cyclotron resonance mechanism can take over to further diffuse electrons into the loss cone. Bounce-resonant electron pitch angle scattering rates show a strong dependence on L shell, wave normal angle distribution, and wave spectral properties. We find distinct quantitative differences between EMIC wave-induced bounce-resonant and cyclotron-resonant diffusion coefficients. Cyclotron-resonant electron scattering by EMIC waves has been well studied and found to be a potentially crucial electron scattering mechanism. The new investigation here demonstrates that bounce-resonant electron scattering may also be very important. We conclude that bounce resonance scattering by EMIC waves should be incorporated into future modeling efforts of radiation belt electron dynamics.
Nb Sputtered Quarter Wave Resonators for the HIE-ISOLDE
Venturini Delsolaro, W; Delaup, B; D'Elia, A; Jecklin, N M; Kadi, Y; Keppel, G; Lespinasse, D; Maesen, P; Mondino, I; Palmieri, V; Stark, S; Sublet, A R M; Therasse, M
2013-01-01
The HIE-ISOLDE superconducting linac will be based on quarter wave resonators (QWRs), made by niobium sputtering on copper. The operating frequency at 4.5 K is 101.28 MHz and the required performance for the high beta cavity is 6 MV/m accelerating field for 10 W maximum power dissipation. These challenging specifications were recently met at CERN at the end of a vigorous development program. The paper reports on the progress of the cavity RF performance with the evolution of the sputtering process; it equally illustrates the parallel R&D which is on-going at CERN and at INFN in the quest for even higher performances.
Kouznetsov, Igor; Lotko, William
1995-01-01
The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the
Institute of Scientific and Technical Information of China (English)
Xu Chang-Zhi; He Bao-Gang; Zhang Jie-Fang
2004-01-01
A variable separation approach is proposed and extended to the (1+1)-dimensional physical system. The variable separation solutions of (1+1)-dimensional equations of long-wave-short-wave resonant interaction are obtained. Some special type of solutions such as soliton solution, non-propagating solitary wave solution, propagating solitary wave solution, oscillating solitary wave solution are found by selecting the arbitrary function appropriately.
Non-linear modulation of short wavelength compressional Alfven eigenmodes
Energy Technology Data Exchange (ETDEWEB)
Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bortolon, A. [University of California, Irvine, California 92697 (United States); Crocker, N. A. [University of California, Los Angeles, California 90095 (United States); Levinton, F. M.; Yuh, H. [Nova Photonics, Princeton, New Jersey 08543 (United States)
2013-04-15
Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Sound waves and resonances in electron-hole plasma
Lucas, Andrew
2016-06-01
Inspired by the recent experimental signatures of relativistic hydrodynamics in graphene, we investigate theoretically the behavior of hydrodynamic sound modes in such quasirelativistic fluids near charge neutrality, within linear response. Locally driving an electron fluid at a resonant frequency to such a sound mode can lead to large increases in the electrical response at the edges of the sample, a signature, which cannot be explained using diffusive models of transport. We discuss the robustness of this signal to various effects, including electron-acoustic phonon coupling, disorder, and long-range Coulomb interactions. These long-range interactions convert the sound mode into a collective plasmonic mode at low frequencies unless the fluid is charge neutral. At the smallest frequencies, the response in a disordered fluid is quantitatively what is predicted by a "momentum relaxation time" approximation. However, this approximation fails at higher frequencies (which can be parametrically small), where the classical localization of sound waves cannot be neglected. Experimental observation of such resonances is a clear signature of relativistic hydrodynamics, and provides an upper bound on the viscosity of the electron-hole plasma.
PZT-on-silicon RF-MEMS Lamb wave resonators and filters
Yagubizade, Hadi
2013-01-01
Lamb-wave piezoelectric RF-MEMS resonators have demonstrated promising performance, such as low motional impedance and high Q-factor. Lamb-wave resonators are still in the perfectioning state and therefore there is a great demand for further understanding of various issues such as reducing the ancho
Oblique chain resonance of internal waves by three-dimensional seabed corrugations
Couston, L -A; Alam, M -R
2016-01-01
Here we show that the interaction of a low-mode internal wave with small oblique seabed corrugations can lead to a chain resonance of many other freely propagating internal waves with a broad range of wavenumbers and directions of propagation. The chain resonance results in a complex internal wave dynamics over the corrugated seabed that can lead to a significant redistribution of energy across the internal wave spectrum. In order to obtain a quantitative understanding of the energy transfer rates between the incident and resonated waves over the seabed topography, here we derive an equation for the evolution of the wave envelopes using multiple-scale analysis in the limit of small-amplitude corrugations. Strong energy transfers from the incident internal wave toward shorter internal waves are demonstrated for a broad range of incidence angles, and the theoretical predictions are compared favorably with direct simulations of the full Euler's equation. The key results show that: (i) a large number of distinct ...
Van Compernolle, B; Bortnik, J; Pribyl, P; Gekelman, W; Nakamoto, M; Tao, X; Thorne, R M
2014-04-11
Resonant interactions between energetic electrons and whistler mode waves are an essential ingredient in the space environment, and in particular in controlling the dynamic variability of Earth's natural radiation belts, which is a topic of extreme interest at the moment. Although the theory describing resonant wave-particle interaction has been present for several decades, it has not been hitherto tested in a controlled laboratory setting. In the present Letter we report on the first laboratory experiment to directly detect resonant pitch angle scattering of energetic (∼keV) electrons due to whistler mode waves. We show that the whistler mode wave deflects energetic electrons at precisely the predicted resonant energy, and that varying both the maximum beam energy, and the wave frequency, alters the energetic electron beam very close to the resonant energy.
Lamb wave band gaps in locally resonant phononic crystal strip waveguides
Energy Technology Data Exchange (ETDEWEB)
Yao, Yuanwei, E-mail: yaoyw@scut.edu.cn [Department of Physics, Guangdong University of Technology, Guangzhou 510006 (China); Wu, Fugen [Experiment and Educational Center, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, Xin [Department of Physics, Guangdong University of Technology, Guangzhou 510006 (China); Hou, Zhilin [Department of Physics, South China University of Technology, Guangzhou 510640 (China)
2012-01-09
Using finite element method, we have made a theoretically study of the band structure of Lamb wave in a locally resonant phononic crystal strip waveguide with periodic soft rubber attached on the two sides of epoxy main plate. The numerical results show that the Lamb wave band gap based on local resonant mechanism can be opened up in the stub strip waveguides, and the width of the local resonant band gap is narrower than that based on the Bragg scattering mechanism. The results also show that the stub shape and width have influence on the frequency and width of the Lamb wave band gap. -- Highlights: ► The local resonant Lamb wave band gap can be opened up in a stub strip waveguides. ► The width of the local resonant band gap is narrower than that Bragg scattering band gap. ► The shape and width of the stub have strongly influence on the local resonant band gap.
Thalmayr, Florian; Hashimoto, Ken-Ya; Omori, Tatsuya; Yamaguchi, Masatsune
2010-07-01
This paper demonstrates a novel frequency domain analysis (FDA) to evaluate the scattering behavior of a waveguide mode at arbitrary scattering geometries by a time harmonic simulation based on the finite element method (FEM). To this end, we add an injection-damping mechanism (IDM) to avoid interference at the acoustic input port. The IDM can be easily constructed by a numerical operation. Our approach offers improved time consumption and calculation power necessary over the established method in the time domain. After checking the validity of the proposed method, we discuss the importance of considering wave scattering phenomena in film bulk acoustic wave resonator (FBAR) devices by applying the proposed method to two simplified models of an FBAR device.
Particle-in-cell investigation on the resonant absorption of a plasma surface wave
Institute of Scientific and Technical Information of China (English)
Lan Chao-Hui; Hu Xi-Wei
2011-01-01
The resonant absorption of a plasma surface wave is supposed to be an important and efficient mechanism of power deposition for a surface wave plasma source.In this paper,by using the particle-in-cell method and Monte Carlo simulation,the resonance absorption mechanism is investigated.Simulation results demonstrate the existence of surface wave resonance and show the high efficiency of heating electrons.The positions of resonant points,the resonance width and the spatio-temporal evolution of the resonant electric field are presented,which accord well with the theoretical results.The paper also discusses the effect of pressure on the resonance electric field and the plasma density.
Vladimirov, S V
2015-01-01
The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations significantly modifies plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The results are discussed in the context of dusty plasma experiments.
Theory of Optical Leaky-Wave Antenna Integrated in a Ring Resonator for Radiation Control
Guclu, Caner; Capolino, Filippo
2015-01-01
The integration of a leaky-wave antenna with a ring resonator is presented using analytical guided wave models. The device consists of a ring resonator fed by a directional coupler, where the ring resonator path includes a leaky-wave antenna segment. The resonator integration provides two main advantages: the high-quality factor ensures effective control of radiation intensity by controlling the resonance conditions and the efficient radiation from a leaky-wave antenna even when its length is much smaller than the propagation length of the leaky wave. We devise an analytical model of the guided wave propagation along a directional coupler and the ring resonator path including the antenna and non-radiating segments. The trade-offs regarding the quality factor of resonance and the antenna efficiency of such a design is reported in terms of the coupler parameters, leaky-wave constant and radiation length. Finally a CMOS-compatible OLWA design suitable for the ring resonator integration is designed where Silicon ...
Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings
Fang, Tian-Shen
2007-01-01
This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…
Evanescent wave mirror for cold atoms—A quasi-resonant case
DEFF Research Database (Denmark)
Fiutowski, Jacek; Bartoszek-Bober, Dobroslawa; Dohnalik, Tomasz
2013-01-01
The measurements of the inelastic photon scattering in the optical dipole mirror created by a quasi-resonant evanescent wave are presented. The momentum transfer between an evanescent wave and cold atoms accompanying the atom reflection are discussed for a single and double evanescent wave...
Generation of whistler-wave heated discharges with planar resonant RF networks.
Guittienne, Ph; Howling, A A; Hollenstein, Ch
2013-09-20
Magnetized plasma discharges generated by a planar resonant rf network are investigated. A regime transition is observed above a magnetic field threshold, associated with rf waves propagating in the plasma and which present the characteristics of whistler waves. These wave heated regimes can be considered as analogous to conventional helicon discharges, but in planar geometry.
Resonance vibrations of the Ross Ice Shelf and observations of persistent atmospheric waves
Godin, Oleg A.; Zabotin, Nikolay A.
2016-10-01
Recently reported lidar observations have revealed a persistent wave activity in the Antarctic middle and upper atmosphere that has no counterpart in observations at midlatitude and low-latitude locations. The unusual wave activity suggests a geographically specific source of atmospheric waves with periods of 3-10 h. Here we investigate theoretically the hypothesis that the unusual atmospheric wave activity in Antarctica is generated by the fundamental and low-order modes of vibrations of the Ross Ice Shelf (RIS). Simple models are developed to describe basic physical properties of resonant vibrations of large ice shelves and their coupling to the atmosphere. Dispersion relation of the long surface waves, which propagate in the floating ice sheet and are responsible for its low-order resonances, is found to be similar to the dispersion relation of infragravity waves in the ice-free ocean. The phase speed of the surface waves and the resonant frequencies determine the periods and wave vectors of atmospheric waves that are generated by the RIS resonant oscillations. The altitude-dependent vertical wavelengths and the periods of the acoustic-gravity waves in the atmosphere are shown to be sensitive to the physical parameters of the RIS, which can be difficult to measure by other means. Predicted properties of the atmospheric waves prove to be in a remarkable agreement with the key features of the observed persistent wave activity.
Controlling Spiral Waves by Modulations Resonant with the Intrinsic System Mode
Institute of Scientific and Technical Information of China (English)
XIAO Jing-Hua; HU Gang; HU Bam-Bi
2004-01-01
We investigate the spiral wave control in the two-dimensional complex Ginzburg-Landau equation. External drivings which are not resonant with spiral waves but with intrinsic system modes are used to successfully annihilate spiral waves and direct the system to various target states. The novel control mechanism is intuitively explained and the richness and flexibility the control results are emphasized.
Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea
2011-01-01
Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838
Phase modulation spectroscopy of space-charge wave resonances in Bi12SiO20
DEFF Research Database (Denmark)
Vasnetsov, M.; Buchhave, Preben; Lyuksyutov, S.
1997-01-01
A new experimental method for the study of resonance effects and space-charge wave excitation in photorefractive Bi12SiO20 crystals by using a combination of frequency detuning and phase modulation technique has been developed. The accuracy of the method allows a detection of resonance peaks...... and revealed its resonance dependence. A minimum of electric current through the sample corresponds to the main resonance detected by phase modulation technique....
A Lamb wave source based on the resonant cavity of phononic-crystal plates.
Sun, Jia-Hong; Wu, Tsung-Tsong
2009-01-01
In this paper, we propose a Lamb wave source that is based on the resonant cavity of a phononic-crystal plate. The phononic-crystal plate is composed of tungsten cylinders that form square lattices in a silicon plate, and the resonant cavity is created by arranging defects inside the periodic structure. The dispersion, transmission, and displacement of Lamb waves are analyzed by the finite-difference time-domain (FDTD) method. The eigenmodes inside the cavities of the phononic-crystal plate are identified as resonant modes. The fundamental and higher order resonant modes, which vary with the length of cavities, are calculated. By exciting the specific resonant mode in an asymmetric cavity, the 232.40 MHz flexural Lamb wave has a magnified amplitude of 78 times larger than the normal one. Thus, the cavity on the tungsten/silicon phononic-crystal plate may serve as a source element in a microscale acoustic wave device.
Seismic waves damping with arrays of inertial resonators
Achaoui, Younes; Enoch, Stefan; Brûlé, Stéphane; Guenneau, Sébastien
2015-01-01
We investigate the elastic stop band properties of a theoretical cubic array of iron spheres con- nected to a bulk of concrete via iron or rubber ligaments. Each sphere can move freely within a surrounding air cavity, but ligaments couple it to the bulk and further facilitate bending and ro- tational motions. Associated low frequency local resonances are well predicted by an asymptotic formula. We ?nd complete stop bands (for all wave-polarizations) in the frequency range [16-21] Hz (resp. [6-11] Hz) for 7:4-meter (resp. 0:74-meter) diameter iron spheres with a 10-meter (resp. 1-meter) center-to-center spacing, when they are connected to concrete via steel (resp. rubber) liga- ments. The scattering problem shows that only bending modes are responsible for damping and that the rotational modes are totally overwritten by bending modes. Regarding seismic applications, we further consider soil as a bulk medium, in which case the relative bandwidth of the low frequency stop band can be enlarged through ligaments o...
Plasma production for electron acceleration by resonant plasma wave
Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Cybernetic Control in a Supply Chain: Wave Propagation and Resonance
Directory of Open Access Journals (Sweden)
Ken Dozier
2006-10-01
Full Text Available The cybernetic control and management of production can be improved by an understanding of the dynamics of the supply chains for the production organizations. This paper describes an attempt to better understand the dynamics of a linear supply chain through the application of the normal mode analysis technique of physics. A model is considered in which an organization's response to a perturbation from the steady state is affected by the inertia which the company naturally exhibits. This inertia determines how rapidly an organization can respond to deviations from the steady state of its own inventories and those of the two organizations immediately preceding and following it in the chain. The model equations describe the oscillatory phenomena of the naturally occurring normal modes in the chain, in which waves of deviations from the steady state situation travel forward and backwards through the chain. It would be expected that the most effective cybernetic control occurs when resonant interventions cause either amplification or damping of the deviations from the steady state.
Plasma production for electron acceleration by resonant plasma wave
Energy Technology Data Exchange (ETDEWEB)
Anania, M.P., E-mail: maria.pia.anania@lnf.infn.it [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome Tor Vergata - INFN, via della Ricerca Scientifica, 1, 00133 Roma (Italy); INFN, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Croia, M.; Curcio, A. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Di Giovenale, D.; Di Pirro, G.P. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Filippi, F. [University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Romeo, S. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ferrario, M. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy)
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L
2010-12-01
We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. © 2010 American Institute of Physics.
High-resolution inverse Raman and resonant-wave-mixing spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).
Excitation of Alfven Cyclotron Instability by charged fusion products in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Gorelenkov, N.N.; Cheng, C.Z.
1994-08-01
The spectrum of ion cyclotron emission (ICE) observed in tokamak experiments shows narrow peaks at multiples of the edge cyclotron frequency of background ions. A possible mechanism of ICE based on the fast Alfven Cyclotron Instability (ACI) resonantly excited by high energy charged products ({alpha}-particles or protons) is studied here. The two-dimensional ACI eigenmode structure and eigenfrequency are obtained in the large tokamak aspect ratio limit. The ACI is excited via wave-particle resonances in phase space by tapping the fast ion velocity space free energy. The instability growth rates are computed perturbatively from the perturbed fast particle distribution function, which is obtained by integrating the high frequency gyrokinetic equation along the particle orbit. Numerical examples of ACI growth rates are presented for TFTR plasmas. The fast ion distribution function is assumed to be singular in pitch angle near the plasma edge. The results are employed to understand the ICE in Deuterium-Deuterium (DD) and Deuterium-tritium (DT) tokamak experiments.
On Properties of Compressional Alfven Eigenmode Instability Driven by Superalfvinic Ions
Energy Technology Data Exchange (ETDEWEB)
N.N. Gorelenkov; C.Z. Cheng
2002-02-06
Properties of the instability of Compressional Alfven Eigenmodes (CAE) in tokamak plasmas are studied in the cold plasma approximation with an emphasis on the instability driven by the energetic minority Ion Cyclotron Resonance Heating (ICRH) ions. We apply earlier developed theory [N.N. Gorelenkov and C.Z. Cheng, Nuclear Fusion 35 (1995) 1743] to compare two cases: Ion Cyclotron Emission (ICE) driven by charged fusion products and ICRH Minority driven ICE (MICE) [J. Cottrell, Phys. Rev. Lett. (2000)] recently observed on JET [Joint European Torus]. Particularly in MICE spectrum, only instabilities with even harmonics of deuterium-cyclotron frequency at the low-field-side plasma edge were reported. Odd deuterium-cyclotron frequency harmonics of ICE spectrum between the cyclotron harmonics of protons can be driven only via the Doppler-shifted cyclotron wave-particle resonance of CAEs with fusion products, but are shown to be damped due to the electron Landau damping in experiments on MI CE. Excitation of odd harmonics of MICE with high-field-side heating is predicted. Dependencies of the instability on the electron temperature is studied and is shown to be strong. Low electron temperature is required to excite odd harmonics in MICE.
Calculation of continuum damping of Alfv\\'en eigenmodes in 2D and 3D cases
Bowden, G W; Könies, A
2015-01-01
In ideal MHD, shear Alfv\\'{e}n eigenmodes may experience dissipationless damping due to resonant interaction with the shear Alfv\\'{e}n continuum. This continuum damping can make a significant contribution to the overall growth/decay rate of shear Alfv\\'{e}n eigenmodes, with consequent implications for fast ion transport. One method for calculating continuum damping is to solve the MHD eigenvalue problem over a suitable contour in the complex plane, thereby satisfying the causality condition. Such an approach can be implemented in three-dimensional ideal MHD codes which use the Galerkin method. Analytic functions can be fitted to numerical data for equilibrium quantities in order to determine the value of these quantities along the complex contour. This approach requires less resolution than the established technique of calculating damping as resistivity vanishes and is thus more computationally efficient. The complex contour method has been applied to the three-dimensional finite element ideal MHD code CKA . ...
On the Relative Importance of Wave Focusing and Shelf or Harbor Resonance in Crescent City, CA
Arcas, D.
2009-12-01
It is well known that tsunami events that affect the western seaboard of the United States always impact strongly on the town of Crescent City, CA. Abnormally high tsunami wave height values when compared to those observed in the nearby towns of Brookings, OR and Eureka, CA are consistently recorded at the National Ocean Service (NOS) tide gauge in Crescent City harbor. It has been speculated that the main two physical phenomena responsible for the unusually large wave heights at this location are resonance and/or the presence of the Mendocino Escarpment, an over 1500 mile long asymmetric dislocation of the sea floor offshore of Crescent City with the potential for channeling part of the tsunami wave towards a specific location on the coastline. In connection with the resonant behavior of tsunami waves in the area, some studies have found the elevated wave heights to be generated by shelf resonance, while others have attributed the phenomenon to harbor resonance with a more localized effect. The implications of either shelf or harbor resonance are substantial. In the case of harbor resonance, modifications to the geometric configuration of the harbor may cancel or attenuate the resonant mode thus mitigating, at least partially, the tsunami hazard to the city. If shelf resonance is the dominant phenomenon, harbor modification will not significantly influence the wave behavior. The present study evaluates the relative importance of harbor resonance, shelf resonance and the presence of the Mendocino Escarpment on the abnormal tsunami wave heights consistently reported at Crescent City via analysis of recorded data and computer simulations of recent tsunami events.
Hollweg, Joseph V.; Markovskii, S. A.
2002-06-01
There is a growing consensus that cyclotron resonances play important roles in heating protons and ions in coronal holes where the fast solar wind originates and throughout interplanetary space as well. Most work on cyclotron resonant interactions has concentrated on the special, but unrealistic, case of propagation along the ambient magnetic field, B0, because of the great simplification it gives. This paper offers a physical discussion of how the cyclotron resonances behave when the waves propagate obliquely to B0. We show how resonances at harmonics of the cyclotron frequency come about, and how the physics can be different depending on whether E⊥ is in or perpendicular to the plane containing k and B0 (k is wave vector, and E⊥ is the component of the wave electric field perpendicular to B0). If E⊥ is in the k-B0 plane, the resonances are analogous to the Landau resonance and arise because the particle tends to stay in phase with the wave during the part of its orbit when it is interacting most strongly with E⊥. If E⊥ is perpendicular to the k-B0 plane, then the resonances depend on the fact that the particle is at different positions during the parts of its orbit when it is interacting most strongly with E⊥. Our main results are our refid="df10" type="formula">equations (10), refid="df11" type="formula">(11), and refid="df13" type="formula">(13) for the secular rate of energy gain (or loss) by a resonant particle and the unfamiliar result that ions can resonate with a purely right-hand circularly polarized wave if the propagation is oblique. We conclude with some speculations about the origin of highly obliquely propagating ion resonant waves in the corona and solar wind. We point out that there are a number of instabilities that may generate such waves locally in the corona and solar wind.
Effect of Alfvén resonance on low-frequency fast wave current drive
Wang, C. Y.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Stallings, D. C.
1995-08-01
The Alfvén resonances may occur on the low- and high-field sides for a low-frequency fast wave current drive scenario proposed for the International Thermonuclear Experimental Reactor (ITER) [Nucl. Fusion 31, 1135 (1991)]. At the resonance on the low-field side, the fast wave may be mode converted into a short-wavelength slow wave, which can be absorbed by electrons at the plasma edge, before the fast wave propagates into the core area of the plasma. Such absorption may cause a significant parasitic power loss.
Linear gyrokinetic particle-in-cell simulations of Alfven instabilities in tokamaks
Biancalani, A; Briguglio, S; Koenies, A; Lauber, Ph; Mishchenko, A; Poli, E; Scott, B D; Zonca, F
2015-01-01
The linear dynamics of Alfven modes in tokamaks is investigated here by means of the global gyrokinetic particle-in-cell code NEMORB. The model equations are shown and the local shear Alfven wave dispersion relation is derived, recovering the continuous spectrum in the incompressible ideal MHD limit. A verification and benchmark analysis is performed for continuum modes in a cylinder and for toroidicity-induced Alfven Eigenmodes. Modes in a reversed-shear equilibrium are also investigated, and the dependence of the spatial structure in the poloidal plane on the equilibrium parameters is described. In particular, a phase-shift in the poloidal angle is found to be present for modes whose frequency touches the continuum, whereas a radial symmetry is found to be characteristic of modes in the continuum gap.
Hellinger, Petr
2016-01-01
Using one-dimensional hybrid expanding box model we investigate properties of the solar wind in the outer heliosphere. We assume a proton-electron plasma with a strictly transverse ambient magnetic field and, beside the expansion, we take into account influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function that rapidly becomes unstable and generate Alfv\\'en cyclotron waves. The Alfv\\'en cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that time owing to the expansion-driven cooling. The Alf\\'ven cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through the cyclotron resonance. At later times, the Alfv\\'en cyclotron waves become parametrically unstable and the generated ion acoustic waves heat protons in the parallel dir...
Particle Scattering off of Right-Handed Dispersive Waves
Schreiner, Cedric; Spanier, Felix
2016-01-01
Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfv\\'en waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, wellestablished analytic models derived in the framework of magnetostatic quasi-linear theory (QLT) can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for the use in the plasma frame. Thereby we aim at a description of particle ...
Statistical reconstruction algorithms for continuous wave electron spin resonance imaging
Kissos, Imry; Levit, Michael; Feuer, Arie; Blank, Aharon
2013-06-01
Electron spin resonance imaging (ESRI) is an important branch of ESR that deals with heterogeneous samples ranging from semiconductor materials to small live animals and even humans. ESRI can produce either spatial images (providing information about the spatially dependent radical concentration) or spectral-spatial images, where an extra dimension is added to describe the absorption spectrum of the sample (which can also be spatially dependent). The mapping of oxygen in biological samples, often referred to as oximetry, is a prime example of an ESRI application. ESRI suffers frequently from a low signal-to-noise ratio (SNR), which results in long acquisition times and poor image quality. A broader use of ESRI is hampered by this slow acquisition, which can also be an obstacle for many biological applications where conditions may change relatively quickly over time. The objective of this work is to develop an image reconstruction scheme for continuous wave (CW) ESRI that would make it possible to reduce the data acquisition time without degrading the reconstruction quality. This is achieved by adapting the so-called "statistical reconstruction" method, recently developed for other medical imaging modalities, to the specific case of CW ESRI. Our new algorithm accounts for unique ESRI aspects such as field modulation, spectral-spatial imaging, and possible limitation on the gradient magnitude (the so-called "limited angle" problem). The reconstruction method shows improved SNR and contrast recovery vs. commonly used back-projection-based methods, for a variety of simulated synthetic samples as well as in actual CW ESRI experiments.
Broadband Lamb wave trapping in cellular metamaterial plates with multiple local resonances.
Zhao, De-Gang; Li, Yong; Zhu, Xue-Feng
2015-03-20
We have investigated the Lamb wave propagation in cellular metamaterial plates constructed by bending-dominated and stretch-dominated unit-cells with the stiffness differed by orders of magnitude at an ultralow density. The simulation results show that ultralight metamaterial plates with textured stubs deposited on the surface can support strong local resonances for both symmetric and anti-symmetric modes at low frequencies, where Lamb waves at the resonance frequencies are highly localized in the vibrating stubs. The resonance frequency is very sensitive to the geometry of textured stubs. By reasonable design of the geometry of resonant elements, we establish a simple loaded-bar model with the array of oscillators having a gradient relative density (or weight) that can support multiple local resonances, which permits the feasibility of a broadband Lamb wave trapping. Our study could be potentially significant in designing ingenious weight-efficient acoustic devices for practical applications, such as shock absorption, cushioning, and vibrations traffic, etc.
Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.
2016-04-01
Electron pitch angle (Dαα) and momentum (Dpp) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in Dαα and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than Dαα coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than Dαα coefficients for the case n ≠ 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of Dαα coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau
Energy Technology Data Exchange (ETDEWEB)
Olsson, R. H., III
2012-03-01
The goal of this project was to develop high frequency quality factor (fQ) product acoustic resonators matched to a standard RF impedance of 50 {Omega} using overmoded bulk acoustic wave (BAW) resonators. These resonators are intended to serve as filters in a chip scale mechanical RF spectrum analyzer. Under this program different BAW resonator designs and materials were studied theoretically and experimentally. The effort resulted in a 3 GHz, 50 {Omega}, sapphire overmoded BAW with a fQ product of 8 x 10{sup 13}, among the highest values ever reported for an acoustic resonator.
Design and fabrication of a phononic-crystal-based Love wave resonator in GHz range
Directory of Open Access Journals (Sweden)
Ting-Wei Liu
2014-12-01
Full Text Available This paper presents a method for designing and fabricating a Love wave resonator utilizing the phononic crystal (PC as the reflectors. The PCs were formed by depositing 2D, periodically etched silica film on a quartz substrate. We analyzed the PC structure, and within its partial bandgap we designed a one-port resonator that contained a set of inter-digital transducer (IDT inside the resonant cavity bonded by two PC arrays. With sub-micrometer structures, the resonator was designed to operate at 1.25 GHz. The device was fabricated by employing the microelectromechanical system (MEMS fabrication technology and the resonant performance was evaluated.
Effects of Heavy Ions on ULF Wave Resonances Near the Equatorial Region
Energy Technology Data Exchange (ETDEWEB)
D.-H.Lee, J.R. Johnson, K. Kim and K.-S.Kim
2008-11-20
Pc1-2 ULF waves are strongly associated with the presence of various ions in the magnetosphere. We investigate the role of heavy ion resonances in nonuniform plasmas near the equatorial region. By adopting the invariant imbedding method, the coupled plasma wave equations are solved in an exact manner to calculate the resonant absorption at the ion-ion hybrid resonance. Our results show that irreversible mode conversion occurs at the resonance, which absorbs the fast wave energy. It is found that waves near the resonances appear with linear polarization, and their amplitude and frequency are sensitive to the properties of the heavy ion plasma composition. We examine how these resonances occur for various H+ - He+ populations in detail by performing an accurate calculation of the mode conversion effciency. Because the multi-ion hybrid resonance locations in cold plasmas are determined by simple parameters such as the fraction of the ion number density of each species and the magnetic field, we suggest that it is possible to monitor heavy ion composition by examining the peak frequencies of linearly polarized wave events in either electric field or magnetic field spectral data.
Stochastic Acceleration of Ions Driven by Pc1 Wave Packets
Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.
2015-01-01
The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.
Resonance vibrations of the Ross Ice Shelf cause persistent atmospheric waves
Godin, Oleg; Zabotin, Nikolay
2017-04-01
Recently reported lidar observations have revealed a persistent wave activity in the Antarctic middle and upper atmosphere that has no counterpart in observations at mid- and low-latitude locations [Chen et al., 2016]. The unusual wave activity suggests a geographically specific source of atmospheric waves with periods of 3-10 hours. Here, we investigate theoretically the hypothesis that the unusual atmospheric wave activity in Antarctica is generated by the fundamental and low-order modes of vibrations of the Ross Ice Shelf (RIS). Simple models are developed to describe basic physical properties of resonant vibrations of large ice shelves and their coupling to the atmosphere. Dispersion relation of the long surface waves, which propagate in the floating ice sheet and are responsible for its low-order resonances, is found to be similar to the dispersion relation of infragravity waves in the ice-free ocean. The phase speed of the surface waves and the resonant frequencies determine the periods and wave vectors of atmospheric waves that are generated by the RIS resonant oscillations. The altitude-dependent vertical wavelengths and the periods of the acoustic-gravity waves in the atmosphere are shown to be sensitive to the physical parameters of the RIS, which can be difficult to measure by other means. Predicted properties of the atmospheric waves prove to be in a remarkable agreement with the key features of the observed persistent wave activity], including frequency band, vertical wavelength range, and weak variation of the vertical wavelength with the height. The present work is a motivation for in-depth studies of coupling between vibrations of ice shelves and waves in the upper and middle atmosphere at high latitudes.
Triply-resonant Continuous Wave Parametric Source with a Microwatt Pump
Martin, Aude; Combrié, Sylvain; Lehoucq, Gaëlle; Debuisschert, Thierry; Lian, Jin; Sokolov, Sergey; Mosk, Allard P; de Rossi, Alfredo
2016-01-01
We demonstrate a nanophotonic parametric light source with a record high normalized conversion efficiency of $3\\times 10^6\\, W^{-2}$, owing to resonantly enhanced four wave mixing in coupled high-Q photonic crystal resonators. The rate of spontaneously emitted photons reaches 14 MHz.
Discrete-Spectrum Waves in the Vicinity of Cyclotron Resonance in Silver
DEFF Research Database (Denmark)
Henningsen, J. O.
1970-01-01
Cyclotron-resonance studies of silver have revealed two additional series of oscillations, one between the fundamental and the second harmonic, the other above the fundamental resonance. These series are caused by the excitation of weakly damped discrete-spectrum waves propagating perpendicular...
Dynamics of spontaneous radiation of atoms scattered by a resonance standing light wave
Fedorov, MV; Efremov, MA; Yakovlev, VP; Schleich, WP
2003-01-01
The scattering of atoms by a resonance standing light wave is considered under conditions when the lower of two resonance levels is metastable, while the upper level rapidly decays due to mainly spontaneous radiative transitions to the nonresonance levels of an atom. The diffraction scattering regim
Resonance sum rules from large $N_C$ and partial wave dispersive analysis
Guo, Zhi-Hui
2008-01-01
Combining large $N_C$ techniques and partial wave dispersion theory to analyze the $\\pi\\pi$ scattering, without relying on any explicit resonance lagrangian, some interesting results are derived: (a) a general KSRF relation including the scalar meson contribution; (b) a new relation between resonance couplings, with which we have made an intensive analysis in several specific models; (c) low energy constants in chiral perturbation theory related with $\\pi\\pi$ scattering in terms of the mass and decay width of resonances.
A study of the noncollinear ultrasonic-wave-mixing technique under imperfect resonance conditions
Demcenko, A.; Mainini, L.; Korneev, V.A.
2015-01-01
Geometrical and material property changes cause deviations in the resonant conditions used for noncollinear wave mixing. These deviations are predicted and observed using the SV(ω1) + L(ω2) → L(ω1 + ω2) interaction, where SV and L are the shear vertical and longitudinal waves, respectively, and ω1,
Three-wave interaction during electron cyclotron resonance heating and current drive
DEFF Research Database (Denmark)
Nielsen, Stefan Kragh; Jacobsen, Asger Schou; Hansen, Søren Kjer
2016-01-01
Non-linear wave-wave interactions in fusion plasmas, such as the parametric decay instability (PDI) of gyrotron radiation, can potentially hamper the use of microwave diagnostics. Here we report on anomalous scattering in the ASDEX Upgrade tokamak during electron cyclotron resonance heating...
YBCO superconducting ring resonators at millimeter-wave frequencies
Chorey, Christopher M.; Kong, Keon-Shik; Bhasin, Kul B.; Warner, J. D.; Itoh, Tatsuo
1991-01-01
Microstrip ring resonators operating at 35 GHz were fabricated from laser ablated YBCO films deposited on lanthanum aluminate substrates. They were measured over a range of temperatures and their performances compared to identical resonators made of evaporated gold. Below 60 Kelvin the superconducting strip performed better than the gold, reaching an unloaded Q approximately 1.5 times that of gold at 25 K. A shift in the resonant frequency follows the form predicted by the London equations. The Phenomenological Loss Equivalence Method is applied to the ring resonator and the theoretically calculated Q values are compared to the experimental results.
Physical simulation of resonant wave run-up on a beach
Ezersky, Alexander; Pelinovsky, Efim
2012-01-01
Nonlinear wave run-up on the beach caused by harmonic wave maker located at some distance from the shore line is studied experimentally. It is revealed that under certain wave excitation frequencies a significant increase in run-up amplification is observed. It is found that this amplification is due to the excitation of resonant mode in the region between the shoreline and wave maker. Frequency and magnitude of the maximum amplification are in good correlation with the numerical calculation results represented in the paper (T.S. Stefanakis et al. PRL (2011)). These effects are very important for understanding the nature of rougue waves in the coastle zone.
Spatial Damping of Propagating Kink Waves Due to Resonant Absorption: Effect of Background Flow
Soler, Roberto; Goossens, Marcel
2011-01-01
Observations show the ubiquitous presence of propagating magnetohydrodynamic (MHD) kink waves in the solar atmosphere. Waves and flows are often observed simultaneously. Due to plasma inhomogeneity in the perpendicular direction to the magnetic field, kink waves are spatially damped by resonant absorption. The presence of flow may affect the wave spatial damping. Here, we investigate the effect of longitudinal background flow on the propagation and spatial damping of resonant kink waves in transversely nonuniform magnetic flux tubes. We combine approximate analytical theory with numerical investigation. The analytical theory uses the thin tube (TT) and thin boundary (TB) approximations to obtain expressions for the wavelength and the damping length. Numerically, we verify the previously obtained analytical expressions by means of the full solution of the resistive MHD eigenvalue problem beyond the TT and TB approximations. We find that the backward and forward propagating waves have different wavelengths and ...
Resonant nonlinear interactions between atmospheric waves in the polar summer mesopause region
Institute of Scientific and Technical Information of China (English)
LIU; Renqiang; (刘仁强); YI; Fan; (易帆)
2003-01-01
Data obtained from the mobile SOUSY VHF radar at And(ya/Norway in summer 1987 have been used to study the nonlinear interactions between planetary waves, tides and gravity waves in the polar mesosphere, and the instability of background atmosphere above the mesopause. It is observed that 35-h planetary wave, diurnal, semidiurnal and terdiurnal tides are the prominent perturbations in the Lomb-Scargle spectra of the zonal wind component. By inspecting the frequency combinations, several triads are identified. By bispectral analysis it is shown that most bispectral peaks stand for quadratic coupling between tidal harmonics or between tide and planetary or gravity wave, and the height dependence of bispectral peaks reflects the variation of wave-wave interactions. Above the mesopause, the occurrence heights of the maximum L-S power spectral peaks corresponding to the prominent wave components tend to increase with their frequencies. This may result from the process in which two low frequency waves interact to generate a high frequency wave. Intensities of the planetary wave and tides increase gradually, arrive at their maxima, and then decay quickly in turn with increasing height. This kind of scene correlates with a "chain" of wave-wave resonant interactions that shifts with height from lower frequency segment to higher frequency segment. By instability analysis, it is observed that above the mesopause, the Richardson number becomes smaller and smaller with height, implying that the turbulent motion grows stronger and stronger and accordingly the background atmosphere more and more instable. It is suggested that the wave-wave sum resonant interaction and the wave dissipation due to instability are two dominant dynamical processes that occur in the mesopause region. The former invokes the energy transfer from lower frequency waves to higher frequency waves. The latter results in the heating of the atmosphere and accelerating of the background flow.
2012-12-14
82. D. P. Morgan, Surface- Wave Devices for Signal Processing, Holland: Elsevier, 1991. 83. L. E. McNeil, M. Grimsditch, and R. H. French ... Vibrational spectroscopy of aluminum nitride,” J. Am. Ceram. Soc., vol. 76, pp. 1132–1136, May 1993. 84. K. Hashimoto, Surface Acoustic Wave Devices in...Temperature Compensation of Aluminum Nitride Lamb Wave Resonators Utilizing the Lowest-Order Symmetric Mode Chih-Ming Lin Electrical Engineering and
Enhanced four-wave mixing via photonic bandgap coupled defect resonances.
Blair, S
2005-05-16
Frequency conversion efficiency via four-wave mixing in coupled 1-D photonic crystal defect structures is studied numerically. In structures where all interacting frequencies coincide with intraband defect resonances, energy conversion efficiencies greater than 5% are predicted. Because the frequency spacings are determined by the free-spectral range, thereby requiring long defects for small spacings using intraband resonances, four-wave mixing using coupled-defect miniband resonances in more compact structures is also studied. Conversion efficiencies of greater than 1% are obtained in this case.
Observation of broad p-wave Feshbach resonances in ultracold $^{85}$Rb-$^{87}$Rb mixtures
Dong, Shen; Shen, Chuyang; Wu, Yewei; Tey, Meng Khoon; You, Li; Gao, Bo
2016-01-01
We observe new Feshbach resonances in ultracold mixtures of $^{85}$Rb and $^{87}$Rb atoms in the $^{85}$Rb$|2, +2\\rangle$+$^{87}$Rb$|1, +1\\rangle$ and $^{85}$Rb$|2, -2\\rangle$+$^{87}$Rb$|1, -1\\rangle$ scattering channels. The positions and properties of the resonances are predicted and characterized using the semi-analytic multichannel quantum-defect theory by Gao. Of particular interest, a number of broad entrance-channel dominated p-wave resonances are identified, implicating exciting opportunities for studying a variety of p-wave interaction dominated physics.
Sub-Alfvenic reduced equations in a tokamak
Sengupta, Wrick
Magnetized fusion experiments generally perform under conditions where ideal Alfvenic modes are stable. It is therefore desirable to develop a reduced formalism which would order out Alfvenic frequencies. This is challenging because sub-Alfvenic phenomena are sensitive to magnetic geometries. In this work an attempt has been made to develop a formalism to study plasma phenomena on time scales much longer than the Alfvenic time scales. (Abstract shortened by ProQuest.).
Prokopov, Pavel; Zaharov, Yuriy; Tishchenko, Vladimir; Boyarintsev, Eduard; Melehov, Aleksandr; Ponomarenko, Arnold; Posuh, Vitaliy; Shayhislamov, Ildar
2016-03-01
The paper deals with generation of Alfven plasma disturbances in magnetic flux tubes through exploding laser plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves seem to provide energy transfer from the solar photosphere to corona. The studies were carried out at experimental stand KI-1 represented a high-vacuum chamber of 1.2 m diameter, 5 m long, external magnetic field up to 500 Gs along the chamber axis, and up to 2×10^-6 Torr pressure in operating mode. Laser plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube of 15-20 cm radius was experimentally simulated along the chamber axis and the external magnetic field direction. Also, the plasma density distribution in the tube was measured. Alfven wave propagation along the magnetic field was registered from disturbance of the magnetic field transverse component B_ψ and field-aligned current J_z. The disturbances propagate at near-Alfven velocity of 70-90 km/s and they are of left-hand circular polarization of the transverse component of magnetic field. Presumably, Alfven wave is generated by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. The right-hand polarized high-frequency whistler predictor was registered which have been propagating before Alfven wave at 300 km/s velocity. The polarization direction changed with Alfven wave coming. Features of a slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous displacement of the external magnetic field were found. The disturbance propagates at ~20-30 km/s velocity, which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance transfers about 10 % of the original energy of laser plasma.
DEFF Research Database (Denmark)
Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim
2009-01-01
It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... as resonators storing mechanical energy. These resonators are evanescently coupled by the surface. The dispersion diagram is presented and shows very low group velocities as the wave vector approaches the limit of the first Brillouin zone. ©2009 American Institute of Physics...
Directory of Open Access Journals (Sweden)
Z. Hashemiyan
2016-01-01
Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.
Packo, P.; Staszewski, W. J.; Uhl, T.
2016-01-01
Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808
Generation of shock-free pressure waves in shaped resonators by boundary driving.
Luo, C; Huang, X Y; Nguyen, N T
2007-05-01
Investigation of high amplitude pressure oscillations generated by boundary driving in shaped resonators has been carried out both theoretically and experimentally. In the theoretical modeling, the acoustic resonance in an axisymmetric resonator is studied by the Galerkin method. The resonator is exponentially expanded and the boundary driving is provided by a piston at one end. The pressure wave forms, amplitudes, resonance frequencies, and ratio of pressures at the two ends of the resonator are calculated for various expansion flare constants and driving strengths. These results are partially compared with those generated by shaking the resonator. They are also verified in the experiment, in which an exponentially expanded resonator is connected to a speaker box functioning as the piston. The experiment is further extended to a horn-shaped resonator with a rectangular cross section. The boundary driving in this case is generated by a circular piezoelectric disk, which forms one sidewall of the resonator cavity. The characteristics of axisymmetric resonators, such as the resonance frequency and amplitude ratio of pressures at the two ends, are observed in this low aspect ratio rectangular resonator with the sidewall driving.
Observation of soliton-induced resonant radiation due to three-wave mixing
Zhou, B; Guo, H R; Zeng, X L; Chen, X F; Chung, H P; Chen, Y H; Bache, M
2016-01-01
We show experimental proof that three-wave mixing can lead to formation of resonant radiation when interacting with a temporal soliton. This constitutes a new class of resonant waves, and due to the parametric nature of the three-wave mixing nonlinearity, the resonant radiation frequencies are widely tunable over broad ranges in the visible and mid-IR. The experiment is conducted in a periodically poled lithium niobate crystal, where a femtosecond self-defocusing soliton is excited in the near-IR, and resonant radiation due to the sum- and difference-frequency generation quadratic nonlinear terms are observed in the near- and mid-IR, respectively. Their spectral positions are widely tunable by changing the poling pitch and are in perfect agreement with theoretical calculations.
Benchmarking Fast-to-Alfven Mode Conversion in a Cold MHD Plasma
Cally, Paul S
2011-01-01
Alfv\\'en waves may be generated via mode conversion from fast magneto-acoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helio-seismology. In active regions this reflection typically occurs high enough that the Alfv\\'en speed $a$ greatly exceeds the sound speed $c$, well above the $a=c$ level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfv\\'en conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold MHD model $c\\to0$. This provides a benchmark for fast-to-Alfv\\'en mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfv\\'en speed profile with density scale height $h$, the Alfv\\'en conversion coefficient depends on three variables only; the dimensionless transverse-to-the-stratification wavenumber $\\kappa=kh$, the magnetic field ...
Second-Order Resonant Interaction of Ring Current Protons with Whistler-Mode Waves
Institute of Scientific and Technical Information of China (English)
XIAO Fu-Liang; CHEN Liang-Xu; HE Hui-Yong; ZHOU Qing-Hua
2008-01-01
We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory.The diffusion coefficients are proportional to the electric field amplitude E,much greater than those for the regular first-order resonance.which are proportional to the electric field amplitudes square E2.Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek=50ke V and 100ke V at locations L=2 and L=3.5.The timescale for the loss process of protons by the Whistler waves is found to approach one hour,comparable to that by the EMIC waves,suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.
Directional cloaking of flexural waves in a plate with a locally resonant metamaterial.
Colombi, Andrea; Roux, Philippe; Guenneau, Sebastien; Rupin, Matthieu
2015-04-01
This paper deals with the numerical design of a directional invisibility cloak for backward scattered elastic waves propagating in a thin plate (A0 Lamb waves). The directional cloak is based on a set of resonating beams that are attached perpendicular to the plate and are arranged at a sub-wavelength scale in ten concentric rings. The exotic effective properties of this locally resonant metamaterial ensure coexistence of bandgaps and directional cloaking for certain beam configurations over a large frequency band. The best directional cloaking was obtained when the resonators' length decreases from the central to the outermost ring. In this case, flexural waves experience a vanishing index of refraction when they cross the outer layers, leading to a frequency bandgap that protects the central part of the cloak. Numerical simulation shows that there is no back-scattering in these configurations. These results might have applications in the design of seismic-wave protection devices.
Faraday and resonant waves in binary collisionally-inhomogeneous Bose-Einstein condensates
Sudharsan, J B; Raportaru, Mihaela Carina; Nicolin, Alexandru I; Balaz, Antun
2016-01-01
We study Faraday and resonant waves in two-component quasi-one-dimensional (cigar-shaped) collisionally inhomogeneous Bose-Einstein condensates subject to periodic modulation of the radial confinement. We show by means of extensive numerical simulations that, as the system exhibits stronger spatially-localised binary collisions (whose scattering length is taken for convenience to be of Gaussian form), the system becomes effectively a linear one. In other words, as the scattering length approaches a delta-function, we observe that the two nonlinear configurations typical for binary cigar-shaped condensates, namely the segregated and the symbiotic one, turn into two overlapping Gaussian wave functions typical for linear systems, and that the instability onset times of the Faraday and resonant waves become longer. Moreover, our numerical simulations show that the spatial period of the excited waves (either resonant or Faraday ones) decreases as the inhomogeneity becomes stronger. Our results also demonstrate tha...
Surface Gravity Waves: Resonance in a Fish Tank
Sinick, Scott J.; Lynch, John J.
2010-01-01
In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…
Surface Gravity Waves: Resonance in a Fish Tank
Sinick, Scott J.; Lynch, John J.
2010-01-01
In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…
Beam Distribution Modification By Alfven Modes
Energy Technology Data Exchange (ETDEWEB)
White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.
2010-01-25
Modification of a deuterium beam distribution in the presence of low amplitude Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes in a toroidal magnetic confinement device is examined. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam transport, and that the experimental amplitudes are only slightly above this threshold. The modes produce a substantial central flattening of the beam distribution.
Beam Distribution Modification by Alfven Modes
Energy Technology Data Exchange (ETDEWEB)
White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.
2010-04-03
Modification of a deuterium beam distribution in the presence of low amplitude Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes in a toroidal magnetic confinement device is examined. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam transport, and that the experimental amplitudes are only slightly above this threshold. The modes produce a substantial central flattening of the beam distribution.
Tilted resonators in a triangular elastic lattice: chirality, Bloch waves and negative refraction
Tallarico, Domenico; Movchan, Alexander B; Colquitt, Daniel J
2016-01-01
We consider a vibrating triangular mass-truss lattice whose unit cell contains a resonator of a triangular shape. The resonators are connected to the triangular lattice by trusses. Each resonator is tilted, i.e. it is rotated with respect to the triangular lattice's unit cell through an angle $\\vartheta_0$. This geometrical parameter is responsible for the emergence of a resonant mode in the Bloch spectrum for elastic waves and strongly affects the dispersive properties of the lattice. Additionally, the tilting angle $\\vartheta_0$ triggers the opening of a band gap at a Dirac-like point. We provide a physical interpretation of these phenomena and discuss the dynamical implications on elastic Bloch waves. The dispersion properties are used to design a structured interface containing tilted resonators which exhibit negative refraction and focussing, as in a "flat elastic lens".
Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing
Zhang, Yu; Wen, Fangfang; Zhen, Yu-Rong; Nordlander, Peter; Halas, Naomi J.
2013-01-01
Plasmonic nanoclusters, an ordered assembly of coupled metallic nanoparticles, support unique spectral features known as Fano resonances due to the coupling between their subradiant and superradiant plasmon modes. Within the Fano resonance, absorption is significantly enhanced, giving rise to highly localized, intense near fields with the potential to enhance nonlinear optical processes. Here, we report a structure supporting the coherent oscillation of two distinct Fano resonances within an individual plasmonic nanocluster. We show how this coherence enhances the optical four-wave mixing process in comparison with other double-resonant plasmonic clusters that lack this property. A model that explains the observed four-wave mixing features is proposed, which is generally applicable to any third-order process in plasmonic nanostructures. With a larger effective susceptibility χ(3) relative to existing nonlinear optical materials, this coherent double-resonant nanocluster offers a strategy for designing high-performance third-order nonlinear optical media. PMID:23690571
High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
Antao, Dion Savio; Farouk, Bakhtier
2013-08-01
A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.
Bounce-resonance wave-particle interactions involving energetic ions and 2nd-harmonic ULF waves
Rankin, Robert; Sydorenko, Dmytro; Wang, Chengrui
2016-07-01
Multi-point observations from Cluster show clear evidence of acceleration of H+ and O+ ions by large azimuthal mode number ULF waves. In this paper we present a quantitative comparison between these observations and results from a numerical model. The methodology consists of large-scale test-particle simulations of bounce-resonance wave-particle interactions in fields of second harmonic standing ULF waves. The ULF waves are specified using a recently developed three-dimensional model that can take dipolar and compressed dipole magnetic field configurations. Our test particle simulations confirm the theoretical treatment of bounce-resonance developed by Southwood and Kivelson, including the resonance condition that must be satisfied, as well as a phase change of Pi in the energy spectrum. We also find strong nonlinear behaviour for m-numbers between 40-100, and for azimuthal electric field strengths of a few tens of millivolts per metre. The test-particle simulations are able to reproduce energy-dispersed ion signatures observed by Cluster, opening the possibility to more fully understand the inter-relationship between ULF waves and ion energization and transport in the inner magnetosphere.
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Lavrinenko, Andrei
2012-01-01
We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength-scale struc......We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength......-scale structuring. This multiscale approach is shown to be a promising platform for using bulk plasmonic waves in complex multilayer metamaterials as a new kind of information carriers....
Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators.
Chen, H; Li, X P; Chen, Y Y; Huang, G L
2017-04-01
In this study, a sandwich beam with periodic multiple dissipative resonators in the sandwich core material is investigated for broadband wave mitigation and/or absorption. An analytical approach based on the transfer matrix method and Bloch theorem is developed for both infinite and finite sandwich structures. Wave attenuation constants are theoretically obtained to examine the effects of various system parameters on the position, width and wave attenuation performance of the band gaps. The wave absorption coefficient of the sandwich beam is quantitatively studied to distinguish wave attenuation mechanisms caused by reflection and absorption. It is numerically demonstrated that a transient blast-induced elastic wave with broadband frequencies can be almost completely mitigated or absorbed at a subwavelength scale. The results of this study could be used for developing new multifunctional composite materials to suppress impact-induced and/or blast-induced elastic waves which may cause severe local damage to engineering structures.
Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes
Directory of Open Access Journals (Sweden)
R. Erdélyi
2002-01-01
Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.
Edge waves and resonances in two-dimensional phononic crystal plates
Hsu, Jin-Chen; Hsu, Chih-Hsun
2015-05-01
We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. We design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.
Wavenumber resonance in nonlinear wave interactions in the wake of a flat plate
Davila, Jose Benigno
The spatial traits of nonlinear wave interactions in transitioning flow in the symmetric wake of a flat plate were studied. The study combines the use of hot wire anemometry and digital analysis techniques for extracting frequency and wavenumber information from velocity fluctuation time series measurements. The linear spatial coherence was computed from velocity fluctuation data in order to determine if the frequency modes behave as waves, that is, spatially coherent fluctuations with a well defined dispersion relation. A new method was used to compute the mode triad wavenumber mismatch. The results were used to determine to what extent wavenumber resonance is present among quadratically interacting frequency resonant modes, as predicted by resonant wave interaction theory. The results show that, in the early part of the transition, instability modes interact nonlinearity to generate spatially coherent modes at frequencies above the instability range. Quadratically interacting, frequency resonant mode triads involve the transfer of energy to the harmonics of the fundamental instability exhibit good wavenumber resonance, as predicted by resonant wave interaction theory.
Potential applications of microstrip devices with traveling wave resonators
Directory of Open Access Journals (Sweden)
Glushechenko E. N.
2013-05-01
Full Text Available The shortcomings of the known microwave filters in microstrip lines are considered, the advantages of the use of directional traveling-wave filters in microstrip performance and examples of their potential applications are shown.
Effects of Periodic Forcing Amplitude on the Spiral Wave Resonance Drift
Institute of Scientific and Technical Information of China (English)
WU Ning-Jie; LI Bing-Wei; YING He-Ping
2006-01-01
@@ We study dynamics of spiral waves under a uniform periodic temporal forcing in an excitable medium. With a specific combination of frequency and amplitude of the external periodic forcing, a resonance drift of a spiral wave occurs along a straight line, and it is accompanied by a complicated ‘flower-like’ motion on each side of this bifurcate boundary line. It is confirmed that the straight-line drift frequency of spiral waves is not locked to the nature rotation frequency as the forcing amplitude expends the range of the spiral wave frequency. These results are further verified numerically for a simplified kinematical model.
Experimental evidence of a triadic resonance of plane inertial waves in a rotating fluid
Bordes, Guilhem; Dauxois, Thierry; Cortet, Pierre-Philippe
2011-01-01
Plane inertial waves are generated using a wavemaker, made of oscillating stacked plates, in a rotating water tank. Using particle image velocimetry, we observe that, after a transient, the primary plane wave is subject to a subharmonic instability and excites two secondary plane waves. The measured frequencies and wavevectors of these secondary waves are in quantitative agreement with the predictions of the triadic resonance mechanism. The secondary wavevectors are found systematically more normal to the rotation axis than the primary wavevector: this feature illustrates the basic mechanism at the origin of the energy transfers towards slow, quasi two-dimensional, motions in rotating turbulence.
INTERNAL RESONANT INTERACTIONS OF THREE FREE SURFACE-WAVES IN A CIRCULAR CYLINDRICAL BASIN
Institute of Scientific and Technical Information of China (English)
马晨明
2003-01-01
The basic equations of free capillary-gravity surface-waves in a circular cylindrical basin were derived from Luke' s principle. Taking Galerkin ' s expansion of the velocity potential and the free surface elevation, the second-order perturbation equations were derived by use of expansion of multiple scale. The nonlinear interactions with the second order internal resonance of three free surface-waves were discussed based on the above. The results include:derivation of the couple equations of resonant interactions among three waves and the conservation laws; analysis of the positions of equilibrium points in phase plane; study of the resonant parameters and the non-resonant parameters respectively in all kinds of circumstances; derivation of the stationary solutions of the second-order interaction equations corresponding to different parameters and analysis of the stability property of the solutions; discussion of the effective solutions only in the limited time range. The analysis makes it clear that the energy transformation mode among three waves differs because of the different initial conditions under nontrivial circumstance. The energy may either exchange among three waves periodically or damp or increase in single waves.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Concrete forms of resonant response (ER) for a strongelectromagnetic (EM) wave beam (photon flux) propagating in a static magnetic field to a standing gravitational wave (gravitons) are given, and the corresponding perturbation solutions and resonant conditions are obtained. It is found that perturbed EM fields (PEMFs) contain three new components with frequencies ｜ωg±ωe｜ and ωg, respectively. In the case of ωeωg, the PEMFs are manifested as the EM wave beams with frequency ωe and a standing EM wave with ωg. The former and the background EM wave beam (BEMWB) have the same propagating direction, while in the case of ωgωe, all PEMFs are expressed as the standing EM waves with frequency ωg. The resonant response occurs in two cases of ωe=1/2ωg and ωe=ωg only. Then not only the first order perturbed energy fluxes (PEFs) propagating in the same and opposite directions of the BEMWB can be generated, but also radial and tangential PEFs which are perpendicular to the above directions can be produced. This effect might provide a new way for the EM detection of the gravitational waves (GWs). Moreover, the possible schemes of displaying perturbed effects induced by the standing GW with h=10-33-10-35 and λg=0.1 m at the level of the single photon avalanche and in a typicla laboratory dimension are reviewed.
Spectral stability of Alfven filament chains
Bergmans, J.; Kuvshinov, B. N.; Lakhin, V. P.; Schep, T. J.
2000-01-01
The two-fluid model of nonlinear Alfven perturbations has singular solutions in the form of current-vortex filaments. We investigate analytically and numerically the spectral stability of single and double rows of filaments. Staggered and non-staggered double rows (von Karman streets) are studied. I
Spectral stability of Alfven filament configurations
Bergmans, J.; Kuvshinov, B. N.; Lakhin, V. P.; Schep, T. J.
2000-01-01
The two-fluid plasma equations that describe nonlinear Alfven perturbations have singular solutions in the form of current-vortex filaments. These filaments are analogous to point vortices in ideal hydrodynamics and geostrophic fluids. In this work the spectral (linear) stability of current-vortex f
Friedt, J-M; Droit, C; Ballandras, S; Alzuaga, S; Martin, G; Sandoz, P
2012-05-01
Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.
Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy
DEFF Research Database (Denmark)
Miroshnichenko, A. E.; Flach, S.; Fistul, M.
2001-01-01
We present a theoretical study of the resonant interaction between dynamical localized states (discrete breathers) and linear electromagnetic excitations (EE's) in Josephson junction ladders. By making use of direct numerical simulations we find that such an interaction manifests itself by resonant...... steps and various sharp switchings (voltage jumps) in the current-voltage characteristics. Moreover, the power of ac oscillations away from the breather center (the breather tail) displays singularities as the externally applied dc bias decreases. All these features may be mapped to the spectrum of EE...
Electro-thermo-mechanical model for bulk acoustic wave resonators.
Rocas, Eduard; Collado, Carlos; Mateu, Jordi; Orloff, Nathan D; Aigner, Robert; Booth, James C
2013-11-01
We present the electro-thermo-mechanical constitutive relations, expanded up to the third order, for a BAW resonator. The relations obtained are implemented into a circuit model, which is validated with extensive linear and nonlinear measurements. The mathematical analysis, along with the modeling, allows us to identify the dominant terms, which are the material temperature derivatives and two intrinsic nonlinear terms, and explain, for the first time, all observable effects in a BAW resonator by use of a unified physical description. Moreover, the terms that are responsible for the second-harmonic generation and the frequency shift with dc voltage are shown to be the same.
Analysis of Alfven Eigenmodes destabilization by fast particles in Large Helical Device
Varela, Jacobo; Spong, Donald; Garcia, Luis
2016-10-01
Fast particle populations in nuclear fusion experiments can destabilize Alfven Eigenmodes through inverse Landau damping and couplings with gap modes in the shear Alfven continua. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles. We add the Landau damping and resonant destabilization effects by a closure relation. We apply this model to study the Alfven modes stability in Large Helical Device (LHD) equilibria for inward configurations, performing a parametric analysis along a range of realistic values of fast particle β (βfp), ratios of thermal/Alfven velocities (Vth/Vao), magnetic Lundquist numbers (S) and dominant toroidal (n) modes families. The n = 1 and n =2 toroidal families show the largest growth rates for parameters closer to a real LHD scenario (S = 5E6, βfp = 0.02 and Vth/Vao = 0.5), particularly the modes n/m = 1/2 and 2/4 located the inner and middle plasma (ρ = 0.25 - 0.5 with ρ the normalized minor radius). The n = 3 and n = 4 toroidal families are weakly perturbed by fast particles.
Sample Disturbance in Resonant Column Test Measurement of Small-Strain Shear-Wave Velocity
Chiara, Nicola; Stokoe, K. H.
The accurate assessment of dynamic soil properties is a crucial step in the solution process of geotechnical earthquake engineering problems. The resonant column test is one of the ordinary procedures for dynamic characterization of soil. In this paper, the impact of sample disturbance on the resonant column test measurement of small-strain S-wave velocity is examined. Sample disturbance is shown to be a function of the ratio of the laboratory to field S-wave velocities: Vs, lab/Vs,field. The influence of four parameters - soil stiffness, soil plasticity index, in-situ sample depth and in-situ effective mean confining pressure - on sample disturbance is investigated both qualitatively and quantitatively. The relative importance of each parameter in predicting the small-strain field S-wave velocity from the resonant column test values is illustrated and predictive equations are presented.
Non-Linear High Amplitude Oscillations in Wave-shaped Resonators
Antao, Dion; Farouk, Bakhtier
2011-11-01
A numerical and experimental study of non-linear, high amplitude standing waves in ``wave-shaped'' resonators is reported here. These waves are shock-less and can generate peak acoustic overpressures that can exceed the ambient pressure by three/four times its nominal value. A high fidelity compressible axisymmetric computational fluid dynamic model is used to simulate the phenomena in cylindrical and arbitrarily shaped axisymmetric resonators. Working fluids (Helium, Nitrogen and R-134a) at various operating pressures are studied. The experiments are performed in a constant cross-section cylindrical resonator in atmospheric pressure nitrogen and helium to provide model validation. The high amplitude non-linear oscillations demonstrated can be used as a prime mover in a variety of applications including thermoacoustic cryocooling. The work reported is supported by the US National Science Foundation under grant CBET-0853959.
FDTD analysis of ELF wave propagation and Schumann resonances for a subionospheric waveguide model
Otsuyama, T.; Sakuma, D.; Hayakawa, M.
2003-12-01
The space formed by the ground and ionosphere is known to act as a resonator for extremely low frequency (ELF) waves. Lightning discharges trigger this global resonance, which is known as Schumann resonance. Even though the inhomogeneity (like day-night asymmetry, local perturbation, etc.) is important for such a subionospheric ELF propagation, the previous analyses have been always made by some approximations because the problem is too complicated to be analyzed by any exact full-wave analysis. This paper presents the first application of the conventional numerical FDTD method to such a subionospheric ELF wave propagation, in which any kind of inhomogeneity can be included in this analysis. However, the present paper is intended to demonstrate the workability of this method only for a uniform waveguide (without day-night asymmetry), by comparing the results from this method with those by the corresponding analytical method.
Resonance-Radiation Force Exerted by a Circularly Polarized Light on an Atomic Wave Packet
Institute of Scientific and Technical Information of China (English)
YE Yong-Hua; ZENG Gao-Jian; LI Jin-Hui
2006-01-01
We study the behaviour of an atomic wave packet in a circularly polarized light, and especially give the calculation of the radiative force exerted by the circularly polarized light on the atomic wave packet under the resonance condition. A general method of the calculation is presented and the result is interesting. For example, under the condition that the wave packet is very narrow or/and the interaction is very strong, no matter whether the atom is initially in its ground state or excited state, as time approaches to infinity, the resonance-radiation force exerted by the light on the atom approaches to zero. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is a even function, then the resonance-radiation force exerted by the light on the atom is equal to zero.
A Resonant Mode for Gravitational Wave Detectors based on Atom Interferometry
Graham, Peter W; Kasevich, Mark A; Rajendran, Surjeet
2016-01-01
We describe a new atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wavepackets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes without changing hardware. For instance, a new binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to $\\Omega_\\text{GW} ...
Magnetic resonance imaging of shear wave propagation in excised tissue.
Bishop, J; Poole, G; Leitch, M; Plewes, D B
1998-01-01
The propagation of shear waves in ex vivo tissue samples, agar/gel phantoms, and human volunteers was investigated. A moving coil apparatus was constructed to generate low acoustic frequency shear perturbations of 50 to 400 Hz. Oscillating gradients phase-locked with the shear stimulus were used to generate a series of phase contrast images of the shear waves at different time-points throughout the wave cycle. Quantitative measurements of wave velocity and attenuation were obtained to evaluate the effects of temperature, frequency, and tissue anisotropy. Results of these experiments demonstrate significant variation in shear wave behavior with tissue type, whereas frequency and anisotropic behavior was mixed. Temperature-dependent behavior related mainly to the presence of fat. Propagation velocities ranged from 1 to 5 m/sec, and attenuation coefficients of from 1 to 3 nepers/unit wavelength, depending on tissue type. These results confirm the potential of elastic imaging attributable to the intrinsic variability of elastic properties observed in normal tissue, although some difficulty may be experienced in clinical implementation because of viscous attenuation in fat.
Dynamic Stimulation of Superconductivity With Resonant Terahertz Ultrasonic Waves
Kadin, Alan M
2016-01-01
An experiment is proposed to stimulate a superconducting thin film with terahertz (THz) acoustic waves, which is a regime not previously tested. For a thin film on a piezoelectric substrate, this can be achieved by coupling the substrate to a tunable coherent THz electromagnetic source. Suggested materials for initial tests are a niobium film on a quartz substrate, with a BSCCO intrinsic Josephson junction (IJJ) stack. This will create acoustic standing waves on the nm scale in the thin film. A properly tuned standing wave will enable electron diffraction across the Fermi surface, leading to electron localization perpendicular to the substrate. This is expected to reduce the effective dimensionality, and enhance the tendency for superconducting order parallel to the substrate, even well above the superconducting critical temperature. This enhancement can be observed by measuring the in-plane critical current and the perpendicular tunneling gap. A similar experiment may be carried out for a cuprate thin film, ...
Fan, Ying; Honarvar, Farhang; Sinclair, Anthony N; Jafari, Mohammad-Reza
2003-01-01
When an immersed solid elastic cylinder is insonified by an obliquely incident plane acoustic wave, some of the resonance modes of the cylinder are excited. These modes are directly related to the incidence angle of the insonifying wave. In this paper, the circumferential resonance modes of such immersed elastic cylinders are studied over a large range of incidence angles and frequencies and physical explanations are presented for singular features of the frequency-incidence angle plots. These features include the pairing of one axially guided mode with each transverse whispering gallery mode, the appearance of an anomalous pseudo-Rayleigh in the cylinder at incidence angles greater than the Rayleigh angle, and distortional effects of the longitudinal whispering gallery modes on the entire resonance spectrum of the cylinder. The physical explanations are derived from Resonance Scattering Theory (RST), which is employed to determine the interior displacement field of the cylinder and its dependence on insonification angle.
Research on resonance and antiresonance states of free stator of traveling wave ultrasonic motors
Institute of Scientific and Technical Information of China (English)
ZU Jiakui; ZHAO Chunsheng
2004-01-01
Under the condition of high-power drive, the experimental phenomena of free stator of traveling wave ultrasonic motor takes on strong nonlinear effects. Firstly, its corresponding theories are established to analyze and compare the stator's performances at the resonance and antiresonance states. At the same time, some important parameters, such as resonance/antiresonance frequency, mechanical quality, electro-mechanic coupling, and the relative vibration effect, are selected elaborately to evaluate the vibrational performances of free stator. Then, some experimental schemes based on the laser vibration measurement are designed respectively. Under the different drives conditions, the experimental characterizations of free stator at the resonance and antiresonance states are analyzed systematically. Finally, The investigative results show that the performance at the antiresonance state is much better than that at the resonance state. Some conclusions of this paper can provide novel idea and guidance for the choosing of the operating states and driving modes of traveling wave ultrasonic motor.
MHD waves on solar magnetic flux tubes - Tutorial review
Hollweg, Joseph V.
1990-01-01
Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.
Tripathi, A. K.; Singhal, R. P.
2009-11-01
Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves using quasilinear diffusion theory. Unlike previous calculations, the parallel group velocity has been included in this study. Further, ECH wave intensity is expressed as a function of wave frequency and wave normal angle with respect to ambient magnetic field. It is found that observed wave electric field amplitudes in Earth's magnetosphere are sufficient to set electrons on strong diffusion in the energy ranges of a few hundred eV. However, the required amplitudes are larger than the observed values for keV electrons and higher by about a factor of 3 compared to past calculations. Required electric field amplitudes are smaller at larger radial distances. It is concluded that ECH waves are responsible for diffuse auroral precipitation of electrons with energies less than about 500 eV.
2015-06-01
OF A CONTINUOUS WAVE LASER FOR RESONANCE IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS by Sunny G. Lau June 2015 Thesis...IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS 5. FUNDING NUMBERS 6. AUTHOR(S) Sunny G. Lau 7. PERFORMING ORGANIZATION NAME(S) AND...200 words) The application of resonance ionization mass spectroscopy (RIMS) to nuclear forensics involves the use of lasers to selectively ionize
Statistical properties of the S-wave resonances of {sup 235}U
Energy Technology Data Exchange (ETDEWEB)
Leal, L.C.; Derrien, H.; Larson, N.M.
1997-06-01
The resonance parameters of {sup 235}U in the energy range 0 eV to 2.25 keV were obtained from a generalized least squares analysis of a large set of experimental data using the Reich-Moore formalism in the fitting code SAMMY. The aim of the present paper is to present the statistical properties of the s-wave resonance parameters generated from this study.
Long Wave Resonance in Tropical Oceans and Implications on Climate: the Atlantic Ocean
Pinault, Jean-Louis
2013-11-01
Based on the well established importance of long, non-dispersive baroclinic Kelvin and Rossby waves, a resonance of tropical planetary waves is demonstrated. Three main basin modes are highlighted through joint wavelet analyses of sea surface height (SSH) and surface current velocity (SCV), scale-averaged over relevant bands to address the co-variability of variables: (1) a 1-year period quasi-stationary wave (QSW) formed from gravest mode baroclinic planetary waves which consists of a northern, an equatorial and a southern antinode, and a major node off the South American coast that straddles the north equatorial current (NEC) and the north equatorial counter current (NECC), (2) a half-a-year period harmonic, (3) an 8-year sub-harmonic. Contrary to what is commonly accepted, the 1-year period QSW is not composed of wind-generated Kelvin and Rossby beams but results from the excitation of a tuned basin mode. Trade winds sustain a free tropical basin mode, the natural frequency of which is tuned to synchronize the excitation and the ridge of the QSWs. The functioning of the 1-year period basin mode is confirmed by solving the momentum equations, expanding in terms of Fourier series both the coefficients and the forcing terms. The terms of Fourier series have singularities, highlighting resonances and the relation between the resonance frequency and the wavenumbers. This ill-posed problem is regularized by considering Rayleigh friction. The waves are supposed to be semi-infinite, i.e. they do not reflect at the western and eastern boundaries of the basin, which would assume the waves vanish at these boundaries. At the western boundary the equatorial Rossby wave is deflected towards the northern antinode while forming the NECC that induces a positive Doppler-shifted wavenumber. At the eastern boundary, the Kelvin wave splits into coastal Kelvin waves that flow mainly southward to leave the Gulf of Guinea. In turn, off-tropical waves extend as an equatorially trapped
Potential of ion cyclotron resonance frequency current drive via fast waves in DEMO
Kazakov, Ye O.; Van Eester, D.; Wauters, T.; Lerche, E.; Ongena, J.
2015-02-01
For the continuous operation of future tokamak-reactors like DEMO, non-inductively driven toroidal plasma current is needed. Bootstrap current, due to the pressure gradient, and current driven by auxiliary heating systems are currently considered as the two main options. This paper addresses the current drive (CD) potential of the ion cyclotron resonance frequency (ICRF) heating system in DEMO-like plasmas. Fast wave CD scenarios are evaluated for both the standard midplane launch and an alternative case of exciting the waves from the top of the machine. Optimal ICRF frequencies and parallel wave numbers are identified to maximize the CD efficiency. Limitations of the high frequency ICRF CD operation are discussed. A simplified analytical method to estimate the fast wave CD efficiency is presented, complemented with the discussion of its dependencies on plasma parameters. The calculated CD efficiency for the ICRF system is shown to be similar to those for the negative neutral beam injection and electron cyclotron resonance heating.
Complete classification of discrete resonant Rossby/drift wave triads on periodic domains
Bustamante, Miguel D
2013-01-01
We consider the set of Diophantine equations that arise in the context of the barotropic vorticity equation on periodic domains, when nonlinear wave interactions are studied to leading order in the amplitudes. The solutions to this set of Diophantine equations are of interest in atmosphere (Rossby waves) and Tokamak plasmas (drift waves), because they provide the values of the spectral wavevectors that interact resonantly via three-wave interactions. These come in "triads", i.e., groups of three wavevectors. We provide the full solution to the Diophantine equations in the case of infinite Rossby deformation radius. The method is completely new, and relies on mapping the unknown variables to rational points on quadratic forms of "Minkowski" type. Classical methods invented centuries ago by Fermat, Euler, Lagrange and Minkowski, are used to classify all solutions to our original Diophantine equations, thus providing a computational method to generate numerically all the resonant triads in the system. Our method...
Resonance reflection of acoustic waves in piezoelectric bi-crystalline structures.
Darinskii, Alexander N; Weihnacht, Manfred
2005-05-01
The paper studies the bulk wave reflection from internal interfaces in piezoelectric media. The interfaces of two types have been considered. Infinitesimally thin metallic layer inserted into homogeneous piezoelectric crystal of arbitrary symmetry. Rigidly bonded crystals whose piezoelectric coefficients differ by sign but the other material constants are identical. Analytic expressions for the coefficients of mode conversion have been derived. An analysis has been carried out of specific singularities arising when the angle of incidence is such that the resonance excitation of leaky interface acoustic waves occurs. The conditions for the resonance total reflection have been established. The computations performed for lithium niobate (LiNbO3) illustrate general conclusions.
Higher-Order Bragg Resonance in Gravity Surface Waves over Periodic Bottoms
Institute of Scientific and Technical Information of China (English)
XIAO Yu-Meng; TAO Zhi-Yong; WANG Xin-Long
2006-01-01
@@ A calculation method based on the Bloch theorem is developed for the gravity surface waves over the periodic bottoms of large undulations. The study shows the existence of comparable high-order bandgaps, which are demonstrated to result from the higher-order Bragg resonances, i.e. the resonant interactions between surface waves and the harmonic components of the fluctuating bottom. It is also shown that the band widths of the high-order gaps are quite sensitive to the amplitudes of high-order harmonics of the bottom.
Past, present and future of the Resonant-Mass gravitational wave detectors
Institute of Scientific and Technical Information of China (English)
Odylio Denys Aguiar
2011-01-01
Resonant-mass gravitational wave detectors are reviewed from the concept of gravitational waves and its mathematical derivation, using Einstein's general relativity, to the present status of bars and spherical detectors, and their prospects for the future, which include dual detectors and spheres with non-resonant transducers. The review not only covers technical aspects of detectors and sciences that will be done,but also analyzes the subject in a historical perspective, covering the various detection efforts over four decades, starting from Weber's pioneering work.
Goossens, Marcel; Hollweg, Joseph V.
1993-01-01
Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.
Tuning Acoustic Wave Properties by Mechanical Resonators on a Surface
DEFF Research Database (Denmark)
Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim
Vibrations generated by high aspects ratio electrodes are studied by the finite element method. It is found that the modes are combined of a surface wave and vibration in the electrodes. For increasing aspect ratio most of the mechanical energy is confined to the electrodes which act as mechanical...
Kuo, S. P.
2008-10-01
An optimal approach reducing the population of MeV electrons in the magnetosphere is presented. Under a double resonance condition, whistler wave is simultaneously in cyclotron resonance with keV and MeV electrons. The injected whistler waves is first amplified by the background keV electrons via loss-cone negative mass instability to become effective in precipitating MeV electrons via cyclotron resonance elevated chaotic scattering. The numerical results show that a small amplitude whistler wave can be amplified by more than 25 dB. The amplification factor reduces only about 10 dB with a 30 dB increase of the initial wave intensity. Use of an amplified whistler wave to scatter 1.5 MeV electrons from an initial pitch angle of 86.5°to a pitch angle <50° is demonstrated. The ratio of the required wave magnetic field to the background magnetic field is calculated to be about 8×10-4.
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Study of metalloproteins using continuous wave electron paramagnetic resonance (EPR).
Gambarelli, Serge; Maurel, Vincent
2014-01-01
Electron paramagnetic resonance (EPR) is an invaluable tool when studying systems with paramagnetic centers. It is a sensitive spectroscopic method, which can be used with dilute samples in aqueous buffer solutions. Here, we describe the basic procedure for recording an X-band EPR spectrum of a metalloprotein sample at low temperature. We also discuss basic optimization techniques to provide spectra with a high signal to noise ratio and minimum distortion.
Energy Technology Data Exchange (ETDEWEB)
Tripathi, A. K., E-mail: aktrip2001@yahoo.co.in; Singhal, R. P., E-mail: rpsiitbhu@yahoo.com [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh (India); Khazanov, G. V., E-mail: George.V.Khazanov@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Avanov, L. A., E-mail: levon.a.avanov@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Department of Astronomy, University of Maryland, College Park, Maryland 20742 (United States)
2016-04-15
Electron pitch angle (D{sub αα}) and momentum (D{sub pp}) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D{sub αα} and D{sub pp} coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D{sub pp} diffusion coefficient for ECH waves is one to two orders smaller than D{sub αα} coefficients. For chorus waves, D{sub pp} coefficients are about an order of magnitude smaller than D{sub αα} coefficients for the case n ≠ 0. In case of Landau resonance, the values of D{sub pp} coefficient are generally larger than the values of D{sub αα} coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3
Nonlinear thickness-stretch vibration of thin-film acoustic wave resonators
Ji, Xiaojun; Fan, Yanping; Han, Tao; Cai, Ping
2016-03-01
We perform a theoretical analysis on nonlinear thickness-stretch free vibration of thin-film acoustic wave resonators made from AlN and ZnO. The third-order or cubic nonlinear theory by Tiersten is employed. Using Green's identify, under the usual approximation of neglecting higher time harmonics, a perturbation analysis is performed from which the resonator frequency-amplitude relation is obtained. Numerical calculations are made. The relation can be used to determine the linear operating range of these resonators. It can also be used to compare with future experimental results to determine the relevant thirdand/or fourth-order nonlinear elastic constants.
Two-Mode Resonator and Contact Model for Standing Wave Piezomotor
DEFF Research Database (Denmark)
Andersen, B.; Blanke, Mogens; Helbo, J.
2001-01-01
The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailed simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...
Energy Technology Data Exchange (ETDEWEB)
Alshits, V.I.; Darinskii, A.N. [Russian Academy of Sciences, Moscow (Russian Federation); Radovich, A. [Kielce Technological Univ., Kielce (Poland)
1995-05-01
The theory of resonance reflection is formulated for elastic waves at the interface between two anisotropic media under conditions of sliding contact. The phenomenon under study arises in the close vicinity of a certain incidence angle for which the tangential wave vector component of the bulk wave is equal to the real part of the wave vector for the leaky mode. The relations presenting the behavior of wave-response parameters near the leaky mode resonance are derived for arbitrary crystal anisotropy. In particular, the behavior of reflection, transmission, and transformation of the bulk mode to the nonuniform one is discussed. 18 refs.
Liquid Density Sensing Using Resonant Flexural Plate Wave Device with Sol-Gel PZT Thin Films
Yu, Jyh-Cheng
2008-01-01
This paper presents the design, fabrication and preliminary experimental results of a flexure plate wave (FPW) resonator using sol-gel derived lead zirconate titanates (PZT) thin films. The resonator adopts a two-port structure with reflecting grates on the composite membrane of PZT and SiNx. The design of the reflecting grate is derived from a SAW resonator model using COM theory to produce a sharp resonant peak. The comparison between the mass and the viscosity effects from the theoretical expression illustrates the applications and the constraints of the proposed device in liquid sensing. Multiple coatings of sol-gel derived PZT films are adopted because of the cost advantage and the high electromechanical coupling effect over other piezoelectric films. The fabrication issues of the proposed material structure are addressed. Theoretical estimations of the mass and the viscosity effects are compared with the experimental results. The resonant frequency has a good linear correlation with the density of low v...
Nonlinear optical detection of terahertz-wave radiation from resonant tunneling diodes.
Takida, Yuma; Nawata, Kouji; Suzuki, Safumi; Asada, Masahiro; Minamide, Hiroaki
2017-03-06
The sensitive detection of terahertz (THz)-wave radiation from compact sources at room temperature is crucial for real-world THz-wave applications. Here, we demonstrate the nonlinear optical detection of THz-wave radiation from continuous-wave (CW) resonant tunneling diodes (RTDs) at 0.58, 0.78, and 1.14 THz. The up-conversion process in a MgO:LiNbO3 crystal under the noncollinear phase-matching condition offers efficient wavelength conversion from a THz wave to a near-infrared (NIR) wave that is detected using a commercial NIR photodetector. The minimum detection limit of CW THz-wave power is as low as 5 nW at 1.14 THz, corresponding to 2-aJ energy and 2.7 × 103 photons within the time window of a 0.31-ns pump pulse. Our results show that the input frequency and power of RTD devices can be calibrated by measuring the output wavelength and energy of up-converted waves, respectively. This optical detection technique for compact electronic THz-wave sources will open up a new opportunity for the realization of real-world THz-wave applications.
Valentini, F; Pezzi, O; Servidio, S; Malara, F; Pucci, F
2016-01-01
Space plasmas are dominated by the presence of large-amplitude waves, large-scale inhomogeneities, kinetic effects and turbulence. Beside the homogeneous turbulence, generation of small scale fluctuations can take place also in other realistic configurations, namely, when perturbations superpose to an inhomogeneous background magnetic field. When an Alfv\\'en wave propagates in a medium where the Alfv\\'en speed varies in a direction transverse to the mean field, it undergoes phase-mixing, which progressively bends wavefronts, generating small scales in the transverse direction. As soon as transverse scales get of the order of the proton inertial length $d_p$, kinetic Alfv\\'en waves (KAWs) are naturally generated. KAWs belong to the branch of Alfv\\'en waves and propagate nearly perpendicular to the ambient magnetic field, at scales close to $d_p$. Many numerical, observational and theoretical works have suggested that these fluctuations may play a determinant role in the development of the solar-wind turbulent ...
Equatorial electron loss by double resonance with oblique and parallel intense chorus waves
Mourenas, D.; Artemyev, A. V.; Agapitov, O. V.; Mozer, F. S.; Krasnoselskikh, V. V.
2016-05-01
Puzzling satellite observations of butterfly pitch angle distributions and rapid dropouts of 30-150 keV electrons are widespread in the Earth's radiation belts. Several mechanisms have been proposed to explain these observations, such as enhanced outward radial diffusion combined with magnetopause shadowing or scattering by intense magnetosonic waves, but their effectiveness is mainly limited to storm times. Moreover, the scattering of 30-150 keV electrons via cyclotron resonance with intense parallel chorus waves should be limited to particles with equatorial pitch angle smaller than 70°-75°, leaving unaffected a large portion of the population. In this paper, we investigate the possible effects of oblique whistler mode waves, noting, in particular, that Landau resonance with very oblique waves can occur up to ˜89°. We demonstrate that such very oblique chorus waves with realistic amplitudes can very efficiently nonlinearly transport nearly equatorially mirroring electrons toward smaller pitch angles where nonlinear scattering (phase bunching) via cyclotron resonance with quasi-parallel waves can take over and quickly send them to much lower pitch angles <40°. The proposed double resonance mechanism could therefore explain the formation of butterfly pitch angle distributions as well as contribute to some fast dropouts of 30-150 keV electrons occurring during moderate geomagnetic disturbances at L = 4-6. Since 30-150 keV electrons represent a seed population for a further acceleration to relativistic energies by intense parallel chorus waves during storms or substorms, the proposed mechanism may have important consequences on the dynamics of 100 keV to MeV electron fluxes in the radiation belts.
Statistical Evidence for the Existence of Alfv\\'enic Turbulence in Solar Coronal Loops
Liu, Jiajia; De Moortel, Ineke; Threlfall, James; Bethge, Christian
2014-01-01
Recent observations have demonstrated that waves which are capable of carrying large amounts of energy are ubiquitous throughout the solar corona. However, the question of how this wave energy is dissipated (on which time and length scales) and released into the plasma remains largely unanswered. Both analytic and numerical models have previously shown that Alfv\\'enic turbulence may play a key role not only in the generation of the fast solar wind, but in the heating of coronal loops. In an effort to bridge the gap between theory and observations, we expand on a recent study [De Moortel et al., ApJL, 782:L34, 2014] by analyzing thirty-seven clearly isolated coronal loops using data from the Coronal Multi-channel Polarimeter (CoMP) instrument. We observe Alfv\\'enic perturbations with phase speeds which range from 250-750 km/s and periods from 140-270 s for the chosen loops. While excesses of high frequency wave-power are observed near the apex of some loops (tentatively supporting the onset of Alfv\\'enic turbu...
Chen, Zaigao; Wang, Jianguo; Wang, Yue
2015-01-01
This letter optimizes synchronously 18 parameters of a relativistic backward wave oscillator with non-uniform slow wave structure (SWS) and a resonant reflector by using the parallel genetic algorithms and particle-in-cell simulation. The optimization results show that the generation efficiency of microwave from the electron beam has increased 32% compared to that of the original device. After optimization, the electromagnetic mode propagating in the resonant changes from the original TM020 mode of reflector to higher-order TM021 mode, which has a high reflection coefficient in a broader frequency range than that of the former. The modulation of current inside the optimized device is much deeper than that in the original one. The product of the electric field and current is defined. Observing this product, it is found that the interaction of the electron beam with the electromagnetic wave in the optimized device is much stronger than that in the original device, and at the rear part of SWS of the optimized device, the electron beam dominantly gives out the energy to the electromagnetic wave, leading to the higher generation efficiency of microwave than that of the original device.
Gowtham, P. G.; Labanowski, D.; Salahuddin, S.
2016-07-01
Surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, through the magnetoelastic interaction, excite traveling spin-wave resonance in a magnetic film deposited on the substrate. This spin-wave resonance in the magnetic film creates a time-ynamic surface stress of magnetoelastic origin that acts back on the surface of the piezoelectric and modifies the SAW propagation. Unlike previous analyses that treat the excitation as a magnon-phonon polariton, here the magnetoelastic film is treated as a perturbation modifying boundary conditions on the SAW. We use acoustical perturbation theory to find closed-form expressions for the back-action surface stress and strain fields and the resultant SAW velocity shifts and attenuation. We demonstrate that the shear stres fields associated with this spin-wave back-action also generate effective surface currents on the piezoelectric both in phase and out of phase with the driving SAW potential. Characterization of these surface currents and their applications in determination of the magnetoelastic coupling are discussed. The perturbative calculation is carried out explicitly to first order (a regime corresponding to many experimental situations of current interest) and we provide a sketch of the implications of the theory at higher order.
DEFF Research Database (Denmark)
Tu, Haohua; Lægsgaard, Jesper; Zhang, Rui;
2013-01-01
We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good...
Resonant soft x-ray scattering and charge density waves in correlated systems
Rusydi, Andrivo
2006-01-01
Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu a
Nibbering, Erik T.J.; Duppen, Koos; Wiersma, Douwe A.
1992-01-01
The results of line shape analysis, resonance light scattering and femtosecond four-wave mixing measurements are reported on several organic molecules in solution. It is shown that a Brownian oscillator model for line broadening provides a full description for the optical dynamics in aprotic solutio
Kobyakov, D.; Bychkov, V.; Lundh, E.; Bezett, A.H.; Marklund, M.
2012-01-01
We study the parametric resonance of capillary waves on the interface between two immiscible Bose-Einstein condensates pushed towards each other by an oscillating force. Guided by analytical models, we solve numerically the coupled Gross-Pitaevskii equations for a two-component Bose-Einstein condens
Wu, W.; Long, J.R.; Staszewski, B.
2014-01-01
A novel and useful millimeter-wave digitally controlled oscillator (DCO) that achieve a tuning range greater than 10% and fine frequency resolution less than 1 MHz. Switched metal capacitors are distributed across a passive resonator for tuning the oscillation frequency. To obtain sub-MHz frequency
Resonant soft x-ray scattering and charge density waves in correlated systems
Rusydi, Andrivo
2006-01-01
Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu
Imaging mechanical shear waves induced by piezoelectric ceramics in magnetic resonance elastography
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Magnetic Resonance Elastography (MRE) is a noninvasive technique to measure elasticity of tissues in vivo. In this paper, a mechanical shear wave MR imaging system experiment is set for MRE. A novel actuator is proposed to generate mechanical shear waves propagating inside a gel phantom. The actuator is made of piezoelectric ceramics, and fixed on a plexiglass bracket. Both of the gel phantom and the actuator are put into a head coil inside the MR scanner's bore. The actuator works synchronously with an MR imaging sequence running on the MR scanner. The sequence is modified from a FLASH sequence into a motion-sensitizing phase- contrast sequence for shear wave MR imaging. Shear wave images are presented, and these effects on the shear wave MR imaging system, including the stiffness of phantoms, the frequency of the actuator, the parameters of the motion-sensitizing gradient, and the oscillation of the patient bed, are discussed.
Ultralow frequency acoustic resonances and its potential for mitigating tsunami wave formation
Estrada, Hector
2012-01-01
Bubbles display astonishing acoustical properties since they are able to absorb and scatter large amounts of energy coming from waves whose wavelengths are two orders of magnitude larger than the bubble size. Thus, as the interaction distance between bubbles is much larger than the bubble size, clouds of bubbles exhibit collective oscillations which can scatter acoustic waves three orders magnitude larger than the bubble size. Here we propose bubble based systems which resonate at frequencies that match the time scale relevant for seismogenic tsunami wave generation and may mitigate the devastating effects of tsunami waves. Based on a linear approximation, our na\\"ive proposal may open new research paths towards the mitigation of tsunami waves generation.
Papazoglou, S.; Hamhaber, U.; Braun, J.; Sack, I.
2007-02-01
A method based on magnetic resonance elastography is presented that allows measuring the weldedness of interfaces between soft tissue layers. The technique exploits the dependence of shear wave scattering at elastic interfaces on the frequency of vibration. Experiments were performed on gel phantoms including differently welded interfaces. Plane wave excitation parallel to the planar interface with corresponding motion sensitization enabled the observation of only shear-horizontal (SH) wave scattering. Spatio-temporal filtering was applied to calculate scattering coefficients from the amplitudes of the incident, transmitted and reflected SH-waves in the vicinity of the interface. The results illustrate that acoustic wave scattering in soft tissues is largely dependent on the connectivity of interfaces, which is potentially interesting for imaging tissue mechanics in medicine and biology.
Broadband Lamb Wave Trapping in Cellular Metamaterial Plates with Multiple Local Resonances
Zhao, De-Gang; Li, Yong; Zhu, Xue-Feng
2015-01-01
We have investigated the Lamb wave propagation in cellular metamaterial plates constructed by bending-dominated and stretch-dominated unit-cells with the stiffness differed by orders of magnitude at an ultralow density. The simulation results show that ultralight metamaterial plates with textured stubs deposited on the surface can support strong local resonances for both symmetric and anti-symmetric modes at low frequencies, where Lamb waves at the resonance frequencies are highly localized in the vibrating stubs. The resonance frequency is very sensitive to the geometry of textured stubs. By reasonable design of the geometry of resonant elements, we establish a simple loaded-bar model with the array of oscillators having a gradient relative density (or weight) that can support multiple local resonances, which permits the feasibility of a broadband Lamb wave trapping. Our study could be potentially significant in designing ingenious weight-efficient acoustic devices for practical applications, such as shock absorption, cushioning, and vibrations traffic, etc. PMID:25790858
Instability analysis of resonant standing waves in a parametrically excited boxed basin
Energy Technology Data Exchange (ETDEWEB)
Sirwah, Magdy A [Department of Mathematics, Faculty of Science, Tanta University, Tanta (Egypt)], E-mail: magdysirwah@yahoo.com
2009-06-15
Two-mode parametric excited interfacial waves of incompressible immiscible liquids in an infinite boxed basin subjected to a vertical excitation are studied. The method of multiple time scales is used to obtain uniform solutions of the second-order system as well as the third-order one, which in turn leads to the solvability conditions of the two orders including the cubic interaction terms. The different cases of resonance that arise among the natural frequencies together with the frequency of the vertical vibration of the box are demonstrated theoretically and numerical computations of one of these cases (the two-to-one internal resonance and the principal parametric resonance) have been performed in detail in order to investigate the behavior of the resonant waves, especially the qualitative one. The autonomous system of four first-order differential equations for the modulation of the amplitudes and phases of the resonant waves is derived. Some numerical applications are achieved to show the stability criteria of the excited liquids inside the considered basin.
Directory of Open Access Journals (Sweden)
E. E. Woodfield
2013-10-01
Full Text Available Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10 MeV or more. It has been suggested that cyclotron-resonant wave-particle interactions by chorus waves could accelerate electrons to a few MeV near the orbit of Io. Here we use the chorus wave intensities observed by the Galileo spacecraft to calculate the changes in electron flux as a result of pitch angle and energy diffusion. We show that, when the bandwidth of the waves and its variation with L are taken into account, pitch angle and energy diffusion due to chorus waves is a factor of 8 larger at L-shells greater than 10 than previously shown. We have used the latitudinal wave intensity profile from Galileo data to model the time evolution of the electron flux using the British Antarctic Survey Radiation Belt (BAS model. This profile confines intense chorus waves near the magnetic equator with a peak intensity at ∼5° latitude. Electron fluxes in the BAS model increase by an order of magnitude for energies around 3 MeV. Extending our results to L = 14 shows that cyclotron-resonant interactions with chorus waves are equally important for electron acceleration beyond L = 10. These results suggest that there is significant electron acceleration by cyclotron-resonant interactions at Jupiter contributing to the creation of Jupiter's radiation belts and also increasing the range of L-shells over which this mechanism should be considered.
Energy Technology Data Exchange (ETDEWEB)
Li, Changsheng, E-mail: lcs135@163.com; Huang, Dan; Guo, Jierong
2015-02-20
We theoretically demonstrate that acoustic waves and optical waves can be spatially confined in the same micro-cavity by specially designed stubbed slab structure. The proposed structure presents both phononic and photonic band gaps from finite element calculation. The creation of cavity mode inside the band gap region provides strong localization of phonon and photon in the defect region. The practical parameters to inject cavity and work experimentally at telecommunication range are discussed. This structure can be precisely fabricated, hold promises to enhance acousto-optical interactions and design new applications as optomechanical resonator. - Highlights: • A resonator simultaneously supports acoustic and optical modes. • Strong spatial confinement and slow group velocity. • Potential to work as active optomechanical resonator.
Numerical modeling of nonlinear acoustic waves in a tube with an array of Helmholtz resonators
Lombard, Bruno
2013-01-01
Wave propagation in a 1-D guide with an array of Helmholtz resonators is studied numerically, considering large amplitude waves and viscous boundary layers. The model consists in two coupled equations: a nonlinear PDE of nonlinear acoustics, and a linear ODE describing the oscillations in the Helmholtz resonators. The dissipative effects in the tube and in the throats of the resonators are modeled by fractional derivatives. Based on a diffusive representation, the convolution kernels are replaced by a finite number of memory variables that satisfy local ordinary differential equations. An optimization procedure provides an efficient diffusive representation. A splitting strategy is then applied to the evolution equations: the propagative part is solved by a standard TVD scheme for hyperbolic equations, whereas the diffusive part is solved exactly. This approach is validated by comparisons with exact solutions. The properties of the full nonlinear solutions are investigated numerically. In particular, existenc...
Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings
Energy Technology Data Exchange (ETDEWEB)
Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn, E-mail: dongxiang87@gmail.com [National Laboratory of solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Qi, Dong-Xiang, E-mail: rwpeng@nju.edu.cn, E-mail: dongxiang87@gmail.com [National Laboratory of solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Science, Jiangnan University, Wuxi 214122 (China)
2015-04-15
In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.
A mechanical analog of the two-bounce resonance of solitary waves: Modeling and experiment
Goodman, Roy H.; Rahman, Aminur; Bellanich, Michael J.; Morrison, Catherine N.
2015-04-01
We describe a simple mechanical system, a ball rolling along a specially-designed landscape, which mimics the well-known two-bounce resonance in solitary wave collisions, a phenomenon that has been seen in countless numerical simulations but never in the laboratory. We provide a brief history of the solitary wave problem, stressing the fundamental role collective-coordinate models played in understanding this phenomenon. We derive the equations governing the motion of a point particle confined to such a surface and then design a surface on which to roll the ball, such that its motion will evolve under the same equations that approximately govern solitary wave collisions. We report on physical experiments, carried out in an undergraduate applied mathematics course, that seem to exhibit the two-bounce resonance.
Nonlinear series resonance and standing waves in dual-frequency capacitive discharges
Wen, De-Qi; Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Wang, You-Nian
2017-01-01
It is well-known that the nonlinear series resonance in a high frequency capacitive discharge enhances the electron power deposition and also creates standing waves which produce radially center-high rf voltage profiles. In this work, the dynamics of series resonance and wave effects are examined in a dual-frequency driven discharge, using an asymmetric radial transmission line model incorporating a Child law sheath. We consider a cylindrical argon discharge with a conducting electrode radius of 15 cm, gap length of 3 cm, with a base case having a 60 MHz high frequency voltage of 250 V and a 10 MHz low frequency voltage of 1000 V, with a high frequency phase shift {φ\\text{H}}=π between the two frequencies. For this phase shift there is only one sheath collapse, and the time-averaged spectral peaks of the normalized current density at the center are mainly centered on harmonic numbers 30 and 50 of the low frequency, corresponding to the first standing wave resonance frequency and the series resonance frequency, respectively. The effects of the waves on the series resonance dynamics near the discharge center give rise to significant enhancements in the electron power deposition, compared to that near the discharge edge. Adjusting the phase shift from π to 0, or decreasing the low frequency from 10 to 2 MHz, results in two or more sheath collapses, respectively, making the dynamics more complex. The sudden excitation of the perturbed series resonance current after the sheath collapse results in a current oscillation amplitude that is estimated from analytical and numerical calculations. Self-consistently determining the dc bias and including the conduction current is found to be important. The subsequent slow time variation of the high frequency oscillation is analyzed using an adiabatic theory.
Low-n shear Alfven spectra in axisymmetric toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Cheng, C.Z.; Chance, M.S.
1985-11-01
In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs.
Resonance between coherent whistler mode waves and electrons in the topside ionosphere
Neubert, T.; Bell, T. F.; Storey, L. R. O.
1987-01-01
Landau resonance and cyclotron resonance of coherent whistler mode waves and energetic electrons are explored for magnetoplasmas with appreciable gradients in the plasma density and magnetic field strength. It is shown that in the topside ionosphere of the earth near the ion transition height the gradients in plasma density and magnetic field strength along a magnetic field line may match in a way which enhances both Landau and cyclotron interactions between waves and electrons at the loss cone pitch angle. The pitch angle scattering induced by a signal from a ground-based VLF transmitter in the ionosphere above the transmitter has been estimated and compared to the pitch angle scattering induced by naturally occurring ELF hiss through cyclotron resonance. It is found that the expected scattering due to plasmapheric hiss is an order of magnitude larger than that due to Landau resonance in the topside ionosphere. Pitch angle scattering due to cyclotron resonance in the topside ionosphere, however, may be larger by a factor of 2. It is suggested that the 'fast Trimpi' effect may be caused by a cyclotron resonance interaction in the topside ionosphere.
On square-wave-driven stochastic resonance for energy harvesting in a bistable system
Directory of Open Access Journals (Sweden)
Dongxu Su
2014-11-01
Full Text Available Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.
On square-wave-driven stochastic resonance for energy harvesting in a bistable system
Energy Technology Data Exchange (ETDEWEB)
Su, Dongxu, E-mail: sudx@iis.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Tokyo 1538505 (Japan); Zheng, Rencheng; Nakano, Kimihiko [Institute of Industrial Science, The University of Tokyo, Tokyo 1538505 (Japan); Cartmell, Matthew P [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)
2014-11-15
Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.
Three-in-one resonance tube for harmonic series sound wave experiments
Jaafar, Rosly; Nazihah Mat Daud, Anis; Ali, Shaharudin; Kadri Ayop, Shahrul
2017-07-01
In this study we constructed a special three-in-one resonance tube for a harmonic series sound waves experiment. It is designed for three different experiments: both-open-end, one-closed-end and both-closed-end tubes. The resonance tube consists of a PVC conduit with a rectangular hole, rubber tube, plastic stopper with an embedded microphone and a plastic stopper. The resonance tube is utilized with visual analyser freeware to detect, display and measure the resonance frequencies for each harmonic series. The speeds of sound in air, v, are determined from the gradient of the 2(L+e) versus n fn-1 , 4(L+e) versus n fn-1 and 2L versus n fn-1 graphs for both-open-end, one-closed-end and both-closed-end tubes, respectively. The compatibility of a resonance tube for a harmonic series experiment is determined by comparing the experimental and standard values of v. The use of a resonance tube produces accurate results for v within a 1.91% error compared to its standard value. It can also be used to determine the values of end correction, e, in both-open-end and one-closed-end tubes. The special resonance tube can also be used for the values of n for a harmonic series experiment in the three types of resonance tubes: both-open-end, one-closed-end and both-closed-end tubes.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere
Claudepierre, S. G.; Toffoletto, F. R.; Wiltberger, M.
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.
Claudepierre, S G; Toffoletto, F R; Wiltberger, M
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
Resonant Dampers for Parametric Instabilities in Gravitational Wave Detectors
Gras, Slawek; Barsotti, Lisa; Evans, Matthew
2015-01-01
Advanced gravitational wave interferometric detectors will operate at their design sensitivity with nearly 1MW of laser power stored in the arm cavities. Such large power may lead to the uncontrolled growth of acoustic modes in the test masses due to the transfer of optical energy to the mechanical modes of the arm cavity mirrors. These parametric instabilities have the potential of significantly compromising the detector performance and control. Here we present the design of "acoustic mode dampers" that use the piezoelectric effect to reduce the coupling of optical to mechanical energy. Experimental measurements carried on an Advanced LIGO-like test mass shown a 10-fold reduction in the amplitude of several mechanical modes, thus suggesting that this technique can greatly mitigate the impact of parametric instabilities in advanced detectors.
Precise wave-function engineering with magnetic resonance
Wigley, P. B.; Starkey, L. M.; Szigeti, S. S.; Jasperse, M.; Hope, J. J.; Turner, L. D.; Anderson, R. P.
2017-07-01
Controlling quantum fluids at their fundamental length scale will yield superlative quantum simulators, precision sensors, and spintronic devices. This scale is typically below the optical diffraction limit, precluding precise wave-function engineering using optical potentials alone. We present a protocol to rapidly control the phase and density of a quantum fluid down to the healing length scale using strong time-dependent coupling between internal states of the fluid in a magnetic field gradient. We demonstrate this protocol by simulating the creation of a single stationary soliton and double soliton states in a Bose-Einstein condensate with control over the individual soliton positions and trajectories, using experimentally feasible parameters. Such states are yet to be realized experimentally, and are a path towards engineering soliton gases and exotic topological excitations.
Tripathi, A. K.; Singhal, R. P.; Singh, K. P.; Singh, O. N.
2013-05-01
Bounce-averaged pitch angle diffusion coefficients of electrons due to resonant interaction with electrostatic electron cyclotron harmonic (ECH) and whistler mode waves have been calculated. Temporal growth rates obtained by solving the appropriate dispersion relation have been used to represent the distribution of wave energy with frequency. Calculations have been performed at two spatial locations L=4.6 and L=6.8. The results obtained suggest that ECH waves can put electrons on strong pitch angle diffusion at both spatial locations. However, at L=4.6, electrons with energy <100 eV and at L=6.8 electrons with energy up to ∼500 eV can be put on strong diffusion contributing to diffuse auroral precipitation. Whistler mode waves can put electrons of energy ≤5 keV on strong pitch angle diffusion at L=6.8 whereas at L=4.6 observed wave fields are insufficient to put electrons on strong diffusion. ECH waves contribute up to 17% of the total electron energy precipitation flux due to both ECH and whistler mode waves. A case study has been performed to calculate pitch angle diffusion coefficients using Gaussian function to represent wave energy distribution with frequency. It is found that, for electron energy <500 eV, the calculated diffusion coefficients using Gaussian function to represent ECH wave energy distribution are several orders of magnitude smaller or negligible as compared to diffusion coefficients calculated by temporal growth rates. However, the calculated pitch angle diffusion coefficients using Gaussian function for whistler mode wave energy distribution are in very good agreement with diffusion coefficients calculated by temporal growth rates. It is concluded that representing the ECH wave energy distribution with frequency by a Gaussian function grossly underestimates the low energy (<500 eV) electron precipitation flux due to ECH waves.
Institute of Scientific and Technical Information of China (English)
SU Zhen-Peng; ZHENG Hui-Nan
2009-01-01
The bounce-averaged Fokker-Planck equation is solved to study the relativistic electron phase space density(PSD)evolution in the outer radiation belt due to resonant interactions with plasmaspheric plume electromagnetic ion cyclotron(EMIC)waves.It is found that the PSDs of relativistic electrons can be depleted by 1-3 orders of magnitude in 5h,supporting the previous finding that resonant interactions with EMIC waves may account for the frequently observed relativistic electron flux dropouts in the outer radiation belt during the main phase of a storm.The significant precipitation Joss of ～Me V electrons is primarily induced by the EMIC waves in H~+ and He~+ bands.The rapid remove of highly relativistic electrons(＞5 MeV)is mainly driven by the EMIC waves in O~+ band at lower pitch-angles,as well as the EMIC waves in H~+ and He~+ bands at larger pitch-angles.Moreover,a stronger depletion of relativistic electrons is found to occur over a wider pitch angle range when EMIC waves are centering relatively higher in the band.
Energy Technology Data Exchange (ETDEWEB)
He, Jiansen; Wang, Linghua; Tu, Chuanyi; Zong, Qiugang [School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Marsch, Eckart, E-mail: jshept@gmail.com [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany)
2015-02-20
The wave–particle interaction processes occurring in the solar wind provide crucial information to understand the wave dissipation and simultaneous particle heating in plasma turbulence. One requires observations of both wave fluctuations and particle kinetics near the dissipation range, which have, however, not yet been analyzed simultaneously. Here we show new evidence of wave–particle interactions by combining the diagnosis of wave modes with the analysis of particle kinetics on the basis of measurements from the WIND spacecraft with a high cadence of about 3 s. Solar wind protons appear to be highly dynamic in their velocity distribution consisting of varying anisotropic core and beam components. The basic scenario of solar wind proton heating through wave–particle interaction is suggested to be the following. Left-handed cyclotron resonance occurs continuously, and is evident from the observed proton core velocity distribution and the concurrent quasi-parallel left-handed Alfvén cyclotron waves. Landau and right-handed cyclotron resonances are persistent and indicated by the observed drifting anisotropic beam and the simultaneous quasi-perpendicular right-handed kinetic Alfvén waves in a general sense. The persistence of non-gyrotropic proton distributions may cast new light on the nature of the interaction between particles and waves near and beyond the proton gyro-frequency.
Lee, Sangdae; Kim, Yong-Il; Kim, Ki-Bok
2013-11-01
Biosensors are used in a variety of fields for early diagnosis of diseases, measurement of toxic contaminants, quick detection of pathogens, and separation of specific proteins or DNA. In this study, we fabricated and evaluated the capability of a high sensitivity Love wave surface acoustic wave (SAW) biosensor. The experimental setup was composed of the fabricated 155-MHz Love wave SAW biosensor, a signal measurement system, a liquid flow system, and a temperature-control system. Subsequently, we measured the lower limit of detection (LOD) of the 155-MHz Love wave SAW biosensor, and calculated the association and dissociation constants between protein G and anti-mouse IgG using kinetic analysis. We compared these results with those obtained using a commercial surface plasmon resonance (SPR) biosensor. We found that the LOD of the SAW biosensor for anti-mouse IgG and mouse IgG was 0.5 and 1 microg/ml, respectively, and the resultant equilibrium association and dissociation constants were similar to the corresponding values obtaining using the commercial SPR biosensor. Thus, we conclude that the fabricated 155-MHz Love wave SAW biosensor exhibited the high sensitivity of the commercial SPR biosensor and was able to analyze the binding properties of the ligand and receptor by kinetic analysis similarly to the commercial SPR biosensor.
Energy Technology Data Exchange (ETDEWEB)
Li, Jinxing, E-mail: lijx@pku.edu.cn [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095 (United States); Bortnik, Jacob; Thorne, Richard M. [Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095 (United States); Xie, Lun, E-mail: xielun@pku.edu.cn; Pu, Zuyin; Fu, Suiyan; Guo, Ruilong [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Chen, Lunjin [W. B. Hanson Center for Space Sciences, Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Ni, Binbin [Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan, Hubei 430072 (China); Tao, Xin [Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yao, Zhonghua [Mullard Space Science Laboratory, University College London, Dorking (United Kingdom)
2015-05-15
Test particle simulation is a useful method for studying both linear and nonlinear wave-particle interactions in the magnetosphere. The gyro-averaged equations of particle motion for first-order and other cyclotron harmonic resonances with oblique whistler-mode waves were first derived by Bell [J. Geophys. Res. 89, 905 (1984)] and the most recent relativistic form was given by Ginet and Albert [Phys. Fluids B 3, 2994 (1991)], and Bortnik [Ph.D. thesis (Stanford University, 2004), p. 40]. However, recently we found there was a (−1){sup l−1} term difference between their formulas of perpendicular motion for the lth-order resonance. This article presents the detailed derivation process of the generalized resonance formulas, and suggests a check of the signs for self-consistency, which is independent of the choice of conventions, that is, the energy variation equation resulting from the momentum equations should not contain any wave magnetic components, simply because the magnetic field does not contribute to changes of particle energy. In addition, we show that the wave centripetal force, which was considered small and was neglect in previous studies of nonlinear interactions, has a profound time derivative and can significantly enhance electron phase trapping especially in high frequency waves. This force can also bounce the low pitch angle particles out of the loss cone. We justify both the sign problem and the missing wave centripetal force by demonstrating wave-particle interaction examples, and comparing the gyro-averaged particle motion to the full particle motion under the Lorentz force.
Surface acoustic wave resonators on a ZnO-on-Si layered medium
Martin, S. J.; Schwartz, S. S.; Gunshor, R. L.; Pierret, R. F.
1983-02-01
The adaptation of surface acoustic wave resonator technology to a ZnO-on-Si layered medium is presented. Several distributed reflector schemes are considered, including shorted and isolated metallic strips, as well as grooves etched in the ZnO layer. In the case of etched groove reflectors, a first-order velocity perturbation arises due to the dispersive nature of the layered medium. Unique resonator design considerations result from the reflector array velocity and reflectivity characteristics. Transverse mode resonances are characterized and their effect on resonator response eliminated by a novel transducer design. A technique for temperature compensating the devices by use of a thermal SiO2 layer is discussed.
Controlling the profile of ion-cyclotron-resonant ions in JET with the wave-induced pinch effect
Mantsinen, M. J.; Ingesson, L. C.; Johnson, T.; Kiptily, V. G.; Mayoral, M. L.; Sharapov, S. E.; Alper, B.; Bertalot, L.; Conroy, S.; Eriksson, L. G.; Hellsten, T.; Noterdaeme, J. M.; Popovichev, S.; Righi, E.; Tuccillo, A. A.
2002-01-01
Experiments on the JET tokamak show that the wave-induced pinch in the presence of toroidally asymmetric waves can provide a tool for controlling the profile of ion-cyclotron-resonant He-3 ions. Direct evidence for the wave-induced pinch has been obtained from the measured gamma-ray emission profile
Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis
Guo, Bowen
2017-08-28
Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the
Directory of Open Access Journals (Sweden)
Zhong-ye Tian
2014-01-01
Full Text Available The seismic responses of a long-span cable-stayed bridge under uniform excitation and traveling wave excitation in the longitudinal direction are, respectively, computed. The numerical results show that the bridge’s peak seismic responses vary significantly as the apparent wave velocity decreases. Therefore, the traveling wave effect must be considered in the seismic design of long-span bridges. The bridge’s peak seismic responses do not vary monotonously with the apparent wave velocity due to the traveling wave resonance. A new traveling wave excitation method that can simplify the multisupport excitation process into a two-support excitation process is developed.
Lower hybrid wave resonance cone detection via CO/sub 2/ laser scattering
Energy Technology Data Exchange (ETDEWEB)
Wurden, G.A.; Wong, K.L.; Ono, M.
1984-04-01
Lower hybrid waves are studied in the Princeton ACT-I steady-state toroidal plasma device using a radially scanning CO/sub 2/ laser scattering system with both amplitude and phase sensitive detection techniques. Clearly defined resonance cones launched from external electrostatic antennas are seen to disappear as the plasma density is raised. Scaling of LHW laser signal with RF power in the presence of resonance cones shows nonlinearities associated with RF induced changes in the effective laser scattering volume. Absolute fluctuation level estimates suggest this occurs when e PHI/T/sub e/ greater than or equal to 1. Wavefront curvature effects can cause a complete loss of resonance cone laser signals, even though probes indicate that cones are still present. Measurements of the wave k/sub perpendicular/-spectrum in the plasma show direct evidence for electron Landau filtering of the original wave k/sub parallel/-spectrum launched from the antenna at the plasma edge, and strong dependence on antenna phasing. Finally, frequency shifts and loss of the resonance cone signal are associated with high levels of plasma density edge turbulence.
Millimeter-wave phase resonances in compound reﬂection gratings with subwavelength grooves.
Beruete, Miguel; Navarro-Cía, Miguel; Skigin, Diana C; Sorolla, Mario
2010-11-08
Experimental evidence of phase resonances in a dual-period reﬂection structure comprising three subwavelength grooves in each period is provided in the millimeter-wave regime. We have analyzed and measured the response of these structures and show that phase resonances are characterized by a minimum in the reﬂected response, as predicted by numerical calculations. It is also shown that under oblique incidence these structures exhibit additional phase resonances not present for normal illumination because of the potentially permitted odd ﬁeld distribution. A satisfactory agreement between the experimental and numerical reﬂectance curves is obtained. These results conﬁrm the recent theoretical predictions of phase resonances in reﬂection gratings in the millimeter-wave regime, and encourage research in this subject due to the multiple potential applications, such as frequency selective surfaces, backscattering reduction and complex-surface-wave-based sensing. In addition, it is underlined here that the response becomes much more complex than the mere inﬁnite analysis when one considers ﬁnite periodic structures as in the real experiment.
Vapor sensing by means of a ZnO-on-Si surface acoustic wave resonator
Martin, S. J.; Schweizer, K. S.; Schwartz, S. S.; Gunshor, R. L.
Surface Acoustic Wave (SAW) devices can function as sensitive detectors of vapors. The high surface acoustic energy density of the device makes it extremely sensitive to the presence of molecules adsorbed from the gas phase. Mass loading by the adsorbate is the primary mechanism for the surface wave velocity perturbation. If the device is used as the frequency control element of an oscillator, perturbations in wave velocity on the order of 10 parts per billion may be resolved by means of a frequency counter. Zno-on-Si SAW resonators have been examined as vapor sensors. The piezoelectric ZnO layer permits transduction between electrical and acoustic energies, as well as endowing the surface with particular adsorptive properties. These devices exhibit C-values up to 12,000 at a resonant frequency of 109 MHZ. The resonant frequency of the device shifts upon exposure to a vapor-air mixture, with a transient response which is distinct for each of the organic vapors tested. Due to the permeability of the polycrystalline ZnO layer, the instantaneous reversibility of the resonant frequency shift is found to depend on the type of adsorbed molecule.
Effects of energetic particles on zonal flow generation by toroidal Alfven eigenmode
Qiu, Zhiyong; Zonca, Fulvio
2016-01-01
Generation of zonal ow (ZF) by energetic particle (EP) driven toroidal Alfven eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that, nonlinear resonant EP contri- bution dominates over the usual Reynolds and Maxwell stresses due to thermal plasma nonlinear response. ZF can be forced driven in the linear growth stage of TAE, with the growth rate being twice the TAE growth rate. The ZF generation mechanism is shown to be related to polarization induced by resonant EP nonlinearity. The generated ZF has both the usual meso-scale and micro- scale radial structures. Possible consequences of this forced driven ZF on the nonlinear dynamics of TAE are also discussed.
Chesnais, Céline; Boutin, Claude; Hans, Stéphane
2012-10-01
This work is devoted to the study of the wave propagation in infinite two-dimensional structures made up of the periodic repetition of frames. Such materials are highly anisotropic and, because of lack of bracing, can present a large contrast between the shear and compression deformabilities. Moreover, when the thickness to length ratio of the frame elements is small, these elements can resonate in bending at low frequencies when compressional waves propagate in the structure. The frame size being small compared to the wavelength of the compressional waves, the homogenization method of periodic discrete media is extended to situations with local resonance, and it is applied to identify the macroscopic behavior at the leading order. In particular, the local resonance in bending leads to an effective mass different from the real mass and to the generalization of the Newtonian mechanics at the macroscopic scale. Consequently, compressional waves become dispersive and frequency bandgaps occur. The physical origin of these phenomena at the microscopic scale is also presented. Finally, a method is proposed for the design of such materials.
Free Surface Waves And Interacting Bouncing Droplets: A Parametric Resonance Case Study
Borja, Francisco J.
2013-07-01
Parametric resonance is a particular type of resonance in which a parameter in a system changes with time. A particularly interesting case is when the parameter changes in a periodic way, which can lead to very intricate behavior. This di↵ers from periodic forcing in that solutions are not necessarily periodic. A system in which parametric resonance is realized is when a fluid bath is shaken periodically, which leads to an e↵ective time dependent gravitational force. This system will be used to study the onset of surface waves in a bath with non-uniform topography. A linear model for the surface waves is derived from the Euler equations in the limit of shallow waves, which includes the geometry of the bottom and surface tension. Experiments are performed to compare with the proposed model and good qualitative agreement is found. Another experiment which relies on a shaking fluid bath is that of bouncing fluid droplets. In the case of two droplets the shaking allows for a larger bouncing droplet to attract a smaller moving droplet in a way that creates a bound system. This bound system is studied and shows some analogous properties to quantum systems, so a quantum mechanical model for a two dimensional atom is studied, as well as a proposed model for the droplet-wave system in terms of equations of fluid mechanics.
Resonant-Cavity Driven Alfvén Waves in a Helium-Hydrogen Plasma
Clark, Mary; Dorfman, Seth; Vincena, Steve; Zhu, Ziyan; Carter, Troy
2016-10-01
Alfvén waves exist in many regimes. In fusion experiments, they can disrupt fusion processes by scattering particles, and in space, they are proposed to heat the solar corona. In these environments, multiple ion species usually occur. It is therefore relevant to study Alfvén waves carried by multiple ion species in a laboratory device. Here a resonant cavity launches them in UCLA's Large Plasma Device (LaPD) in a helium/hydrogen plasma. In a two-ion species plasma, Alfvén waves propagate in two bands: below the heavy ion cyclotron frequency and between a hybrid frequency and the light ion cyclotron frequency. We observe two Alfvén waves at different frequencies (in different bands) emerge when the resonant cavity is excited at one frequency: one at the driving frequency and one at a lower frequency. The two frequencies and wavelengths agree with the dispersion relation. The resonant cavity theory predicts that the wavelengths should be 4 times the cavity's length; only the high frequency lies close to this prediction. This work was funded by UCLA's Norton Rodman Award, and was performed at the Basic Plasma Science Facility, funded by DoE and NSF.
The formation heights of coronal shocks from 2D density and Alfv\\'en speed maps
Zucca, Pietro; Bloomfield, D Shaun; Gallagher, Peter T
2014-01-01
Super-Alfv\\'enic shock waves associated with coronal mass ejections (CMEs) can produce radio emission known as Type II bursts. In the absence of direct imaging, accurate estimates of coronal electron densities, magnetic field strengths and Alfv\\'en speeds are required in order to calculate the kinematics of shocks. To date, 1D radial models have been used, but these are not appropriate for shocks propagating in non-radial directions. Here, we study a coronal shock wave associated with a CME and Type II radio burst using 2D electron density and Alfv\\'en speed maps to determine the locations that shocks are excited as the CME expands through the corona. Coronal density maps were obtained from emission measures derived from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory ($SDO$) and polarized brightness measurements from the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory ($SOHO$). Alfv\\'en speed maps were calculated using these dens...
Observation of a Hydromagnetic Wave in the Earth’s Magnetosphere.
1987-12-01
traveling Alfven wave guided by the earth’s magnetic field line. Plasma densities are calculated at L = 7. The phase relationship between the plasma ...verify the measurement of the electric field. Current magnetospheric models predicting Alfven wave speeds, Alfven wave periods and plasma densities are...Advisor S. Gnan am, Secon Reader(1/ Karl inz I. Woe er, Carman , Department of Physics Go E. Schacher Dean of Science and Engineering 2 ABSTRACT
Design of guided Bloch surface wave resonance bio-sensors with high sensitivity
Kang, Xiu-Bao; Wen, Li-Wei; Wang, Zhi-Guo
2017-01-01
The sensing performance of bio-sensors based on guided Bloch surface wave (BSW) resonance (GBR) is studied. GBR is realized by coupling the propagating electromagnetic wave with BSW on one side of a one-dimensional photonic crystal slab via the grating on the other side. The sensitivity of the designed bio-sensors is proportional to the grating constant when the wavelength spectrum is analyzed, and inversely proportional to the normal wave vector of the incident electromagnetic wave when the angular spectrum is resolved. For a GBR bio-sensor designed to operate near 70° angle of incidence from air, the angular sensitivity is very high, reaching 128 deg RIU-1. The sensitivity can be substantially increased by designing bio-sensors for operating at larger angles of incidence.
Multipacting Analysis for the Half-Wave Spoke Resonator Crab Cavity for LHC
Energy Technology Data Exchange (ETDEWEB)
Ge, Lixin; Li, Zenghai; /SLAC
2011-06-23
A compact 400-MHz half-wave spoke resonator (HWSR) superconducting crab cavity is being developed for the LHC upgrade. The cavity shape and the LOM/HOM couplers for such a design have been optimized to meet the space and beam dynamics requirements, and satisfactory RF parameters have been obtained. As it is known that multipacting is an issue of concern in a superconducting cavity which may limit the achievable gradient. Thus it is important in the cavity RF design to eliminate the potential MP conditions to save time and cost of cavity development. In this paper, we present the multipacting analysis for the HWSR crab cavity using the Track3P code developed at SLAC, and to discuss means to mitigate potential multipacting barriers. Track3P was used to analyze potential MP in the cavity and the LOM, HOM and FPC couplers. No resonances were found in the LOM couplers and the coaxial beam pipe. Resonant trajectories were identified on various locations in cavity, HOM and FPC couplers. Most of the resonances are not at the peak SEY of Nb. Run-away resonances were identified in broader areas on the cavity end plate and in the HOM coupler. The enhancement counter for run-away resonances does not show significant MP. HOM coupler geometry will be optimized to minimize the high SEY resonance.
Long Wave Resonance in Tropical Oceans and Implications on Climate: The Pacific Ocean
Pinault, Jean-Louis
2016-06-01
The dynamics of the tropical Pacific can be understood satisfactorily by invoking the coupling between the basin modes of 1-, 4- and 8-year average periods. The annual quasi-stationary wave (QSW) is a first baroclinic-mode, fourth meridional-mode Rossby wave resonantly forced by easterlies. The quadrennial QSW is built up from a first baroclinic-mode Kelvin wave and a first baroclinic-mode, first meridional-mode Rossby wave equatorially trapped and two off-equatorial Rossby waves, their dovetailing forming a resonantly forced wave (RFW). The 8-year period QSW is a replica of the quadrennial QSW for the second-baroclinic mode. The coupling between basin modes results from the merging of modulated currents both in the western part of the North Equatorial Counter Current and along the South Equatorial Current. Consequently, a sub-harmonic mode locking occurs, which means that the average period of QSWs is 1-, 4- and 8-year exactly. The quadrennial sub-harmonic is subject to two modes of forcing. One results from coupling with the annual QSW that produces a Kelvin wave at the origin of transfer of the warm waters from the western part of the basin to the central-eastern Pacific. The other is induced by El Niño and La Niña that self-sustain the sub-harmonic by stimulating the Rossby wave accompanying the westward recession of the QSW at a critical stage of its evolution. The interpretation of ENSO from the coupling of different basin modes allows predicting and estimating the amplitude of El Niño events a few months before they become mature from the accelerations of the geostrophic component of the North Equatorial Counter Current.
Enhanced four-wave mixing via crossover resonance in cesium vapor
de Silans, T Passerat; Felinto, D; Tabosa, J W R
2011-01-01
We report on the observation of enhanced four-wave mixing via crossover resonance in a Doppler broadened cesium vapor. Using a single laser frequency, a resonant parametric process in a double-$\\Lambda$ level configuration is directly excited for a specific velocity class. We investigate this process in different saturation regimes and demonstrate the possibility of generating intensity correlation and anti-correlation between the probe and conjugate beams. A simple theoretical model is developed that accounts qualitatively well to the observed results.
A new model for nonlinear acoustic waves in a non-uniform lattice of Helmholtz resonators
Mercier, Jean-François
2016-01-01
Propagation of high amplitude acoustic pulses is studied in a 1D waveguide, connected to a lattice of Helmholtz resonators. An homogenized model has been proposed by Sugimoto (J. Fluid. Mech., 244 (1992)), taking into account both the nonlinear wave propagation and various mechanisms of dissipation. This model is extended to take into account two important features: resonators of different strengths and back-scattering effects. The new model is derived and is proved to satisfy an energy balance principle. A numerical method is developed and a better agreement between numerical and experimental results is obtained.
Liu, D Z; Wang, R H; Nie, L H; Yao, S Z
1996-08-01
A simple and sensitive extraction-gravimetric method for the determination of dipyridamole is presented. The method is based on the extraction of free dipyridamole with chloroform, after neutralization with a basic agent, followed by measurement of the frequency shift response of the specially designed surface acoustic wave resonator sensor after evaporation of the extractant from the surface of the resonator. The frequency shift response was proportional to the amount of dipyridamole in the range 0.065-1.12 micrograms. Experimental parameters and the effect of interfering substances on the assay of dipyridamole were also examined in this study. The method was applied to the determination of dipyridamole in tablets.
Laboratory modelling of resonant wave-current interaction in the vicinity wind farm masts
Gunnoo, Hans; Abcha, Nizar; Garcia-Hermosa, Maria-Isabel; Ezersky, Alexander
2015-04-01
In the nearest future, by 2020, about 4% of electricity in Europe will be supplied by sea stations operating from renewable sources: ocean thermal energy, wave and tidal energy, wind farms. By now the wind stations located in the coastal zone, provide the most part of electricity in different European countries. Meanwhile, effects of wind farms on the environment are not sufficiently studied. We report results of laboratory simulations aimed at investigation of hydrodynamic fields arising in the vicinity of wind farm masts under the action of currents and surface waves. The main attention is paid to modeling the resonance effects when the amplitude of velocity pulsations in the vicinity of the masts under the joint action of currents and harmonic waves demonstrate significant growth. This resonance can lead to an increase in Reynolds stress on the bottom, intensification of sediment transport and sound generation. The experiments are performed in the 17 meters hydrodynamical channel of laboratory Morphodynamique Continentale et Côtière UMR CNRS 6143. Mast are modeled by vertical cylinder placed in a steady flow. Behind the cylinder turbulent Karman vortex street occurs. Results are obtained in interval of Reynolds numbers Re=103 - 104(Re=Ud/v, where U is the velocity of the flow, d is diameter of the cylinder, ν is cinematic viscosity). Harmonic surface waves of small amplitude propagating upstream are excited by computer controlled wave maker. In the absence of surface waves, turbulent Karman street with averaged frequency f is observed. It is revealed experimentally that harmonic surface waves with a frequencies closed to 2f can synchronize vortex shedding and increase the amplitude of velocity fluctuations in the wake of the cylinder. Map of regimes is found on the parameter plane amplitude of the surface wave - wave frequency. In order to distinguish the synchronization regimes, we defined phase of oscillations using the Hilbert transform technique. We
Extreme events of 2012, 2013 and 2014 linked to planetary wave resonance
Petoukhov, Vladimir; Coumou, Dim; Rahmstorf, Stefan; Stadtherr, Lisa; Kornhuber, Kai; Petri, Stefan; Schellnhuber, Hans Joachim
2016-04-01
Quasi-stationary planetary waves of large-amplitude have been linked to the occurrence of many of the most extreme weather events of the past decades in the Northern Hemisphere. This includes the European heat waves of 2003 and 2010 as well as the catastrophic Elbe flooding 2002. A resonance mechanism was proposed to explain the occurrence of large-amplitude planetary waves (Petoukhov et al. 2013) and a recent increase in the frequency of resonance events has been identified (Coumou et al. 2014). We extend the analysis to more recent extreme weather events. 2012 marked the warmest spring on record in the USA, accompanied by wettest spring in 100 years in the UK and national heat records for the warmest temperature in spring in 13 other European countries; torrential rains and demolishing floods in central and eastern China together with an oppressive heat wave in the USA in June; hottest July on record in the USA simultaneously with the worst flooding in 60 years in eastern China and Japan; unparalleled heat in the USA and destructive floods in China and the Philippines in August; and widespread floods in the UK in September. 2013 saw Central European Flooding in May-early June; trains of persistent heat waves in the USA and China in mid-June; and in the USA, central Europe, and western and eastern China end of June/July; strong floods in central China and Japan in late July/early August; and in north-eastern China and eastern Russia in mid-and late August; a sweltering heat wave in eastern China and Japan in early September; the worst flood in central China in late September/early October. The obtained results confirm a recent tendency to an increase in the frequency of occurrence of quasi-resonant conditions, favoring the emergence of persistent regional extremes in the NH mid-latitudes (Petoukhov et al, submitted). In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia and
Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas
Energy Technology Data Exchange (ETDEWEB)
Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7 (Canada); Chapman, T.; Berger, R. L. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Brantov, A.; Bychenkov, V. Yu. [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 119991 Russia and Center for Fundamental and Applied Research, VNIIA, ROSATOM, 127055 Moscow (Russian Federation); Winjum, B. J. [Department of Electrical Engineering, UCLA, Los Angeles, California 90095 (United States); Brunner, S. [Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Tableman, A.; Tzoufras, M. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095 (United States); Glenzer, S. [LCLS, Stanford, California 94025 (United States)
2016-01-15
In ignition scale hot plasmas, temperature gradients and thermal transport modify electron distributions in a velocity range resonant with Langmuir waves typical of those produced by stimulated Raman scattering. We examine the resultant changes to the Landau damping experienced by these Langmuir waves and the levels of thermal plasma fluctuations. The form factor and Thomson scattering cross-section in such plasmas display unique characteristics of the background conditions. A theoretical model and high-order Vlasov-Fokker-Planck simulations are used in our analysis. An experiment to measure changes in thermal plasma fluctuation levels due to a thermal gradient is proposed.
Wave function collapses in a single spin magnetic resonance force microscopy
Berman, G P; Tsifrinovich, V I
2004-01-01
We study the effects of wave function collapses in the oscillating cantilever driven adiabatic reversals (OSCAR) magnetic resonance force microscopy (MRFM) technique. The quantum dynamics of the cantilever tip (CT) and the spin is analyzed and simulated taking into account the magnetic noise on the spin. The deviation of the spin from the direction of the effective magnetic field causes a measurable shift of the frequency of the CT oscillations. We show that the experimental study of this shift can reveal the information about the average time interval between the consecutive collapses of the wave function
Design of a 325MHz Half Wave Resonator prototype at IHEP
Zhang, Xinying; Wang, Guangwei; Xu, Bo; Zhao, Guangyuan; He, Feisi; Li, Zhongquan; Ma, Qiang; Dai, Jin; Chen, Xu; Liu, Yaping; Xue, Zhou; Huang, Xuefang; Sun, Yi
2015-01-01
A 325MHz beta=0.14 superconducting half wave resonator(HWR) prototype has been developed at the Institute of High Energy Physics(IHEP), which can be applied in continuous wave (CW) high beam proton accelerators. In this paper, the electromagnetic (EM) design, multipacting simulation, mechanical optimization, and fabrication are introduced in details. In vertical test at 4.2K, the cavity reached Eacc=7MV/m with Q0=1.4*10^9 and Eacc=15.9MV/m with Q0=4.3*10^8.
Simulation of the RF Coupler for TRIUMF ISAC-II Superconducting Quarter Wave Resonators
Zvyagintsev, V
2004-01-01
The inductive RF coupler for the TRIUMF ISAC-II 106 MHz superconducting accelerating quarter wave resonators was used as a basis for the simulation model of stationary transmission processes of RF power and thermal fluxes. Electromagnetic simulation of the coupler was done with ANSOFT HFSS code. Transmission line theory was used for electromagnetic wave calculations along the drive line to the Coupler. An analogy between electric and thermal processes allows the thermal calculations to be expressed in terms of electrical circuits. The data obtained from the simulation are compared to measured values on the RF coupler.
High frequency surface acoustic wave resonator-based sensor for particulate matter detection
Thomas, Sanju; Cole, Marina; Villa-López, Farah Helue; Gardner, J. W.
2016-01-01
This paper describes the characterization of high frequency Surface Acoustic Wave Resonator-based (SAWR) sensors, for the detection of micron and sub-micron sized particles. The sensor comprises two 262 MHz ST-cut quartz based Rayleigh wave SAWRs where one is used for particle detection and the other as a reference. Electro-acoustic detection of different sized particles shows a strong relationship between mass sensitivity (Δf/Δm) and particle diameter (Dp). This enables frequency-dependent S...
RESONANT INTERACTION BETWEEN A PAUL-TRAPPED ION AND A STANDING WAVE LASER
Institute of Scientific and Technical Information of China (English)
FENG MANG; HAI WEN-HUA; ZHU XI-WEN; GAO KE-LIN; SHI LEI
2000-01-01
An ultracold two-level ion experiencing the standing wave of a resonant laser in a Paul trap is investigated in the Lamb-Dicke limit and weak excitation regime, with full consideration of the time-dependence of the trapping potential.The analytical forms of the wave functions of the system can be described with our approach, and the time evolution of the pseudo-energy of the system as well as the squeezing property of the quadrature components is studied in comparison with the treatment of harmonic oscillator model.
Dynamics of solitons in multicomponent long wave–short wave resonance interaction system
Indian Academy of Sciences (India)
T Kanna; K Sakkaravarthi; M Vijayajayanthi; M Lakshmanan
2015-03-01
In this paper, we study the formation of solitons, their propagation and collision behaviour in an integrable multicomponent (2+1)-dimensional long wave–short wave resonance interaction (-LSRI) system. First, we briefly revisit the earlier results on the dynamics of bright solitons and demonstrate the fascinating energy exchange collision of bright solitons appearing in the short-wave components of the -LSRI system. Then, we explicitly construct the exact one-and two-multicomponent dark soliton solutions of the -LSRI system by using the Hirota’s direct method and explore its propagation dynamics. Also, we study the features of dark soliton collisions.
Tadesse, Semere Ayalew
2014-01-01
Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct...
High-efficiency degenerate four wave-mixing in triply resonant nanobeam cavities
Lin, Zin; Loncar, Marko; Johnson, Steven G; Rodriguez, Alejandro W
2013-01-01
We demonstrate high-efficiency, degenerate four-wave mixing in triply resonant Kerr $\\chi^(3)$ photonic crystal (PhC) nanobeam cavities. Using a combination of temporal coupled mode theory and nonlinear finite-difference time-domain (FDTD) simulations, we study the nonlinear dynamics of resonant four-wave mixing processes and demonstrate the possibility of observing high-efficiency limit cycles and steady-state conversion corresponding to $\\approx 100$% depletion of the pump light at low powers, even including effects due to losses, self- and cross-phase modulation, and imperfect frequency matching. Assuming operation in the telecom range, we predict close to perfect quantum efficiencies at reasonably low $\\sim$ 50 mW input powers in silicon micrometer-scale cavities.
Non-resonant interacting ion acoustic waves in a magnetized plasma
Energy Technology Data Exchange (ETDEWEB)
Maccari, Attilio [Technical Institute ' G Cardano' , Monterotondo, Rome (Italy)
1999-01-29
We perform an analytical and numerical investigation of the interaction among non-resonant ion acoustic waves in a magnetized plasma. Waves are supposed to be non-resonant, i.e. with different group velocities that are not close to each other. We use an asymptotic perturbation method, based on Fourier expansion and spatio-temporal rescaling. We show that the amplitude slow modulation of Fourier modes cannot be described by the usual nonlinear Schroedinger equation but by a new model system of nonlinear evolution equations. This system is C-integrable, i.e. it can be linearized through an appropriate transformation of the dependent and independent variables. We demonstrate that a subclass of solutions gives rise to envelope solitons. Each envelope soliton propagates with its own group velocity. During a collision solitons maintain their shape, the only change being a phase shift. Numerical results are used to check the validity of the asymptotic perturbation method. (author)
Fleury, Romain; Alù, Andrea
2014-12-01
Broadband impedance matching and zero reflection of acoustic waves at a planar interface between two natural materials is a rare phenomenon, unlike its optical counterpart, frequently observed for polarized light incident at the Brewster angle. In this article, it is shown that, by inserting a metamaterial layer between two acoustic materials with different impedance, it is possible to artificially realize an extremely broadband Brewster-like acoustic intromission angle window, in which energy is totally transmitted from one natural medium to the other. The metamaterial buffer, composed of acoustically hard materials with subwavelength tapered apertures, provides an interesting way to match the impedances of two media in a broadband fashion, different from traditional methods like quarter-wave matching or Fabry-Pérot resonances, inherently narrowband due to their resonant nature. This phenomenon may be interesting for a variety of applications including energy harvesting, acoustic imaging, ultrasonic transducer technology, and noise control.
Li, Ben Q; Liu, Changhong
2011-01-15
A hybridization model for the localized surface plasmon resonance of a nanoshell is developed within the framework of long-wave approximation. Compared with the existing hybridization model derived from the hydrodynamic simulation of free electron gas, this approach is much simpler and gives identical results for a concentric nanoshell. Also, with this approach, the limitations associated with the original hybridization model are succinctly stated. Extension of this approach to hybridization modeling of more complicated structures such as multiplayered nanoshells is straightforward.
Crawford, F. W.
1975-01-01
A ten year summary was given of university research on the nature and characteristics of space related plasma resonance phenomena, whistler propagation in laboratory plasmas, and theoretical and experimental studies of plasma wave propagation. Data are also given on long delayed echoes, low frequency instabilities, ionospheric heating, and backscatter, and pulse propagation. A list is included of all conference papers, publications, and reports resulting from the study.
Wenchang Hao; Jiuling Liu; Minghua Liu; Yong Liang; Shitang He
2016-01-01
The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of...
Ishihara, Yasutoshi; Ohwada, Hiroshi
2011-01-01
To improve the efficacy of hyperthermia treatment, a novel method of non-invasive measurement of changes in body temperature is proposed. The proposed method is based on phase changes with temperature in electromagnetic waves in a heating applicator and the temperature dependence of the dielectric constant. An image of the temperature change inside a body is reconstructed by applying a computed tomography algorithm. This method can be combined easily with a heating applicator based on a cavity resonator and can be used to treat cancer effectively while non-invasively monitoring the heating effect. In this paper the phase change distributions of electromagnetic waves with temperature changes are measured experimentally, and the accuracy of reconstruction is discussed. The phase change distribution is reconstructed by using a prototype system with a rectangular aluminum cavity resonator that can be rotated 360° around an axis of rotation. To make measurements without disturbing the electromagnetic field distribution, an optical electric field sensor is used. The phase change distribution is reconstructed from 4-projection data by using a simple back-projection algorithm. The paper demonstrates that the phase change distribution can be reconstructed. The difference between phase changes obtained experimentally and by numerical analysis is about 20% and is related mainly to the limited signal detection sensitivity of electromagnetic waves. A temperature change inside an object can be reconstructed from the measured phase changes in a cavity resonator.
Energy Technology Data Exchange (ETDEWEB)
Kato, Yushi, E-mail: kato@eei.eng.osaka-u.ac.jp; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)
2016-02-15
A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.
Resonant two-photon annihilation of an electron-positron pair in a pulsed electromagnetic wave
Voroshilo, A. I.; Roshchupkin, S. P.; Nedoreshta, V. N.
2016-09-01
Two-photon annihilation of an electron-positron pair in the field of a plane low-intensity circularly polarized pulsed electromagnetic wave was studied. The conditions for resonance of the process which are related to an intermediate particle that falls within the mass shell are studied. In the resonant approximation the probability of the process was obtained. It is demonstrated that the resonant probability of two-photon annihilation of an electron-positron pair may be several orders of magnitude higher than the probability of this process in the absence of the external field. The obtained results may be experimentally verified by the laser facilities of the international megaprojects, for example, SLAC (National Accelerator Laboratory), FAIR (Facility for Antiproton and Ion Research), and XFEL (European X-Ray Free-Electron Laser).
Manifestation of the $P$-wave diproton resonance in single-pion production in $pp$ collisions
Platonova, M N
2016-01-01
It is demonstrated that many important features of single-pion production in $pp$ collisions at intermediate energies ($T_p \\simeq 400$-$800$ MeV) can naturally be explained by supposing excitation of intermediate diproton resonances in $pp$ channels ${}^1D_2$, ${}^3F_3$ and ${}^3P_2$, in addition to conventional mechanisms involving an intermediate $\\Delta$-isobar. We predict for the first time the crucial role of the ${}^3P_2$ diproton resonance, found in recent experiments on the single-pion production reaction $pp \\to pp({}^1S_0) \\pi^0$, in reproducing the proper behavior of spin-correlation parameters in the reaction $pp \\to d \\pi^+$ which were poorly described by conventional meson-exchange models to date. The possible quark structure of the $P$-wave diproton resonances is also discussed.
Spiral Waves and Multiple Spatial Coherence Resonances Induced by Colored Noise in Neuronal Network
Institute of Scientific and Technical Information of China (English)
唐昭; 李玉叶; 惠磊; 贾冰; 吉华光
2012-01-01
Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied. Each neuron is at resting state near a saddle-node bifurcation on invariant circle, coupled to its nearest neighbors by electronic coupling. Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity. By calculating spatial structure function and signal-to-noise ratio （SNR）, it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered, respectively. SNR manifest multiple local maximal peaks, indicating that the colored noise can induce multiple spatial coherence resonances. The maximal SNR values decrease as the correlation time of the noise increases. These results not only provide an example of multiple resonances, but also show that Gaussian colored noise play constructive roles in neuronal network.
Institute of Scientific and Technical Information of China (English)
LI; Fangyu
2001-01-01
［1］Gerlach, U. H., Cavity quantum-electrodynamical response to a gravitational wave, Phys. Rev. D, 1992, 46: 1 239.［2］Fortini, P., Gualdi, C., Ortolan, A., Interaction of a gravitational wave with electromagnetic currents, Nuovo Cimento B, 1991,106: 395.［3］Cuomo, D., Franceschetti, G., Panariello, G. et al., Proceeding of International Symposium on Experimental Gravitational Physics, Guangzhou, China (ed. Michelson, F. C.), Singapore: World Scientific, 1992, 262.［4］Logi, W. K., Mickelson, A. R., Electrogravitational conversion cross section in static electromagnetic fields, Phys. Rev. D, 1977, 16: 2 915.［5］Long, H. N., Soa, D. V., Tuan, T. A., The conversion of gravitons into photons in a periodic external electromagnetic field, Phys. Lett. A, 1994, 186: 382.［6］Boccaletti, D., Sabbata, V. D., Fortini, P., Conversion of photons into gravitons and vice versa in a static electromagnetic field, Nuovo Cimento B, 1970, 70: 129.［7］Grishchuk, L. P., Sazhin, M. V., Excitation and detection of standing gravitational waves, Sov. Phys. Jetp, 1975, 41: 787.［8］Gratta, G., Kim, K. J., Melissions, A. et al., Workshop on Beam-Beam and Beam-Radiation Interaction: High Intensity and Nonlinear Effects, Los Angeles, USA (ed. Pellegrini, C.), Singapore: World Scientific, 1992, 70.［9］Chen, P., Palazzi, G. D., Kim, K. J. et al., Workshop on Beam-Beam and Beam-Radiation Interaction: High Intensity and Nonlinear Effects, Los Angeles, USA (ed. Pellegrini, C.), Singapore: World Scientific, 1992, 84.［10］Grishchuk, L. P., Sazhin, M. V., Squeezed quantum states of a harmonic oscillator in the problem of gravitational wave detection. Sov. Phys. Jetp, 1983, 53: 1128.［11］Tang, M. X., Li, F. Y., Luo, J., High frequency gravitational wave of a composite toroidal electrodrynamical resonant system, Acta Physical Sinica, 1997, 6: 161.［12］Li, F. Y., Tang, M. X., Coherent resonant of a strong electromagnetic wave beam to a standing gravitational wave
Universal three-body recombination via resonant d-wave interactions
Wang, Jia; Wang, Yujun; Greene, Chris H
2012-01-01
For a system of three identical bosons interacting via short-range forces, when two of the atoms are about to form a two-body s-wave dimer, there exists an infinite number of three-body bound states. This effect is the well-known Efimov effect. These three-body states (Efimov states) are found to be universal for ultracold atomic gases and the lowest Efimov state crosses the three-body break-up threshold when the s-wave two-body scattering length is $a \\approx -9.73 r_{\\rm vdW}$, $r_{\\rm vdW}$ being the van der Waals length. This article focuses on a generalized version of this Efimov scenario, where two of the atoms are about to form a two-body d-wave dimer, which leads to strong d-wave interactions. In a recent paper [B. Gao, Phys. Rev. A. {\\bf 62}, 050702(R) (2000)], Bo Gao has predicted that for broad resonances the d-wave dimer is always formed near $a \\approx 0.956 r_{\\rm vdW}$. Here we find that a single universal three-body state associated with the d-wave dimer is also formed near the three-body brea...
Triply resonant coherent four-wave mixing in silicon nitride microresonators.
Fülöp, Attila; Krückel, Clemens J; Castelló-Lurbe, David; Silvestre, Enrique; Torres-Company, Victor
2015-09-01
Generation of multiple tones using four-wave mixing (FWM) has been exploited for many applications, ranging from wavelength conversion to frequency comb generation. FWM is a coherent process, meaning that its dynamics strongly depend on the relative phase among the waves involved. The coherent nature of FWM has been exploited for phase-sensitive processing in different waveguide structures, but it has never been studied in integrated microresonators. Waveguides arranged in a resonant way allow for an effective increase in the wavelength conversion efficiency (at the expense of a reduction in the operational bandwidth). In this Letter, we show that phase shaping of a three-wave pump provides an extra degree of freedom for controlling the FWM dynamics in microresonators. We present experimental results in single-mode, normal-dispersion high-Q silicon nitride resonators, and numerical calculations of systems operating in the anomalous dispersion regime. Our results indicate that the wavelength conversion efficiency and modulation instability gain in microcavities pumped by multiple waves can be significantly modified with the aid of simple lossless coherent control techniques.
Multiple scattering dynamics of fermions at an isolated p-wave resonance
Thomas, Ryan; Tiesinga, Eite; Wade, Andrew C J; Blakie, P Blair; Deb, Amita B; Kjærgaard, Niels
2016-01-01
The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions this requirement strictly prohibits scattering into 90 degree angles. Here we experimentally investigate the collisions of ultracold clouds fermionic $\\rm^{40}K$ atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no $90^\\circ$ yield. Above this threshold effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for $\\rm^{40}K$ facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomen...
Electrogravitational Resonance of a Gaussian Beam to a High-Frequency Relic Gravitational Wave
Institute of Scientific and Technical Information of China (English)
李芳昱; 唐孟希
2001-01-01
We consider the resonant response of a Gaussian beam passing through a static magnetic field to a high-frequency relic gravitational wave (GW). It is found that under the synchroresonance condition, the first-order perturbative electromagnetic energy fluxes will contain a "left circular wave" and a "right circular wave" around the symmetrical axis of the Gaussian beam, but the perturbative effects produced by the + and × polarization of the GW have a different physical behaviour. For the high-frequency relic GW with vg = 1010 Hz, h = l0-30, recently expected by the quintessential inflationary models, the corresponding perturbative photon flux passing through the region 10-2 m2 would be expected to be 104 s-1. This is the largest perturbative photon flux we have recently analysed and estimated using the typical laboratory parameters.
Sotani, Hajime; Stergioulas, Nikolaos
2007-01-01
We investigate torsional Alfv\\'en oscillations of relativistic stars with a global dipole magnetic field, via two-dimensional numerical simulations. We find that a) there exist two families of quasi-periodic oscillations (QPOs) with harmonics at integer multiples of the fundamental frequency, b) the lower-frequency QPO is related to the region of closed field lines, near the equator, while the higher-frequency QPO is generated near the magnetic axis, c) the QPOs are long-lived, d) for the chosen form of dipolar magnetic field, the frequency ratio of the lower to upper fundamental QPOs is ~0.6, independent of the equilibrium model or of the strength of the magnetic field, and e) within a representative sample of equations of state and of various magnetar masses, the Alfv\\'en QPO frequencies are given by accurate empirical relations that depend only on the compactness of the star and on the magnetic field strength. The lower and upper QPOs can be interpreted as corresponding to the edges or turning points of an...
Parallel ferromagnetic resonance and spin-wave excitation in exchange-biased NiFe/IrMn bilayers
Energy Technology Data Exchange (ETDEWEB)
Sousa, Marcos Antonio de, E-mail: marcossharp@gmail.com [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Pelegrini, Fernando [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Alayo, Willian [Departamento de Física, Universidade Federal de Pelotas, Pelotas, 96010-900 (Brazil); Quispe-Marcatoma, Justiniano; Baggio-Saitovitch, Elisa [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, 22290-180 (Brazil)
2014-10-01
Ferromagnetic Resonance study of sputtered Ru(7 nm)/NiFe(t{sub FM})/IrMn(6 nm)/Ru(5 nm) exchange-biased bilayers at X and Q-band microwave frequencies reveals the excitation of spin-wave and NiFe resonance modes. Angular variations of the in-plane resonance fields of spin-wave and NiFe resonance modes show the effect of the unidirectional anisotropy, which is about twice larger for the spin-wave mode due to spin pinning at the NiFe/IrMn interface. At Q-band frequency the angular variations of in-plane resonance fields also reveal the symmetry of a uniaxial anisotropy. A modified theoretical model which also includes the contribution of a rotatable anisotropy provides a good description of the experimental results.
Erokhin, N S; Rycroft, M J; Nunn, D G
1996-01-01
The influence of wave frequency variation on the anomalous cyclotron resonance $\\omega=\\omega_{Be}+kv_{\\|}$ interaction (ACRI) of energetic electrons with a ducted finite amplitude whistler-mode wave propagating through the so-called transient plasma layer (TPL) in the magnetosphere or in the ionosphere is studied both analytically and numerically. The anomalous cyclotron resonance interaction takes place in the case when the whistler-mode wave amplitude $B_{W}$ is consistent with the gradient of magnetic field interacting energetic electrons (synchronous particles) is determined. The efficiencies of both the pitch-angle scattering of resonant electrons and their transverse acceleration are studied and the efficiencies dependence on the magnitude and sign of the wave frequency drift is considered. It has been shown that in the case of ACRI occuring under conditions relevant to VLF-emission in the magnetosphere, the energy and pitch-angle changes of synchronous electrons may be enchanced by a factor $10^2 \\div...
Vieira, H S
2016-01-01
We study the scattering and the resonant frequencies (quasispectrum) of charged massive scalar waves by Kerr-Newman-Kasuya spacetime (dyon black hole). The equations of motion are written into a Heun form, and its analytical solutions are obtained. We obtain the resonant frequencies expression and the general exact regular partial wave solution. The special cases of the Kerr and Schwarzschild black holes are analyzed and the solutions are shown.
Vetoshkin, Evgeny; Babikov, Dmitri
2007-09-28
For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.
Perturbative Study of Energetic Particle Redistribution by Alfven Eigenmodes in ITER
Energy Technology Data Exchange (ETDEWEB)
N.N. Gorelenkov and R.B. White
2012-10-29
The modification of particle distributions by magnetohydrodynamic modes is an important topic for magnetically confined plasmas. Low amplitude modes are known to be capable of producing significant modification of injected neutral beam profiles. Flattening of a distribution due to phase mixing in an island or due to portions of phase space becoming stochastic is a process extremely rapid on the time scale of an experiment. In this paper we examine the effect of toroidal Alfven eigenmodes (TAE) and reversed shear Alfven eigenmodes (RSAE) in ITER on alpha particle and injected beam distributions using theoretically predicted mode amplitudes. It is found that for the equilibrium of a hybrid scenario even at ten times the predicted saturation level the modes have negligible effect on these distributions. A strongly reversed shear (or advanced) scenario, having a spectrum of modes that are much more global, is somewhat more susceptible to induced loss due to mode resonance, with alpha particle losses of over one percent with predicted amplitudes and somewhat larger with the assistance of toroidal field ripple. The elevated q profile contributes to stronger TAE (RSAE) drive and more unstable modes. An analysis of the existing mode-particle resonances is carried out to determine which modes are responsible for the profile modification and induced loss. We find that losses are entirely due to resonance with the counter-moving and trapped particle populations, with co-moving passing particles participating in resonances only deep within the plasma and not leading to loss.
The Modulation of Ionospheric Alfvén Resonator on Heating HF Waves and the Doppler Effect
Institute of Scientific and Technical Information of China (English)
Ni Bin-bin; Zhao Zheng-yu; Xie Shu-guo
2003-01-01
Abstract: The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature variaof the modulation effect and lucubrate possible reasons for the field can have an observable modulation effect on HF waves while its mechanism is quite different from that of Schumann resonant field on HF waves. The depth of modulation of IAR field, which directly inspires the formation of cross-spectrum between ULF waves and HF waves and results in spectral peaks at some gyro-frequencies of IAR. With respect to the Doppler effect during the propagation of HF waves in IAR, it is mainly caused by the motion of the high-speed flyer and the drifting electrons and the frequency shift from the phase variation of the reflected waves can be neglected when the frequency of HF incident wave is high enough.
Che, H; Viñas, A F
2013-01-01
The observed sub-proton scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quite-time suggest them as possible source of free energy to drive the turbulence. Using particle-in-cell simulations, we explore how free energy in energetic electrons, released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfv\\'enic and whistler waves are excited that evolve through inverse and forward magnetic energy cascades.
Phonon-electron interactions in piezoelectric semiconductor bulk acoustic wave resonators.
Gokhale, Vikrant J; Rais-Zadeh, Mina
2014-07-08
This work presents the first comprehensive investigation of phonon-electron interactions in bulk acoustic standing wave (BAW) resonators made from piezoelectric semiconductor (PS) materials. We show that these interactions constitute a significant energy loss mechanism and can set practical loss limits lower than anharmonic phonon scattering limits or thermoelastic damping limits. Secondly, we theoretically and experimentally demonstrate that phonon-electron interactions, under appropriate conditions, can result in a significant acoustic gain manifested as an improved quality factor (Q). Measurements on GaN resonators are consistent with the presented interaction model and demonstrate up to 35% dynamic improvement in Q. The strong dependencies of electron-mediated acoustic loss/gain on resonance frequency and material properties are investigated. Piezoelectric semiconductors are an extremely important class of electromechanical materials, and this work provides crucial insights for material choice, material properties, and device design to achieve low-loss PS-BAW resonators along with the unprecedented ability to dynamically tune resonator Q.
Wang, Geng; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Zhang, Min; Wang, Shui
2017-02-01
Cyclotron resonant scattering by electromagnetic ion cyclotron (EMIC) waves has been considered to be responsible for the rapid loss of radiation belt high-energy electrons. For parallel-propagating EMIC waves, the nonlinear character of cyclotron resonance has been revealed in recent studies. Here we present the first study on the nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique EMIC waves on the basis of test particle simulations. Higher wave obliquity produces stronger nonlinearity of harmonic resonances but weaker nonlinearity of fundamental resonance. Compared to the quasi-linear prediction, these nonlinear resonances yield a more rapid loss of electrons over a wider pitch angle range. In the quasi-linear regime, the ultrarelativistic electrons are lost in the equatorial pitch angle range αeq87.5° at ψ = 20° and 40°. At the resonant pitch angles αeq<75°, the difference between quasi-linear and nonlinear loss timescales tends to decrease with the wave normal angle increasing. At ψ = 0° and 20°, the nonlinear electron loss timescale is 10% shorter than the quasi-linear prediction; at ψ = 40°, the difference in loss timescales is reduced to <5%.
Nishino, Hideo; Iwata, Kodai; Ishikawa, Masashi
2016-07-01
We present a novel method of measuring the pipe wall thickness using the resonance of the circumferential (C-) Lamb wave generated by a piezoelectric ring-shaped sensor (PS). The PS is a special device for an axially propagating torsional wave; however, the C-Lamb waves are generated simultaneously as spurious signals owing to the structure of the PS. Particularly under resonant conditions, the C-Lamb waves are dominantly generated, distorting the axially propagating wave. In this method, these troublesome spurious signals are used effectively for the measurement of the wall thickness under the PS location that is a dead zone of the PS itself. The method can compensate for its drawback, namely, the dead zone problem, without using additional instruments. In this study, the mechanisms of the generation and resonance of the C-Lamb waves were first explained. Secondly, the principle of the wall thickness estimation utilizing the resonance of the C-Lamb waves was proposed. Finally, experimental verifications were carried out. The estimated wall thicknesses agreed very well (maximum 1.5% error) with those measured by a micrometer caliper under suitable resonant conditions.
Yang, Yi; Peng, Chao; Liang, Yong; Li, Zhengbin; Noda, Susumu
2014-08-01
A general coupled-wave theory is presented for the guided resonance in photonic crystal (PhC) slabs with TM-like polarization. Numerical results based on our model are presented with finite-difference time-domain validations. The proposed analysis facilitates comprehensive understanding of the physics of guided resonance in PhC slabs and provides guidance for its applications.
Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)
Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo
2016-11-01
A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).
Institute of Scientific and Technical Information of China (English)
ZHANG Shao-hua; YAO Jian-quan; ZHOU Rui; WEN Wu-qi; XU De-gang; WANG Peng
2011-01-01
Using nanosecond pulse near-infrared and mid-infrared laser pulses as the pump source,we obtain terahertz wave sources via four-wave difference frequency mixing.From the coupled wave theory,.we analyze the four-wave mixing process of GaSe crystal and alkali metal vapor in detail,get the analytical expression of terahertz wave output power,and discuss the conditions for achieving phase matching.By adjusting the pump frequency,the third-order nonlinear polarization of alkali metal vapor is resonance-enhanced.This program offers a new type of high-power terahertz radiation source.
Continuous-wave, two-crystal, singly-resonant optical parametric oscillator: theory and experiment.
Samanta, G K; Aadhi, A; Ebrahim-Zadeh, M
2013-04-22
We present theoretical and experimental study of a continuous-wave, two-crystal, singly-resonant optical parametric oscillator (T-SRO) comprising two identical 30-mm-long crystals of MgO:sPPLT in a four- mirror ring cavity and pumped with two separate pump beams in the green. The idler beam after each crystal is completely out-coupled, while the signal radiation is resonant inside the cavity. Solving the coupled amplitude equations under undepleted pump approximation, we calculate the maximum threshold reduction, parametric gain acceptance bandwidth and closest possible attainable wavelength separation in arbitrary dual-wavelength generation and compare with the experimental results. Although the T-SRO has two identical crystals, the acceptance bandwidth of the device is equal to that of a single-crystal SRO. Due to the division of pump power in two crystals, the T-SRO can handle higher total pump power while lowering crystal damage risk and thermal effects. We also experimentally verify the high power performance of such scheme, providing a total output power of 6.5 W for 16.2 W of green power at 532 nm. We verified coherent energy coupling between the intra-cavity resonant signal waves resulting Raman spectral lines. Based on the T-SRO scheme, we also report a new technique to measure the temperature acceptance bandwidth of the single-pass parametric amplifier across the OPO tuning range.
Multilayer graphene electrodes for one-port surface acoustic wave resonator mass sensor
Leong, Ainan; Swamy, Varghese; Ramakrishnan, N.
2017-02-01
A one-port surface acoustic wave (SAW) resonator mass sensor composed of multilayer graphene (MLG) electrodes was investigated by the finite element method (FEM) and analyses were carried out to study the enhancement of sensitivity and the secondary effects caused by MLG electrodes on the performance of the resonator. Unlike metal electrodes, MLG electrode offers elastic loading to the contact surface, as evidenced by the increase in the surface velocity of the SAW device. In terms of the sensitivity of the mass sensor, MLG electrode showed the largest center frequency shift in response to a change in mass loading, as well as when used as a gas sensor to detect volatile organic compounds (VOCs). Also, MLG electrodes offered the least triple transit signal (TTS) and bulk acoustic wave (BAW) generations compared with Al and Au–Cr electrodes. Thus, the one-port SAW resonator with graphene electrodes not only possesses excellent performance characteristics but also gives rise to new opportunities in the development of highly sensitive mass sensors.
Multiple scattering dynamics of fermions at an isolated p-wave resonance
Thomas, R.; Roberts, K. O.; Tiesinga, E.; Wade, A. C. J.; Blakie, P. B.; Deb, A. B.; Kjærgaard, N.
2016-07-01
The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic 40K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for 40K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance.
S-, P- and D-wave resonances in positronium-sodium and positronium-potassium scattering
Adhikari, S K; Adhikari, Sadhan K.; Mandal, Puspajit
2001-01-01
Scattering of positronium (Ps) by sodium and potassium atoms has been investigated employing a three-Ps-state coupled-channel model with Ps(1s,2s,2p) states using a time-reversal-symmetric regularized electron-exchange model potential fitted to reproduce accurate theoretical results for PsNa and PsK binding energies. We find a narrow S-wave singlet resonance at 4.58 eV of width 0.002 eV in the Ps-Na system and at 4.77 eV of width 0.003 eV in the Ps-K system. Singlet P-wave resonances in both systems are found at 5.07 eV of width 0.3 eV. Singlet D-wave structures are found at 5.3 eV in both systems. We also report results for elastic and Ps-excitation cross sections for Ps scattering by Na and K.
Energy Technology Data Exchange (ETDEWEB)
Evangelou, Sofia, E-mail: Evangelousof@gmail.com
2017-05-10
Highlights: • A high-Q single-crystal diamond nanomechanical resonator embedded with nitrogen-vacancy (NV) centers is studied. • A Δ-type coupling configuration is formed. • The spin states of the ground state triplet of the NV centers interact with a strain field and two microwave fields. • The absorption and dispersion properties of the acoustic wave field are controlled by the use of the relative phase of the fields. • Phase-dependent acoustic wave absorption, transparency, and gain are obtained. • “Slow sound” and negative group velocities are also possible. - Abstract: We consider a high-Q single-crystal diamond nanomechanical resonator embedded with nitrogen-vacancy (NV) centers. We study the interaction of the transitions of the spin states of the ground state triplet of the NV centers with a strain field and two microwave fields in a Δ-type coupling configuration. We use the relative phase of the fields for the control of the absorption and dispersion properties of the acoustic wave field. Specifically, we show that by changing the relative phase of the fields, the acoustic field may exhibit absorption, transparency, gain and very interesting dispersive properties.
Energy Technology Data Exchange (ETDEWEB)
Gorelenkov, N.N. [Princeton Plasma Physics Laboratory, Princeton University (United States)], E-mail: ngorelen@pppl.gov; Berk, H.L. [IFS, Austin, Texas (United States); Fredrickson, E. [Princeton Plasma Physics Laboratory, Princeton University (United States); Sharapov, S.E. [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United States)
2007-10-08
New global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfven-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high-beta >20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfven coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.
Two-atom energy spectrum in a harmonic trap near a Feshbach resonance at higher partial waves
Suzuki, Akira; Liang, Yi; Bhaduri, Rajat K.
2009-09-01
Two atoms in an optical lattice may be made to interact strongly at higher partial waves near a Feshbach resonance. These atoms, under appropriate constraints, could be bosonic or fermionic. The universal l=2 energy spectrum for such a system, with a caveat, is presented in this paper and checked with the spectrum obtained by direct numerical integration of the Schrödinger equation. The results reported here extend those of Yip for p -wave resonance [S.-K. Yip, Phys. Rev. A 78, 013612 (2008)], while exploring the limitations of a universal expression for the spectrum for the higher partial waves.
Nonlinear interplay of Alfven instabilities and energetic particles in tokamaks
Biancalani, A; Cole, M; Di Troia, C; Lauber, Ph; Mishchenko, A; Scott, B; Zonca, F
2016-01-01
The confinement of energetic particles (EP) is crucial for an efficient heating of tokamak plasmas. Plasma instabilities such as Alfven Eigenmodes (AE) can redistribute the EP population making the plasma heating less effective, and leading to additional loads on the walls. The nonlinear dynamics of toroidicity induced AE (TAE) is investigated by means of the global gyrokinetic particle-in-cell code ORB5, within the NEMORB project. The nonperturbative nonlinear interplay of TAEs and EP due to the wave-particle nonlinearity is studied. In particular, we focus on the nonlinear modification of the frequency, growth rate and radial structure of the TAE, depending on the evolution of the EP distribution in phase space. For the ITPA benchmark case, we find that the frequency increases when the growth rate decreases, and the mode shrinks radially. This nonlinear evolution is found to be correctly reproduced by means of a quasilinear model, namely a model where the linear effects of the nonlinearly modified EP distri...
Temporal coupled mode theory of standing wave resonant cavities for infrared photodetection.
Lesmanne, Emeline; De Lamaestre, Roch Espiau; Fowler, David; Boutami, Salim; Badano, Giacomo
2015-03-23
Standing wave resonating cavities have been proposed in the past to increase the performance of infrared detectors by minimizing the volume of photogeneration, hence the noise, while maintaining the same quantum efficiency. We present an approach based on the temporal coupled mode theory to explain their behavior and limitations. If the ratio of the imaginary part of the absorber's dielectric function to the index of the incident medium ε″(d)/n₀ is larger than 1.4, then the absorption cross section σ(a) can attain its maximum value, which for an isolated cavity is approximately 2λ/π. Besides, for σ(a) to exceed the cavity width, the incident medium refractive index must be close to unity. Metallic loss is negligible in the infrared, making those resonators suitable for integration in infrared photodetectors.
Rational design of metallic nanocavities for resonantly enhanced four-wave mixing
Almeida, Euclides
2015-01-01
Optimizing the shape of nanostructures and nano antennas for specific optical properties has evolved to be a very fruitful activity. With modern fabrication tools a large variety of possibilities is available for shaping both nanoparticles and nanocavities; in particular nanocavities in thin metal films have emerged as attractive candidates for new metamaterials and strong linear and nonlinear optical systems. Here we rationally design metallic nanocavities to boost their Four Wave Mixing response by resonating the optical plasmonic resonances with the incoming and generated beams. The linear and nonlinear optical responses as well as the propagation of the electric fields inside the cavities are derived from the solution of Maxwell equations by using the 3D finite-differences time domain method. The observed conversion-efficiency of near infra-red to visible light equals or surpasses that of BBO of equivalent thickness. Implications to further optimization for efficient and broadband ultrathin nonlinear opti...