WorldWideScience

Sample records for resonance study probing

  1. Model for resonant plasma probe.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  2. Resonance probe; La sonde a resonance

    Energy Technology Data Exchange (ETDEWEB)

    Lepechinsky, D; Messiaen, A; Rolland, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    After a brief review of papers recently published on the resonance probe as a tool for plasma diagnostics, the main features of the theory proposed by one of us are recalled. In this theory the geometry of the resonator formed by the probe, the ion sheath and the plasma is explicitly taken into account with the quasi-static and cold plasma approximations. Some new results emerging from this theory are indicated and a comparison with experimental data obtained with a spherical probe placed in a quiescent mercury-vapour plasma is made. A good quantitative agreement has been observed, indicating that the theory is satisfactory and justifying the assumptions involved. Nevertheless it appears that in some cases experimental results can only be interpreted when non collisional damping phenomena are taken into consideration. (author) [French] Apres un apercu des etudes recemment publiees sur la sonde a resonance pour le diagnostic des plasmas, on rappelle l'essentiel de la theorie proposee par l'un de nous ou il est tenu compte explicitement de la geometrie du resonateur forme par le systeme sonde-gaine ionique-plasma dans l'approximation quasi-statique et du plasma froid. On indique quelques resultats nouveaux pouvant etre tires de cette theorie et on la confronte avec les donnees experimentales obtenues pour une sonde spherique placee dans un plasma de mercure en equilibre. Un tres bon accord quantitatif a ete constate, indiquant que la theorie est satisfaisante et justifiant les approximations faites dans celle-ci. Il apparait toutefois que certains resultats experimentaux ne peuvent etre interpretes qu'en tenant compte des phenomenes d'amortissement non collisionnels. (auteur)

  3. Study of resonance production as a probe of heavy-ion collisions with the ALICE detector

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Hadronic resonances provide a rich set of measurements that can be used to study the properties of ultra-relativistic heavy-ion collisions. Measurements of resonances and long-lived particles provide information about the properties of the late hadronic phase due to the presence of scattering effects that can modify resonance yields. Resonances can also be used along with long-lived hadrons to study the various mechanisms that shape particle pT spectra, including in-medium energy loss, radial flow, and recombination. Measurements of resonances in pp and p-Pb collisions serve as baselines for measurements in heavy-ion collisions, provide input for tuning QCD-inspired event generators, and aid searches for collective behavior in small systems. I will present measurements of a wide variety of hadronic resonances, including some of the most recent results presented at the Quark Matter conference. By comparing measurements of resonances with different masses, lifetimes, and quark contents in pp, p-Pb, and Pb-Pb co...

  4. Waveguide volume probe for magnetic resonance imaging and spectroscopy

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a probe for use within the field of nuclear magnetic resonance, such as magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS)). One embodiment relates to an RF probe for magnetic resonance imaging and/or spectroscopy comprising a conductive...... non-magnetic hollow waveguide having an internal volume and at least one open end, one or more capacitors and at least a first conductive non-magnetic wire, wherein said first conductive wire connects at least one of said one or more capacitors to opposite walls of one open end of the waveguide...

  5. Resonator Sensitivity Optimization in Magnetic Resonance and the Development of a Magic Angle Spinning Probe for the NMR Study of Rare Spin Nuclei on Catalytic Surfaces.

    Science.gov (United States)

    Doty, Francis David

    The sensitivity of an arbitrary resonator for the detection of a magnetic resonance signal is derived from basic energy considerations, and is shown to be dependent on V(,s)/t(,90)P(' 1/2). The radiation damping time constant is shown to be inversely dependent on the rf filling factor. Several resonators are analyzed in detail. The optimum solenoid is shown to have a length of about 1.5 times the diameter. The multilayer solenoid and the capacitively shortened slotted line resonator are shown to have advantages for samples with high dielectric losses. The capacitively shortened slotted line resonator is shown to substantially reduce acoustic ringing problems. Efficient methods are discussed for double and triple tuning these resonators. A slotted cylindrical resonator is described which gives higher sensitivity and faster response time than conventional cavities for very small samples at X-band ESR frequencies. Double tuned circuits using lumped elements are shown to be generally more efficient than those using transmission lines in generating rf fields. The optimum inductance ratio of the two coils in a ('13)C, ('1)H CP experiment is about 3. The high speed cylindrical sample spinner is analyzed in terms of compressible fluid dynamics, resonant modes, and structural analysis to arrive at optimum air bearing and spinner design recommendations. The optimum radial clearance is shown to depend on the 1/3 power of the rotor diameter. The required air bearing hole diameter has a square root dependence on the rotor diameter. Air pockets are shown to increase the resonant frequencies. Relevant data for a number of high strength insulators including hard ceramics are tabulated, and limiting speeds are calculated. CP MAS experiments on a 5% monolayer of n-butylamine absorbed on (gamma)-alumina reveal six lines. By comparison with the liquid phase spectrum it was determined that at least two types of chemically different surface species were present and that surface

  6. Probing α-relaxation with nuclear magnetic resonance echo decay and relaxation: a study on nitrile butadiene rubber.

    Science.gov (United States)

    Sturniolo, Simone; Pieruccini, Marco; Corti, Maurizio; Rigamonti, Attilio

    2013-01-01

    One dimensional (1)H NMR measurements have been performed to probe slow molecular motions in nitrile butadiene rubber (NBR) around its calorimetric glass transition temperature Tg. The purpose is to show how software aided data analysis can extract meaningful dynamical data from these measurements. Spin-lattice relaxation time, free induction decay (FID) and magic sandwich echo (MSE) measurements have been carried out at different values of the static field, as a function of temperature. It has been evidenced how the efficiency of the MSE signal in reconstructing the original FID exhibits a sudden minimum at a given temperature, with a slight dependence from the measuring frequency. Computer simulations performed with the software SPINEVOLUTION have shown that the minimum in the efficiency reconstruction of the MSE signal corresponds to the average motional frequency taking a value around the inter-proton coupling. The FID signals have been fitted with a truncated form of a newly derived exact correlation function for the transverse magnetization of a dipolar interacting spin pair, which allows one to avoid the restriction of the stationary and Gaussian approximations. A direct estimate of the conformational dynamics on approaching the Tg is obtained, and the results are in agreement with the analysis performed via the MSE reconstruction efficiency. The occurrence of a wide distribution of correlation frequencies for the chains motion, with a Vogel-Fulcher type temperature dependence, is addressed. A route for a fruitful study of the dynamics accompanying the glass transition by a variety of NMR measurements is thus proposed. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Pygmy resonances probed with electron scattering

    International Nuclear Information System (INIS)

    Bertulani, C.A.

    2007-01-01

    Pygmy resonances in light nuclei excited in electron scattering are discussed. These collective modes will be explored in future electron-ion colliders such as ELISe/FAIR (spokesperson: Haik Simon - GSI). Response functions for direct breakup are explored with few-body and hydrodynamical models, including the dependence upon final state interactions

  8. The multipole resonance probe: characterization of a prototype

    Energy Technology Data Exchange (ETDEWEB)

    Lapke, Martin; Oberrath, Jens; Brinkmann, Ralf Peter; Mussenbrock, Thomas [Lehrstuhl fuer Theoretische Elektrotechnik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Schulz, Christian; Rolfes, Ilona [Lehrstuhl fuer Hochfrequenzsysteme, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Storch, Robert; Musch, Thomas [Lehrstuhl fuer Elektronische Schaltungstechnik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Styrnoll, Tim; Awakowicz, Peter [Lehrstuhl fuer Allgemeine Elektrotechnik und Plasmatechnik, Ruhr Universitaet Bochum, D-44780 Bochum (Germany); Zietz, Christian [Institut fuer Hochfrequenztechnik und Funksysteme, Leibniz Universitaet Hannover, D-30167 Hannover (Germany)

    2011-08-15

    The multipole resonance probe (MRP) was recently proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2008 Appl. Phys. Lett. 93 051502). This communication reports the experimental characterization of a first MRP prototype in an inductively coupled argon/nitrogen plasma at 10 Pa. The behavior of the device follows the predictions of both an analytical model and a numerical simulation. The obtained electron densities are in excellent agreement with the results of Langmuir probe measurements. (brief communication)

  9. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  10. Contribution to the study of molecular movements in cyclohexane by electron spin resonance and electron-nuclear double resonance using a radical probe; Contribution a l'etude des mouvements moleculaires dans le cyclohexane par resonance paramagnetique electronique et double resonance electronique-nucleaire a l'aide d'une sonde radicalaire

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Solutions of stable free radicals of the nitroxide type have been studied as a function of temperature. In the plastic or globular state, the cyclohexane molecules have rapid rotational and diffusional movements. They transmit this movement to dissolved free radicals. Conversely, measurements by electron spin resonance of the absolute movement of the radicals, and by electron nuclear double resonance of their movement relative to the cyclohexane molecules give very precise methods for local analyses of the movement present in the cyclohexane matrix. The principle of these techniques makes up the 'radical probe method'. (author) [French] Des solutions de radicaux libres stables, du type nitroxyde dans le cyclohexane ont ete etudiees, en fonction de la temperature. Les molecules de cyclohexane, dans l'etat plastique ou globulaire, sont animees de mouvements rapides de rotation sur elles-memes et de diffusion. Elles transmettent leur mobilite aux radicaux libres dissous. Reciproquement, la mesure du mouvement absolu des radicaux, a l'aide de la resonance paramagnetique electronique, et celle du mouvement relatif des radicaux et des molecules de cyclohexane par double resonance electronique-nucleaire, constituent des methodes tres precises pour analyser localement les mouvements presents dans la matrice de cyclohexane. Ce principe et ces techniques constituent la 'methode de la sonde radicalaire'. (auteur)

  11. Contribution to the study of molecular movements in cyclohexane by electron spin resonance and electron-nuclear double resonance using a radical probe; Contribution a l'etude des mouvements moleculaires dans le cyclohexane par resonance paramagnetique electronique et double resonance electronique-nucleaire a l'aide d'une sonde radicalaire

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Solutions of stable free radicals of the nitroxide type have been studied as a function of temperature. In the plastic or globular state, the cyclohexane molecules have rapid rotational and diffusional movements. They transmit this movement to dissolved free radicals. Conversely, measurements by electron spin resonance of the absolute movement of the radicals, and by electron nuclear double resonance of their movement relative to the cyclohexane molecules give very precise methods for local analyses of the movement present in the cyclohexane matrix. The principle of these techniques makes up the 'radical probe method'. (author) [French] Des solutions de radicaux libres stables, du type nitroxyde dans le cyclohexane ont ete etudiees, en fonction de la temperature. Les molecules de cyclohexane, dans l'etat plastique ou globulaire, sont animees de mouvements rapides de rotation sur elles-memes et de diffusion. Elles transmettent leur mobilite aux radicaux libres dissous. Reciproquement, la mesure du mouvement absolu des radicaux, a l'aide de la resonance paramagnetique electronique, et celle du mouvement relatif des radicaux et des molecules de cyclohexane par double resonance electronique-nucleaire, constituent des methodes tres precises pour analyser localement les mouvements presents dans la matrice de cyclohexane. Ce principe et ces techniques constituent la 'methode de la sonde radicalaire'. (auteur)

  12. Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for (19)F magnetic resonance: a proof-of-concept study.

    Science.gov (United States)

    Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M

    2010-01-04

    The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.

  13. Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes

    Directory of Open Access Journals (Sweden)

    Nina P. L. Junager

    2016-07-01

    Full Text Available Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET probes are among the most often used tools for the detection of nucleic acids and in particular, for the detection of mutations. However, multiple parameters must be taken into account in order to create efficient FRET probes that are sensitive to nucleic acid mutations. In this review; we focus on the design principles for such probes and available computational methods that allow for their rational design. Applications of advanced, rationally designed FRET probes range from new insights into cellular heterogeneity to gaining new knowledge of nucleic acid structures directly in living cells.

  14. Charge-exchange giant resonances as probes of nuclear structure

    International Nuclear Information System (INIS)

    Blomgren, J.

    2001-09-01

    Giant resonances populated in charge-exchange reactions can reveal detailed information about nuclear structure properties, in spite of their apparent featurelessness. The (p,n) and (n,p) reactions - as well as their analog reactions - proceed via the same nuclear matrix element as beta decay. Thereby, they are useful for probing electroweak properties in nuclei, especially for those not accessible to beta decay. The nuclear physics aspects of double beta decay might be investigated in double charge-exchange reactions. detailed nuclear structure information, such as the presence of ground-state correlations, can be revealed via identification of 'first-forbidden' transitions. In addition, astrophysics aspects and halo properties of nuclei have been investigated in charge exchange. Finally, these experiments have questioned our knowledge of the absolute strength of the strong interaction

  15. A Resonant Scanning Dipole-Antenna Probe for Enhanced Nanoscale Imaging

    NARCIS (Netherlands)

    Neumann, L.; van 't Oever, Jan Joannes Frederik; van Hulst, N.F.

    2013-01-01

    We present a scanning antenna probe that provides 35 nm optical hotspots with a 16-fold excitation enhancement. A resonant optical antenna, tuned to operation in the visible, is carved into the aluminum-coated scanning probe. The antenna resonances, field localization, excitation, and polarization

  16. 129Xe nuclear magnetic resonance study of pitch-based activated carbon modified by air oxidation/pyrolysis cycles: a new approach to probe the micropore size.

    Science.gov (United States)

    Romanenko, Konstantin V; Py, Xavier; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Fraissard, Jacques

    2006-02-23

    (129)Xe NMR has been used to study a series of homologous activated carbons obtained from a KOH-activated pitch-based carbon molecular sieve modified by air oxidation/pyrolysis cycles. A clear correlation between the pore size of microporous carbons and the (129)Xe NMR of adsorbed xenon is proposed for the first time. The virial coefficient delta(Xe)(-)(Xe) arising from binary xenon collisions varied linearly with the micropore size and appeared to be a better probe of the microporosity than the chemical shift extrapolated to zero pressure. This correlation was explained by the fact that the xenon collision frequency increases with increasing micropore size. The chemical shift has been shown to vary very little with temperature (less than 9 ppm) for xenon trapped inside narrow and wide micropores. This is indicative of a smooth xenon-surface interaction potential.

  17. Fabrication of Localized Surface Plasmon Resonance Fiber Probes Using Ionic Self-Assembled Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Miao Wan

    2010-07-01

    Full Text Available An nm-thickness composite gold thin film consisting of gold nanoparticles and polyelectrolytes is fabricated through ionic self-assembled multilayers (ISAM technique and is deposited on end-faces of optical fibers to construct localized surface plasmon resonance (LSPR fiber probes. We demonstrate that the LSPR spectrum induced by ISAM gold films can be fine-tuned through the ISAM procedure. We investigate variations of reflection spectra of the probe with respect to the layer-by-layer adsorption of ISAMs onto end-faces of fibers, and study the spectral variation mechanism. Finally, we demonstrated using this fiber probe to detect the biotin-streptavidin bioconjugate pair. ISAM adsorbed on optical fibers potentially provides a simple, fast, robust, and low-cost, platform for LSPR biosensing applications.

  18. Gadolinium- and manganite-based contrast agents with fluorescent probes for both magnetic resonance and fluorescence imaging of pancreatic islets: a comparative study

    Czech Academy of Sciences Publication Activity Database

    Berková, Z.; Jirák, D.; Zacharovová, K.; Lukeš, I.; Kotková, Z.; Kotek, J.; Kačenka, M.; Kaman, Ondřej; Řehoř, I.; Hájek, M.; Saudek, F.

    2013-01-01

    Roč. 8, č. 4 (2013), s. 614-621 ISSN 1860-7179 Institutional support: RVO:68378271 Keywords : contrast agents * gadolinium * magnetic resonance imaging * manganite * pancreatic islet s Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.046, year: 2013

  19. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.

    Science.gov (United States)

    Dikalov, Sergey I; Polienko, Yuliya F; Kirilyuk, Igor

    2018-05-20

    Oxidative stress contributes to numerous pathophysiological conditions such as development of cancer, neurodegenerative, and cardiovascular diseases. A variety of measurements of oxidative stress markers in biological systems have been developed; however, many of these methods are not specific, can produce artifacts, and do not directly detect the free radicals and reactive oxygen species (ROS) that cause oxidative stress. Electron paramagnetic resonance (EPR) is a unique tool that allows direct measurements of free radical species. Cyclic hydroxylamines are useful and convenient molecular probes that readily react with ROS to produce stable nitroxide radicals, which can be quantitatively measured by EPR. In this work, we critically review recent applications of various cyclic hydroxylamine spin probes in biology to study oxidative stress, their advantages, and the shortcomings. Recent Advances: In the past decade, a number of new cyclic hydroxylamine spin probes have been developed and their successful application for ROS measurement using EPR has been published. These new state-of-the-art methods provide improved selectivity and sensitivity for in vitro and in vivo studies. Although cyclic hydroxylamine spin probes EPR application has been previously described, there has been lack of translation of these new methods into biomedical research, limiting their widespread use. This work summarizes "best practice" in applications of cyclic hydroxylamine spin probes to assist with EPR studies of oxidative stress. Additional studies to advance hydroxylamine spin probes from the "basic science" to biomedical applications are needed and could lead to better understanding of pathological conditions associated with oxidative stress. Antioxid. Redox Signal. 28, 1433-1443.

  20. Thirteen pump-probe resonances of the sodium D1 line

    International Nuclear Information System (INIS)

    Wong, Vincent; Boyd, Robert W.; Stroud, C. R. Jr.; Bennink, Ryan S.; Marino, Alberto M.

    2003-01-01

    We present the results of a pump-probe laser spectroscopic investigation of the Doppler-broadened sodium D1 resonance line. We find 13 resonances in the resulting spectra. These observations are well described by the numerical predictions of a four-level atomic model of the hyperfine structure of the sodium D1 line. We also find that many, but not all, of these features can be understood in terms of processes originating in a two-level or three-level subset of the full four-level model. The processes we observed include forward near-degenerate four-wave mixing and saturation in a two-level system, difference-frequency crossing and nondegenerate four-wave mixing in a three-level V system, electromagnetically induced transparency and optical pumping in a three-level lambda system, cross-transition resonance in a four-level double-lambda system, and conventional optical pumping. Most of these processes lead to sub-Doppler or even subnatural linewidths. The dependence of these resonances on the pump intensity and pump detuning from atomic resonance are also studied

  1. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  2. In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Murugesan; Cook; Devasahayam

    1997-01-01

    , Recent advances in radiofrequency (RF) electronics have enabled the generation of pulses of the order of 10-50 ns. Such short pulses provide adequate spectral coverage for EPR studies at 300 MHz resonant frequency. Acquisition of free induction decays (FID) of paramagnetic species possessing...... inhomogeneously broadened narrow lines after pulsed excitation is feasible with an appropriate digitizer/averager. This report describes the use of time-domain RF EPR spectrometry and imaging for in vivo applications. FID responses were collected from a water-soluble, narrow line width spin probe within phantom...... samples in solution and also when infused intravenously in an anesthetized mouse. Using static magnetic field gradients and back-projection methods of image reconstruction, two-dimensional images of the spin-probe distribution were obtained in phantom samples as well as in a mouse. The resolution...

  3. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  4. Proton capture resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, G.E. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bilpuch, E.G. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bybee, C.R. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Cox, J.M.; Fittje, L.M. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Labonte, M.A.; Moore, E.F.; Shriner, J.D. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Shriner, J.F. Jr. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Vavrina, G.A. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Wallace, P.M. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708

    1997-02-01

    The fluctuation properties of quantum systems now are used as a signature of quantum chaos. The analyses require data of extremely high quality. The {sup 29}Si(p,{gamma}) reaction is being used to establish a complete level scheme of {sup 30}P to study chaos and isospin breaking in this nuclide. Determination of the angular momentum J, the parity {pi}, and the isospin T from resonance capture data is considered. Special emphasis is placed on the capture angular distributions and on a geometric description of these angular distributions. {copyright} {ital 1997 American Institute of Physics.}

  5. Probing atomic scale transformation of fossil dental enamel using Fourier transform infrared and nuclear magnetic resonance spectroscopy: a case study from the Tugen Hills (Rift Gregory, Kenya).

    Science.gov (United States)

    Yi, Haohao; Balan, Etienne; Gervais, Christel; Ségalen, Loïc; Roche, Damien; Person, Alain; Fayon, Franck; Morin, Guillaume; Babonneau, Florence

    2014-09-01

    A series of fossil tooth enamel samples was investigated by Fourier transform infrared (FTIR) spectroscopy, (13)C and (19)F magic-angle spinning nuclear magnetic resonance (MAS NMR) and scanning electron microscopy (SEM). Tooth remains were collected in Mio-Pliocene deposits of the Tugen Hills in Kenya. Significant transformations were observed in fossil enamel as a function of increasing fluorine content (up to 2.8wt.%). FTIR spectroscopy revealed a shift of the ν1 PO4 stretching band to higher frequency. The ν2 CO3 vibrational band showed a decrease in the intensity of the primary B-type carbonate signal, which was replaced by a specific band at 864cm(-1). This last band was ascribed to a specific carbonate environment in which the carbonate group is closely associated to a fluoride ion. The occurrence of this carbonate defect was consistently attested by the observation of two different fluoride signals in the (19)F NMR spectra. One main signal, at ∼-100ppm, is related to structural F ions in the apatite channel and the other, at -88ppm, corresponds to the composite defect. These spectroscopic observations can be understood as resulting from the mixture of two phases: biogenic hydroxylapatite (bioapatite) and secondary fluorapatite. SEM observations of the most altered sample confirmed the extensive replacement of the bioapatite by fluorapatite, resulting from the dissolution of the primary bioapatite followed by the precipitation of carbonate-fluorapatite. The ν2 CO3 IR bands can be efficiently used to monitor the extent of this type of bioapatite transformation during fossilization. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Nuclear magnetic resonance probe head design for precision strain control

    International Nuclear Information System (INIS)

    Kissikov, T.; Sarkar, R.; Bush, B. T.; Lawson, M.; Canfield, P. C.; Curro, N. J.

    2017-01-01

    Here, we present the design and construction of an NMR probe to investigate single crystals under strain at cryogenic temperatures. The probe head incorporates a piezoelectric-based apparatus from Razorbill Instruments that enables both compressive and tensile strain tuning up to strain values on the order of 0.3% with a precision of 0.001%. 75 As NMR in BaFe 2 As 2 reveals large changes to the electric field gradient and indicates that the strain is homogeneous to within 16% over the volume of the NMR coil.

  7. Photothermal probing of plasmonic hotspots with nanomechanical resonator

    DEFF Research Database (Denmark)

    Schmid, Silvan; Wu, Kaiyu; Rindzevicius, Tomas

    2014-01-01

    Plasmonic nanostructures (hotspots) are key components e.g. in plasmon-enhanced spectroscopy, plasmonic solar cells, or as nano heat sources. The characterization of single hotspots is still challenging due to a lack of experimental tools. We present the direct photothermal probing and mapping...

  8. Electron spin resonance probed competing states in NiMnInSi Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.S. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Lin, J.G., E-mail: jglin@ntu.edu.tw [Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Titov, I.S.; Granovsky, A.B. [Faculty of Physics, Lomonosov Moscow State University, Vorob' evy Gory, 11999l Moscow (Russian Federation)

    2016-06-01

    Shape memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 12}Si{sub 3} is investigated with electron spin resonance (ESR) technique in a temperature range of 200–300 K. ESR is a dynamic probe allowing us to separate the responses from various magnetic phases, thus to study the complex phase transitions. The sample shows three transition temperatures: T{sub c}{sup A} (271 K), T{sub M} (247 K) and T{sub c}{sup M} (212 K), where T{sub c}{sup A} is the Curie temperature of austenitic phase, T{sub M} and T{sub c}{sup M} are the temperatures of magnetostructural martensitic transition and the Curie temperature of martensitic phase, respectively. Furthermore, ESR data reveals the coexistence of two magnetic modes in whole temperature range of 200–300 K. Particularly in martensitic phase, two magnetic modes are attributed to two different kinds of lattice deformation, the slip and twinning deformations. - Highlights: • Electron spin resonance study on magnetocaloric Heusler alloy within 200–300 K. • Magnetic phase separation below and above the structural transition temperature. • Phase competing is in association with different types of lattice distortions. • Electron spin resonance results are complementary to the magnetization data.

  9. Process Diagnostics and Monitoring Using the Multipole Resonance Probe (MRP)

    Science.gov (United States)

    Harhausen, J.; Awakowicz, P.; Brinkmann, R. P.; Foest, R.; Lapke, M.; Musch, T.; Mussenbrock, T.; Oberrath, J.; Ohl, A.; Rolfes, I.; Schulz, Ch.; Storch, R.; Styrnoll, T.

    2011-10-01

    In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. Funded by the German Ministry for Education and Research (BMBF, Fkz. 13N10462).

  10. (p,n) and (n,p) reactions as probes of isovector giant monopole resonances

    International Nuclear Information System (INIS)

    Auerbach, N.; Bowman, J.D.; Franey, M.A.; Love, W.G.

    1983-01-01

    Nucleon charge exchange reactions are explored as prospective probes of isovector giant monopole resonances. Using charge exchange transition densities based on random-phase approximation sum rules, distorted wave impulse approximation calculations are made for the (p,n) and (n,p) reactions exciting the isovector giant monopole resonances in several nuclei at bombarding energies of 120 and 800 MeV. Based on our calculations, the charge exchange reactions at 800 MeV appear more promising

  11. Analytical investigation of microwave resonances of a curling probe for low and high-pressure plasma diagnostics

    Science.gov (United States)

    Arshadi, Ali; Brinkmann, Ralf Peter

    2017-01-01

    The concept of ‘active plasma resonance spectroscopy’ (APRS) has attracted greater interest in recent years as an established plasma diagnostic technique. The APRS describes a class of related methods utilizing the intrinsic ability of plasma to resonate at or near the electron plasma frequency {ω\\text{pe}} . The Curling probe (CP) as a novel realization of the APRS idea, is a miniaturized spiral slot embedded flatly in the chamber wall. Consequently, a plasma diagnostic technique with minimum disturbance and without metal contamination can be developed. To measure the plasma parameters the CP is fed with a weak frequency-swept signal from the exterior of the plasma chamber by a network analyzer which also records the response of the plasma versus the frequency. The resonance behavior is strongly dependent on the electron density and the gas pressure. The CP has also the advantage of resonating at a frequency greater than {ω\\text{pe}} which is dependent on the spiral’s length. The double resonance characteristic gives the CP the ability to be applied in varying plasma regimes. Assuming that the spiralization does not have a considerable effect on the resonances, a ‘straightened’ infinite length CP has recently been investigated (Arshadi and Brinkmann 2016 Plasma Sources Sci. Technol. 25 045014) to obtain the surface wave resonances. This work generalizes the approach and models the CP by a rectangular slot-type resonator located between plasma and quartz. Cold plasma theory and Maxwell’s equations are utilized to compute the electromagnetic fields propagating into the plasma by the diffraction of an incident plane wave at the slot. A mathematical model is employed and both kinds of resonances are derived. The analytical study of this paper shows good agreement with the numerical results of the probe inventors.

  12. Pitch Angle Dependence of Drift Resonant Ions Observed by the Van Allen Probes

    Science.gov (United States)

    Rankin, R.; Wang, C.; Wang, Y.; Zong, Q. G.; Zhou, X.

    2017-12-01

    Acceleration and modulation of ring current ions by poloidal mode ULF waves is investigated. A simplified MHD model of ULF waves in a dipole magnetic field is presented that includes phase mixing to perpendicular scales determined by the ionospheric Pedersen conductivity. The wave model is combined with a full Lorentz force test particle code to study drift and drift bounce resonance wave-particle interactions. Ion trajectories are traced backward-in-time to an assumed form of the distribution function, and Liouville's method is used to reconstruct the phase space density response (PSD) poloidal mode waves observed by the Van Allen Probes. In spite of its apparent simplicity, simulations using the wave and test particle models are able to explain the acceleration of ions and energy dispersion observed by the Van Allen Probes. The paper focuses on the pitch angle evolution of the initial PSD as it responds to the action of ULF waves. An interesting aspect of the study is the formation of butterfly ion distributions as ions make periodic radial oscillations across L. Ions become trapped in an effective potential well across a limited range of L and follow trajectories that cause them to surf along constant phase fronts. The impications of this new trapping mechanism for both ions and electrons is discussed.

  13. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

    Directory of Open Access Journals (Sweden)

    Jérémy R. Rouxel

    2017-07-01

    Full Text Available Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. We present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O provide different local windows onto the parity breaking geometry change thus revealing the enantiomer asymmetry.

  14. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, A.I., E-mail: aifigueg@gmail.com [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Baker, A.A. [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Collins-McIntyre, L.J.; Hesjedal, T. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom)

    2016-02-15

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics. - Highlights: • X-ray detected ferromagnetic resonance is used to study the spin pumping phenomenon. • We show a powerful way to get information of spin transfer between magnetic layers. • We observe spin pumping through a topological insulators at room temperature. • Topological insulators function as efficient spin sinks.

  15. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    International Nuclear Information System (INIS)

    Figueroa, A.I.; Baker, A.A.; Collins-McIntyre, L.J.; Hesjedal, T.; Laan, G. van der

    2016-01-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics. - Highlights: • X-ray detected ferromagnetic resonance is used to study the spin pumping phenomenon. • We show a powerful way to get information of spin transfer between magnetic layers. • We observe spin pumping through a topological insulators at room temperature. • Topological insulators function as efficient spin sinks.

  16. Transforming thymidine into a magnetic resonance imaging probe for monitoring gene expression.

    Science.gov (United States)

    Bar-Shir, Amnon; Liu, Guanshu; Liang, Yajie; Yadav, Nirbhay N; McMahon, Michael T; Walczak, Piotr; Nimmagadda, Sridhar; Pomper, Martin G; Tallman, Keri A; Greenberg, Marc M; van Zijl, Peter C M; Bulte, Jeff W M; Gilad, Assaf A

    2013-01-30

    Synthetic chemistry has revolutionized the understanding of many biological systems. Small compounds that act as agonists and antagonists of proteins, and occasionally as imaging probes, have contributed tremendously to the elucidation of many biological pathways. Nevertheless, the function of thousands of proteins is still elusive, and designing new imaging probes remains a challenge. Through screening and characterization, we identified a thymidine analogue as a probe for imaging the expression of herpes simplex virus type-1 thymidine kinase (HSV1-TK). To detect the probe, we used chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI), in which a dynamic exchange process between an exchangeable proton and the surrounding water protons is used to amplify the desired contrast. Initially, five pyrimidine-based molecules were recognized as putative imaging agents, since their exchangeable imino protons resonate at 5-6 ppm from the water proton frequency and their detection is therefore less affected by endogenous CEST contrast or confounded by direct water saturation. Increasing the pK(a) value of the imino proton by reduction of its 5,6-double bond results in a significant reduction of the exchange rate (k(ex)) between this proton and the water protons. This reduced k(ex) of the dihydropyrimidine nucleosides fulfills the "slow to intermediate regime" condition for generating high CEST-MRI contrast. Consequently, we identified 5-methyl-5,6-dihydrothymidine as the optimal probe and demonstrated its feasibility for in vivo imaging of HSV1-TK. In light of these findings, this new approach can be generalized for designing specific probes for the in vivo imaging of a variety of proteins and enzymes.

  17. RESONANT X-RAY SCATTERING AS A PROBE OF ORBITAL AND CHARGE ORDERING

    International Nuclear Information System (INIS)

    NELSON, C.S.; HILL, J.P.; GIBBS, D.

    2002-01-01

    Resonant x-ray scattering is a powerful experimental technique for probing orbital and charge ordering. It involves tuning the incident photon energy to an absorption edge of the relevant ion and observing scattering at previously 'forbidden' Bragg peaks, and it allows high-resolution, quantitative studies of orbital and charge order--even from small samples. Further, resonant x-ray scattering from orbitally ordered systems exhibits polarization- and azimuthal-dependent properties that provide additional information about the details of the orbital order that is difficult, or impossible, to obtain with any other technique. In the manganites, the sensitivity to charge and orbital ordering is enhanced when the incident photon energy is tuned near the Mn K absorption edge (6.539 keV), which is the lowest energy at which a 1s electron can be excited into an unoccupied state. In this process, the core electron is promoted to an intermediate excited state, which decays with the emission of a photon. The sensitivity to charge ordering is believed to be due to the small difference in K absorption edges of the Mn 3+ and Mn 4+ sites. For orbital ordering, the sensitivity arises from a splitting--or difference in the weight of the density of states [239]--of the orbitals occupied by the excited electron in the intermediate state. In the absence of such a splitting, there is no resonant enhancement of the scattering intensity. In principle, other absorption edges in which the intermediate state is anisotropic could be utilized, but the strong dipole transition to the Mn 4p levels--and their convenient energies for x-ray diffraction--make the K edge well-suited to studies of manganites. The Mn 4p levels are affected by the symmetry of the orbital ordering, which makes the technique sensitive to the orbital degree of freedom. Therefore resonant x-ray scattering can be used to obtain important quantitative information concerning the details of this electronic order. Two

  18. Nuclear magnetic resonance studies of lipoproteins

    International Nuclear Information System (INIS)

    Hamilton, J.A.; Morrisett, J.D.

    1986-01-01

    Several nuclei in lipoproteins are magnetically active and are thus potential NMR probes of lipoprotein structure. Table I lists the magnetic isotopes preset in the covalent structures of the molecular constituents of lipoproteins: lipids, proteins, and carbohydrates. Every type of nucleus that is part of the endogenous structure of these molecules has at least one magnetic isotope. Each magnetic nucleus represents an intrinsic and completely nonperturbing probe (when at the natural abundance level) of local molecular motion and magnetic environment. The NMR experiment itself is also nonperturbing and nondestructive. Table I also lists for each nucleus its nuclear spin, its natural isotopic abundance, its sensitivity, and its resonance frequency at two commonly employed magnetic in the low field range (21.14 kG or 2.11 Tesla) and the other in the high field range (47.0 kG or 4.70 Tesla). Of the nuclei listed in Table I, /sup 1/H, /sup 13/C, and /sup 31/P have been the primary ones studied in lipoproteins. The general advantages and disadvantages afforded by these and other nuclei as probes of lipoprotein structure are discussed. /sup 13/C NMR spectroscopy, the method which has had the most extensive application (and probably has the greatest future potential) to lipoproteins, is treated in greatest detail, but many of the principles described apply to other nuclei as well

  19. Development of conductivity probe and temperature probe for in-situ measurements in hydrological studies

    International Nuclear Information System (INIS)

    Chandra, U.; Galindo, B.J.; Castagnet, A.C.G.

    1981-05-01

    A conductivity probe and a temperature probe have been developed for in-situ measurements in various hydrological field studies. The conductivity probe has platinum electrodes and is powered with two 12 volt batteries. The sensing element of the temperature probe consists of a resistor of high coefficient of temperature. Response of the conductivity probe is measured in a milliampere mater while the resistance of the thermistor is read by a digital meter. The values of conductivity and temperature are derived from respective calibration. The probes are prototype and their range of measurement can be improved depending upon the requirement of the field problem. (Author) [pt

  20. Study, design and manufacture eddy current probes for industry applications

    International Nuclear Information System (INIS)

    Nguyen Phuc; Nguyen Van Thuy; Vuong Binh Duong; Do Minh Duc; Trinh Dinh Truong; Tran Trong Duc; Do Tung Khanh; Dang Quang Trung

    2016-01-01

    This study is based on the studying, designing and manufacturing of eddy current probes for industry applications. The main tasks of this study include: i) Describes the overview and classification of eddy current probes (which can be classified into three categories based on the mode of operation: absolute eddy current probe, differential eddy current probe and reflect eddy current probe); ii) Describes the three methods of probe designing and manufacturing (including experimental, analytical and numerical designs); iii) Describes the designing and manufacturing of eddy current probes for industry applications, which based on experimental and analytical methods. Based on this study, we have successfully manufactured some current probes (including absolute eddy current probe, differential eddy current probe and reflect eddy current probe) for surface and tube inspections. (author)

  1. Probing symmetry and symmetry breaking in resonant soft-x-ray fluorescence spectra of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Glans, P.; Gunnelin, K.; Guo, J. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Conventional non-resonant soft X-ray emission brings about information about electronic structure through its symmetry and polarization selectivity, the character of which is governed by simple dipole rules. For centro-symmetric molecules with the emitting atom at the inversion center these rules lead to selective emission through the required parity change. For the more common classes of molecules which have lower symmetry or for systems with degenerate core orbitals (delocalized over identical sites), it is merely the local symmetry selectivity that provides a probe of the local atomic orbital contribution to the molecular orbital. For instance, in X-ray spectra of first row species the intensities essentially map the p-density at each particular atomic site, and, in a molecular orbital picture, the contribution of the local p-type atomic orbitals in the LCAO description of the molecular orbitals. The situation is different for resonant X-ray fluorescence spectra. Here strict parity and symmetry selectivity gives rise to a strong frequency dependence for all molecules with an element of symmetry. In addition to symmetry selectivity the strong frequency dependence of resonant X-ray emission is caused by the interplay between the shape of a narrow X-ray excitation energy function and the lifetime and vibrational broadenings of the resonantly excited core states. This interplay leads to various observable effects, such as linear dispersion, resonance narrowing and emission line (Stokes) doubling. Also from the point of view of polarization selectivity, the resonantly excited X-ray spectra are much more informative than the corresponding non-resonant spectra. Examples are presented for nitrogen, oxygen, and carbon dioxide molecules.

  2. Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Wu, Kaiyu; Larsen, Peter Emil

    2014-01-01

    We demonstrate the direct photothermal probing and mapping of single plasmonic nanostructures via the temperature-induced detuning of nanomechanical string resonators. Single Au nanoslits and nanorods are illuminated with a partially polarized focused laser beam (λ = 633 nm) with irradiances...... in the range of 0.26–38 μW/μm2. Photothermal heating maps with a resolution of ∼375 nm are obtained by scanning the laser over the nanostructures. Based on the string sensitivities, absorption efficiencies of 2.3 ± 0.3 and 1.1 ± 0.7 are extracted for a single nanoslit (53 nm × 1 μm) and nanorod (75 nm × 185 nm......). Our results show that nanomechanical resonators are a unique and robust analysis tool for the low-power investigation of thermoplasmonic effects in plasmonic hot spots....

  3. Collisional Processes Probed by using Resonant Four-Wave Mixing Spectroscopy

    Science.gov (United States)

    McCormack, E. F.; Stampanoni, A.; Hemmerling, B.

    2000-06-01

    Collisionally-induced decay processes in excited-state nitric oxide (NO) have been measured by using time-resolved two-color, resonant four-wave mixing (TC-RFWM) spectroscopy and polarization spectroscopy (PS). Markedly different time dependencies were observed in the data obtained by using TC-RFWM when compared to PS. Oscillations in the PS signal as a function of delay between the pump and probe laser pulses were observed and it was determined that their characteristics depend very sensitively on laser polarization. Analysis reveals that the oscillations in the decay curves are due to coherent excitation of unresolved hyperfine structure in the A state of NO. A comparison of beat frequencies obtained by taking Fourier transforms of the time data to the predicted hyperfine structure of the A state support this explanation. Further, based on a time-dependent model of PS as a FWM process, the signal’s dependence as a function of time on polarization configuration and excitation scheme can be predicted. By using the beat frequency values, fits of the model results to experimental decay curves for different pressures allows a study of the quenching rate in the A state due to collisional processes. A comparison of the PS data to laser-induced fluorescence decay measurements reveals different decay rates which suggests that the PS signal decay depends on the orientation and alignment of the excited molecules. The different behavior of the decay curves obtained by using TC-RFWM and PS can be understood in terms of the various contributions to the decay as described by the model and this has a direct bearing on which technique is preferable for a given set of experimental parameters.

  4. Probing the graphite band structure with resonant soft-x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Shirley, E.L.; Hudson, E.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Soft x-ray fluorescence (SXF) spectroscopy using synchrotron radiation offers several advantages over surface sensitive spectroscopies for probing the electronic structure of complex multi-elemental materials. Due to the long mean free path of photons in solids ({approximately}1000 {angstrom}), SXF is a bulk-sensitive probe. Also, since core levels are involved in absorption and emission, SXF is both element- and angular-momentum-selective. SXF measures the local partial density of states (DOS) projected onto each constituent element of the material. The chief limitation of SXF has been the low fluorescence yield for photon emission, particularly for light elements. However, third generation light sources, such as the Advanced Light Source (ALS), offer the high brightness that makes high-resolution SXF experiments practical. In the following the authors utilize this high brightness to demonstrate the capability of SXF to probe the band structure of a polycrystalline sample. In SXF, a valence emission spectrum results from transitions from valence band states to the core hole produced by the incident photons. In the non-resonant energy regime, the excitation energy is far above the core binding energy, and the absorption and emission events are uncoupled. The fluorescence spectrum resembles emission spectra acquired using energetic electrons, and is insensitive to the incident photon`s energy. In the resonant excitation energy regime, core electrons are excited by photons to unoccupied states just above the Fermi level (EF). The absorption and emission events are coupled, and this coupling manifests itself in several ways, depending in part on the localization of the empty electronic states in the material. Here the authors report spectral measurements from highly oriented pyrolytic graphite.

  5. On-resonance deformation effect measurements: A probe of order within chaos in the nucleus

    International Nuclear Information System (INIS)

    Davis, E.D.; Gould, C.R.; Gould, C.R.

    1998-01-01

    The statistics of on-resonance measurements of the deformation effect cross section σ 02 in unpolarized neutron transmission through an aligned 165 Ho target is discussed. Under the standard Porter-Thomas assumption about reduced partial width amplitudes, the sign of σ 02 is random at s-wave resonances with d-wave admixtures. Motivated by the observation of sign correlations in epithermal parity-violation studies, conditions under which a doorway state will give rise to σ 02 close-quote s of nonrandom sign are identified. Oblate shape isomers lying at excitation energies in the isolated resonance regime could meet these conditions. copyright 1998 The American Physical Society

  6. Fluorescence spectral studies on interaction of fluorescent probes with Bovine Serum Albumin (BSA)

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kaushik, E-mail: ghoshfcy@iitr.ac.in; Rathi, Sweety; Arora, Deepshikha

    2016-07-15

    Interaction of 2-(1-(naphthale-1-ylimino)ethyl)phenol (1), 2-methoxy-4-(((4-methoxyphenyl)imino)methyl)phenol (2) and 2-methoxy-4-((naphthalene-1-ylimino)methyl)phenol (3) with Bovine Serum Albumin (BSA) was examined. Fluorescence spectral data were obtained from the probes by varying the concentration of BSA as well as from BSA by varying the concentration of probes. Synchronous fluorescence measurements were performed and binding constants of the probes were calculated. To understand mode of quenching, Stern–Volmer plot, absorption spectral studies and life time measurements were performed. Förster resonance energy transfer (FRET) was also scrutinized. - Highlights: • Schiff bases with pendant phenolato function and interaction with BSA. • Synchronous fluorescence studies and a preferred interaction with tryptophan. • Probable interaction of probes with Trp-213 residue in the hydrophobic cavity. • 1:1 binding stoichiometry of probes and BSA in Benesi–Hildebrand graph.

  7. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    International Nuclear Information System (INIS)

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    2012-01-01

    Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy

  8. Accuracy of micro four-point probe measurements on inhomogeneous samples: A probe spacing dependence study

    DEFF Research Database (Denmark)

    Wang, Fei; Petersen, Dirch Hjorth; Østerberg, Frederik Westergaard

    2009-01-01

    In this paper, we discuss a probe spacing dependence study in order to estimate the accuracy of micro four-point probe measurements on inhomogeneous samples. Based on sensitivity calculations, both sheet resistance and Hall effect measurements are studied for samples (e.g. laser annealed samples...... the probe spacing is smaller than 1/40 of the variation wavelength, micro four-point probes can provide an accurate record of local properties with less than 1% measurement error. All the calculations agree well with previous experimental results.......) with periodic variations of sheet resistance, sheet carrier density, and carrier mobility. With a variation wavelength of ¿, probe spacings from 0.0012 to 1002 have been applied to characterize the local variations. The calculations show that the measurement error is highly dependent on the probe spacing. When...

  9. Quantum erasers and probing classifications of entanglement via nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Teklemariam, G.; Fortunato, E.M.; Pravia, M.A.; Sharf, Y.; Havel, T.F.; Cory, D.G.; Bhattaharyya, A.; Hou, J.

    2002-01-01

    We report the implementation of two- and three-spin quantum erasers using nuclear magnetic resonance (NMR). Quantum erasers provide a means of manipulating quantum entanglement, an important resource for quantum information processing. Here, we first use a two-spin system to illustrate the essential features of quantum erasers. The extension to a three-spin 'disentanglement eraser' shows that entanglement in a subensemble can be recovered if a proper measurement of the ancillary system is carried out. Finally, we use the same pair of orthogonal decoherent operations used in quantum erasers to probe the two classes of entanglement in tripartite quantum systems: the Greenberger-Horne-Zeilinger state and the W state. A detailed presentation is given of the experimental decoherent control methods that emulate the loss of phase information in strong measurements, and the use of NMR decoupling techniques to implement partial trace operations

  10. Probing two-field open inflation by resonant signals in correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Battefeld, Thorsten; Niemeyer, Jens C.; Vlaykov, Dimitar, E-mail: tbattefe@astro.physik.uni-goettingen.de, E-mail: niemeyer@astro.physik.uni-goettingen.de, E-mail: vlaykov@astro.physik.uni-goettingen.de [Institute for Astrophysics, University of Goettingen, Friedrich Hund Platz 1, D-37077 Goettingen (Germany)

    2013-05-01

    We derive oscillatory signals in correlation functions in two-field open inflation by means of the in-in formalism; such signatures are caused by resonances between oscillations in the tunnelling field and fluctuations in the inflaton during the curvature dominated, intermediate and subsequent inflationary regime. While amplitudes are model-dependent, we find distinct oscillations in the power and bi-spectrum that can act as a direct probe of the curvature dominated phase and thus, indirectly, strengthen the claim of the string landscape if they were observed. We comment on the prospects of detecting these tell-tale signs in current experiments, which is challenging, but not impossible. At the technical level, we pay special attention to the applicability conditions for truncating fluctuations to the light (inflaton) field and derive upper limits on the oscillation amplitude of the heavy field. A violation of these bounds requires a multi-field analysis at the perturbed level.

  11. Operational electrochemical stability of thiophene-thiazole copolymers probed by resonant Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wade, Jessica; Wood, Sebastian; Kim, Ji-Seon, E-mail: ji-seon.kim@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ (United Kingdom); Beatrup, Daniel; Hurhangee, Michael; McCulloch, Iain; Durrant, James R. [Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AY (United Kingdom); Bronstein, Hugo [Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AY (United Kingdom); Department of Chemistry, University College London, London WC1H 0AJ (United Kingdom)

    2015-06-28

    We report on the electrochemical stability of hole polarons in three conjugated polymers probed by resonant Raman spectroscopy. The materials considered are all isostructural to poly(3-hexyl)thiophene, where thiazole units have been included to systematically deepen the energy level of the highest occupied molecular orbital (HOMO). We demonstrate that increasing the thiazole content planarizes the main conjugated backbone of the polymer and improves the electrochemical stability in the ground state. However, these more planar thiazole containing polymers are increasingly susceptible to electrochemical degradation in the polaronic excited state. We identify the degradation mechanism, which targets the C=N bond in the thiazole units and results in disruption of the main polymer backbone conjugation. The introduction of thiazole units to deepen the HOMO energy level and increase the conjugated backbone planarity can be beneficial for the performance of certain optoelectronic devices, but the reduced electrochemical stability of the hole polaron may compromise their operational stability.

  12. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Science.gov (United States)

    Figueroa, A. I.; Baker, A. A.; Collins-McIntyre, L. J.; Hesjedal, T.; van der Laan, G.

    2016-02-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics.

  13. Electron spin resonance spectroscopy for immunoassay using iron oxide nanoparticles as probe.

    Science.gov (United States)

    Jiang, Jia; Tian, Sizhu; Wang, Kun; Wang, Yang; Zang, Shuang; Yu, Aimin; Zhang, Ziwei

    2018-02-01

    With the help of iron oxide nanoparticles, electron spin resonance spectroscopy (ESR) was applied to immunoassay. Iron oxide nanoparticles were used as the ESR probe in order to achieve an amplification of the signal resulting from the large amount of Fe 3+ ion enclosed in each nanoparticle. Rabbit IgG was used as antigen to test this method. Polyclonal antibody of rabbit IgG was used as antibody to detect the antigen. Iron oxide nanoparticle with a diameter of either 10 or 30 nm was labeled to the antibody, and Fe 3+ in the nanoparticle was probed for ESR signal. The sepharose beads were used as solid phase to which rabbit IgG was conjugated. The nanoparticle-labeled antibody was first added in the sample containing antigen, and the antigen-conjugated sepharose beads were then added into the sample. The nanoparticle-labeled antibody bound to the antigen on sepharose beads was separated from the sample by centrifugation and measured. We found that the detection ranges of the antigen obtained with nanoparticles of different sizes were different because the amount of antibody on nanoparticles of 10 nm was about one order of magnitude higher than that on nanoparticles of 30 nm. When 10 nm nanoparticle was used as probe, the upper limit of detection was 40.00 μg mL -1 , and the analytical sensitivity was 1.81 μg mL -1 . When 30 nm nanoparticle was used, the upper limit of detection was 3.00 μg mL -1 , and the sensitivity was 0.014 and 0.13 μg mL -1 depending on the ratio of nanoparticle to antibody. Graphical abstract Schematic diagram of procedure and ESR spectra.

  14. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

  15. Advanced Magnetic Resonance Imaging techniques to probe muscle structure and function

    Science.gov (United States)

    Malis, Vadim

    Structural and functional Magnetic Resonance Imaging (MRI) studies of skeletal muscle allow the elucidation of muscle physiology under normal and pathological conditions. Continuing on the efforts of the Muscle Imaging and Modeling laboratory, the focus of the thesis is to (i) extend and refine two challenging imaging modalities: structural imaging using Diffusion Tensor Imaging (DTI) and functional imaging based on Velocity Encoded Phase Contrast Imaging (VE-PC) and (ii) apply these methods to explore age related structure and functional differences of the gastrocnemius muscle. Diffusion Tensor Imaging allows the study of tissue microstructure as well as muscle fiber architecture. The images, based on an ultrafast single shot Echo Planar Imaging (EPI) sequence, suffer from geometric distortions and low signal to noise ratio. A processing pipeline was developed to correct for distortions and to improve image Signal to Noise Ratio (SNR). DTI acquired on a senior and young cohort of subjects were processed through the pipeline and differences in DTI derived indices and fiber architecture between the two cohorts were explored. The DTI indices indicated that at the microstructural level, fiber atrophy was accompanied with a reduction in fiber volume fraction. At the fiber architecture level, fiber length and pennation angles decreased with age that potentially contribute to the loss of muscle force with age. Velocity Encoded Phase Contrast imaging provides tissue (e.g. muscle) velocity at each voxel which allows the study of strain and Strain Rate (SR) under dynamic conditions. The focus of the thesis was to extract 2D strain rate tensor maps from the velocity images and apply the method to study age related differences. The tensor mapping can potentially provide unique information on the extracellular matrix and lateral transmission the role of these two elements has recently emerged as important determinants of force loss with age. In the cross sectional study on

  16. Titanium pigmentation. An electron probe microanalysis study

    International Nuclear Information System (INIS)

    Dupre, A.; Touron, P.; Daste, J.; Lassere, J.; Bonafe, J.L.; Viraben, R.

    1985-01-01

    A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis

  17. Low-Cost Resonant Cavity Raman Gas Probe for Multi-Gas Detection

    Science.gov (United States)

    Thorstensen, J.; Haugholt, K. H.; Ferber, A.; Bakke, K. A. H.; Tschudi, J.

    2014-12-01

    Raman based gas sensing can be attractive in several industrial applications, due to its multi-gas sensing capabilities and its ability to detect O_2 and N_2. In this article, we have built a Raman gas probe, based on low-cost components, which has shown an estimated detection limit of 0.5 % for 30 second measurements of N_2 and O_2. While this detection limit is higher than that of commercially available equipment, our estimated component cost is approximately one tenth of the price of commercially available equipment. The use of a resonant Fabry-Pérot cavity increases the scattered signal, and hence the sensitivity, by a factor of 50. The cavity is kept in resonance using a piezo-actuated mirror and a photodiode in a feedback loop. The system described in this article was made with minimum-cost components to demonstrate the low-cost principle. However, it is possible to decrease the detection limit using a higher-powered (but still low-cost) laser and improving the collection optics. By applying these improvements, the detection limit and estimated measurement precision will be sufficient for e.g. the monitoring of input gases in combustion processes, such as e.g. (bio-)gas power plants. In these processes, knowledge about gas compositions with 0.1 % (absolute) precision can help regulate and optimize process conditions. The system has the potential to provide a low-cost, industrial Raman sensor that is optimized for specific gas-detection applications.

  18. Jet activity as a probe of high-mass resonance production

    Energy Technology Data Exchange (ETDEWEB)

    Harland-Lang, L.A. [University College London, Department of Physics and Astronomy, London (United Kingdom); Khoze, V.A. [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom); NRC Kurchatov Institute, Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Ryskin, M.G. [NRC Kurchatov Institute, Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Spannowsky, M. [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom)

    2016-11-15

    We explore the method of using the measured jet activity associated with a high-mass resonance state to determine the corresponding production modes. To demonstrate the potential of the approach, we consider the case of a resonance of mass M{sub R} decaying to a diphoton final state. We perform a Monte Carlo study, considering three mass points M{sub R} = 0.75, 1.5, 2.5 TeV, and show that the γγ, WW, gg and light and heavy q anti q initiated cases lead to distinct predictions for the jet multiplicity distributions. As an example, we apply this result to the ATLAS search for resonances in diphoton events, using the 2015 data set of 3.2 fb{sup -1} at √(s) = 13 TeV. Taking the spin-0 selection, we demonstrate that a dominantly gg-initiated signal hypothesis is mildly disfavoured, while the γγ and light quark cases give good descriptions within the limited statistics, and a dominantly WW-initiated hypothesis is found to be in strong tension with the data. We also comment on the b anti b initial state, which can already be constrained by the measured b-jet multiplicity. Finally, we present expected exclusion limits with integrated luminosity, and demonstrate that with just a few 10s of fb{sup -1} we can expect to constrain the production modes of such a resonance. (orig.)

  19. A no-tune no-match wideband probe for nuclear quadrupole resonance spectroscopy in the VHF range

    Science.gov (United States)

    Scharfetter, Hermann; Petrovic, Andreas; Eggenhofer, Heidi; Stollberger, Rudolf

    2014-12-01

    Nuclear quadrupole resonance (NQR) spectroscopy is a method for the characterization of chemical compounds containing so-called quadrupolar nuclei. Similar to nuclear magnetic resonance (NMR), the sample under investigation is irradiated with strong radiofrequency (RF) pulses, which stimulate the emission of weak RF signals from the quadrupolar nuclei. The signals are then amplified and Fourier transformed so as to obtain a spectrum. In principle, narrowband NQR spectra can be measured with NMR spectrometers. However, pure NQR signals require the absence of a static magnetic field and several special applications require the characterization of a substance over a large bandwidth, e.g. 50-100% of the central frequency, which is hardly possible with standard NMR equipment. Dedicated zero-field NQR equipment is not widespread and current concepts employ resonating probes which are tuned and matched over a wide range by using mechanical capacitors driven by stepper motors. While providing the highest signal to noise ratio (SNR) such probes are slow in operation and can only be operated from dedicated NMR consoles. We developed a low-cost NQR wideband probe without tuning and matching for applications in the very high frequency (VHF) range below 300 MHz. The probe coil was realized as part of a reactive network which approximates an exponential transmission line. The input reflection coefficient of the two developed prototype probe coils is ≤ 20 dB between 90-145 MHz and 74.5-99.5 MHz, respectively. Two wideband NQR spectra of published test substances were acquired with an SNR of better than 20 dB after sufficient averaging. The measured signals and the SNR correspond very well to the theoretically expected values and demonstrate the feasibility of the method. Because there is no need for tuning and matching, our probes can be operated easily from any available NMR console.

  20. Shear force distance control in a scanning near-field optical microscope: in resonance excitation of the fiber probe versus out of resonance excitation

    International Nuclear Information System (INIS)

    Lapshin, D.A.; Letokhov, V.S.; Shubeita, G.T.; Sekatskii, S.K.; Dietler, G.

    2004-01-01

    The experimental results of the direct measurement of the absolute value of interaction force between the fiber probe of a scanning near-field optical microscope (SNOM) operated in shear force mode and a sample, which were performed using combined SNOM-atomic force microscope setup, are discussed for the out-of-resonance fiber probe excitation mode. We demonstrate that the value of the tapping component of the total force for this mode at typical dither amplitudes is of the order of 10 nN and thus is quite comparable with the value of this force for in resonance fiber probe excitation mode. It is also shown that for all modes this force component is essentially smaller than the usually neglected static attraction force, which is of the order of 200 nN. The true contact nature of the tip-sample interaction during the out of resonance mode is proven. From this, we conclude that such a detection mode is very promising for operation in liquids, where other modes encounter great difficulties

  1. Comparison of Langmuir probe and multipole resonance probe measurements in argon, hydrogen, nitrogen, and oxygen mixtures in a double ICP discharge

    Science.gov (United States)

    Fiebrandt, Marcel; Oberberg, Moritz; Awakowicz, Peter

    2017-07-01

    The results of a Multipole Resonance Probe (MRP) are compared to a Langmuir probe in measuring the electron density in Ar, H2, N2, and O2 mixtures. The MRP was designed for measurements in industry processes, i.e., coating or etching. To evaluate a possible influence on the MRP measurement due to molecular gases, different plasmas with increasing molecular gas content in a double inductively coupled plasma at 5 Pa and 10 Pa at 500 W are used. The determined electron densities from the MRP and the Langmuir probe slightly differ in H2 and N2 diluted argon plasmas, but diverge significantly with oxygen. In pure molecular gas plasmas, electron densities measured with the MRP are always higher than those measured with the Langmuir Probe, in particular, in oxygen containing mixtures. The differences can be attributed to etching of the tungsten wire in the Ar:O2 mixtures and rf distortion in the pure molecular discharges. The influence of a non-Maxwellian electron energy distribution function, negative ions or secondary electron emission seems to be of no or only minor importance.

  2. Autler-Townes doublet and electromagnetically induced transparency resonance probed by an ultrashort pulse train

    International Nuclear Information System (INIS)

    Soares, A A; De Araujo, Luis E E

    2010-01-01

    We study theoretically the interaction between an ultrashort pulse train and a three-level atom driven by a cw laser. We show that the pulse train can be employed to observe spectra of Autler-Townes doublet and electromagnetically induced transparency resonance that are time and frequency resolved. The observation of subnatural linewidth features associated with the electromagnetically induced transparency resonance is described. The temporal evolution of electromagnetically induced transparency of the pulse train is shown to exhibit new and different features compared to that of the related phenomenon of coherent population trapping. By matching the tooth separation of the frequency comb associated with the pulse train to that of the Autler-Townes doublet, quantum beats between the doublet components can be induced. We show that coherent accumulation of excitation plays a major role in the two studied phenomena.

  3. Probes for edge plasma studies of TFTR (invited)

    International Nuclear Information System (INIS)

    Manos, D.M.; Budny, R.V.; Kilpatrick, S.; Stangeby, P.; Zweben, S.

    1986-01-01

    Tokamak fusion test reactor (TFTR) probes are designed to study the interaction of the plasma with material surfaces such as the wall and limiters, and to study the transport of particles and energy between the core and edge. Present probe heads have evolved from prototypes in Princeton large torus (PLT), poloidal divertor experiment (PDX) [Princeton BETA experiment (PBX)], and the initial phase of TFTR operation. The newest heads are capable of making several simultaneous measurements and include Langmuir probes, heat flux probes, magnetic coils, rotating calorimeter fast ion probes, and sample exposure specimens. This paper describes these probe heads and presents some of the data they and their prototypes have acquired. The paper emphasizes measurement of transient plasma effects such as fast ion loss during auxiliary heating, the evolution of the edge plasma during heating, compression, and free expansion, and fluctuations in the edge plasma

  4. Diffusion studies on permeable nitroxyl spin probes through bilayer lipid membranes: A low frequency ESR study

    International Nuclear Information System (INIS)

    Meenakumari, V.; Benial, A. Milton Franklin; Utsumi, Hideo; Ichikawa, Kazuhiro; Yamada, Ken-ichi; Hyodo, Fuminori; Jawahar, A.

    2015-01-01

    Electron spin resonance (ESR) studies were carried out for permeable 2mM 14 N-labeled deutrated 3 Methoxy carbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) in pure water and 1mM, 2mM, 3mM, 4mM concentration of 14N-labeled deutrated MC-PROXYL in 400mM concentration of liposomal solution by using a 300 MHz ESR spectrometer. The ESR parameters such as linewidth, hyperfine coupling constant, g-factor, partition parameter and permeability were reported for these samples. The line broadening was observed for the nitroxyl spin probe in the liposomal solution. The line broadening indicates that the high viscous nature of the liposomal solution. The partition parameter and permeability values indicate the maximum diffusion of nitroxyl spin probes in the bilayer lipid membranes at 2 mM concentration of nitroxyl radical. This study illustrates that ESR can be used to differentiate between the intra and extra- membrane water by loading the liposome vesicles with a lipid-permeable nitroxyl spin probe. From the ESR results, the spin probe concentration was optimized as 2mM in liposomal solution for ESR phantom studies/imaging, invivo and invitro experiments

  5. Alpha resonant scattering for astrophysical reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Kahl, D.; Nakao, T. [Center for Nuclear Study (CNS), University of Tokyo, RIKEN campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y.; Kubano, S. [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, T. [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hayakawa, S. [Istituto Nazionale Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), Via S. Sofia 62, 95125 Catania (Italy); Kawabata, T. [Department of Physics, Kyoto University, Kita-Shirakawa, Kyoto 606-8502 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Binh, D. N. [30 MeV Cyclotron Center, Tran Hung Dao Hospital, Hoan Kiem District, Hanoi (Viet Nam); Khiem, L. H.; Duy, N. G. [Institute of Physics, Vietnam Academy of Science and Technology, 18 Hong Quoc Viet, Nghia do, Hanoi (Viet Nam)

    2014-05-02

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(α,γ) reaction, and proposed a new cluster band in {sup 11}C.

  6. Alpha resonant scattering for astrophysical reaction studies

    International Nuclear Information System (INIS)

    Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

    2014-01-01

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of 7 Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the 7 Be(α,γ) reaction, and proposed a new cluster band in 11 C

  7. ¹⁹F magnetic resonance probes for live-cell detection of peroxynitrite using an oxidative decarbonylation reaction.

    Science.gov (United States)

    Bruemmer, Kevin J; Merrikhihaghi, Sara; Lollar, Christina T; Morris, Siti Nur Sarah; Bauer, Johannes H; Lippert, Alexander R

    2014-10-21

    We report a newly discovered oxidative decarbonylation reaction of isatins that is selectively mediated by peroxynitrite (ONOO(-)) to provide anthranilic acid derivatives. We have harnessed this rapid and selective transformation to develop two reaction-based probes, 5-fluoroisatin and 6-fluoroisatin, for the low-background readout of ONOO(-) using (19)F magnetic resonance spectroscopy. 5-fluoroisatin was used to non-invasively detect ONOO(-) formation in living lung epithelial cells stimulated with interferon-γ (IFN-γ).

  8. Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe.

    Science.gov (United States)

    Fen, Yap Wing; Yunus, W Mahmood Mat; Talib, Zainal Abidin; Yusof, Nor Azah

    2015-01-05

    In this study, novel active nanolayers in combination with surface plasmon resonance (SPR) system for zinc ion (Zn(2+)) detection has been developed. The gold surface used for the SPR system was modified with the novel developed active nanolayers, i.e. chitosan and chitosan-tetrabutyl thiuram disulfide (chitosan-TBTDS). Both chitosan and chitosan-TBTDS active layers were fabricated on the gold surface by spin coating technique. The system was used to monitor SPR signal for Zn(2+) in aqueous media with and without sensitivity enhancement by TBTDS. For both active nanolayers, the shift of resonance angle is directly proportional to the concentration of Zn(2+) in aqueous media. The higher shift of resonance angle was obtained for chitosan-TBTDS active nanolayer due to a specific binding of TBTDS with Zn(2+). The chitosan-TBTDS active nanolayer enhanced the sensitivity of detection down to 0.1 mg/l and also induced a selective detection towards Zn(2+). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  10. Site-specific incorporation of 5-fluorotryptophan as a probe of the structure and function of the membrane-bound D-lactate dehydrogenase of Escherichia coli: A 19F nuclear magnetic resonance study

    International Nuclear Information System (INIS)

    Peersen, O.B.; Pratt, E.A.; Truong, H.T. N.; Ho, C.; Rule, G.S.

    1990-01-01

    The structure and function of the membrane-bound D-lactate dehydrogenase of Escherichia coli have been investigated by fluorine-19 nuclear magnetic resonance spectroscopy of 5-fluorotryptophan-labeled enzyme in conjunction with oligonucleotide-directed, site-specific mutagenesis. 5-Fluorotryptophan has been substituted for nine phenylalanine, tyrosine, and leucine residues in the enzyme molecule without loss of activity. The 19 F signals from these additional tryptophan residues have been used as markers for sensitivity to substrate, exposure to aqueous solvent, and proximity to a lipid-bound spin-label. The nuclear magnetic resonance data show that two mutational sites, at amino acid residues 340 and 361, are near the lipid environment used to stabilize the enzyme. There are a number of amino acid residues on the carboxyl side of this region that are strongly sensitive to the aqueous solvent. The environment of the wide-type tryptophan residue at position 469 changes as a result of two of the substitution mutations, suggesting some amino acid residue-residue interactions. Secondary structure prediction methods indicate a possible binding site for the flavin adenine dinucleotide cofactor in the carboxyl end of the enzyme molecule. These results suggest that the membrane-bound D-lactate dehydrogenase may have the two-domain structure of many cytoplasmic dehydrogenases but with the addition of a membrane-binding domain between the catalytic and cofactor-binding domains. This type of three-domain structure may be of general significance for understanding the structure of membrane-bound proteins which do not traverse the lipid bilayer of membranes

  11. Dust grain resonant capture: A statistical study

    Science.gov (United States)

    Marzari, F.; Vanzani, V.; Weidenschilling, S. J.

    1993-01-01

    A statistical approach, based on a large number of simultaneous numerical integrations, is adopted to study the capture in external mean motion resonances with the Earth of micron size dust grains perturbed by solar radiation and wind forces. We explore the dependence of the resonant capture phenomenon on the initial eccentricity e(sub 0) and perihelion argument w(sub 0) of the dust particle orbit. The intensity of both the resonant and dissipative (Poynting-Robertson and wind drag) perturbations strongly depends on the eccentricity of the particle while the perihelion argument determines, for low inclination, the mutual geometrical configuration of the particle's orbit with respect to the Earth's orbit. We present results for three j:j+1 commensurabilities (2:3, 4:5 and 6:7) and also for particle sizes s = 15, 30 microns. This study extends our previous work on the long term orbital evolution of single dust particles trapped into resonances with the Earth.

  12. A ratiometric fluorescent probe based on boron dipyrromethene and rhodamine Förster resonance energy transfer platform for hypochlorous acid and its application in living cells

    International Nuclear Information System (INIS)

    Liu, Ying; Zhao, Zhi-Min; Miao, Jun-Ying; Zhao, Bao-Xiang

    2016-01-01

    We have developed a ratiometric fluorescent probe BRT based on boron dipyrromethene (BODIPY) and rhodamine-thiohydrazide Förster resonance energy transfer (FRET) platform for sensing hypochlorous acid (HOCl) with high selectivity and sensitivity. The probe can detect HOCl in 15 s with the detection limit of 38 nM. Upon mixing with HOCl the fluorescence colour of probe BRT changed from green to orange. Moreover, probe BRT was applied to successfully monitor HOCl in living RAW 264.7 cells. - Highlights: • A probe based on BODIPY and rhodamine was developed for sensing HOCl. • The probe could sense HOCl in a ratiometric manner based on the FRET platform in PBS buffer solution. • The probe can detect HOCl in 15 s accompanied with a fluorescence colour change. • This probe was successfully used to monitor HOCl in living RAW 264.7 cells.

  13. Resonant and Ground Experimental Study on the Microwave Plasma Thruster

    Science.gov (United States)

    Yang, Juan; He, Hongqing; Mao, Genwang; Qu, Kun; Tang, Jinlan; Han, Xianwei

    2002-01-01

    resonator, which reduces the energy loss arising from the heat conducting, the wall temperature almost have no limitation. The cavity is partitioned in two halves separated by a dialectic quartz plate. The propellant is swirl-injected tangentially in the nozzle side of the cavity (plasma chamber), which extends lifetime and working reliability of MPT. Compared, coaxial resonator has the characteristic of smaller structure, lighter weight, wider bandwidth of resonating frequency and more stable resonate state. microwave energy can heat propellant gas to produce thrust efficiently. According to the test method on the return loss of passive parts of microwave apparatus, this paper also makes experimental study on the resonating state of MPT cavity with scalar network analyzer operating under low signal. Purpose is to analyze its energy absorbing efficiency and resonant frequency band, research the matching of the cavity dimension, microwave coupling probe position and the isolate plate material within the cavity. The conclusion is helpful for the thruster design and improving the system efficiency. different propellant gases (Ar and He) have been fulfilled. The power, resonant pressure and mass flow rate have been measured and analyzed. Experiments show that MPT can start up reliably and work steadily. Keywords: microwave plasma thrustermicrowaveplasmaresonatorreturn loss

  14. Parametric resonances in the amplitude-modulated probe-field absorption spectrum of a two-level atom driven by a resonance amplitude- and phase-modulated pumping field

    International Nuclear Information System (INIS)

    Sushilov, N.V.; Kholodkevich, E.D.

    1995-01-01

    An analytical expression is derived for the polarization induced by a weak probe field with periodically modulated amplitude in a two-level medium saturated by a strong amplitude-and phase-modulated resonance field. It is shown that the absorption spectrum of the probe field includes parametric resonances, the maxima corresponding to the condition δ= 2nΓ-Ω w and the minima to that of δ= (2n + 1)Γ- w , where δ is the probe-field detuning front the resonance frequency, Ω w is the modulation frequency of the probe-field amplitude, and Γ is the transition line width, n = 1, 2, 3, hor-ellipsis. At the specific modulation parameters, a substantial region of negative values (i.e., the region of amplification without the population inversion) exists in the absorption spectrum of the probe field

  15. SS-HORSE method for studying resonances

    Energy Technology Data Exchange (ETDEWEB)

    Blokhintsev, L. D. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Mazur, A. I.; Mazur, I. A., E-mail: 008043@pnu.edu.ru [Pacific National University (Russian Federation); Savin, D. A.; Shirokov, A. M. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2017-03-15

    A new method for analyzing resonance states based on the Harmonic-Oscillator Representation of Scattering Equations (HORSE) formalism and analytic properties of partial-wave scattering amplitudes is proposed. The method is tested by applying it to the model problem of neutral-particle scattering and can be used to study resonance states on the basis of microscopic calculations performed within various versions of the shell model.

  16. Probe-Specific Procedure to Estimate Sensitivity and Detection Limits for 19F Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Alexander J Taylor

    Full Text Available Due to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental "calibration factor" to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments.

  17. Probe-Specific Procedure to Estimate Sensitivity and Detection Limits for 19F Magnetic Resonance Imaging.

    Science.gov (United States)

    Taylor, Alexander J; Granwehr, Josef; Lesbats, Clémentine; Krupa, James L; Six, Joseph S; Pavlovskaya, Galina E; Thomas, Neil R; Auer, Dorothee P; Meersmann, Thomas; Faas, Henryk M

    2016-01-01

    Due to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI) using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental "calibration factor" to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments.

  18. Theoretical study of the effect of probe shape on adhesion force between probe and substrate in atomic force microscope experiment

    OpenAIRE

    Yang, Li; Hu, Junhui; Kong, Lingjiang

    2017-01-01

    The quantitative description of adhesion force dependence on the probe shapes are of importance in many scientific and industrial fields. In order to elucidate how the adhesion force varied with the probe shape in atomic force microscope manipulation experiment, we performed a theoretical study of the influences of the probe shape (the sphere and parabolic probe) on the adhesion force at different humidity. We found that the combined action of the triple point and the Kelvin radius guiding th...

  19. Preparation and quality test of superparamagnetic iron oxide labeled antisense oligodeoxynucleotide probe: a preliminary study.

    Science.gov (United States)

    Wen, Ming; Li, Bibo; Ouyang, Yu; Luo, Yi; Li, Shaolin

    2009-06-01

    Molecular imaging of tumor antisense gene techniques have been applied to the study of magnetic resonance (MR) gene imaging associated with malignant tumors. In this study, we designed, synthesized, and tested a novel molecular probe, in which the antisense oligodeoxynucleotide (ASODN) was labeled with superparamagnetic iron oxide (SPIO), and its efficiency was examined by in vitro MR imaging after SK-Br-3 mammary carcinoma cell lines (oncocytes) transfection. The SPIO-labeled ASODN probe was prepared through SPIO conjugated to ASODN using a chemical cross linking method. Its morphology and size were detected by atomic force microscope, size distribution were detected by laser granulometer, the conjugating rate and biological activity were determined by high performance liquid chromatography, and the stability was determined by polyacrylamide gel electrophoresis. After that, the probes were transfected into the SK-Br-3 oncocytes, cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic absorption spectrometry, and the signal change of the transfected cells was observed and measured using MR imaging. The morphology of the SPIO-labeled ASODN probe was mostly spherical with well-distributed scattering, and the diameters were between 25 and 40 nm (95%) by atomic force microscope and laser granulometer, the conjugating rate of the probe was 99%. Moreover, this probe kept its activity under physiological conditions and could conjugate with antisense oligodeoxynucleotide. In addition, light microscopy revealed an intracellular uptake of iron oxides in the cytosol and electron microscopic studies revealed a lysosomal deposition of iron oxides in the transfected SK-Br-3 oncocytes by antisense probes, some of them gathered stacks, and the iron content of the group of transfected SK-Br-3 oncocytes by antisense probe is significantly higher (18.37 +/- 0.42 pg) than other contrast groups, the MR imaging showed that

  20. Charged ion source with a polarizable probe and with a cyclotron electronic resonance

    International Nuclear Information System (INIS)

    Briand, P.

    1992-01-01

    This invention is about ion sources with a polarizable probe able to produce, from neutral atoms, highly charged ions. This source is composed of an hyperfrequency cavity, production means of an axial magnetic field in the cavity, production means of a multipolar radial magnetic field in this cavity, a high frequency inlet, gas input in the cavity, ion extraction means and a polarizable probe in tension to improve gas ionization

  1. Cerebral Oxygenation of the Cortex and Striatum following Normobaric Hyperoxia and Mild Hypoxia in Rats by EPR Oximetry using Multi-Probe Implantable Resonators

    Science.gov (United States)

    Hou, Huagang; Li, Hongbin; Dong, Ruhong; Mupparaju, Sriram; Khan, Nadeem; Swartz, Harold

    2013-01-01

    Multi-site electron paramagnetic resonance (EPR) oximetry, using multi-probe implantable resonators, was used to measure the partial pressure of oxygen (pO2) in the brains of rats following normobaric hyperoxia and mild hypoxia. The cerebral tissue pO2 was measured simultaneously in the cerebral cortex and striatum in the same rats before, during, and after normobaric hyperoxia and mild hypoxia challenges. The baseline mean tissue pO2 values (±SE) were not significantly different between the cortex and striatum. During 30 min of 100% O2 inhalation, a statistically significant increase in tissue pO2 of all four sites was observed, however, the tissue pO2 of the striatum area was significantly higher than in the forelimb area of the cortex. Brain pO2 significantly decreased from the baseline value during 15 min of 15% O2 challenge. No differences in the recovery of the cerebral cortex and striatum pO2 were observed when the rats were allowed to breathe 30% O2. It appears that EPR oximetry using implantable resonators can provide information on pO2 under the experimental conditions needed for such a study. The levels of pO2 that occurred in these experiments are readily resolvable by multi-site EPR oximetry with multi-probe resonators. In addition, the ability to simultaneously measure the pO2 in several areas of the brain provides important information that could potentially help differentiate the pO2 changes that can occur due to global or local mechanisms. PMID:21445770

  2. A Resonant Damping Study Using Piezoelectric Materials

    Science.gov (United States)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  3. Direct photons as a potential probe for the triangle -resonance in compressed nuclear matter

    International Nuclear Information System (INIS)

    Simon, R.S.

    1994-04-01

    Pions are trapped in the compressed hadronic matter formed in relativistic heavy-ion collisions for the time periods of 15 fm/c. Such time scales are long compared to the width of the Δ-resonance and result in an enhancement of the Δ/π o γ-ratio over the free value. Simulations for the acceptance of the photon spectrometer TAPS indicate that the photon signal from the Δ-resonance might be observable. (orig.)

  4. Terahertz Pulsed Imaging and Magnetic Resonance Imaging as Tools to Probe Formulation Stability

    Science.gov (United States)

    Zhang, Qilei; Gladden, Lynn F.; Avalle, Paolo; Zeitler, J. Axel; Mantle, Michael D.

    2013-01-01

    Dissolution stability over the entire shelf life duration is of critical importance to ensure the quality of solid dosage forms. Changes in the drug release profile during storage may affect the bioavailability of drug products. This study investigated the stability of a commercial tablet (Lescol® XL) when stored under accelerated conditions (40 °C/75% r.h.). Terahertz pulsed imaging (TPI) was used to investigate the structure of the tablet coating before and after the accelerated aging process. The results indicate that the coating was reduced in thickness and exhibited a higher density after being stored under accelerated conditions for four weeks. In situ magnetic resonance imaging (MRI) of the water penetration processes during tablet dissolution in a USP-IV dissolution cell equipped with an in-line UV-vis analyzer was carried out to study local differences in water uptake into the tablet matrix between the stressed and unstressed state. The drug release profiles of the Lescol® XL tablet before and after the accelerated storage stability testing were compared using a “difference” factor f1 and a “similarity” factor f2. The results reveal that even though the physical properties of the coating layers changed significantly during the stress testing, the coating protected the tablet matrix and the densification of the coating polymer had no adverse effect on the drug release performance. PMID:24300564

  5. Study of Strongly Coupled Systems via Probe Brane Constructions

    Science.gov (United States)

    Chang, Han-Chih

    In this thesis, we present our study towards better understanding of the strongly coupled systems with extra matter content in the fundamental representation of some prescribed global symmetry group in the quenched approximation, with the toolkit of holography via a probe brane construction. Specically, for the defect conformal systems, we unearth and quantify the phase trasition diagram, and novel supersymmetric vacua in the top-down model of the D3/D5 probe brane system. For further quantify various non-Fermi quantum liquid phases realized through the holographical probe brane construction, we then propose and verify the method to include the backreaction of entanglement entropy due to the probe branes at the leading order, which can potentially be used to detect topological phase transitions. We will recapitulate the main results of our works, in collaboration with Prof. Andreas Karch, published in the following journals: "Minimal Submanifolds asymptotic to AdS4 xS2 in AdS5xS5', JHEP, vol.1404, p.037, 2014; "The Novel Solutions of Finite-Density D3/D5 Probe Brane System and Their Implications for Stability'', JHEP, vol.1210, p.060, 2014; "Entanglement Entropy for Probe Branes'', JHEP, vol.1401, p.180, 2014.

  6. Magnetic resonance studies of solid polymers

    International Nuclear Information System (INIS)

    Lenk, R.

    1969-01-01

    This paper is a review of the application of nuclear magnetic resonance (NMR) to solid polymers. In the first, theoretical part, the elements of the theory of NMR, which are necessary for the study of the properties of solid polymers are discussed: the moments method, nuclear relaxation and the distribution of correlation times. In the second part the experimental results are presented. (author) [fr

  7. Probing evolution of binaries influenced by the spin–orbit resonances

    International Nuclear Information System (INIS)

    Gupta, A; Gopakumar, A

    2014-01-01

    We evolve isolated comparable mass spinning compact binaries experiencing Schnittman’s post-Newtonian spin–orbit resonances in an inertial frame associated with j 0 , the initial direction of the total angular momentum. We argue that accurate gravitational wave (GW) measurements of the initial orientations of the two spins and orbital angular momentum from j 0 should allow us to distinguish between the two possible families of spin–orbit resonances. Therefore, these measurements have the potential to provide direct observational evidence of possible binary formation scenarios. The above statements should also apply for binaries that do not remain in a resonant plane when they become detectable by GW interferometers. The resonant plane, characterized by the vanishing scalar triple product involving the two spins and the orbital angular momentum, naturally appears in the one parameter family of equilibrium solutions, discovered by Schnittman. We develop a prescription to compute the time-domain inspiral templates for binaries residing in these resonant configurations and explore their preliminary data analysis consequences. (paper)

  8. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet.

    Science.gov (United States)

    Vennemann, T; Jeong, M; Yoon, D; Magrez, A; Berger, H; Yang, L; Živković, I; Babkevich, P; Rønnow, H M

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO 4 with S = 1/2 (Mo 5+ ) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31 P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  9. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet

    Science.gov (United States)

    Vennemann, T.; Jeong, M.; Yoon, D.; Magrez, A.; Berger, H.; Yang, L.; Živković, I.; Babkevich, P.; Rønnow, H. M.

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  10. Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes

    NARCIS (Netherlands)

    Briley-Saebo, Karen C.; Mulder, Willem J. M.; Mani, Venkatesh; Hyafil, Fabien; Amirbekian, Vardan; Aguinaldo, Juan Gilberto S.; Fisher, Edward A.; Fayad, Zahi A.

    2007-01-01

    The vulnerability or destabilization of atherosclerotic plaques has been directly linked to plaque composition. Imaging modalities, such as magnetic resonance (MR) imaging, that allow for evaluation of plaque composition at a cellular and molecular level, could further improve the detection of

  11. Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kačenka, M.; Kaman, Ondřej; Kotek, J.; Falteisek, L.; Černý, J.; Jirák, D.; Herynek, V.; Zacharovová, K.; Berková, A.; Jendelová, Pavla; Kupčík, Jaroslav; Pollert, Emil; Veverka, Pavel; Lukeš, I.

    2011-01-01

    Roč. 21, č. 1 (2011), s. 157-164 ISSN 0959-9428 R&D Projects: GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z50390703; CEZ:AV0Z40720504 Keywords : cellular labelling * dual probe * magnetic nanoparticles * MRI * silica coating Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.968, year: 2011

  12. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators

    International Nuclear Information System (INIS)

    Singh, Vibhor; Sengupta, Shamashis; Solanki, Hari S; Dhall, Rohan; Allain, Adrien; Dhara, Sajal; Deshmukh, Mandar M; Pant, Prita

    2010-01-01

    We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300 and 30 K. We also study the dispersion, the variation of resonant frequency with DC gate voltage, of the electromechanical modes and find considerable tunability of resonant frequency, desirable for applications like mass sensing and RF signal processing at room temperature. With a lowering of temperature, we find that the positively dispersing electromechanical modes evolve into negatively dispersing ones. We quantitatively explain this crossover and discuss optimal electromechanical properties that are desirable for temperature-compensated sensors.

  13. Magnetic resonance studies of atomic hydrogen gas at low temperatures

    International Nuclear Information System (INIS)

    Hardy, W.N.; Morrow, M.; Jochemsen, R.; Statt, B.W.; Kubik, P.R.; Marsolais, R.M.; Berlinsky, A.J.; Landesman, A.

    1980-01-01

    Using a pulsed low temperature discharge in a closed cell containing H 2 and 4 He, we have been able to store a low density (approximately 10 12 atoms/cc) gas of atomic hydrogen for periods of order one hour in zero magnetic field and T=1 K. Pulsed magnetic resonance at the 1420 MHz hyperfine transition has been used to study a number of the properties of the gas, including the recombination rate H + H + 4 He→H 2 + 4 He, the hydrogen spin-exchange relaxation rates, the diffusion coefficient of H in 4 He gas and the pressure shift of the hyperfine frequency due to the 4 He buffer gas. Here we discuss the application of hyperfine frequency shifts as a probe of the H-He potential, and as a means for determining the binding energy of H on liquid helium

  14. Study of biological fluids by nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Kriat, M.; Vion-Dury, J.; Confort-Gouny, S.; Sciaky, M.; Cozzone, P.J.

    1991-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy in the study of biofluids is rapidly developing and might soon constitute a new major medical application of this technique which benefits from technological and methodological progress such as higher magnetic fields, new probe design, solvent suppression sequences and advanced data processing routines. In this overview, the clinical and pharmacological impact of this new approach is examined, with emphasis on the NMR spectroscopy of plasma, cerebrospinal fluid and urine. Applications to pharmacokinetics and toxicology are illustrated. Interestingly, a number of biochemical components of fluids which are not usually assayed by conventional biochemical methods are readily detected by NMR spectroscopy which is clearly a new competitive entrant among the techniques used in clinical biology. Its ease-of-use, cost effectiveness and high informational content might turn it into a major diagnostic tool in the years to come [fr

  15. Semiconductor studies by radioactive probe atoms

    International Nuclear Information System (INIS)

    Wichert, Thomas

    2003-01-01

    There are a growing number of experimental techniques that have in common the usage of radioactive isotopes for the characterization of semiconductors. These techniques deliver atomistic information about identity, formation, lattice environment, and electronic structure, as well as dynamics of defects and defect complexes. The results obtained by different hyperfine techniques are discussed in context with the study of intrinsic and extrinsic defects, i.e. of vacancies or self-interstitials and dopant or impurity atoms, respectively. In addition, the employment of electrical and optical techniques in combination with radioactive isotopes is presented

  16. Nuclear studies with intermediate energy probes

    International Nuclear Information System (INIS)

    Norum, B.E.

    1992-01-01

    Data from measurements at NIKHEF-K of the electro-production of neutral pions from the proton were completely analyzed and axe about to be submitted for publication. These results represent the first precise measurement of this fundamental process in the threshold region. The results are completely consistent with calculations based upon the Low Energy Theorems. Results from studies of a gas jet target in the electron storage ring of the Saskatchewan Accelerator Laboratory (SAL) have been fully analyzed and are being prepared for publication. An Internal Target Development Facility (ITDF), established at NIKHEF-K in a collaborative effort for the purpose of developing higher density gas jet targets suitable for use in electron rings, is operational. Diagnostic techniques are being evaluated in preparation for evaluating jet technology options. Our study of the calcium isotopes ( 42 C and 44 C) is nearing completion. Both the electron and proton scattering data have been completely analyzed. Consistent proton and neutron transition densities have been extracted, and are being compared to corresponding results from pion scattering. Preparations for (γ,π - ) measurements at SAL have been completed, and data taking is about to commence

  17. Studies of impurity recycling by the collector probe technique

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Grote, H.; Herrmann, A.; Laux, M.; Pech, P.; Reiner, H.D.; Wolff, H.

    1987-01-01

    In order to study recycling effects of the nonintrinsic impurity Li discharges with and without LiD-pellet injection were investigated. The observed maximum impurity level of Li in the SOL plasma of discharges without injection reaches less than 10% of that observed in discharges with injection. The measurements offer the possibility to distinguish between influxes from the wall and those which reach the collector probe via the core plasma. The time evolution, orientation and radial dependence of the impurity fluxes are characteristic features of their origin. The consideration of all these features facilitates a better understanding of collector probe measurements in the SOL-plasma. (orig.)

  18. Use of gamma probe in 131I thyroid uptake studies

    International Nuclear Information System (INIS)

    Sarmento, Andrea Gondim Leitao

    2002-11-01

    Evaluation of thyroid uptake by administration of radioactive iodine is a well-defined procedure to assess patient thyroid function. In general, nuclear medicine institutions use gamma cameras coupled to pinhole collimators to perform uptake studies. With the growing use of intraoperative gamma probes in the radioguided surgical techniques, several institutions are purchasing this new and portable equipment, which can technically be also employed to assess patient's thyroid function, permitting further other applications of gamma cameras. The aim of the study was to compare thyroid uptake trails carried out with both gamma camera and intraoperative gamma probe, in order to evaluate the possible use of gamma probe for this purpose. At first a preliminary study of feasibility was carried out using a neck phantom to verify equipment efficiency with known activities of 131 I. Henceforth, work data from 12 patients undergone studies of thyroid uptakes were evaluated, 24 hours after oral administration of 370 kBq of 131 I. The maximum difference observed between the values obtained with both equipment was 60%, which demonstrated the feasibility of the proposed protocol and made clear that gamma probe can be useful for thyroid uptake studies. (author)

  19. Strong interactions studies with medium energy probes

    International Nuclear Information System (INIS)

    Seth, K.K.

    1993-10-01

    This progress report refers to the period August 1992 to August 1993, which includes the first year of the three-year period December 1, 1992--November 30, 1995 of the existing research contract. As anticipated in the 1992--1995 proposal the major preoccupation during 1992--1993 was with Fermilab experiment E760. This experiment, whose primary objective is to make very high-resolution study of Charmonium Spectroscopy via proton-antiproton annihilations, has turned out to be a veritable gold-mine of exciting hadronic physics in other areas as well. These include the proton from factor in the time-life region, proton-antiproton forward scattering, QCD scaling laws, and light quark spectroscopy. A large fraction of the data from E760 have been analyzed during this year, and several papers have been published. In addition to the E760 experiment at Fermilab continued progress was made earlier nuclear physics-related experiments at LAMPF, MIT, and NIKHEF, and their results for publication. Topics include high- resolution electron scattering, quasi-free electron scattering and low-energy pion double charge exchange

  20. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    Science.gov (United States)

    Blencowe, M. P.; Armour, A. D.

    2008-09-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  1. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    International Nuclear Information System (INIS)

    Blencowe, M P; Armour, A D

    2008-01-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  2. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering.

    Science.gov (United States)

    Liu, X; Dean, M P M; Liu, J; Chiuzbăian, S G; Jaouen, N; Nicolaou, A; Yin, W G; Rayan Serrao, C; Ramesh, R; Ding, H; Hill, J P

    2015-05-27

    Resonant inelastic x-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr2IrO4, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolution in the hard x-ray region is usually poor.

  3. Applications of DNA-Stable Isotope Probing in Bioremediation Studies

    Science.gov (United States)

    Chen, Yin; Vohra, Jyotsna; Murrell, J. Colin

    DNA-stable isotope probing, a method to identify active microorganisms without the prerequisite of cultivation, has been widely applied in the study of microorganisms involved in the degradation of environmental pollutants. Recent advances and technique considerations in applying DNA-SIP in bioremediation are highlighted. A detailed protocol of a DNA-SIP experiment is provided.

  4. Magnetic resonance studies of intercalation compounds

    International Nuclear Information System (INIS)

    Miller, G.R.

    1990-01-01

    During the last three or four years, nearly tow hundred papers have been published that used NMR or ESR spectroscopy to study compounds formed by the intercalation of molecules or ions into the van der Waals gap of a layered hast compound. The host lattices have ranged from the simple, such as graphite, to the complex, such as clay. In many cases, magnetic resonance techniques now enable one to obtain quite detailed information on even fairly complex intercalated species, on the nature of the changes in the host lattice accompanying intercalation, and on the nature of the interactions between the intercalant species and the host lattice. Magnetic resonance is used in conunction with many other techniques to obtain a fuller picture of these interesting systems, but this review will limit its focus to the use of NMR and ESR techniques. (author). 51 refs

  5. Nanodiamond graphitization: a magnetic resonance study

    International Nuclear Information System (INIS)

    Panich, A M; Shames, A I; Sergeev, N A; Olszewski, M; McDonough, J K; Mochalin, V N; Gogotsi, Y

    2013-01-01

    We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) study of the high-temperature nanodiamond-to-onion transformation. 1 H, 13 C NMR and EPR spectra of the initial nanodiamond samples and those annealed at 600, 700, 800 and 1800 ° C were measured. For the samples annealed at 600 to 800 ° C, our NMR data reveal the early stages of the surface modification, as well as a progressive increase in sp 2 carbon content with increased annealing temperature. Such quantitative experimental data were recorded for the first time. These findings correlate with EPR data on the sensitivity of the dangling bond EPR line width to air content, progressing with rising annealing temperature, that evidences consequent graphitization of the external layers of the diamond core. The sample annealed at 1800 ° C shows complete conversion of nanodiamond particles into carbon onions. (paper)

  6. Studies of nucleon resonance structure in exclusive meson electroproduction

    International Nuclear Information System (INIS)

    Aznauryan, I.G.; Bashir, A.; Braun, V.M.

    2013-01-01

    Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2 . This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q 2 = 12 GeV 2 . This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. (author)

  7. Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage

    Science.gov (United States)

    de Ruiter, Mark V.; Overeem, Nico J.; Singhai, Gaurav; Cornelissen, Jeroen J. L. M.

    2018-05-01

    Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance energy transfer (FRET) to study the assembly of viruses without labeling the exterior of viruses. Instead, we exploit their encapsulation of nucleic cargo, using three different fluorescent ATTO dyes linked to single-stranded DNA oligomers, which are hybridised to a longer DNA strand. FRET is induced upon assembly of the cowpea chlorotic mottle virus, which forms monodisperse icosahedral particles of about 22 nm, thereby increasing the FRET efficiency by a factor of 8. Additionally, encapsulation of the dyes in virus-like particles induces a two-step FRET. When the formed constructs are disassembled, this FRET signal is fully reduced to the value before encapsulation. This reversible behavior makes the system a good probe for studying viral assembly and disassembly. It, furthermore, shows that multi-component supramolecular materials are stabilized in the confinement of a protein cage.

  8. Membrane metamaterial resonators with a sharp resonance: A comprehensive study towards practical terahertz filters and sensors

    Directory of Open Access Journals (Sweden)

    Yongyao Chen

    2012-06-01

    Full Text Available We investigate the resonant properties of high quality-factor membrane-based metamaterial resonators functioning in the terahertz regime. A number of factors, including the resonator geometry, dielectric loss, and most importantly the membrane thickness are found to extensively influence the resonance strength and quality factor of the sharp resonance. Further studies on the membrane thickness-dependent-sensitivity for sensing applications reveal that high quality-factor membrane metamaterials with a moderate thickness ranging from 10 to 50 μm are the most promising option towards developing realistic integrated terahertz filters and sensors.

  9. NASA and international studies of the Solar Probe Mission

    Science.gov (United States)

    Randolph, James E.

    1992-01-01

    A review is presented summarizing the history and current status of the studies of the Solar Probe Mission by NASA and other space agencies. The technology and scientific challenges of the mission are addressed in these studies and can be met with current instrument and technology capabilities. The specific set of experiments recommended by a scientific advisory group to the NASA study for integration into the design concept is discussed.

  10. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    International Nuclear Information System (INIS)

    Chang-Hwan Kim

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms

  11. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  12. Determination of protein by resonance light scattering technique using dithiothreitol-sodium dodecylbenzene sulphonate as probe

    Science.gov (United States)

    Wu, Lihang; Mu, Dan; Gao, Dejiang; Deng, Xinyu; Tian, Yuan; Zhang, Hanqi; Yu, Aimin

    2009-02-01

    The resonance light scattering (RLS) spectra of bovine serum albumin (BSA)-dithiothreitol (DTT)-sodium dodecylbenzene sulphonate (SDBS) and its analytical application were investigated. The RLS intensity of this system can be effectively enhanced in the presence of BSA. Based on the enhanced RLS intensity, a simple assay for BSA was developed. The experimental results indicate that the enhanced RLS intensity is proportional to the concentration of BSA in the range from 1.0 × 10 -8 to 7.5 × 10 -7 mol L -1 with the determination limit of 5.0 × 10 -9 mol L -1. The effects of pH, concentration of SDBS and DTT on the RLS enhancement were discussed. Most metal ions have little interference on the determination of BSA. Some synthetic and real samples were analyzed, and the results obtained were in good agreement with those obtained by Bradford method.

  13. Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; de Lasson, Jakob Rosenkrantz; Beleggia, Marco

    2014-01-01

    The dependence of surface plasmon coupling on the distance between two nanoparticles (dimer) is the basis of nanometrology tools such as plasmon rulers. Application of these nanometric rulers requires an accurate description of the scaling of the surface plasmon resonance (SPR) wavelength...... with distance. Here, we have applied electron energy-loss spectroscopy (EELS) and scanning transmission electron microscopy (STEM) imaging to investigate the relationship between the SPR wavelength of gold and silver nanosphere dimers (radius R) and interparticle distance (d) in the range 0.1R .... Instead, within the range 0.1R gold and silver dimers. Despite this common power dependence, consistently larger SPR wavelength shifts are registered for silver for a given change in d, implying...

  14. Charge asymmetry ratio as a probe of quark flavour couplings of resonant particles at the LHC

    International Nuclear Information System (INIS)

    Kom, Chun-Hay; Stirling, W.J.

    2011-01-01

    We show how a precise knowledge of parton distribution functions, in particular those of the u and d quarks, can be used to constrain a certain class of New Physics models in which new heavy charged resonances couple to quarks and leptons. We illustrate the method by considering a left-right symmetric model with a W' from a SU(2) R gauge sector produced in quark-antiquark annihilation and decaying into a charged lepton and a heavy Majorana neutrino. We discuss a number of quark and lepton mixing scenarios, and simulate both signals and backgrounds in order to determine the size of the expected charge asymmetry. We show that various quark-W' mixing scenarios can indeed be constrained by charge asymmetry measurements at the LHC, particularly at √(s)=14 TeV. (orig.)

  15. Magnetic resonance spectroscopy studies in migraine

    Energy Technology Data Exchange (ETDEWEB)

    Montagna, P.; Cortelli, P.; Barbiroli, B. (Inst. of Medical Pathology, Univ. of Bologna (Italy))

    1994-06-01

    The authors describe the method of [sup 31]phosphorus magnetic resonance spectroscopy and review the results when it is applied to the study of brain and muscle energy metabolism in migraine subjects. Brain energy metabolism appears to be abnormal in all major subtypes of migraine when measured both during and between attacks. Impaired energy metabolism is also documented in skeletal muscle. It is suggested that migraine is associated with a generalized disorder of mitochondrial oxidative phosphorylation and that this may constitute a threshold for the triggering of migraine attacks. 47 refs., 10 figs., 3 tabs.

  16. Interferometric probes of ultrarelativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Padula, S.S. (Instituto de Fisica Teorica, Sao Paulo (Brazil)); Gyulassy, M. (Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.)

    1991-04-01

    We suggest that pion and kaon interferometry are complementary probes that help differentiate hadronic resonance gas from plasma dynamical models. We also discuss how interferometry could be used to test the presence of resonances at AGS energies. Finally, we study the A dependence of interferometry in the resonance model at 200 A GeV. (orig.).

  17. Interferometric probes of ultrarelativistic nuclear collisions

    International Nuclear Information System (INIS)

    Padula, S.S.; Gyulassy, M.

    1991-01-01

    We suggest that pion and kaon interferometry are complementary probes that help differentiate hadronic resonance gas from plasma dynamical models. We also discuss how interferometry could be used to test the presence of resonances at AGS energies. Finally, we study the A dependence of interferometry in the resonance model at 200 A GeV. (orig.)

  18. Probing beer aging chemistry by nuclear magnetic resonance and multivariate analysis

    International Nuclear Information System (INIS)

    Rodrigues, J.A.; Barros, A.S.; Carvalho, B.; Brandao, T.; Gil, Ana M.

    2011-01-01

    Graphical abstract: The use of nuclear magnetic resonance (NMR) metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging (at 45 deg. C for up to 18 days) is described. Both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and an aging trend was observed. Inspection of PLS-DA loadings and peak integration revealed the importance of well known markers (e.g. 5-HMF) as well as of other compounds: amino acids, higher alcohols, organic acids, dextrins and some still unassigned spin systems. 2D correlation analysis enabled relevant compound variations to be confirmed and inter-compound correlations to be assessed, thus offering improved insight into the chemical aspects of beer aging. Highlights: · Use of NMR metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging. · Compositional variations evaluated by principal component analysis and partial least squares-discriminant analysis. · Results reveal importance of known markers and other compounds: amino and organic acids, higher alcohols, dextrins. · 2D correlation analysis reveals inter-compound relationships, offering insight into beer aging chemistry. - Abstract: This paper describes the use of nuclear magnetic resonance (NMR) spectroscopy, in tandem with multivariate analysis (MVA), for monitoring the chemical changes occurring in a lager beer exposed to forced aging (at 45 deg. C for up to 18 days). To evaluate the resulting compositional variations, both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and a clear aging trend was observed. Inspection of PLS-DA loadings and peak integration enabled the changing compounds to be identified, revealing the importance of well known markers such as 5-hydroxymethylfurfural (5

  19. Probing beer aging chemistry by nuclear magnetic resonance and multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.A. [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Barros, A.S. [QOPNA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Carvalho, B.; Brandao, T. [UNICER, Bebidas de Portugal, Leca do Balio, 4466-955, S. Mamede de Infesta (Portugal); Gil, Ana M., E-mail: agil@ua.pt [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2011-09-30

    Graphical abstract: The use of nuclear magnetic resonance (NMR) metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging (at 45 deg. C for up to 18 days) is described. Both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and an aging trend was observed. Inspection of PLS-DA loadings and peak integration revealed the importance of well known markers (e.g. 5-HMF) as well as of other compounds: amino acids, higher alcohols, organic acids, dextrins and some still unassigned spin systems. 2D correlation analysis enabled relevant compound variations to be confirmed and inter-compound correlations to be assessed, thus offering improved insight into the chemical aspects of beer aging. Highlights: {center_dot} Use of NMR metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging. {center_dot} Compositional variations evaluated by principal component analysis and partial least squares-discriminant analysis. {center_dot} Results reveal importance of known markers and other compounds: amino and organic acids, higher alcohols, dextrins. {center_dot} 2D correlation analysis reveals inter-compound relationships, offering insight into beer aging chemistry. - Abstract: This paper describes the use of nuclear magnetic resonance (NMR) spectroscopy, in tandem with multivariate analysis (MVA), for monitoring the chemical changes occurring in a lager beer exposed to forced aging (at 45 deg. C for up to 18 days). To evaluate the resulting compositional variations, both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and a clear aging trend was observed. Inspection of PLS-DA loadings and peak integration enabled the changing compounds to be identified, revealing the importance of well known

  20. A sensitive resveratrol assay with a simple probe methylene blue by resonance light scattering technique

    Science.gov (United States)

    Xiang, Haiyan; Dai, Kaijin; Luo, Qizhi; Duan, Wenjun; Xie, Yang

    2011-01-01

    A novel resonance light scattering (RLS) method was developed for the determination of resveratrol based on the interaction between resveratrol and methylene blue (MB). It was found that at pH 8.69, the weak RLS intensity of MB was remarkably enhanced by the addition of trace amount of resveratrol with the maximum peak located at 385.0 nm. Under the optimum conditions, a good linear relationship between the enhanced RLS intensities and the concentrations of resveratrol was obtained over the range of 2.0-14.0 μg ml -1 with the detection limit (3 σ) of 0.63 μg ml -1. The results of the analysis of resveratrol in synthetic samples and human urine are satisfactory, which showed it may provide a more sensitive, convenient, rapid and reproducible method for the detection of resveratrol, especially in biological and pharmaceutical field. In this work, the characteristics of RLS, absorption and fluorescence spectra of the resveratrol-MB system, the influencing factors and the optimum conditions of the reaction were investigated.

  1. High-pressure electron-resonance studies of electronic, magnetic, and structural phase transitions. Progress report

    International Nuclear Information System (INIS)

    Pifer, J.H.; Croft, M.C.

    1983-01-01

    Research is described in development of a high-pressure electron-resonance probe capable of operating down to 1.5 0 K temperatures. The apparatus has been used to measure the EPR of a sample of DPPH at room temperature and zero pressure. EPR has been used to measure valence field instabilities in alloy systems. Studies have been done on metal-insulator transitions at high pressure, and are briefly described

  2. Multifrequency scanning probe microscopy study of nanodiamond agglomerates

    Science.gov (United States)

    Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team

    Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  3. [Gastric magnetic resonance study (methods, semiotics)].

    Science.gov (United States)

    Stashuk, G A

    2003-01-01

    The paper shows the potentialities of gastric study by magnetic resonance imaging (MRI). The methodic aspects of gastric study have been worked out. The MRI-semiotics of the unchanged and tumor-affected wall of the stomach and techniques in examining patients with gastric cancer of various sites are described. Using the developed procedure, MRI was performed in 199 patients, including 154 patients with gastric pathology and 45 control individuals who had no altered gastric wall. Great emphasis is placed on the role of MRI in the diagnosis of endophytic (diffuse) gastric cancer that is of priority value in its morphological structure. MRI was found to play a role in the diagnosis of the spread of a tumorous process both along the walls of the stomach and to its adjacent anatomic structures.

  4. Study of protein-probe complexation equilibria and protein-surfactant interaction using charge transfer fluorescence probe methyl ester of N,N-dimethylamino naphthyl acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mahanta, Subrata; Balia Singh, Rupashree; Bagchi, Arnab [Department of Chemistry University of Calcutta 92, A.P.C. Road, Kolkata 700009 (India); Nath, Debnarayan [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Guchhait, Nikhil, E-mail: nguchhait@yahoo.co [Department of Chemistry University of Calcutta 92, A.P.C. Road, Kolkata 700009 (India)

    2010-06-15

    In this paper, we demonstrate the interaction between intramolecular charge transfer (ICT) probe-Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) with bovine serum albumin (BSA) using absorption and fluorescence emission spectroscopy. The nature of probe protein binding interaction, fluorescence resonance energy transfer from protein to probe and time resolved fluorescence decay measurement predict that the probe molecule binds strongly to the hydrophobic cavity of the protein. Furthermore, the interaction of the anionic surfactant sodium dodecyl sulphate (SDS) with water soluble protein BSA has been investigated using MDMANA as fluorescenece probe. The changes in the spectral characteristics of charge transfer fluorescence probe MDMANA in BSA-SDS environment reflects well the nature of the protein-surfactant binding interaction such as specific binding, non-cooperative binding, cooperative binding and saturation binding.

  5. Deformations of the Heme Group of Different Ferrocytochrome c Proteins Probed by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Hagarman, Andrew; Schweitzer-Stenner, Reinhard; Wallace, Carmichael; Laberge, Monique

    2008-01-01

    We measured the low-frequency polarized resonance Raman spectra of horse heart, chicken, and yeast(C102T) ferrocytochromes c with Soret excitation. We examined the out-of-plane deformations of the heme groups by determining the relative intensities and depolarization ratios of a variety of out-of-plane and in-plane Raman active bands. Analysis of relative Raman intensities shows differences in non-planarity of the heme groups of yeast(C102T), horse heart and chicken cytochrome c. Cytochrome c has been shown to have a dominant ruffling (B 1u ) deformation by means of normal coordinate structural decomposition (NSD) analysis of the heme group in crystal structures. The presence and intensity of B 1u modes, γ 10 -γ 12 , support the indication of ruffling being the major contribution to the non-planar deformations in cytochrome c. Other types of non-planar deformations like doming (A 2U ) and waving (E g ) can be deduced from the Raman activity of γ 5 (A 2u ), γ 21 and γ 22 (E g ). The depolarization ratios of γ 5 , γ 10 , γ 11 and γ 12 are larger than 0.125, indicating the presence of other deformations such as saddling (B 2u ) and propellering (A 1u ), which is again in agreement with the crystal structures of horse heart and yeast ferrocytochrome c. An analysis of the intensities and depolarization ratios of out-of-plane modes revealed that ruffling is comparable in yeast and horse heart cytochrome c, saddling is larger and doming as well as propellering are lower in yeast cytochrome c. With respect to doming and ruffling our results contradict values obtained from the NSD analysis of the corresponding crystal structures. With respect to saddling, our data are in agreement with the crystal structure. The NSD analysis of heme structures resulting from MD simulations did not correlate very well with the spectroscopically obtained results concerning the ruffling and doming coordinate, whereas a qualitative agreement was again obtained for saddling.

  6. Probing the hadronic phase with resonances of different lifetimes in Pb-Pb collisions with ALICE arXiv

    CERN Document Server

    Agrawal, Neelima

    The ALICE experiment has measured the production of a rich set of hadronic resonances, such as $\\rho(770)^{0}$, ${\\rm K}^{\\ast}(892)^{0}$, $\\phi$(1020), $\\Sigma^{\\pm}$(1385), $\\Lambda(1520)$ and $\\Xi^{\\ast 0}$ in pp, p-Pb and Pb-Pb collisions at various energies at the LHC. A comprehensive overview and the latest results are presented in this paper. Special focus is given to the role of hadronic resonances for the study of final-state effects in high-energy collisions. In particular, the measurement of resonance production in heavy-ion collisions has the capability to provide insight into the existence of a prolonged hadronic phase after hadronisation. The observation of the suppression of the production of $\\Lambda(1520)$ resonance in central Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV adds further support to the existence of such a dense hadronic phase, as already evidenced by the ratios ${\\rm K}^{\\ast}(892)^{0}$/${\\rm K}$ and $\\rho(770)^{0}$/$\\pi$.

  7. Clearance and Biodistribution of Liposomally Encapsulated Nitroxides: A Model for Targeted Delivery of Electron Paramagnetic Resonance Imaging Probes to Tumors

    Science.gov (United States)

    Burks, Scott R.; Legenzov, Eric A.; Rosen, Gerald M.

    2011-01-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as molecular probes is potentially a powerful tool for the detection and physiological characterization of micrometastatic lesions. Encapsulating nitroxides in anti-HER2 immunoliposomes at high concentrations to take advantage of the “self-quenching” phenomenon of nitroxides allows generation of robust EPR signals in HER2-overexpressing breast tumor cells with minimal background from indifferent tissues or circulating liposomes. We investigated the in vivo pharmacological properties of nitroxides encapsulated in sterically stabilized liposomes designed for long circulation times. We show that circulation times of nitroxides can be extended from hours to days; this increases the proportion of liposomes in circulation to enhance tumor targeting. Furthermore, nitroxides encapsulated in sterically stabilized anti-HER2 immunoliposomes can be delivered to HER2-overexpressing tumors at micromolar concentrations, which should be imageable by EPR. Lastly, after in vivo administration, liposomally encapsulated nitroxide signal also appears in the liver, spleen, and kidneys. Although these organs are spatially distinct and would not hinder tumor imaging in our model, understanding nitroxide signal retention in these organs is essential for further improvements in EPR imaging contrast between tumors and other tissues. These results lay the foundation to use liposomally delivered nitroxides and EPR imaging to visualize tumor cells in vivo. PMID:21737567

  8. Study of probe-sample distance for biomedical spectra measurement

    Directory of Open Access Journals (Sweden)

    Li Lei

    2011-11-01

    Full Text Available Abstract Background Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. Method In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. Results The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. Conclusions We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.

  9. Probe Microscopic Studies of DNA Molecules on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Kazuo Umemura

    2016-10-01

    Full Text Available Hybrids of DNA and carbon nanotubes (CNTs are promising nanobioconjugates for nanobiosensors, carriers for drug delivery, and other biological applications. In this review, nanoscopic characterization of DNA-CNT hybrids, in particular, characterization by scanning probe microscopy (SPM, is summarized. In many studies, topographical imaging by atomic force microscopy has been performed. However, some researchers have demonstrated advanced SPM operations in order to maximize its unique and valuable functions. Such sophisticated approaches are attractive and will have a significant impact on future studies of DNA-CNT hybrids.

  10. Systematic study on nuclear resonant scattering

    International Nuclear Information System (INIS)

    Suarez, A.A.; Freitas, M.L.

    1974-01-01

    New resonant scattering effect of thermal neutron capture gamma rays from Ti and Fe on Sb, Cu, Se and Ce target were observed. These results together with those published by other authors are summarized and discussed in terms of a possible systematic search for new resonant scattering effects

  11. Transmission-line resonators for the study of individual two-level tunneling systems

    Science.gov (United States)

    Brehm, Jan David; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey V.; Lisenfeld, Jürgen

    2017-09-01

    Parasitic two-level tunneling systems (TLS) emerge in amorphous dielectrics and constitute a serious nuisance for various microfabricated devices, where they act as a source of noise and decoherence. Here, we demonstrate a new test bed for the study of TLS in various materials which provides access to properties of individual TLS as well as their ensemble response. We terminate a superconducting transmission-line resonator with a capacitor that hosts TLS in its dielectric. By tuning TLS via applied mechanical strain, we observe the signatures of individual TLS strongly coupled to the resonator in its transmission characteristics and extract the coupling components of their dipole moments and energy relaxation rates. The strong and well-defined coupling to the TLS bath results in pronounced resonator frequency fluctuations and excess phase noise, through which we can study TLS ensemble effects such as spectral diffusion, and probe theoretical models of TLS interactions.

  12. Study on electrostatic and electromagnetic probes operated in ceramic and metallic depositing plasmas

    International Nuclear Information System (INIS)

    Styrnoll, T; Bienholz, S; Awakowicz, P; Lapke, M

    2014-01-01

    This paper discusses plasma probe diagnostics, namely the multipole resonance probe (MRP) and Langmuir probe (LP), operated in depositing plasmas. The aim of this work is to show that the combination of both probes provides stable and robust measurements and clear determination of plasma parameters for metallic and ceramic coating processes. The probes use different approaches to determine plasma parameters, e.g. electron density n e and electron temperature T e . The LP is a well-established plasma diagnostic, and its applicability in technological plasmas is well documented. The LP is a dc probe that performs a voltage sweep and analyses the measured current, which makes it insensitive against conductive metallic coating. However, once the LP is dielectrically coated with a ceramic film, its functionality is constricted. In contrast, the MRP was recently presented as a monitoring tool, which is insensitive to coating with dielectric ceramics. It is a new plasma diagnostic based on the concept of active plasma resonance spectroscopy, which uses the universal characteristic of all plasmas to resonate on or near the electron plasma frequency. The MRP emits a frequency sweep and the absorption of the signal, the |S 11 | parameter, is analysed. Since the MRP concept is based on electromagnetic waves, which are able to transmit dielectrics, it is insensitive to dielectric coatings. But once the MRP is metallized with a thin conductive film, no undisturbed RF-signal can be emitted into the plasma, which leads to falsified plasma parameter. In order to compare both systems, during metallic or dielectric coating, the probes are operated in a magnetron CCP, which is equipped with a titanium target. We present measurements in metallic and dielectric coating processes with both probes and elaborate advantages and problems of each probe operated in each coating environment. (paper)

  13. Study of spin resonances in the accelerators with snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1989-01-01

    Spin resonances in the circular accelerators with snakes are studied to understand the nature of snake resonances. We analyze the effect of snake configuration, and the snake superperiod on the resonance. Defining the critical resonance strength ε c as the maximum tolerable resonance strength without losing the beam polarization after passing through the resonance, we found that ε c is a sensitive function of the snake configuration, the snake superperiod at the first order snake resonance, the higher order snake resonance conditions and the spin matching condition. Under properly designed snake configuration, the critical resonance strength ε c is found to vary linearly with N S as left-angle ε c right-angle=(1/π)sin -1 (cos πν z | 1/2 )N S , where ν| z and N S are the betatron tune and the number of snakes respectively. We also study the effect of overlapping intrinsic and imperfection resonances. The imperfection resonance should be corrected to a magnitude of insignificance (e.g., ε≤0.1 for two snakes case) to maintain proper polarization

  14. Resonance Raman study of benzyl radical

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Bajdor, K.; Wilbrandt, R.

    1992-01-01

    Time-resolved resonance Raman spectra are obtained of benzyl radicals created by laser flash photolysis of benzylchloride and diphenylacetone in solution. The spectra are obtained in resonance with the intense 2 2A2-1 B-2(2) transition of benzyl. The strong Raman bands are assigned to totally...... symmetric a1 modes. The remaining observed bands are tentatively assigned to fundamental modes of b1, a2, and b2 symmetry, and to overtones and combinations. The resonance Raman spectra are found to be quite different from previous fluorescence spectra of benzyl, and the origins of these differences...

  15. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    Science.gov (United States)

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  16. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  17. Magnetic resonance as a structural probe of a uranium (VI) sol-gel process

    International Nuclear Information System (INIS)

    King, C.M.; Thompson, M.C.; Buchanan, B.R.; King, R.B.; Garber, A.R.

    1989-01-01

    NMR investigations on the ORNL process for sol-gel synthesis of microspherical nuclear fuel (UO 2 ), has been useful in sorting out the chemical mechanism in the sol-gel steps. 13 C, 15 N, and 1 H NMR studies on the HMTA gelation agent (Hexamethylene tetramine, C 6 H l2 N 4 ) has revealed near quantitative stability of this adamantane-like compound in the sol-Gel process, contrary to its historical role as an ammonia source for gelation from the worldwide technical literature. 17 0 NMR of uranyl (UO 2 ++ ) hydrolysis fragments produced in colloidal sols has revealed the selective formation of a uranyl trimer, [(UO 2 ) 3 (μ 3 -O)(μ 2 -OH) 3 ] + , induced by basic hydrolysis with the HMTA gelation agent. Spectroscopic results show that trimer condensation occurs during sol-gel processing leading to layered polyanionic hydrous uranium oxides in which HMTAH + is occluded as an ''intercalation'' cation. Subsequent sol-gel processing of microspheres by ammonia washing results in in-situ ion exchange and formation of a layered hydrous ammonium uranate with a proposed structural formula of (NH 4 ) 2 [(UO 2 ) 8 O 4 (OH) 10 ] · 8H 2 0. This compound is the precursor to sintered U0 2 ceramic fuel

  18. Probing Bioluminescence Resonance Energy Transfer in Quantum Rod-Luciferase Nanoconjugates.

    Science.gov (United States)

    Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Coopersmith, Kaitlin; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M

    2016-02-23

    We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift.

  19. A mechanically tunable and efficient ceramic probe for MR-microscopy at 17 Tesla

    Science.gov (United States)

    Kurdjumov, Sergei; Glybovski, Stanislav; Hurshkainen, Anna; Webb, Andrew; Abdeddaim, Redha; Ciobanu, Luisa; Melchakova, Irina; Belov, Pavel

    2017-09-01

    In this contribution we propose and study numerically a new probe (radiofrequency coil) for magnetic resonance mi-croscopy in the field of 17T. The probe is based on two coupled donut resonators made of a high-permittivity and low-loss ceramics excited by a non-resonant inductively coupled loop attached to a coaxial cable. By full-wave numerical simulation it was shown that the probe can be precisely tuned to the Larmor frequency of protons (723 MHz) by adjusting a gap between the two resonators. Moreover, the impedance of the probe can be matched by varying the distance from one of the resonators to the loop. As a result, a compact and mechanically tunable resonant probe was demonstrated for 17 Tesla applications using no lumped capacitors for tuning and matching. The new probe was numerically compared to a conventional solenoidal probe showing better efficiency.

  20. Langmuir probe studies on a RF ion source for NBI

    International Nuclear Information System (INIS)

    McNeely, P.; Heineman, B.; Kraus, W.; Riedl, R.; Speth, E.; Vollmer, O.

    2001-01-01

    IPP Garching has been developing a RF ion source for H - production. In order to improve the data quality a new scanning probe system with passive RF compensation has been installed on the Type VI ion source on the BATMAN test stand. Using this probe, measurements have been carried out to study changes to the plasma parameters (electron density, electron temperature, and plasma potential) due to variation in the source operating conditions. The data were collected at a source pressure of 0.5 Pa and with 60±5 kW applied RF power. Presented are some of the results of these measurements, focusing on the effect of: argon seeding, addition of Cs to the source, and the newly added Faraday screen. The electron density behaves in a fashion that agrees with the theory of ambipolar diffusion. Typically there is little change to the average electron energy observed regardless of which effect is considered. The plasma potential shows the most significant changes with external source conditions, both in value for all cases and shape when the Faraday screen was added

  1. New atom probe approaches to studying segregation in nanocrystalline materials

    International Nuclear Information System (INIS)

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J.; Cao, Y.; Liao, X.Z.; Cairney, J.M.

    2013-01-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess

  2. New atom probe approaches to studying segregation in nanocrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Cao, Y.; Liao, X.Z. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2013-09-15

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess.

  3. New atom probe approaches to studying segregation in nanocrystalline materials.

    Science.gov (United States)

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Eigenvalue study of a chaotic resonator

    Energy Technology Data Exchange (ETDEWEB)

    Banova, Todorka [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D-64289 Darmstadt (Germany); Technische Universitaet Darmstadt, Graduate School of Computational Engineering, Dolivostrasse 15, D-64293 Darmstadt (Germany); Ackermann, Wolfgang; Weiland, Thomas [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D-64289 Darmstadt (Germany)

    2013-07-01

    The field of quantum chaos comprises the study of the manifestations of classical chaos in the properties of the corresponding quantum systems. Within this work, we compute the eigenfrequencies that are needed for the level spacing analysis of a microwave resonator with chaotic characteristics. The major challenges posed by our work are: first, the ability of the approaches to tackle the large scale eigenvalue problem and second, the capability to extract many, i.e. order of thousands, eigenfrequencies for the considered cavity. The first proposed approach for an accurate eigenfrequency extraction takes into consideration the evaluated electric field computations in time domain of a superconducting cavity and by means of signal-processing techniques extracts the eigenfrequencies. The second approach is based on the finite element method with curvilinear elements, which transforms the continuous eigenvalue problem to a discrete generalized eigenvalue problem. Afterwards, the Lanczos algorithm is used for the solution of the generalized eigenvalue problem. In the poster, a summary of the applied algorithms, as well as, critical implementation details together with the simulation results are provided.

  5. Nuclear magnetic resonance studies of metabolic regulation

    International Nuclear Information System (INIS)

    Sillerud, L.O.; Han, C.H.; Whaley, T.W.

    1983-01-01

    Nuclear magnetic resonance (NMR) techniques for the detection of the metabolic transformations of biological compounds labeled with stable isotopes, particularly carbon-13 have been explored. We have studied adipose tissue in the intact rat, the exteriorized epididymal fat pad, and the isolated adipocyte. Triacylglycerol metabolism in adipose tissue is regulated by lipogenic factors (insulin, corticosterone, thyroxine, and growth hormone) and lipolytic factors (glucagon and catecholamines). The synthesis of triglyceride from 5.5 mM glucose was stimulated by about 4-fold by 10 nM insulin. Triglyceride synthesis from glucose in the presence of insulin occurred at a rate of 330 nmol/hr/10 6 cells. Since the NMR signals from free and esterified fatty acids and glycerol are distinct, we could directly measure the rate of hormone-stimulated lipolysis. Epinephrine (10 μM) gave a lipolytic rate of 0.30 μmol/hr/10 6 cells as monitored by free-glycerol appearance in the medium. 13 C NMR provides a superior method for the measurement of triglyceride metabolism since it directly measures the changes in the substrates and products in situ

  6. Positron probe to study the freezing of nanodroplets

    International Nuclear Information System (INIS)

    Pujari, P.K.

    2010-01-01

    Positron is an excellent in situ probe to study the phase behavior of fluid confined in nanodomains. The study of phase behavior (freezing/melting) of nano confined fluid or nanodroplet has great relevance in fundamental research as well as applications in nano-tribology, nanofabrication, membrane separation, interfacial adhesion and lubrication. It is seen that the properties of freezing/melting of nanodroplets are different from their bulk behavior due to the combined effects of finite size, surface force, surface anisotropy, pore disorder and reduced dimensionality. We have used positron annihilation spectroscopy (PAS) to study the freezing/melting behavior of different organic liquids like benzene, ethylene glycol and isopropanol confined in nanopores of ZSM5 zeolite and silica gel

  7. Nuclear magnetic resonance studies of lens transparency

    International Nuclear Information System (INIS)

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ( 31 P) NMR spectroscopy was used to measure the 31 P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. 1 H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T 1 and T 2 with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T 1 and T 2 at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T 1 or T 2 , consistent with the phase separation being a low-energy process. 1 H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T 1 relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine γ-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T 1 with increasing magnetic field

  8. Hyperpolarized 129Xe as an NMR probe for functional studies

    International Nuclear Information System (INIS)

    Wolber, J.

    2000-01-01

    The nuclear spin polarization of 129 Xe can be enhanced by several orders of magnitude using optical pumping techniques, resulting in a dramatic enhancement of the 129 Xe Nuclear Magnetic Resonance (NMR) signal. The 'hyperpolarized' gas can be used for Magnetic Resonance Imaging (MRI) of the void spaces of the lungs after introduction of the gas into the respiratory system. Furthermore, the high solubility of xenon in blood and lipids suggests the use of 129 Xe NMR for studying blood flow, permeability, perfusion and blood volume. Hyperpolarized 129 Xe MRI has the potential of combining the high sensitivity and functional information of radioactive tracer studies with the high spatial and temporal resolution of MRI. The spin-lattice relaxation time T 1 of 129 Xe in blood determines the loss of polarization during transit from the lungs to the tissue of interest. A difference in the relaxation times of xenon in oxygenated and deoxygenated blood could be used as a contrast mechanism in functional Magnetic Resonance Imaging (fMRI). In this thesis, the hyperpolarized 129 Xe T 1 in human blood is measured in vitro as a function of blood oxygenation, and the relevant relaxation mechanisms are discussed. A new and unexpected finding is that the hyperpolarized 129 Xe NMR spectrum in blood is highly sensitive to blood oxygenation. Therefore, hyperpolarized 129 Xe NMR provides a powerful means of measuring blood oxygenation quantitatively and non-invasively. The interaction of xenon with hemoglobin is responsible for an oxygen-dependent shift of the 129 Xe NMR resonance of xenon in red blood cells. Injection delivery of hyperpolarized 129 Xe in solution could be a more efficient method of administrating the gas for functional NMR studies. For this purpose, suitable biocompatible carrier media have been studied. In particular, the use of perfluorocarbon emulsions, which are already in use as blood substitutes, as delivery media for hyperpolarized 129 Xe has been investigates

  9. Study on low frequency probe characterization for concrete application

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Pauzi Ismail

    2002-01-01

    Ultrasonic testing has been widely used in metal and non-metal material. For non-metal material such as concrete, a probe emitting low frequency ultrasonic wave is applied. This paper describes the comparison between three custom made probes using same design and piezoelectric crystal. The only difference is the backing material, which comprise of three different materials. Characterization of each transducer is compared in order to understand the effects of backing material in the probe. (Author)

  10. Deep-level defects in semiconductors: studies by magnetic resonance

    International Nuclear Information System (INIS)

    Ammerlaan, C.A.J.

    1983-01-01

    This work is divided into two parts. In the first one, the following topics are discussed: paramagnetic centers in semiconductors, principles of magnetic resonance, spin-Hamiltonian, g-tensor, hyperfine interaction, magnetic resonance spectrometer. In the second part it is dicussed defects studied by magnetic resonance including vacancy and divacancy in silicon, iron in silicon, nitrogen in diamond and antisite defects in III-V compounds. (A.C.A.S.) [pt

  11. Simulation study of resonant reflector for S-band BWO

    International Nuclear Information System (INIS)

    Choyal, Y; Parmar, Nidhi; Saini, Ajay Kumar; Chhotray, S K; Bhat, K S; Kumar, Lalit

    2012-01-01

    This paper presents the result of simulation studies of resonant reflector used for reflection of backward wave in relativistic BWO. The resonant reflector is modelled and analyzed by CST MWS for TM 01 . A TM 01 mode is fed at the output end of the BWO and signal is observed at the cathode end. Results show that 90 percent of the backward TM 01 wave is get reflected back by the locked TM 02 mode in the resonant reflector.

  12. Multichannel approach to studying scalar resonances

    International Nuclear Information System (INIS)

    Krupa, D.; Surovtsev, Yu.S.

    1995-11-01

    The multichannel approach to the investigation of resonances is given in order to determine their quantum chromodynamical nature. The formula for the analytic continuation of the N-channel S-matrix to the unphysical sheets of the Riemann surface is given, which is a solution of the N-channel problem in that it enables a prediction of the coupled-process amplitudes on the uniformization plane of the S-matrix. The resonance representations by pairs of complex-conjugate clusters of poles and zeros on the Riemann surface are discussed. The concept of standard clusters as model-independent characteristics of the resonance is developed. 32 refs, 5 figs, 4 tabs

  13. Study of giant resonances in heavy nuclei

    International Nuclear Information System (INIS)

    Cataldi, M.I.C.

    1986-01-01

    The electrodisintegration cross section for 181 Ta, 208 Pb and 209 Bi was measured by counting the emitted neutrons, with incident electrons in the energy range 8-22 MeV. The data was analysed using the virtual photon method, in order to obtain a multipole decomposition and the intensities of Magnetic Dipole and Electric Quadrupole, isoscalar and isovector, in the Giant Resonance. The results obtained for the isovector Giant Quadrupole Resonance are compared with the measured photodisintegration cross section, using data from Saclay and Livermore. This comparision indicates that the photodisintegration data can be well explained assuming an isovector E2 Resonance located between 120 and 130 A -1/3 MeV, with an intensity of one isovector E2 sum. (author) [pt

  14. Brain redox imaging in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy by using in vivo electron paramagnetic resonance and a nitroxide imaging probe.

    Science.gov (United States)

    Emoto, Miho C; Yamato, Mayumi; Sato-Akaba, Hideo; Yamada, Ken-ichi; Fujii, Hirotada G

    2015-11-03

    Much evidence supports the idea that oxidative stress is involved in the pathogenesis of epilepsy, and therapeutic interventions with antioxidants are expected as adjunct antiepileptic therapy. The aims of this study were to non-invasively obtain spatially resolved redox data from control and pentylenetetrazole (PTZ)-induced kindled mouse brains by electron paramagnetic resonance (EPR) imaging and to visualize the brain regions that are sensitive to oxidative damage. After infusion of the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), a series of EPR images of PTZ-induced mouse heads were measured. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of redox status in vivo and mapped as a redox map. The obtained redox map showed heterogeneity in the redox status in PTZ-induced mouse brains compared with control. The co-registered image of the redox map and magnetic resonance imaging (MRI) for both control and PTZ-induced mice showed a clear change in the redox status around the hippocampus after PTZ. To examine the role of antioxidants on the brain redox status, the levels of antioxidants were measured in brain tissues of control and PTZ-induced mice. Significantly lower concentrations of glutathione in the hippocampus of PTZ-kindled mice were detected compared with control. From the results of both EPR imaging and the biochemical assay, the hippocampus was found to be susceptible to oxidative damage in the PTZ-induced animal model of epilepsy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Resonant Auger studies of metallic systems

    International Nuclear Information System (INIS)

    Coulthard, I.; Antel, W. J. Jr.; Frigo, S. P.; Freeland, J. W.; Moore, J.; Calaway, W. S.; Pellin, M. J.; Mendelsohn, M.; Sham, T. K.; Naftel, S. J.

    2000-01-01

    Results of resonant Auger spectroscopy experimental are presented for Cu, Co, and oxidized Al. Sublifetime narrowing of Auger spectra and generation of sublifetime narrowed absorption spectra constructed from Auger yield measurements were observed. Resonant Auger yields are used to identify three chemical states of oxidized Al. Partial absorption yield spectra were derived giving detailed electronic information and thickness information for the various chemical states of the bulk metal, the passivating aluminum oxide layer, and the metal-oxide interface region. In addition, the total absorption yield spectrum for the oxidized Al sample was constructed from the partial yield data, supporting the consistency of our method. (c) 2000 American Vacuum Society

  16. Study on Dynamic Alignment Technology of COIL Resonator

    International Nuclear Information System (INIS)

    Xiong, M D; Zou, X J; Guo, J H; Jia, S N; Zhang, Z B

    2006-01-01

    The performance of great power chemical oxygen-iodine laser (COIL) beam is decided mostly by resonator mirror maladjustment and environment vibration. To improve the performance of light beam, an auto-alignment device is used in COIL resonator, the device can keep COIL resonator collimating by adjusting the optical components of resonator. So the coupling model of COIL resonator is present. The multivariable self study fuzzy uncoupling arithmetic and six-dimensional micro drive technology are used to design a six-input-three-output uncoupling controller, resulting in the realization of the high precision dynamic alignment. The experiments indicate that the collimating range of this system is 8 mrad, precision is 5 urad and frequency response is 20Hz, which meet the demand of resonator alignment system

  17. Paramagnetic probes to study PrNi5?

    International Nuclear Information System (INIS)

    Hutchinson, W.D.; Harker, S.J.; Stewart, G.A.; Chaplin, D.H.; Kaplan, N.

    1996-01-01

    The Van-Vleck paramagnet PrNi 5 has been the focus of many studies in the past as a result of its usefulness as a nuclear cooling agent. Extensive continuous wave praseodymium NMR measurements have been carried out on this compound. However pulsed NMR and therefore precise relaxation measurements particularly at mK temperatures have proved elusive. In this work we have proposed to use radiative gamma-ray detection to indirectly measure Pr NMR in PrNi 5 via cross relaxation to suitable paramagnetic impurity probes placed at Ni lattice sites. 57 Co was chosen as the most compatible nuclear orientation isotope with an appropriate nuclear g-factor. The choice of 57 Co also allows the use of Moessbauer spectroscopy to check the site occupancy. This poster details the production of a 57 Co doped PrNi 5 single crystal specimen including the specimen preparation problems encountered, 57 Fe Moessbauer and preliminary nuclear orientation measurements

  18. Study of giant resonances with pions

    International Nuclear Information System (INIS)

    Baer, H.W.

    1984-01-01

    Recent results on giant resonances obtained with pion-inelastic scattering and with single- and double-charge-exchange scattering are reviewed. The states discussed are isobaric analog states, double-isobaric analog states, and isovector L = 0, 1, and 2 collective states. 36 references

  19. Theoretical study of the electron paramagnetic resonance ...

    Indian Academy of Sciences (India)

    conveniently investigated by means of electron paramagnetic resonance (EPR). In ... ion Ir2+ can experience the Jahn–Teller effect by means of vibration interaction, ... Similarly, k. (and k ) are the orbital reduction factors arising from the anisotropic interactions of the orbital angular momentum operator. From the cluster ...

  20. Studies of spin excitations with electromagnetic and hadronic probes

    International Nuclear Information System (INIS)

    Lindgren, R.A.; Petrovich, F.

    1982-01-01

    Excitation of unnatural parity states, predominantly of high spin, using electromagnetic and hadronic probes, is discussed. Spectroscopic strengths are deduced from studies of (e,e'), (p,p'), (π.π'), and (p,n) for states whose doorway is the stretched particle-hole configuration. These levels are excited primarily through the isovector electromagnetic-nucleon magnetization coupling, nucleon-nucleon tensor coupling, and pion-nucleon spin-orbit coupling. The extracted isovector spectroscopic strength is typically 38% of the extreme single particle-hole model and about 66% of that predicted by more realistic nuclear structure calculations. The observed isoscalar strength is only about one half of the isovector strength. The results obtained with the three different probes are quite consistent. The primary conclusion is that the missing strength for these high spin excitations is at least as large as for the low spin M1 and GT excitations. This implies the existence of other important quenching mechanisms since the Δ-N -1 mechanism involved in the discussion of the low spin excitation affects only the isovector transitions and contributes little to high spin excitations. A method for using (e,e') and π + /π - cross section ratios to separate and determine the absolute isoscalar and isovector spin densities for T 0 to T 0 transitions in N is not equal to Z nuclei is also discussed and some comments on extracting information from (e,e') and (p,p') studies at high q on low spin 1 + and 2 - levels are presented. 78 references

  1. Study of borehole probing methods to improve the ground characterization

    Science.gov (United States)

    Naeimipour, Ali

    partially condition of discontinuities. Two of the more promising tools have been tested during this project, which are QL40OBI Optical TV and Slim Borehole Scanner (SBS) manufacture by ALT-Mount Sopris and DMT, respectively. The field experiment with QL40OBI showed that the images generated for downward and sub-horizontal boreholes are of good quality and can be used to evaluate the joint conditions. However, this device is not suitable for use inside the upward drillholes. The Slim Borehole Scanner (SBS) manufactured by DMT in Germany has the required features for borescoping the roofbolt holes. This includes the ease of operation and suitable geometry along with an unwrapped 360-degree picture of the borehole wall. This instrument was concluded to be the best option yet for obtaining images from boreholes with any arbitrary orientation. In addition, a new tool, called Rock Strength Borehole Probe (RSBP), was developed for estimation of the rock strength through scratching the rock surface in the borehole. This device is designed to be a light, flexible, quick, non-disruptive, and cost effective alternative to estimate the rock strength inside the boreholes in underground mines and tunnels. An extensive number of laboratory tests under variable conditions were conducted to develop equations to estimate the Uniaxial Compressive Strength (UCS) and Brazilian Tensile Strength (BTS) of the rock from measured cutting forces. In these experiments, 27 different rock types were tested by full scale scratch tests, including the cutting tests by a miniature disc. The results show a good correlation between the normal force and the compressive strength of sedimentary/metamorphic rock if the depth of scratch is known. No significant correlation was observed for igneous rocks, due to the impacts of grain size. Current studies show promising results for using RSBP. The laboratory and field tests proved the functionality of this tool. This probe is capable of entering boreholes of 45 mm

  2. A Study on Measurement Variations in Resonant Characteristics of Electrostatically Actuated MEMS Resonators

    Directory of Open Access Journals (Sweden)

    Faisal Iqbal

    2018-04-01

    Full Text Available Microelectromechanical systems (MEMS resonators require fast, accurate, and cost-effective testing for mass production. Among the different test methods, frequency domain analysis is one of the easiest and fastest. This paper presents the measurement uncertainties in electrostatically actuated MEMS resonators, using frequency domain analysis. The influence of the applied driving force was studied to evaluate the measurement variations in resonant characteristics, such as the natural frequency and the quality factor of the resonator. To quantify the measurement results, measurement system analysis (MSA was performed using the analysis of variance (ANOVA method. The results demonstrate that the resonant frequency ( f r is mostly affected by systematic error. However, the quality (Q factor strongly depends on the applied driving force. To reduce the measurement variations in Q factor, experiments were carried out to study the influence of DC and/or AC driving voltages on the resonator. The results reveal that measurement uncertainties in the quality factor were high for a small electrostatic force.

  3. Phosphorylation-induced conformational changes in short peptides probed by fluorescence resonance energy transfer in the 10A domain.

    Science.gov (United States)

    Sahoo, Harekrushna; Nau, Werner M

    2007-03-26

    Phosphorylation-induced conformational changes in short polypeptides were probed by a fluorescence resonance energy transfer (FRET) method by employing a short-distance FRET pair (R(0) approximately 10 A) based on tryptophan as natural donor and a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as synthetic acceptor. Two substrates for kinases, LeuArgArgTrpSerLeuGly-Dbo (peptide I) and TrpLysArgThrLeuArgArg-Dbo (peptide II), were investigated, with serine and threonine, respectively, as phosphorylation sites. Steady-state and time-resolved fluorescence experiments in H(2)O revealed a decrease in FRET efficiency for peptide I and an increase for peptide II; this suggested that the effective distances between donor and acceptor increased and decreased, respectively. The same trends and similar absolute variations in effective donor-acceptor distances were observed in propylene glycol, a less polar and highly viscous solvent; this suggested that the variations are due to intrinsic structural preferences. Fitting of the time-resolved decay traces according to a distribution function model (Gaussian distribution) provided the mean donor-acceptor distances, which showed an increase upon phosphorylation for peptide I (from 9.7 to 10.5 A) and a decrease for peptide II (from 10.9 to 9.3 A) in H(2)O. The broadness (half-width) of the distributions, which provides a measure of the rigidity of the peptides, remained similar upon phosphorylation of peptide I (3.0 versus 3.1 A), but decreased for peptide II (from 3.1 to 0.73 A in H(2)O); this suggests a more compact, structured conformation upon phosphorylation of the latter peptide. The elongation of the peptide backbone (by ca. 0.7 A) for peptide I is attributed to an increase in steric demand upon phosphorylation, which favors an extended conformation. The contraction (by ca. 1.4 A) and structural rigidification of peptide II is attributed to attractive Coulombic interactions and hydrogen bonding between the

  4. Experimental studies of the large Debye length probe theory in a continuum plasma

    International Nuclear Information System (INIS)

    Kamitsuma, M.; Chen, S.

    1977-01-01

    The Laplace limit probe theory for continuum plasmas, i.e., probe theory under the condition r/sub p//lambda/sub D/→0, where r/sub p/ is probe radius and lambda/sub D/ is Debye length, has been experimentally studied. The results show that the application limit of this theory is r/sub p//lambda/sub D/=0.44 for a spherical probe and r/sub p//lambda/sub D/=0.23 for a cylindrical probe

  5. Probe Techniques. Introductory Remarks

    Energy Technology Data Exchange (ETDEWEB)

    Emeleus, K. G. [School of Physics and Applied Mathematics, Queen' s University, Belfast (United Kingdom)

    1968-04-15

    In this brief introduction to the session on probes, the history of theii development is first touched on briefly. Reference is then made to the significance of the work to be described by Medicus, for conductivity and recombination calculations, and by Lam and Su, for a wide range of medium and higher pressure plasmas. Finally, a number of other probe topics are mentioned, including multiple probes; probes in electronegative plasmas; resonance probes; probes in noisy discharges; probes as oscillation detectors; use of probes where space-charge is not negligible. (author)

  6. Dielectric studies of fluids with reentrant resonators

    International Nuclear Information System (INIS)

    Goodwin, A.R.H.; Moldover, M.R.

    1993-01-01

    The authors have used a reentrant radio-frequency (rf) cavity as a resonator operating near 375 MHz to measure changes in the dielectric constant of fluids within it. The utility of these measurements was demonstrated by determining the dipole moment of 1,1,1,2,3,3-hexafluoropropane, a candidate replacement refrigerant (denoted R236ea) and by detecting the phase boundaries in the mixture [(1-x)C 2 H 6 + xCO 2 ], for the mole fraction x = 0.492. The densities of the coexisting phases of the mixture were determined using the Clausius-Mossotti relation which has errors on the order of 0.5% in this application. To test the accuracy of the present techniques, the rf resonator was calibrated with helium and then used to redetermine the molar polarizability A e of argon. The results were in excellent agreement with published values. The design of the reentrant resonator makes it suitable for use with corrosive fluids at temperature up to 400 degrees C

  7. Contribution to the study of electron paramagnetic resonance and relaxation

    International Nuclear Information System (INIS)

    Theobald, Jean-Gerard

    1962-01-01

    This research thesis reports an experimental work which comprises the development of a very practical and very sensitive electron paramagnetic resonance spectrometer, and the use of this equipment for the study of irradiated substances and carbons. By studying electronic resonance signals by fast modulation of the magnetic field, the author studied phenomena of quick passage in electronic resonance, and showed that the study of these phenomena requires observation systems with a particularly large bandwidth. He reports the measurement of the line width of packs of spins of inhomogeneous lines by two different methods [fr

  8. Ratiometric Time-Gated Luminescence Probe for Nitric Oxide Based on an Apoferritin-Assembled Lanthanide Complex-Rhodamine Luminescence Resonance Energy Transfer System.

    Science.gov (United States)

    Tian, Lu; Dai, Zhichao; Liu, Xiangli; Song, Bo; Ye, Zhiqiang; Yuan, Jingli

    2015-11-03

    Using apoferritin (AFt) as a carrier, a novel ratiometric luminescence probe based on luminescence resonance energy transfer (LRET) between a Tb(3+) complex (PTTA-Tb(3+)) and a rhodamine derivative (Rh-NO), PTTA-Tb(3+)@AFt-Rh-NO, has been designed and prepared for the specific recognition and time-gated luminescence detection of nitric oxide (NO) in living samples. In this LRET probe, PTTA-Tb(3+) encapsulated in the core of AFt is the energy donor, and Rh-NO, a NO-responsive rhodamine derivative, bound on the surface of AFt is the energy acceptor. The probe only emits strong Tb(3+) luminescence because the emission of rhodamine is switched off in the absence of NO. Upon reaction with NO, accompanied by the turn-on of rhodamine emission, the LRET from Tb(3+) complex to rhodamine occurs, which results in the remarkable increase and decrease of the long-lived emissions of rhodamine and PTTA-Tb(3+), respectively. After the reaction, the intensity ratio of rhodamine emission to Tb(3+) emission, I565/I539, is ∼24.5-fold increased, and the dose-dependent enhancement of I565/I539 shows a good linearity in a wide concentration range of NO. This unique luminescence response allowed PTTA-Tb(3+)@AFt-Rh-NO to be conveniently used as a ratiometric probe for the time-gated luminescence detection of NO with I565/I539 as a signal. Taking advantages of high specificity and sensitivity of the probe as well as its good water-solubility, biocompatibility, and cell membrane permeability, PTTA-Tb(3+)@AFt-Rh-NO was successfully used for the luminescent imaging of NO in living cells and Daphnia magna. The results demonstrated the efficacy of the probe and highlighted it's advantages for the ratiometric time-gated luminescence bioimaging application.

  9. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  10. Theoretical study of a flat eddy current probe

    International Nuclear Information System (INIS)

    Bouchard, A.; Dumont-Fillon, J.; Labbe, G.

    1976-01-01

    A mathematical model for the computation of the impedance of an eddy current probe has been determined in the case of flat product testing. Various applications are discussed with particular emphasis on ferromagnetic materials [fr

  11. Electrochemical studies of redox probes in self-organized lyotropic ...

    Indian Academy of Sciences (India)

    Administrator

    quinone|hydroquinone, methyl viologen and ferrocenemethanol probes in a lyotropic hexagonal columnar phase (H1 phase) using cyclic voltammetry and electrochemical impedance ..... hydrogen bond of hydroquinone during oxidation is.

  12. Photochemical cycle of bacteriorhodopsin studied by resonance Raman spectroscopy.

    Science.gov (United States)

    Stockburger, M; Klusmann, W; Gattermann, H; Massig, G; Peters, R

    1979-10-30

    Individual species of the photochemical cycle of bacteriorhodopsin, a retinal-protein complex of Halobacteria, were studied in aqueous suspensions of the "purple membrane" at room temperature by resonance Raman (RR) spectroscopy with flow systems. Two pronounced deuterium shifts were found in the RR spectra of the all-trans complex BR-570 in H2O-D2O suspensions. The first is ascribed to C=NH+ (C=ND+) stretching vibrations of the protonated Schiff base which links retinal to opsin. The second is assigned tentatively to an "X-H" ("X-D") bending mode, where "X" is an atom which carries an exchangeable proton. A RR spectrum of the 13-cis-retinal complex "BR-548" could be deduced from spectra of the dark-adapted purple membrane. The RR spectrum of the M-412 intermediate was monitored in a double-beam pump-probe experiment. The main vibrational features of the intermediate M' in the reaction M-412 in equilibrium hv M' leads to delta BR-570 could be deduced from a photostationary mixture of M-412 and M'. Difference procedures were applied to obtain RR spectra of the L-550 intermediate and of two new long-lived species, R1'-590 and R2-550. From kinetic data it is suggested that T1'-590 links the proton-translocating cycle to the "13-cis" cycle of BR-548. The protonation and isomeric states of the different species are discussed in light of the new spectroscopic and kinetic data. It is found that conformational changes during the photochemical cycle play an important role.

  13. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  14. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Eric E., E-mail: ewisniew@anl.gov [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Velazquez, Daniel [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Yusof, Zikri, E-mail: zyusof@hawk.iit.edu [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Spentzouris, Linda; Terry, Jeff [Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Sarkar, Tapash J. [Rice University, 6100 Main, Houston, TX 77005 (United States); Harkay, Katherine [Accelerator Science Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States)

    2013-05-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light.

  15. Cerebral fat embolism: magnetic resonance study

    International Nuclear Information System (INIS)

    Guedea, A.; Barrena, R.; Guelbenzu, S.; Tejada, A.

    1998-01-01

    We report the case of 26-year-old man who presented clinical evidence of fat embolism following a traffic accident. Although computed tomography (CT) of the brain showed no abnormalities, magnetic resonance imaging (MRI) disclosed several scattered points of high intensity on T2-weighted and proton density (PD) images, with complete resolution of the lesions on follow-up scan. MRI is considered more sensitive than computed tomography in detecting these lesions, and may be useful for their diagnosis, correlating well with the clinical course. (Author) 10 refs

  16. Role of chelates in magnetic resonance imaging studies

    Directory of Open Access Journals (Sweden)

    Tripathi Laxmi

    2009-01-01

    Full Text Available Imaging studies are tests performed with a variety of techniques that produce pictures of the inside of a patient′s body. Magnetic resonance imaging (MRI is an imaging technique based on the principles of nuclear magnetic resonance. MRI uses a powerful magnetic field, radio waves, and a computer to produce detailed pictures of organs, soft tissues, bone, and virtually all other internal body structures. Chelates have a wide application in such imaging techniques. Chelates in imaging studies are used alone as radioactive agents or conjugated to monoclonal antibodies or to DNA as radioactive agents. Technetium chelates and gadolinium chelates are being widely used as magnetic resonance contrast media.

  17. Intra-operative probe for brain cancer: feasibility study

    Science.gov (United States)

    Vu Thi, M. H.; Charon, Y.; Duval, M. A.; Lefebvre, F.; Menard, L.; Pitre, S.; Pinot, L.; Siebert, R.

    2007-07-01

    The present work aims a new medical probe for surgeons devoted to brain cancers, in particular glioblastoma multiforme. Within the last years, our group has started the development of a new intra-operative beta imaging probe. More recently, we took an alternative approach for the same application: a fluorescence probe. In both cases the purpose is to differentiate normal from tumor brain tissue. In a first step, we developed set-ups capable to measure autofluorescence. They are based on a dedicated epi-fluorescence design and on specific fiber optic probes. Relative signal amplitude, spectral shape and fluorescence lifetime measurements are foreseen to distinguish normal and cancer tissue by analyzing fluorophores like NADH, lipopigments and porphyrines. The autofluorescence spectra are recorded in the 460-640 nm range with a low resolution spectrometer. For lifetime measurements a fast detector (APD) is used together with a TCSPC-carte. Intrinsic wavelength- and time-resolutions are a few nm and 200 ps, respectively. Different samples have been analyzed to validate our new detection system and to allow a first configuration of our medical fluorescence probe. First results from the tissue measurements are shown.

  18. Investigation of the role of electron cyclotron resonance heating and magnetic configuration on the suprathermal ion population in the stellarator TJ-II using a luminescent probe

    Science.gov (United States)

    Martínez, M.; Zurro, B.; Baciero, A.; Jiménez-Rey, D.; Tribaldos, V.

    2018-02-01

    Numerous observation exist of a population of high energetic ions with energies well above the corresponding thermal values in plasmas generated by electron cyclotron resonance (ECR) heating in TJ-II stellarator and in other magnetically confined plasmas devices. In this work we study the impact of ECR heating different conditions (positions and powers) on fast ions escaping from plasmas in the TJ-II stellarator. For this study, an ion luminescent probe operated in counting mode is used to measure the energy distribution of suprathermal ions, in the range from 1 to 30 keV. It is observed that some suprathermal ions characteristics (such as temperature, particle and energy fluxes) are related directly with the gyrotron power and focus position of the heating beam in the plasma. Moreover, it is found that suprathermal ion characteristics vary during a magnetic configuration scan (performed along a single discharge). By investigating the suprathermal ions escaping from plasmas generated using two gyrotrons, one with fixed power and the other modulated (on/off) at low frequency (10 Hz), the de-confinement time of the suprathermal ions can be measured, which is of the order of a few milliseconds (power balance is used to understand the de-confinement times in terms of the interaction of suprathermal ions and plasma components. This model also can be used to interpret experimental results of energy loss due to suprathermal ions. Finally, observations of increases (peaks) in the population of escaping suprathermal ions, which are well localized at discrete energies, is documented, these peaks being observed in the energy distributions along a discharge.

  19. Multi-probe-based resonance-frequency electrical impedance spectroscopy for detection of suspicious breast lesions: improving performance using partial ROC optimization

    Science.gov (United States)

    Lederman, Dror; Zheng, Bin; Wang, Xingwei; Wang, Xiao Hui; Gur, David

    2011-03-01

    We have developed a multi-probe resonance-frequency electrical impedance spectroscope (REIS) system to detect breast abnormalities. Based on assessing asymmetry in REIS signals acquired between left and right breasts, we developed several machine learning classifiers to classify younger women (i.e., under 50YO) into two groups of having high and low risk for developing breast cancer. In this study, we investigated a new method to optimize performance based on the area under a selected partial receiver operating characteristic (ROC) curve when optimizing an artificial neural network (ANN), and tested whether it could improve classification performance. From an ongoing prospective study, we selected a dataset of 174 cases for whom we have both REIS signals and diagnostic status verification. The dataset includes 66 "positive" cases recommended for biopsy due to detection of highly suspicious breast lesions and 108 "negative" cases determined by imaging based examinations. A set of REIS-based feature differences, extracted from the two breasts using a mirror-matched approach, was computed and constituted an initial feature pool. Using a leave-one-case-out cross-validation method, we applied a genetic algorithm (GA) to train the ANN with an optimal subset of features. Two optimization criteria were separately used in GA optimization, namely the area under the entire ROC curve (AUC) and the partial area under the ROC curve, up to a predetermined threshold (i.e., 90% specificity). The results showed that although the ANN optimized using the entire AUC yielded higher overall performance (AUC = 0.83 versus 0.76), the ANN optimized using the partial ROC area criterion achieved substantially higher operational performance (i.e., increasing sensitivity level from 28% to 48% at 95% specificity and/ or from 48% to 58% at 90% specificity).

  20. Magnetic resonance as a local probe for linear bands in the Weyl semimetals NbP and TaP

    Energy Technology Data Exchange (ETDEWEB)

    Baenitz, Michael; Yasuoka, Hiroshi; Majumder, Mayukh; Shekhar, Chandra; Yan, Binghai; Felser, Claudia; Schmidt, Marcus [MPI for Chemical Physics of Solids, Dresden (Germany)

    2016-07-01

    Some compensated d-electron semimetals, for example the monophosphites NbP and TaP, with non centrosymmetric structure and with sizable spin orbit coupling (SOC) form a new class of material: the Weyl semimetals (WSM). A unique linear crossing of valence- and conduction- band in a single point in reciprocal space defines the so called Weyl point where the fermion mass vanishes theoretically. In real materials the Fermi level E{sub F} does not exactly match the Weyl node and as a consequence residual very light fermions are found. Due to the SOC these Weyl fermions have a chirality (handedness) on their linear dispersive (E ∝k) bands and frequently a linear density of states (DOS) at the Fermi level E{sub F}. We use NMR as a probe for this linear d- electron bands. The shift provides the s- and d- electron contributions to the DOS at E{sub F}, whereas the spin lattice relaxation is governed by low energy excitations around E{sub F}. {sup 31}P (I = 1/2) - Fourier - transform - and {sup 95}Nb (I = 9/2) - broadline - sweep - NMR studies are performed. We investigated powder samples as well as single crystals on both systems. The angular dependence of the {sup 95}Nb- and {sup 31}P - NMR lines is discussed.

  1. A Surface Plasmon Resonance-Based Optical Fiber Probe Fabricated with Electropolymerized Molecular Imprinting Film for Melamine Detection

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-03-01

    Full Text Available Molecularly imprinted polymer (MIP films prepared by bulk polymerization suffer from numerous deficiencies, including poor mass transfer ability and difficulty in controlling reaction rate and film thickness, which usually result in poor repeatability. However, polymer film synthesized by electropolymerization methods benefit from high reproducibility, simplicity and rapidity of preparation. In the present study, an Au film served as the refractive index-sensitive metal film to couple with the light leaked out from optical fiber core and the electrode for electropolymerizing MIP film simultaneously. The manufactured probe exhibited satisfactory sensitivity and specificity. Furthermore, the surface morphology and functional groups of the synthesized MIP film were characterized by Atomic Force Microscopy (AFM and Fourier transform infrared microspectroscopy (FTIR for further insights into the adsorption and desorption processes. Given the low cost, label-free test, simple preparation process and fast response, this method has a potential application to monitor substances in complicated real samples for out-of-lab test in the future.

  2. A study of trapped ion dynamics by photon-correlation and pulse-probe techniques

    International Nuclear Information System (INIS)

    Rink, J.; Dholakia, K.; Zs, G.; Horvath, K.; Hernandez-Pozos, J. L.; Power, W.; Segal, D. M.; Thompson, R. C.; Walker, T.

    1995-01-01

    We demonstrate non-evasive methods for observing ion and ion cloud oscillation frequencies in a quadrupole ion trap. These trap resonances are measured for small clouds using a photon correlation technique. For large clouds the rotation frequency can be detected with the help of an additional pulsed probe laser. We show applications of the photon correlation method such as estimating the dynamic properties of a combined trap and detecting ion crystals

  3. Study of a Laser-Produced Plasma by Langmuir Probes

    DEFF Research Database (Denmark)

    Chang, C. T.; Hasimi, M.; Pant, H. C.

    1977-01-01

    -emission peak and the main plasma from the target. The flow velocity, density and electron temperature of the plasma were determined. The expansion of the plasma was found to be adiabatic, yielding gamma =5/3. The spatial distribution of the plasma was observed to be strongly anisotropic.......The structure, the parameters and the expansion of the plasma produced by focusing a 7 J, 20 ns Nd-glass laser on stainless-steel and glass targets suspended in a high-vacuum chamber were investigated by Langmuir probes. It was observed that the probe signals consisted of a photoelectric...

  4. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-01-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state

  5. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  6. Lymphocytes as a neural probe : potential for studying psychiatric disorders

    NARCIS (Netherlands)

    Gladkevich, A; Kauffman, HF; Korf, J

    There is an increasing body evidence pointing to a close integration between the central nervous system (CNS) and immunological functions with lymphocytes playing therein a central role. The authors provide arguments to consider blood lymphocytes as a convenient probe of-an albeit-limited number of

  7. Ferromagnetic resonance studies of lunar core stratigraphy

    Science.gov (United States)

    Housley, R. M.; Cirlin, E. H.; Goldberg, I. B.; Crowe, H.

    1976-01-01

    We first review the evidence which links the characteristic ferromagnetic resonance observed in lunar fines samples with agglutinatic glass produced primarily by micrometeorite impacts and present new results on Apollo 15, 16, and 17 breccias which support this link by showing that only regolith breccias contribute significantly to the characteristic FMR intensity. We then provide a calibration of the amount of Fe metal in the form of uniformly magnetized spheres required to give our observed FMR intensities and discuss the theoretical magnetic behavior to be expected of Fe spheres as a function of size. Finally, we present FMR results on samples from every 5 mm interval in the core segments 60003, 60009, and 70009. These results lead us to suggest: (1) that secondary mixing may generally be extensive during regolith deposition so that buried regolith surfaces are hard to recognize or define; and (2) that local grinding of rocks and pebbles during deposition may lead to short scale fluctuations in grain size, composition, and apparent exposure age of samples.

  8. Phase collapse and revival of a 1-mode Bose-Einstein condensate induced by an off-resonant optical probe field and superselection rules

    Science.gov (United States)

    Arruda, L. G. E.; Prataviera, G. A.; de Oliveira, M. C.

    2018-02-01

    Phase collapse and revival for Bose-Einstein condensates are nonlinear phenomena appearing due to atomic collisions. While it has been observed in a general setting involving many modes, for one-mode condensates its occurrence is forbidden by the particle number superselection rule (SSR), which arises because there is no phase reference available. We consider a single mode atomic Bose-Einstein condensate interacting with an off-resonant optical probe field. We show that the condensate phase revival time is dependent on the atom-light interaction, allowing optical control on the atomic collapse and revival dynamics. Incoherent effects over the condensate phase are included by considering a continuous photo-detection over the probe field. We consider conditioned and unconditioned photo-counting events and verify that no extra control upon the condensate is achieved by the probe photo-detection, while further inference of the atomic system statistics is allowed leading to a useful test of the SSR on particle number and its imposition on the kind of physical condensate state.

  9. Diffusion studies on permeable nitroxyl spin probe through lipid bilayer membrane

    International Nuclear Information System (INIS)

    Benial, A. Milton Franklin; Meenakumari, V.; Ichikawa, Kazuhiro; Yamada, Ken-ichi; Utsumi, Hideo; Hyodo, Fuminori; Jawahar, A.

    2014-01-01

    Electron spin resonance (ESR) studies were carried out for 2mM 14 N labeled deutrated permeable 3- methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) in pure water, 1 mM, 2 mM, 3 mM and 4 mM concentration of MC-PROXYL in 300 mM concentration of liposomal solution by using a L-band ESR spectrometer. The ESR parameters such as linewidth, hyperfine coupling constant, g-factor, partition parameter and permeability were reported. The partition parameter and permeability values indicate the maximum spin distribution in the lipid phase at 2 mM concentration. This study illustrates that ESR can be used to differentiate between the intra and extra-membrane water by loading the liposome vesicles with a lipid-permeable nitroxyl spin probe. From the ESR results, the radical concentration was optimized as 2 mM in liposomal solution for ESR phantom studies and experiments

  10. Resonance hairpin and Langmuir probe-assisted laser photodetachment measurements of the negative ion density in a pulsed dc magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, James W.; Dodd, Robert; You, S.-D.; Sirse, Nishant; Karkari, Shantanu Kumar [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool (United Kingdom); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland and Institute for Plasma Research, Bhat Gandhinagar, Gujarat (India)

    2011-05-15

    The time-resolved negative oxygen ion density n{sub -} close to the center line in a reactive pulsed dc magnetron discharge (10 kHz and 50% duty cycle) has been determined for the first time using a combination of laser photodetachment and resonance hairpin probing. The discharge was operated at a power of 50 W in 70% argon and 30% oxygen gas mixtures at 1.3 Pa pressure. The results show that the O{sup -} density remains pretty constant during the driven phase of the discharge at values typically below 5x10{sup 14} m{sup -3}; however, in the off-time, the O{sup -} density grows reaching values several times those in the on-time. This leads to the negative ion fraction (or degree of electronegativity) {alpha}=n{sub -}/n{sub e} being higher in the off phase (maximum value {alpha}{approx}1) than in the on phase ({alpha}=0.05-0.3). The authors also see higher values of {alpha} at positions close to the magnetic null than in the more magnetized region of the plasma. This fractional increase in negative ion density during the off-phase is attributed to the enhanced dissociative electron attachment of highly excited oxygen molecules in the cooling plasma. The results show that close to the magnetic null the photodetached electron density decays quickly after the laser pulse, followed by a slow decay over a few microseconds governed by the negative ion temperature. However, in the magnetized regions of the plasma, this decay is more gradual. This is attributed to the different cross-field transport rates for electrons in these two regions. The resonance hairpin probe measurements of the photoelectron densities are compared directly to photoelectron currents obtained using a conventional Langmuir probe. There is good agreement in the general trends, particularly in the off-time.

  11. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation

    Science.gov (United States)

    Zargar, Behrooz; Hatamie, Amir

    2013-04-01

    Isoniazid is an important antibiotic, which is widely used to treat tuberculosis. This study presents a colorimetric method for the determination of Isoniazid based on localized surface plasmon resonance (LSPR) property of gold nanoparticles. An LSPR band is produced by reducing gold ions in solution using Isoniazid as the reducing agent. Influences of the following relevant variables were examined and optimized in the experiment, formation time of gold nanoparticles, pH, buffer and stabilizer. These tests demonstrated that under optimum conditions the absorbance of Au nanoparticles at 530 nm related linearly to the concentration of Isoniazid in the range of 1.0-8.0 μg mL-1 with a detection limit of 0.98 μg mL-1. This colorimetric method has been successfully applied to the determine Isoniazid in tablets and spiked serum samples. The proposed colorimetric assay exhibits good reproducibility and accuracy, providing a simple and rapid method for analysis of Isoniazid.

  12. Interaction of magnetic resonators studied by the magnetic field enhancement

    Directory of Open Access Journals (Sweden)

    Yumin Hou

    2013-12-01

    Full Text Available It is the first time that the magnetic field enhancement (MFE is used to study the interaction of magnetic resonators (MRs, which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  13. Magnetic Resonance Imaging Studies of Postpartum Depression: An Overview

    Directory of Open Access Journals (Sweden)

    Marco Fiorelli

    2015-01-01

    Full Text Available Postpartum depression is a frequent and disabling condition whose pathophysiology is still unclear. In recent years, the study of the neural correlates of mental disorders has been increasingly approached using magnetic resonance techniques. In this review we synthesize the results from studies on postpartum depression in the context of structural, functional, and spectroscopic magnetic resonance studies of major depression as a whole. Compared to the relative wealth of data available for major depression, magnetic resonance studies of postpartum depression are limited in number and design. A systematic literature search yielded only eleven studies conducted on about one hundred mothers with postpartum depression overall. Brain magnetic resonance findings in postpartum depression appear to replicate those obtained in major depression, with minor deviations that are not sufficient to delineate a distinct neurobiological profile for this condition, due to the small samples used and the lack of direct comparisons with subjects with major depression. However, it seems reasonable to expect that studies conducted in larger populations, and using a larger variety of brain magnetic resonance techniques than has been done so far, might allow for the identification of neuroimaging signatures for postpartum depression.

  14. Experimental study on moonpool resonance of offshore floating structure

    Directory of Open Access Journals (Sweden)

    Seung-Ho Yang

    2013-06-01

    Full Text Available Offshore floating structures have so-called moonpool in the centre area for the purpose of drilling, installation of subsea structures, recovery of Remotely-Operated Vehicle (ROV and divers. However, this vertical opening has an effect on the operating performance of floating offshore structure in the vicinity of moonpool resonance frequency; piston mode and sloshing mode. Experimental study based on model test was carried out. Moonpool resonance of floating offshore structure on fixed condition and motion free condition were investigated. And, the effect of cofferdam which is representative inner structure inside moonpool was examined. Model test results showed that Molin's theoretical formula can predict moonpool resonance on fixed condition quite accurately. However, motion free condition has higher resonance frequency when it is compared with that of motion fixed. The installation of cofferdam moves resonance frequency to higher region and also generates secondary resonance at lower frequency. Furthermore, it was found that cofferdam was the cause of generating waves in the longitudinal direction when the vessel was in beam sea.

  15. Experimental study of resonance crossing with a Paul trap

    Directory of Open Access Journals (Sweden)

    H. Takeuchi

    2012-07-01

    Full Text Available The effect of resonance crossing on beam stability is studied systematically by employing a novel tabletop experimental tool and a multiparticle simulation code. A large number of ions are confined in a compact linear Paul trap to reproduce the collective beam behavior. We can prove that the ion plasma in the trap is physically equivalent to a charged-particle beam propagating through a strong focusing channel. The plasma confinement force is quickly ramped such that the trap operating point traverses linear and nonlinear resonance stop bands. Assuming a nonscaling fixed field alternating gradient accelerator composed of many identical FODO cells, we measure how much ion losses occur under diverse conditions. It is experimentally and numerically demonstrated that too slow resonance crossing leads to significant ion losses as expected. Particular attention must be paid to the linear coherent resonance excited at a quarter-integer tune. When the beam intensity is high, this type of linear stop band can seriously affect the beam quality even for rather fast resonance crossing. A scaling law is given of the emittance growth caused by the quarter-integer resonance crossing.

  16. Nuclear probes in physical and geochemical studies of natural diamonds

    International Nuclear Information System (INIS)

    Sellschop, J.P.F.

    In this review the emphasis is directed to the use of nuclear particles for the analysis of impurities in diamond from an interest in both the observed physical properties and genesis of diamond and the inter-relation between these two aspects. However (nuclear) radiation can be used more specifically: from the inter-relation of elemental impurities chemical and geochemical information can be deduced, from energy variation depth distributions of selected impurities can be determined, the prospect of lattice location of impurities exists from the use of extremely finely collimated beams of nuclear particles, which are used also for probing the inter-atomic fields, and finally all nuclear probes excite luminescence in diamonds

  17. Radioactive diffusion gaseous probe technique for study adsorbent structure inhomogeneity

    International Nuclear Information System (INIS)

    Zyuzin, A.Yu.; Korobkov, V.I.; Bekman, I.N.

    1990-01-01

    One of the versions of the method of diffusion gaseous probe - method of longitudinal shear in combination with autoradiography (ARG) - was used for characterising sorbents and catalysts, which are considered to be promising for reprocessing of sulfur-containing natural gases. Hydrogen sulfide, labelled with 35 S was used as diffusion radioactive probe. Zeolite granules of 4A type and granulated adsorbents on the basis of CR and AM aluminium oxides, which are industrial catalysts of Clauss reaction developed at SNEA company, were used as objects under investigation. It is shown that technique for fabrication of 4A zeolite granules leads to asymmetrical pore distribution over the granule diameter. Technique for AM granule fabrication leads to occuRrence of local inhomogeneities of the structure in the form of narrow coaxial rings with decreased or increased local adsorption ability. Granules of adsorbent of CR type are characterized by rather homogeneous structure. It is recommended to use the mentioned method for industrial adsorbent diagnosis

  18. Langmuir probe study of plasma expansion in pulsed laser ablation

    DEFF Research Database (Denmark)

    Hansen, T.N.; Schou, Jørgen; Lunney, J.G.

    1999-01-01

    Langmuir probes were used to monitor the asymptotic expansion of the plasma produced by the laser ablation of a silver target in a vacuum. The measured angular and temporal distributions of the ion flux and electron temperature were found to be in good agreement with the self-similar isentropic...... and adiabatic solution of the gas dynamics equations describing the expansion. The value of the adiabatic index gamma was about 1.25, consistent with the ablation plume being a low temperature plasma....

  19. Real time hybridization studies by resonant waveguide gratings using nanopattern imaging for Single Nucleotide Polymorphism detection

    KAUST Repository

    Bougot-Robin, Kristelle

    2013-12-20

    2D imaging of biochips is particularly interesting for multiplex biosensing. Resonant properties allow label-free detection using the change of refractive index at the chip surface. We demonstrate a new principle of Scanning Of Resonance on Chip by Imaging (SORCI) based on spatial profiles of nanopatterns of resonant waveguide gratings (RWGs) and its embodiment in a fluidic chip for real-time biological studies. This scheme allows multiplexing of the resonance itself by providing nanopattern sensing areas in a bioarray format. Through several chip designs we discuss resonance spatial profiles, dispersion and electric field distribution for optimal light-matter interaction with biological species of different sizes. Fluidic integration is carried out with a black anodized aluminum chamber, advantageous in term of mechanical stability, multiple uses of the chip, temperature control and low optical background. Real-time hybridization experiments are illustrated by SNP (Single Nucleotide Polymorphism) detection in gyrase A of E. coli K12, observed in evolution studies of resistance to the antibiotic ciprofloxacin. We choose a 100 base pairs (bp) DNA target (∼30 kDa) including the codon of interest and demonstrate the high specificity of our technique for probes and targets with close affinity constants. This work validates the safe applicability of our unique combination of RWGs and simple instrumentation for real-time biosensing with sensitivity in buffer solution of ∼10 pg/mm2. Paralleling the success of RWGs sensing for cells sensing, our work opens new avenues for a large number of biological studies. © 2013 Springer Science+Business Media.

  20. Near-field probing of Mie resonances in single TiO.sub.2./sub. microspheres at terahertz frequencies

    Czech Academy of Sciences Publication Activity Database

    Mitrofanov, O.; Dominec, Filip; Kužel, Petr; Reno, J.L.; Brener, I.; Chung, U.-C.; Elissalde, C.; Maglione, M.; Mounaix, P.

    2014-01-01

    Roč. 22, č. 19 (2014), s. 23034-23042 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GA14-25639S EU Projects: European Commission(XE) 607521 - NOTEDEV Institutional support: RVO:68378271 Keywords : metamaterials * near-field microscopy * resonators * terahertz imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.488, year: 2014

  1. Comment on '(p,n) and (n,p) reactions as probes of isovector giant monopole resonances'

    International Nuclear Information System (INIS)

    Bauhoff, W.

    1984-01-01

    The importance of medium corrections in the excitation of the isovector giant monopole resonance by nucleons is investigated. A large reduction of the cross-section, compared to calculations with free t-matrices, is found at projectile energies around 100 MeV. This will make observation of the isovector monopole at these energies even more difficult than estimated by Auerbach et al

  2. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET)

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Hansen, Jakob L; Sheikh, Søren P

    2002-01-01

    -induced intermolecular movements in the CaR homodimer using the new bioluminescence resonance energy transfer technique, BRET2, which is based on the transference of energy from Renilla luciferase (Rluc) to the green fluorescent protein mutant GFP2. We tagged CaR with Rluc and GFP2 at different intracellular locations...

  3. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Myhre, Rolf H.; Cryan, J. P.

    2017-01-01

    -edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ...

  4. Studies of magnetic resonance in anemia of hematies falciformes

    International Nuclear Information System (INIS)

    Lores Guevara, Manuel Arsenio; Balcom, Bruce John; Cabal Mirabal, Carlos

    2012-01-01

    Magnetic Resonance applications to the study of Sickle Cell Disease are analyzed using classical procedures and Unilateral Magnetic Resonance. Hemoglobin and whole blood samples were obtained from healthy individual and patients with Sickle Cell Anemia to be used as samples. Classical pulse sequence as spin echo and inversion recovery were used in the experimental studies, the STEPR method was used for EPR spectrometric determinations. The results show the possibility of NMR methods to follow the molecular process causing the disease and allows to present quantitative procedures to estimate the clinical state of the patients and the results of clinical options. We present the Unilateral Magnetic Resonance as a new method to study Sickle Cell disease considering its portability and new possibilities as new image method

  5. Study of γ-irradiated lithographic polymers by electron spin resonance and electron nuclear double resonance

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1982-01-01

    The room temperature gamma irradiation degradation of the lithographic polymers, poly(methylmethacrylate) (PMMA), poly(methyl-α-chloroacrylate) (PMCA), poly(methyl-α-fluoroacrylate) (PMFA), and poly(methylacrylonitrile) (PMCN), have been studied by electron spin resonance and electron nuclear double resonance (ENDOR) to assess their molecular degradation processes of relevance to electron beam lithography. Two classes of radicals are found, chain radicals and chain scission radicals. PMMA and PMCA mainly form chain scission radicals consistent with degradation while for PMCN the resolution is poorer, and this is only probable. PMFA forms mainly chain radicals consistent with predominant crosslinking. The total radical yield is greatest in PMCA and PMCN. ENDOR is used to assess the compactness of the radiation degradation region for PMMA and PMCA and hence the potential resolution of the resist; this appears to be about the same for these methacrylate polymers

  6. Magnetic resonance studies of solid polymers; Etude des polymeres solides par resonance magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    This paper is a review of the application of nuclear magnetic resonance (NMR) to solid polymers. In the first, theoretical part, the elements of the theory of NMR, which are necessary for the study of the properties of solid polymers are discussed: the moments method, nuclear relaxation and the distribution of correlation times. In the second part the experimental results are presented. (author) [French] Cette etude est une recherche bibliographique sur l'application de la resonance magnetique nucleaire (RMN) aux polymeres solides. Dans la premiere partie theorique on discute les elements de la theorie de RMN, necessaires pour l'etude des proprietes des polymeres solides: la methode des moments, la relaxation nucleaire et la distribution des temps de correlation. La deuxieme partie presente les resultats des experiences. (auteur)

  7. Development of an electron paramagnetic resonance methodology for studying the photo-generation of reactive species in semiconductor nano-particle assembled films

    Science.gov (United States)

    Twardoch, Marek; Messai, Youcef; Vileno, Bertrand; Hoarau, Yannick; Mekki, Djamel E.; Felix, Olivier; Turek, Philippe; Weiss, Jean; Decher, Gero; Martel, David

    2018-06-01

    An experimental approach involving electron paramagnetic resonance is proposed for studying photo-generated reactive species in semiconductor nano-particle-based films deposited on the internal wall of glass capillaries. This methodology is applied here to nano-TiO2 and allows a semi-quantitative analysis of the kinetic evolutions of radical production using a spin scavenger probe.

  8. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  9. Design study of an entry probe spectro-reflectometer

    Science.gov (United States)

    Sill, G. T.; Fink, U.

    1986-01-01

    A wind tunnel was built to simulate the rapid movement of an entry probe through the Jupiter atmosphere. Wind speeds range from 1 to 50 meters per second in a closed system. Wind velocity and temperature probes as well as a cryogenically cooled cold finger can be placed in the 6 inch diameter viewing section. The initial testing of the wind tunnel involved running sectional profiles through the observation port of air currents of 0.1 to 3.0 atmosphere. The velocity profile was very uniform throughout the cross section of the experimental port, with the exception of the wall effects. The deposition of cooled volatiles using the wind tunnel was not performed. However, measurements of the deposition of H2O ice on a cryogenically cooled thickness modulator were made under ambient conditions, namely room temperature and pressure. In the Frost Depositon Test Facility, ice deposition was measured at thicknesses of about a half millimeter and frost was produced whose thickness reflectivity could easily be measured by reflectance spectroscopy.

  10. A functional magnetic resonance imaging study

    Indian Academy of Sciences (India)

    MADU

    systems and ultra fast imaging techniques, such as echo planar imaging (EPI ) ... is used to understand brain organization, assessing of neurological status, and ..... J C 1998 Functional MRI studies of motor recovery after stroke;. NeuroImage 7 ...

  11. A simple and selective resonance Rayleigh scattering-energy transfer spectral method for determination of trace neomycin sulfate using Cu2O particle as probe

    Science.gov (United States)

    Ouyang, Huixiang; Liang, Aihui; Jiang, Zhiliang

    2018-02-01

    The stable Cu2O nanocubic (Cu2ONC) sol was prepared, based on graphene oxide (GO) catalysis of glucose-Fehling's reagent reaction, and its absorption and resonance Rayleigh scattering (RRS) spectra, transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were examined. Using the as-prepared Cu2ONC as RRS probe, and coupling with the neomycin sulfate (NEO) complex reaction, a new, simple, sensitive and selective RRS-energy transfer (RRS-ET) method was established for detection of neomycin sulfate, with a linear range of 1.4-112 μM and a detection limit of 0.4 μM. The method has been applied to the detection of neomycin sulfate in samples with satisfactory results.

  12. Probing single magnon excitations in Sr2IrO4 using O K-edge resonant inelastic x-ray scattering

    International Nuclear Information System (INIS)

    Liu, X; Ding, H; Dean, M P M; Yin, W G; Hill, J P; Liu, J; Ramesh, R; Chiuzbăian, S G; Jaouen, N; Nicolaou, A; Serrao, C Rayan

    2015-01-01

    Resonant inelastic x-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin–orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr 2 IrO 4 , where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolution in the hard x-ray region is usually poor. (fast track communication)

  13. Folic acid-targeted magnetic Tb-doped CeF3 fluorescent nanoparticles as bimodal probes for cellular fluorescence and magnetic resonance imaging.

    Science.gov (United States)

    Ma, Zhi-Ya; Liu, Yu-Ping; Bai, Ling-Yu; An, Jie; Zhang, Lin; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di

    2015-10-07

    Magnetic fluorescent nanoparticles (NPs) have great potential applications for diagnostics, imaging and therapy. We developed a facile polyol method to synthesize multifunctional Fe3O4@CeF3:Tb@CeF3 NPs with small size (CA) to obtain carboxyl-functionalized NPs (Fe3O4@CeF3:Tb@CeF3-COOH). Folic acid (FA) as an affinity ligand was then covalently conjugated onto NPs to yield Fe3O4@CeF3:Tb@CeF3-FA NPs. They were then applied as multimodal imaging agents for simultaneous in vitro targeted fluorescence imaging and magnetic resonance imaging (MRI) of HeLa cells with overexpressed folate receptors (FR). The results indicated that these NPs had strong luminescence and enhanced T2-weighted MR contrast and would be promising candidates as multimodal probes for both fluorescence and MRI imaging.

  14. Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave–particle interactions in the pre-midnight inner magnetosphere

    Directory of Open Access Journals (Sweden)

    G. I. Korotova

    2015-08-01

    Full Text Available We present Van Allen Probe B observations of azimuthally limited, antisymmetric, poloidal Pc 4 electric and magnetic field pulsations in the pre-midnight sector of the magnetosphere from 05:40 to 06:00 UT on 1 May 2013. Oscillation periods were similar for the magnetic and electric fields and proton fluxes. The flux of energetic protons exhibited an energy-dependent response to the pulsations. Energetic proton variations were anticorrelated at medium and low energies. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes results from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.

  15. Studies on inclusive meson resonance and particle production

    International Nuclear Information System (INIS)

    Saarikko, Heimo

    1978-01-01

    Production and decay of meson resonances are studied in medium energy meson-proton collisions. Strong evidence is found that hadronic collisions are dominated by resonance production. Especially the vector mesons have often large inclusive cross sections, typically of the order of few millibarns at the present energies. In all, a majority of pions and kaons appear to be decay products of resonances or other unstable particles. The detailed kinematics of the parent resonance's decays is found to play an important role in determining inclusive pion spectra. The squared transverse momentum distributions of hadrons heavier than the pion appear to have in common an exponential behaviour, with a universal slope for the esponential fall-off. The observed vector meson yields suggest that only a small fraction of the direct lepton production observed at large transverse momentum in nucleon-nucleon interactions is accounted for by the ''old'' vector mesons. An attempt has been made to separate out the central production and fragmentation components of the meson production. Both the central production and the fragmentation of the incoming meson are found to be important mechanisms in the non-strange meson production whereas the central production of strange meson resonances is rare at our energies. The ratios of the observed meson yields are found to be generally in good agreement with a simple quark-counting model. (author)

  16. Study of isovector resonances with pion charge exchange

    International Nuclear Information System (INIS)

    Baer, H.W.; Bolton, R.; Bowman, J.D.

    1982-01-01

    Studies with the pion charge exchange reactions (π/sup +-/,π 0 ) at 164 MeV using the LAMPF π 0 spectrometer are yielding new results on the existence and systematic features of isovector resonances in nuclei. These experiments possess an unusually high signal/background ratio for isovector resonances of low-multipolarity. Results obtained to date are: (1) observation and angular disribution measurement of the giant dipole resonance in nuclei 12 C, 40 Ca, 90 Zr, and 120 Sn; and (2) observation and angular distribution measurements in the (π - ,π 0 ) reaction on 90 Zr and 120 Sn of large signals possessing the expected angular distribution shapes and magnitudes for the isovector monopole resonance. Excitation energies are near the hydrodynamical model values 170 A - /sup 1/3/ MeV. Differential cross sections are approximately 0.7 J 1 2 (qR) mb/sr. An overview of this experimental program, with emphasis on new results and how they correlate with existing knowledge on the isovector resonances, is presented

  17. Cultural probes

    DEFF Research Database (Denmark)

    Madsen, Jacob Østergaard

    The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation.......The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation....

  18. Resonance magnetic x-ray scattering study of erbium

    DEFF Research Database (Denmark)

    Sanyal, M.K.; Gibbs, D.; Bohr, J.

    1994-01-01

    The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...... of this magnetic scattering and analyzed it using a simple model based on electric dipole and quadrupole transitions among atomic orbitals. The line shapes can be fitted to a magnetic structure combining both c-axis-modulated and basal-plane components. Below 18 K, we have observed unusual behavior of the magnetic...

  19. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N2 Labeling.

    Science.gov (United States)

    Cui, Li; Yang, Kai; Li, Hong-Zhe; Zhang, Han; Su, Jian-Qiang; Paraskevaidi, Maria; Martin, Francis L; Ren, Bin; Zhu, Yong-Guan

    2018-04-17

    Nitrogen (N) fixation is the conversion of inert nitrogen gas (N 2 ) to bioavailable N essential for all forms of life. N 2 -fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15 N 2 stable isotope probing (SIP) was developed to discern N 2 -fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N 2 -fixing bacteria), along with a marked 15 N 2 -induced Cyt c band shift, generated a highly distinguishable biomarker for N 2 fixation. 15 N 2 -induced shift was consistent well with 15 N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N 2 -fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15 N 2 percentage allowed quantification of N 2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.

  20. Anti-HER2 immunoliposomes for selective delivery of electron paramagnetic resonance imaging probes to HER2-overexpressing breast tumor cells

    Science.gov (United States)

    Burks, Scott R.; Macedo, Luciana F.; Barth, Eugene D.; Tkaczuk, Katherine H.; Martin, Stuart S.; Rosen, Gerald M.; Halpern, Howard J.; Brodie, Angela M.

    2014-01-01

    Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 μM nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals. PMID:20066490

  1. Resonant inelastic x-ray scattering studies of elementary excitations

    NARCIS (Netherlands)

    Ament, Lucas Johannes Peter (Luuk)

    2010-01-01

    Resonant Inelastic X-ray Scattering (RIXS) is an X-ray in, X-ray out technique that enables one to study the dispersion of excitations in solids. In this thesis, we investigated how various elementary excitations of transition metal oxides show up in RIXS spectra.

  2. Resonance Raman study on distorted symmetry of porphyrin in ...

    Indian Academy of Sciences (India)

    The resonance Raman (RR) spectra of nickel octaethyl porphyrin, Ni(OEP), ... Nickel ocatethyl porphyrin, Ni(OEP), plays a central role in studies of the molec- ..... [8] T Kitagawa and Y Ozaki, Structure and bonding (Springer-Verlag, Berlin, ... [10] R S Czernuszewicz, K A Macar, Li Xiao-Yuan, J R Kincaid and T G Spiro, J. Am.

  3. Non-resonant microwave absorption studies of superconducting ...

    Indian Academy of Sciences (India)

    Abstract. Non-resonant microwave absorption (NRMA) studies of superconducting MgB2 and a sample containing 10% by weight of MgO in MgB2 are reported. The NRMA results indicate near absence of intergranular weak links in the pure MgB2 sample. A linear temperature dependence of the lower critical field Hc1 is ...

  4. CMBPol Mission Concept Study: Probing Inflation with CMB Polarization

    CERN Document Server

    Baumann, Daniel; Adshead, Peter; Amblard, Alexandre; Ashoorioon, Amjad; Bartolo, Nicola; Bean, Rachel; Beltran, Maria; de Bernardis, Francesco; Bird, Simeon; Chen, Xingang; Chung, Daniel Jun Hun; Colombo, Loris; Cooray, Asantha R.; Creminelli, Paolo; Dodelson, Scott; Dunkley, Joanna; Dvorkin, Cora; Easther, Richard; Finelli, Fabio; Flauger, Raphael; Hertzberg, Mark P.; Jones-Smith, Katherine; Kachru, Shamit; Kadota, Kenji; Khoury, Justin; Kinney, William H.; Komatsu, Eiichiro; Krauss, Lawrence M.; Lesgourgues, Julien; Liddle, Andrew R.; Liguori, Michele; Lim, Eugene A.; Linde, Andrei D.; Matarrese, Sabino; Mathur, Harsh; McAllister, Liam; Melchiorri, Alessandro; Nicolis, Alberto; Pagano, Luca; Peiris, Hiranya V.; Peloso, Marco; Pogosian, Levon; Pierpaoli, Elena; Riotto, Antonio; Seljak, Uros; Senatore, Leonardo; Shandera, Sarah E.; Silverstein, Eva; Smith, Tristan; Vaudrevange, Pascal M.; Verde, Licia; Wandelt, Ben; Wands, David; Watson, Scott; Wyman, Mark; Yadav, Amit; Valkenburg, Wessel; Zaldarriaga, Matias

    2009-01-01

    We summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.

  5. A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kneebone, Jared L. [Univ. of Rochester, Rochester, NY (United States); Daifuku, Stephanie L. [Univ. of Rochester, Rochester, NY (United States); Kehl, Jeffrey A. [Univ. of Rochester, Rochester, NY (United States); Wu, Gang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chung, Hoon T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hu, Michael Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Alp, E. Ercan [Argonne National Lab. (ANL), Argonne, IL (United States); More, Karren L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zelenay, Piotr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holby, Edward F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Neidig, Michael L. [Univ. of Rochester, Rochester, NY (United States)

    2017-07-06

    While non-precious metal M-N-C (M = Fe or Co) catalysts have been developed that are effective for the oxygen reduction reaction in polymer electrolyte fuel cells, no consensus has yet been reached regarding the nature of the M sites in these heterogeneous catalysts that are responsible for reaction with dioxygen (O2). While multiple studies have developed correlations between Fe distributions in as-prepared catalysts and ORR activity, the direct identification of sites reactive towards O2 or O2-analog molecules remains a significant challenge. In the present study, we demonstrate a new approach to identifying and characterizing potential Fe active sites in complex ORR catalysts that combines an effective probe molecule (NO(g)) Mössbauer spectroscopy and nuclear resonance vibrational spectroscopy (NRVS) with density functional theory (DFT) calculations. Mössbauer spectroscopic studies demonstrate that NO(g) treatment of electrochemically reduced PANI-57Fe-C leads to selective reaction with only a sub-set of the Fe species present. Nuclear resonance vibrational spectroscopic studies identified new Fe-ligand vibrations associated with the site reactive towards NO(g). DFT calculations of vibrational properties of a small selection of previously proposed active site structures suggest that graphene zig-zag edge hosted Fe-N structures may be responsible for the observed vibrational behavior with NO(g) probe molecules. Moreover, such sites are likely also reactive to O2, possibly serving as the ORR active sites in the synthesized materials.

  6. Nuclear magnetic resonance studies of biological systems

    International Nuclear Information System (INIS)

    Antypas, W.G. Jr.

    1988-01-01

    The difference between intracellular and extracellular proton relaxation rates provides the basis for the determination of the mean hemoglobin concentration (MHC) in red blood cells. The observed water T 1 relaxation data from red blood cell samples under various conditions were fit to the complete equation for the time-dependent decay of magnetization for a two-compartment system including chemical exchange. The MHC for each sample was calculated from the hematocrit and the intracellular water fraction as determined by NMR. The binding of the phosphorylcholine (PC) analogue, 2-(trimethylphosphonio)-ethylphosphate (phosphoryl-phosphocholine, PPC) to the PC binding myeloma proteins TEPC-15, McPC 603, and MOPC 167 was studied by 31 P NMR

  7. Probing peptide fragment ion structures by combining sustained off-resonance collision-induced dissociation and gas-phase H/D exchange (SORI-HDX) in Fourier transform ion-cyclotron resonance (FT-ICR) instruments.

    Science.gov (United States)

    Somogyi, Arpád

    2008-12-01

    The usefulness of gas-phase H/D exchange is demonstrated to probe heterogeneous fragment and parent ion populations. Singly and multiply protonated peptides/proteins were fragmented by using sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The fragments and the surviving precursor ions then all undergo H/D exchange in the gas-phase with either D(2)O or CD(3)OD under the same experimental conditions. Usually, 10 to 60 s of reaction time is adequate to monitor characteristic differences in the H/D exchange kinetic rates. These differences are then correlated to isomeric ion structures. The SORI-HDX method can be used to rapidly test fragment ion structures and provides useful insights into peptide fragmentation mechanisms.

  8. Study of giant multipole resonances in 40Ca

    International Nuclear Information System (INIS)

    Rost, H.

    1979-01-01

    In the present thesis giant resonance states in 40 Ca were studied by scattering of 104 MeV a particles on 40 Ca and by the reactions 39 K(p vector,p') 39 K and 39 K(p,α) 36 Ar. The scattered α-particles were measured at extreme forward angles (THETAsub(L) = 4 0 -16 0 C), because at forward angles the cross sections for the excitation of states with spin 0 and 1 strongly differ from those with higher spin. The aim of this experiment was first of all the study of the giant resonance region in 40 Ca on the contribution to 0 + or 1 - states. Beside the known electric giant quadrupole resonances at Esub(x) approx. equal to 18.5 MeV (25% EWSR) contributions of EO-strength at Esub(x) approx. equal to 21 MeV (6% EWSR) and indications to a (isoscalar) E1-strength at Esub(x) approx. equal to 14 MeV and Esub(x) approx. equal to 16 MeV were found. At the reactions 39 K(p vector,p') 39 K and 39 K(p,α) 36 Ar in the channels (p,p 0 ),(p,p 4 ), (p,αsub(o)), and (p,α 1 ) at incident energies at about 10 MeV (Esub(x)( 40 Ca) approx. equal to 18 MeV) resonant structures were observed. A scattering phase analysis performed for the elastic proton scattering didn't however yield quantitative results about the resonance parameter. An expansion of the cross sections by Legendre polynomials for the remaining reaction channel didn't allow a conclusion about the dominance of a certain L-value. The only indication to the connection of the observed resonant structures with the giant quadrupole resonance in 40 Ca is therefore the energetic position at about Esub(x) approx. equal to 18 MeV. Altogether the observed structures however were not very pronounced, so it can be concluded, that the excitation of the giant quadrupole resonance in 40 Ca by protons via the ground state of 39 K occurs not very strongly. (orig./HSI) [de

  9. Study of inelastic proton scattering at isobaric analog resonances

    International Nuclear Information System (INIS)

    Davis, S.L.

    1974-01-01

    Inelastic proton scattering at isobaric analog resonances (IAR's) was studied using the targets 138 Ba and 92 Mo. Differential cross sections and analyzing powers were measured at the 10.00, 10.63, 11.09, 11.45, and 11.70 MeV resonances in 138 Ba + p and at the 5.89, 6.09, and 6.55 MeV resonances in 92 Mo + p. In addition, a new measurement, the spin flip asymmetry, was developed. The experiment was performed by using a polarized beam to make spin flip measurements. Angular distributions for the spin flip probability and spin flip asymmetry were measured at all of the above energies except for the lowest three resonances in 138 Ba, where only the spin flip probability was measured. A DWBA code modified to include the coherent addition of resonance amplitudes was used to analyze the 138 Ba data. The partial widths extracted from this analysis were converted to expansion coefficients for parent states in 139 Ba. The coefficients were found to be in good agreement with unified model calculations. For 92 Mo, inelastic polarizations, deduced from the spin flip and spin flip asymmetry, were found to be large. Attempts using Hauser Feshbach theory to describe both the cross section and polarization data repeatedly failed for both the 6.55 and 5.87 MeV IAR's. This failure represents strong evidence that Hauser Feshbach theory is not valid when extended to describe scattering at an IAR. The 92 Mo data were analyzed using a reaction theory modified to include channel-channel correlations. This theory predicts that the enhanced compound scattering is identical to the resonance scattering. Good fits have been obtained with the use of this modified Hauser Feshbach theory. (U.S.)

  10. Oxygen vacancies at the spinel/perovskite γ-Al{sub 2}O{sub 3}/SrTiO{sub 3} heterointerface probed by resonant photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Philipp; Pfaff, Florian; Zapf, Michael; Gabel, Judith; Dudy, Lenart; Berner, Goetz; Sing, Michael; Claessen, Ralph [Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), Universitaet Wuerzburg (Germany); Chen, Yunzhong; Pryds, Nini [Department of Energy Conversion and Storage, Technical University of Denmark, Risoe (Denmark); Schlueter, Christoph; Lee, Tien-Lin [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot (United Kingdom)

    2016-07-01

    The spinel/perovskite heterointerface between the band insulators γ-Al{sub 2}O{sub 3} and SrTiO{sub 3} hosts a two-dimensional electron system (2DES) with exceptionally high electron mobility. Soft x-ray resonant photoelectron spectroscopy at the Ti L absorption edge is used to probe the Ti 3d derived interface states. Marked differences in the resonance behavior are found for the SrTiO{sub 3} valence band and the different interface states, which are observed in the band gap of SrTiO{sub 3}. A comparison to X-ray absorption spectra of Ti 3d{sup 0} and Ti 3d{sup 1} systems reveals the presence of different types of electronic states with Ti 3d character, i.e., oxygen vacancy induced, trapped in-gap states and itinerant states contributing to the 2DES. Exposure to low doses of oxygen during irradiation allows for the reversible manipulation of the oxygen stoichiometry, thus revealing the presence of an oxygen vacancy-induced state, which is characteristic for this spinel/perovskite interface.

  11. Probing edge-activated resonant Raman scattering from mechanically exfoliated 2D MoO3 nanolayers

    International Nuclear Information System (INIS)

    Yano, Taka-aki; Yoshida, Keisuke; Hayashi, Tomohiro; Hara, Masahiko; Hayamizu, Yuhei; Ohuchi, Fumio

    2015-01-01

    We report spatially resolved vibrational analysis of mechanically exfoliated single-crystalline α-MoO 3 nanolayers. Raman scattering from α-MoO 3 was enhanced predominantly at the outside edges of the nanolayers. The enhanced Raman scattering at the edges was attributed primarily to the enhanced resonant Raman effect caused by a high density of oxygen vacancies localized at the edges. The localized vacancy sites corresponded to a non-stoichiometric phase of MoO 3 , which would provide reactive sites with high catalytic activity. (paper)

  12. Designing, Probing, and Stabilizing Exotic Fabry-Perot Cavities for Studying Strongly Correlated Light

    Science.gov (United States)

    Ryou, Albert

    Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 k

  13. Study of polarization properties of fiber-optics probes with use of a binary phase plate.

    Science.gov (United States)

    Alferov, S V; Khonina, S N; Karpeev, S V

    2014-04-01

    We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.

  14. Conformation of bovine submaxillary mucin layers on hydrophobic surface as studied by biomolecular probes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Madsen, Jan Busk; Lee, Seunghwan

    2015-01-01

    In the present study, the conformational changes of bovine submaxillary mucin (BSM) adsorbed on a hydrophobic surface (polystyrene (PS)) as a function of concentration in bulk solution (up to 2mg/mL) have been investigated with biomolecular probe-based approaches, including bicinchoninic acid (BCA),enzyme-linkedimmunosorbentassay(EIA...... solution. Adsorbed masses of BSM onto hydrophobic surface, as probe by BCA, showed a continuously increasing trend up to 2mg/mL. But, the signals from EIA and ELLA, which probe the concentration of available unglycosylatedC-terminals and the central glycosylated regions, respectively, showed complicated...

  15. Study of Perylenetetracarboxylic Acid Dimethylimide Films by Cyclic Thermal Desorption and Scanning Probe Microscopy

    Science.gov (United States)

    Pochtennyi, A. E.; Lappo, A. N.; Il'yushonok, I. P.

    2018-02-01

    Some results of studying the direct-current (DC) conductivity of perylenetetracarboxylic acid dimethylimide films by cyclic oxygen thermal desorption are presented. The microscopic parameters of hopping electron transport over localized impurity and intrinsic states were determined. The bandgap width and the sign of major current carriers were determined by scanning probe microscopy methods (atomic force microscopy, scanning probe spectroscopy, and photoassisted Kelvin probe force microscopy). The possibility of the application of photoassisted scanning tunneling microscopy for the nanoscale phase analysis of photoconductive films is discussed.

  16. Experimental aspect of solid-state nuclear magnetic resonance studies of biomaterials such as bones.

    Science.gov (United States)

    Singh, Chandan; Rai, Ratan Kumar; Sinha, Neeraj

    2013-01-01

    Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly becoming a popular technique to probe micro-structural details of biomaterial such as bone with pico-meter resolution. Due to high-resolution structural details probed by SSNMR methods, handling of bone samples and experimental protocol are very crucial aspects of study. We present here first report of the effect of various experimental protocols and handling methods of bone samples on measured SSNMR parameters. Various popular SSNMR experiments were performed on intact cortical bone sample collected from fresh animal, immediately after removal from animal systems, and results were compared with bone samples preserved in different conditions. We find that the best experimental conditions for SSNMR parameters of bones correspond to preservation at -20 °C and in 70% ethanol solution. Various other SSNMR parameters were compared corresponding to different experimental conditions. Our study has helped in finding best experimental protocol for SSNMR studies of bone. This study will be of further help in the application of SSNMR studies on large bone disease related animal model systems for statistically significant results. © 2013 Elsevier Inc. All rights reserved.

  17. Magnetic resonance study of maghemite-based magnetic fluid

    International Nuclear Information System (INIS)

    Figueiredo, L.C.; Lacava, B.M.; Skeff Neto, K.; Pelegrini, F.; Morais, P.C.

    2008-01-01

    This study reports on the magnetic resonance (MR) data (X-band experiment) of 10.2 nm average diameter maghemite nanoparticle in the temperature range of 100-230 K. Maghemite nanoparticles were suspended as low-pH ionic magnetic fluid containing 2.3x10 17 particles/cm 3 . The temperature dependence of both resonance linewidth and resonance field of the zero-field-cooled sample as well as the resonance field of the field-cooled sample (angular variation experiment) was analyzed using well-established methodology. Information regarding particle size, particle clusterization and surface magnetic anisotropy were obtained from the analysis of the MR data. The number of magnetic sites per particle from the MR data is in excellent agreement with the number provided by the transmission electron microscopy (TEM) data. The demagnetizing field value obtained from the MR data indicates cluster of particles containing on average 1.42 particles. The MR angular variation data suggest that magnetoelastic effect accounts for the non-linearity observed for the surface component of the magnetic anisotropy

  18. Pump-probe study of the formation of rubidium molecules by ultrafast photoassociation of ultracold atoms

    Science.gov (United States)

    McCabe, David J.; England, Duncan G.; Martay, Hugo E. L.; Friedman, Melissa E.; Petrovic, Jovana; Dimova, Emiliya; Chatel, Béatrice; Walmsley, Ian A.

    2009-09-01

    An experimental pump-probe study of the photoassociative creation of translationally ultracold rubidium molecules is presented together with numerical simulations of the process. The formation of loosely bound excited-state dimers is observed as a first step toward a fully coherent pump-dump approach to the stabilization of Rb2 into its lowest ground vibrational states. The population that contributes to the pump-probe process is characterized and found to be distinct from a background population of preassociated molecules.

  19. Nuclear magnetic resonance studies of epithelial metabolism and function

    International Nuclear Information System (INIS)

    Balaban, R.S.

    1982-01-01

    Nuclear magnetic resonance (NMR) is a noninvasive technique for studying cellular metabolism and function. In this review the general applications and advantages of NMR will be discussed with specific reference to epithelial tissues. Phosphorus NMR investigations have been performed on epithelial tissues in vivo and in vitro; however, other detectable nuclei have not been utilized to date. Several new applications of phosphorus NMR to epithelial tissues are also discussed, including studies on isolated renal tubules and sheet epithelia

  20. Permeability studies of redox-sensitive nitroxyl spin probes in corn oil using an L-band ESR spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Jebaraj, D. David [Department of Physics, The American College, Madurai-625 002, Tamilnadu (India); Utsumi, Hideo [Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka 812-8582 (Japan); Asath, R. Mohamed; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Madurai-625 019, Tamilnadu (India)

    2016-05-23

    Electron spin resonance (ESR) studies were carried out for 2mM {sup 14}N labeled {sup 2}H enriched 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) and 3–carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy (carboxy-PROXYL) in pure water and various concentrations of corn oil. The ESR parameters, such as the line width, hyperfine coupling constant, g-factor, rotational correlation time, partition parameter and permeability were reported for the samples. The line width broadening was observed for both nitroxyl radicals in corn oil solutions. The partition parameter for permeable MC-PROXYL in corn oil increases with increasing concentration of corn oil, which reveals that the nitroxyl spin probe permeates into the oil phase. From the results, the corn oil concentration was optimized as 50 % for phantom studies. The rotational correlation time also increases with increasing concentration of corn oil. The permeable and impermeable nature of nitroxyl spin probes was demonstrated. These results will be useful for the development of ESR/OMR imaging modalities in in vivo and in vitro studies.

  1. Permeability studies of redox-sensitive nitroxyl spin probes in corn oil using an L-band ESR spectrometer

    International Nuclear Information System (INIS)

    Jebaraj, D. David; Utsumi, Hideo; Asath, R. Mohamed; Benial, A. Milton Franklin

    2016-01-01

    Electron spin resonance (ESR) studies were carried out for 2mM 14 N labeled 2 H enriched 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) and 3–carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy (carboxy-PROXYL) in pure water and various concentrations of corn oil. The ESR parameters, such as the line width, hyperfine coupling constant, g-factor, rotational correlation time, partition parameter and permeability were reported for the samples. The line width broadening was observed for both nitroxyl radicals in corn oil solutions. The partition parameter for permeable MC-PROXYL in corn oil increases with increasing concentration of corn oil, which reveals that the nitroxyl spin probe permeates into the oil phase. From the results, the corn oil concentration was optimized as 50 % for phantom studies. The rotational correlation time also increases with increasing concentration of corn oil. The permeable and impermeable nature of nitroxyl spin probes was demonstrated. These results will be useful for the development of ESR/OMR imaging modalities in in vivo and in vitro studies.

  2. A proton nuclear magnetic resonance investigation of proximal histidyl residues in human normal and abnormal hemoglobins: a probe for the heme pocket

    International Nuclear Information System (INIS)

    Takahashi, S.; Lin, A.K.L.; Ho, C.

    1982-01-01

    Proton nuclear magnetic resonance spectroscopy at 250 MHz has been used to investigate the conformations of proximal histidyl residues of human normal adult hemoglobin, hemoglobin Kempsey [K145(HC2) Tyr #betta# Asp], and hemoglobin McKees Rocks [K145(HC2) Tyr #betta# Term] around neutral pH in H 2 O at 27 0 C, all in the deoxy form. Two resonances that occur between 58 and 76 ppm downfield from the water proton signal have been assigned to the hyperfine shifted proximal histidyl NH-exchangeable protons of the J and K-chains of deoxyhemoglobin. These two resonances are sensitive to the quaternary state of hemoglobin, amino acid substitutions in the J 1 K 2 -subunit interface and in the carboxy-terminal region of the K-chain, and the addition of organic phosphates. The experimental results show that there are differences in the heme pockets among these four hemoglobins studied. The structural and dynamic information derived from the hyperfine shifted proximal histidyl NH-exchangeable proton resonances complement that obtained from the ferrous hyperfine shifted and exchangeable proton resonances of deoxyhemoglobin over the spectral region from 5 to 20 ppm downfield from H 2 O. The relationship between these findings and Perutz's stereochemical mechanism for the cooperative oxygenation of hemoglobin is discussed

  3. Study of submelt laser induced junction nonuniformities using Therma-Probe

    DEFF Research Database (Denmark)

    Rosseel, E.; Bogdanowicz, J; Clarysse, T.

    2010-01-01

    to standard and micro-four-point probe sheet resistance data, secondary ion mass spectrometry, and Hall measurements obtained during earlier studies. Besides the impact of the nonuniformities on the “conventional” thermal wave signal, they found a strong correlation to the dc reflectance of the probe laser...... both at macroscopic and microscopic levels. In this work, the authors present high resolution Therma-Probe® measurements to assess the junction nonuniformity on 0.5 keV boron junctions and zoom in on the effect of temperature variations and multiple subsequent laser scans. The results are compared...... (lambda = 675 nm). The dc probe reflectance is dominated by free carriers and is highly correlated to the sheet resistance both on blanket wafers and on real device wafers. ©2010 American Vacuum Society...

  4. Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.

    Science.gov (United States)

    La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M

    2017-04-01

    The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.

  5. Lateral distribution of NBD-PC fluorescent lipid analogs in membranes probed by molecular dynamics-assisted analysis of Förster Resonance Energy Transfer (FRET) and fluorescence quenching.

    Science.gov (United States)

    Loura, Luís M S

    2012-11-08

    Förster resonance energy transfer (FRET) is a powerful tool used for many problems in membrane biophysics, including characterization of the lateral distribution of lipid components and other species of interest. However, quantitative analysis of FRET data with a topological model requires adequate choices for the values of several input parameters, some of which are difficult to obtain experimentally in an independent manner. For this purpose, atomistic molecular dynamics (MD) simulations can be potentially useful as they provide direct detailed information on transverse probe localization, relative probe orientation, and membrane surface area, all of which are required for analysis of FRET data. This is illustrated here for the FRET pairs involving 1,6-diphenylhexatriene (DPH) as donor and either 1-palmitoyl,2-(6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] hexanoyl)- sn-glycero-3-phosphocholine (C6-NBD-PC) or 1-palmitoyl,2-(12-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]dodecanoyl)-sn-glycero-3-phosphocholine (C12-NBD-PC) as acceptors, in fluid vesicles of 1,2-dipalmitoyl-sn-3-glycerophosphocholine (DPPC, 50 °C). Incorporation of results from MD simulations improves the statistical quality of model fitting to the experimental FRET data. Furthermore, the decay of DPH in the presence of moderate amounts of C12-NBD-PC (>0.4 mol%) is consistent with non-random lateral distribution of the latter, at variance with C6-NBD-PC, for which aggregation is ruled out up to 2.5 mol% concentration. These conclusions are supported by analysis of NBD-PC fluorescence self-quenching. Implications regarding the relative utility of these probes in membrane studies are discussed.

  6. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  7. Optimization experiments on the study of giant resonance in nuclei

    International Nuclear Information System (INIS)

    Lyubarskij, G.Ya.; Savitskij, G.A.; Fartushnyj, V.A.; Khazhmuradov, M.A.; Levandovskij, S.P.

    1988-01-01

    Optimum choice of the target exposure to a beam in experiments on the study of giant resonances in nuclei is considered. Optimization is aimed at reducing mean square errors of defined formfactors. Four different optimization quality criteria - variances of four form factor experimental values are considered. Variances resulting form optimization are 1.5-2 times as less as variances in real experiment. The effect of experiment design optimization criterion on form factors determination errors is ascertained. 1 ref.; 3 tabs

  8. Study of resonances produced in Heavy Ion Collisions

    Science.gov (United States)

    Quattrocchi, L.; Acosta, L.; Auditore, L.; Cardella, G.; Chbihi, A.; De Filippo, E.; Favela, F.; Gnoffo, B.; Lanzalone, G.; Martel, I.; Martorana, N. S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.

    2018-05-01

    At Laboratori Nazionali del Sud of Catania an experiment has been carried out in order to investigate the correlations between particles produced in 12C+24Mg reaction at 35 AMeV incident energy. Two α correlation has been explored because provide information about temperature of 8Be nuclei produced in the reaction, while three α correaltion has been studied in order to evaluate the competition between sequential and direct decay mode of resonances produced in 12C quasi-projectiles.

  9. Use of chemical fractionation and proton nuclear magnetic resonance to probe the physical structure of the primary plant cell wall

    International Nuclear Information System (INIS)

    Taylor, I.E.P.; Wallace, J.C.; MacKay, A.L.; Volke, F.

    1990-01-01

    Proton magnetic resonance has been used to monitor the microscopic physical properties of etiolated hypocotyl cell walls from Phaseolus vulgaris L. at all stages in a series of chemical fractionations with ammonium oxalate and potassium hydroxide. Solid echo measurements indicate that 75% of the polymers in the intact cell wall, including the cellulose and most of the hemicelluloses, are arranged such that there is almost complete restraint of molecular motion. The chemical fractionations generally altered the physical structures of the remaining cell wall components. Digestion with 0.25% ammonium oxalate/oxalic acid solubilized the pectin and increased the mobility of the hemicellulose I component. Extraction with 4% potassium hydroxide removed the hemicellulose I component and loosened the hemicellulose II. Further extraction with 24% potassium hydroxide removed the hemicellulose II and loosened some of the cellulose. The cellulose crystallinity, as monitored by Jeener echo measurements decreased from 83% to 63% during these fractionations. We conclude that, while hemicellulose I is firmly attached to hemicellulose II, it is not in a closely packed structure. Hemicellulose II is strongly bound to cellulose and has a much more closely packed structure

  10. High-sensitivity detection of polysaccharide using phosphodiesters quaternary ammonium salt as probe by decreased resonance light scattering.

    Science.gov (United States)

    Chen, Zhanguang; Liu, Guoliang; Chen, Maohuai; Wu, Mingyao

    2009-07-15

    Phosphodiesters quaternary ammonium salt (PQAS) displayed quite intense light scattering in aqueous solution under the optimum condition. In addition, the resonance light scattering (RLS) signal of PQAS was remarkably decreased after adding trace amount polysaccharide with the maximum peak located at 391 nm. It was found that the decreased RLS intensity of the PQAS-PPGL system (DeltaI(RLS)) was in proportion to PPGL concentration in the range of 0.1-30 ng mL(-1), with a lower detection limit of 0.05 ng mL(-1). Based on this rare decreased RLS phenomenon, the novel method of the determination of purified polysaccharide of Gracilaria Lemaneiformis (PPGL) at nanogram level was proposed in this contribution. The proposed approach was used to determine purified polysaccharide extracted from Gracilaria Lemaneiformis with satisfactory results. Compared with the reported polysaccharide assays, this proposed method has good selectivity, high sensitivity and is especially simple and convenient. Moreover, the mechanism of the reaction between PQAS and polysaccharide was investigated by RLS, fluorescence, and fluorescence lifetime spectra.

  11. Chirality in Magnetic Multilayers Probed by the Symmetry and the Amplitude of Dichroism in X-Ray Resonant Magnetic Scattering

    Science.gov (United States)

    Chauleau, Jean-Yves; Legrand, William; Reyren, Nicolas; Maccariello, Davide; Collin, Sophie; Popescu, Horia; Bouzehouane, Karim; Cros, Vincent; Jaouen, Nicolas; Fert, Albert

    2018-01-01

    Chirality in condensed matter has recently become a topic of the utmost importance because of its significant role in the understanding and mastering of a large variety of new fundamental physical mechanisms. Versatile experimental approaches, capable to reveal easily the exact winding of order parameters, are therefore essential. Here we report x-ray resonant magnetic scattering as a straightforward tool to reveal directly the properties of chiral magnetic systems. We show that it can straightforwardly and unambiguously determine the main characteristics of chiral magnetic distributions: i.e., its chiral nature, the quantitative winding sense (clockwise or counterclockwise), and its type, i.e., Néel [cycloidal] or Bloch [helical]. This method is model independent, does not require a priori knowledge of the magnetic parameters, and can be applied to any system with magnetic domains ranging from a few nanometers (wavelength limited) to several microns. By using prototypical multilayers with tailored magnetic chiralities driven by spin-orbit-related effects at Co |Pt interfaces, we illustrate the strength of this method.

  12. Sub-micron opto-chemical probes for studying living neurons

    Science.gov (United States)

    Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R.

    2017-02-01

    We have fabricated sub-micron opto-chemical probes for pH, oxygen and calcium monitoring and demonstrated their application in intracellular and extracellular monitoring of neurons (cortical neuronal cultures and acute hippocampal slices). Using these probes, we have measured extracellular pH in the stratum radiatum of the CA1 region of mouse hippocampus upon stimulation of presynaptic Schaffer collateral axons. Synaptic transmission was monitored using standard electrophysiological techniques. We find that the local pH transiently changes in response to synaptic stimulation. In addition, the geometry of the functionalized region on the probe combined with high sensitivity imaging enables simultaneous monitoring of spatially adjacent but distinct compartments. As proof of concept we impaled cultured neurons with the probe measured calcium and pH inside as well as directly outside of neurons as we changed the pH and calcium concentration in the physiological solution in the perfusion chamber. As such these probes can be used to study the impact of the environment on both cellular and extra-cellular space. Additionally as the chemical properties of the surrounding medium can be controlled and monitored with high precision, these probes enable differential measurement of the target parameter referenced to a stable bath. This approach eliminates the uncertainties associated with non-chemical fluctuations in the fluorescent emission and result in a self-calibrated opto-chemical probe. We have also demonstrated multifunctional probes that are capable of measuring up to three parameters in the extracellular space in brain slices.

  13. A study of spinal cord tumors by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gushiken, Isao; Nishihira, Takeshi; Nakasone, Tomohiro [Ryukyu Univ., Nishihara, Okinawa (Japan). School of Medicine; Takara, Hiroaki; Oshiro, Yutaka; Oshiro, Takashi; Isa, Makoto; Kinjo, Yukio; Ibaraki, Kunio

    1989-10-01

    We studied 17 cases of spinal cord tumors using magnetic resonance imaging. According to the intensity of image and histological feature of spinal cord tumors, we identified two groups in T2 weighted imaging. One was a hypointensity group showing cystic or vascular tumors, and the other was hyperintensity group of solid tumors. Preoperative images of swelling, narrowing, deviation of the spinal cord were remained after the operations. Grafted free fatty tissue for the prevention of adhesion was recognized well also after the operation. Postoperative imagings sometime showed pseudo-deviation of the spinal cord which was easy to be mistaken as the remains of tumors and narrowing of the spinal cord. In conclusion, the magnetic resonance imaging makes very early detection of spinal cord tumors possible, and it is valuable for a diagnosis of the spinal cord tumor associated with brain tumor. (author).

  14. A study of spinal cord tumors by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gushiken, Isao; Nishihira, Takeshi; Nakasone, Tomohiro; Takara, Hiroaki; Oshiro, Yutaka; Oshiro, Takashi; Isa, Makoto; Kinjo, Yukio; Ibaraki, Kunio.

    1989-01-01

    We studied 17 cases of spinal cord tumors using magnetic resonance imaging. According to the intensity of image and histological feature of spinal cord tumors, we identified two groups in T2 weighted imaging. One was a hypointensity group showing cystic or vascular tumors, and the other was hyperintensity group of solid tumors. Preoperative images of swelling, narrowing, deviation of the spinal cord were remained after the operations. Grafted free fatty tissue for the prevention of adhesion was recognized well also after the operation. Postoperative imagings sometime showed pseudo-deviation of the spinal cord which was easy to be mistaken as the remains of tumors and narrowing of the spinal cord. In conclusion, the magnetic resonance imaging makes very early detection of spinal cord tumors possible, and it is valuable for a diagnosis of the spinal cord tumor associated with brain tumor. (author)

  15. Analytical studies on pump-induced optical resonances in an M-type six-level system

    International Nuclear Information System (INIS)

    Ghosh, Saswata; Mandal, Swapan

    2010-01-01

    In the domain of semiclassical formulation and for the Doppler-free atom-field interaction, we construct the optical Bloch equations involving an M-type six-level system coupled to two pump fields and a probe field. The response of the system is probed for different pump-induced transitions in double and triple-resonance situations. In order to obtain the coherent lineshapes (absorptive and dispersive), we use the usual perturbation method for obtaining the approximate analytical solutions to these coupled optical Bloch equations for the density matrix elements. The interferences between the probability amplitudes for different energy levels (dipole allowed and dipole forbidden) are taken care of. For off-resonance pump positions, the linewidths of the three probe transitions are insensitive to the pump Rabi frequencies. On the other hand, the shifts of the three resonance peaks are extremely sensitive to the pump Rabi frequencies. However, for on-resonance pump conditions, the sensitivities of pump Rabi frequencies on the linewidths of the resonance peaks and on the shifts of the resonance peak positions are opposite to those of their off-resonance counterparts. In particular, we have shown the asymmetric and symmetric Rabi splittings under different physical conditions, for non-zero and near-zero probe detuning, respectively. The Rabi splitting under triple-resonance conditions, significantly, modifies the dispersive lineshape at the centre of the absorption line. The two- and three-photon absorptions are also reported for different off-resonant pump positions.

  16. 73Se, an unusual PAC probe applied to the study of semiconductors

    International Nuclear Information System (INIS)

    Vianden, R.

    1990-01-01

    The isotope 73 Se was produced by an (α,3n) reaction from 72 Ge in order to study the applicability of this probe to PAC defect studies in semiconductors. Measurements before and after annealing recoil implanted samples showed that the quadrupole interaction of the 66 keV state in the daughter isotope 73 As with the lattice damage created by the implantation is comparable to that found for 111 In in Ge. This indicates that 73 Se can be a suitable probe for defect studies in semiconductors with nuclear methods. (orig.)

  17. A simple and sensitive resonance Rayleigh scattering-energy transfer method for amino acids coupling its Ruhemann's purple and graphene oxide probe

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yanghe [School of Food and Bioengineering, Hezhou University, Hezhou 542899 (China); Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Li, Chongnin; Qin, Aimian [Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Liang, Aihui, E-mail: ahliang2008@163.com [Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Jiang, Zhiliang, E-mail: zljiang@mailbox.gxnu.edu.cn [School of Food and Bioengineering, Hezhou University, Hezhou 542899 (China); Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China)

    2017-05-15

    In pH 7.2 KH{sub 2}PO{sub 4}-NaOH buffer solution, graphene oxide (GO) has strong resonance Rayleigh scattering (RRS) effect at 400 nm, and amino acid reacted with ninhydrin to form blue-violet complex Ruhemann's purple (RP) with a absorption peak at 400 nm. RPs can strongly adsorbed on the surface of GO, and the RRS donor of GO probes coupled with the receptor of RP that reduced the RRS intensity at 400 nm due to the RRS-energy transfer (RRS-ET) from the GO to RP. With the increase of amino acid concentration, the RRS intensity quenched linearly at 400 nm due to the RRS-ET enhancing. The quenched intensity responds linearly with glutamic acid concentration in the range of 0.2–200 μmol L{sup −1}, with a detection limit of 0.08 µmol L{sup −1}. This simple and sensitive RRS-ET method was used to detect the content of amino acid in oral liquid, with satisfactory results.

  18. Oxidation of carbon monoxide cocatalyzed by palladium(0) and the H(5)PV(2)Mo(10)O(40) polyoxometalate probed by electron paramagnetic resonance and aerobic catalysis.

    Science.gov (United States)

    Goldberg, Hila; Kaminker, Ilia; Goldfarb, Daniella; Neumann, Ronny

    2009-08-17

    The H(5)PV(2)Mo(10)O(40) polyoxometalate and Pd/Al(2)O(3) were used as co-catalysts under anaerobic conditions for the activation and oxidation of CO to CO(2) by an electron transfer-oxygen transfer mechanism. Upon anaerobic reduction of H(5)PV(2)Mo(10)O(40) with CO in the presence of Pd(0) two paramagnetic species were observed and characterized by continuous wave electron paramagnetic resonance (CW-EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopic measurements. Major species I (65-70%) is assigned to a species resembling a vanadyl cation that is supported on the polyoxometalate and showed a bonding interaction with (13)CO. Minor species II (30-35%) is attributed to a reduced species where the vanadium(IV) atom is incorporated in the polyoxometalate framework but slightly distanced from the phosphate core. Under aerobic conditions, CO/O(2), a nucleophilic oxidant was formed as elucidated by oxidation of thianthrene oxide as a probe substrate. Oxidation reactions performed on terminal alkenes such as 1-octene yielded a complicated mixture of products that was, however, clearly a result of alkene epoxidation followed by subsequent reactions of the intermediate epoxide. The significant competing reaction was a hydrocarbonylation reaction that yielded a approximately 1:1 mixture of linear/branched carboxylic acids.

  19. A nuclear magnetic resonance and electron spin resonance study on the dynamics of pentacoordinated organophosphorus compounds

    International Nuclear Information System (INIS)

    Keijzer, A.E.H. de.

    1988-01-01

    In this thesis the role of the steric and electronic effects on the fundamental dynamic behaviour of pentacoordinated phosporus compounds is further elaborated. In chapter 2 a variable temperature 13 C NMR study, performed on a series of monocyclic oxyphosphoranes, is presented. The investigations were carried out to determine the influence of the conformational transmission effect on the barriers to pseudorotation in pentacoordinated phosphorus compounds. Chapter 3 also comprises a variable temperature 13 C NMR study on pentacoordinated phosphorus compounds. In this chapter, however, an additional high-resolution 1 H NMR study on the conformational equilibria around the P-O-C-C-O fragments is included. These studies were performed in order to determine whether the enhancement of the reorganization rates around phosphorus is brought about by accelerated pseudorotation or by the involvement of hexacoordinated zwitterionic phosphorus intermediates. In chapter 4, a 31 P NMR study on the solvolysis rate of several phosphinate esters is described. This study was performed in order to determine the influence of the conformational transmission effect on the solvolysis rate of phosphate esters. A number of phosphates is examined in which, during the course of the solvolysis reaction, the conformational transmission effect is bound to be present or absent respectively. Moreover, it is discussed in which way the concept of conformational transmission induced differences in solvolysis rates can be used as a probe to examine the reactions of biologically important phosphate esters. In chapters 5 and 6 ESR studies on the influence of steric and electronic factors on phosphoranyl formation in solution, and on the intramolecular electron transfer in phosphoranyl radicals are presented. (author). 121 refs.; 33 figs.; 17 figs

  20. Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules.

    Science.gov (United States)

    Cox, Nicholas; Nalepa, Anna; Pandelia, Maria-Eirini; Lubitz, Wolfgang; Savitsky, Anton

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy exploits an intrinsic property of matter, namely the electron spin and its related magnetic moment. This can be oriented in a magnetic field and thus, in the classical limit, acts like a little bar magnet. Its moment will align either parallel or antiparallel to the field, giving rise to different energies (termed Zeeman splitting). Transitions between these two quantized states can be driven by incident microwave frequency radiation, analogous to NMR experiments, where radiofrequency radiation is used. However, the electron Zeeman interaction alone provides only limited information. Instead, much of the usefulness of EPR is derived from the fact that the electron spin also interacts with its local magnetic environment and thus can be used to probe structure via detection of nearby spins, e.g., NMR-active magnetic nuclei and/or other electron spin(s). The latter is exploited in spin labeling techniques, an exciting new area in the development of noncrystallographic protein structure determination. Although these interactions are often smaller than the linewidth of the EPR experiment, sophisticated pulse EPR methods allow their detection. A number of such techniques are well established today and can be broadly described as double-resonance methods, in which the electron spin is used as a reporter. Below we give a brief description of pulse EPR methods, particularly their implementation at higher magnetic fields, and how to best exploit them for studying metallobiomolecules. © 2015 Elsevier Inc. All rights reserved.

  1. Study on the Interaction between Cadmium Sulphide Nanoparticles and Proteins by Resonance Rayleigh Scattering Spectra

    Directory of Open Access Journals (Sweden)

    Weiwei Zhu

    2013-01-01

    Full Text Available The interaction of cadmium sulphide nanoparticles [(CdSn] with proteins has been studied by resonance Rayleigh scattering spectra (RRS. Below the isoelectric point, proteins such as bovine serum albumin (BSA, human serum albumin (HSA, lysozyme (Lys, hemoglobin (HGB, and ovalbumin (OVA can bind with CdSn to form macromolecules by virtue of electrostatic attraction and hydrophobic force. It can result in the enhancement of resonance Rayleigh scattering spectra (RRS intensity. Their maximum scattering peaks were 280 nm, and there was a smaller peak at 370 nm. The scattering enhancement (ΔIRRS is directly proportional to the concentration of proteins. A new RRS method for the determination of trace proteins using uncapped CdSn nanoparticles probe has been developed. The detection limits are 19.6 ng/mL for HSA, 16.7 ng/mL for BSA, 18.5 ng/mL for OVA, 80.2 ng/mL for HGB, and 67.4 ng/mL for Lys, separately. In this work, the optimum condition of reaction, the effect of foreign, and the analytical application had been investigated.

  2. Study of selective heating at ion cyclotron resonance for the plasma separation process

    Science.gov (United States)

    Compant La Fontaine, A.; Pashkovsky, V. G.

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucléaires de Saclay and Cité Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number kz is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the kz spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge-Kutta method. The influence of ion-ion collisions, inhomogeneity of the static magnetic field B0, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44Ca heating measurements, made with an energy analyzer.

  3. Study of selective heating at ion cyclotron resonance for the plasma separation process

    International Nuclear Information System (INIS)

    Compant La Fontaine, A.; Pashkovsky, V.G.

    1995-01-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucleaires de Saclay and Cite Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number k z is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the k z spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge--Kutta method. The influence of ion--ion collisions, inhomogeneity of the static magnetic field B 0 , and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44 Ca heating measurements, made with an energy analyzer. copyright 1995 American Institute of Physics

  4. Catastrophic dechanneling resonance study of In0.1Ga0.9As/GaAs multilayers

    International Nuclear Information System (INIS)

    Siddiqui, A.M.; Pathak, A.P.

    1998-10-01

    Catastrophic Dechanneling Resonance (CDR) has bee used for probing important properties of Strained Layer Superlattices (SLS). We have undertaken a systematic study on strain and strain revealing mechanisms in technologically important SLS using ion channeling methods. Here we present the theoretical calculations on CDR for a 4 He ion beam along the (110) plane in In 0.1 Ga 0.9 As/GaAs superlattice using Moliere potential. CDR is found to have occurred at 1.2 MeV. Also the most regular feature of CDR, the Incident Angle Asymmetry has been observed. (author)

  5. In utero eyeball development study by magnetic resonance imaging.

    Science.gov (United States)

    Brémond-Gignac, D S; Benali, K; Deplus, S; Cussenot, O; Ferkdadji, L; Elmaleh, M; Lassau, J P

    1997-01-01

    The aim of this study was to measure fetal ocular development and to determine a growth curve by means of measurements in utero. Fetal ocular development was recorded by analysis of the results of magnetic resonance imaging (MRI). An anatomic study allowed definition of the best contrasted MRI sequences for calculation of the ocular surface. Biometric analysis of the values of the ocular surface in the neuro-ocular plane in 35 fetuses allowed establishment of a linear model of ocular growth curve in utero. Evaluation of ocular development may allow the detection and confirmation of malformational ocular anomalies such as microphthalmia.

  6. Hadron excitation of giant resonances

    International Nuclear Information System (INIS)

    Morsch, H.-P.

    1985-01-01

    A review is given on giant resonance studies in heavy nuclei using scattering of different hadronic probes. Concerning isoscalar giant resonances compression modes are discussed with the possibility to obtain more detailed structure information. From detailed studies of α scattering the distribution of isoscalar strengths of multipolarity up to L=6 was obtained. Some recent aspects of heavy ion excitation of collective modes are mentioned. The possibility to study isovector giant resonances in hadron charge exchange reactions is discussed. Finally, a comparison is made between α and 200 MeV proton scattering from which isoscalar and spin-isospin continuum response are extracted. (orig.)

  7. Study of probes for geophysical process analysis. Radon-emanometry

    International Nuclear Information System (INIS)

    Tidjani, A.

    1984-09-01

    This study concerns mainly the measurement of radon-222 concentration in the ground, as an indicator of underground gas displacements. With nuclear track solid state detectors (SSNTD), it has been shown that the use of a radon source, buried at 180 cm depth, provides an increase of sensitivity. In order to automatize the in-field measurements, electronic detectors (scintillators, semi-conductors) have been developed. These detectors have been used for preliminary studies in the field for further applications to the prevision of earthquakes and volcanic eruption, and on a simulation set-up to analyse the possible influence of atmospheric parameters (pressure, temperature, ...) on underground gas displacement. Some tests have been done on the use of SSNTD for tracer analysis [fr

  8. Study of the maguemite-hematite transformation by magnetic resonance

    International Nuclear Information System (INIS)

    Portella, P.D.

    1979-08-01

    The conversion of γ-Fe 2 O 3 powders to α-Fe 2 O 3 has been studied with the magnetic resonance technique. The residual fraction of γ-Fe 2 O 3 was measured for several times and temperatures of isothermal treatments, in the range 450 0 C - 550 0 C. The transformation can be described by a first order Kinetic equation and the apparent activation energy is about 200 kJ/mol (48 kcal/mol). This value is independent of temperature and particle size. The experimental data suggest that the reaction is growth-controlled and nucleation occurs preferably at the particle surface. (Author) [pt

  9. Study on a New Ultraviolet Sterilizer to the Surface Disinfection of the Ultrasound Probe.

    Science.gov (United States)

    Chen, Gui Qiu; Chen, Yu Hao; Yi, Liang; Yin, Jin; Gao, Qiong; Song, Jiang Nan; Li, Shi Kang; Chen, Pei Hou; Guo, Gui Ping

    2018-02-01

    We studied the disinfection effect of a new ultraviolet (UV) sterilizer and its utilization on ultrasound probe surfaces. Carrier quantitative germicidal tests, simulated on-the-spot trials, and organic substance influence tests were used to carry out experimental observation. Artificially infected probes were disinfected using the sterilizer or a germicidal lamp for comparison. The total number and types of bacteria were determined and identified. Our results demonstrated the sterilizer had the best disinfection effect among three different disinfection methods in hospital. The sterilizer has been used in a hospital setting for 2 years with no notable damage to the ultrasound probe instrument. It has the advantages of fast disinfection, high disinfection effect, and good compatibility with the ultrasound instrument, worthy of being a promoted application in medical institutions. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Overview of wall probes for erosion and deposition studies in the TEXTOR tokamak

    Directory of Open Access Journals (Sweden)

    M. Rubel

    2017-05-01

    Full Text Available An overview of diagnostic tools – test limiters and collector probes – used over the years for material migration studies in the TEXTOR tokamak is presented. Probe transfer systems are shown and their technical capabilities are described. This is accompanied by a brief presentation of selected results and conclusions from the research on material erosion – deposition processes including tests of candidate materials (e.g. W, Mo, carbon-based composites for plasma-facing components in controlled fusion devices. The use of tracer techniques and methods for analysis of materials retrieved from the tokamak are summarized. The impact of research on the reactor wall technology is addressed.

  11. In vitro study of proteins surface activity by tritium probe

    International Nuclear Information System (INIS)

    Chernysheva, M.G.; Badun, G.A.

    2010-01-01

    A new technique for in vitro studies of biomacromolecules interactions, their adsorption at aqueous/organic liquid interfaces and distribution in the bulk of liquid/liquid systems was developed. The method includes (1) tritium labeling of biomolecules by tritium thermal activation method and (2) scintillation phase step with organic phase, which can be concerned as a model of cellular membrane. Two globular proteins lysozyme and human serum albumin tested. We have determined the conditions of tritium labeling when labeled by-products can be easy separated by means of dialysis and size-exclusion chromatography. Scintillation phase experiments were conducted for three types of organic liquids. Thus, the influences of the nature of organic phase on proteins adsorption and its distribution in the bulk of aqueous/organic liquid system were determined. It was found that proteins possess high surface activity at aqueous/organic liquid interface. Furthermore, values of hydrophobicity of globular proteins were found by the experiment. (author)

  12. The scanning probe microscopy study of thin polymer films

    International Nuclear Information System (INIS)

    Harron, H.R.

    1995-08-01

    Scanning Tunnelling Microscopy and Atomic Force Microscopy were used systematically to investigate the morphology, uniformity, coverage and structure of the thin films of several commercially important insulating polymers. Despite the poorly conducting nature of the polymer sample, detailed and convincing images of this class of materials were achieved by STM without the need to coat the samples with a conductive layer. The polymer regions of the sample were further investigated by the use of surface profiling with 'line scans'. The fluctuations of the amplitude therein enabled important film characteristics to be assessed. An environmental stage was designed for the STM to enable the effect of various vapour-sample interactions to be observed during the imaging process. Using the data from the environmental stage in addition to the surface profiling with line scans, an insight into the conduction mechanism and image interpretation was gained. Results suggest that the water content of the sample and its immediate surroundings is an important factor in achieving reliable STM images in air. The initial study culminated with the observation by STM alone of the plasticizer induced crystallization of uncoated PC thin films. The 'amorphous' PC films were observed before crystallization and small ordered regions in roughly the same proportion as that predicted by diffraction studies [Prietschk, 1959 and Schnell, 1964] were imaged. This has never been observed by a microscopy technique. Furthermore, images of the crystalline film contained elongated units that were attributed to the lamellae formations that form the basic building blocks of polymer spherulites. The study continued with the AFM imaging of the growth of crystalline entities in a PC film, without the need for harsh sample treatment or metal coating. A method of casting and crystallizing the films was developed such that the growth was predominantly in two dimensions and consequently ideal for observation by

  13. Final Technical Report - Nuclear Studies with Intermediate Energy Probes

    Energy Technology Data Exchange (ETDEWEB)

    Norum, Blaine [Univ. of Virginia, Charlottesville, VA (United States)

    2017-12-14

    During the almost 20 year period of this grant research was carried out on atomic nuclei and their constituents using both photons and electrons. Research was carried out at the electron accelerator facility of the Netherlands Institute for Nuclear and High Energy Physics (NIKHEFK, Amsterdam) until the electron accelerator facility was closed in 1998. Subsequently, research was carried out at the Laser-Electron Gamma Source (LEGS) of the National Synchrotron Light Source (NSLS) located at the Brookhaven National Laboratory (BNL) until the LEGS was closed at the end of 2006. During the next several years research was carried out at both the Thomas Jefferson National Accelerator Facility (JLAB) and the High Intensity Gamma Source (HIGS) of the Tri-Universities Nuclear Laboratory (TUNL) located on the campus of Duke University. Since approximately 2010 the principal focus was on research at TUNL, although analysis of data from previous research at other facilities continued. The principal early focus of the research was on the role of pions in nuclei. This was studied by studying the production of pions using both photons (at LEGS) and electrons (at NIKHEF-K and JLAB). Measurements of charged pion photoproduction from deuterium at LEGS resulted in the most interesting result of these two decades of work. By measuring the production of a charged pion (p + ) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of long-lived states not explicable by standard nuclear theory; they suggest a set of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued.

  14. Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight.

    Directory of Open Access Journals (Sweden)

    Zhou Han

    Full Text Available ArcLight, a genetically encoded fluorescent protein voltage probe with a large ΔF/ΔV, is a fusion between the voltage sensing domain of the Ciona instestinalis voltage sensitive phosphatase and super ecliptic pHluorin carrying a single mutation (A227D in the fluorescent protein. Without this mutation the probe produces only a very small change in fluorescence in response to voltage deflections (∼ 1%. The large signal afforded by this mutation allows optical detection of action potentials and sub-threshold electrical events in single-trials in vitro and in vivo. However, it is unclear how this single mutation produces a probe with such a large modulation of its fluorescence output with changes in membrane potential. In this study, we identified which residues in super ecliptic pHluorin (vs eGFP are critical for the ArcLight response, as a similarly constructed probe based on eGFP also exhibits large response amplitude if it carries these critical residues. We found that D147 is responsible for determining the pH sensitivity of the fluorescent protein used in these probes but by itself does not result in a voltage probe with a large signal. We also provide evidence that the voltage dependent signal of ArcLight is not simply sensing environmental pH changes. A two-photon polarization microscopy study showed that ArcLight's response to changes in membrane potential includes a reorientation of the super ecliptic pHluorin. We also explored different changes including modification of linker length, deletion of non-essential amino acids in the super ecliptic pHluorin, adding a farnesylation site, using tandem fluorescent proteins and other pH sensitive fluorescent proteins.

  15. Electric giant resonances in sup 4 sup 0 Ca and sup 4 sup 8 Ca probed with electron and proton scattering coincidence experiments

    CERN Document Server

    Strauch, S

    1999-01-01

    Excitation and particle decay of electric giant resonances in sup 4 sup 0 Ca and sup 4 sup 8 Ca are studied with electron and proton beams. Recent results of a sup 4 sup 8 Ca(e,e'n) measurement performed at the S-DALINAC in Darmstadt with kinematics that selectively populate electric monopole, dipole and quadrupole excitations are presented. The extracted B(E1) strength distribution is in good agreement with photo nuclear data and the predictions of microscopic calculations. The summed B(E2+E0) strength distribution, however disagrees with the result of these calculations. The neutron emission of the giant dipole resonance in sup 4 sup 8 Ca shows a large fraction of direct decay to sup 4 sup 7 Ca hole states. In addition, isoscalar giant monopole resonance strength in sup 4 sup 0 Ca was extracted from (e,e'alpha sub 0) and (e,e'alpha sub 1) angular correlations. A study of the quadrupole strength in the alpha sub 0 decay channel of sup 4 sup 0 Ca with a (p,p'alpha) coincidence measurement reiterates the unsol...

  16. Photoacoustic assay for probing amyloid formation: feasibility study

    Science.gov (United States)

    Petrova, Elena; Yoon, Soon Joon; Pelivanov, Ivan; O'Donnell, Matthew

    2018-02-01

    The formation of amyloid - aggregate of misfolded proteins - is associated with more than 50 human pathologies, including Alzheimer's disease, Parkinson's disease, and Type 2 diabetes mellitus. Investigating protein aggregation is a critical step in drug discovery and development of therapeutics targeted to these pathologies. However, screens to identify protein aggregates are challenging due to the stochastic character of aggregate nucleation. Here we employ photoacoustics (PA) to screen thermodynamic conditions and solution components leading to formation of protein aggregates. Particularly, we study the temperature dependence of the Gruneisen parameter in optically-contrasted, undersaturated and supersaturated solutions of glycoside hydrolase (lysozyme). As nucleation of protein aggregates proceeds in two steps, where the first is liquid-liquid separation (rearrangement of solute's density), the PA response from complex solutions and its temperature-dependence monitor nucleation and differentiate undersaturated and supersaturated protein solutions. We demonstrate that in the temperature range from 22 to 0° C the PA response of contrasted undersaturated protein solution behaves similar to water and exhibits zero thermal expansion at 4°C or below, while the response of contrasted supersaturated protein solution is nearly temperature independent, similar to the behavior of oils. These results can be used to develop a PA assay for high-throughput screening of multi-parametric conditions (pH, ionic strength, chaperone, etc.) for protein aggregation that can become a key tool in drug discovery, targeting aggregate formation for a variety of amyloids.

  17. Challenges in clinical studies with multiple imaging probes

    International Nuclear Information System (INIS)

    Krohn, Kenneth A.; O'Sullivan, Finbarr; Crowley, John; Eary, Janet F.; Linden, Hannah M.; Link, Jeanne M.; Mankoff, David A.; Muzi, Mark; Rajendran, Joseph G.; Spence, Alexander M.; Swanson, Kristin R.

    2007-01-01

    This article addresses two related issues: (a) When a new imaging agent is proposed, how does the imager integrate it with other biomarkers, either sampled or imaged? (b) When we have multiple imaging agents, is the information additive or duplicative and how is this objectively determined? Molecular biology is leading to new treatment options with reduced normal tissue toxicity, and imaging should have a role in objectively evaluating new treatments. There are two roles for molecular characterization of disease. Molecular imaging measurements before therapy help predict the aggressiveness of disease and identify therapeutic targets and, therefore, help choose the optimal therapy for an individual. Measurements of specific biochemical processes made during or after therapy should be sensitive measures of tumor response. The rules of evidence are not fully developed for the prognostic role of imaging biomarkers, but the potential of molecular imaging provides compelling motivation to push forward with convincing validation studies. New imaging procedures need to be characterized for their effectiveness under realistic clinical conditions to improve the management of patients and achieve a better outcome. The purpose of this article is to promote a critical discussion within the molecular imaging community because our future value to the overall biomedical community will be in supporting better treatment outcomes rather than in detection

  18. Ultrafast carrier dynamics in bilayer graphene studied by broadband infrared pump-probe spectroscopy

    Science.gov (United States)

    Limmer, Thomas; da Como, Enrico; Niggebaum, Alexander; Feldmann, Jochen

    2010-03-01

    Recently, bilayer graphene gained a large interest because of its electrically tunable gap appearing in the middle infrared part of the electromagnetic spectrum. This feature is expected to open a number of applications of bilayer graphene in optoelectronics. In this communication we report on the first pump-probe experiment on a single bilayer flake with an unprecedented probe photon energy interval (0.25 -- 1.3 eV). Single flakes were prepared by mechanical exfoliation of graphite and transferred to calcium fluoride substrates. When illuminated with 800 nm (1.5 eV) pump pulses the induced change in transmission shows an ultrafast saturation of the interband transitions from 1.3 to 0.5 eV. In this energy range the saturation recovery occurs within 3 ps and is consistent with an ultrafast relaxation of hot carriers. Interestingly, we report on the observation of a resonance at 0.4 eV characterized by a longer dynamics. The results are discussed considering many-body interactions.

  19. Time-Domain Studies as a Probe of Stellar Evolution

    Science.gov (United States)

    Miller, Adam Andrew

    This dissertation focuses on the use of time-domain techniques to discover and characterize these rare astrophysical gems, while also addressing some gaps in our understanding of the earliest and latest stages of stellar evolution. The observational studies presented herein can be grouped into three parts: (i) the study of stellar death (supernovae); (ii) the study of stellar birth; and (iii) the use of modern machine-learning algorithms to discover and classify variable sources. I present observations of supernova (SN) 2006gy, the most luminous SN ever at the time of discovery, and the even-more luminous SN 2008es. Together, these two supernovae (SNe) demonstrate that core-collapse SNe can be significantly more luminous than thermonuclear type Ia SNe, and that there are multiple channels for producing these brilliant core-collapse explosions. For SN 2006gy I show that the progenitor star experienced violent, eruptive mass loss on multiple occasions during the centuries prior to explosion, a scenario that was completely unexpected within the cannon of massive-star evolution theory. I also present observations of SN 2008iy, one of the most unusual SNe ever discovered. Typical SNe take ≲3 weeks to reach peak luminosity; SN 2008iy exhibited a slow and steady rise for ˜400 days before reaching maximum brightness. The best explanation for such behavior is that the progenitor of SN 2008iy experienced an episodic phase of mass loss ˜100 yr prior to explosion. The three SNe detailed in this dissertation have altered our understanding of massive-star mass loss, namely, these SNe provide distinct evidence that post-main sequence mass loss, for at least some massive stars, occurs in sporatic fits, rather than being steady. They also demonstrate that core collapse is not restricted to the red supergiant and Wolf-Rayet stages of stellar evolution as theory predicted. Instead, some massive stars explode while in a luminous blue variable-like state. I also present

  20. Scanning Probe Optical Tweezers: a new tool to study DNA-protein interactions

    NARCIS (Netherlands)

    Huisstede, J.H.G.

    2006-01-01

    The main goal of the work described in this thesis is to construct a microscope in which OT and scanning probe microscopy (SPM) are combined, to be able to localize proteins while simultaneously controlling the tension within the DNA molecule. This apparatus enables the study of the effect of

  1. Sensitivity studies on the multi-sensor conductivity probe measurement technique for two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Worosz, Ted [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Bernard, Matt [The United States Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States); Kong, Ran; Toptan, Aysenur [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Kim, Seungjin, E-mail: skim@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Hoxie, Chris [The United States Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2016-12-15

    Highlights: • Revised conductivity probe circuit to eliminate signal “ghosting” among sensors. • Higher sampling frequencies suggested for bubble number frequency and a{sub i} measurements. • Two-phase parameter sensitivity to measurement duration and bubble number investigated. • Sensors parallel to pipe wall recommended for symmetric bubble velocity measurements. • Sensor separation distance ratio (s/d) greater than four minimizes bubble velocity error. - Abstract: The objective of this study is to advance the local multi-sensor conductivity probe measurement technique through systematic investigation into several practical aspects of a conductivity probe measurement system. Firstly, signal “ghosting” among probe sensors is found to cause artificially high bubble velocity measurements and low interfacial area concentration (a{sub i}) measurements that depend on sampling frequency and sensor impedance. A revised electrical circuit is suggested to eliminate this artificial variability. Secondly, the sensitivity of the probe measurements to sampling frequency is investigated in 13 two-phase flow conditions with superficial liquid and gas velocities ranging from 1.00–5.00 m/s and 0.17–2.0 m/s, respectively. With increasing gas flow rate, higher sampling frequencies, greater than 100 kHz in some cases, are required to adequately capture the bubble number frequency and a{sub i} measurements. This trend is due to the increase in gas velocity and the transition to the slug flow regime. Thirdly, the sensitivity of the probe measurements to the measurement duration as well as the sample number is investigated for the same flow conditions. Measurements of both group-I (spherical/distorted) and group-II (cap/slug/churn-turbulent) bubbles are found to be relatively insensitive to both the measurement duration and the number of bubbles, as long as the measurements are made for a duration long enough to capture a collection of samples characteristic to a

  2. Chimpanzees create and modify probe tools functionally: A study with zoo-housed chimpanzees.

    Science.gov (United States)

    Hopper, Lydia M; Tennie, Claudio; Ross, Stephen R; Lonsdorf, Elizabeth V

    2015-02-01

    Chimpanzees (Pan troglodytes) use tools to probe for out-of-reach food, both in the wild and in captivity. Beyond gathering appropriately-sized materials to create tools, chimpanzees also perform secondary modifications in order to create an optimized tool. In this study, we recorded the behavior of a group of zoo-housed chimpanzees when presented with opportunities to use tools to probe for liquid foods in an artificial termite mound within their enclosure. Previous research with this group of chimpanzees has shown that they are proficient at gathering materials from within their environment in order to create tools to probe for the liquid food within the artificial mound. Extending beyond this basic question, we first asked whether they only made and modified probe tools when it was appropriate to do so (i.e. when the mound was baited with food). Second, by collecting continuous data on their behavior, we also asked whether the chimpanzees first (intentionally) modified their tools prior to probing for food or whether such modifications occurred after tool use, possibly as a by-product of chewing and eating the food from the tools. Following our predictions, we found that tool modification predicted tool use; the chimpanzees began using their tools within a short delay of creating and modifying them, and the chimpanzees performed more tool modifying behaviors when food was available than when they could not gain food through the use of probe tools. We also discuss our results in terms of the chimpanzees' acquisition of the skills, and their flexibility of tool use and learning. © 2014 Wiley Periodicals, Inc.

  3. Nuclear quadrupole resonance applied for arsenic oxide study

    International Nuclear Information System (INIS)

    Correia, J.A.S.

    1991-04-01

    The objectives of this study are mounting a pulsed Nuclear Quadrupole Resonance (NQR) building a flow cryostat capable of varying the temperature continuously from 77 K to 340 K and using the spectrometer and the cryostat to study the polycrystalline arsenic oxide. The spin-lattice relaxation time (T 1 ), the spin-spin relaxation time (T 2 ) and the resonance frequency are obtained as a function of temperature. These data are obtained in 77 to 330 K interval. The relaxation times are obtained using the spin echo technique. The spin echo phenomenon is due to refocusing spins, when a 180 0 C pulse is applied after a 90 0 C pulse. The spin-lattice relaxation time is obtained using the plot of echo amplitude versus the repetition time. The spin-spin relaxation time is obtained using the plot of echo amplitude versus the separation between the 90 0 C - 180 0 C pulses. The theory developed by Bayer is used to explain the spin-lattice relaxation time and the frequency temperature dependence. The spin-spin relaxation time is discussed using the Bloch equations. (author)

  4. Resonant line transfer in a fog: using Lyman-alpha to probe tiny structures in atomic gas

    Science.gov (United States)

    Gronke, Max; Dijkstra, Mark; McCourt, Michael; Peng Oh, S.

    2017-11-01

    Motivated by observational and theoretical work that suggest very small-scale (≲ 1 pc) structure in the circumgalactic medium of galaxies and in other environments, we study Lyman-α (Lyα) radiative transfer in an extremely clumpy medium with many clouds of neutral gas along the line of sight. While previous studies have typically considered radiative transfer through sightlines intercepting ≲ 10 clumps, we explored the limit of a very large number of clumps per sightline (up to fc 1000). Our main finding is that, for covering factors greater than some critical threshold, a multiphase medium behaves similarly to a homogeneous medium in terms of the emergent Lyα spectrum. The value of this threshold depends on both the clump column density and the movement of the clumps. We estimated this threshold analytically and compare our findings to radiative transfer simulations with a range of covering factors, clump column densities, radii, and motions. Our results suggest that (I) the success in fitting observed Lyα spectra using homogeneous "shell models" (and the corresponding failure of multiphase models) hints at the presence of very small-scale structure in neutral gas, which is in agreement within a number of other observations; and (II) the recurrent problems of reproducing realistic line profiles from hydrodynamical simulations may be due to their inability to resolve small-scale structure, which causes simulations to underestimate the effective covering factor of neutral gas clouds. The movie associated to Fig. B.2 is available at http://www.aanda.org

  5. Excitation of the Roper resonance and study of higher baryon resonances

    International Nuclear Information System (INIS)

    Morsch, H.P.; Forschungszentrum Juelich GmbH

    1992-01-01

    The region of the P 11 resonance N(1440) is investigated in inelastic α-scattering on hydrogen using alpha-particles from Saturne with a beam momentum of 7 GeV/c. In the missing mass spectra of the scattered α-particles two effects are observed, excitation of the projectile, preferentially excited to the Δ-resonance, and excitation of the Roper resonance. The large differential cross sections indicate a structure of a compression mode. From this the compressibility of the nucleon K N may be extracted. The Roper resonance excitation corresponds to a surface mode which may be related to an oscillation of the meson cloud. The other monopole mode which corresponds to a vibration of the valence quarks should lie at about 800 MeV of excitation or above. This is the region of the P 11 (1710 MeV) resonance. Therefore experiments are important to measure the monopole strength in this energy region. Another interesting aspect is the scalar polarizability which can be extracted from inelastic dipole excitations (squeezing modes) as excitation energies above 500 MeV

  6. Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance

    Science.gov (United States)

    Baek, Seung-Ho; Reinold, Lukas Mirko; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Büchner, Bernd; Grafe, Hans-Joachim

    2014-05-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature (T) and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  7. Review: Magnetic Resonance Spectroscopy Studies of Pediatric Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Douglas G. Kondo

    2011-01-01

    Full Text Available Introduction. This paper focuses on the application of Magnetic Resonance Spectroscopy (MRS to the study of Major Depressive Disorder (MDD in children and adolescents. Method. A literature search using the National Institutes of Health's PubMed database was conducted to identify indexed peer-reviewed MRS studies in pediatric patients with MDD. Results. The literature search yielded 18 articles reporting original MRS data in pediatric MDD. Neurochemical alterations in Choline, Glutamate, and N-Acetyl Aspartate are associated with pediatric MDD, suggesting pathophysiologic continuity with adult MDD. Conclusions. The MRS literature in pediatric MDD is modest but growing. In studies that are methodologically comparable, the results have been consistent. Because it offers a noninvasive and repeatable measurement of relevant in vivo brain chemistry, MRS has the potential to provide insights into the pathophysiology of MDD as well as the mediators and moderators of treatment response.

  8. High-resolution nuclear magnetic resonance studies of proteins.

    Science.gov (United States)

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  9. New possibilities for using laser polarimetry technology to study electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, E V; Zapasskii, V S

    1982-01-01

    Optical methods of recording electron paramagnetic resonance which arose in the early 50's as applied to the problem of recording the magnetic resonance of excited atoms is at the present time widely used in studying the electron paramagnetic resonance of the ground and excited states of free atoms and paramagnetic centers in condensed media. At the present time attention is devoted to the additional possibilities of optical methods of electron paramagnetic resonance which are realized using laser sources.

  10. Resonant beam behavior studies in the Proton Storage Ring

    Directory of Open Access Journals (Sweden)

    S. Cousineau

    2003-07-01

    Full Text Available We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR at Los Alamos National Laboratory. We investigate the profile broadening through detailed particle-in-cell simulations of several experiments and obtain results in good agreement with the measurements. We interpret these results within the framework of coherent resonance theory. With increasing intensity, our simulations show strong evidence for the presence of a quadrupole-mode resonance of the beam envelope with the lattice in the vertical plane. Specifically, we observe incoherent tunes crossing integer values, and large amplitude, nearly periodic envelope oscillations. At the highest operating intensities, we observe a continuing relaxation of the beam through space charge forces leading to emittance growth. The increase of emittance commences when the beam parameters encounter an envelope stop band. Once the stop band is reached, the emittance growth balances the intensity increase to maintain the beam near the stop band edge. Additionally, we investigate the potential benefit of a stop band correction to the high intensity PSR beam.

  11. Experimental REMPI [Resonance Enhanced Multiphoton Ionization] studies of small molecules

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dehmer, P.M.; Pratt, S.T.; O'Halloran, M.A.; Tomkins, F.S.

    1986-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. We shall give an overview together with examples of current studies of excited molecular states to illustrate the principles of and prospects for REMPI. 27 refs., 3 figs

  12. EPR spin probe and spin label studies of some low molecular and polymer micelles

    Science.gov (United States)

    Wasserman, A. M.; Kasaikin, V. A.; Timofeev, V. P.

    1998-12-01

    The rotational mobility of spin probes of different shape and size in low molecular and polymer micelles has been studied. Several probes having nitroxide fragment localized either in the vicinity of micelle interface or in the hydrocarbon core have been used. Upon increasing the number of carbon atoms in hydrocarbon chain of detergent from 7 to 13 (sodium alkyl sulfate micelles) or from 12 to 16 (alkyltrimethylammonium bromide micelles) the rotational mobility of spin probes is decreased by the factor 1.5-2.0. The spin probe rotational mobility in polymer micelles (the complexes of alkyltrimethylammonium bromides and polymethacrylic or polyacrylic acids) is less than mobility in free micelles of the same surfactants. The study of EPR-spectra of spin labeled polymethacrylic acid (PMA) indicated that formation of water soluble complexes of polymer and alkyltrimethylammonium bromides in alkaline solutions (pH 9) does not affect the polymer segmental mobility. On the other hand, the polymer complexes formation in slightly acidic water solution (pH 6) breaks down the compact PMA conformation, thus increasing the polymer segmental mobility. Possible structures of polymer micelles are discussed.

  13. Comparative study of size dependent four-point probe sheet resistance measurement on laser annealed ultra-shallow junctions

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Lin, Rong; Hansen, Torben Mikael

    2008-01-01

    have been used to characterize the sheet resistance uniformity of millisecond laser annealed USJs. They verify, both experimentally and theoretically, that the probe pitch of a four-point probe can strongly affect the measured sheet resistance. Such effect arises from the sensitivity (or "spot size......In this comparative study, the authors demonstrate the relationship/correlation between macroscopic and microscopic four-point sheet resistance measurements on laser annealed ultra-shallow junctions (USJs). Microfabricated cantilever four-point probes with probe pitch ranging from 1.5 to 500 mu m......") of an in-line four-point probe. Their study shows the benefit of the spatial resolution of the micro four-point probe technique to characterize stitching effects resulting from the laser annealing process....

  14. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  15. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    International Nuclear Information System (INIS)

    Barrall, G.A.; Lawrence Berkeley Lab., CA

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample's density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques

  16. Electron spin resonance intercomparison studies on irradiated foodstuffs

    International Nuclear Information System (INIS)

    Raffi, J.

    1992-01-01

    The results of intercomparison studies organized by the Community Bureau of Reference on the use of electron spin resonance spectroscopy for the identification of irradiated food are presented. A qualitative intercomparison was carried out using beef and trout bones, sardine scales, pistachio nut shells, dried grapes and papaya. A quantitative intercomparison involving the use of poultry bones was also organized. There was no difficulty in identifying meat bones, dried grapes and papaya. In the case of fish bones there is a need for further kinetic studies using different fish species. The identification of pistachio nut shells is more complicated and further research is needed prior to the organization of a further intercomparison. Laboratories were able to distinguish between chicken bones irradiated in the range 1 to 3 KGy or 7 to 10 KGy although there was a partial overlap between the results from different laboratories

  17. Electron spin resonance intercomparison studies on irradiated foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    Raffi, J [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (FR)

    1992-07-01

    The results of intercomparison studies organized by the Community Bureau of Reference on the use of electron spin resonance spectroscopy for the identification of irradiated food are presented. A qualitative intercomparison was carried out using beef and trout bones, sardine scales, pistachio nut shells, dried grapes and papaya. A quantitative intercomparison involving the use of poultry bones was also organized. There was no difficulty in identifying meat bones, dried grapes and papaya. In the case of fish bones there is a need for further kinetic studies using different fish species. The identification of pistachio nut shells is more complicated and further research is needed prior to the organization of a further intercomparison. Laboratories were able to distinguish between chicken bones irradiated in the range 1 to 3 KGy or 7 to 10 KGy although there was a partial overlap between the results from different laboratories.

  18. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary

    2010-08-13

    Nanoscale ionic materials (NIMs) are a new class of nanomaterials that exhibit interesting properties including negligible vapor pressures and tunable physical states, among others. In this study, we analyzed the temperature-wise performance of NIMs using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core and the sulfonate group and determined relative concentrations of aromatic and aliphatic hydrocarbons. These findings serve as first hand proof-of-concept for the usefulness of NMR analyses in further studies on the diffusive properties of NIMs. © 2010 The Electrochemical Society.

  19. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1979-06-01

    A brief review is presented of: the basic physical principles of the field-ion and atom-probe microscopes; the many applications of these instruments to the study of defects and radiation damage in solids; and the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He in tungsten

  20. Cavum septum pellucidum in schizophrenia. A magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Fukuzako, Tsuyoshi; Fukuzako, Hiroshi; Kodama, Satoshi; Hashiguchi, Tomo; Takigawa, Morikuni

    1996-01-01

    In order to determine if cavum septum pellucidum (CSP) is more prevalent in schizophrenic patients, we studied 72 Japanese patients who fulfilled the DSM-III-R criteria for schizophrenia and 41 normal controls. Sagittal, 1 mm thick magnetic resonance imaging slices of the entire cranium were obtained using a gradient-echo pulse sequence, and coronal and axial images were reconstructed for assessment. A CSP was observed in 34 patients (47.2%) and in 16 controls (38.0%). Although the CSP appeared to be more prevalent in schizophrenic patients, this difference was not statistically significant. However, schizophrenic patients with a history of long-term institutionalization had a higher incidence of CSP compared with patients who had not been admitted to hospital for more than 3 years (68.2 vs 38.0%). These results suggest that the CSP may be a pathophysiology that characterizes schizophrenic patients with poor prognoses. (author)

  1. Magnetic resonance imaging in schizophrenia: a morphometric study

    International Nuclear Information System (INIS)

    Castro, Claudio Campi de

    2001-01-01

    Thirty-three patients with chronic schizophrenia and 21 normal subjects were submitted to magnetic resonance imaging studies using a 1.5 T scanner. Axial and coronal T 2-weighted images were obtained. The volumes of the brain, intracranial, supratentorial, infratentorial and the total, ventricular and subarachnoid cerebrospinal fluid volumes were measured using semi-automated morphometric methods. The volumes of the amygdala-hippocampus complex, para hippocampal gyrus cortex, putamen, globus pallidus, temporal lobe, gray and white matter of temporal lobe were also measured. These volumes were normalized using the intracranial volume as reference. The most relevant findings observed were reduced brain volume and increased total, ventricular and subarachnoid cerebrospinal fluid volumes in patients with schizophrenia when compared to the controls. Patients with schizophrenia had also smaller amygdala-hippocampus complexes, temporal lobes and temporal lobe white matter than the controls, as well as increased putamen volumes. (author)

  2. Structural and conformational study of polysaccharides by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bossennec, Veronique

    1989-01-01

    As some natural polysaccharides are involved in important biological processes, the use of nuclear magnetic resonance appears to be an adapted mean to determine their structure-activity relationship and is therefore the object of this research thesis. By using bi-dimensional proton-based NMR techniques, it is possible to identify minority saccharide units, to determine their conformation, and to identify units which they are bound to. The author reports the application of these methods to swine mucosa heparin, and to heparins displaying a high and low anticoagulant activity. The dermatan sulphate has also been studied, and the NMR analysis allowed some polymer structure irregularities to be identified. A molecular modelling of dermatan sulphate has been performed [fr

  3. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff Mathiasen, Anne-Gitte

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  4. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff, Anne-Gitte

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  5. A semiclassical study of optical potentials - potential resonances -

    International Nuclear Information System (INIS)

    Lee, S.Y.; Takigawa, N.; Marty, C.

    1977-01-01

    A semiclassical method is used to analyze resonances produced by complex potentials. The absorption plays a central role: when it is not too great, resonances manifest themselves by enhancement of cross sections near π. The reverse is not necessarily true, for instance the anomalous large angle scattering for α-Ca is due to a coherent superposition of many partial waves

  6. Study of lone working magnetic resonance technologists in Western Australia

    Directory of Open Access Journals (Sweden)

    Tracy Anne Dewland

    2013-12-01

    Full Text Available Objectives: It is recommended that magnetic resonance (MR technologists should not work alone due to potential occupational health risks although lone working is legally acceptable. The objective of this study was to investigate the current situation of lone working MR technologists in Western Australia (WA and any issue against the regulations. Materials and Methods: A questionnaire regarding the issues of occupational health of lone working MR technologists was developed based on relevant literature and distributed to WA MR technologists. Descriptive (percentage of frequency, mean and standard deviation and inferential statistics (Fisher's exact, Chi2 and t tests, and analysis of variance were used to analyze the responses of the yes/no, multiple choice and 5 pt scale questions from the returned questionnaires. Results: The questionnaire response rate was 65.6% (59/90. It was found that about half of the MR technologists (45.8%, 27/59 experienced lone working. The private magnetic resonance imaging (MRI centers were more likely to arrange technologists to work alone (p < 0.05. The respondents expressed positive views on issues of adequacy of training and arrangement, confidence and comfort towards lone working except immediate assistance for emergency (mean: 3. Factors of existence of MRI safety officer (p < 0.05 and nature of lone working (p < 0.001-0.05 affected MR technologists' concerns. Conclusions: Lone working of MR technologists is common in WA especially in private centers. The training and arrangement provided seem to be adequate for meeting the legal requirements. However, several areas should be improved by the workplaces including enhancement on immediate emergency assistance and concern relief.

  7. Ultraviolet resonance Raman studies of N-methylacetamide

    International Nuclear Information System (INIS)

    Mayne, L.C.; Ziegler, L.D.; Hudson, B.

    1985-01-01

    Resonance Raman spectra of the simple peptide model compound N-methylacetamide have been obtained with 218- and 200-nm laser radiation. A large enhancement of the amide II vibration is observed relative to that of Raman spectra obtained with visible radiation. Replacement of the amide hydrogen by deuterium results in a spectrum with most of its intensity in the amide II' mode. Excitation of this deuterated species with 200-nm radiation results in intensity in the overtones of this modes, a feature characteristic of resonance enhanced spectra. Isotopic substitution of the amide carbon and nitrogen by 13 C and 15 N results in a spectral shift to lower frequency by nearly the amount expected for a normal mode consisting primarily of the motion of the amide C and N atoms. These results, taken together, demonstrate that the geometry change of N-methylacetamide upon electronic excitation to the π-π/sup */ state is dominated by a change in the C-N bond length. Studies of mixtures of the deuterio and protio forms show that a significant normal mode rotation occurs on isotopic substitution such that the amide II' of the deuterio form becomes approximately equally distributed between the amide II and III vibrations of the protio form. The amide I and I' vibrations are very diffuse in aqueous solutions at the dilutions used. These bands become sharp in acetonitrile. This behavior is interpreted in terms of a range of frequencies for this vibration due to a distribution of hydrogen-bonded species. 23 references, 5 figures

  8. Resonant x-ray scattering in manganites: study of the orbital degree of freedom

    International Nuclear Information System (INIS)

    Ishihara, Sumio; Maekawa, Sadamichi

    2002-01-01

    The orbital degree of freedom of electrons and its interplay with spin, charge and lattice degrees of freedom are some of the central issues in colossal magnetoresistive manganites. The orbital degree of freedom has until recently remained hidden, since it does not couple directly to most experimental probes. Development of synchrotron light sources has changed the situation; by the resonant x-ray scattering (RXS) technique the orbital ordering has successfully been observed. In this article, we review progress in the recent studies of RXS in manganites. We start with a detailed review of the RXS experiments applied to the orbital-ordered manganites and other correlated electron systems. We derive the scattering cross section of RXS, where the tensor character of the atomic scattering factor (ASF) with respect to the x-ray polarization is stressed. Microscopic mechanisms of the anisotropic tensor character of the ASF are introduced and numerical results of the ASF and the scattering intensity are presented. The azimuthal angle scan is a unique experimental method to identify RXS from the orbital degree of freedom. A theory of the azimuthal angle and polarization dependence of the RXS intensity is presented. The theoretical results show good agreement with the experiments in manganites. Apart from the microscopic description of the ASF, a theoretical framework of RXS to relate directly to the 3d orbital is presented. The scattering cross section is represented by the correlation function of the pseudo-spin operator for the orbital degree of freedom. A theory is extended to the resonant inelastic x-ray scattering and methods to observe excitations of the orbital degree of freedom are proposed. (author)

  9. Comparative study of the active sites in zeolites by different probe molecules

    Directory of Open Access Journals (Sweden)

    ALINE AUROUX

    2005-03-01

    Full Text Available This review summarizes some of the recently published results concerning the acid sites in the zeolites ZSM-5 and Y studied by temperature-programmed desorption (TPD and adsorption calorimetry using different probe molecules NH3, CO, N2O and n-hexane. For the first time it has been shown that the acid sites in hydrated zeolites are accessible for n-hexane adsorption

  10. Study and realization of a multi channel analyzer for a per operator probe

    International Nuclear Information System (INIS)

    Yahyaoui, Sarra; Brini, Borhen

    2006-01-01

    The goal of this project is to study and produce a Multi Channel Analyzer (MCA) prototype based on a microcontroller PIC 16F877. This prototype comprises an amplification and a peak detection parts. The microcontroller provide the analog to numeric conversion and ensures the communication with PC. This MCA will be connected to a per operator probe containing a semiconductor detector CdTe. (author). 7 refs

  11. Memory Deficits in Schizophrenia: A Selective Review of Functional Magnetic Resonance Imaging (fMRI Studies

    Directory of Open Access Journals (Sweden)

    Adrienne C. Lahti

    2013-06-01

    Full Text Available Schizophrenia is a complex chronic mental illness that is characterized by positive, negative and cognitive symptoms. Cognitive deficits are most predictive of long-term outcomes, with abnormalities in memory being the most robust finding. The advent of functional magnetic resonance imaging (fMRI has allowed exploring neural correlates of memory deficits in vivo. In this article, we will give a selective review of fMRI studies probing brain regions and functional networks that are thought to be related to abnormal memory performance in two memory systems prominently affected in schizophrenia; working memory and episodic memory. We revisit the classic “hypofrontality” hypothesis of working memory deficits and explore evidence for frontotemporal dysconnectivity underlying episodic memory abnormalities. We conclude that fMRI studies of memory deficits in schizophrenia are far from universal. However, the current literature does suggest that alterations are not isolated to a few brain regions, but are characterized by abnormalities within large-scale brain networks.

  12. Photoemission study of Kr 3d→np autoionization resonances

    International Nuclear Information System (INIS)

    Lindle, D.W.; Heimann, P.A.; Ferrett, T.A.; Piancastelli, M.N.; Shirley, D.A.

    1987-01-01

    Resonant photoelectron spectra of Kr have been taken in the photon-energy ranges of the 3d/sub 5/2/→5p,6p and 3d/sub 3/2/→5p excitations. The spectra, which closely resemble normal Kr + 3d/sup -1/ Auger spectra, illustrate the importance of ''spectator'' Auger-like decay for inner-shell resonances, in which the initially excited electron does not participate in the core-hole deexcitation process, except to respond to the change in the atomic potential. Possible assignments for some of the spectator decay channels are discussed based on photoemission intensity measurements at the different 3d resonances. These assignments suggest that shake-up (e.g., 5p→6p) of the ''spectator'' electron during the decay process is not quite as important as previously suspected. The resonance profiles of some of the more intense satellites have been determined over the 3d→np resonances. Very small resonance effects also were observed in the partial cross section for 4p subshell ionization, which produced asymmetric Fano-type profiles. The 4p angular distribution, in contrast, exhibits a pronounced effect in the resonance energy range. The 4p results demonstrate that nonspectator autoionization also is present

  13. Liquid-Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Ch.; Michaelis, V.K.; Kroeker, S. [Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2 (Canada); Schuller, S. [CEA Valrho Marcoule, LDMC, SECM, DTCD, DEN, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    Double-resonance nuclear magnetic resonance (NMR) techniques are used in addition to single-resonance NMR experiments to probe the degree of mixing between network-forming cations Si and B, along with the modifier cations Cs{sup +} and Na{sup +} in two molybdenum-bearing model nuclear waste glasses. The double-resonance experiments involving {sup 29}Si in natural abundance are made possible by the implementation of a CPMG pulse-train during the acquisition period of the usual REDOR experiments. For the glass with lower Mo content, the NMR results show a high degree of Si-B mixing, as well as an homogeneous distribution of the cations within the borosilicate network, characteristic of a non-phase-separated glass. For the higher-Mo glass, a decrease of B-Si(Q{sup 4}) mixing is observed, indicating phase separation. {sup 23}Na and {sup 133}Cs NMR results show that although the Cs{sup +} cations, which do not seem to be influenced by the molybdenum content, are spread within the borate network, there is a clustering of the Na{sup +} cations, very likely around the molybdate units. The segregation of a Mo-rich region with Na{sup +} cations appears to shift the bulk borosilicate glass composition toward the metastable liquid liquid immiscibility region and induce additional phase separation. Although no crystallization is observed in the present case, this liquid liquid phase separation is likely to be the first stage of crystallization that can occur at higher Mo loadings or be driven by heat treatment. From this study emerges a consistent picture of the nature and extent of such phase separation phenomena in Mo-bearing glasses, and demonstrates the potential of double-resonance NMR methods for the investigation of phase separation in amorphous materials. (authors)

  14. Brain Magnetic Resonance Elastography on Healthy Volunteers: A Safety Study

    International Nuclear Information System (INIS)

    Guang-Rui Liu; Pei-Yi Gao; Yan Lin; Jing Xue; Xiao-Chun Wang; Bin-Bin Sui; Li Ma; Zhi-Nong Xi; Qin Bai; Hao Shen

    2009-01-01

    Background: Magnetic resonance elastography (MRE) is a recently developed imaging technique that can directly visualize and quantitatively measure tissue elasticity. Purpose: To evaluate the safety of brain MRE on human subjects. Material and Methods: The study included 20 healthy volunteers. MRE sequence scan (drive signal not applied to external force actuator) and MRE study were separately performed on each volunteer at an interval of more than 24 hours. The heart rate and blood pressure of each volunteer were measured immediately before and after MRE sequence scan and MRE study. Electroencephalography (EEG) was also performed within 2 hours after each scan. The volunteers were asked about their experience of the two scans. Randomized-block analysis of variance (ANOVA) was used to analyze the data of blood pressure and heart rate. Paired t test was used to analyze the data of the two EEG examinations. The volunteers were followed up 1 week after the examination. Results: All procedures were performed on each volunteer, and no one complained of obvious discomfort. No related adverse events were reported during follow-up. There was no statistically significant difference in heart rate or blood pressure. There was a statistically significant difference (P<0.05) in EEG results in the right temporoparietal region. Increased power was found in the theta, delta, alpha, and beta2 bands. No brain injury was detected by the EEG examinations. Conclusion: Based on the study results, brain MRE examinations are safe to perform on human subjects

  15. Study of plasma-material surface interaction using Langmuir probe technique during plasma treatment

    International Nuclear Information System (INIS)

    Saloum, S.; Akel, M.

    2009-06-01

    In this study, we tried to understand the plasma-surface interactions by using Langmuir probes. Two different types of plasmas were studied, the first is the electropositive plasma in Argon and the second is the electronegative plasma in Sulfur Hexafluoride. In the first type, the effects of Argon gas pressure, the injection of Helium in the remote zone and the substrate bias on the measurements of the Electron Energy Probability Function (EEPF) and on the plasma parameters (electron density (n e ), effective electron temperature (T e ff), plasma potential (V p ) and floating potential (V f )) have been investigated. The obtained EEPFs and plasma parameters have been used to control two remote plasma processes. The first is the remote Plasma Enhanced Chemical Vapor Deposition (PE-CVD) of thin films, on silicon wafers, from Hexamethyldisoloxane (HMDSO) precursor diluted in the remote Ar-He plasma. The second is the pure Argon remote plasma treatment of polymethylmethacrylate (PMMA) polymer surface. In the second type, the plasma diagnostics were performed in the remote zone as a function of SF 6 flow rate, where relative concentrations of fluorine atoms were measured using actinometry optical emission spectroscopy; electron density, electron temperature and plasma potential were determined using single cylindrical Langmuir probe, positive ion flux and negative ion fraction were determined using an planar probe. The silicon etching process in SF 6 plasma was studied. (author)

  16. Study of plasma-material surface interaction using langmuir probe technique during plasma treatment

    International Nuclear Information System (INIS)

    Saloum, S.; Akel, M.

    2012-01-01

    In this study, we tried to understand the plasma-surface interactions by using Langmuir probes. Two different types of plasmas were studied, the first is the electropositive plasma in Argon and the second is the electronegative plasma in Sulfur Hexafluoride. In the first type, the effects of Argon gas pressure, the injection of Helium in the remote zone and the substrate bias on the measurements of the Electron Energy Probability Function (EEPF) and on the plasma parameters (electron density (n e ), effective electron temperature (T e ff), plasma potential (V p ) and floating potential (V f )) have been investigated. The obtained EEPFs and plasma parameters have been used to control two remote plasma processes. The first is the remote Plasma Enhanced Chemical Vapor Deposition (PE-CVD) of thin films, on silicon wafers, from Hexamethyldisiloxane (HMDSO) precursor diluted in the remote Ar-He plasma. The second is the pure Argon remote plasma treatment of polymethylmethacrylate (PMMA) polymer surface. In the second type, the plasma diagnostics were performed in the remote zone as a function of SF 6 flow rate, where relative concentrations of fluorine atoms were measured using actinometry optical emission spectroscopy; electron density, electron temperature and plasma potential were determined using single cylindrical Langmuir probe, positive ion flux and negative ion fraction were determined using an planar probe. The silicon etching process in SF 6 plasma was studied. (author)

  17. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, O. A., E-mail: ageev@sfedu.ru [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation); Bykov, Al. V. [NT-MDT (Russian Federation); Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Tsukanova, O. G. [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation)

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is within the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.

  18. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution

    Science.gov (United States)

    Kolb, V.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1994-01-01

    We have prepared a [32P]-labled oligonucleotide probe carrying a free primary amine at its 3'-terminus. This probe is used to initiate polymerization of aziridine (ethyleneimine) in aqueous solution. The nature of the oligomeric products and the kinetics of their formation are then monitored by gel electrophoresis. Our results are generally consistent with those obtained using conventional techniques. We have also investigated the effect of polyanionic templates on the rate of oligomerization of aziridine. We find that water-soluble polyanions generally accelerate the polymerization. The sodium salt of polymethacrylic acid is the most effective of the templates that we studied. The methods introduced in this paper should be applicable to a variety of polymerization reactions in aqueous solution. They should greatly simplify the screening of potentially prebiotic polymerization reactions.

  19. Studying the sensitivity of monotop probes to compressed supersymmetric scenarios at the LHC

    International Nuclear Information System (INIS)

    Fuks, Benjamin; Richardson, Peter; Wilcock, Alexandra

    2015-01-01

    We investigate the sensitivity of the Large Hadron Collider to supersymmetric setups using monotop probes in which the signal is a single top quark produced in association with missing transverse energy. Our prospective study relies on Monte Carlo simulations of 300 fb -1 of proton-proton collisions at a centre-of-mass energy of 14 TeV and considers both leptonic and hadronic monotop decays. We present analysis strategies sensitive to regions of the supersymmetric parameter space which feature small superparticle mass splittings and illustrate their strengths in the context of a particular set of benchmark scenarios. Finally, we compare the regions of parameter space expected to be accessible with monotops probes during the next run of the LHC to the reach of more traditional search strategies employed by the ATLAS and CMS collaborations, where available. (orig.)

  20. Studying the sensitivity of monotop probes to compressed supersymmetric scenarios at the LHC

    CERN Document Server

    Fuks, Benjamin; Wilcock, Alexandra

    2015-01-01

    We investigate the sensitivity of the Large Hadron Collider to supersymmetric setups using monotop probes in which the signal is a single top quark produced in association with missing transverse energy. Our prospective study relies on Monte Carlo simulations of 300 invfb of proton- proton collisions at a centre-of-mass energy of 14 TeV and considers both leptonic and hadronic monotop decays. We present analysis strategies sensitive to regions of the supersymmetric parameter space which feature small superparticle mass splittings and illustrate their strengths in the context of a particular set of benchmark scenarios. Finally, we compare the regions of parameter space expected to be accessible with monotops probes during the next run of the LHC to the reach of more traditional search strategies employed by the ATLAS and CMS collaborations, where available.

  1. Redox Probing Study of the Potential Dependence of Charge Transport Through Li2O2

    DEFF Research Database (Denmark)

    Knudsen, Kristian Bastholm; Luntz, Alan C.; Jensen, Søren Højgaard

    2015-01-01

    -of-the-art Liion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li2O2, in the Li−O2 battery using outer-sphere redox shuttles. The change in heterogeneous......In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li−O2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state...... electron transfer exchange rate as a function of the potential and the Li2O2 layer thickness (∼depth-of-discharge) was determined using electrochemical impedance spectroscopy. The attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing...

  2. Multiple sclerosis and anterograde axonal degeneration study by magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Pardo, P.; Capdevila Cirera, A.; Sanz Marin, P.M.; Gili Planas, J.

    1993-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system that affects specifically the myelin. Its diagnosis by imaging techniques is, since the development of magnetic resonance (MR), relatively simple, and its occasional association with anterograde axonal degeneration (WD) has been reported. In both disorders, there is a lengthening of the T1 and T2 relaxation times. In the present report, 76 patients with MS with less than 4 plaques in the typical periventricular position were studied retrospectively, resulting in a rate of association with anterograde axonal degeneration of 8%. We consider that in spite of their same behavior in MR,MS and WD, with moreover represent completely different pathologies, are perfectly differential by MR. The S-E images with longer repetition and echo times in the axial and coronal planes have proved to be those most sensitive for this differentiation. Given that MS is specific pathology of then myelin, the axonal damages in delayed until several plaques adjacent to an axon affect it. We consider that this, added to the restriction of our study group (less than 4 plaques), is the cause of the pow percentage of the MS-WD association in our study. (Author)

  3. Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies.

    Science.gov (United States)

    Smolensky Koganov, Elena; Leitus, Gregory; Rozin, Rinat; Weiner, Lev; Friedman, Noga; Sheves, Mordechai

    2017-05-04

    Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn 2+ and Ca 2+ , to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn 2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn 2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn 2+ cations to xR is due to the formation of Mn 2+ clusters. Our data demonstrate that Ca 2+ cations bind to DI-xR with a lower affinity than Mn 2+ , supporting the assumption that binding of Mn 2+ occurs through cluster formation, because Ca 2+ cations cannot form clusters in contrast to Mn 2+ .

  4. Friction of polymer hydrogels studied by resonance shear measurements.

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Tanabe, Tadao; Furukawa, Hidemitsu; Kurihara, Kazue

    2015-08-21

    The friction between an elastomer and a hard surface typically has two contributors, i.e., the interfacial and deformation components. The friction of viscoelastic hydrogel materials has been extensively studied between planar gel and planar substrate surfaces from the viewpoint of an interfacial interaction. However, the geometry of the contact in practical applications is much more complex. The contribution of geometric and elastic deformation terms of a gel to friction could not be neglected. In this study, we used resonance shear measurements (RSMs) for characterizing the shear response of a glass sphere on a flat polymer hydrogel, a double network (DN) gel of 2-acrylamide-2-methylpropanesulfonic acid and N,N-dimethylacrylamide. The contact mechanics conformed to the Johnson-Kendall-Roberts theory. The observed resonance curves exhibited rather sharp peaks when the DN gel and the silica sphere were brought into contact, and their intensity and frequency increased with the increase in the normal load. We proposed a simple physical model of the shearing system, and the elastic (k2) and viscous (b2) parameters of the interface between a silica sphere and a flat DN gel were obtained. The friction force from elastic deformation and viscous dissipation terms was then estimated using the obtained parameters. It was revealed that the elastic parameter (k2) increased up to 1780 N m(-1) at a normal load of 524 mN, while the viscous parameter (b2) was zero or quite low (friction force between a flat DN gel and a silica sphere in air was dominated by the elastic term due to the local deformation by contact with the silica sphere. By adding water, the elastic parameter (k2) remained the same, while the viscous parameter (b2) slightly increased. However, the viscous term fviscous was still much smaller than felastic. To the best of our knowledge, this study was the first quantitative estimation of the contribution of the elastic deformation term to the friction in the case

  5. Mathematical study of probe arrangement and nanoparticle injection effects on heat transfer during cryosurgery.

    Science.gov (United States)

    Mirkhalili, Seyyed Mostafa; Ramazani S A, Ahmad; Nazemidashtarjandi, Saeed

    2015-11-01

    Blood vessels, especially large vessels have a greater thermal effect on freezing tissue during cryosurgery. Vascular networks act as heat sources in tissue, and cause failure in cryosurgery and reappearance of cancer. The aim of this study is to numerically simulate the effect of probe location and multiprobe on heat transfer distribution. Furthermore, the effect of nanoparticles injection is studied. It is shown that the small probes location near large blood vessels could help to reduce the necessary time for tissue freezing. Nanoparticles injection shows that the thermal effect of blood vessel in tissue is improved. Using Au, Ag and diamond nanoparticles have the most growth of ice ball during cryosurgery. However, polytetrafluoroethylene (PTFE) nanoparticle can be used to protect normal tissue around tumor cell due to its influence on reducing heat transfer in tissue. Introduction of Au, Ag and diamond nanoparticles combined with multicryoprobe in this model causes reduction of tissue average temperature about 50% compared to the one probe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Studies on the Electrical Characteristics of a DC Glow Discharge by Using Langmuir Probe

    International Nuclear Information System (INIS)

    Safaai, S. S.; Yap, S. L.; Wong, C. S.; Muniandy, S. V.; Smith, P. W.

    2010-01-01

    Electrical characteristics of a DC glow discharge are studied with the aim of determining the suitable parameters for stable operation of the dusty plasma system. The presence of dust particles in plasma significantly alters the charged particle equilibrium in the plasma and leads to various phenomena. Argon plasma produced by DC glow discharge is investigated with a further goal of studying dusty plasma phenomena. The discharge system has two disc-shaped parallel plate electrodes. The electrodes are enclosed in a large cylindrical stainless steel chamber filled with argon gas. Two important physical parameters affecting the condition of the discharge are the gas pressure and the inter-electrode distance. A single Langmuir probe based on the Keithley source meter is used to determine the electron temperature of the positive column. A custom designed probe is employed to determine the potential distribution between the electrodes during the discharge. The I-V characteristic curve and the Langmuir probe measurement are then used to determine the electron energy distribution of the glow discharge plasma.

  7. Characterisation of target plasma required for REB-plasma interaction studies using cylindrical Langmuir probes

    International Nuclear Information System (INIS)

    Roychowdhury, P.; Paithankar, A.S.; Iyyengar, S.K.; Rohatgi, V.K.

    1987-01-01

    The target plasma required for relativistic electron beam (REB)-plasma interaction studies has been generated by coaxial plasma gun. The measurement of electron density and temperature has been carried out using cylindrical Langmuir probes. Probes both oriented parallel and transverse to the flow have been used. The spatial as well as temporal variation of electron density and temperature have been studied. The typical electron density and temperature measured by probe were in the range of 9.0-3.5 x 10 13 cm -3 and 5-7 eV respectively. The typical e-folding decay time of density was 6.2 μs, while no appreciable change in electron temperature was observed until 10 μs after the peak density. The density decays by about 50% at distance of 30 cm from the gun. The plasma flow velocity has been measured by the time of flight technique and was found to be 2.5 x 10 6 cm s -1 . The plasma radius measured by dosimeter film, at distance of 30 cm from the gun was 3 cm. (author)

  8. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary; Hussain, Muhammad Mustafa; Emwas, Abdul-Hamid M.; Agarwal, Praveen; Archer, Lynden A.

    2010-01-01

    using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core

  9. Study on 2D arbitrary geometry coupling resonance method

    International Nuclear Information System (INIS)

    He Lei; Wu Hongchun; Cao Liangzhi

    2014-01-01

    The paper firstly proposes a coupling resonance method in which subgroup method is employed in the serried peak energy region, and wavelet expansion method is employed in single peak energy region. The original subgroup model and wavelet expansion model are improved and coupled through the calculation of scattering source from subgroup to wavelet expansion, so that the self-shielding cross section in the whole energy region can be calculated accurately. To verify these theories and to prove the improvements, a PWR cell benchmark problem is calculated. It is demonstrated that, compared with other traditional multi-group resonance methods and continuous energy resonance method, this coupling resonance method has the ability to accurately calculate the whole energy region's self-shielding cross section while Keeping enough efficiency and finally has an ability to offer the accurate self-shielding parameters for latter transport, calculation. (authors)

  10. Fourier Transform Infrared and Resonance Raman Spectroscopic Studies of Bacteriorhodopsin.

    Science.gov (United States)

    Earnest, Thomas Nixon

    Fourier transform infrared and resonance Raman spectroscopy were used to investigate the structure and function of the light-activated, transmembrane proton pump, bacteriorhodopsin, from the purple membrane of Halobacterium halobium. Bacteriorhodopsin (bR) is a 27,000 dalton integral membrane protein consisting of 248 amino acids with a retinylidene chromophore. Absorption of a photon leads to the translocation of one or two protons from the inside of the cell to the outside. Resonance Raman spectroscopy allows for the study of the configuration of retinal in bR and its photointermediates by the selective enhancement of vibrational modes of the chromophore. This technique was used to determine that the chromophore is attached to lysine-216 in both the bR _{570} and the M _{412} intermediates. In bR with tyrosine-64 selectively nitrated or aminated, the chromophore appears to have the same configuration in that bR _{570} (all- trans) and M _{412} (13- cis) states as it does in unmodified bR. Polarized Fourier transform infrared spectroscopy (FTIR) permits the study of the direction of transition dipole moments arising from molecular vibrations of the protein and the retinal chromophore. The orientation of alpha helical and beta sheet components was determined for bR with the average helical tilt found to lie mostly parallel to the membrane normal. The beta sheet structures also exhibit an IR linear dichroism for the amide I and amide II bands which suggest that the peptide backbone is mostly perpendicular to the membrane plane although it is difficult to determine whether the bands originate from sheet or turn components. The orientation of secondary structure components of the C-1 (residues 72-248) and C-2 (residues 1-71) fragments were also investigated to determine the structure of these putative membrane protein folding intermediates. Polarized, low temperature FTIR -difference spectroscopy was then used to investigate the structure of bR as it undergoes

  11. Regional South Australia Health (RESONATE) survey: study protocol

    Science.gov (United States)

    Jones, Martin; Gillam, Marianne; May, Esther

    2018-01-01

    Introduction Access to quality healthcare services is considered a moral right. However, for people living in regional locations, timely access to the services that they need may not always be possible because of structural and attitudinal barriers. This suggests that people living in regional areas may have unmet healthcare needs. The aim of this research will be to examine the healthcare needs, expectations and experiences of regional South Australians. Methods and analysis The Regional South Australia Health (RESONATE) survey is a cross-sectional study of adult health consumers living in any private or non-private dwelling, in any regional, rural, remote or very remote area of South Australia and with an understanding of written English. Data will be collected using a 45-item, multidimensional, self-administered instrument, designed to measure healthcare need, barriers to healthcare access and health service utilisation, attitudes, experiences and satisfaction. The instrument has demonstrated acceptable psychometric properties, including good content validity and internal reliability, good test–retest reliability and a high level of acceptability. The survey will be administered online and in hard-copy, with at least 1832 survey participants to be recruited over a 12-month period, using a comprehensive, multimodal recruitment campaign. Ethics and dissemination The study has been reviewed and approved by the Human Research Ethics Committee of the University of South Australia. The results will be actively disseminated through peer-reviewed journals, conference presentations, social media, broadcast media, print media, the internet and various community/stakeholder engagement activities. PMID:29654014

  12. Magnetic Resonance Imaging Study Using True versus Sham Acupuncture

    Directory of Open Access Journals (Sweden)

    Chunxiao Wu

    2014-01-01

    Full Text Available Functional magnetic resonance imaging (fMRI has been shown to detect the specificity of acupuncture points, as proved by numerous studies. In this study, resting-state fMRI was used to observe brain areas activated by acupuncture at the Taichong (LR3 acupoint. A total of 15 healthy subjects received brain resting-state fMRI before acupuncture and after sham and true acupuncture, respectively, at LR3. Image data processing was performed using Data Processing Assistant for Resting-State fMRI and REST software. The combination of amplitude of low-frequency fluctuation (ALFF and regional homogeneity (ReHo was used to analyze the changes in brain function during sham and true acupuncture. Acupuncture at LR3 can specifically activate or deactivate brain areas related to vision, movement, sensation, emotion, and analgesia. The specific alterations in the anterior cingulate gyrus, thalamus, and cerebellar posterior lobe have a crucial effect and provide a valuable reference. Sham acupuncture has a certain effect on psychological processes and does not affect brain areas related to function.

  13. Electron spin resonance study of radicals in irradiated polyethylene

    International Nuclear Information System (INIS)

    Fujimura, Takashi

    1979-02-01

    In order to elucidate radiation effect in polyethylene, the nature and behavior of radicals produced in polyethylene and the model compound of polyethylene irradiated at 77 0 K were studied by using electron spin resonance. The structure of radical pairs, which are composed of two radicals produced very closely each other, was investigated in drawn polyethylene and the single crystal of n-eicosane. The radical pairs of intrachain type and interchain type were found in polyethylene and n-eicosane respectively. It was suggested that these two types of radical pairs are the precursors of double bonds and crosslinks respectively. The thermal decay reactions of radicals themselves produced in irradiated polyethylene were investigated. It was made clear that the short range distances between two radicals play an important role in the decay reaction of alkyl radicals at low temperatures. The trapping regions of radicals were studied and it was clarified that allyl radicals, which are produced by the reaction of alkyl radicals with double bonds, are trapped both in the crystalline and non-crystalline regions. (author)

  14. Study of a possible S=+1 dynamically generated baryonic resonance

    International Nuclear Information System (INIS)

    Sarkar, S.; Oset, E.; Vaca, M.J.V.

    2005-01-01

    Starting from the lowest-order chiral Lagrangian for the interaction of the baryon decuplet with the octet of pseudoscalar mesons we find an attractive interaction in the ΔK channel with L=0 and I=1, while the interaction is repulsive for I=2. The attractive interaction leads to a pole in the second Riemann sheet of the complex plane and manifests itself in a large strength of the K scattering amplitude close to the ΔK threshold, which is not the case for I=2. However, we also make a study of uncertainties in the model and conclude that the existence of this pole depends sensitively upon the input used and can disappear within reasonable variations of the input parameters. We take advantage to study the stability of the other poles obtained for the 3/2 - dynamically generated resonances of the model and conclude that they are stable and not contingent to reasonable changes in the input of the theory

  15. The amygdala in schizophrenia: a trimodal magnetic resonance imaging study.

    Science.gov (United States)

    Kalus, Peter; Slotboom, Johannes; Gallinat, Jürgen; Wiest, Roland; Ozdoba, Christoph; Federspiel, Andrea; Strik, Werner K; Buri, Caroline; Schroth, Gerhard; Kiefer, Claus

    2005-03-03

    In schizophrenic psychoses, structural and functional alterations of the amygdala have been demonstrated by several neuroimaging studies. However, postmortem examinations on the brains of schizophrenics did not confirm the volume changes reported by volumetric magnetic resonance imaging (MRI) studies. In order to address these contradictory findings and to further elucidate the possibly underlying pathophysiological process of the amygdala, we employed a trimodal MRI design including high-resolution volumetry, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) in a sample of 14 schizophrenic patients and 14 matched controls. Three-dimensional MRI volumetry revealed a significant reduction of amygdala raw volumes in the patient group, while amygdala volumes normalized for intracranial volume did not differ between the two groups. The regional diffusional anisotropy of the amygdala, expressed as inter-voxel coherence (COH), showed a marked and significant reduction in schizophrenics. Assessment of qMTI parameters yielded significant group differences for the T2 time of the bound proton pool and the T1 time of the free proton pool, while the semi-quantitative magnetization transfer ratio (MTR) did not differ between the groups. The application of multimodal MRI protocols is diagnostically relevant for the differentiation between schizophrenic patients and controls and provides a new strategy for the detection and characterization of subtle structural alterations in defined regions of the living brain.

  16. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  17. Atom probe, AFM and STM study on vacuum fired stainless steel

    International Nuclear Information System (INIS)

    Stupnik, A.; Frank, P.; Leisch, M.

    2008-01-01

    Full text: Stainless steel is one of the most commonly used structural materials for vacuum equipment. An efficient method to reduce the outgassing rate from stainless steel is a high temperature bakeout in vacuum (vacuum firing). This procedure reduces significantly the amount of dissolved hydrogen in the bulk. For the outgassing process the recombination rate of hydrogen atoms to the molecules plays the determining role and recombination is strongly related to the surface structure and composition. To get more detailed information about the surface morphology and composition AFM, STM and atom probe studies were carried out. Experiments on AISI 304L stainless steel samples show that the surface reconstructs completely during vacuum firing and large atomically flat terraces bounded by bunched steps and facets are formed. The large flat terraces can be assigned to (111) planes. The bunched steps and facets are corresponding in orientation almost to (110) planes and (100) planes. Surface inspection after vacuum firing by Auger electron spectroscopy (AES) gives reason for a composition change indicated by a reduction of the chromium signal in relation to the iron and nickel signal. Since the information depth of AES covers several atomic layers not only the top atomic layer of the sample surface is probed. For this reason 3D atom probe was used as well suited tool to investigate the segregation behavior of this alloy with the goal to examine the change in local chemical composition due to the high temperature treatment. As a result of vacuum firing the atom probe experiments show a significant enrichment of nickel at the top surface layer. In the second atomic layer chromium enrichment is detected. After vacuum firing the average composition below the second atomic layer shows certain chromium depletion up to 2 nm in depth. The observed changes in surface chemistry influence recombination and desorption probability from the surface and may contribute to the present

  18. The Evaluation of Bioelectrical Activity of Pelvic Floor Muscles Depending on Probe Location: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Tomasz Halski

    2013-01-01

    Full Text Available Objectives. The main objective was to determine how the depth of probe placement affects functional and resting bioelectrical activity of the PFM and whether the recorded signal might be dependent on the direction in which the probe is rotated. Participants. The study comprised of healthy, nulliparous women between the ages of 21 and 25. Outcome Measures. Bioelectric activity of the PFM was recorded from four locations of the vagina by surface EMG and vaginal probe. Results. There were no statistically significant differences between the results during functional sEMG activity. During resting sEMG activity, the highest bioelectrical activity of the PFM was observed in the L1 and the lowest in the L4 and a statistically significant difference between the highest and the lowest results of resting sEMG activity was observed (P=0.0043. Conclusion. Different electrodes placement during functional contraction of PFM does not affect the obtained results in sEMG evaluation. In order to diagnose the highest resting activity of PFM the recording plates should be placed toward the anterior vaginal wall and distally from the introitus. However, all of the PFM have similar bioelectrical activity and it seems that these muscles could be treated as a single muscle.

  19. Study of sapphire probe tip wear when scanning on different materials

    International Nuclear Information System (INIS)

    Nicolet, Anaïs; Küng, Alain; Meli, Felix

    2012-01-01

    The accuracy of today's coordinate measuring machines (CMM) has reached a level at which exact knowledge of each component is required. The role of the probe tip is particularly crucial as it is in contact with the sample surface. Understanding how the probe tip wears off will help to narrow the measurement errors. In this work, wear of a sapphire sphere was studied for different scanning conditions and with different sample materials. Wear depth on the probe was investigated using an automated process in situ on the METAS micro-CMM and completed by measurements with an atomic force microscope. We often found a linear dependence between the wear depth and the scan length ranging from 0.5 to 9 nm m −1 , due to variations in scan speed, contact force or sample material. In the case of steel, the wear rate is proportional to the scan speed, while for aluminum several processes seem to interact. A large amount of debris was visible after the tests. Except for aluminum, wear was visible only on the sphere and not on the sample. Sapphire/steel is the worst combination in terms of wear, whereas the combination sapphire/ceramic exhibits almost no wear. (paper)

  20. Temperature sensitivity study of eddy current and digital gauge probes for nuclear fuel rod oxide measurement

    Science.gov (United States)

    Beck, Faith R.; Lind, R. Paul; Smith, James A.

    2018-04-01

    Novel fuels are part of the nationwide effort to reduce the enrichment of Uranium for energy production. Performance of such fuels is determined by irradiating their surfaces. To test irradiated samples, the instrumentation must operate remotely. The plate checker used in this experiment at Idaho National Lab (INL) performs non-destructive testing on fuel rod and plate geometries with two different types of sensors: eddy current and digital thickness gauges. The sensors measure oxide growth and total sample thickness on research fuels, respectively. Sensor measurement accuracy is crucial because even 10 microns of error is significant when determining the viability of an experimental fuel. One parameter known to affect the eddy current and thickness gauge sensors is temperature. Since both sensor accuracies depend on the ambient temperature of the system, the plate checker has been characterized for these sensitivities. The manufacturer of the digital gauge probes has noted a rather large coefficient of thermal expansion for their linear scale. It should also be noted that the accuracy of the digital gauge probes are specified at 20°C, which is approximately 7°C cooler than the average hot-cell temperature. In this work, the effect of temperature on the eddy current and digital gauge probes is studied, and thickness measurements are given as empirical functions of temperature.

  1. Novel nuclear magnetic resonance techniques for studying biological molecules

    International Nuclear Information System (INIS)

    Laws, David D.

    2000-01-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (φ/ψ) dihedral angles by comparing experimentally determined 13 C a , chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  2. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  3. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    International Nuclear Information System (INIS)

    Tsay, Fundow; Kim, S.S.; Liang, R.H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H 2 O, NH 3 , CH 4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed

  4. Studies of the giant resonances in heavy nuclei

    International Nuclear Information System (INIS)

    Cataldi, M.I.C.

    1986-01-01

    Experimental measurements of the eletrodisintegration cross section in 181 Ta, 208 Pb and 209 Bi nuclei are made in the Linear Accelerator of the IFUSP-Brazil. The cross section is obtained by the direct counting of the emitted neutrons, in an electron excitation energy range between 8 to 22 MeV. The experimental data are analysed throught the virtual photon method, with the aim of obtaining the isoscalar and isovectorial electric quadrupole giant resonance (E2GR) intensities, as well as the magnetic dipole intensity. For each studied nucleus the results obtained for the E2GR, isoscalar and isovectorial, are compared with the photodisintegration cross section measured by the Saclay and Livermore laboratories. From this comparison, it is observed that the photodisintegration cross sections are compatibles with the existence of an isovector E2GR, located between 120 to 130 A -1/3 Mev and which exhaust around 100% of the Energy-Weighted Sum rules (EWSR). (L.C.) [pt

  5. Proton nuclear magnetic resonance studies on brain edema

    International Nuclear Information System (INIS)

    Naruse, S.; Horikawa, Y.; Tanaka, C.; Hirakawa, K.; Nishikawa, H.; Yoshizaki, K.

    1982-01-01

    The water in normal and edematous brain tissues of rats was studied by the pulse nuclear magnetic resonance (NMR) technique, measuring the longitudinal relaxation time (T1) and the transverse relaxation time (T2). In the normal brain, T1 and T2 were single components, both shorter than in pure water. Prolongation and separation of T2 into two components, one fast and one slow, were the characteristic findings in brain edema induced by both cold injury and triethyl tin (TET), although some differences between the two types of edema existed in the content of the lesion and in the degree of changes in T1 and T2 values. Quantitative analysis of T1 and T2 values in their time course relating to water content demonstrated that prolongation of T1 referred to the volume of increased water in tissues examined, and that two phases of T2 reflected the distribution and the content of the edema fluid. From the analysis of the slow component of T2 versus water content during edema formation, it was demonstrated that the increase in edema fluid was steady, and its content was constant during formation of TET-induced edema. On the contrary, during the formation of cold-injury edema, water-rich edema fluid increased during the initial few hours, and protein-rich edema fluid increased thereafter. It was concluded that proton NMR relaxation time measurements may provide new understanding in the field of brain edema research

  6. [Diagnosis. Radiological study. Ultrasound, computed tomography and magnetic resonance imaging].

    Science.gov (United States)

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente

    2014-01-01

    Because of its low cost, availability in primary care and ease of interpretation, simple X-ray should be the first-line imaging technique used by family physicians for the diagnosis and/or follow-up of patients with osteoarthritis. Nevertheless, this technique should only be used if there are sound indications and if the results will influence decision-making. Despite the increase of indications in patients with rheumatological disease, the role of ultrasound in patients with osteoarthritis continues to be limited. Computed tomography (CT) is of some -although limited- use in osteoarthritis, especially in the study of complex joints (such as the sacroiliac joint and facet joints). Magnetic resonance imaging (MRI) has represented a major advance in the evaluation of joint cartilage and subchondral bone in patients with osteoarthritis but, because of its high cost and diagnostic-prognostic yield, this technique should only be used in highly selected patients. The indications for ultrasound, CT and MRI in patients with osteoarthritis continue to be limited in primary care and often coincide with situations in which the patient may require hospital referral. Patient safety should be bourne in mind. Patients should be protected from excessive ionizing radiation due to unnecessary repeat X-rays or inadequate views or to requests for tests such as CT, when not indicated. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  7. (1) Majorana fermions in pinned vortices; (2) Manipulating and probing Majorana fermions using superconducting circuits; and (3) Controlling a nanowire spin-orbit qubit via electric-dipole spin resonance

    Science.gov (United States)

    Nori, Franco

    2014-03-01

    We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.

  8. Ferromagnetic resonance study of Fe{sub 50}Ag{sub 50} granular film

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, G. [Dpto. Electricicidad y Electronica, Universidad del Pais Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao (Spain)]. E-mail: websamug@lg.ehu.es; Fdez-Gubieda, M.L. [Dpto. Electricicidad y Electronica, Universidad del Pais Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao (Spain); Siruguri, V. [Dpto. Electricicidad y Electronica, Universidad del Pais Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao (Spain); UGC-DAE Consortium for Scientific Research, R-5 Shed, BARC Campus, Mumbai 400085 (India); Lezama, L. [Dpto. Quimica Inorganica (UPV/EHU), Apdo. 644, 48080, Bilbao (Spain); Orue, I. [Servicios Generales de Investigacion (SGIKER), Vicerrectorado de Investigacion (UPV/EHU) (Spain)

    2007-09-15

    Fe{sub 50}Ag{sub 50} granular film, produced by the pulsed laser deposition technique, has been studied using ferromagnetic resonance (FMR) at temperatures ranging from 4 to 300K. Three different resonance modes are well observed in the whole temperature range. We have also studied the angular evolution of the resonance peaks at three different temperatures T=150, 250, 300K. The thermal and the angular evolution of the three resonance fields has been interpreted on the basis of the existence of different magnetic coupling between the Fe nanoparticles and a weakly magnetized interface.

  9. A study of artificial satellite resonance orbits due to lunisolar perturbations

    International Nuclear Information System (INIS)

    Hughes, S.

    1978-01-01

    A study of artificial satellite resonance orbits due to lunisolar perturbations is given. Particular emphasis is placed on the following aspects: the classification of resonance orbits according to their commensurability condition; the form of the commensurability condition when expressed in terms of the orbital elements of a satellite; the predominant resonant terms for each commensurability condition; and criteria which determine the existence or non-existence of a particular commensurability condition. (author)

  10. Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria.

    Science.gov (United States)

    Gulledge, J; Ahmad, A; Steudler, P A; Pomerantz, W J; Cavanaugh, C M

    2001-10-01

    Methanotrophic bacteria play a major role in the global carbon cycle, degrade xenobiotic pollutants, and have the potential for a variety of biotechnological applications. To facilitate ecological studies of these important organisms, we developed a suite of oligonucleotide probes for quantitative analysis of methanotroph-specific 16S rRNA from environmental samples. Two probes target methanotrophs in the family Methylocystaceae (type II methanotrophs) as a group. No oligonucleotide signatures that distinguish between the two genera in this family, Methylocystis and Methylosinus, were identified. Two other probes target, as a single group, a majority of the known methanotrophs belonging to the family Methylococcaceae (type I/X methanotrophs). The remaining probes target members of individual genera of the Methylococcaceae, including Methylobacter, Methylomonas, Methylomicrobium, Methylococcus, and Methylocaldum. One of the family-level probes also covers all methanotrophic endosymbionts of marine mollusks for which 16S rRNA sequences have been published. The two known species of the newly described genus Methylosarcina gen. nov. are covered by a probe that otherwise targets only members of the closely related genus Methylomicrobium. None of the probes covers strains of the newly proposed genera Methylocella and "Methylothermus," which are polyphyletic with respect to the recognized methanotrophic families. Empirically determined midpoint dissociation temperatures were 49 to 57 degrees C for all probes. In dot blot screening against RNA from positive- and negative-control strains, the probes were specific to their intended targets. The broad coverage and high degree of specificity of this new suite of probes will provide more detailed, quantitative information about the community structure of methanotrophs in environmental samples than was previously available.

  11. Trapping and Probing Antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan [UC Berkeley and LBNL

    2013-03-27

    Precision spectroscopy of antihydrogen is a promising path to sensitive tests of CPT symmetry. The most direct route to achieve this goal is to create and probe antihydrogen in a magnetic minimum trap. Antihydrogen has been synthesized and trapped for 1000s at CERN by the ALPHA Collaboration. Some of the challenges associated with achieving these milestones will be discussed, including mixing cryogenic positron and antiproton plasmas to synthesize antihydrogen with kinetic energy less than the trap potential of .5K. Recent experiments in which hyperfine transitions were resonantly induced with microwaves will be presented. The opportunity for gravitational measurements in traps based on detailed studies of antihydrogen dynamics will be described. The talk will conclude with a discussion future antihydrogen research that will use a new experimental apparatus, ALPHA-I.

  12. Some double resonance and multiple quantum NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of /sup 13/C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D/sub 2/O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, ..delta..sigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO/sub 3/.D/sub 2/O, ..cap alpha..,..beta.. d-2 HMB and ..cap alpha..,..beta..,..gamma.. d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules ..delta..m = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made.

  13. Unicuspid aortic valve disease: a magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Debl, K.; Buchner, S.; Heinicke, N.; Riegger, G.; Luchner, A.; Djavidani, B.; Poschenrieder, F.; Feuerbach, S.; Schmid, C.; Kobuch, R.

    2008-01-01

    Purpose: congenitally malformed aortic valves are a common finding in adults with aortic valve disease. Most of these patients have bicuspid aortic valve disease. Unicuspid aortic valve disease (UAV) is rare. The aim of our study was to describe valve morphology and the dimensions of the proximal aorta in a cohort of 12 patients with UAV in comparison to tricuspid aortic valve disease (TAV) using magnetic resonance imaging (MRI). Materials and methods/results: MRI studies were performed on a 1.5 T scanner in a total of 288 consecutive patients with aortic valve disease. 12 aortic valves were retrospectively classified as UAV. Annulus areas and dimensions of the thoracic aorta were retrospectively compared to a cohort of 103 patients with TAV. In UAV, valve morphology was unicuspid unicommissural with a posterior commissure in all patients. Mean annulus areas and mean diameters of the ascending aorta were significantly greater in UAV compared to TAV (12.6 ± 4.7 cm 2 vs. 8.7 ± 2.3 cm 2 , p < 0.01 and 4.6 ± 0.7 cm vs. 3.6 ± 0.5 cm, p < 0.0001, respectively), while no differences were observed in the mean diameters of the aortic arch (2.3 ± 0.6 cm vs. 2.3 ± 0.4 cm, p = 0.69). The diameters of the descending aorta were slightly smaller in UAV compared to TAV (2.2 ± 0.5 cm vs. 2.6 ± 0.3 cm, p < 0.05). (orig.)

  14. Unicuspid aortic valve disease: a magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Debl, K.; Buchner, S.; Heinicke, N.; Riegger, G.; Luchner, A. [Klinik und Poliklinik fuer Innere Medizin II, Universitaetsklinikum Regensburg (Germany); Djavidani, B.; Poschenrieder, F.; Feuerbach, S. [Inst. fuer Roentgendiagnostik, Universitaetsklinikum Regensburg (Germany); Schmid, C.; Kobuch, R. [Klinik und Poliklinik fuer Herz-, Thorax- und herznahe Gefaesschirurgie, Universitaetsklinikum Regensburg (Germany)

    2008-11-15

    Purpose: congenitally malformed aortic valves are a common finding in adults with aortic valve disease. Most of these patients have bicuspid aortic valve disease. Unicuspid aortic valve disease (UAV) is rare. The aim of our study was to describe valve morphology and the dimensions of the proximal aorta in a cohort of 12 patients with UAV in comparison to tricuspid aortic valve disease (TAV) using magnetic resonance imaging (MRI). Materials and methods/results: MRI studies were performed on a 1.5 T scanner in a total of 288 consecutive patients with aortic valve disease. 12 aortic valves were retrospectively classified as UAV. Annulus areas and dimensions of the thoracic aorta were retrospectively compared to a cohort of 103 patients with TAV. In UAV, valve morphology was unicuspid unicommissural with a posterior commissure in all patients. Mean annulus areas and mean diameters of the ascending aorta were significantly greater in UAV compared to TAV (12.6 {+-} 4.7 cm{sup 2} vs. 8.7 {+-} 2.3 cm{sup 2}, p < 0.01 and 4.6 {+-} 0.7 cm vs. 3.6 {+-} 0.5 cm, p < 0.0001, respectively), while no differences were observed in the mean diameters of the aortic arch (2.3 {+-} 0.6 cm vs. 2.3 {+-} 0.4 cm, p = 0.69). The diameters of the descending aorta were slightly smaller in UAV compared to TAV (2.2 {+-} 0.5 cm vs. 2.6 {+-} 0.3 cm, p < 0.05). (orig.)

  15. Studies on motor neuron disease with cranial magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Yoshiyuki; Takahashi, Mitsuo; Nakamura, Yusaku; Kitaguchi, Masataka; Yagi, Yuji (Kinki Univ., Osaka (Japan). School of Medicine)

    1992-05-01

    The present study was performed to examine the pyramidal tracts of the brain in both 51 normal subjects (21 male and 30 female subjects; mean age of 43.5[+-]16.1 years) and 12 patients with motor neuron disease (6 male and 6 female patients; mean age of 57.4[+-]7.9 years), using the magnetic resonance imaging (MRI). The 12 patients with motor neuron disease (MND) comprised 7 suffering from spinal progressive muscular atrophy (SPMA) and 5 from amyotrophic lateral sclerosis (ALS). The MRI used in this study was of both short spin echo and long spin echo sequence. Of the 52 normal subjects, 24 of them (47%) had the T2 prolonged small areas (high signal intensity areas) at the posterior limb of internal capsule. These findings were not found in the normal subjects over fifty years old. No similar finding was detected in the pyramidal tracts except the posterior limb of internal capsule. On the other hand, 8 patients with MND (67%) proved to have the high signal intensity areas in the pyramidal tracts. Moreover, these high intensity areas were extended from the crus cerebri to corona radiata in 7 patients (58%). In all patients with ALS, these areas were extended in whole areas of the pyramidal tracts, and the similar findings were also found in two patients with SPMA. These findings were demonstrated to be more extensive than those in the normal subjects. The results thus obtained warrant us to conclude that cranial MRI is useful to detect the degeneration of the pyramidal tracts of MND patients. (author).

  16. Studies on motor neuron disease with cranial magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mitsui, Yoshiyuki; Takahashi, Mitsuo; Nakamura, Yusaku; Kitaguchi, Masataka; Yagi, Yuji

    1992-01-01

    The present study was performed to examine the pyramidal tracts of the brain in both 51 normal subjects (21 male and 30 female subjects; mean age of 43.5±16.1 years) and 12 patients with motor neuron disease (6 male and 6 female patients; mean age of 57.4±7.9 years), using the magnetic resonance imaging (MRI). The 12 patients with motor neuron disease (MND) comprised 7 suffering from spinal progressive muscular atrophy (SPMA) and 5 from amyotrophic lateral sclerosis (ALS). The MRI used in this study was of both short spin echo and long spin echo sequence. Of the 52 normal subjects, 24 of them (47%) had the T2 prolonged small areas (high signal intensity areas) at the posterior limb of internal capsule. These findings were not found in the normal subjects over fifty years old. No similar finding was detected in the pyramidal tracts except the posterior limb of internal capsule. On the other hand, 8 patients with MND (67%) proved to have the high signal intensity areas in the pyramidal tracts. Moreover, these high intensity areas were extended from the crus cerebri to corona radiata in 7 patients (58%). In all patients with ALS, these areas were extended in whole areas of the pyramidal tracts, and the similar findings were also found in two patients with SPMA. These findings were demonstrated to be more extensive than those in the normal subjects. The results thus obtained warrant us to conclude that cranial MRI is useful to detect the degeneration of the pyramidal tracts of MND patients. (author)

  17. Some double resonance and multiple quantum NMR studies in solids

    International Nuclear Information System (INIS)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of 13 C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D 2 O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, Δsigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO 3 .D 2 O, α,β d-2 HMB and α,β,γ d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules Δm = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made

  18. Magnetic resonance of seminal vesicles: a noninvasive study of seminal way

    International Nuclear Information System (INIS)

    Ocantos, J.A.; Rey Valzacchi, G.; Sinclair, M.E.; Loor Guadamud, G.

    2010-01-01

    The magnetic resonance without endorectal coil is an excellent diagnostic tool for studying the entire route of seminal non-invasive way in a single step diagnosis. We call magnetic resonance of seminal vesicles, but includes both the study of the seminal vesicles as the channels of the seminal way. [es

  19. Magnetic resonance appearance of monoclonal gammopathies of unknown significance and multiple myeloma. The GRI Study Group.

    Science.gov (United States)

    Bellaïche, L; Laredo, J D; Lioté, F; Koeger, A C; Hamze, B; Ziza, J M; Pertuiset, E; Bardin, T; Tubiana, J M

    1997-11-01

    A prospective multicenter study. To evaluate the use of magnetic resonance imaging, in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. Although multiple myeloma has been studied extensively with magnetic resonance imaging, to the authors' knowledge, no study has evaluated the clinical interest of magnetic resonance imaging in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. The magnetic resonance examinations of the thoracolumbar spine in 24 patients with newly diagnosed monoclonal gammopathies of unknown significance were compared with those performed in 44 patients with newly diagnosed nontreated multiple myeloma. All findings on magnetic resonance examination performed in patients with monoclonal gammopathies of unknown significance were normal, whereas findings on 38 (86%) of the 44 magnetic resonance examinations performed in patients with multiple myeloma were abnormal. Magnetic resonance imaging can be considered as an additional diagnostic tool in differentiating between monoclonal gammopathies of unknown significance and multiple myeloma, which may be helpful when routine criteria are not sufficient. An abnormal finding on magnetic resonance examination in a patient with monoclonal gammopathies of unknown significance should suggest the diagnosis of multiple myeloma after other causes of marrow signal abnormalities are excluded. Magnetic resonance imaging also may be proposed in the long-term follow-up of monoclonal gammopathies of unknown significance when a new biologic or clinical event suggests the diagnosis of malignant monoclonal gammopathy.

  20. Probing the Solar Interior

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 3. Probing the Solar Interior Hearing the Heartbeats of the Sun. Ashok Ambastha. General ... Author Affiliations. Ashok Ambastha1. Joint In-Charge Udaipur Solar Observatory Physical Research laboratory P.O. Box No. 198 Udaipur 313 001, India ...

  1. Sb,123121 nuclear quadrupole resonance as a microscopic probe in the Te-doped correlated semimetal FeSb2: Emergence of electronic Griffith phase, magnetism, and metallic behavior

    Science.gov (United States)

    Gippius, A. A.; Zhurenko, S. V.; Hu, R.; Petrovic, C.; Baenitz, M.

    2018-02-01

    Sb,123121 nuclear quadrupole resonance (NQR) was applied to Fe(Sb1-xTex)2 in the low doping regime (x =0 , 0.01, and 0.05) as a microscopic zero field probe to study the evolution of 3 d magnetism and the emergence of metallic behavior. Whereas the NQR spectra itself reflects the degree of local disorder via the width of the individual NQR lines, the spin lattice relaxation rate (SLRR) 1 /T1(T ) probes the fluctuations at the Sb site. The fluctuations originate either from conduction electrons or from magnetic moments. In contrast to the semimetal FeSb2 with a clear signature of the charge and spin gap formation in 1 /T1(T ) T [˜exp/(Δ kBT ) ] , the 1% Te-doped system exhibits almost metallic conductivity and the SLRR nicely confirms that the gap is almost filled. A weak divergence of the SLRR coefficient 1 /T1(T ) T ˜T-n˜T-0.2 points towards the presence of electronic correlations towards low temperatures. This is supported by the electronic specific heat coefficient γ =(Cel/T ) showing a power-law divergence γ (T ) ˜T-m˜(1/T1T ) 1 /2˜T-n /2˜Cel/T which is expected in the renormalized Landau Fermi liquid theory for correlated electrons. In contrast to that the 5% Te-doped sample exhibits a much larger divergence in the SLRR coefficient showing 1 /T1(T ) T ˜T-0.72 . According to the specific heat divergence a power law with n =2 m =0.56 is expected for the SLRR. This dissimilarity originates from admixed critical magnetic fluctuations in the vicinity of antiferromagnetic long range order with 1 /T1(T ) T ˜T-3 /4 behavior. Furthermore Te-doped FeSb2 as a disordered paramagnetic metal might be a platform for the electronic Griffith phase scenario. NQR evidences a substantial asymmetric broadening of the Sb,123121 NQR spectrum for the 5% sample. This has a predominant electronic origin in agreement with the electronic Griffith phase and stems probably from an enhanced Sb-Te bond polarization and electronic density shift towards the Te atom inside Sb

  2. Study of the contribution of the radon in the measurement with an automatic gamma probe

    International Nuclear Information System (INIS)

    Caveda Ramos, C.A.; Dominguez Levy, O.; Alonso Abad, D.; Montalvan Estrada, A.; Fabelo Bonet, O.

    2008-01-01

    In this work, study about the influence of the radon in the daily measurements of the dose rate absorbed in air due to the environmental gamma radiation is achieved. This magnitude is measured each ten minutes for the Gamma Tracer probe, which is located in the western station of the National Network of Environmental Radiological Surveillance of the Republic of Cuba, this station belongs to the Center of Protection and Hygiene of the Radiations (CPHR). For achieving such study approximately 157 680 measurements of the gamma dose rate corresponding the period 2004-2006 were analyzed. The gamma probe used has two independent counter channels which are both complemented with a Geiger-Muller detector; also it can only detect gamma radiation and perform measurements of the gamma dose rate between 8.7 n Gy/h and 8.7 mGy/h. This probe is located at the height of 3.5 m and is exposed to the sun rays directly. For improving the interpretation of the data, the average of all the values of gamma dose rate was calculated, for each hour of the 365 days of the year. The values were also monthly averaged out. The data were processed by employing the software Gamma Red which was improved by adding some options. A comparison between the results obtained and the annual radon variation internationally published was made. With the present study, it was proved that the main contribution to the daily measurements of the dose rate absorbed in the air due to environmental gamma radiation, on stable weather conditions, is associated with the radon daughters which emit gamma radiation. (author)

  3. Novel nuclear magnetic resonance techniques for studying biological molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laws, David Douglas [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  4. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  5. Initial study on Z-phase strengthened 9-12% Cr steels by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; Andren, Hans-Olof [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Physics

    2010-07-01

    The microstructure of two different types of Z-phase strengthened experimental steels, CrNbN-based or CrTaN-based, was investigated. Both steels underwent aging at 650 C for relatively short period of time, 24 hours or 1005 hours. Atom probe tomography was used to study the chemical composition of the matrix and precipitates, and the size and number density of the small precipitates. Both steels contain Laves phase at prior austenite grain boundaries and martensitic lath boundaries. The CrTaN-based steel was found more promising due to its finer and more densely distributed precipitates after 1005 hour aging. (orig.)

  6. Nanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy.

    Science.gov (United States)

    Lv, Yi; Cui, Jian; Jiang, Zuimin M; Yang, Xinju

    2012-11-29

    The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested.

  7. Basic studies on the human uterus by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yasuzawa, Michio

    1990-01-01

    This study was designed to analyze characteristic features of the human uterus by using a 0.5 Tesla super-conducting magnet. Relative square ratios of the endometrium and the junctional zone to the uterine body were measured during menstrual cycle with a computed image analyser. Nine healthy volunteers aged 21 to 30 years underwent magnetic resonance imaging (MRI) in the proliferative, secretory, and menstrual phases. Relaxation times of the endometrium, junctional zone, and myometrium were determined. The relative ratio of the endometrium to the uterine body was 13.8% in the proliferative phase, 17.9% in the secretory phase, and 8.0% in the menstrual phase. The ratio of the junctional zone decreased from 26.6% in the proliferative phase to 23.4% in the secretory phase, and increased to 35.0% in the menstrual phase. Relaxation times of the endometrium and junctional zone were the shortest in the menstrual phase. For the myometrium, T 1 values showed the same tendency. T 2 values were the shortest in the proliferative phase. MRI was also performed in 39 patients with hydatidiform (one), myoma uteri (11), adenomyosis uteri (one), carcinoma of the uterine body (3), and carcinoma of the uterine cervix (23). Myoma nodule without degeneration appeared at low intensity, and had the shortest T 1 and T 2 values. Myoma uteri with degeneration had an increased intensity and larger T 1 and T 2 values. Adenomyosis uteri showed a diffuse low intensity with high intensity spots. Malignant lesions of both the uterine body and cervix showed a high intensity on T 2 -weighted image and similar T 1 and T 2 values. These T 1 and T 2 values were, however, shorter than tissue of unmarried normal women. MRI was considered useful for the observation of menstrual cyclic and quantitative change in the human physiologic uterus, as well as for the differentiation of malignant from benign uterine diseases. (N.K.)

  8. A study of nasal cavity volume by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tosa, Yasuyoshi [Showa Univ., Tokyo (Japan). School of Medicine

    1992-04-01

    The nasal cavity volume in 69 healthy volunteers from 8 to 23 years old (17 males and 52 females) was studied using magnetic resonance imaging (MRI). Merits of MRI such as no radiation exposure, less artifact due to bone and air and measurement of intravascular blood flow; and demerits such as contraindication in users of heart pace-makers or magnetic clips, contraindication in people with claustrophobia and influence of environmental magnetic fields must be considered. A Magunetom M10 (Siemens), a superconduction device with 1.0 Tesla magnetic flux density was used. Enhanced patterns of T[sub 1], and pulse lines were photographed at 600 msec TR (repetition time) and 19 msec TE (echo time) using SE (spin echo) and short SE (spin echo), and 3 or 4 mm slices. Photographs were made of the piriform aperture, choana, superior-middle-inferior concha including the nasal meatus, the frontal sinus, maxillary sinus, cribriform plate, and upper surface of the palate. The line connecting the maximum depression point in the nasal root and the pontomedullary junction was selected by sagittal median section, because this corresponds well with the CM (canthomeatal) line which is useful in CT (computed tomography). The transverse section of the nasal cavity volume was traced by display console with an accessory MRI device and calculated by integration of the slice width. The increase of height and body weight neared a plateau at almost 16 years, whereas increase of nasal cavity volume continued until about 20 years. Pearson's coefficient of correlation and regression line were significant. There were no significant differences in these parameters between male and female groups. Comparatively strong correlation between nasal cavity volume, and age, height and body weight was statistically evident. (author).

  9. Magnetic resonance elastography in normal human brain: preliminary study

    International Nuclear Information System (INIS)

    Xu Lei; Gao Peiyi; Lin Yan; Han Jiancheng; Xi Zhinong; Shen Hao

    2007-01-01

    Objective: To study the application of magnetic resonance elastography (MRE) in the human brain. Methods: An external force actuator was developed. The actuator was fixed to the head coil. During MRE scan, one side of the actuator was attached to the volunteers' head. Low frequency oscillation was produced by the actuator and generated shear waves propagating into brain tissue. The pulse sequence of MRE was designed. A modified gradient echo sequence was developed with motion sensitizing gradient (MSG) imposed along X, Y or Z direction. Cyclic displacement within brain tissue induced by shear waves caused a measurable phase shift in the received MR signal. From the measured phase shift, the displacement at each voxel could be calculated, and the shear waves within the brain were directly imaged. By adjusting the phase offset, the dynamic propagation of shear waves in a wave cycle was obtained. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity images. Shear waves at 100 Hz, 150 Hz, and 200 Hz were applied. Results: The phase images of MRE directly imaged the propagating shear waves within the brain. The direction of the propagation was from surface of the brain to the center. The wavelength of shear waves varied with the change of actuating frequency. The change of wavelength of shear waves in gray and white matter of the brain was identified. The wavelength of shear waves in gray matter was shorter than that in white matter. The elasticity image of the brain revealed that the shear modulus of the white matter was higher than that of gray matter. Conclusion: The phase images of MRE can directly visualize the propagation of shear waves in the brain tissue. The elasticity image of the brain can demonstrate the change of elasticity between gray and white matter. (authors)

  10. Use of a combined penetrometer-TDR moisture probe for soil compaction studies

    International Nuclear Information System (INIS)

    Pedro Vaz, C.M.

    2004-01-01

    measurement technique, we have developed a combined cone penetrometer-TDR moisture probe by wrapping two TDR wires around the penetrometer rod (combined rod TDR) as a double helix, so that both soil water content and penetration resistance can be measured simultaneously and at approximately the same location within the soil profile. The main advantage of the coiled design is that relative long travel times can be obtained, allowing accurate water content measurements for small-sized TDR probes. The objective of this lecture is to present the combined penetrometer-TDR probe as a new tool to study soil compaction. The presentation will cover the following topics: Theory of the dynamic cone penetrometer; Laboratory calibration of a coiled TDR moisture probe and application of the mixing model; Field calibration and use of the combined penetrometer-coiled TDR moisture probe; Penetration resistance, bulk density, water content and potential relationships; Practical applications of the combined penetrometer-coiled TDR moisture probe

  11. Magnetization dynamics in La{sub 0.67}Ca{sub 0.33}MnO{sub 3} epitaxial films probed with resonant and non-resonant microwave absorption

    Energy Technology Data Exchange (ETDEWEB)

    Porwal, Rajni; Pant, R. P.; Budhani, R. C., E-mail: rcb@iitk.ac.in [National Physical Laboratory, Council of Scientific and Industrial Research, Dr K S Krishnan Marg, New Delhi-110012 (India)

    2015-01-07

    Temperature (T) dependent microwave absorption measurements are performed on La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO) epitaxial thin films of thickness 100 and 200 nm in an electron paramagnetic resonance spectrometer operating in X-band. The resonant absorption peak is monitored for out-of-plane (H{sup ⊥}) and in-plane (H{sup ∥}) dc magnetic field (H) as the system goes through magnetic ordering. These data suggest a resilient transformation to the ferromagnetic (FM) phase in the vicinity of the Curie temperature (T{sub C}), indicative of a phase separation, which is dominant in the thinner film. The saturation magnetization is calculated from SQUID magnetometry on the same film. A pronounced zero-field absorption is seen in H{sup ∥} geometry displaying anomalous growth in 100 nm film at T < T{sub C}. This feature is correlated with the magneto-conductivity of the manganite which is colossal in the vicinity of T{sub C} in the well-ordered film of thickness 200 nm. Signature of standing spin wave modes is seen in H{sup ⊥} measurements which are analyzed to calculate the spin wave stiffness constant D(T) in the limit of zero temperature. The same is also inferred from the decay of equilibrium magnetization in the framework of Bloch law. These studies reveal that a bulk like LCMO is obtained in the fully relaxed thicker films.

  12. Resonant photoemission study of CeRu4Sb12

    International Nuclear Information System (INIS)

    Ishii, Hiroyoshi; Miyahara, Tsuneaki; Takayama, Yasuhiro; Shiozawa, Hidetsugu; Obu, Kenji; Matsuda, Tatsuma D.; Aoki, Yuji; Sugawara, Hitoshi; Sato, Hideyuki

    2005-01-01

    We have measured the Ce 4d-4f and Ce 3d-4f resonant photoemission spectra of CeRu 4 Sb 12 . The Ce 4f spectra show the spectral features corresponding to a weakly hybridized system. The number of 4f electrons is estimated to be ∼1.0

  13. Resonance Raman and optical dephasing study of tricarbocyanine dyes

    NARCIS (Netherlands)

    Ashworth, SH; Kummrow, A; Lenz, K

    Fluorescence lineshape analysis based on resonance Raman spectra of the dye HITCI was used to determine the details and magnitude of the vibrational part of the line broadening function, Forced light scattering (FLS) was applied to measure optical dephasing of HITCI in ethylene glycol, pumping at

  14. Study of the geometrical resonances of superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Sørensen, O. Hoffmann; Finnegan, T.F.; Pedersen, Niels Falsig

    1973-01-01

    The resonant cavity structure of superconducting Sn-Sn-oxide-Sn tunnel junctions has been investigated via photon-assisted quasiparticle tunneling. We find that the temperature-dependent losses at 35 GHz are determined by the surface resistance of the Sn films for reduced temperatures between 0...

  15. Highly anisotropic mobility in solution processed TIPS-pentacene film studied by independently driven four GaIn probes

    Science.gov (United States)

    Yoshimoto, Shinya; Takahashi, Kohtaro; Suzuki, Mitsuharu; Yamada, Hiroko; Miyahara, Ryosuke; Mukai, Kozo; Yoshinobu, Jun

    2017-08-01

    We have studied in-plane anisotropy in the field-effect mobility of solution-processed organic semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene by using independently driven four gallium indium (Ga-In) probes. Liquid-metal Ga-In probes are highly effective for reproducible conductivity measurements of organic thin films. We demonstrated that a high mobility anisotropy of 44 was obtained by using a square four-probe method and a feedback circuit to keep the channel potential constant. The present method minimized the influences of the contact resistance and the insensitivity of anisotropy in a linear arrangement in two-dimensional field-effect transistors.

  16. Studies of electron cyclotron resonance ion source plasma physics

    International Nuclear Information System (INIS)

    Tarvainen, O.

    2005-01-01

    This thesis consists of an introduction to the plasma physics of electron cyclotron resonance ion sources (ECRIS) and a review of the results obtained by the author and co-workers including discussion of related work by others. The thesis begins with a theoretical discussion dealing with plasma physics relevant for the production of highly charged ions in ECR ion source plasmas. This is followed by an overview of different techniques, such as gas mixing and double frequency heating, that can be used to improve the performance of this type of ion source. The experimental part of the work consists of studies related to ECRIS plasma physics. The effect of the gas mixing technique on the production efficiency of different ion beams was studied with both gaseous and solid materials. It was observed that gas mixing improves the confinement of the heavier element while the confinement of the lighter element is reduced. When the effect of gas mixing on MIVOC-plasmas was studied with several mixing gases it was observed that applying this technique can reduce the inevitable carbon contamination by a significant factor. In order to understand the different plasma processes taking place in ECRIS plasmas, a series of plasma potential and emittance measurements was carried out. An instrument, which can be used to measure the plasma potential in a single measurement without disturbing the plasma, was developed for this work. Studying the plasma potential of ECR ion sources is important not only because it helps to understand different plasma processes, but also because the information can be used as an input parameter for beam transport simulations and ion source extraction design. The experiments performed have revealed clear dependencies of the plasma potential on certain source parameters such as the amount of carbon contamination accumulated on the walls of the plasma chamber during a MIVOC-run. It was also observed that gas mixing affects not only the production efficiency

  17. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.

    1978-01-01

    The construction of a radio-frequency resonance system and its use in the study of alkali metal ionization in flames is described. The author re-determines the values of the alkali ionization rate constants for a CO flame with N 2 as diluent gas of known temperature using the RF resonance method. (Auth.)

  18. Overtones of isoscalar giant resonances studied in direct particle decay measurements

    NARCIS (Netherlands)

    Hunyadi, M; van den Berg, AM; Csatlos, M; Csige, L; Davids, B; Garg, U; Gulyas, J; Harakeh, MN; de Huu, MA; Krasznahorkay, A; Sohler, D; Wortche, HJ

    The isoscalar giant dipole resonance (ISGDR), which is the lowest-energy overtone mode of the isoscalar giant resonances, has been studied in some medium-heavy and heavy nuclei in coincidence measurements. The observation of the direct nucleon decay channels significantly helped to enhance giant

  19. Nuclear magnetic resonance. Present results and its application to renal pathology. Experimental study of hydronephrosis

    International Nuclear Information System (INIS)

    Bertrand, P.

    1987-01-01

    Results of proton nuclear magnetic resonance imaging and relaxation time measurement of experimental hydronephrosis in mice are presented. The study is preceded by a description of the physical principles underlying the phenomenon of nuclear magnetic resonance and of its biomedical applications and with a review of the clinical use of NMR imaging in renal pathology [fr

  20. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Richards, B.; Bengtson, R.D.

    1993-01-01

    The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement. (author) 8 refs., 7 figs

  1. Pump-probe studies of travelling coherent longitudinal acoustic phonon oscillations in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Qi, J.; Tolk, Norman [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235 (United States); Miller, J. [Naval air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Cho, Y.J.; Liu, X.; Furdyna, J.K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Shahbazyan, T.V. [Department of Physics, Jackson State University, MS 39217 (United States)

    2008-07-01

    We report comprehensive studies of long-lived oscillations in femtosecond optical pump-probe measurements on GaAs based systems. The oscillations arise from a photo-generated coherent longitudinal acoustic phonon wave at the sample surface, which subsequently travels from the surface into the GaAs substrate, thus providing information on the optical properties of the material as a function of time/depth. Wavelength-dependent studies of the oscillations near the bandgap of GaAs indicate strong correlations to the optical properties of GaAs. We also use the coherent longitudinal acoustic phonon waves to probe a thin buried Ga{sub 0.1}In{sub 0.9}As layers non-invasively. The observed phonon oscillations experience a reduction in amplitude and a phase change at wavelengths near the bandgap of the GaAs, when it passes through the thin Ga{sub x}In{sub 1-x}As layer. The layer depth and thicknesses can be extracted from the oscillation responses. A model has been developed that satisfactorily characterizes the experimental results. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Carreras, B.A.; Richards, B.; Bengtson, R.D.; Crockett, D.B.; Gentle, K.W.; Li, G.X.; Hurwitz, P.D.; Rowan, W.L.; Tsui, H.Y.W.; Wootton, A.J.

    1993-01-01

    The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement

  3. Electron spin resonance studies of gamma irradiated saccharides. Etudes par resonance paramagnetique electronique de saccharides soumis a un rayonnement gamma

    Energy Technology Data Exchange (ETDEWEB)

    Raffi, J.; Thiery, C.; Battesti, C.; Agnel, J.P.; Triolet, J.; Vincent, P. (CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Physiologie Vegetale et Ecosystemes)

    1993-04-01

    The radiolysis mechanism of several saccharides was studied in order to understand the radiolysis mechanism of starches. Electron Spin Resonance first performed in powder state did not allow determination of the chemical structure of the induced radicals. The spin-trapping method combined with HPLC however, followed by ESR spectra analysis with the 'Voyons' simulation program was applied to the study of glucose, glucose oligomers and disaccharides. We were thus able to further our understanding of the radiolysis mechanism of starches. 2 tabs., 4 figs.

  4. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices

    OpenAIRE

    Hai Jiang; Jianfang Liu; Qingqing Lv; Shoudong Gu; Xiaoyang Jiao; Minjiao Li; Shasha Zhang

    2016-01-01

    The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter) is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radi...

  5. Nuclear Magnetic Resonance spectroscopy studies of proteins-glycoconjugates interactions

    OpenAIRE

    Marchetti, Roberta

    2013-01-01

    This PhD thesis work has been focused on the analysis of the structural requisites for recognition and binding between proteins and glycoconjugates, essential for the comprehension of mechanisms of paramount importance in chemistry, biology and biomedicine. A large variety of techniques, such as crystallographic analysis, titration microcalorimetry (ITC), surface plasmon resonance (SPR) and fluorescence spectroscopy, allows the elucidation of molecular recognition events. In the last years...

  6. A case study on lightning protection, building resonances considered

    OpenAIRE

    Deursen, van, A.P.J.; Geers - Bargboer, G.

    2011-01-01

    In a recent paper (G. Bargboer and A. P. J. van Deursen, IEEE Trans. Electromagn. Compat., vol. 52, no. 3, pp. 684-90, Aug. 2010) we dealt with current injection measurements to test the lightning protection system of a newly built pharmaceutical plant. In a tentative extrapolation, the measurements were extrapolated to actual lightning. Here, we extend the model and calculate the response of the installation on lightning currents and include resonances in the cable trays and test cables cont...

  7. Magnetic resonance spectroscopic study of parkinsonism related to boxing.

    OpenAIRE

    Davie, C A; Pirtosek, Z; Barker, G J; Kingsley, D P; Miller, P H; Lees, A J

    1995-01-01

    Proton magnetic resonance spectroscopy, localised to the lentiform nucleus, was carried out in three ex-professional boxers who developed a parkinsonian syndrome, six patients with idiopathic Parkinson's disease, and six age matched controls. The three ex-boxers all showed a pronounced reduction in the absolute concentration of N-acetylaspartate compared with the patients with idiopathic Parkinson's disease and the control group. This reduction is likely to reflect neuronal loss occurring in ...

  8. An Introduction to Drug Discovery by Probing Protein-Substrate Interactions Using Saturation Transfer Difference-Nuclear Magnetic Resonance (STD-NMR)

    Science.gov (United States)

    Guegan, Jean-Paul; Daniellou, Richard

    2012-01-01

    NMR spectroscopy is a powerful tool for characterizing and identifying molecules and nowadays is even used to characterize complex systems in biology. In the experiment presented here, students learned how to apply this modern technique to probe interactions between small molecules and proteins. With the use of simple organic synthesis, students…

  9. Fabrication and Study of Micro Monolithic Tungsten Ball Tips for Micro/Nano-CMM Probes

    Directory of Open Access Journals (Sweden)

    Ruijun Li

    2018-03-01

    Full Text Available Micro ball tips with high precision, small diameter, and high stiffness stems are required to measure microstructures with high aspect ratio. Existing ball tips cannot meet such demands because of their weak qualities. This study used an arc-discharge melting method to fabricate a micro monolithic tungsten ball tip on a tungsten stylus. The principles of arc discharge and surface tension phenomenon were introduced. The experimental setup was designed and established. Appropriate process parameters, such as impulse voltage, electro discharge time, and discharge gap were determined. Experimental results showed that a ball tip of approximately 60 µm in diameter with less than 0.6 µm roundness error and 0.6 µm center offset could be realized on a 100 µm-diameter tungsten wire. The fabricated micro ball tip was installed on a homemade probe, touched by high-precision gauge blocks in different directions. A repeatability of 41 nm (K = 2 was obtained. Several interesting phenomena in the ball-forming process were also discussed. The proposed method could be used to fabricate a monolithic probe ball tip, which is necessary for measuring microstructures.

  10. Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

    Directory of Open Access Journals (Sweden)

    Jakub S. Prauzner-Bechcicki

    2016-11-01

    Full Text Available Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania–sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania–sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well.

  11. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    International Nuclear Information System (INIS)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min -1 can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected

  12. Local probe studies on lattice distortions and electronic correlations in manganites

    CERN Document Server

    lopes, Armandina; Correia, João Guilherme

    This thesis presents an experimental study on lattice distortions and electronic correlations in colossal magnetoresistive magnetic oxides. The Perturbed Angular Correlation local probe technique is used to study selected manganite systems in order to obtain relevant insight into microscopic phenomena responsible for their macroscopic pr operties. Complementary structural, magnetic and electric characterization was performed. The work is focused on the following aspects: \\\\Lattice distortions and polaron clusters in LaMnO$_{3+ \\Delta}$ system. A study of the electric field gradi ent and magnetic hyperfine field was performed in representative samples of the LaMnO$_{3+ \\Delta}$ system, and correlated with macroscopic information obtained in the same samples. Particular attention was given to the LaMnO$_{3.12}$ sample since this compound is a prototype of a ferromagnetic-insulat or manganite, presenting a rhombohedric- orthorhombic structural phase transition near room temperature. We found that random distribu...

  13. Ultrafast Non-thermal Response of Plasmonic Resonance in Gold Nanoantennas

    Science.gov (United States)

    Soavi, Giancarlo; Valle, Giuseppe Della; Biagioni, Paolo; Cattoni, Andrea; Longhi, Stefano; Cerullo, Giulio; Brida, Daniele

    Ultrafast thermalization of electrons in metal nanostructures is studied by means of pump-probe spectroscopy. We track in real-time the plasmon resonance evolution, providing a tool for understanding and controlling gold nanoantennas non-linear optical response.

  14. Pump-probe study of atoms and small molecules with laser driven high order harmonics

    Science.gov (United States)

    Cao, Wei

    A commercially available modern laser can emit over 1015 photons within a time window of a few tens of femtoseconds (10-15second), which can be focused into a spot size of about 10 mum, resulting in a peak intensity above 1014W/cm2. This paves the way for table-top strong field physics studies such as above threshold ionization (ATI), non-sequential double ionization (NSDI), high order harmonic generation (HHG), etc.. Among these strong laser-matter interactions, high order harmonic generation, which combines many photons of the fundamental laser field into a single photon, offers a unique way to generate light sources in the vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) region. High order harmonic photons are emitted within a short time window from a few tens of femtoseconds down to a few hundreds of attoseconds (10 -18second). This highly coherent nature of HHG allows it to be synchronized with an infrared (IR) laser pulse, and the pump-probe technique can be adopted to study ultrafast dynamic processes in a quantum system. The major work of this thesis is to develop a table-top VUV(EUV) light source based on HHG, and use it to study dynamic processes in atoms and small molecules with the VUV(EUV)-pump IR-probe method. A Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) apparatus is used for momentum imaging of the interaction products. Two types of high harmonic pump pulses are generated and applied for pump-probe studies. The first one consists of several harmonics forming a short attosecond pulse train (APT) in the EUV regime (around 40 eV). We demonstrate that, (1) the auto-ionization process triggered by the EUV in cation carbon-monoxide and oxygen molecules can be modified by scanning the EUV-IR delay, (2) the phase information of quantum trajectories in bifurcated high harmonics can be extracted by performing an EUV-IR cross-correlation experiment, thus disclosing the macroscopic quantum control in HHG. The second type of high harmonic source

  15. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendanha, S.A.; Anjos, J.L.V.; Silva, A.H.M.; Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2012-04-05

    Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H{sub 2}O{sub 2}). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H{sub 2}O{sub 2} (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H{sub 2}O{sub 2} (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

  16. Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study

    Science.gov (United States)

    Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Özerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2012-01-01

    The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study. PMID:23185498

  17. Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study.

    Directory of Open Access Journals (Sweden)

    Davide Santoro

    Full Text Available The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.

  18. Microfour-point probe for studying electronic transport through surface states

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Shiraki, I.

    2000-01-01

    Microfour-point probes integrated on silicon chips have been fabricated with probe spacings in the range 4-60 mum. They provide a simple robust device for electrical transport measurements at surfaces, bridging the gap between conventional macroscopic four-point probes and scanning tunneling...... transport through surface states, which is not observed on the macroscopic scale, presumably due to scattering at atomic steps. (C) 2000 American Institute of Physics....

  19. Probing ultrafast changes of spin and charge density profiles with resonant XUV magnetic reflectivity at the free-electron laser FERMI.

    Science.gov (United States)

    Gutt, C; Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Raimondi, L; Nikolov, I P; Kiskinova, M; Jaiswal, S; Jakob, G; Kläui, M; Zabel, H; Pietsch, U

    2017-09-01

    We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M 2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q -resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Q z , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.

  20. A telemetry study on the chronic effects of microdialyis probe implantation on the activity pattern and temperature rhythm of the rat

    NARCIS (Netherlands)

    Drijfhout, W.J.; Kemper, R.H.A.; Meerlo, P.; Koolhaas, J.M.; Grol, C.J.; Westerink, B.H.C.

    1995-01-01

    The present study describes the effects of implantation of microdialysis probes on temperature and activity rhythms of the rat, measured with a telemetry system. For comparison two widely used types of microdialysis probes were investigated, a transcerebral probe, inserted into the pineal gland and

  1. Progresses in the studies of adiabatic splitting of charged particle beams by crossing nonlinear resonances

    Directory of Open Access Journals (Sweden)

    A. Franchi

    2009-01-01

    Full Text Available The multiturn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by nonlinear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.

  2. Progresses in the Studies of Adiabatic Splitting of Charged Particles Beams by Crossing Nonlinear Resonances

    CERN Document Server

    Franchi, A; Giovannozzi, M; CERN. Geneva. BE Department

    2009-01-01

    The multi-turn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by non-linear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.

  3. GEANT4 simulation study of a gamma-ray detector for neutron resonance densitometry

    International Nuclear Information System (INIS)

    Tsuchiya, Harufumi; Harada, Hideo; Koizumi, Mitsuo; Kitatani, Fumito; Takamine, Jun; Kureta, Masatoshi; Iimura, Hideki

    2013-01-01

    A design study of a gamma-ray detector for neutron resonance densitometry was made with GEANT4. The neutron resonance densitometry, combining neutron resonance transmission analysis and neutron resonance capture analysis, is a non-destructive technique to measure amounts of nuclear materials in melted fuels of the Fukushima Daiichi nuclear power plants. In order to effectively quantify impurities in the melted fuels via prompt gamma-ray measurements, a gamma-ray detector for the neutron resonance densitometry consists of cylindrical and well type LaBr 3 scintillators. The present simulation showed that the proposed gamma-ray detector suffices to clearly detect the gamma rays emitted by 10 B(n, αγ) reaction in a high environmental background due to 137 Cs radioactivity with its Compton edge suppressed at a considerably small level. (author)

  4. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Richards, B.; Bengtson, R.D.

    1993-08-01

    A novel experiment is under way on the Texas Experimental Tokamak (TEXT) to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. The experiments are carried out with a wave launching system consisting of two Langmuir probes, which are about 1.8 cm apart in the poloidal direction, with respect to the magnetic field. These probes are operated in the electron side of the (I,V) characteristic. The probe tips are fed separately by independent ac power supplies. Measurements indicate that the wave, launched with a typical frequency image of 15--50 kHz from the edge of the machine top, is received by sensing probes located halfway around the torus. The detected signal strength depends on the frequency of the wave, the plasma current, and the phasing of the applied ac signal between the launching probes. Modifications to the spectra of the density and potential fluctuations are observed. These experiments have been extended to control of the edge plasma fluctuation level using feedback to explore its effects on confinement. When the launcher is driven by the floating potential of the fluctuating plasma at the location of the launching probes, then the fluctuations are suppressed or excited, depending on the phasing between the probe tips, both locally and at the downstream sensing probes. The fluctuation-induced particle flux also varies with the feedback phasing

  5. Study of mechanically stimulated ferroelectric domain formation using scanning probe microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J H; Baek, J; Khim, Z G [School of Physics and Nano-Systems Institute, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2007-03-15

    The stress-related ferroelectric properties have been studied on the Triglycine sulfate (TGS) by scanning probe microscope (SPM). Together with normal stress of the tip, the lateral stress is applied to the sample with piezoelectric transducers. With this study, we characterized the way the ferroelectricity of TGS responds to the axis-specific stress. Specially, the b-directional stress applicable to the surface can amount to several GPa such that the polarization switching by mechanical stress is observable. Although the lateral stress is not strong enough to view such phenomena, a-axis(c-axis) stress still affects the polarization value so as to fortify (lessen) the electric field inside, respectively. These contrasting results can be explained by the sign relation of piezo-coefficients about the individual axis. This work can be a touchstone of future researches in characterizing the electromechanical properties of more popular ferroelectrics such as PZT or BTO.

  6. Molecular organization and dynamics of micellar phase of polyelectrolyte-surfactant complexes: ESR spin probe study

    Science.gov (United States)

    Wasserman, A. M.; Kasaikin, V. A.; Zakharova, Yu. A.; Aliev, I. I.; Baranovsky, V. Yu.; Doseva, V.; Yasina, L. L.

    2002-04-01

    Molecular dynamics and organization of the micellar phase of complexes of linear polyelectrolytes with ionogenic and non-ionogenic surfactants was studied by the ESR spin probe method. Complexes of polyacrylic acid (PAA) and sodium polystyrenesulfonate (PSS) with alkyltrimethylammonium bromides (ATAB), as well as complexes of poly- N, N'-dimethyldiallylammonium chloride (PDACL) with sodium dodecylsulfate (SDS) were studied. The micellar phase of such complexes is highly organized molecular system, molecular ordering of which near the polymeric chain is much higher than in the 'center' of the micelle, it depends on the polymer-detergent interaction, flexibility of polymeric chain and length of carbonic part of the detergent molecule. Complexes of polymethacrylic acid (PMAA) with non-ionic detergent (dodecyl-substituted polyethyleneglycol), show that the local mobility of surfactant in such complexes is significantly lower than in 'free' micelles and depends on the number of micellar particles participating in formation of complexes.

  7. Moessbauer effect and electron paramagnetic resonance studies on yeast aconitase

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Maeda, Yutaka; Sakai, Hiroshi; Fujimoto, Shigeru; Morita, Yuhei.

    1975-01-01

    The Moessbauer effect and electron paramagnetic resonance (EPR) of yeast aconitase [EC 4.2.1.3] purified from the cells of Candida lipolytica (ATCC 20114) were measured. Moessbauer spectra suggested that yeast acontitase mostly contained two high-spin Fe(III) ions in an antiferromagnetically coupled binuclear complex that resembled oxidized 2 Fe ferredoxins, together with a small amount of high-spin Fe(II). EPR spectra recorded no signal at 77 0 K, but showed a slightly asymmetric signal centered at g=2.0 at 4.2 0 K, presumably due to the small amount of Fe(II) Fe(III) pairs. (auth.)

  8. Transistor regenerative spectrometer for 14N nuclear quadrupole resonance study

    International Nuclear Information System (INIS)

    Anferov, V.P.; Mikhal'kov, V.M.

    1981-01-01

    Improvement of the Robinson transducer for investigations of nuclear quadrupole resonance (NQR) in 14 N is described. Amplifier of the suggested transducer is made using p-n field effect transistor and small-noise SHF bipolar transistor. Such a circuit permits to obtain optimal relation between input resistance, low-frequency noises and transconductance which provides uniform gain of the transducer in the frequency range of 0.6-12 MHz and permits to construct a transistor spectrometer of NQR not yielding to a lamp spectrometer in sensitivity [ru

  9. A comparative study between an improved novel air-cushion sensor and a wheeled probe for minimally invasive surgery.

    Science.gov (United States)

    Zbyszewski, Dinusha; Challacombe, Benjamin; Li, Jichun; Seneviratne, Lakmal; Althoefer, Kaspar; Dasgupta, Prokar; Murphy, Declan

    2010-07-01

    We describe a comparative study between an enhanced air-cushion tactile sensor and a wheeled indentation probe. These laparoscopic tools are designed to rapidly locate soft-tissue abnormalities during minimally invasive surgery (MIS). The air-cushion tactile sensor consists of an optically based sensor with a 7.8 mm sphere "floating" on a cushion of air at the tip of a shaft. The wheeled indentation probe is a 10 mm wide and 5 mm in diameter wheel mounted to a force/torque sensor. A continuous rolling indentation technique is used to pass the sensors over the soft-tissue surfaces. The variations in stiffness of the viscoelastic materials that are detected during the rolling indentations are illustrated by stiffness maps that can be used for tissue diagnosis. The probes were tested by having to detect four embedded nodules in a silicone phantom. Each probe was attached to a robotic manipulator and rolled over the silicone phantom in parallel paths. The readings of each probe collected during the process of rolling indentation were used to achieve the final results. The results show that both sensors reliably detected the areas of variable stiffness by accurately identifying the location of each nodule. These are illustrated in the form of two three-dimensional spatiomechanical maps. These probes have the potential to be used in MIS because they could provide surgeons with information on the mechanical properties of soft tissue, consequently enhancing the reduction in haptic feedback.

  10. Novel Multisensor Probe for Monitoring Bladder Temperature During Locoregional Chemohyperthermia for Nonmuscle-Invasive Bladder Cancer: Technical Feasibility Study

    Science.gov (United States)

    Geijsen, Debby E.; Zum Vörde Sive Vörding, Paul J.; Schooneveldt, Gerben; Sijbrands, Jan; Hulshof, Maarten C.; de la Rosette, Jean; de Reijke, Theo M.; Crezee, Hans

    2013-01-01

    Abstract Background and Purpose: The effectiveness of locoregional hyperthermia combined with intravesical instillation of mitomycin C to reduce the risk of recurrence and progression of intermediate- and high-risk nonmuscle-invasive bladder cancer is currently investigated in clinical trials. Clinically effective locoregional hyperthermia delivery necessitates adequate thermal dosimetry; thus, optimal thermometry methods are needed to monitor accurately the temperature distribution throughout the bladder wall. The aim of the study was to evaluate the technical feasibility of a novel intravesical device (multi-sensor probe) developed to monitor the local bladder wall temperatures during loco-regional C-HT. Materials and Methods: A multisensor thermocouple probe was designed for deployment in the human bladder, using special sensors to cover the bladder wall in different directions. The deployment of the thermocouples against the bladder wall was evaluated with visual, endoscopic, and CT imaging in bladder phantoms, porcine models, and human bladders obtained from obduction for bladder volumes and different deployment sizes of the probe. Finally, porcine bladders were embedded in a phantom and subjected to locoregional heating to compare probe temperatures with additional thermometry inside and outside the bladder wall. Results: The 7.5 cm thermocouple probe yielded optimal bladder wall contact, adapting to different bladder volumes. Temperature monitoring was shown to be accurate and representative for the actual bladder wall temperature. Conclusions: Use of this novel multisensor probe could yield a more accurate monitoring of the bladder wall temperature during locoregional chemohyperthermia. PMID:24112045

  11. Bodipy-FL-Verapamil: A Fluorescent Probe for the Study of Multidrug Resistance Proteins

    Directory of Open Access Journals (Sweden)

    Anna Rosati

    2004-01-01

    Full Text Available Most of the substances used as fluorescent probes to study drug transport and the effect of efflux blockers in multidrug resistant cells have many drawbacks, such as toxicity, unspecific background, accumulation in mitochondria. New fluorescent compounds, among which Bodipy‐FL‐verapamil (BV, have been therefore proposed as more useful tools. The uptake of BV has been evaluated by cytofluorimetry and fluorescence microscopy using cell lines that overexpress P‐glycoprotein (P388/ADR and LLC‐PK1/ADR or MRP (multidrug resistance‐related protein (PANC‐1 and clinical specimens from patients. The effect of specific inhibitors for P‐glycoprotein (verapamil and vinblastine or MRP (MK571 and probenecid has been also studied. BV intracellular concentrations were significantly lower in the two P‐glycoprotein overexpressing cell lines in comparison with the parental lines. In addition, verapamil and vinblastine increased the intracellular concentrations of the dye; MK571 and probenecid, two MRP inhibitors, increased BV levels in PANC‐1 cells, that express this protein. These findings were confirmed in clinical specimens from patients. Fluorescence microscopy revealed a faint fluorescence emission in P‐glycoprotein or MRP expressing cell lines; however, treatment with specific inhibitors significantly increased the fluorescence. BV is a useful tool for studying multidrug resistance proteins with different techniques such as cytofluorimetry and fluorescence microscopy, but does not discriminate between P‐glycoprotein and MRP. In comparison with other classic fluorescent probes, the assay with this dye is extremely rapid, simple, not toxic for cells, devoid of fluorescent background, and can be useful in the clinical settings.

  12. Bioceramic Resonance Effect on Meridian Channels: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ting-Kai Leung

    2015-01-01

    Full Text Available Bioceramic is a kind of material which emits nonionizing radiation and luminescence, induced by visible light. Bioceramic also facilitates the breakup of large clusters of water molecules by weakening hydrogen bonds. Hydrogen bond weakening, which allows water molecules to act in diverse ways under different conditions, is one of the key mechanisms underlying the effects of Bioceramic on biophysical and physical-chemical processes. Herein, we used sound to amplify the effect of Bioceramic and further developed an experimental device for use in humans. Thirteen patients who suffered from various chronic and acute illnesses that severely affected their sleep patterns and life quality were enrolled in a trial of Bioceramic resonance (i.e., rhythmic 100-dB sound waves with frequency set at 10 Hz applied to the skin surface of the anterior chest. According to preliminary data, a “Propagated Sensation along Meridians” (PSM was experienced in all Bioceramic resonance-treated patients but not in any of the nine control patients. The device was believed to enhance microcirculation through a series of biomolecular and physiological processes and to subject the specific meridian channels of Traditional Chinese Medicine (TCM to coherent vibration. This noninvasive technique may offer an alternative to needle acupuncture and other traditional medical practices with clinical benefits.

  13. Experimental and Computational Studies of the Flow Over a Sting Mounted Planetary Probe Configuration

    Science.gov (United States)

    Holden, Michael S.; Harvey, John K.; Boyd, Iain D.; George, Jyothish; Horvath, Thomas J.

    1997-01-01

    This paper summarizes the results of a series of experimental studies in the LENS shock tunnel and computations with DSMC and Navier Stokes codes which have been made to examine the aerothermal and flowfield characteristics of the flow over a sting-supported planetary probe configuration in hypervelocity air and nitrogen flows. The experimental program was conducted in the LENS hypervelocity shock tunnel at total enthalpies of 5and 10 MJkg for a range of reservoir pressure conditions from 70 to 500 bars. Heat transfer and pressure measurements were made on the front and rear face of the probe and along the supporting sting. High-speed and single shot schlieren photography were also employed to examine the flow over the model and the time to establish the flow in the base recirculation region. Predictions of the flowfield characteristics and the distributions of heat transfer and pressure were made with DSMC codes for rarefied flow conditions and with the Navier-Stokes solvers for the higher pressure conditions where the flows were assumed to be laminar. Analysis of the time history records from the heat transfer and pressure instrumentation on the face of the probe and in the base region indicated that the base flow was fully established in under 4 milliseconds from flow initiation or between 35 and 50 flow lengths based on base height. The measurements made in three different tunnel entries with two models of identical geometries but with different instrumentation packages, one prepared by NASA Langley and the second prepared by CUBRC, demonstrated good agreement between heat transfer measurements made with two different types of thin film and coaxial gage instrumentation. The measurements of heat transfer and pressure to the front face of the probe were in good agreement with theoretical predictions from both the DSMC and Navier Stokes codes. For the measurements made in low density flows, computations with the DSMC code were found to compare well with the

  14. Electrical sintering of silver nanoparticle ink studied by in-situ TEM probing.

    Directory of Open Access Journals (Sweden)

    Magnus Hummelgård

    Full Text Available Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1-10 mW/μm³. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 10⁵ Sm⁻¹.

  15. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.

    Science.gov (United States)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-26

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  16. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    Science.gov (United States)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  17. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    International Nuclear Information System (INIS)

    Bolker, Asaf; Kalish, Rafi; Saguy, Cecile

    2014-01-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques. (paper)

  18. Flow synthesis of a versatile fructosamine mimic and quenching studies of a fructose transport probe

    Directory of Open Access Journals (Sweden)

    Matthew B. Plutschack

    2013-10-01

    Full Text Available We describe the synthesis of 1-amino-2,5-anhydro-D-mannose (“mannitolamine”, a key intermediate to the 7-nitro-1,2,3-benzadiazole conjugate (NBDM, using commercially available fluidic devices to increase the throughput. The approach is the first example of a flow-based Tiffeneau–Demjanov rearrangement. Performing this step in flow enables a ~64-fold throughput enhancement relative to batch. The flow process enables the synthesis to be accomplished three times faster than the comparable batch route. The high throughput enabled the production of larger quantities of the fluorescent fructose transport probe NBDM, enabling us to measure key photophysical properties that will facilitate future uptake studies.

  19. Atom-probe field-ion-microscopy study of Fe-Ti alloys

    International Nuclear Information System (INIS)

    Pickering, H.W.; Kuk, Y.; Sakurai, T.

    1980-01-01

    A newly developed high-performance atom-probe (field ion microscope) was employed for the composition analysis of Fe-Ti alloys and their interactions with ambient gas, such as H 2 and O 2 . With a mass resolution (m/Δm) better than 2000 and a spatial resolution of a few A, all isotopes of Fe and Ti and their hydrides and other compounds are clearly resolved during the depth profile study. Some of our findings are: (1) Titanium segregated on the surface and grain boundaries upon heating (greater than or equal to 900 0 C), in the form of oxides, and (2) some Ti in the bulk forms clusters of various sizes with C, O, and/or N as nuclei

  20. Energy transfer in isolated LHC II studied by femtosecond pump-probe technique

    CERN Document Server

    Yang Yi; Liu Yuan; Liu Wei Min; Zhu Rong Yi; Qian Shi Xiong; Xu Chun He

    2003-01-01

    Excitation energy transfer in the isolated light-harvesting chlorophyll (Chl)-a/b protein complex of photosystem II (LHC II) was studied by the one-colour pump-probe technique with femtosecond time resolution. After exciting Chl-b by 638nm beam, the dynamic behaviour shows that the ultrafast energy transfer from Chl-b at positions of B2, B3, and B5 to the corresponding Chl-a molecules in monomeric subunit of LHC II is in the time scale of 230fs. While with the excitation of Chl-a at 678nm, the energy transfer between excitons of Chl-a molecules has the lifetime of about 370 fs, and two other slow decay components are due to the energy transfer between different Chl-a molecules in a monomeric subunit of LHC II or in different subunits, or due to change of molecular conformation. (20 refs).

  1. Vibration Isolation Study in Scanning Probe Microscopy Part I: Low Frequency

    International Nuclear Information System (INIS)

    Oliva, A.I.; Espinosa-Faller, F.J.; Aguilar, M.

    1998-01-01

    A study of a low frequency isolation device based in a pneumatic system is presented. It consists of four cylinders which are closed and sealed with an elastic membrane on which the load is applied. Each cylinder made of PVC is formed by two chambers divided by a plate with a small hole for communication and damping. Air contained into chambers acts, in combination with the the elastic membranes, as a damper. Scanning probe techniques can be supported by this device in order to reduce the low frequency noises that affects them. Advantages of this isolator are discussed and compared. A theoretical approximation for this model is presented and compared with the experimental results obtained and show that it can isolate noises up to ∼ 2 Hz. The low frequency isolator has stability and fast response to external perturbations. This simple and economical low frequency isolator can be reproduced easily and its design depends on the work specific requirements. (Author) 9 refs

  2. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    KAUST Repository

    Al-Kassab, Talaat; Kompatscher, Michael; Kirchheim, Reiner; Kostorz, Gernot; Schö nfeld, Bernd

    2014-01-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from

  3. Preliminary studies on premature rickets of infants by high-frequency probe ultrasound

    International Nuclear Information System (INIS)

    Yu Ming'an; Xu Zushan; Tang Zhongjuan; Song Jing; Liu Jie; Li Qiang; Gong Huafang; Bi Haijing

    2002-01-01

    Objective: To observe the ultrasound appearance of premature rickets in infants, and to assess the diagnostic value of high-frequency probe in the disease. Methods:Ultrasonography was performed in R-No 4 rib and distal radioulnar metaphysis in 123 rickets infants diagnosed by clinical examination (the diagnosis standard adopted the rickets diagnose standard revised by the rickets research, prevention and cure group of China in 1999)and in 30 normal infants diagnosed by clinical examination as the control group. Results: The high-frequency probe could clearly visualize the modification of every part in ribs and distal radioulnar metaphysis. Compared with that of the normal control group, ultrasound showed individually the signs and symptoms such as separation, bone bark elongation, and bone bark warp in the engagement of periosteum and perichondrium in rickets group. The incidences of bone bark elongation were separately 18.7% (23 cases) in ulna, 10.6% (13 cases) in radius, and 41.5% (51 cases) in rib; The incidences of bone bark warp were separately 4.9% (6 cases) in ulna, 2.4% (3 cases) in radius, and 18.7% (23 cases) in rib. The results of chi-square test showed that both the incidences of bone bark elongation and bone bark warp between the rib and the ulna and radius had significant difference (P < 0.01). The incidences of incomplete calcification in the edge of the provisional calcification zone were 96.75% (119 cases) in ulna and 69.29% (84 cases) in radius, respectively (Ridit test, P < 0.01). The incidences of incomplete calcification inside the provisional calcification zone were 42.28% (52 cases) in ulna and 60.16% (74 cases) in radius, respectively (Radit test, P < 0.01). Conclusion: Study on every modification of premature rickets by high-frequency probe will help to determine the status and degree of calciprivia at earlier stages, and thereby to increase the specificity and sensitivity of ultrasonography

  4. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO2 were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO2, large photoelectrocatalytic effect for the reduction of CO2 was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO2 in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  5. Study of 234U(n,f) Resonances Measured at the CERN n_TOF Facility

    CERN Document Server

    Leal-Cidoncha, E; Paradela, C; Tarrío, D; Leong, L S; Audouin, L; Tassan-Got, L; Praena, J; Berthier, B; Ferrant, L; Isaev, S; Le Naour, C; Stephan, C; Trubert, D; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Bečvář, F; Berthoumieux, E; Calviño, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P.; Chepel, V; Chiaveri, E.; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S.; Dillmann, I; Domingo-Pardo, C; Dridi, W; Eleftheriadis, C; Embid-Segura, M; Ferrari, A.; Ferreira-Marques, R; Fujii, K; Furman, W; Gonçalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A.; Igashira, M; Jericha, E; Kadi, Y.; Käppeler, F; Karadimos, D; Kerveno, M; Koehler, P; Kossionides, E; Krtička, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papadopoulos, C; Pavlik, A; Pavlopoulos, P.; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T.; Reifarth, R; Rubbia, C.; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L.; Savvidis, I; Tagliente, G; Tain, J L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A.; Villamarin, D; Vincente, M C; Vlachoudis, V.; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2014-01-01

    We present the analysis of the resolved resonance region for the U-234(n,f) cross section data measured at the CERN n\\_TOF facility. The resonance parameters in the energy range from 1 eV to 1500 eV have been obtained with the SAMMY code by using as initial parameters for the fit the resonance parameters of the JENDL-3.3 evaluation. In addition, the statistical analysis has been accomplished, partly with the SAMDIST code, in order to study the level spacing and the Mehta-Dyson correlation.

  6. A nuclear magnetic resonance study of (TMTSF) 2PF 6

    Science.gov (United States)

    McBrierty, V. J.; Douglass, D. C.; Wudl, F.

    1982-09-01

    Inverse linewidths and spin-lattice relaxation times of fluorine and proton magnetic resonance spectra are used to examine molecular motion in the organic superconductor (TMTSF) 2PF 6. The results clearly show that rotation of the PF 6- anion is the principal agent for the observed relaxation of fluorine contrary to some suggestions in the current literature. This interpretation is based upon qualitative comparison with relaxation in plastic crystals, where molecular rotation is well characterized, and upon the quantitative agreement between the calculated and observed linewidth change near 90K and the maximum spin-lattice relaxation rate at 140K. There is also motional evidence, supported by X-ray structure measurements, that a phase transition occurs in the vicinity of 160K.

  7. Intramedullary cavernous hemangiomas, magnetic resonance studies in four patients

    International Nuclear Information System (INIS)

    Barrena, M.R.; Guelbenzu, S.; Garcia, S.; Bertrol, V.

    1998-01-01

    Intramedullary cavernous hemangiomas are vascular malformations that can be located throughout the entire central nervous system. They are more frequently found in brain than in spinal cord, where it is only possible to diagnose them by magnetic resonance (RM): We present four cases of intramedullary spinal cord cavernoma, three of which were located in the thoracic spine and one in cervical spine. Computed tomography was ineffective in their diagnosis. However, MR disclosed there presence of well-defined tumors producing a thickening of the spinal cord. The signal was heterogeneous in both T1 and T2-weighted images. There were low signal areas due to the presence of calcium and hemosiderin and high intensity signals provoked by methemoglobin within the lesions, which were scarcely enhanced by intravenous gadolinium administration. One of the lesions presented in the form of a large intramedullary hematoma. (Author) 8 refs

  8. Development of a Bifunctional Andrographolide-Based Chemical Probe for Pharmacological Study.

    Science.gov (United States)

    Hsu, Ya-Hsin; Hsu, Yu-Ling; Liu, Sheng-Hung; Liao, Hsin-Chia; Lee, Po-Xuan; Lin, Chao-Hsiung; Lo, Lee-Chiang; Fu, Shu-Ling

    2016-01-01

    Andrographolide (ANDRO) is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD). ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90) and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.

  9. Development of a Bifunctional Andrographolide-Based Chemical Probe for Pharmacological Study.

    Directory of Open Access Journals (Sweden)

    Ya-Hsin Hsu

    Full Text Available Andrographolide (ANDRO is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD. ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90 and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.

  10. Time zero determination for FEL pump-probe studies based on ultrafast melting of bismuth

    Directory of Open Access Journals (Sweden)

    S. W. Epp

    2017-09-01

    Full Text Available A common challenge for pump-probe studies of structural dynamics at X-ray free-electron lasers (XFELs is the determination of time zero (T0—the time an optical pulse (e.g., an optical laser arrives coincidently with the probe pulse (e.g., a XFEL pulse at the sample position. In some cases, T0 might be extracted from the structural dynamics of the sample's observed response itself, but generally, an independent robust method is required or would be superior to the inferred determination of T0. In this paper, we present how the structural dynamics in ultrafast melting of bismuth can be exploited for a quickly performed, reliable and accurate determination of T0 with a precision below 20 fs and an overall experimental accuracy of 50 fs to 150 fs (estimated. Our approach is potentially useful and applicable for fixed-target XFEL experiments, such as serial femtosecond crystallography, utilizing an optical pump pulse in the ultraviolet to near infrared spectral range and a pixelated 2D photon detector for recording crystallographic diffraction patterns in transmission geometry. In comparison to many other suitable approaches, our method is fairly independent of the pumping wavelength (UV–IR as well as of the X-ray energy and offers a favorable signal contrast. The technique is exploitable not only for the determination of temporal characteristics of the experiment at the interaction point but also for investigating important conditions affecting experimental control such as spatial overlap and beam spot sizes.

  11. Time zero determination for FEL pump-probe studies based on ultrafast melting of bismuth.

    Science.gov (United States)

    Epp, S W; Hada, M; Zhong, Y; Kumagai, Y; Motomura, K; Mizote, S; Ono, T; Owada, S; Axford, D; Bakhtiarzadeh, S; Fukuzawa, H; Hayashi, Y; Katayama, T; Marx, A; Müller-Werkmeister, H M; Owen, R L; Sherrell, D A; Tono, K; Ueda, K; Westermeier, F; Miller, R J D

    2017-09-01

    A common challenge for pump-probe studies of structural dynamics at X-ray free-electron lasers (XFELs) is the determination of time zero (T 0 )-the time an optical pulse (e.g., an optical laser) arrives coincidently with the probe pulse (e.g., a XFEL pulse) at the sample position. In some cases, T 0 might be extracted from the structural dynamics of the sample's observed response itself, but generally, an independent robust method is required or would be superior to the inferred determination of T 0 . In this paper, we present how the structural dynamics in ultrafast melting of bismuth can be exploited for a quickly performed, reliable and accurate determination of T 0 with a precision below 20 fs and an overall experimental accuracy of 50 fs to 150 fs (estimated). Our approach is potentially useful and applicable for fixed-target XFEL experiments, such as serial femtosecond crystallography, utilizing an optical pump pulse in the ultraviolet to near infrared spectral range and a pixelated 2D photon detector for recording crystallographic diffraction patterns in transmission geometry. In comparison to many other suitable approaches, our method is fairly independent of the pumping wavelength (UV-IR) as well as of the X-ray energy and offers a favorable signal contrast. The technique is exploitable not only for the determination of temporal characteristics of the experiment at the interaction point but also for investigating important conditions affecting experimental control such as spatial overlap and beam spot sizes.

  12. Probing ultrafast changes of spin and charge density profiles with resonant XUV magnetic reflectivity at the free-electron laser FERMI

    Directory of Open Access Journals (Sweden)

    C. Gutt

    2017-09-01

    Full Text Available We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q-resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Qz, we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.

  13. Study of defects, radiation damage and implanted gases in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.; Amano, J.; Wagner, A.

    1980-10-01

    The ability of the field-ion microscope to image individual atoms has been applied, at Cornell University, to the study of fundamental properties of point defects in irradiated or quenched metals. The capability of the atom probe field-ion microscope to determine the chemistry - that is, the mass-to-charge ratio - of a single ion has been used to investigate the behavior of different implanted species in metals. A brief review is presented of: (1) the basic physical principles of the field-ion and atom-probe microscopes; (2) the many applications of these instruments to the study of defects and radiation damage in solids; and (3) the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interests in detail

  14. Theoretical study of platonic crystals with periodically structured N-beam resonators

    Science.gov (United States)

    Gao, Penglin; Climente, Alfonso; Sánchez-Dehesa, José; Wu, Linzhi

    2018-03-01

    A multiple scattering theory is applied to study the properties of flexural waves propagating in a plate with periodically structured N-beam resonators. Each resonator consists of a circular hole containing an inner disk connected to background plate with N rectangular beams. The Bloch theorem is employed to obtain the band structure of a two-dimensional lattice containing a single resonator per unit cell. Also, a numerical algorithm has been developed to get the transmittance through resonator slabs infinitely long in the direction perpendicular to the incident wave. For the numerical validation, a square lattice of 2-beam resonators has been comprehensively analyzed. Its band structure exhibits several flat bands, indicating the existence of local resonances embedded in the structure. Particularly, the one featured as the fundamental mode of the inner disk opens a bandgap at low frequencies. This mode has been fully described in terms of a simple spring-mass model. As a practical application of the results obtained, a homogenization approach has been employed to design a focusing lens for flexural waves, where the index gradient is obtained by adjusting the orientation of the resonators beams. Numerical experiments performed within the framework of a three-dimensional finite element method have been employed to discuss the accuracy of the models described here.

  15. Recent developments in multimodality fluorescence imaging probes

    Directory of Open Access Journals (Sweden)

    Jianhong Zhao

    2018-05-01

    Full Text Available Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI probe integration with other imaging modalities such as X-ray computed tomography (CT, magnetic resonance imaging (MRI, positron emission tomography (PET, single-photon emission computed tomography (SPECT, and photoacoustic imaging (PAI. The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy. KEY WORDS: Optical imaging, Fluorescence, Multimodality, Near-infrared fluorescence, Nanoprobe, Computed tomography, Magnetic resonance imaging, Positron emission tomography, Single-photon emission computed tomography, Photoacoustic imaging

  16. Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents

    International Nuclear Information System (INIS)

    Yan Guoping; Liu Maili; Li Liyun

    2005-01-01

    Purpose: A series of polyaspartamide gadolinium complexes containing pyridoxamine groups were studied as the potential magnetic resonance imaging (MRI) contrast agents for liver enhancement. Methods: These polyaspartamide gadolinium complexes were prepared and evaluated by relaxivity, acute toxicity studies and magnetic resonance imaging of the liver in rats. Results: These polyaspartamide gadolinium complexes have higher relaxation effectiveness than that of the clinically used gadolinium diethylenetriaminepentaacetic acid and possess the low intravenous acute toxicities to Institute for Cancer Research (ICR) mice. Magnetic resonance imaging of the liver in rats indicated that they greatly enhance the contrast of magnetic resonance images and provide prolonged intravascular duration in the liver. Conclusion: These results indicated that the polyaspartamide gadolinium complexes containing pyridoxamine groups could be considered as the appropriate MRI contrast agents for liver enhancement

  17. Dynamical study of the radial structure of the fluctuations measured by a reciprocating Langmuir probe in Tore Supra

    International Nuclear Information System (INIS)

    Devynck, P.; Antar, G.; Wang, G.; Garbet, X.; Gunn, J.; Pascal, J.Y.

    1999-01-01

    The fluctuations in the Scrape Off Layer (S.O.L.) of Tore Supra are studied with a movable Langmuir probe biased to ion saturation current. The probe system consists of three probes separated poloidally (0.68 cm between two nearby probes). The probe has no magnetic connection to the mid plane limiter on which the plasma is leaning, but the radial profile of the ion saturation current fluctuations displays a dip at the limiter position. At the same location the ion saturation current displays a dip at the limiter position. At the same location the ion saturation current displays an inflexion point. A correlation analysis technique is developed to study the radial behaviour of the fluctuations. It reveals that this dip is associated with a reduction of the poloidal velocity of the fluctuations with no sign reversal. In the dip the mean poloidal correlation length of the fluctuations is also reduced. These observations are consistent with a reduction of the fluctuations by a shear of the radial electric field created at the limiter surface. The autocorrelation time is also calculated. It increases slightly in the dip and is found to be sensitive to both the convection time and lifetime of the turbulent structures, because these quantities are of the same order. (authors)

  18. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1982-01-01

    An attempt is made to introduce the reader to the basic physical ideas involved in the field-ion and atom-probe field-ion microscope techniques, and to the applications of these techniques to the study of defects and radiation damage in solids. The final section discusses, in precise form, the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interest in detail

  19. High-pressure nuclear magnetic resonance studies of fuel cell membranes

    Science.gov (United States)

    Mananga, Eugene Stephane

    This thesis focuses on the use of high pressure NMR to study transport properties in electrolyte membranes used for fuel cells. The main concern is in studying the self-diffusion coefficients of ions and molecules in membranes and solutions, which can be used to characterize electrolytes in fuel cells. For this purpose, a high-pressure fringe field NMR method to study transport properties in material systems useful for fuel cell and battery electrolytes, was designed, developed, and implemented. In this investigation, pressure is the thermodynamic variable to obtain additional information about the ionic transport process, which could yield the crucial parameter, activation volume. Most of the work involves proton NMR, with additional investigations of others nuclei, such as fluorine, phosphorus and lithium. Using the FFG method, two fuel cell membrane types (NAFION-117, SPTES), and different dilutions of phosphoric acid were investigated, as was LiTf salt in Diglyme solution, which is used as a lithium battery electrolyte. In addition to high-pressure NMR diffusion measurements carried out in the fringe field gradient for the investigation of SPTES, pulse field gradient spin echo NMR was also used to characterize the water diffusion, in addition to measuring diffusion rates as a function of temperature. This second method allows us to measure distinct diffusion coefficients in cases where the different nuclear (proton) environments can be resolved in the NMR spectrum. Polymer electrolyte systems, in which the mobility of both cations and anions is probed by NMR self-diffusion measurements using standard pulsed field gradient methods and static gradient measurements as a function of applied hydrostatic pressure, were also investigated. The material investigated is the low molecular weight liquid diglyme/LiCF3SO3 (LiTf) complexes which can be used as electrolytes in lithium batteries. Finally, high-pressure diffusion coefficient measurements of phosphoric acid in

  20. NADH-fluorescence scattering correction for absolute concentration determination in a liquid tissue phantom using a novel multispectral magnetic-resonance-imaging-compatible needle probe

    Science.gov (United States)

    Braun, Frank; Schalk, Robert; Heintz, Annabell; Feike, Patrick; Firmowski, Sebastian; Beuermann, Thomas; Methner, Frank-Jürgen; Kränzlin, Bettina; Gretz, Norbert; Rädle, Matthias

    2017-07-01

    In this report, a quantitative nicotinamide adenine dinucleotide hydrate (NADH) fluorescence measurement algorithm in a liquid tissue phantom using a fiber-optic needle probe is presented. To determine the absolute concentrations of NADH in this phantom, the fluorescence emission spectra at 465 nm were corrected using diffuse reflectance spectroscopy between 600 nm and 940 nm. The patented autoclavable Nitinol needle probe enables the acquisition of multispectral backscattering measurements of ultraviolet, visible, near-infrared and fluorescence spectra. As a phantom, a suspension of calcium carbonate (Calcilit) and water with physiological NADH concentrations between 0 mmol l-1 and 2.0 mmol l-1 were used to mimic human tissue. The light scattering characteristics were adjusted to match the backscattering attributes of human skin by modifying the concentration of Calcilit. To correct the scattering effects caused by the matrices of the samples, an algorithm based on the backscattered remission spectrum was employed to compensate the influence of multiscattering on the optical pathway through the dispersed phase. The monitored backscattered visible light was used to correct the fluorescence spectra and thereby to determine the true NADH concentrations at unknown Calcilit concentrations. Despite the simplicity of the presented algorithm, the root-mean-square error of prediction (RMSEP) was 0.093 mmol l-1.

  1. Simulation study of two-ion hybrid resonance heating

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Tajima, T.

    1986-02-01

    A one-dimensional low-noise, low-frequency electromagnetic particle simulation code that is appropriate for investigation of ion cyclotron resonance heating (ICRH) is developed. Retaining the hyperbolicity of the electromagnetic waves and exploiting nearly one-dimensional characteristics (perpendicular to the external magnetic field) of the ICRH, we use the guiding center electron approximation for the transverse electronic current calculation. We observe mode conversion of the incoming magnetosonic wave into the electrostatic ion-ion hybrid mode accompanied by strong ion-heating. The dependence of this heating on the different plasma parameters is examined through a series of simulations, focusing mainly on wave incidence from the high field side. Because K/sub parallel/ = 0 in our runs, the conventional Landau damping cannot explain the ion heating. Non-linear mechanisms for energy transfer are discussed. Our numerical results demonstrate the importance of the non-linear wave particle interaction for energy transfer are discussed. Our numerical results demonstrate the importance of the non-linear wave particle interaction for energy absorption during radio frequency heating in the ion cyclotron regime. 32 refs., 17 figs

  2. Late whiplash syndrome: a clinical and magnetic resonance imaging study.

    Science.gov (United States)

    Bonuccelli, U; Pavese, N; Lucetti, C; Renna, M R; Gambaccini, G; Bernardini, S; Canapicchi, R; Carrozzi, L; Murri, L

    1999-01-01

    Cervical hyperextension injuries are common and are associated with significant morbidity. Clinically two syndromes are described: "acute" whiplash syndrome and "late" whiplash syndrome (in which the patients are still symptomatic after six months despite normal physical and radiological examination). In order to clarify the pathology of the persistent pain in late whiplash syndrome we performed a cervical spine magnetic resonance imaging (MRI) in 33 consecutive patients suffering from this condition. Twenty-six patients (78.8%) showed MRI abnormalities, the most common MRI finding (57.6%) was pre-existent spondylosis. Indeed, the group of patients with spondylosis and other MRI changes had higher clinical scores than those without MRI abnormalities as measured by a three-point grading system based upon the symptoms and signs shown. Several MRI changes, most of them already demonstrable by standard X-ray were seen among 33 patients suffering from late whiplash syndrome. Although no one of these findings appears to be specific and certainly related to the previous neck injury, they could represent a risk factor for a longer pain duration.

  3. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Guy, J.; Mancuso, A.; Beck, R.; Moster, M.L.; Sedwick, L.A.; Quisling, R.G.; Rhoton, A.L. Jr.; Protzko, E.E.; Schiffman, J.

    1991-01-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence of both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain

  4. Study of skin markers for magnetic resonance imaging examinations

    International Nuclear Information System (INIS)

    Takatsu, Yasuo; Umezaki, Yoshie; Miyati, Tosiaki; Yamamura, Kenichirou

    2013-01-01

    In magnetic resonance imaging (MRI), skin markers are used as a landmark in order to make plans for examinations. However, there isn't a lot of research about the material and shape of skin markers. The skin marker's essential elements are safety, good cost performance, high signal intensity for T 1 weighted image (T 1 WI) and T 2 weighted image (T 2 WI), and durable. In order to get a high signal-to-noise ratio (SNR) of T 1 WI and T 2 WI, baby oil, salad oil and olive oil were chosen, because these materials were easy to obtain and safe for the skin. The SNR of baby oil was the best. Baby oil was injected into the infusion tube, and the tube was solvent welded and cut by a heat sealer. In order to make ring shaped skin markers, both ends of the tube were stuck with adhesive tape. Three different diameters of markers were made (3, 5, 10 cmφ). Ring shaped skin markers were put on to surround the examination area, therefore, the edge of the examination area could be seen at every cross section. Using baby oil in the ring shaped infusion tube is simple, easy, and a highly useful skin marker. (author)

  5. Experimental studies with a stimulated Raman backscatter probe beam in laser-irradiated plasmas

    International Nuclear Information System (INIS)

    Jiang, Z.M.; Meng, S.X.; Xu, Z.Z.

    1986-01-01

    This paper reports on the optical diagnostic experiments accomplished with a stimulated Raman backscatter probe beam set up recently in the sixbeam Nd:glass laser facility for laser fusion research at the Shanghai Insitute of Optics and Fine Mechanics

  6. An experimental study of simultaneous ablation with dual probes in radiofrequency thermal ablation

    International Nuclear Information System (INIS)

    Jang, Il Soo; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Kim, Young Sun; Heo, Jeong Nam

    2003-01-01

    To determine the differences between sequential ablation with a single probe and simultaneous ablation with dual probes. Using two 14-gauge expandable probes (nine internal prongs with 4-cm deployment), radiofrequency was applied sequentially (n=8) or simultaneously (n=8) to ten ex-vivo cow livers. Before starting ablation, two RF probes with an inter-probe space of 2 cm (n=8) or 3 cm (n=8) were inserted. In the sequential group, switching the connecting cable to an RF generator permitted ablation with the second probe just after ablation with the first probe had finished. In the simultaneous group, single ablation was performed only after connecting the shafts of both RF probes using a connection device. Each ablation lasted 7 minutes at a target temperature of 105-110 .deg. C. The size and shape of the ablated area, and total ablation time were then compared between the two groups. With 2-cm spacing, the group, mean length and overlapping width of ablated lesions were, respectively, 5.20 and 5.05 cm in the sequential group (n=4), and 5.81 and 5.65 cm in the simultaneous group (n=4). With 3-cm spacing, the corresponding figures were 4.99 and 5.60 cm in the sequential group (n=4), and 6.04 and 6.78 cm in the simultaneous group (n=4). With 2-cm spacing, the mean depth of the proximal waist was 0.58 cm in the sequential (group and 0.28 cm in the simultaneous group, while with 3-cm spacing, the corresponding figures were 1.65 and 1.48 cm. In neither group was there a distal waist. Mean total ablation time was 23.4 minutes in the sequential group and 14 minutes in the simultaneous group. In terms of ablation size and ablation time, simultaneous radiofrequency ablation with dual probes is superior to sequential ablation with a single probe. A simultaneous approach will enable an operator to overcome difficulty in probe repositioning during overlapping ablation, resulting in complete ablation with a successful safety margin

  7. Stable isotope probing to study functional components of complex microbial ecosystems.

    Science.gov (United States)

    Mazard, Sophie; Schäfer, Hendrik

    2014-01-01

    This protocol presents a method of dissecting the DNA or RNA of key organisms involved in a specific biochemical process within a complex ecosystem. Stable isotope probing (SIP) allows the labelling and separation of nucleic acids from community members that are involved in important biochemical transformations, yet are often not the most numerically abundant members of a community. This pure culture-independent technique circumvents limitations of traditional microbial isolation techniques or data mining from large-scale whole-community metagenomic studies to tease out the identities and genomic repertoires of microorganisms participating in biological nutrient cycles. SIP experiments can be applied to virtually any ecosystem and biochemical pathway under investigation provided a suitable stable isotope substrate is available. This versatile methodology allows a wide range of analyses to be performed, from fatty-acid analyses, community structure and ecology studies, and targeted metagenomics involving nucleic acid sequencing. SIP experiments provide an effective alternative to large-scale whole-community metagenomic studies by specifically targeting the organisms or biochemical transformations of interest, thereby reducing the sequencing effort and time-consuming bioinformatics analyses of large datasets.

  8. Experimental study on flow-induced acoustic resonance in square closed side branch

    International Nuclear Information System (INIS)

    Zhang Hui; Gu Hanyang; Liu Xiaojing; Zhang Kai; Xie Yongcheng; Zu Hongbiao

    2014-01-01

    Flow-induced acoustic resonance is a phenomenon caused by the interaction of flow and acoustic fields in special structure. Acoustic resonance characteristic experiments were carried out on square closed side branch. The influences of the velocity in main pipe and the length of the side branch on acoustic resonance were studied. The range of occurrence and characteristics of pressure pulsation were analyzed. Three lengths of side branches (L/d=5.6 and 7) were experimentally studied and the Reynolds number in the experiment was 2.74 X 10 4 -2.429 X 10 5 while the Mach number was 0.025-0.218. The results show that the resonance frequency shows a lock-in phenomenon with the increase of velocity. As the length of the side branch increasing, the amplitude of the acoustic pressure and the resonance frequency decrease. In the considered structure, the acoustic resonance occurs when Strouhal number is 0.3-0.6 and 0.7-1.0. (authors)

  9. Studies of radiation induced membrane damage in lymphocytes using fluorescent probes

    International Nuclear Information System (INIS)

    Nikesch, W.

    1974-01-01

    The fluorescent probes perylene (PER), 1-anilino-8-naphthalene sulfonic acid (ANS), and fluorescein diacetate (FDA) were used to investigate membrane changes caused by ionizing radiation. Probe response to various other perturbations (variation of pH, temperature, and salt concentration, and treatment with phythohemagglutinin (PHA) and saponins) was also investigated to better understand membrane-probe interactions. ANS was used to probe the membrane surface, PER to probe the membrane interior, and FDA to investigate membrane integrity. Polarization of fluorescent light from ANS and PER was used to investigate the microviscosity and order of the membrane surface and interior respectively. Irradiated cells (600 R) were shown to have a decreased rate of hydrolysis of FDA probably due to cytoplasmic changes effecting the enzymatic reaction. Also evident was an increase in loss of intracellular fluorescein and a decrease in PER polarization indicating that the cells have a decreased membrane integrity, possibly the result of an increased disorganization of the phospholipid hydrocarbon chains in the membrane interior. Experiments with PHA link the decreased membrane integrity with the eventual interphase death of the cells. In general it is shown that the fluorescent probes ANS, PER, and FDA provide useful ways to investigate order and microviscosity in the cell membrane surface and interior, membrane surface charges, internal membrane polarity changes, and membrane integrity. (U.S.)

  10. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  11. Tissue resonance interaction accurately detects colon lesions: A double-blind pilot study.

    Science.gov (United States)

    Dore, Maria P; Tufano, Marcello O; Pes, Giovanni M; Cuccu, Marianna; Farina, Valentina; Manca, Alessandra; Graham, David Y

    2015-07-07

    To investigated the performance of the tissue resonance interaction method (TRIM) for the non-invasive detection of colon lesions. We performed a prospective single-center blinded pilot study of consecutive adults undergoing colonoscopy at the University Hospital in Sassari, Italy. Before patients underwent colonoscopy, they were examined by the TRIMprobe which detects differences in electromagnetic properties between pathological and normal tissues. All patients had completed the polyethylene glycol-containing bowel prep for the colonoscopy procedure before being screened. During the procedure the subjects remained fully dressed. A hand-held probe was moved over the abdomen and variations in electromagnetic signals were recorded for 3 spectral lines (462-465 MHz, 930 MHz, and 1395 MHz). A single investigator, blind to any clinical information, performed the test using the TRIMprob system. Abnormal signals were identified and recorded as malignant or benign (adenoma or hyperplastic polyps). Findings were compared with those from colonoscopy with histologic confirmation. Statistical analysis was performed by χ(2) test. A total of 305 consecutive patients fulfilling the inclusion criteria were enrolled over a period of 12 months. The most frequent indication for colonoscopy was abdominal pain (33%). The TRIMprob was well accepted by all patients; none spontaneously complained about the procedure, and no adverse effects were observed. TRIM proved inaccurate for polyp detection in patients with inflammatory bowel disease (IBD) and they were excluded leaving 281 subjects (mean age 59 ± 13 years; 107 males). The TRIM detected and accurately characterized all 12 adenocarcinomas and 135/137 polyps (98.5%) including 64 adenomatous (100%) found. The method identified cancers and polyps with 98.7% sensitivity, 96.2% specificity, and 97.5% diagnostic accuracy, compared to colonoscopy and histology analyses. The positive predictive value was 96.7% and the negative predictive

  12. Magnetic resonance fingerprinting.

    Science.gov (United States)

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A

    2013-03-14

    Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.

  13. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.

    Science.gov (United States)

    Luo, E C; Ling, H; Dai, W; Yu, G Y

    2006-12-22

    In this paper, an experimental study of the effect of the resonator shape on the performance of a traveling-wave thermoacoustic engine is presented. Two different resonators were tested in the thermoacoustic-Stirling heat. One resonator is an iso-diameter one, and the other is a tapered one. To have a reasonable comparison reference, we keep the same traveling-wave loop, the same resonant frequency and the same operating pressure. The experiment showed that the resonator shape has significant influence on the global performance of the thermoacoustic-Stirling heat engine. The tapered resonator gives much better performance than the iso-diameter resonator. The tapered resonator system achieved a maximum pressure ratio of about 1.3, a maximum net acoustical power output of about 450 W and a highest thermoacoustic efficiency of about 25%.

  14. Study on electromagnetic characteristics of the magnetic coupling resonant coil for the wireless power transmission system.

    Science.gov (United States)

    Wang, Zhongxian; Liu, Yiping; Wei, Yonggeng; Song, Yilin

    2018-01-01

    The resonant coil design is taken as the core technology in the magnetic coupling resonant wireless power transmission system, which achieves energy transmission by the coupling of the resonant coil. This paper studies the effect of the resonant coil on energy transmission and the efficiency of the system. Combining a two-coil with a three-coil system, the optimum design method for the resonant coil is given to propose a novel coil structure. First, the co-simulation methods of Pspice and Maxwell are used. When the coupling coefficient of the resonant coil is different, the relationship between system transmission efficiency, output power, and frequency is analyzed. When the self-inductance of the resonant coil is different, the relationship between the performance and frequency of the system transmission is analyzed. Then, two-coil and three-coil structure models are built, and the parameters of the magnetic field of the coils are calculated and analyzed using the finite element method. In the end, a dual E-type simulation circuit model is used to optimize the design of the novel resonance coil. The co-simulation results show that the coupling coefficients of the two-coil, three-coil, and novel coil systems are 0.017, 0.17 and 0.0126, respectively. The power loss of the novel coil is 16.4 mW. There is an obvious improvement in the three-coil system, which shows that the magnetic leakage of the field and the energy coupling are relatively small. The new structure coil has better performance, and the load loss is lower; it can improve the system output power and transmission efficiency.

  15. Dynamic study of pelvic floor in patients with constipation: dynamic magnetic resonance vs defecography

    International Nuclear Information System (INIS)

    Gonzalez Vasquez, Carlos Mario; Pulgarin, Ricardo Luis German; Melo Arango, Catalina; Delgado de Bedout, Jorge Andres; Llano Serna, Juan Fernando; Restrepo Restrepo, Jose Ignacio

    2007-01-01

    Purpose: to compare the concordance between defecography and magnetic resonance in patients with constipation. Materials and methods: we did a prospective and descriptive assay to determine the concordance of a diagnostic test with 17 patients. The evaluation of the studies was double blind. Results: the 17 patients were females, age range 31 - 77 year the symptoms were present between 3 to 120 months. Anterior rectocele was the most common diagnosis (11 patients) and magnetic resonance had sensibility 100%, specificity 50%, positive predictive value 78, 57% and negative predictive value 100%. 7 patients had pelvic floor descent and magnetic resonance had sensibility 71.4%, specificity 20% positive predictive value 38.46% and negative predictive value 50%. Defecography found patients with enterocele and magnetic resonance had sensibility 0% and specificity 100 anismus was present in 2 patients and magnetic resonance didn't find them. Conclusion defecography is still the gold standard for patients with eonstipation. Magnetic resonance are a promise for those patients but has to improve

  16. A clinical study and the diagnosis in magnetic resonance imaging of renal scarring

    International Nuclear Information System (INIS)

    Tsugaya, Masayuki; Hirao, Noriaki; Ohtaguro, Kazuo; Kato, Jiro.

    1989-01-01

    Twenty-nine kidneys of seventeen patients (nine boys and eight girls) with vesicoureteral reflux and repeated urinary tract infection were studied by magnetic resonance imaging for diagnosis of renal scarring and correlation between clinical data and the degree renal scarring. Renal scarring is classified into three types according to findings in magnetic resonance imaging. The degree of renal scarring are classified into five grades according to traditional grading of intravenous pyelogram. If a fine deformity of calyx is shown on intravenous pyelogram, magnetic resonance imaging demonstrates renal scarring. Magnetic resonance imaging without irradiation is exceedingly valuable for the diagnosis of renal scarring. The appearances of magnetic resonance imaging were supported by X-ray computed tomography. There is a substantial correlation between serum creatinine and the grades of renal scarring by magnetic resonance imaging. There is a substantial correlation between fever attacks and the grade of renal scarring, and there is a significant reverse correlation between the age of the onset of upper urinary tract infection and the grade of renal scarring. It is suggested that upper urinary tract infection is the most significant factor in scar formation. (author)

  17. Laboratory studies of the dynamic of resonance cones formation in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, V. V.; Starodubtsev, M. V.; Kostrov, A. V. [Russian Academy of Sciences, Institute of Applied Physics, Nizhny Novgorod (Russian Federation)

    2013-03-15

    The paper is devoted to experimental studies of formation of resonance cones in magnetized plasmas by pulsed RF source in the lower-hybrid (whistler) and the upper-hybrid frequency ranges. It is shown that in both frequency ranges, resonance cones exhibit similar dynamics after switching-on the RF source: at first, wide maxima of radiation are formed in non-resonance directions, which then become narrower, with their direction approaching the resonance one. While the resonance cones are being formed, one observes a fine structure in the form of secondary radiation maxima. It is shown that the characteristic formation time of stationary resonance cones is determined by the minimal value of the group velocity of the quasi-electrostatic waves excited by the antenna. In the low-temperature plasma, this value is limited in the lower-hybrid frequency range by the spatial spectrum of the emitting antenna and in the upper-hybrid range, by the effects of spatial plasma dispersion.

  18. The release of noradrenaline in the locus coeruleus and prefrontal cortex studied with dual-probe microdialysis

    NARCIS (Netherlands)

    Pudovkina, O; Kawahara, Y; de Vries, J.B; Westerink, B.H.C.

    2001-01-01

    The present study was undertaken to investigate and compare the properties of noradrenaline release in the locus coeruleus (LC) and prefrontal cortex (PFC). For that aim the dual-probe microdialysis technique was applied for simultaneous detection of noradrenaline levels in the LC and PFC in

  19. Styrene oligomerization as a molecular probe reaction for zeolite acidity: a UV-Vis spectroscopy and DFT study

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Pidko, E.A.; Groot, de J.M.; Stavitski, E.; Santen, van R.A.; Weckhuysen, B.M.

    2010-01-01

    A series of H-ZSM-5 crystallites with different framework Si/Al ratios was studied by analyzing the kinetics and reaction mechanism of the oligomerization of 4-fluorostyrene as molecular probe reaction for Brønsted acidity. The formation of carbocationic species was followed by UV-Vis spectroscopy.

  20. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  1. Reaction pathways of photoexcited retinal in proteorhodopsin studied by pump-dump-probe spectroscopy.

    Science.gov (United States)

    Rupenyan, Alisa; van Stokkum, Ivo H M; Arents, Jos C; van Grondelle, Rienk; Hellingwerf, Klaas J; Groot, Marie Louise

    2009-12-17

    Proteorhodopsin (pR) is a membrane-embedded proton pump from the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization on the femtosecond to picosecond time scales. Here, we report a study on the photoisomerization dynamics of the retinal chromophore of pR, using dispersed ultrafast pump-dump-probe spectroscopy. The application of a pump pulse initiates the photocycle, and with an appropriately tuned dump pulse applied at a time delay after the dump, the molecules in the initial stages of the photochemical process can be de-excited and driven back to the ground state. In this way, we were able to resolve an intermediate on the electronic ground state that represents chromophores that are unsuccessful in isomerization. In particular, the fractions of molecules that undergo slow isomerization (20 ps) have a high probability to enter this state rather than the isomerized K-state. On the ground state reaction surface, return to the stable ground state conformation via a structural or vibrational relaxation occurs in 2-3 ps. Inclusion of this intermediate in the kinetic scheme led to more consistent spectra of the retinal-excited state, and to a more accurate estimation of the quantum yield of isomerization (Phi = 0.4 at pH 6).

  2. Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.

    Science.gov (United States)

    Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina

    2014-04-22

    In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.

  3. Surgical pathology report defects: a College of American Pathologists Q-Probes study of 73 institutions.

    Science.gov (United States)

    Volmar, Keith E; Idowu, Michael O; Hunt, Jennifer L; Souers, Rhona J; Meier, Frederick A; Nakhleh, Raouf E

    2014-05-01

    The rate of surgical pathology report defects is an indicator of quality and it affects clinician satisfaction. To establish benchmarks for defect rates and defect fractions through a large, multi-institutional prospective application of standard taxonomy. Participants in a 2011 Q-Probes study of the College of American Pathologists prospectively reviewed all surgical pathology reports that underwent changes to correct defects and reported details regarding the defects. Seventy-three institutions reported 1688 report defects discovered in 360,218 accessioned cases, for an aggregate defect rate of 4.7 per 1000 cases. Median institutional defect rate was 5.7 per 1000 (10th to 90th percentile range, 13.5-0.9). Defect rates were higher in institutions with a pathology training program (8.5 versus 5.0 per 1000, P = .01) and when a set percentage of cases were reviewed after sign-out (median, 6.7 versus 3.8 per 1000, P = .10). Defect types were as follows: 14.6% misinterpretations, 13.3% misidentifications, 13.7% specimen defects, and 58.4% other report defects. Overall, defects were most often detected by pathologists (47.4%), followed by clinicians (22.0%). Misinterpretations and specimen defects were most often detected by pathologists (73.5% and 82.7% respectively, P benchmarking data on report defects and defect fractions using standardized taxonomy.

  4. Tritiated 2-deoxy-D-glucose as a probe for cell membrane permeability studies

    International Nuclear Information System (INIS)

    Walum, E.; Peterson, A.

    1982-01-01

    Tritiated 2-deoxy-D-glucose was taken up and phosphorylated by cultured cells of neuronal (NIE 115), glial (138 MG), muscle (L 6) and liver (BRL 123) origin. Upon perfusion the cells slowly released 2-deoxy-D-glucose 6-phosphate. The following values for rate constants, half-lives, and activation energies for the efflux were obtained: NIE 115: 0.0048 min -1 , 143 min, and 72 kJ mol -1 ; 138 MG: 0.0013 min -1 , 547 min, and 85 kJ mol -1 ; L 6: 0.0022 min -1 , 311 min, and 60 kJ mol -1 ; and BRL 123: 0.0013 min -1 , 528 min and 63 kJ mol -1 . When the cultures were perfused with buffer containing Triton X-100 a time- and concentration-dependent increase in the rate of efflux of 2-deoxy-D-glucose 6-phosphate was obtained. It is suggested that 2-deoxy-D-[ 3 H]glucose can be used as a probe in studies of general cell membrane permeability changes

  5. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy; Branagan, Nicole C.; Petrik, Igor D.; Miner, Kyle D.; Hu, Michael Y.; Zhao, Jiyong; Alp, E. Ercan; Lu, Yi

    2015-10-05

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.

  6. Probing the Interoceptive Network by Listening to Heartbeats: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Nina I Kleint

    Full Text Available Exposure to cues of homeostatic relevance (i.e. heartbeats is supposed to increase the allocation of attentional resources towards the cue, due to its importance for self-regulatory, interoceptive processes. This functional magnetic resonance imaging (fMRI study aimed at determining whether listening to heartbeats is accompanied by activation in brain areas associated with interoception, particularly the insular cortex. Brain activity was measured with fMRI during cue-exposure in 36 subjects while listening to heartbeats vs. sinus tones. Autonomic markers (skin conductance and subjective measures of state and trait anxiety were assessed. Stimulation with heartbeat sounds triggered activation in brain areas commonly associated with the processing of interoceptive information, including bilateral insular cortices, the inferior frontal operculum, and the middle frontal gyrus. A psychophysiological interaction analysis indicated a functional connectivity between the middle frontal gyrus (seed region and bilateral insular cortices, the left amygdala and the supplementary motor area. The magnitude of neural activation in the right anterior insular cortex was positively associated with autonomic arousal. The present findings indicate that listening to heartbeats induced activity in areas of the interoception network as well as changes in psychophysiological arousal and subjective emotional experience. As this approach constitutes a promising method for studying interoception in the fMRI environment, a clinical application in anxiety prone populations should be addressed by future studies.

  7. Application of laser resonance scattering to the study of high-temperature plasma-wall interaction

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Muraoka, Katsunori; Hamamoto, Makoto; Akazaki, Masanori; Miyazoe, Yasushi

    1981-01-01

    Studies on laser resonance scattering and its application to the study of high-temperature plasma-wall interaction are reviewed. The application of dye laser beam to resonant scattering method has been developed. This method is able to detect low density atoms. The fluorescent photon counts can be estimated for a two-level system and a three-level system. The S/N ratio, Which is in close connection with the detection limit, has been estimated. The doppler effect due to the thermal motion of atoms is taken into consideration. The calibration of the absolute number of atoms is necessary. Tunable coherent light is used as the light source for resonance scattering method. This is able to excite atoms strongly and to increase the detection efficiency. As dye lasers, a N 2 laser, a YAG laser, and a KrF excimer laser have been studied. In VUV region, rare gas or rare gas halide lasers can be used. The strong output power can be expected when the resonance lines of atoms meet the synchronizing region of the excimer laser. The resonance scattering method is applied to the detection of impurity metal atoms in plasma. The studies of laser systems for the detection of hydrogen atoms are also in progress. (Kato, T.)

  8. Probe Storage

    NARCIS (Netherlands)

    Gemelli, Marcellino; Abelmann, Leon; Engelen, Johannes Bernardus Charles; Khatib, M.G.; Koelmans, W.W.; Zaboronski, Olog; Campardo, Giovanni; Tiziani, Federico; Laculo, Massimo

    2011-01-01

    This chapter gives an overview of probe-based data storage research over the last three decades, encompassing all aspects of a probe recording system. Following the division found in all mechanically addressed storage systems, the different subsystems (media, read/write heads, positioning, data

  9. Expectations for neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Date, M.

    1993-01-01

    Neutrons have been used as microscopic probes to study structural and dynamical properties of various materials. In this paper I shall give a comparative study of the neutron research in the condensed matter physics with other typical microscopic methods such as X-rays, laser optics, magnetic resonances, Moessbauer effect and μSR. It is emphasized that the neutron study will extensively be important in future beyond the condensed matter physics. Chemistry, biology, earth sciences, material engineerings and medical sciences will become new frontiers for neutron study. (author)

  10. In vitro study on dental erosion provoked by various beverages using electron probe microanalysis.

    Science.gov (United States)

    Willershausen, B; Schulz-Dobrick, B

    2004-09-29

    Tooth erosion is often based on chemical processes, among others the use of soft drinks or diverse beverages. The aim of this in vitro study was to analyse the erosive potential of different acidic beverages. Over a time span of 6 hours, dental slices (n=6 slices per tooth) from fully retained wisdom teeth were incubated with different beverages (coca cola, ice tea with lemon, apple juice and white wine). The controls were incubated with a 0.9% sodium chloride solution under the same conditions (37 degrees C, humidified atmosphere of 5% CO2 and 95% air). The quantitative elementary analysis for calcium, phosphorus, oxygen and other trace elements in the dental slices in various depths ranging from 5 to 50 microm was carried out using an electron probe micro-analyser (Jeol JXA 8900RL). A beverage-induced loss of minerals, particularly of the 2 main components calcium and phosphorus, especially in the uppermost layers of the enamel down to a depth of 30 microm could be observed. In the depth of 10 microm, the following total mineral loss could be determined: white wine (16%), coca cola (14.5%), apple juice (6.5%) and ice tea with lemon (6.5%). A direct correlation between the loss of minerals and the pH value of the beverages was not observed, because of the buffering effect of the drinks. The conversion of the weight percentages from the chemical analysis of Ca and P to their atomic percentages showed that during erosion the 2 main components were not dissolved in significantly different percentages. In this study the erosive potential of the tested soft drinks and other beverages could be demonstrated. However, it must be considered that numerous modifying factors influence the enamel surface, so an extrapolation from the in vitro study to an in vivo situation can only be applied with caution.

  11. Europium-labeled epidermal growth factor and neurotensin: novel probes for receptor-binding studies.

    Science.gov (United States)

    Mazor, Ohad; Hillairet de Boisferon, Marc; Lombet, Alain; Gruaz-Guyon, Anne; Gayer, Batya; Skrzydelsky, Delphine; Kohen, Fortune; Forgez, Patricia; Scherz, Avigdor; Rostene, William; Salomon, Yoram

    2002-02-01

    We investigated the possibility of labeling two biologically active peptides, epidermal growth factor (EGF) and neurotensin (NT), with europium (Eu)-diethylenetriaminepentaacetic acid. More specifically, we tested them as probes in studying receptor binding using time-resolved fluorescence of Eu3+. The relatively simple synthesis yields ligands with acceptable binding characteristics similar to isotopically labeled derivatives. The binding affinity (Kd) of labeled Eu-EGF to human A431 epidermal carcinoid cells was 3.6 +/- 1.2 nM, similar to the reported Kd values of EGF, whereas the Kd of Eu-NT to human HT29 colon cancer cells (7.4 +/- 0.5 nM) or to Chinese hamster ovary (CHO) cells transfected with the high-affinity NT receptor (CHO-NT1) were about 10-fold higher than the Kd values of NT. The bioactivity of the Eu-labeled EGF as determined by stimulation of cultured murine D1 hematopoietic cell proliferation was nearly the same as that obtained with native EGF. The maximal stimulation of Ca2+ influx with NT and Eu-NT in CHO-NT1 cells was similar, but the respective K0.5 values were 20 pM and 1 nM, corresponding to differences in the binding affinities previously described. The results of these studies indicate that Eu labeling of peptide hormones and growth factor molecules ranging from 10(3) to 10(5) Da can be conveniently accomplished. Importantly, the Eu-labeled products are stable for approximately 2 years and are completely safe for laboratory use compared to the biohazardous radioligands. Thus, Eu-labeled peptides present an attractive alternative for commonly used radiolabeled ligands in biological studies in general and in receptor assays in particular.

  12. New structural studies of liquid crystal by reflectivity and resonant X-ray diffraction

    International Nuclear Information System (INIS)

    Fernandes, P.

    2007-04-01

    This memory presents three structural studies of smectic Liquid Crystals by reflectivity and resonant diffraction of X-rays. It is divided in five chapters. In the first a short introduction to Liquid Crystals is given. In particular, the smectic phases that are the object of this study are presented. The second chapter is consecrated to the X-ray experimental techniques that were used in this work. The three last chapters present the works on which this thesis can be divided. Chapter three demonstrates on free-standing films of MHPOBC (historic liquid crystal that possesses the antiferroelectric sub-phases) the possibility to extend the technique of resonant X-ray diffraction to liquid crystals without resonant element. In the fourth chapter the structure of the B 2 liquid crystal phase of bent-core molecules (or banana molecules) is elucidated by using resonant X-ray diffraction combined with polarization analysis of the diffracted beam. A model of the polarization of the resonant beam diffracted by four different structures proposed for the B 2 phase is developed in this chapter. In the fifth chapter a smectic binary mixture presenting a very original critical point of phase separation is studied by X-ray reflectivity and optical microscopy. A concentration gradient in the direction perpendicular to the plane of the film seems to be induced by the free-standing film geometry. The results of a simplified model of the system are compatible with this interpretation

  13. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques

    Science.gov (United States)

    Bačić, Goran; Pavićević, Aleksandra; Peyrot, Fabienne

    2015-01-01

    Free radicals, particularly reactive oxygen species (ROS), are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI) and paramagnetic stable free radicals – nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans) under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes. PMID:26827126

  14. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques

    Directory of Open Access Journals (Sweden)

    Goran Bačić

    2016-08-01

    Full Text Available Free radicals, particularly reactive oxygen species (ROS, are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI and paramagnetic stable free radicals – nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes.

  15. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Daniel [Los Alamos National Laboratory; Hsu, Scott C. [Los Alamos National Laboratory

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  16. IMPURITY SEGREGATION OF STAINLESS STEEL STUDIED BY ATOM-PROBE AND AUGER ELECTRON SPECTROSCOPY

    OpenAIRE

    Koguchi , Y.; Takahashi , K.; Ishikawa , Y.

    1987-01-01

    The surface compositions of type 304 stainless steel heated in vacuum at 600-900°C were determined by an atom-probe and Auger electron spectroscopic analysis. In addition to enrichment and depletion of alloying elements in the surface of the stainless steel, segregation of impurity elements such as carbon, nitrogen, phosphorus and sulfur is known to occur. In this paper the atom-probe was used to measure the impurity segregation in the grains as well as in the grain boundary while the AES was...

  17. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1986-01-01

    The article is contained in a booklet on the Revised Nuffield Advanced Physics Course, and concentrates on two techniques to illustrate how lasers probe the atomic nucleus. Both techniques employ resonance fluorescence spectroscopy for obtaining atomic transition energies. The first uses lasers to determine the change in the nuclear charge radius with isotope, the second concerns the use of lasers for ultrasensitive detection of isotopes and elements. The application of lasers in resonance ionization spectroscopy and proton decay is also described. (UK)

  18. Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, G; Althouse, W; Amanullah, R; Annis, J; Astier, P; Baltay, C; Barrelet, E; Basa, S; Bebek, C; Bergstrom, L; Bernstein, G; Bester, M; Bigelow, B; Blandford, R; Bohlin, R; Bonissent, A; Bower, C; Brown, M; Campbell, M; Carithers, W; Commins, E; Craig, W; Day, C; DeJongh, F; Deustua, S; Diehl, T; Dodelson, S; Ealet, A; Ellis, R; Emmet, W; Fouchez, D; Frieman, J; Fruchter, A; Gerdes, D; Gladney, L; Goldhaber, G; Goobar, A; Groom, D; Heetderks, H; Hoff, M; Holland, S; Huffer, M; Hui, L; Huterer, D; Jain, B; Jelinsky, P; Karcher, A; Kent, S; Kahn, S; Kim, A; Kolbe, W; Krieger, B; Kushner, G; Kuznetsova, N; Lafever, R; Lamoureux, J; Lampton, M; Fevre, OL; Levi, M; Limon, P; Lin, H; Linder, E; Loken, S; Lorenzon, W; Malina, R; Marriner, J; Marshall, P; Massey, R; Mazure, A; McKay, T; McKee, S; Miquel, R; Morgan, N; Mortsell, E; Mostek, N; Mufson, S; Musser, J; Nugent, P; Oluseyi, H; Pain, R; Palaio, N; Pankow, D; Peoples, J; Perlmutter, S; Prieto, E; Rabinowitz, D; Refregier, A; Rhodes, J; Roe, N; Rusin, D; Scarpine, V; Schubnell, M; Sholl, M; Smadja, G; Smith, RM; Smoot, G; Snyder, J; Spadafora, A; Stebbins, A; Stoughton, C; Szymkowiak, A; Tarle, G; Taylor, K; Tilquin, A; Tomasch, A; Tucker, D; Vincent, D; Lippe, HVD; Walder, J-P; Wang, G; Wester, W

    2004-05-12

    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy can be similarly measured to 5% for the present value w0 and ~0.1 for the time variation w'. The large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs.

  19. Study of resonant processes in plasmonic nanostructures for sensor applications (Conference Presentation)

    Science.gov (United States)

    Pirunčík, Jiří; Kwiecien, Pavel; Fiala, Jan; Richter, Ivan

    2017-05-01

    This contribution is focused on the numerical studies of resonant processes in individual plasmonic nanostructures, with the attention particularly given to rectangular nanoparticles and concominant localized surface plasmon resonance processes. Relevant models for the description and anylysis of localized surface plasmon resonance are introduced, in particular: quasistatic approximation, Mie theory and in particular, a generalized (quasi)analytical approach for treating rectangularly shaped nanostructures. The parameters influencing resonant behavior of nanoparticles are analyzed with special interest in morphology and sensor applications. Results acquired with Lumerical FDTD Solutions software, using finite-difference time-domain simulation method, are shown and discussed. Simulations were mostly performed for selected nanostructures composed of finite rectangular nanowires with square cross-sections. Systematic analysis is made for single nanowires with varying length, parallel couple of nanowires with varying gap (cut -wires) and selected dolmen structures with varying gap between one nanowire transversely located with respect to parallel couple of nanowires (in both in-plane and -out-of-plane arrangements). The dependence of resonant peaks of cross-section spectral behavior (absorption, scattering, extinction) and their tunability via suitable structuring and morphology changes are primarily researched. These studies are then followed with an analysis of the effect of periodic arrangements. The results can be usable with respect to possible sensor applications.

  20. DC Langmuir Probe for Measurement of Space Plasma: A Brief Review

    Directory of Open Access Journals (Sweden)

    Koichiro Oyama

    2015-09-01

    Full Text Available Herein, we discuss the in situ measurement of the electron temperature in the ionosphere/plasmasphere by means of DC Langmuir probes. Major instruments which have been reported are a conventional DC Langmuir probe, whose probe voltage is swept; a pulsed probe, which uses pulsed bias voltage; a rectification probe, which uses sinusoidal signal; and a resonance cone probe, which uses radio wave propagation. The content reviews past observations made with the instruments above. We also discuss technical factors that should be taken into account for reliable measurement, such as problems related to the contamination of electrodes and the satellite surface. Finally, we discuss research topics to be studied in the near future.

  1. A magnetic resonance study of 3d transition metals and thermal donors in silicon

    International Nuclear Information System (INIS)

    Wezep, D.A. van.

    1986-01-01

    This thesis describes a study of 3d-transition metal impurities in silicon (titanium and iron in particular) and a study of oxygen-related heat-treatment centers in silicon, both carried out mainly by magnetic resonances techniques like EPR and ENDOR. 119 refs.; 31 figs.; 14 tabs

  2. Study on frequency characteristics of wireless power transmission system based on magnetic coupling resonance

    Science.gov (United States)

    Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.

    2017-11-01

    In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.

  3. Visual activation in infants and young children studied by functional magnetic resonance imaging

    DEFF Research Database (Denmark)

    Born, Alfred Peter; Leth, H; Miranda Gimenez-Ricco, Maria Jo

    1998-01-01

    The purpose of this study was to determine whether visual stimulation in sleeping infants and young children can be examined by functional magnetic resonance imaging. We studied 17 children, aged 3 d to 48 mo, and three healthy adults. Visual stimulation was performed with 8-Hz flickering light...... through the sleeping childs' closed eyelids. Functional magnetic resonance imaging was performed with a gradient echoplanar sequence in a l.5-T magnetic resonance scanner. Six subjects were excluded because of movement artifacts; the youngest infant showed no response. In 10 children, we could demonstrate...... flow during activation. The different response patterns in young children and adults can reflect developmental or behavioral differences. Localization of the activation seemed to be age-dependent. In the older children and the adults, it encompassed the whole length of the calcarine sulcus, whereas...

  4. A study of the high frequency limitations of series resonant converters

    Science.gov (United States)

    Stuart, T. A.; King, R. J.

    1982-01-01

    A transformer induced oscillation in series resonant (SR) converters is studied. It may occur in the discontinuous current mode. The source of the oscillation is an unexpected resonant circuit formed by normal resonance components in series with the magnetizing inductance of the output transformers. The methods for achieving cyclic stability are: to use a half bridge SR converter where q0.5. Q should be as close to 1.0 as possible. If 0.5q1.0, the instability will be avoided if psi2/3q-1/3. The second objective was to investigate a power field effect transistor (FET) version of the SR converter capable of operating at frequencies above 100 KHz, to study component stress and losses at various frequencies.

  5. A DTI study to probe tumor microstructure and its connection with hypoxia.

    Science.gov (United States)

    Majumdar, Shreyan; Kotecha, Mrignayani; Triplett, William; Epel, Boris; Halpern, Howard

    2014-01-01

    Solid tumors have chaotic organization of blood vessels, disruptive nerve paths and muscle fibers that result in a hostile and heterogeneous microenvironment. These tumor regions are often hypoxic and resistant to radiation therapy. The knowledge of partial pressure of oxygen concentration (pO2), in conjunction with the information about tissue organization, can predict tissue health and may eventually be used in combination with intensity-modulated radiation therapy (IMRT) for targeted destruction of radiation-resistant areas, while sparing healthy tissues. Diffusion tensor imaging (DTI) based parameter fractional anisotropy (FA) can be used to assess organization of tissue microstructure, whereas the pO2 can be measured using electron paramagnetic resonance oxygen imaging (EPROI). This study is our first step to connect these two important physiological parameters. We calculated FA in fixed fibrosarcoma (FSa) grown in hind leg of nude mice (n = 6) using preclinical 9.4 T MRI. The FA in tumor region (0.34 ± 0.014) was found to be lower when compared to normal surrounding region (0.36 ± 0.013). We hypothesized that the change in FA is directly correlated with the change in oxygen concentration in tumor. We present preliminary in vivo results showing a positive correlation (R = 0.85, p = 0.017) between the FA and pO2 values acquired for MCa4 tumor (n = 1) using DTI and EPROI.

  6. Determination of lead at nanogram level in water samples by resonance light scattering technique using tetrabutyl ammonium bromide as a molecular probe

    Directory of Open Access Journals (Sweden)

    Yanru Yun

    2012-12-01

    Full Text Available A novel method of chemistry applicable to the determination of trace lead in water samples based on the resonance light scattering (RLS technique has been developed. In dilute phosphoric acid medium, in the presence of a large excess of I-, Pb(II can form [PbI4]2-, which further reacts with tetrabutyl ammonium bromide (TBAB to form an ion-association compound. This results in significant enhancement of RLS intensity and the appearance of the corresponding RLS spectral characteristics. The maximum scattering peak of the system exists at 402 nm. Under optimum conditions, there is a linear relationship between the relative intensity of RLS and concentration of Pb(II in the range of 0.04–1.8 μg/mL for the system with a low detection limit of 0.74 ng/mL for Pb(II. Based on this fact, a simple, rapid, and sensitive method has been developed for the determination of Pb(II at nanogram level by RLS technique using a common spectrofluorimeter. This analytical system was successfully applied to determining trace amounts of Pb(II in water samples that agree well with the results by atomic absorbance spectrometry (AAS.DOI: http://dx.doi.org/10.4314/bcse.v26i1.1

  7. Gold Nanoclusters@Ru(bpy)₃²⁺-Layered Double Hydroxide Ultrathin Film as a Cathodic Electrochemiluminescence Resonance Energy Transfer Probe.

    Science.gov (United States)

    Yu, Yingchang; Lu, Chao; Zhang, Meining

    2015-08-04

    Herein, it is the first report that a cathodic electrochemiluminescence (ECL) resonance energy transfer (ERET) system is fabricated by layer-by-layer (LBL) electrostatic assembly of CoAl layered double hydroxide (LDH) nanosheets with a mixture of blue BSA-gold nanoclusters (AuNCs) and Ru(bpy)3(2+) (denoted as AuNCs@Ru) on an Au electrode. The possible ECL mechanism indicates that the appearance of CoAl-LDH nanosheets generates a long-range stacking order of the AuNCs@Ru on an Au electrode, facilitating the occurrence of the ERET between BSA-AuNC donors and Ru(bpy)3(2+) acceptors on the as-prepared AuNCs@Ru-LDH ultrathin films (UTFs). Furthermore, it is observed that the cathodic ECL intensity can be quenched efficiently in the presence of 6-mercaptopurine (6-MP) in a linear range of 2.5-100 nM with a detection limit of 1.0 nM. On the basis of these interesting phenomena, a facile cathodic ECL sensor has successfully distinguished 6-MP from other thiol-containing compounds (e.g., cysteine and glutathione) in human serum and urine samples. The proposed sensing scheme opens a way for employing the layered UTFs as a platform for the cathodic ECL of Ru(bpy)3(2+).

  8. Total and fission cross-sections of 239Pu - statistical study of resonance parameters

    International Nuclear Information System (INIS)

    Derrien, H.; Blons, J.; Eggermann, C.; Michaudon, A.; Paya, D.; Ribon, P.

    1967-01-01

    The authors measured the total and fission cross-sections of 239 Pu with the linear accelerator at Saclay as a pulsed source of neutrons. The total cross-section was measured in the range from 4 to 700 eV and the best resolution used was 1.5 ns/m; the fission cross-section was measured between 4 eV and 6 keV, the best resolution having been 6 ns/m. The transmission measurements on five samples were made at the temperature of liquid nitrogen, and comparisons made with supplementary experiments at ambient temperature made it possible to determine the Doppler broadening factor (Δ = η√E). The resonances were identified from 4 to 500 eV in the total cross-section; the average level spacing was of the order of 2.4 eV. It would appear that, in this energy range, nearly all the levels were identified. The resonance parameters were determined by analysis of shape in conjunction with a least-squares programme on an IBM-7094 computer. The existence of a large number of broad resonances corresponding to very large fission widths has been shown to exist. Statistical study of the fission widths actually shows the existence of two families of resonances, one corresponding to a mean Γ f of the order of 45 meV and the other to a mean Γ/f of about 750 meV. The authors were therefore able to postulate a classification of resonances in terms of two spin states, the level population ratio in each family being: (2J 1 +1)/(2J 2 +1) = 1/3; J 1 = 0 corresponds to the broad resonances and J 2 = 1 to the narrow ones. The partial widths for radiative capture fluctuate slightly around a mean value of 40 meV. By using a multilevel programme, the authors were able to investigate the extent to which the existence of large fission widths might give rise to fictitious resonances (quasi-resonances) and perturbations and also to make a statistical study of the resonance parameters. (author) [fr

  9. Sensitivity study of micro four-point probe measurements on small samples

    DEFF Research Database (Denmark)

    Wang, Fei; Petersen, Dirch Hjorth; Hansen, Torben Mikael

    2010-01-01

    probes than near the outer ones. The sensitive area is defined for infinite film, circular, square, and rectangular test pads, and convergent sensitivities are observed for small samples. The simulations show that the Hall sheet resistance RH in micro Hall measurements with position error suppression...

  10. Theoretical study of cylindrical energy analyzers for MeV range heavy ion beam probes

    International Nuclear Information System (INIS)

    Fujisawa, A.; Hamada, Y.

    1993-07-01

    A cylindrical energy analyzer with drift spaces is shown to have a second order focusing for beam incident angle when the deflection angle is properly chosen. The analyzer has a possibility to be applied to MeV range heavy ion beam probes, and will be also available for accurate particle energy measurements in many other fields. (author)

  11. Preclinical Study on GRPR-Targeted (68)Ga-Probes for PET Imaging of Prostate Cancer

    DEFF Research Database (Denmark)

    Sun, Yao; Ma, Xiaowei; Zhang, Zhe

    2016-01-01

    Gastrin-releasing peptide receptor (GRPR) targeted positron emission tomography (PET) is a highly promising approach for imaging of prostate cancer (PCa) in small animal models and patients. Developing a GRPR-targeted PET probe with excellent in vivo performance such as high tumor uptake, high...

  12. Hadron physics studied at TJNAF with the electro-magnetic and weak probes

    International Nuclear Information System (INIS)

    Kox, S.

    2005-01-01

    This contribution presents general features of the hadron physics program developed at the Thomas Jefferson Laboratory. This is made using the EM and Weak probes provided by the electron beams of the CEBAF accelerator and address mostly the non-perturbative regime of QCD. (author)

  13. A subnanomolar fluorescent probe for protein kinase CK2 interaction studies

    DEFF Research Database (Denmark)

    Enkvist, Erki; Viht, Kaido; Bischoff, Nils

    2012-01-01

    of the functions of CK2 could be facilitated by the application of small-molecule fluorescent probes that bind to the active site of the enzyme with high affinity and selectivity. We have used a bisubstrate approach for the development of a highly potent inhibitor of CK2. 4,5,6,7-Tetrabromo-1H-benzimidazole...

  14. Luminescence of MnS in glasses: spectroscopic probe for the study of thermal phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Menassa, P E

    1984-01-01

    A new approach for studying thermal phase separation in sodium borosilicate glasses using MnS as a luminescent probe is investigated. Seventy-one samples of glasses activated by MnS inside and around the Na2O.B2O3.SiO2 miscibility gaps were prepared. These samples were then phase separated by dry thermal treatment. It is shown that on addition of MnO, the ternary Na2O.B2O3.SiO2 system behaved like other quaternary systems of the type X2O.MO.B2O3.SiO2 (X = Na, K; M = Mg, Ca, Ba, Zn). Scanning electron microscopy and X-ray microanalysis demonstrated that manganese concentrates preferentially in the boron-rich phase. This, analysis, in conjuction with a comparison of MnS emission spectra of upheated and heat treated glasses shows that the glasses are submicroscopically phase separated when prepared. The decay-time analysis of MnS luminescence indicates that the low energy emission band arises from MnS in the boron-rich phase while the high energy emission is due to MnS in the silica-rich phase. The difference in the crystal field parameters obtained from the excitation spectra of the two emission bands shows that the high energy emission band is from MnS in tetrahedral sites while the low energy emission band is from MnS in an octahedral environment.

  15. Surface Photochemistry: Benzophenone as a Probe for the Study of Modified Cellulose Fibres

    Directory of Open Access Journals (Sweden)

    L. F. Vieira Ferreira

    2007-01-01

    Full Text Available This work reports the use of benzophenone, a very well characterized probe, to study new hosts (i.e., modified celluloses grafted with alkyl chains bearing 12 carbon atoms by surface esterification. Laser-induced room temperature luminescence of air-equilibrated or argon-purged solid powdered samples of benzophenone adsorbed onto the two modified celluloses, which will be named C12-1500 and C12-1700, revealed the existence of a vibrationally structured phosphorescence emission of benzophenone in the case where ethanol was used for sample preparation, while a nonstructured emission of benzophenone exists when water was used instead of ethanol. The decay times of the benzophenone emission vary greatly with the solvent used for sample preparation and do not change with the alkylation degree in the range of 1500–1700 micromoles of alkyl chains per gram of cellulose. When water was used as a solvent for sample preparation, the shortest lifetime for the benzophenone emission was observed; this result is similar to the case of benzophenone adsorbed onto the “normal” microcrystalline cellulose surface, with this latter case previously reported by Vieira Ferreira et al. in 1995. This is due to the more efficient hydrogen abstraction reaction from the glycoside rings of cellulose when compared with hydrogen abstraction from the alkyl chains of the modified celluloses. Triplet-triplet transient absorption of benzophenone was obtained in both cases and is the predominant absorption immediately after laser pulse, while benzophenone ketyl radical formation occurs in a microsecond time scale both for normal and modified celluloses.

  16. Psychosis and autism: magnetic resonance imaging study of brain anatomy.

    LENUS (Irish Health Repository)

    Toal, Fiona

    2009-05-01

    Autism-spectrum disorder is increasingly recognised, with recent studies estimating that 1% of children in South London are affected. However, the biology of comorbid mental health problems in people with autism-spectrum disorder is poorly understood.

  17. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    Science.gov (United States)

    Santavicca, Daniel F.; Adams, Jesse K.; Grant, Lierd E.; McCaughan, Adam N.; Berggren, Karl K.

    2016-06-01

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.

  18. Resonant x-ray scattering study of the antiferroelectric and ferrielectric phases in liquid crystal devices

    International Nuclear Information System (INIS)

    Matkin, L. S.; Watson, S. J.; Gleeson, H. F.; Pindak, R.; Pitney, J.; Johnson, P. M.; Huang, C. C.; Barois, P.; Levelut, A.-M.; Srajer, G.

    2001-01-01

    Resonant x-ray scattering has been used to investigate the interlayer ordering of the antiferroelectric and ferrielectric smectic C * subphases in a device geometry. The liquid crystalline materials studied contain a selenium atom and the experiments were carried out at the selenium K edge allowing x-ray transmission through glass. The resonant scattering peaks associated with the antiferroelectric phase were observed in two devices containing different materials. It was observed that the electric-field-induced antiferroelectric to ferroelectric transition coincides with the chevron to bookshelf transition in one of the devices. Observation of the splitting of the antiferroelectric resonant peaks as a function of applied field also confirmed that no helical unwinding occurs at fields lower than the chevron to bookshelf threshold. Resonant features associated with the four-layer ferrielectric liquid crystal phase were observed in a device geometry. Monitoring the electric field dependence of these ferrielectric resonant peaks showed that the chevron to bookshelf transition occurs at a lower applied field than the ferrielectric to ferroelectric switching transition

  19. Electron spin resonance studies of iron-group impurities in beryllium fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Griscom, D L; Stapelbroek, M [Naval Research Lab., Washington, DC (USA); Weber, M J [California Univ., Livermore (USA). Lawrence Livermore National Lab.

    1980-11-01

    Electron spin resonance investigations have been carried out on unirradiated BeF/sub 2/ glasses. Two relatively intense resonances were observed in a water-free distilled glass known to contain 49 ppM Ni, 13 ppM Mn, and < 20 ppM Fe. One of these was the paramagnetic resonance spectrum of Mn/sup 2 +/. Analysis of the observed /sup 19/F superhyperfine structure demonstrated this manganese to occupy distorted octahedral sites in the glass network. The second resonance was shown by temperature and frequency dependence studies, coupled with computer line shape analysis, to be a ferromagnetic resonance signal due to precipitated ferrite phases. The data suggest that these ferrites are somewhat heterogeneous and most likely comprize magnetite-like phases similar to NiFe/sub 2/O/sub 4/. An optical extinction curve rising into the ultraviolet with an approximate lambda/sup -4/ dependence is tentatively ascribed to light scattering by ferrite particles approximately 1000 Angstroems in diameter.

  20. Synthesis and Evaluation of Novel Imaging Probes for the Study of Glycosylation and Fatty Acid Uptake In Vivo

    OpenAIRE

    Cohen, Allison Stacey

    2011-01-01

    Imaging represents a powerful method for advancing our understanding of biology. In particular, it has been used as a tool for the diagnosis and monitoring of diseases in vivo. Bioluminescence imaging (BLI) represents one of the molecular imaging modalities and has been applied to the study of numerous processes in cells and in animals. However, there is a need for the design of new bioluminescence imaging probes for the study of several key metabolic processes. Activatable bioluminescenc...