Parton recombination model including resonance production. RL-78-040
International Nuclear Information System (INIS)
Roberts, R.G.; Hwa, R.C.; Matsuda, S.
1978-05-01
Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references
Parton recombination model including resonance production. RL-78-040
Energy Technology Data Exchange (ETDEWEB)
Roberts, R. G.; Hwa, R. C.; Matsuda, S.
1978-05-01
Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references.
Mkhitaryan, V. V.; Danilović, D.; Hippola, C.; Raikh, M. E.; Shinar, J.
2018-01-01
We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π -conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing a monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I /I is ∝PL within the PPR model, while it is ∝PL2 crossing over to PL3 within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.
Resonances in dissociative recombination: Trends and patterns
Energy Technology Data Exchange (ETDEWEB)
Orel, A E; Ngassam, V; Royal, J [Department of Applied Science, University of California, Davis (United States); Roos, J B; Larson, A, E-mail: aeorel@ucdavis.ed [Department of Theoretical Chemistry, Royal Institute of Technology, Stockholm (Sweden)
2009-11-15
In dissociative recombination, the kinetic energy of the incident electron is transferred into excitation of the electrons of the target ion and then into kinetic energy of the fragments. In general, this proceeds via a resonance where the electron is temporarily trapped by the ion, leading to efficient energy transfer. The study of dissociative recombination is the study of these resonances, Rydberg states converging to the ground and excited states of the ion. For a number of systems, we have studied the electronic states involved in dissociative recombination, including the ground and excited states of the ion, the resonant states and the bound Rydberg states of the system, by combining electron scattering calculations with multi-reference configuration interaction quantum chemistry calculations. We will report on trends and patterns in these resonance states. We will discuss studies of dissociative recombination of the rare-gas ions, moving down the periodic table from He{sup +}{sub 2} to Ne{sup +}{sub 2} to Ar{sup +}{sub 2}, where the ground electronic state of the ion is constant, but its polarizability increases. We will also present results on isoelectronic polyatomic systems, such as HCO{sup +} and HCNH{sup +}, as well as the effects of changing the electronic structure slightly such as HCN{sup +}/HNC{sup +} and H{sub 2}CO{sup +}.
International Nuclear Information System (INIS)
Hwa, R.C.
1978-08-01
Low P/sub T/ meson production in hadronic collisions is described in the framework of the parton model. The recombination of quark and antiquark is suggested as the dominant mechanism in the large x region. Phenomenological evidences for the mechanism are given. The application to meson initiated reactions yields the quark distribution in mesons. 21 references
Review of Parton Recombination Models
International Nuclear Information System (INIS)
Bass, Steffen A
2006-01-01
Parton recombination models have been very successful in explaining data taken at RHIC on hadron spectra and emission patterns in Au+Au collisions at transverse momenta above 2 GeV/c, which have exhibited features which could not be understood in the framework of basic perturbative QCD. In this article I will review the current status on recombination models and outline which future challenges need to be addressed by this class of models
High Rydberg resonances in dielectronic recombination of pb(79+).
Brandau, C; Bartsch, T; Hoffknecht, A; Knopp, H; Schippers, S; Shi, W; Müller, A; Grün, N; Scheid, W; Steih, T; Bosch, F; Franzke, B; Kozhuharov, C; Mokler, P H; Nolden, F; Steck, M; Stöhlker, T; Stachura, Z
2002-07-29
Dielectronic recombination resonances of Pb (79+) associated with 2s(1/2)-->2p(1/2) excitations were measured at the heavy-ion storage ring ESR at GSI. The fine structure of the energetically lowest resonance manifold Pb (78+)(1s(2)2p(1/2)20l(j)) at around 18 eV could partially be resolved, and rate coefficients on an absolute scale were obtained. A comparison of the experimental data with results of a fully relativistic theoretical approach shows that high-angular-momentum components up to j=31/2 significantly contribute to the total resonance strength demonstrating the necessity to revise the widespread notion of negligible high-angular-momentum contributions at least for very highly charged ions.
Wave-packet approach to Rydberg resonances in dissociative recombination
International Nuclear Information System (INIS)
Morisset, Sabine; Pichl, Lukas; Orel, Ann E.; Schneider, Ioan F.
2007-01-01
We report the time-dependent approach to resonant electron capture into Rydberg states in collisions with molecular cations at low impact energy, as an alternative to the method based on multichannel quantum defect theory (MQDT), and present the results for the HD + ion. The propagation of the initial wave function on 13 Rydberg states (besides one valence state) correctly describes the indirect dissociative recombination mechanism in the time domain. Notably, the nonlocal coupling operator between the ionization and dissociation channels is accounted for in the indirect process, extending previous work on the case of direct coupling. The present approach compares to the MQDT framework with remarkable precision: resonant structures in the cross section correctly emerge from the wave-packet propagation; the time-dependent result also forms a cross section envelope for the dense series of ultrafine MQDT resonances corresponding to the quasicontinuous part of the Rydberg state manifold
Recombination plus fragmentation model at RHIC: elliptic flow
Energy Technology Data Exchange (ETDEWEB)
Nonaka, C [Department of Physics, Duke University, Durham, NC 27708 (United States); Fries, R J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Mueller, B [Department of Physics, Duke University, Durham, NC 27708 (United States); Bass, S A [Department of Physics, Duke University, Durham, NC 27708 (United States); RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Asakawa, M [Department of Physics, Osaka University, Toyonaka 560-0043 (Japan)
2005-04-01
We discuss hadron production in relativistic heavy-ion collisions in the framework of the recombination and fragmentation model. We propose elliptic flow as a useful tool for exploring final interactions of resonances, the hadron structure of exotic particles and the phase structure of the reaction.
Cumulative particle production in the quark recombination model
International Nuclear Information System (INIS)
Gavrilov, V.B.; Leksin, G.A.
1987-01-01
Production of cumulative particles in hadron-nuclear inteactions at high energies is considered within the framework of recombination quark model. Predictions for inclusive cross sections of production of cumulative particles and different resonances containing quarks in s state are made
Accelerated Recombination in Cold Dense Plasmas with Metastable Ions due to Resonant Deexcitation
International Nuclear Information System (INIS)
Ralchenko, Yu.V.; Maron, M.
2001-01-01
In a recombining plasma the metastable states are known to accumulate population thereby slowing down the recombination process. We show that a proper account of the doubly-excited autoionizing states, populated through collisional 3-body recombination of metastable ions, results in a significant acceleration of recombination. 3-body recombination followed by collisional (de)excitations and autoionization effectively produces deexcitation via the following chain of elementary events: A fully time-dependent collisional-radiative (CR) modeling for stripped ions of carbon recombining in a cold dense plasma demonstrates an order of magnitude faster recombination of He-like ions. The CR model used in calculations is discussed in details
Theoretical models for recombination in expanding gas
International Nuclear Information System (INIS)
Avron, Y.; Kahane, S.
1978-09-01
In laser isotope separation of atomic uranium, one is confronted with the theoretical problem of estimating the concentration of thermally ionized uranium atoms. To investigate this problem theoretical models for recombination in an expanding gas and in the absence of local thermal equilibrium have been constructed. The expansion of the gas is described by soluble models of the hydrodynamic equation, and the recombination by rate equations. General results for the freezing effect for the suitable ranges of the gas parameters are obtained. The impossibility of thermal equilibrium in expanding two-component systems is proven
Three-Body Recombination near a Narrow Feshbach Resonance in Li 6
Li, Jiaming; Liu, Ji; Luo, Le; Gao, Bo
2018-05-01
We experimentally measure and theoretically analyze the three-atom recombination rate, L3, around a narrow s -wave magnetic Feshbach resonance of Li 6 - Li 6 at 543.3 G. By examining both the magnetic field dependence and, especially, the temperature dependence of L3 over a wide range of temperatures from a few μ K to above 200 μ K , we show that three-atom recombination through a narrow resonance follows a universal behavior determined by the long-range van der Waals potential and can be described by a set of rate equations in which three-body recombination proceeds via successive pairwise interactions. We expect the underlying physical picture to be applicable not only to narrow s wave resonances, but also to resonances in nonzero partial waves, and not only at ultracold temperatures, but also at much higher temperatures.
Some recent developments in the recombination model
International Nuclear Information System (INIS)
Hwa, R.C.
1979-01-01
A critical review of the recombination model for hadron production at low P/sub T/ is first given, emphasizing not so much the successes as unanswered questions that the model faces. A systematic program to answer some of the basic questions is then developed. The theoretical framework is quantum chromodynamics. First, in what may appear as a digression, the possibility of formation of valence quark clusters (called valons) in a nucleon due to gluon bremsstrahlung and quark-pair creation is considered. Evidences are found not only for the valons in neutrino scattering data, but also indications for their momentum distribution in a nucleon. When similar considerations are applied to a meson, the meaning of the recombination function is discussed and its normalization as well as its shape are determined. Next, the problem of quark decay in a hard scattering process (e.g., pion production in e + e - annihilation) is considered. The joint distribution of partons in a quark jet is determined in QCD. The quark decay function for pions in the recombination model is then obtained with excellent fit to the data. Similar investigation is applied to the problem of photoproduction of pions in the fragmentation region; again good agreement with data is achieved. The results indicate the reliability of the recombination model when the two-parton distributions can be calculated in QCD. Finally, hadron initiated reactions are considered. A duality between quark recombination and valon fragmentation is suggested. The picture is consistent with dual Regge model. A possible way to determine the inclusive distribution in the context of QCD is suggested
Higher-order resonant electronic recombination as a manifestation of configuration interaction
International Nuclear Information System (INIS)
Beilmann, C; Amaro, P; Tashenov, S; Bekker, H; Harman, Z; Crespo López-Urrutia, J R
2013-01-01
Theoretical and experimental investigations of higher-order electron–ion recombination resonances including inter-shell excitations are presented for L-shell ions of Kr with the aim of examining details of atomic structure calculations. The particular importance of electron–electron interaction and configuration mixing effects for these recombination processes enables their use for detailed tests of electron correlation effects. A test of the required level of considered mixing configurations is presented and further experiments involving higher-order recombination channels are motivated. (paper)
Modelling of procecces in catalytic recombiners
International Nuclear Information System (INIS)
Boehm, J.
2007-01-01
In order to achieve a high degree of safety in nuclear power plants and prevent possible accident scenarios, their consequences are calculated and analysed with numeric codes. One of the most important part of nuclear safety research of hazardous incidents are development and validation of these numeric models, which are implemented into accident codes. The severe hydrogen release during a core meltdown is one of the considered scenario of performed accident analyses. One of the most important measure for the elimination of the hydrogen is catalytic recombiners. Converting the hydrogen with the atmospheric oxygen to water vapor in an exothermic reaction will prevent possible detonation of the hydrogen/air atmosphere. Within the dissertation the recombiner simulation REKO-DIREKT was developed and validated by an extensive experimental database. The performance of recombiners with regard to the conversion of the hydrogen and the temperature development is modelled. The REKO-DIREKT program is unique and has made significant revolution in research of hydrogen safety. For the first time it has been possible to show the performance of the recombiner so great in detail by using REKO-DIREKT. In the future engineers of nuclear power plants will have opportunity to have precise forecasts about the process of the possible accidents with hydrogen release. Also with presence of water vapor or with oxygen depletion which are included in the model. The major discussion of the hydrogen ignition at hot catalyst steel plates can be evaluated in the future with REKO-DIREKT more reliably than the existing used models. (orig.)
Creating Porcine Biomedical Models Through Recombineering
Directory of Open Access Journals (Sweden)
Lawrence B. Schook
2006-03-01
Full Text Available Recent advances in genomics provide genetic information from humans and other mammals (mouse, rat, dog and primates traditionally used as models as well as new candidates (pigs and cattle. In addition, linked enabling technologies, such as transgenesis and animal cloning, provide innovative ways to design and perform experiments to dissect complex biological systems. Exploitation of genomic information overcomes the traditional need to choose naturally occurring models. Thus, investigators can utilize emerging genomic knowledge and tools to create relevant animal models. This approach is referred to as reverse genetics. In contrast to Ã¢Â€Â˜forward geneticsÃ¢Â€Â™, in which gene(s responsible for a particular phenotype are identified by positional cloning (phenotype to genotype, the Ã¢Â€Â˜reverse geneticsÃ¢Â€Â™ approach determines the function of a gene and predicts the phenotype of a cell, tissue, or organism (genotype to phenotype. The convergence of classical and reverse genetics, along with genomics, provides a working definition of a Ã¢Â€Â˜genetic modelÃ¢Â€Â™ organism (3. The recent construction of phenotypic maps defining quantitative trait loci (QTL in various domesticated species provides insights into how allelic variations contribute to phenotypic diversity. Targeted chromosomal regions are characterized by the construction of bacterial artificial chromosome (BAC contigs to isolate and characterize genes contributing towards phenotypic variation. Recombineering provides a powerful methodology to harvest genetic information responsible for phenotype. Linking recombineering with gene-targeted homologous recombination, coupled with nuclear transfer (NT technology can provide Ã¢Â€Â˜clonesÃ¢Â€Â™ of genetically modified animals.
International Nuclear Information System (INIS)
Kikuchi, Nobuo.
1983-01-01
Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)
International Nuclear Information System (INIS)
Osumi, Morimichi.
1979-01-01
Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)
Bakhmachuk, A.; Gorbatiuk, O.; Rachkov, A.; Dons'koi, B.; Khristosenko, R.; Ushenin, I.; Peshkova, V.; Soldatkin, A.
2017-02-01
The developed surface plasmon resonance (SPR) biosensor based on the recombinant Staphylococcal protein A with an additional cysteine residue (SPA-Cys) used as a biorecognition component showed a good selectivity and sensitivity for the immunoglobulin detection. The developed biosensor with SPA-Cys-based bioselective element can also be used as a first step of immunosensor creation. The successful immobilization of SPA-Cys on the nanolayer gold sensor surface of the SPR spectrometer was performed. The efficiency of blocking nonspecific sorption sites on the sensor surface with milk proteins, gelatin, BSA, and HSA was studied, and a rather high efficiency of using gelatin was confirmed. The SPR biosensor selectively interacted with IgG and did not interact with the control proteins. The linear dependence of the sensor response on the IgG concentration in the range from 2 to 10 μg/ml was shown. Using the calibration curve, the IgG concentration was measured in the model samples. The determined concentrations are in good agreement ( r 2 = 0.97) with the given concentration of IgG.
Ramirez, Lisa; Shekhtman, Alexander; Pande, Jayanti
2018-04-30
In recent years, there has been a resurgence of interest in melittin and its variants as their therapeutic potential has become increasingly evident. Melittin is a 26-residue peptide and a toxic component of honey bee venom. The versatility of melittin in interacting with various biological substrates, such as membranes, glycosaminoglycans, and a variety of proteins, has inspired a slew of studies that aim to improve our understanding of the structural basis of such interactions. However, these studies have largely focused on melittin solutions at high concentrations (>1 mM), even though melittin is generally effective at lower (micromolar) concentrations. Here we present high-resolution nuclear magnetic resonance studies in the lower-concentration regime using a novel method to produce isotope-labeled ( 15 N and 13 C) recombinant melittin. We provide residue-specific structural characterization of melittin in dilute aqueous solution and in 2,2,2-trifluoroethanol/water mixtures, which mimic melittin structure-function and interactions in aqueous and membrane-like environments, respectively. We find that the cis-trans isomerization of Pro14 is key to changes in the secondary structure of melittin. Thus, this study provides residue-specific structural information about melittin in the free state and in a model of the substrate-bound state. These results, taken together with published work from other laboratories, reveal the peptide's structural versatility that resembles that of intrinsically disordered proteins and peptides.
Vetoshkin, Evgeny; Babikov, Dmitri
2007-09-28
For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.
Model for resonant plasma probe.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue
2007-04-01
This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.
International Nuclear Information System (INIS)
Saalfrank, H.
1985-01-01
Air containing hydrogen can be oxidized by heating in a container called a recombiner, in order to avoid the collection of hydrogen. The container is long and a large number of straight heating bars are arranged in parallel in it and they are flanged to a lid. The heating bars are surrounded by tubes, in order to obtain good heat transfer by a narrow annular gap. (orig.) [de
Correlations in the Parton Recombination Model
Energy Technology Data Exchange (ETDEWEB)
Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); RIKEN BNL Research Center, Brookhaven Nat. Lab., Upton, NY 11973 (United States); Fries, R.J. [School of Physics and Astronomy, Univ. of Minnesota, Minneapolis, MN 55455 (United States); Mueller, B. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States)
2006-08-07
We describe how parton recombination can address the recent measurement of dynamical jet-like two particle correlations. In addition we discuss the possible effect realistic light-cone wave-functions including higher Fock-states may have on the well-known elliptic flow valence-quark number scaling law.
Modelling of the operational behaviour of passive autocatalytic recombiners
International Nuclear Information System (INIS)
Schwarz, Ulrich
2011-01-01
Due to severe accidents in nuclear power plants, a significant amount of hydrogen can be produced. In pressurized water reactors, a possible and wide-spread measurement is the use of auto-catalytic recombiners. There are numerous numerical models describing the operational behaviour of recombiners for containment codes. The numerical model REKO-DIREKT was developed at the Forschungszentrum Juelich. This model describes the chemical reaction on the catalytic sheets by a physical model, as opposed to the usual codes based on empirical correlations. Additionally, there have been experimental studies concerning the catalytic recombination of hydrogen since the 1990s. The aim of this work is the further development of the program REKO-DIREKT to an independent recombiner model for severe accident and containment codes. Therefore, the catalyst model already existed has been submitted by a parameter optimization with an experimental database expanded during this work. In addition, a chimney model has been implemented which allows the calculation of the free convection flow through the recombiner housing due to the exothermal reaction. This model has been tested by experimental data gained by a recently built test facility. The complete recombiner model REKO-DIREKT has been validated by data from literature. Another aim of this work is the derivation of the reaction kinetics for recombiner designs regarding future reactor concepts. Therefore, experimental studies both on single catalytic coated meshes as well as on two meshes installed in a row have been performed in laboratory scale. By means of the measured data, a theoretical approach for the determination of the reaction rate has been derived.
Photoionization and Recombination
Nahar, Sultana N.
2000-01-01
Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.
Dielectronic recombination and resonant transfer excitation processes for helium-like krypton
Institute of Scientific and Technical Information of China (English)
Hu Xiao-Li; Qu Yi-Zhi; Zhang Song-Bin; Zhang Yu
2012-01-01
The relativistic configuration interaction method is employed to calculate the dielectronic recombination (DR) cross sections of helium-like krypton via the 1s21nl' (n =2,3,...,15) resonances.Then,the resonant transfer excitation (RTE) processes of Kr34+ colliding with H,He,H2,and CHx (x =0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2121' to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H2.For CHx (x =0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CHx,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,ls) and CH4(1t2,2a1,1a1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1％,19.9％,and 0.2％ between 2p-1t2,2s-2a1,and 1s-1a1 orbitals,respectively.
Geometrical optics model of Mie resonances
Roll; Schweiger
2000-07-01
The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.
International Nuclear Information System (INIS)
Laporta, V.; Chakrabarti, K.; Celiberto, R.; Janev, R. K.; Mezei, J. Zs.; Niyonzima, S.; Tennyson, J.; Schneider, I.F.
2017-01-01
A theoretical study of resonant vibrational excitation, dissociative recombination and dissociative excitation processes of the beryllium monohydride cation, BeH"+ , induced by electron impact, is reported. Full sets of ro-vibrationally-resolved cross sections and of the corresponding Maxwellian rate coefficients are presented for the three processes. Particular emphasis is given to the high-energy behaviour. Potential curves of "2σ"+, "2σ and "2δ symmetries and the corresponding resonance widths, obtained from R-matrix calculations, provide the input for calculations which use a local complex-potential model for resonant collisions in each of the three symmetries. Rotational motion of nuclei and isotopic effects are also discussed. The relevant results are compared with those obtained using a multichannel quantum defect theory method. Full results are available from the Phys4Entry database.
Modeling of supermodes in coupled unstable resonators
International Nuclear Information System (INIS)
Townsend, S.S.
1986-01-01
A general formalism describing the supermodes of an array of N identical, circulantly coupled resonators is presented. The symmetry of the problem results in a reduction of the N coupled integral equations to N decoupled integral equations. Each independent integral equation defines a set of single-resonator modes derived for a hypothetical resonator whose geometry resembles a member of the real array with the exception that all coupling beams are replaced by feedback beams, each with a prescribed constant phase. A given array supermode consists of a single equivalent resonator mode appearing repetitively in each resonator with a prescribed relative phase between individual resonators. The specific array design chosen for example is that of N adjoint coupled confocal unstable resonators. The impact of coupling on the computer modeling of this system is discussed and computer results for the cases of two- and four-laser coupling are presented
Schippers, Stefan
2008-01-01
Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...
Bayesian modeling of recombination events in bacterial populations
Directory of Open Access Journals (Sweden)
Dowson Chris
2008-10-01
Full Text Available Abstract Background We consider the discovery of recombinant segments jointly with their origins within multilocus DNA sequences from bacteria representing heterogeneous populations of fairly closely related species. The currently available methods for recombination detection capable of probabilistic characterization of uncertainty have a limited applicability in practice as the number of strains in a data set increases. Results We introduce a Bayesian spatial structural model representing the continuum of origins over sites within the observed sequences, including a probabilistic characterization of uncertainty related to the origin of any particular site. To enable a statistically accurate and practically feasible approach to the analysis of large-scale data sets representing a single genus, we have developed a novel software tool (BRAT, Bayesian Recombination Tracker implementing the model and the corresponding learning algorithm, which is capable of identifying the posterior optimal structure and to estimate the marginal posterior probabilities of putative origins over the sites. Conclusion A multitude of challenging simulation scenarios and an analysis of real data from seven housekeeping genes of 120 strains of genus Burkholderia are used to illustrate the possibilities offered by our approach. The software is freely available for download at URL http://web.abo.fi/fak/mnf//mate/jc/software/brat.html.
Hyperon resonances in SU(3) soliton models
International Nuclear Information System (INIS)
Scoccola, N.N.
1990-01-01
Hyperon resonances excited in kaon-nucleon scattering are investigated in the framework of an SU(3) soliton model in which kaon degrees of freedom are treated as small fluctuations around an SU(2) soliton. For partial waves l≥2 the model predicts correctly the quantum numbers and average excitation energies of most of the experimentally observed Λ and Σ resonances. Some disagreements are found for lower partial waves. (orig.)
International Nuclear Information System (INIS)
Okazaki, Masaharu; Tai, Yutaka; Toriyama, Kazumi
1993-01-01
The optically-detected ESR (ODESR) spectrum and magnetic field dependence on recombination fluorescence were observed for X-ray irradiated pyrene-doped polystyrene at temperatures of 242-348 K. The ODESR intensity as a function of the pyrene concentration, 0.1-8.9 wt%, showed an unusual minimum at about 1.0%. Two phases were separated in the magnetic field dependence of the fluorescence: one was sharp and saturates at fields of over 50 mT, while the other was broad with a dip at around 60-150 mT. The cause of this dip was naturally attributed to the ST -1 level crossing. The sharp magnetic field effect also showed a minimum at around a concentration of 1.0 wt%. These novel findings have been interpreted using a recombination model modified from the previous one for pyrene-doped ethylene-propylene rubber and polyethylene. The essential points of the present model are: (1) although electron hopping within the polystyrene molecule is rapid, electron transfer at the last step of recombination between the polystyrene anion and the pyrene cation proceeds at a moderate rate; (2) the hole-transfer rate in the polymer chain is moderate; (3) electron hopping between the doped pyrene molecules is very much dependent on the concentration; (4) hole hopping between the pyrenes is inhibited. (author)
Stochastic resonance in models of neuronal ensembles
International Nuclear Information System (INIS)
Chialvo, D.R.; Longtin, A.; Mueller-Gerkin, J.
1997-01-01
Two recently suggested mechanisms for the neuronal encoding of sensory information involving the effect of stochastic resonance with aperiodic time-varying inputs are considered. It is shown, using theoretical arguments and numerical simulations, that the nonmonotonic behavior with increasing noise of the correlation measures used for the so-called aperiodic stochastic resonance (ASR) scenario does not rely on the cooperative effect typical of stochastic resonance in bistable and excitable systems. Rather, ASR with slowly varying signals is more properly interpreted as linearization by noise. Consequently, the broadening of the open-quotes resonance curveclose quotes in the multineuron stochastic resonance without tuning scenario can also be explained by this linearization. Computation of the input-output correlation as a function of both signal frequency and noise for the model system further reveals conditions where noise-induced firing with aperiodic inputs will benefit from stochastic resonance rather than linearization by noise. Thus, our study clarifies the tuning requirements for the optimal transduction of subthreshold aperiodic signals. It also shows that a single deterministic neuron can perform as well as a network when biased into a suprathreshold regime. Finally, we show that the inclusion of a refractory period in the spike-detection scheme produces a better correlation between instantaneous firing rate and input signal. copyright 1997 The American Physical Society
The model of recombination process in TlBr
International Nuclear Information System (INIS)
Grigorjeva, L.; Millers, D.
2002-01-01
The time-resolved luminescence was used as a tool in the study of recombination process in several undoped TlBr crystals. The spectra and decay kinetics observed under electron beam excitation were investigated. Observation of several luminescence bands with different decay rates shows that more than one recombination center is involved and the recombination process is quite complicated. The band at ∼2.5 eV is dominant under 10 ns excitation pulse (electron beam or nitrogen laser pulses). The results of short-lived absorption and luminescence are used for analysis of possible mechanisms of recombination processes in TlBr
Liu, Heng; Chen, Xiao; Xue, Wei; Chu, Chengchao; Liu, Yu; Tong, Haipeng; Du, Xuesong; Xie, Tian; Liu, Gang; Zhang, Weiguo
The highly infiltrative and invasive nature of glioma cells often leads to blurred tumor margins, resulting in incomplete tumor resection and tumor recurrence. Accurate detection and precise delineation of glioma help in preoperative delineation, surgical planning and survival prediction. In this study, recombinant epidermal growth factor-like domain-1, derived from human coagulation factor VII, was conjugated to iron oxide nanoparticles (IONPs) for targeted glioma magnetic resonance (MR) imaging. The synthesized EGF1-EGFP-IONPs exhibited excellent targeting ability toward tissue factor (TF)-positive U87MG cells and human umbilical vein endothelial cells in vitro, and demonstrated persistent and efficient MR contrast enhancement up to 12 h for preclinical glioma models with high targeting specificity in vivo. They hold great potential for clinical translation and developing targeted theranostics against brain glioma.
Selective Advantage of Recombination in Evolving Protein Populations:. a Lattice Model Study
Williams, Paul D.; Pollock, David D.; Goldstein, Richard A.
Recent research has attempted to clarify the contributions of several mutational processes, such as substitutions or homologous recombination. Simplistic, tractable protein models, which determine the compact native structure phenotype from the sequence genotype, are well-suited to such studies. In this paper, we use a lattice-protein model to examine the effects of point mutation and homologous recombination on evolving populations of proteins. We find that while the majority of mutation and recombination events are neutral or deleterious, recombination is far more likely to be beneficial. This results in a faster increase in fitness during evolution, although the final fitness level is not significantly changed. This transient advantage provides an evolutionary advantage to subpopulations that undergo recombination, allowing fixation of recombination to occur in the population.
Directory of Open Access Journals (Sweden)
Bastien Boussau
2009-06-01
Full Text Available Homologous recombination is a pervasive biological process that affects sequences in all living organisms and viruses. In the presence of recombination, the evolutionary history of an alignment of homologous sequences cannot be properly depicted by a single bifurcating tree: some sites have evolved along a specific phylogenetic tree, others have followed another path. Methods available to analyse recombination in sequences usually involve an analysis of the alignment through sliding-windows, or are particularly demanding in computational resources, and are often limited to nucleotide sequences. In this article, we propose and implement a Mixture Model on trees and a phylogenetic Hidden Markov Model to reveal recombination breakpoints while searching for the various evolutionary histories that are present in an alignment known to have undergone homologous recombination. These models are sufficiently efficient to be applied to dozens of sequences on a single desktop computer, and can handle equivalently nucleotide or protein sequences. We estimate their accuracy on simulated sequences and test them on real data.
Directory of Open Access Journals (Sweden)
Bastien Boussau
2009-01-01
Full Text Available Homologous recombination is a pervasive biological process that affects sequences in all living organisms and viruses. In the presence of recombination, the evolutionary history of an alignment of homologous sequences cannot be properly depicted by a single bifurcating tree: some sites have evolved along a specific phylogenetic tree, others have followed another path. Methods available to analyse recombination in sequences usually involve an analysis of the alignment through sliding-windows, or are particularly demanding in computational resources, and are often limited to nucleotide sequences. In this article, we propose and implement a Mixture Model on trees and a phylogenetic Hidden Markov Model to reveal recombination breakpoints while searching for the various evolutionary histories that are present in an alignment known to have undergone homologous recombination. These models are sufficiently efficient to be applied to dozens of sequences on a single desktop computer, and can handle equivalently nucleotide or protein sequences. We estimate their accuracy on simulated sequences and test them on real data.
International Nuclear Information System (INIS)
Gribakin, G.F.; Gribakina, A.A.; Flambaum, V.V.
1999-01-01
We show that the spectrum and eigenstates of open-shell multicharged atomic ions near the ionisation threshold are chaotic, as a result of extremely high level densities of multiply excited electron states (10 3 eV -1 in Au 24+ ) and strong configuration mixing. This complexity enables one to use statistical methods to analyse the system. We examine the dependence of the orbital occupation numbers and single-particle energies on the excitation energy of the system, and show that the occupation numbers are described by the Fermi-Dirac distribution, and the temperature and chemical potential can be introduced. The Fermi-Dirac temperature is close to the temperature defined through the canonical distribution. Using a statistical approach we estimate the contribution of multielectron resonant states to the radiative capture of low-energy electrons by Au 25+ and demonstrate that this mechanism fully accounts for the 10 2 times enhancement of the recombination over the direct radiative recombination, in agreement with recent experimental observations. Copyright (1999) CSIRO Australia
DEFF Research Database (Denmark)
Jensen, K E; Stenver, D; Jensen, M
1990-01-01
We used magnetic resonance imaging (MRI) to study vertebral bone marrow in hemodialysis patients during treatment with recombinant human erythropoietin (rHuEPO). We found changes in T1 relaxation times and image contrast within 14 days after starting treatment, before any response was seen in the...
The sympletic model for giant monopole resonances
International Nuclear Information System (INIS)
Oliveira, M.M.B.M.
1985-01-01
Following recently published articles, it's investigated how to apply the sympletic model to the study of giant monopole resonances in spherical nuclei. The results obtained agree with those already published for monopole mode energies, wave functions, radii and nuclear incompressibility of 16 O and 40 Ca nuclei. An analyse of how the spurious center-of-mass motion influence resonance energies is made. The sum rules of the monopole operator, m-bar e , o ≤ e ≤ 3, are calculated, demonstrating at first that they are conserved in the sympletic model. Then it's studied, for those sum rules, the importance of n-boson correlations in the fundamental state, which is an extension of those sum rules, of the analysis for the nuclear incompressibility, performed in above mentioned articles. (Author) [pt
Analysis of recombinant mycobacteria as T helper type 1 vanccines in an allergy challange model
Janssen, R.; Kruisselbrink, A.; Hoogteyling, L.; Lamb, J.R.; Young, D.B.; Thole, J.E.R.
2001-01-01
The potential for development of mycobacteria as T helper type 1 (Th1) vaccines capable of induction of Th1 responses to recombinant antigens was explored in a model system based on an immunodominant peptide from house dust mite. Different recombinant mycobacterial preparations were compared for
Resonant ion-pair formation in the recombination of NO+ with electrons: Cross-section determination
International Nuclear Information System (INIS)
Le Padellec, A.; Djuric, N.; Al-Khalili, A.; Danared, H.; Derkatch, A. M.; Neau, A.; Popovic, D. B.; Rosen, S.; Semaniak, J.; Thomas, R.
2001-01-01
Resonant ion-pair formation from the collisions of NO + ions with electrons was studied using the heavy-ion storage ring CRYRING at the Manne Siegbahn Laboratory of Stockholm University. The total cross section is measured for the formation of N + +O - for electron energies 8--18 eV, and the results are compared with ion-pair formation in photoionization work. A peak in the cross section is observed at 12.5 eV, with a magnitude of 8.5 x 10 -19 cm 2 . An attempt to extract the cross section for the reverse process of associative ionization is made
Simulation of hydrogen mitigation in catalytic recombiner. Part-II: Formulation of a CFD model
International Nuclear Information System (INIS)
Prabhudharwadkar, Deoras M.; Iyer, Kannan N.
2011-01-01
Research highlights: → Hydrogen transport in containment with recombiners is a multi-scale problem. → A novel methodology worked out to lump the recombiner characteristics. → Results obtained using commercial code FLUENT are cast in the form of correlations. → Hence, coarse grids can obtain accurate distribution of H 2 in containment. → Satisfactory working of the methodology is clearly demonstrated. - Abstract: This paper aims at formulation of a model compatible with CFD code to simulate hydrogen distribution and mitigation using a Passive Catalytic Recombiner in the Nuclear power plant containments. The catalytic recombiner is much smaller in size compared to the containment compartments. In order to fully resolve the recombination processes during the containment simulations, it requires the geometric details of the recombiner to be modelled and a very fine mesh size inside the recombiner channels. This component when integrated with containment mixing calculations would result in a large number of mesh elements which may take large computational times to solve the problem. This paper describes a method to resolve this simulation difficulty. In this exercise, the catalytic recombiner alone was first modelled in detail using the best suited option to describe the reaction rate. A detailed parametric study was conducted, from which correlations for the heat of reaction (hence the rate of reaction) and the heat transfer coefficient were obtained. These correlations were then used to model the recombiner channels as single computational cells providing necessary volumetric sources/sinks to the energy and species transport equations. This avoids full resolution of these channels, thereby allowing larger mesh size in the recombiners. The above mentioned method was successfully validated using both steady state and transient test problems and the results indicate very satisfactory modelling of the component.
Modeling and analysis of a resonant nanosystem
Calvert, Scott L.
The majority of investigations into nanoelectromechanical resonators focus on a single area of the resonator's function. This focus varies from the development of a model for a beam's vibration, to the modeling of electrostatic forces, to a qualitative explanation of experimentally-obtained currents. Despite these efforts, there remains a gap between these works, and the level of sophistication needed to truly design nanoresonant systems for efficient commercial use. Towards this end, a comprehensive system model for both a nanobeam resonator and its related experimental setup is proposed. Furthermore, a simulation arrangement is suggested as a method for facilitating the study of the system-level behavior of these devices in a variety of cases that could not be easily obtained experimentally or analytically. The dynamics driving the nanoresonator's motion, as well as the electrical interactions influencing the forcing and output of the system, are modeled, experimentally validated, and studied. The model seeks to develop both a simple circuit representation of the nanoresonator, and to create a mathematical system that can be used to predict and interpret the observed behavior. Due to the assumptions used to simplify the model to a point of reasonable comprehension, the model is most accurate for small beam deflections near the first eigenmode of the beam. The process and results of an experimental investigation are documented, and compared with a circuit simulation modeling the full test system. The comparison qualitatively proves the functionality of the model, while a numerical analysis serves to validate the functionality and setup of the circuit simulation. The use of the simulation enables a much broader investigation of both the electrical behavior and the physical device's dynamics. It is used to complement an assessment of the tuning behavior of the system's linear natural frequency by demonstrating the tuning behavior of the full nonlinear response. The
Modelling of the aerosol deposition in a hydrogen catalytic recombiner
International Nuclear Information System (INIS)
Vendel, J.; Studer, E.; Zavaleta, P.; Hadida, Ph.
1997-01-01
Catalytic recombiners are used to remove the hydrogen released in case of a severe accident in a nuclear power plant, so as to reduce the risk of deflagration or detonation. H 2 PAR experiments are carried out to precise the behaviour of recombiners in term of poisoning by aerosols. Firstly, some calculations have been done with the Trio-EF code to assess the structure of convection loops in the experimental tent. We note that when the recombiner is active, it may have a strong influence on the flow inside the tent and may even interact with an other heat source such as a furnace. In the second part, we study the deposition of aerosols on catalytic plates for a given recombiner, when it is active or passive. We list the different mechanisms and quantify them by introducing the deposition velocity. In fact, thermophoresis appears to be the main mechanism, compared to brownian diffusion or difrusiophoresis, which governs aerosols deposition. It favours deposition on > plates and acts against it for > plates. (author)
Isoscalar giant resonances in a relativistic model
International Nuclear Information System (INIS)
L'Huillier, M.; Nguyen Van Giai.
1988-07-01
Isoscalar giant resonances in finite nuclei are studied in a relativistic Random Phase Approximation (RRPA) approach. The model is self-consistent in the sense that one set of coupling constants generates the Dirac-Hartree single-particle spectrum and the residual particle-hole interaction. The RRPA is used to calculate response functions of multipolarity L = 0,2,3, and 4 in light and medium nuclei. It is found that monopole and quadrupole modes exhibit a collective character. The peak energies are overestimated, but not as much as one might think if the bulk properties (compression modulus, effective mass) were the only relevant quantities
An, Mahru C; O'Brien, Robert N; Zhang, Ningzhe; Patra, Biranchi N; De La Cruz, Michael; Ray, Animesh; Ellerby, Lisa M
2014-04-15
We have previously reported the genetic correction of Huntington's disease (HD) patient-derived induced pluripotent stem cells using traditional homologous recombination (HR) approaches. To extend this work, we have adopted a CRISPR-based genome editing approach to improve the efficiency of recombination in order to generate allelic isogenic HD models in human cells. Incorporation of a rapid antibody-based screening approach to measure recombination provides a powerful method to determine relative efficiency of genome editing for modeling polyglutamine diseases or understanding factors that modulate CRISPR/Cas9 HR.
Collisional-radiative model including recombination processes for W27+ ion★
Murakami, Izumi; Sasaki, Akira; Kato, Daiji; Koike, Fumihiro
2017-10-01
We have constructed a collisional-radiative (CR) model for W27+ ions including 226 configurations with n ≤ 9 and ł ≤ 5 for spectroscopic diagnostics. We newly include recombination processes in the model and this is the first result of extreme ultraviolet spectrum calculated for recombining plasma component. Calculated spectra in 40-70 Å range in ionizing and recombining plasma components show similar 3 strong lines and 1 line weak in recombining plasma component at 45-50 Å and many weak lines at 50-65 Å for both components. Recombination processes do not contribute much to the spectrum at around 60 Å for W27+ ion. Dielectronic satellite lines are also minor contribution to the spectrum of recombining plasma component. Dielectronic recombination (DR) rate coefficient from W28+ to W27+ ions is also calculated with the same atomic data in the CR model. We found that larger set of energy levels including many autoionizing states gave larger DR rate coefficients but our rate agree within factor 6 with other works at electron temperature around 1 keV in which W27+ and W28+ ions are usually observed in plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.
Detailed modelling of processes inside a catalytic recombiner for hydrogen removal
International Nuclear Information System (INIS)
Heitsch, M.
1999-01-01
Under accidental conditions, considerable amounts of hydrogen may be released into the containment. Catalytic reacting surfaces in recombiners are a reliable method to recombine this hydrogen and other burnable gases like carbon monoxide from the atmosphere in a passive way. Many experiments have been carried out to study the main phenomena occurring inside recombiners, like the efficiency of hydrogen removal, the start-up conditions, poisoning, oxygen starvation, steam and water impact, and others. In addition, the global behavior of a given recombiner device in a larger environment has been investigated in order to demonstrate the effectiveness and to facilitate the derivation of simplified models for long term, severe accident analyses. These long-term severe accident models are complemented by detailed investigations to understand the interaction of chemistry and flow inside a recombiner box. This helps to provide the dependencies of non-measurable variables (e.g. the reaction rate distribution), of local surface temperatures etc. to make long-term or system models more reliable. It also offers possibilities for increasing the chemical efficiency by optimising the geometric design properly. Computational Fluid Dynamics (CFD) codes are available for use as development tools to include the specifics of catalytic surface reactors. The present paper describes the use of the code system CFX [1] for creating a recombiner model. Some model predictions are compared to existing test data. (author)
International Nuclear Information System (INIS)
Fedorenko, S.G.
2010-01-01
Graphical abstract: After photo-induced ionization a free electron suffers a quick conversion to a solvated state, and then recombines with the parent atom or ion. However, high mobility and reactivity of a free electron can allow the electron to delocalize and recombine in the free state. The theory of two channel processes of geminate electron recombination is developed and applied to the experiment of three-pulse generation of excess electrons in water. - Abstract: After photo-induced ionization a free electron suffers a quick conversion to a solvated state, and then can recombine with the parent atom or ion. However, high mobility and reactivity of a free electron can allow the electron to delocalize and recombine in the free state. The theory of two channel processes of geminate electron recombination is developed here for the general type of the Markovian motion of reactants. A contact model is used for analytical solution of the problem of geminate recombination of neutral and charged reactants. The theory is applied to the experiment of three-pulse generation of excess electrons in water.
Markov Chain Models for Stochastic Behavior in Resonance Overlap Regions
McCarthy, Morgan; Quillen, Alice
2018-01-01
We aim to predict lifetimes of particles in chaotic zoneswhere resonances overlap. A continuous-time Markov chain model isconstructed using mean motion resonance libration timescales toestimate transition times between resonances. The model is applied todiffusion in the co-rotation region of a planet. For particles begunat low eccentricity, the model is effective for early diffusion, butnot at later time when particles experience close encounters to the planet.
Novel baryon resonances in the Skyrme model
International Nuclear Information System (INIS)
Hussain, F.; Sri Ram, M.S.
1985-01-01
We predict a novel family of baryons with or without the charm quantum number by quantizing the ''maximal solitons'' in the SU(4) Skyrme model. The baryon number B of these solitons can take any integer value. The low-lying states with B = 1 belong to 4( with spin (3/2), 20( with spin (1/2), (3/2), (5/2), or (7/2), and 20('' with spin (3/2), (5/2), or (9/2). The charm-zero states among them could correspond to some of the observed resonances in meson-baryon scattering between 1.5--2 GeV. The lowest among the dibaryon states is an SU(3) singlet contained in the 10( of SU(4) with spin 1, with mass in the range 2.5--3 GeV
Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line; Delpeyroux, Francis
2014-08-05
Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3' end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. Importance: The multiplication of circulating vaccine-derived polioviruses (cVDPVs) in poorly immunized human populations can render these viruses pathogenic, causing poliomyelitis outbreaks. Most cVDPVs are intertypic recombinants between a poliovirus (PV) strain and another human enterovirus, such as type 17 coxsackie A viruses (CA17). For further studies of the genetic exchanges
International Nuclear Information System (INIS)
Naito, Susumu; Hirata, Yosuke; Izumi, Mikio; Sano, Akira; Miyamoto, Yasuaki; Aoyama, Yoshio; Yamaguchi, Hiromi
2007-01-01
We present a reinforced ion current prediction model in alpha radioactivity measurement using ionized air transportation. Although our previous model explained the qualitative trend of the measured ion current values, the absolute values of the theoretical curves were about two times as large as the measured values. In order to accurately predict the measured values, we reinforced our model by considering columnar recombination and turbulent diffusion, which affects columnar recombination. Our new model explained the considerable ion loss in the early stage of ion diffusion and narrowed the gap between the theoretical and measured values. The model also predicted suppression of ion loss due to columnar recombination by spraying a high-speed air flow near a contaminated surface. This suppression was experimentally investigated and confirmed. In conclusion, we quantitatively clarified the theoretical relation between alpha radioactivity and ion current in laminar flow and turbulent pipe flow. (author)
Validation experiments of the chimney model for the operational simulation of hydrogen recombiners
International Nuclear Information System (INIS)
Simon, Berno
2013-01-01
The calculation program REKO-DIREKT allows the simulation of the operational behavior of a hydrogen recombiner during accidents with hydrogen release. The interest is focused on the interaction between the catalyst insertion and the chimney that influences the natural ventilation and thus the throughput through the recombiner significantly. For validation experiments were performed with a small-scale recombiner model in the test facility REKO-4. The results show the correlation between the hydrogen concentration at the recombiner entrance, the temperature on catalyst sheets and the entrance velocity using different chimney heights. The entrance velocity increases with the heights of the installed chimney that influences the natural ventilation significantly. The results allow the generation of a wide data base for validation of the computer code REKO-DIREKT.
Hvizdoš, Dávid; Váňa, Martin; Houfek, Karel; Greene, Chris H.; Rescigno, Thomas N.; McCurdy, C. William; Čurík, Roman
2018-02-01
We present a simple two-dimensional model of the indirect dissociative recombination process. The model has one electronic and one nuclear degree of freedom and it can be solved to high precision, without making any physically motivated approximations, by employing the exterior complex scaling method together with the finite-elements method and discrete variable representation. The approach is applied to solve a model for dissociative recombination of H2 + in the singlet ungerade channels, and the results serve as a benchmark to test validity of several physical approximations commonly used in the computational modeling of dissociative recombination for real molecular targets. The second, approximate, set of calculations employs a combination of multichannel quantum defect theory and frame transformation into a basis of Siegert pseudostates. The cross sections computed with the two methods are compared in detail for collision energies from 0 to 2 eV.
Development of a transgenic mouse model to study the immunogenicity of recombinant human insulin
Torosantucci, Riccardo; Brinks, Vera; Kijanka, Grzegorz; Halim, Liem Andhyk; Sauerborn, Melody; Schellekens, Huub; Jiskoot, Wim
2014-01-01
Mouse models are commonly used to assess the immunogenicity of therapeutic proteins and to investigate the immunological processes leading to antidrug antibodies. The aim of this work was to develop a transgenic (TG) Balb/c mouse model for evaluating the immunogenicity of recombinant human insulin
Habibi, Narjeskhatoon; Norouzi, Alireza; Mohd Hashim, Siti Z; Shamsir, Mohd Shahir; Samian, Razip
2015-11-01
Recombinant protein overexpression, an important biotechnological process, is ruled by complex biological rules which are mostly unknown, is in need of an intelligent algorithm so as to avoid resource-intensive lab-based trial and error experiments in order to determine the expression level of the recombinant protein. The purpose of this study is to propose a predictive model to estimate the level of recombinant protein overexpression for the first time in the literature using a machine learning approach based on the sequence, expression vector, and expression host. The expression host was confined to Escherichia coli which is the most popular bacterial host to overexpress recombinant proteins. To provide a handle to the problem, the overexpression level was categorized as low, medium and high. A set of features which were likely to affect the overexpression level was generated based on the known facts (e.g. gene length) and knowledge gathered from related literature. Then, a representative sub-set of features generated in the previous objective was determined using feature selection techniques. Finally a predictive model was developed using random forest classifier which was able to adequately classify the multi-class imbalanced small dataset constructed. The result showed that the predictive model provided a promising accuracy of 80% on average, in estimating the overexpression level of a recombinant protein. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dual resonance models and their currents
International Nuclear Information System (INIS)
Johnson, E.A.
1978-01-01
It is shown how dual resonance models were rederived from the concept of a string tracing out a surface in space-time. Thus, interacting strings reproduce the dual amplitudes. A scheme for tackling the unitarity problem began to develop. As a consistent theory of hadronic processes began to be built, workers at the same time were naturally led to expect that leptons could be included with hadrons in a unified dual theory. Thus, there is a search for dual amplitudes which would describe interactions between hadrons and currents (for example, electrons), as well as interactions involving only hadrons. Such amplitudes, it is believed, will be the correct ones, describing the real world. Such amplitudes will provide valuable information concerning such things as hadronic form factors. The great difficulties in building current-amplitudes with the required properties of proper factorization on a good spectrum, duality, current algebra, and proper asymptotic behavior are described. Dual models at the present time require for consistency, an intercept value of α 0 = 1 and a dimension value of d = 26 (or d = 10). There have been speculations that the unphysical dimension may be made physical by associating the ''extra dimensions'' with certain internal degrees of freedom. However, it is desired that the theory itself, force the dimension d = 4. It is quite possible that the dimension problem and the intercept problem are tied together and that resolving either problem will resolve the other. Order by order, a new dual current is constructed that is manifestly factorizable and which appears to be valid for arbitrary space-time dimension. The fact that this current is not bound at d = 26, leads to interesting speculations on the nature of dual currents
The Red Queen model of recombination hot-spot evolution: a theoretical investigation.
Latrille, Thibault; Duret, Laurent; Lartillot, Nicolas
2017-12-19
In humans and many other species, recombination events cluster in narrow and short-lived hot spots distributed across the genome, whose location is determined by the Zn-finger protein PRDM9. To explain these fast evolutionary dynamics, an intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hot-spot extinction, followed by positive selection favouring new PRDM9 alleles recognizing new sequence motifs. Thus far, however, this Red Queen model has not been formalized as a quantitative population-genetic model, fully accounting for the intricate interplay between biased gene conversion, mutation, selection, demography and genetic diversity at the PRDM9 locus. Here, we explore the population genetics of the Red Queen model of recombination. A Wright-Fisher simulator was implemented, allowing exploration of the behaviour of the model (mean equilibrium recombination rate, diversity at the PRDM9 locus or turnover rate) as a function of the parameters (effective population size, mutation and erosion rates). In a second step, analytical results based on self-consistent mean-field approximations were derived, reproducing the scaling relations observed in the simulations. Empirical fit of the model to current data from the mouse suggests both a high mutation rate at PRDM9 and strong biased gene conversion on its targets.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'. © 2017 The Authors.
Modeling of nanofabricated paddle bridges for resonant mass sensing
International Nuclear Information System (INIS)
Lobontiu, N.; Ilic, B.; Garcia, E.; Reissman, T.; Craighead, H. G.
2006-01-01
The modeling of nanopaddle bridges is studied in this article by proposing a lumped-parameter mathematical model which enables structural characterization in the resonant domain. The distributed compliance and inertia of all three segments composing a paddle bridge are taken into consideration in order to determine the equivalent lumped-parameter stiffness and inertia fractions, and further on the bending and torsion resonant frequencies. The approximate model produces results which are confirmed by finite element analysis and experimental measurements. The model is subsequently utilized to quantify the amount of mass which attaches to the bridge by predicting the modified resonant frequencies in either bending or torsion
Spin dependent surface recombination in silicon p-n junctions: the effect of irradiation
Energy Technology Data Exchange (ETDEWEB)
Kaplan, D [Laboratoire Central de Recherches, 91 - Corbeville par Orsay (France); Pepper, M [Cambridge Univ. (UK). Cavendish Lab.
1980-06-01
The results are presented of an investigation of spin dependent recombination in (100) oriented, gate controlled Si diodes irradiated by 30 keV electrons. After irradiation, recombination at the Si-SiO/sub 2/ interface is increased, and saturation of the spin resonance increases the diode forward current by 5 parts in 10/sup 4/. The results cannot be described by a conventional Shockley-Read recombination model. An alternative picture is proposed involving recombination between trapped electrons and trapped holes.
Chrystal and Proudman resonances simulated with three numerical models
Bubalo, Maja; Janeković, Ivica; Orlić, Mirko
2018-05-01
The aim of this work was to study Chrystal and Proudman resonances in a simple closed basin and to explore and compare how well the two resonant mechanisms are reproduced with different, nowadays widely used, numerical ocean models. The test case was based on air pressure disturbances of two commonly used shapes (a sinusoidal and a boxcar), having various wave lengths, and propagating at different speeds. Our test domain was a closed rectangular basin, 300 km long with a uniform depth of 50 m, with the theoretical analytical solution available for benchmark. In total, 2250 simulations were performed for each of the three different numerical models: ADCIRC, SCHISM and ROMS. During each of the simulations, we recorded water level anomalies and computed the integral of the energy density spectrum for a number of points distributed along the basin. We have successfully documented the transition from Proudman to Chrystal resonance that occurs for a sinusoidal air pressure disturbance having a wavelength between one and two basin lengths. An inter-model comparison of the results shows that different models represent the two resonant phenomena in a slightly different way. For Chrystal resonance, all the models showed similar behavior; however, ADCIRC model providing slightly higher values of the mean resonant period than the other two models. In the case of Proudman resonance, the most consistent results, closest to the analytical solution, were obtained using ROMS model, which reproduced the mean resonant speed equal to 22.00 m/s— i.e., close to the theoretical value of 22.15 m/s. ADCIRC and SCHISM models showed small deviations from that value, with the mean speed being slightly lower—21.97 m/s (ADCIRC) and 21.93 m/s (SCHISM). The findings may seem small but could play an important role when resonance is a crucial process producing enhancing effects by two orders of magnitude (i.e., meteotsunamis).
Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case
Cheng, Jing; Chen, Xi; Shan, Chuan-Jia
2018-03-01
We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0
Advanced design and modeling concepts for recombination x-ray lasers
International Nuclear Information System (INIS)
Eder, D.C.; Rosen, M.D.; Shephard, R.; Staffin, R.; Nash, J.K.; Keane, C.J.
1990-01-01
Geometric, kinetic, and trapping issues, in short and ultrashort recombination x-ray lasers, are discussed. The design of a composite target consisting of a lasant strip on a plastic backing is described. Examples of modeling showing the effect of photon trapping and uncertainties in other physical processes on calculated gain coefficients are given. A simple and accurate expression for photon trapping in cylindrical geometry is presented. Recombination lasers that have the ground state as the lower laser state are shown to have small I sat 's and corresponding low efficiencies. Scaling laws for femtosecond laser-plasma interactions are presented. 19 refs
Recombination model and baryon production by pp and πp collisions
International Nuclear Information System (INIS)
Takasugi, E.; Tata, X.
1979-12-01
The recombination model predictions for baryon production, using modified Kuti-Weisskopf structure functions, are in good agreement with the pp and πp collision data. The indistinguishability of sea quarks naturally accounts for the difference in the p and anti p spectra in the pion fragmentation region. 4 figures, 2 tables
International Nuclear Information System (INIS)
Takasugi, E.; Tata, X.
1982-01-01
The recombination model associated with modified Kuti-Weisskopf multiquark structure functions is used to analyze particle production by hadronic collisions. The justification of the use of the impulse approximation in these processes and the universal nature of the recombination process are discussed. Single-meson inclusive production in the fragmentation domains of the proton, the pion, and the kaon is used as an input to determine the primitive structure functions. Our parameter-free predictions for low-p/sub T/ multimeson and associated meson-baryon inclusive production are found to be in good agreement with a large amount of recently obtained correlation data. It is pointed out, however, that reactions involving multivalence recombination fall outside the scope of present considerations
Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line
2014-01-01
ABSTRACT Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3′ end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. PMID:25096874
The Friedrichs model and its use in resonance phenomena
Energy Technology Data Exchange (ETDEWEB)
Gadella, M. [Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, 47071 Valladolid (Spain); Pronko, G.P. [Institute for High Energy Physics, Protvino 142284, Moscow Region (Russian Federation)
2011-09-15
We present here a relation of different types of Friedrichs models and their use in the description and comprehension of resonance phenomena. We first discuss the basic Friedrichs model and obtain its resonance in the case that this is simple or doubly degenerated. Next, we discuss the model with N levels and show how the probability amplitude has an oscillatory behavior. Two generalizations of the Friedrichs model are suitable to introduce resonance behavior in quantum field theory. We also discuss a discrete version of the Friedrichs model and also a resonant interaction between two systems both with continuous spectrum. In an appendix, we review the mathematics of rigged Hilbert spaces. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Directory of Open Access Journals (Sweden)
Rui M
2012-07-01
Full Text Available Mengjie Rui,1 Wei Guo,2 Qian Ding,2 Xiaohui Wei,2 Jianrong Xu,3 Yuhong Xu21School of Life Science and Biotechnology, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China; 3Department of Radiology, Renji Hospital Affiliation with Medical School of Shanghai Jiao Tong University, Shanghai, People's Republic of ChinaBackground: Natural high-density lipoproteins (HDL possess important physiological functions to the transport of cholesterol from the peripheral tissues to the liver for metabolic degradation and excretion in the bile.Methods and results: In this work, we took advantage of this pathway and prepared two different gadolinium (Gd-DTPA-labeled cholesterol-containing recombinant HDL nanoparticles (Gd-chol-HDL and Gd-(chol2-HDL as liver-specific magnetic resonance imaging (MRI contrast agents. The reconstituted HDL nanoparticles had structural similarity to native HDL, and could be taken up by HepG2 cells via interaction with HDL receptors in vitro. In vivo MRI studies in rats after intravenous injections of 10 µmol gadolinium per kg of recombinant HDL nanoparticles indicated that both nanoparticles could provide signal enhancement in the liver and related organs. However, different T1-weighted image details suggested that they participated in different cholesterol metabolism and excretion pathways in the liver.Conclusion: Such information could be highly useful to differentiate functional changes as well as anatomic differences in the liver. These cholesterol-derived contrast agents and their recombinant HDL preparations may warrant further development as a new class of contrast agents for MRI of the liver and related organs.Keywords: magnetic resonance imaging, apolipoprotein, high-density lipoprotein, contrast agent, gadolinium, liver
Modelling of a passive autocatalytic hydrogen recombiner – a parametric study
Directory of Open Access Journals (Sweden)
Rożeń Antoni
2015-03-01
Full Text Available Operation of a passive autocatalytic hydrogen recombiner (PAR has been investigated by means of computational fluid dynamics methods (CFD. The recombiner is a self-active and self-adaptive device used to remove hydrogen from safety containments of light water nuclear reactors (LWR by means of a highly exothermic reaction with oxygen at the surface of a platinum or palladium catalyst. Different turbulence models (k-ω, k-ɛ, intermittency, RSM were applied in numerical simulations of: gas flow, heat and mass transport and chemical surface reactions occurring in PAR. Turbulence was found to improve mixing and mass transfer and increase hydrogen recombination rate for high gas flow rates. At low gas flow rates, simulation results converged to those obtained for the limiting case of laminar flow. The large eddy simulation technique (LES was used to select the best RANS (Reynolds average stress model. Comparison of simulation results obtained for two- and three-dimensional computational grids showed that heat and mass transfer occurring in PAR were virtually two-dimensional processes. The effect of hydrogen thermal diffusion was also discussed in the context of possible hydrogen ignition inside the recombiner.
Valdez-Cruz, Norma A; Reynoso-Cereceda, Greta I; Pérez-Rodriguez, Saumel; Restrepo-Pineda, Sara; González-Santana, Jesus; Olvera, Alejandro; Zavala, Guadalupe; Alagón, Alejandro; Trujillo-Roldán, Mauricio A
2017-07-25
Shake flasks are widely used during the development of bioprocesses for recombinant proteins. Cultures of recombinant Escherichia coli with orbital mixing (OM) have an oxygen limitation negatively affecting biomass growth and recombinant-protein production. With the aim to improve mixing and aeration in shake flask cultures, we analyzed cultures subjected to OM and the novel resonant acoustic mixing (RAM) by applying acoustic energy to E. coli BL21-Gold (DE3): a producer of recombinant phospholipase A2 (rPLA2) from Micrurus laticollaris snake venom. Comparing OM with RAM (200 rpm vs. 7.5g) at the same initial volumetric oxygen transfer coefficient (k L a ≈ 80 h -1 ) ~69% less biomass was obtained with OM compared with RAM. We analyzed two more conditions increasing agitation until maximal speed (12.5 and 20g), and ~1.6- and ~1.4-fold greater biomass was obtained as compared with cultures at 7.5g. Moreover, the specific growth rate was statistically similar in all cultures carried out in RAM, but ~1.5-fold higher than that in cultures carried out under OM. Almost half of the glucose was consumed in OM, whereas between 80 and 100% of the glucose was consumed in RAM cultures, doubling biomass per glucose yields. Differential organic acid production was observed, but acetate production was prevented at the maximal RAM (20g). The amount of rPLA2 in both, OM and RAM cultures, represented 38 ± 5% of the insoluble protein. A smaller proportion of α-helices and β-sheet of purified inclusion bodies (IBs) were appreciated by ATR-FTIR from cultures carried out under OM, than those from RAM. At maximal agitation by RAM, internal E. coli localization patterns of protein aggregation changed, as well as, IBs proteolytic degradation, in conjunction with the formation of small external vesicles, although these changes did not significantly affect the cell survival response. In moderate-cell-density recombinant E. coli BL21-Gold (DE3) cultures, the agitation increases in
International Nuclear Information System (INIS)
Ohno, N.; Motoyama, M.; Takamura, S.
2001-01-01
Investigation of plasma detachment is still one of the most important subjects in the edge plasma of magnetically confined fusion devices. It was found that volumetric plasma recombination plays an essential role on reduction of particle flux in detached plasmas. The volumetric plasma recombination process has been confirmed in several diverted tokamaks and linear simulators by observing line emission from highly excited states due to three-body recombination process and continuum emission due to radiative recombination process. Electron temperature and density in the detached plasma were also evaluated from analysis of the light emission. To determine the electron temperature, the line emission spectrum is analyzed to calculate the population densities of excited levels. The population distribution among the highly excited states follows the Saha-Boltzmann distribution very closely. This implies that those states are in local thermal equilibrium (LTE) condition with free electrons in plasma so that the electron temperature can be obtained by using method of Boltzmann plot. Another method to determine the electron temperature is to compare the observed continuum spectrum with the theoretically calculated one. In our experiments using the linear diverter simulator, however, there is a clear difference for two evaluated values. One of the possible reasons is thought to be that there is a small amount of energetic electrons existing in detached recombining region. In order to evaluate the electron temperature more preciously, we need to investigate the influence of the energetic electrons on the evaluation of bulk electron temperature in a detached plasma. Collisonal-radiative (GR) model has been utilized for analyzing the light emission intensities from plasma. However, Maxwellian electron distribution function is usually assumed in the CR model. In this paper, we report a quantitative analysis of the line emission spectrum in the detached recombining plasmas by
Simulation of dense recombining divertor plasmas with a Navier endash Stokes neutral transport model
International Nuclear Information System (INIS)
Knoll, D.A.; McHugh, P.R.; Krasheninnikov, S.I.; Sigmar, D.J.
1996-01-01
A two-dimensional combined edge plasma Navier endash Stokes neutral transport model is presented for the simulation of dense recombining divertor plasmas. This model includes ions, electrons, and neutral atoms which undergo Coulomb collisions, electron impact ionization, ion endash neutral elastic collisions, three-body and radiative recombination, and neutral endash neutral collisions. The advanced fully implicit solution algorithm is briefly described and a variety of results on a model geometry are presented. It is shown that interesting neutral flow patterns can exist and that these flows can convect significant energy. A solution that ignores neutral endash neutral collisions is shown to be quantitatively different from one that includes neutral endash neutral collisions. Solutions are also shown to be sensitive to the plasma opacity for Lyman α radiation. copyright 1996 American Institute of Physics
Recombinant silicateins as model biocatalysts in organosiloxane chemistry
Tabatabaei Dakhili, S. Yasin; Caslin, Stephanie A.; Faponle, Abayomi S.; Quayle, Peter; de Visser, Sam P.
2017-01-01
The family of silicatein enzymes from marine sponges (phylum Porifera) is unique in nature for catalyzing the formation of inorganic silica structures, which the organisms incorporate into their skeleton. However, the synthesis of organosiloxanes catalyzed by these enzymes has thus far remained largely unexplored. To investigate the reactivity of these enzymes in relation to this important class of compounds, their catalysis of Si–O bond hydrolysis and condensation was investigated with a range of model organosilanols and silyl ethers. The enzymes’ kinetic parameters were obtained by a high-throughput colorimetric assay based on the hydrolysis of 4-nitrophenyl silyl ethers. These assays showed unambiguous catalysis with kcat/Km values on the order of 2–50 min−1 μM−1. Condensation reactions were also demonstrated by the generation of silyl ethers from their corresponding silanols and alcohols. Notably, when presented with a substrate bearing both aliphatic and aromatic hydroxy groups the enzyme preferentially silylates the latter group, in clear contrast to nonenzymatic silylations. Furthermore, the silicateins are able to catalyze transetherifications, where the silyl group from one silyl ether may be transferred to a recipient alcohol. Despite close sequence homology to the protease cathepsin L, the silicateins seem to exhibit no significant protease or esterase activity when tested against analogous substrates. Overall, these results suggest the silicateins are promising candidates for future elaboration into efficient and selective biocatalysts for organosiloxane chemistry. PMID:28630316
Analytical Model of Planar Double Split Ring Resonator
DEFF Research Database (Denmark)
Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor
2007-01-01
This paper focuses on accurate modelling of microstrip double split ring resonators. The impedance matrix representation for coupled lines is applied for the first time to model the SRR, resulting in excellent model accuracy over a wide frequency range. Phase compensation is implemented to take i...
Semi classical model of the neutron resonance compound nucleus
International Nuclear Information System (INIS)
Ohkubo, Makio
1995-01-01
A Semi-classical model of compound nucleus is developed, where time evolution and recurrence for many degrees of freedom (oscillators) excited simultaneously are explicitly considered. The effective number of oscillators plays the role in the compound nucleus, and the nuclear temperatures are derived, which are in good agreement with the traditional values. Time structures of the compound nucleus at resonance are considered, from which equidistant level series with an envelope of strength function of giant resonance nature is obtained. S-matrix formulation for fine structure resonance is derived. (author)
Validation of an Acoustic Impedance Prediction Model for Skewed Resonators
Howerton, Brian M.; Parrott, Tony L.
2009-01-01
An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.
Hybrid model for the decay of nuclear giant resonances
International Nuclear Information System (INIS)
Hussein, M.S.
1986-12-01
The decay properties of nuclear giant multipole resonances are discussed within a hybrid model that incorporates, in a unitary consistent way, both the coherent and statistical features. It is suggested that the 'direct' decay of the GR is described with continuum first RPA and the statistical decay calculated with a modified Hauser-Feshbach model. Application is made to the decay of the giant monopole resonance in 208 Pb. Suggestions are made concerning the calculation of the mixing parameter using the statistical properties of the shell model eigenstates at high excitation energies. (Author) [pt
Relativistic Coulomb excitation of giant resonances in the hydrodynamic model
International Nuclear Information System (INIS)
Vasconcellos Gomes, Ana Cristina de.
1990-05-01
We investigate the Coulomb excitation of giant dipole resonances in relativistic heavy ion collisions using a macroscopic hydrodynamical model for the harmonic vibrations of the nuclear fluid. The motion is treated as a combination of the Goldhaber-Teller displacement mode and the Steinwedel-Jensen acoustic mode, and the restoring forces are calculated using the droplet model. This model is used as input to study the characteristics of multiple excitation of giant dipole resonances in nuclei. Possible signatures for the existence of such states are also discussed quantitatively. (author). 52 refs., 14 figs., 3 tabs
Nonlinear Dynamics of a Helicopter Model in Ground Resonance
Tang, D. M.; Dowell, E. H.
1985-01-01
An approximate theoretical method is presented which determined the limit cycle behavior of a helicopter model which has one or two nonlinear dampers. The relationship during unstable ground resonance oscillations between lagging motion of the blades and fuselage motion is discussed. An experiment was carried out on using a helicopter scale model. The experimental results agree with those of the theoretical analysis.
Small-signal model for the series resonant converter
King, R. J.; Stuart, T. A.
1985-01-01
The results of a previous discrete-time model of the series resonant dc-dc converter are reviewed and from these a small signal dynamic model is derived. This model is valid for low frequencies and is based on the modulation of the diode conduction angle for control. The basic converter is modeled separately from its output filter to facilitate the use of these results for design purposes. Experimental results are presented.
A dual resonance model for high energy electroweak reactions
International Nuclear Information System (INIS)
Picard, Jean-Francois
1995-01-01
The aim of this work is to propose an original model for the weak interaction at high energy (about 1 TeV) that is inspired from resonance dual models established for hadron physics. The first chapter details the basis and assumptions of the standard model. The second chapter deals with various scenarios that go beyond the standard model and that involve a strong interaction and a perturbative approach to assess coupling. The third chapter is dedicated to the main teachings of hadron physics concerning resonances, the model of Regge poles and the concept of duality. We present our new model in the fourth chapter, we build a scenario in which standard fermions and the 3 massive gauge bosons would have a sub-structure alike that of hadrons. In order to give non-null values to the width of resonances we use the K matrix method, we describe this method in the last chapter and we apply it for the computation of the width of the Z 0 boson. Our model predicts a large spectra of states particularly with the 143-up-lets of ff-bar states. The K matrix method has allowed us to compute amplitudes for helicity, then to collapse them in amplitudes invariant with SU(2) and to project these amplitudes in partial waves of helicity. For most resonances partial widths are very low compared to their mass
DEFF Research Database (Denmark)
Petersen, Nils Holger
2014-01-01
A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....
Martin, S J; Bandey, H L; Cernosek, R W; Hillman, A R; Brown, M J
2000-01-01
We derive a lumped-element, equivalent-circuit model for the thickness-shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of pi/2 rad. For low-loss films, this model accurately predicts the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. Elements of the parallel LCR resonator are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and Sauerbrey models.
DEFF Research Database (Denmark)
Thorsted, A; Thygesen, P; Agersø, H
2016-01-01
BACKGROUND AND PURPOSE: We aimed to develop a mechanistic mixed-effects pharmacokinetic (PK)-pharmacodynamic (PD) (PKPD) model for recombinant human growth hormone (rhGH) in hypophysectomized rats and to predict the human PKPD relationship. EXPERIMENTAL APPROACH: A non-linear mixed-effects model...... was developed from experimental PKPD studies of rhGH and effects of long-term treatment as measured by insulin-like growth factor 1 (IGF-1) and bodyweight gain in rats. Modelled parameter values were scaled to human values using the allometric approach with fixed exponents for PKs and unscaled for PDs...... s.c. administration was over predicted. After correction of the human s.c. absorption model, the induction model for IGF-1 well described the human PKPD data. CONCLUSIONS: A translational mechanistic PKPD model for rhGH was successfully developed from experimental rat data. The model links...
Modelling Strategies for Functional Magnetic Resonance Imaging
DEFF Research Database (Denmark)
Madsen, Kristoffer Hougaard
2009-01-01
and generalisations to higher order arrays are considered. Additionally, an application of the natural conjugate prior for supervised learning in the general linear model to efficiently incorporate prior information for supervised analysis is presented. Further extensions include methods to model nuisance effects...... in fMIR data thereby suppressing noise for both supervised and unsupervised analysis techniques....
Zheng, Song-yue; Yu, Bin; Zhang, Ke; Chen, Min; Hua, Yan-Hong; Yuan, Shuofeng; Watt, Rory M; Zheng, Bo-Jian; Yuen, Kwok-Yung; Huang, Jian-Dong
2012-09-26
Despite the development of various systems to generate live recombinant Salmonella Typhimurium vaccine strains, little work has been performed to systematically evaluate and compare their relative immunogenicity. Such information would provide invaluable guidance for the future rational design of live recombinant Salmonella oral vaccines. To compare vaccine strains encoded with different antigen delivery and expression strategies, a series of recombinant Salmonella Typhimurium strains were constructed that expressed either the enhanced green fluorescent protein (EGFP) or a fragment of the hemagglutinin (HA) protein from the H5N1 influenza virus, as model antigens. The antigens were expressed from the chromosome, from high or low-copy plasmids, or encoded on a eukaryotic expression plasmid. Antigens were targeted for expression in either the cytoplasm or the outer membrane. Combinations of strategies were employed to evaluate the efficacy of combined delivery/expression approaches. After investigating in vitro and in vivo antigen expression, growth and infection abilities; the immunogenicity of the constructed recombinant Salmonella strains was evaluated in mice. Using the soluble model antigen EGFP, our results indicated that vaccine strains with high and stable antigen expression exhibited high B cell responses, whilst eukaryotic expression or colonization with good construct stability was critical for T cell responses. For the insoluble model antigen HA, an outer membrane expression strategy induced better B cell and T cell responses than a cytoplasmic strategy. Most notably, the combination of two different expression strategies did not increase the immune response elicited. Through systematically evaluating and comparing the immunogenicity of the constructed recombinant Salmonella strains in mice, we identified their respective advantages and deleterious or synergistic effects. Different construction strategies were optimally-required for soluble versus
Irani, Zahra Azimzadeh; Kerkhoven, Eduard J; Shojaosadati, Seyed Abbas; Nielsen, Jens
2016-05-01
Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required for using these models to understand and optimize protein production processes. © 2015 Wiley Periodicals, Inc.
Differential responses to natural and recombinant allergens in a murine model of fish allergy.
van der Ventel, Michelle L; Nieuwenhuizen, Natalie E; Kirstein, Frank; Hikuam, Christoph; Jeebhay, Mohamed F; Swoboda, Ines; Brombacher, Frank; Lopata, Andreas L
2011-01-01
Aerosolized fish proteins are an important cause of allergic airway reactions in both the domestic and the occupational environment. The aim of this study was to investigate inhalant fish-induced allergy in a mouse model and compare immune responses generated by raw and heat-treated fish extracts as well as natural and recombinant forms of the major fish allergen parvalbumin. Mice were sensitized with raw or cooked pilchard extract and challenged intranasally with cooked pilchard extract, purified natural pilchard parvalbumin or recombinant carp parvalbumin (rCyp c1.01). Cooked pilchard extract predominantly sensitized mice to parvalbumin and induced specific IgG1 and IgE antibodies against both pilchard parvalbumin and rCyp c1.01, whereas additional allergens were recognized by mice sensitized with raw extract, including a 36 kDa allergen that was also recognized by fish processing workers and was identified as glyceraldehyde-3-phosphate dehydrogenase. Mice challenged with cooked extract and purified pilchard parvalbumin had increased Th2 cytokine production in mediastinal lymph node cells and splenocytes, whereas mice challenged with rCyp c1.01 did not. This study identifies a new IgE-binding protein that may be important in occupational allergy to fish and demonstrates the feasibility of testing recombinant allergens for immunotherapeutic potential in vivo. Copyright © 2010 Elsevier Ltd. All rights reserved.
Giant resonance of electrical multipole from droplet model
International Nuclear Information System (INIS)
Tauhata, L.
1984-01-01
The formalism of the electrical multipole resonance developed from the Droplet nuclear model is presented. It combines the approaches of Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) and it shows the relative contribution of Coulomb, superficial and neutron excess energies. It also discusses the calculation of half-width. The model evaluates correctly the resonance energies as a function of nuclear mass and allows, through the Mixture Index, the prediction of the complementary participation of modes SJ and GT in the giant nuclear resonance. Values of the mixture index, for each multipolarity, reproduce well the form factors obtained from experiments of charged particle inelastic scattering. The formalism presented for the calculation of the half-width gives a macroscopic description of the friction mechanism. The establishment of the macroscopic structure of the Dissipation Function is used as a reference in the comparison of microscopic calculations. (Author) [pt
Directory of Open Access Journals (Sweden)
Francis Delpeyroux
2011-08-01
Full Text Available Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV, an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs, which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C, in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.
Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis
2011-08-01
Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.
RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES
Reconstruction of Human Lung Morphology Models from Magnetic Resonance ImagesT. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)
The early years of string theory: The dual resonance model
International Nuclear Information System (INIS)
Ramond, P.
1987-10-01
This paper reviews the past quantum mechanical history of the dual resonance model which is an early string theory. The content of this paper is listed as follows: historical review, the Veneziano amplitude, the operator formalism, the ghost story, and the string story
A non-static model for the Roper resonances
International Nuclear Information System (INIS)
Guichon, P.A.M.
1985-07-01
We solve the M.I.T. bag equations for Fermions in the limit of small fluctuations and quantize the solution. We get a non static bag model which provides a satisfactory interpretation of the Roper resonances if the time averaged radius of the cavitity is about 1 fm
Modeling the full-bridge series-resonant power converter
King, R. J.; Stuart, T. A.
1982-01-01
A steady state model is derived for the full-bridge series-resonant power converter. Normalized parametric curves for various currents and voltages are then plotted versus the triggering angle of the switching devices. The calculations are compared with experimental measurements made on a 50 kHz converter and a discussion of certain operating problems is presented.
The fusion rate in the transmission resonance model
International Nuclear Information System (INIS)
Jaendel, M.
1992-01-01
Resonant transmission of deuterons through a chain of target deuterons in a metal matrix has been suggested as an explanation for the cold fusion phenomena. In this paper the fusion rate in such transmission resonance models is estimated, and the basic physical constraints are discussed. The dominating contribution to the fusion yield is found to come from metastable states. The fusion rate is well described by the Wentzel-Kramer-Brillouin approximation and appears to be much too small to explain the experimental anomalies
Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator
Directory of Open Access Journals (Sweden)
CONSTANTINESCU, F.
2011-02-01
Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.
Three-body recombination of two-component cold atomic gases into deep dimers in an optical model
DEFF Research Database (Denmark)
Mikkelsen, Mathias; Jensen, A. S.; Fedorov, D. V.
2015-01-01
to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length......We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds...... is usually related to the non-equal two-body systems. We account for temperature smearing which tends to wipe out the higher-lying Efimov peaks. The range and the strength of the imaginary potential determine positions and shapes of the Efimov peaks as well as the absolute value of the recombination rate...
Matsuyama, Tomomasa; Sano, Natsumi; Takano, Tomokazu; Sakai, Takamitsu; Yasuike, Motoshige; Fujiwara, Atushi; Kawato, Yasuhiko; Kurita, Jun; Yoshida, Kazunori; Shimada, Yukinori; Nakayasu, Chihaya
2018-05-03
Predicting antigens that would be protective is crucial for the development of recombinant vaccine using genome based vaccine development, also known as reverse vaccinology. High-throughput antigen screening is effective for identifying vaccine target genes, particularly for pathogens for which minimal antigenicity data exist. Using red sea bream iridovirus (RSIV) as a research model, we developed enzyme-linked immune sorbent assay (ELISA) based RSIV-derived 72 recombinant antigen array to profile antiviral antibody responses in convalescent Japanese amberjack (Seriola quinqueradiata). Two and three genes for which the products were unrecognized and recognized, respectively, by antibodies in convalescent serum were selected for recombinant vaccine preparation, and the protective effect was examined in infection tests using Japanese amberjack and greater amberjack (S. dumerili). No protection was provided by vaccines prepared from gene products unrecognized by convalescent serum antibodies. By contrast, two vaccines prepared from gene products recognized by serum antibodies induced protective immunity in both fish species. These results indicate that ELISA array screening is effective for identifying antigens that induce protective immune responses. As this method does not require culturing of pathogens, it is also suitable for identifying protective antigens to un-culturable etiologic agents. Copyright © 2018 Elsevier Ltd. All rights reserved.
The quark-recombination model and correlations between hard and soft hadronic processes
International Nuclear Information System (INIS)
Ranft, J.
1978-07-01
Proceeding from the fact that quark and gluon recombination models make definite predictions for correlations between hard and soft processes, the following experiments are briefly discussed: (i) correlations between deep inelastic antineutrino-proton scattering and particle production in the proton fragmentation region, (ii) correlations between massive lepton pairs and particles produced in the fragmentation regions, and (iii) correlations between large transverse momentum particles and leading protons. In order to present the large transverse momentum - leading proton correlation, a divided correlation function similar to that used for studying short-range correlations of low transverse momentum particles is defined
Modelling Brain Tissue using Magnetic Resonance Imaging
DEFF Research Database (Denmark)
Dyrby, Tim Bjørn
2008-01-01
Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visualizations of three-dimensional fibre bundles. One class of these algorithms is probabilistic...... the possibility of using high-field experimental MR scanners and long scanning times, thereby significantly improving the signal-to-noise ratio (SNR) and anatomical resolution. Moreover, many of the degrading effects observed in vivo, such as physiological noise, are no longer present. However, the post mortem...
Modelling of catalytic recombiners. Comparison of REKO-DIREKT calculations with REKO-3 experiments
International Nuclear Information System (INIS)
Reinecke, E.-A.; Boehm, J.; Drinovac, P.; Struth, S.; Tragsdorf, I.M.
2005-01-01
Numerous containments of European light water reactors (LWR) are equipped with passive autocatalytic recombiners (PAR). PARs make use of the fact that hydrogen and oxygen react exothermally on catalytic surfaces generating steam and heat even below conventional concentration limits and ignition temperatures. These devices are designed for the removal of hydrogen generated during a severe accident in order to limit the impact of a possible hydrogen combustion. Alongside many experimental programmes performed at different institutions in the past which demonstrated the technical feasibility of this approach, investigations also revealed that there is still research needed in order to optimise and to enhance existing systems. The knowledge of the processes inside recombiners is still limited. The numerical code REKO-DIREKT has been developed in order to analyse the processes inside a PAR. The code calculates the local catalyst and gas temperatures and the concentration regression along the catalyst plates dependent on the inlet hydrogen concentration, the inlet gas temperature, and the flow rate. Numerous experiments have been performed in the REKO-3 facility taking into account different hydrogen concentrations, different flow rates, the presence of steam, the lack of oxygen, and different arrangements of the catalyst elements. The experimental results are used for the validation of the code providing also data specific for sub-models, e.g. the heat radiation model. The first basic calculations fit well with the experimental results indicating a proper understanding of the fundamental processes. The paper presents model calculations performed and the comparison with experimental results. (author)
On the quark structure of resonance states in dual models
International Nuclear Information System (INIS)
Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.
1975-01-01
It is shown using as an example the Veneziano dual model, that each particular dual model already contains a certain latent quark structure unambiauously determined by internal properties of the dual model. To prove this degeneration of the resonance state spectrum is studied by introducing an additional disturbing interaction into the model being considered. Induced transitions of particles into a vacuum act as such an additional disturbance. This method complements the known factorization method of Fubini, Gordon and Veneziano and turns out to be free from an essential limitation of the latter connected with implicit assumption about the basence of internal additive laws of conservation in the model. By using the method of induced transitions of particles into a vacuum it has been possible to show that the resonance state spectrum is indeed more degenerated than it should be expected from the factorization theorem, and that the supplementary degeneration corresponds to the quark model with an infinite number of quarks of the increasing mass. Structures of some terms of the dual amplitude expansion over the degrees of the constant of the induced transition of particles to vacuum are considered; it is shown that the summation of this expansion may be reduced to a solution of a certain integral equation. On the basis of the integral equation obtained an integral representation ofr dual amplitudes is established. The problems related with degeneration of resonance states and with determination of additive quantum numbers leading to the quark interpretation of the degeneration being considered are discussed
CFD Recombiner Modelling and Validation on the H2-Par and Kali-H2 Experiments
International Nuclear Information System (INIS)
Mimouni, S.; Mechitoua, N.; Ouraou, M.
2011-01-01
A large amount of Hydrogen gas is expected to be released within the dry containment of a pressurized water reactor (PWR), shortly after the hypothetical beginning of a severe accident leading to the melting of the core. According to local gas concentrations, the gaseous mixture of hydrogen, air and steam can reach the flammability limit, threatening the containment integrity. In order to prevent mechanical loads resulting from a possible conflagration of the gas mixture, French and German reactor containments are equipped with passive autocatalytic recombiners (PARs) which preventively oxidize hydrogen for concentrations lower than that of the flammability limit. The objective of the paper is to present numerical assessments of the recombiner models implemented in CFD solvers NEPTUNE C FD and Code S aturne. Under the EDF/EPRI agreement, CEA has been committed to perform 42 tests of PARs. The experimental program named KALI-H 2 , consists checking the performance and behaviour of PAR. Unrealistic values for the gas temperature are calculated if the conjugate heat transfer and the wall steam condensation are not taken into account. The combined effects of these models give a good agreement between computational results and experimental data
DEFF Research Database (Denmark)
an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...
Three-body recombination of two-component cold atomic gases into deep dimers in an optical model
International Nuclear Information System (INIS)
Mikkelsen, M; Jensen, A S; Fedorov, D V; Zinner, N T
2015-01-01
We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length is usually related to the non-equal two-body systems. We account for temperature smearing which tends to wipe out the higher-lying Efimov peaks. The range and the strength of the imaginary potential determine positions and shapes of the Efimov peaks as well as the absolute value of the recombination rate. The Efimov scaling between recombination peaks is calculated and shown to depend on both scattering lengths. Recombination is predicted to be largest for heavy–heavy–light systems. Universal properties of the optical parameters are indicated. We compare to available experiments and find in general very satisfactory agreement. (paper)
Recombinant lambda-phage nanobioparticles for tumor therapy in mice models.
Ghaemi, Amir; Soleimanjahi, Hoorieh; Gill, Pooria; Hassan, Zuhair; Jahromi, Soodeh Razeghi M; Roohvand, Farzin
2010-05-12
Lambda phages have considerable potential as gene delivery vehicles due to their genetic tractability, low cost, safety and physical characteristics in comparison to other nanocarriers and gene porters. Little is known concerning lambda phage-mediated gene transfer and expression in mammalian hosts. We therefore performed experiments to evaluate lambda-ZAP bacteriophage-mediated gene transfer and expression in vitro. For this purpose, we constructed recombinant lambda-phage nanobioparticles containing a mammalian expression cassette encoding enhanced green fluorescent protein (EGFP) and E7 gene of human papillomavirus type 16 (lambda-HPV-16 E7) using Lambda ZAP- CMV XR vector. Four cell lines (COS-7, CHO, TC-1 and HEK-239) were transduced with the nanobioparticles. We also characterized the therapeutic anti-tumor effects of the recombinant lambda-HPV-16 E7 phage in C57BL/6 tumor mice model as a cancer vaccine. Obtained results showed that delivery and expression of these genes in fibroblastic cells (COS-7 and CHO) are more efficient than epithelial cells (TC-1 and HEK-239) using these nanobioparticles. Despite the same phage M.O.I entry, the internalizing titers of COS-7 and CHO cells were more than TC-1 and HEK-293 cells, respectively. Mice vaccinated with lambda-HPV-16 E7 are able to generate potent therapeutic antitumor effects against challenge with E7- expressing tumor cell line, TC-1 compared to group treated with the wild phage. The results demonstrated that the recombinant lambda-phages, due to their capabilities in transducing mammalian cells, can also be considered in design and construction of novel and safe phage-based nanomedicines.
Conserved number fluctuations in a hadron resonance gas model
International Nuclear Information System (INIS)
Garg, P.; Mishra, D.K.; Netrakanti, P.K.; Mohanty, B.; Mohanty, A.K.; Singh, B.K.; Xu, N.
2013-01-01
Net-baryon, net-charge and net-strangeness number fluctuations in high energy heavy-ion collisions are discussed within the framework of a hadron resonance gas (HRG) model. Ratios of the conserved number susceptibilities calculated in HRG are being compared to the corresponding experimental measurements to extract information about the freeze-out condition and the phase structure of systems with strong interactions. We emphasize the importance of considering the actual experimental acceptances in terms of kinematics (pseudorapidity (η) and transverse momentum (p T )), the detected charge state, effect of collective motion of particles in the system and the resonance decay contributions before comparisons are made to the theoretical calculations. In this work, based on HRG model, we report that the net-baryon number fluctuations are least affected by experimental acceptances compared to the net-charge and net-strangeness number fluctuations
The Droplet model of the Giant Fipole Resonance
International Nuclear Information System (INIS)
Myers, W.D.; Kodama, T.; El-Jaick, L.J.; Hilf, E.R.
1976-10-01
The nuclear Giant Dipole Resonance (GDR) energies are calculated using a macroscopic hydronamical model with two new features. The motion is treated as a combination of the usual Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) modes, and the restoring forces are all calculated using the Droplet Model. The A dependence of the resonance energies is well reproduced without any adjustable parameters, and the measured magnitude of the energies serves to fix the value of the effective mass m* used in the theory. The GDR is found to consist mainly of a GT-type motion with the SJ-mode becoming more important for heavy nuclei. The width P of the GDR is also estimated on the basis of an expression for one-body damping [pt
A recombinant lentiviral PDGF-driven mouse model of proneural glioblastoma.
Rahme, Gilbert J; Luikart, Bryan W; Cheng, Chao; Israel, Mark A
2018-02-19
Mouse models of glioblastoma (GBM), the most aggressive primary brain tumor, are critical for understanding GBM pathology and can contribute to the preclinical evaluation of therapeutic agents. Platelet-derived growth factor (PDGF) signaling has been implicated in the development and pathogenesis of GBM, specifically the proneural subtype. Although multiple mouse models of PDGF-driven glioma have been described, they require transgenic mice engineered to activate PDGF signaling and/or impair tumor suppressor genes and typically represent lower-grade glioma. We designed recombinant lentiviruses expressing both PDGFB and a short hairpin RNA targeting Cdkn2a to induce gliomagenesis following stereotactic injection into the dentate gyrus of adult immunocompetent mice. We engineered these viruses to coexpress CreERT2 with PDGFB, allowing for deletion of floxed genes specifically in transduced cells, and designed another version of this recombinant lentivirus in which enhanced green fluorescent protein was coexpressed with PDGFB and CreERT2 to visualize transduced cells. The dentate gyrus of injected mice showed hypercellularity one week post-injection and subsequently developed bona fide tumors with the pathologic hallmarks of GBM leading to a median survival of 77 days post-injection. Transcriptomic analysis of these tumors revealed a proneural gene expression signature. Informed by the genetic alterations observed in human GBM, we engineered a novel mouse model of proneural GBM. While reflecting many of the advantages of transgenic mice, this model allows for the facile in vivo testing of gene function in tumor cells and makes possible the rapid production of large numbers of immunocompetent tumor-bearing mice for preclinical testing of therapeutics. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Three-body recombination of cold fermionic atoms
International Nuclear Information System (INIS)
Suno, H; Esry, B D; Greene, Chris H
2003-01-01
Recombination of identical, spin-polarized fermions in cold three-body collisions is investigated. We parametrize the mechanisms for recombination in terms of the 'scattering volume' V p and another length scale r 0 . Model two-body interactions were used within the framework of the adiabatic hyperspherical representation. We examine the recombination rate K 3 as a function of the collision energy E for various values of V p . Not only do we consider the dominant J Π = 1 + case, but also the next-leading order contributions from J Π = 1 - and 3 - . We discuss the behaviour near a two-body resonance and the expected universality of fermionic recombination. Comparisons with boson recombination are considered in detail
Kosinski, Jan; Gajda, Michal J; Cymerman, Iwona A; Kurowski, Michal A; Pawlowski, Marcin; Boniecki, Michal; Obarska, Agnieszka; Papaj, Grzegorz; Sroczynska-Obuchowicz, Paulina; Tkaczuk, Karolina L; Sniezynska, Paulina; Sasin, Joanna M; Augustyn, Anna; Bujnicki, Janusz M; Feder, Marcin
2005-01-01
In the course of CASP6, we generated models for all targets using a new version of the "FRankenstein's monster approach." Previously (in CASP5) we were able to build many very accurate full-atom models by selection and recombination of well-folded fragments obtained from crude fold recognition (FR) results, followed by optimization of the sequence-structure fit and assessment of alternative alignments on the structural level. This procedure was however very arduous, as most of the steps required extensive visual and manual input from the human modeler. Now, we have automated the most tedious steps, such as superposition of alternative models, extraction of best-scoring fragments, and construction of a hybrid "monster" structure, as well as generation of alternative alignments in the regions that remain poorly scored in the refined hybrid model. We have also included the ROSETTA method to construct those parts of the target for which no reasonable structures were generated by FR methods (such as long insertions and terminal extensions). The analysis of successes and failures of the current version of the FRankenstein approach in modeling of CASP6 targets reveals that the considerably streamlined and automated method performs almost as well as the initial, mostly manual version, which suggests that it may be a useful tool for accurate protein structure prediction even in the hands of nonexperts. 2005 Wiley-Liss, Inc.
Modeling laser brightness from cross Porro prism resonators
Forbes, Andrew; Burger, Liesl; Litvin, Igor Anatolievich
2006-08-01
Laser brightness is a parameter often used to compare high power laser beam delivery from various sources, and incorporates both the power contained in the particular mode, as well as the propagation of that mode through the beam quality factor, M2. In this study a cross Porro prism resonator is considered; crossed Porro prism resonators have been known for some time, but until recently have not been modeled as a complete physical optics system that allows the modal output to be determined as a function of the rotation angle of the prisms. In this paper we consider the diffraction losses as a function of the prism rotation angle relative to one another, and combine this with the propagation of the specific modes to determine the laser output brightness as a function of the prism orientation.
Kinetic model of a Ne-H2 Penning Recombination Laser operating in the hollow cathode discharge
International Nuclear Information System (INIS)
Pramatarov, P.M.; Stefanova, M.S.; Petrov, G.M.
1995-01-01
The Penning Recombination Laser (PRL) requires the presence of both a recombination plasma populating the upper laser level (ULL) and a gas component efficiently depopulating the lower laser level (LLL) by Penning reactions. Such requirements are met in the negative glow plasma of a pulsed high voltage Ne-H 2 discharge with a helical hollow cathode. High rates of ionizations followed by recombinations are reached due to the beam component of non-Maxwellian electrons of 1-2 keV energy present in the tail of the electron energy distribution function. The H 2 , on the one hand plays the role of Penning component and on the other hand effectively cools the electrons by rotational and vibrational levels excitation. The latter contributes to the effectiveness of the recombination processes. A kinetic model of the physical processes determining the inversion population on the NeI(2p 1 -1s 2 ) transition (the 585.3 nm line) in a Ne-H 2 PRL operating in a high voltage hollow cathode discharge at intermediate pressures is proposed. About 60 plasma-chemical reactions are considered in the model. These include: two-electron recombination of Ne + ; dissociative recombination of Ne 2 + , NeH + and H 2 + ; ion-ion recombination of Ne + and H - ; Ne and H 2 direct ionization by fast electrons; Ne stepwise ionization; Penning ionization; Ne excitation by fast electrons; Ne stepwise excitation and de-excitation; radiative transitions; electron mixing between Ne excited states; H 2 rotational and vibrational levels excitation; H 2 dissociative attachment; elastic electron collisions with H 2 and Ne. The rate constants for the reactions are either taken from the literature or calculated in this work
Pawlak , Renaud; Cuesta , Carlos; Younessi , Houman
2004-01-01
This research report presents a promising new approach to computation called Recombinant Programming. The novelty of our approach is that it separates the program into two layers of computation: the recombination and the interpretation layer. The recombination layer takes sequences as inputs and allows the programmer to recombine these sequences through the definition of cohesive code units called extensions. The output of such recombination is a mesh that can be used by the interpretation la...
International Nuclear Information System (INIS)
Koyumdjieva, N.
2006-01-01
A statistical model for the resonant cross section structure in the Unresolved Resonance Region has been developed in the framework of the R-matrix formalism in Reich Moore approach with effective accounting of the resonance parameters fluctuations. The model uses only the average resonance parameters and can be effectively applied for analyses of cross sections functional, averaged over many resonances. Those are cross section moments, transmission and self-indication functions measured through thick sample. In this statistical model the resonant cross sections structure is accepted to be periodic and the R-matrix is a function of ε=E/D with period 0≤ε≤N; R nc (ε)=π/2√(S n *S c )1/NΣ(i=1,N)(β in *β ic *ctg[π(ε i - = ε-iS i )/N]; Here S n ,S c ,S i is respectively neutron strength function, strength function for fission or inelastic channel and strength function for radiative capture, N is the number of resonances (ε i ,β i ) that obey the statistic of Porter-Thomas and Wigner's one. The simple case of this statistical model concerns the resonant cross section structure for non-fissile nuclei under the threshold for inelastic scattering - the model of the characteristic function with HARFOR program. In the above model some improvements of calculation of the phases and logarithmic derivatives of neutron channels have been done. In the parameterization we use the free parameter R l ∞ , which accounts the influence of long-distant resonances. The above scheme for statistical modelling of the resonant cross section structure has been applied for evaluation of experimental data for total, capture and inelastic cross sections for 232 Th in the URR (4-150) keV and also the transmission and self-indication functions in (4-175) keV. The set of evaluated average resonance parameters have been obtained. The evaluated average resonance parameters in the URR are consistent with those in the Resolved Resonance Region (CRP for Th-U cycle, Vienna, 2006
Calculation of hydrogen outgassing rate of LHD by recombination limited model
International Nuclear Information System (INIS)
Akaishi, K.; Nakasuga, M.
2002-04-01
To simulate hydrogen outgassing in the plasma vacuum vessel of LHD, the recombination limited model is presented, where the time evolution of hydrogen concentration in the wall of the plasma vacuum vessel is described by a one-dimensional diffusion equation. The hydrogen outgassing rates when the plasma vacuum vessel is pumped down at room temperature and baked at 100 degC are calculated as a function of pumping time. The calculation shows that the hydrogen outgassing rate of the plasma vacuum vessel can be reduced at least by one order of magnitude due to pumping and baking. This prediction is consistent with the recent result of outgassing reduction observed in the pumping-down and baking of the plasma vacuum vessel in LHD. (author)
Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model
Zhijian Fang; Junhua Wang; Shanxu Duan; Liangle Xiao; Guozheng Hu; Qisheng Liu
2018-01-01
In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feed...
Francis, Andrew; Moulton, Vincent
2018-06-07
Phylogenetic networks are an extension of phylogenetic trees which are used to represent evolutionary histories in which reticulation events (such as recombination and hybridization) have occurred. A central question for such networks is that of identifiability, which essentially asks under what circumstances can we reliably identify the phylogenetic network that gave rise to the observed data? Recently, identifiability results have appeared for networks relative to a model of sequence evolution that generalizes the standard Markov models used for phylogenetic trees. However, these results are quite limited in terms of the complexity of the networks that are considered. In this paper, by introducing an alternative probabilistic model for evolution along a network that is based on some ground-breaking work by Thatte for pedigrees, we are able to obtain an identifiability result for a much larger class of phylogenetic networks (essentially the class of so-called tree-child networks). To prove our main theorem, we derive some new results for identifying tree-child networks combinatorially, and then adapt some techniques developed by Thatte for pedigrees to show that our combinatorial results imply identifiability in the probabilistic setting. We hope that the introduction of our new model for networks could lead to new approaches to reliably construct phylogenetic networks. Copyright © 2018 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Bott, E.; Frepoli, C.; Monti, R.; Notini, V.; Carcassi, M.; Fineschi, F.; Heitsch, M.
1999-01-01
Large amounts of hydrogen can be generated in the containment of a nuclear power plant following a postulated accident with significant fuel damage. Different strategies have been proposed and implemented to prevent violent hydrogen combustion. An attractive one aims to eliminate hydrogen without burning processes; it is based on the use of catalytic hydrogen recombiners. This paper describes a simulation methodology which is being developed by Ansaldo, to support the application of the above strategy, in the frame of two projects sponsored by the Commission of the European Communities within the IV Framework Program on Reactor Safety. Involved organizations also include the DCMN of Pisa University (Italy), Battelle Institute and GRS (Germany), Politechnical University of Madrid (Spain). The aims to make available a simulation approach, suitable for use for containment design at industrial level (i.e. with reasonable computer running time) and capable to correctly capture the relevant phenomenologies (e.g. multiflow convective flow patterns, hydrogen, air and steam distribution in the containment atmosphere as determined by containment structures and geometries as well as by heat and mass sources and sinks). Eulerian algorithms provide the capability of three dimensional modelling with a fairly accurate prediction, however lower than CFD codes with a full Navier Stokes formulation. Open linking of an Eulerian code as GOTHIC to a full Navier Stokes CFD code as CFX 4.1 allows to dynamically tune the solving strategies of the Eulerian code itself. The effort in progress is an application of this innovative methodology to detailed hydrogen recombination simulation and a validation of the approach itself by reproducing experimental data. (author)
CSIR Research Space (South Africa)
Burger, L
2007-01-01
Full Text Available of this type of resonator. Further use of the model reveals the formation of more complex beam patterns, and the nature of these patterns is investigated. Also, the output of stable and unstable resonator modes is presented....
Cavadias, S; Cauquot, P; Amouroux, J
1997-01-01
Space shuttle overheating during the re-entry phase, due to catalytic oxygen recombination on the thermal protection system, is a problem of practical and theoretical interest. The energy transfer is characterised by the product of the accommodation and the recombination coefficients. Previous
International Nuclear Information System (INIS)
Foltin, M.; Lukac, P.; Morva, I.; Foltin, V.
2004-01-01
In the paper the statistical 'phase-space theory' extended for chemical reactions and for dissociative recombination of polyatomic ions is applied to the indirect and direct dissociative recombination of diatomic ions with electrons. Numerical calculations are made for molecular neon ion. The good agreement is obtained with experimental results (Authors)
Modelling of optoelectronic circuits based on resonant tunneling diodes
Rei, João. F. M.; Foot, James A.; Rodrigues, Gil C.; Figueiredo, José M. L.
2017-08-01
Resonant tunneling diodes (RTDs) are the fastest pure electronic semiconductor devices at room temperature. When integrated with optoelectronic devices they can give rise to new devices with novel functionalities due to their highly nonlinear properties and electrical gain, with potential applications in future ultra-wide-band communication systems (see e.g. EU H2020 iBROW Project). The recent coverage on these devices led to the need to have appropriated simulation tools. In this work, we present RTD based optoelectronic circuits simulation packages to provide circuit signal level analysis such as transient and frequency responses. We will present and discuss the models, and evaluate the simulation packages.
Covariant introduction of quark spin into the dual resonance model
International Nuclear Information System (INIS)
Iroshnikov, G.S.
1979-01-01
A very simple method of insertion of a quark spin into the dual resonance model of hadron interaction is proposed. The method is suitable for amplitudes with an arbitrary number of particles. The amplitude of interaction of real particles is presented as a product of contribution of oscillatory excitations in the (q anti q) system and of a spin factor. The latter is equal to the trace of the product of the external particle wave functions constructed from structural quarks and satisfying the relativistic Bargman-Wigner equations. Two examples of calculating the meson interaction amplitudes are presented
Modelling of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, M.; Schmidt, J.; Salo, H.
2014-04-01
Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to
Screening Resonances In Plasmas
International Nuclear Information System (INIS)
Winkler, P.
1998-01-01
When it was suggested that a new recombination mechanism (Resonant Radiative Recombination (RRR)) which, based on very general physical arguments, should happen in dense plasmas and promises to provide useful information for the local temperature and density diagnostics of plasmas, they assumed the existence of screening resonances. For model potentials the existence of screening resonances has been demonstrated beyond reasonable doubt in a number of calculations. The key question, how well those potentials describe the dominant effects of a real plasma remains open. The relation of theoretical predictions to experimentally measurable effects is an important issue at the present stage of their research. In particular, RRR is expected to account for enhanced recombination rates of low energetic electrons with their ions, since the first stage is the resonant capture of a slow electron by an atom or ion. The mechanism that traps an electron is a combination of complicated many-body interactions of the ions and electrons. For clarity they start here, however, with a discussion in terms of local potential traps the shapes of which are determined predominantly and in an average way by two factors: the degree of screening present at the ionic site and the degree of short-range order in the immediate neighborhood of this ion
Dissociation–recombination models in hypersonic boundary layer O2/O flows
International Nuclear Information System (INIS)
Armenise, I.; Esposito, F.
2012-01-01
Graphical abstract: In hypersonic boundary layers, in which the temperature strongly decreases from the edge to the body surface, the coupling of transport phenomena and chemical kinetics causes a strong vibrational non-equilibrium, as demonstrated by the vibrational distributions and the pseudo-first-order dissociation constants. In this work a pure O2/O mixture has been investigated to evaluate the role of new multiquanta atom-molecule collision rate coefficients, calculated by means of a quasiclassical trajectory (QCT) method. Highlights: ► We evaluate the vibrational non-equilibrium in oxygen hypersonic boundary layer flows. ► We adopt a state-to-state vibrational kinetics model. ► We use updated quasicassical trajectory atom–molecule collision rate coefficients. ► Multiquanta transitions and direct dissociation–recombination are important. ► We calculate the heat flux through the boundary layer. - Abstract: A recent complete set of oxygen atom–molecule collision rate coefficients, calculated by means of a quasiclassical trajectory (QCT) method, has been used to evaluate the vibrational non-equilibrium in hypersonic boundary layer flows. The importance of multiquanta transitions has been demonstrated. Moreover a new ‘direct dissociation–recombination’ (DDR) model has been adopted and the corresponding results differ from the ones obtained with the ladder-climbing (LC) model, characterized by the extrapolation of bound-to-bound transitions to the continuum. The heat flux through the boundary layer and at the surface has been calculated too.
Stochastic resonance in a generalized Von Foerster population growth model
Energy Technology Data Exchange (ETDEWEB)
Lumi, N.; Mankin, R. [Institute of Mathematics and Natural Sciences, Tallinn University, 25 Narva Road, 10120 Tallinn (Estonia)
2014-11-12
The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. An analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.
Gotz, M; Karsch, L; Pawelke, J
2017-11-01
In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 [Formula: see text] at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.
Interacting hadron resonance gas model in the K -matrix formalism
Dash, Ashutosh; Samanta, Subhasis; Mohanty, Bedangadas
2018-05-01
An extension of hadron resonance gas (HRG) model is constructed to include interactions using relativistic virial expansion of partition function. The noninteracting part of the expansion contains all the stable baryons and mesons and the interacting part contains all the higher mass resonances which decay into two stable hadrons. The virial coefficients are related to the phase shifts which are calculated using K -matrix formalism in the present work. We have calculated various thermodynamics quantities like pressure, energy density, and entropy density of the system. A comparison of thermodynamic quantities with noninteracting HRG model, calculated using the same number of hadrons, shows that the results of the above formalism are larger. A good agreement between equation of state calculated in K -matrix formalism and lattice QCD simulations is observed. Specifically, the lattice QCD calculated interaction measure is well described in our formalism. We have also calculated second-order fluctuations and correlations of conserved charges in K -matrix formalism. We observe a good agreement of second-order fluctuations and baryon-strangeness correlation with lattice data below the crossover temperature.
Directory of Open Access Journals (Sweden)
María Francisca eAguayo
2015-02-01
Full Text Available Polyols are enzymatically-produced plant compounds which can act as compatible solutes during periods of abiotic stress. NAD+-dependent SORBITOL DEHYDROGENASE (SDH, E.C. 1.1.1.14 from Arabidopsis thaliana L. (AtSDH is capable of oxidizing several polyols including sorbitol, ribitol and xylitol. In the present study, enzymatic assays using recombinant AtSDH demonstrated a higher specificity constant for xylitol compared to sorbitol and ribitol, all of which are C2 (S and C4 (R polyols. Enzyme activity was reduced by preincubation with ethylenediaminetetraacetic acid (EDTA, indicating a requirement for zinc ions. In humans, it has been proposed that sorbitol becomes part of a pentahedric coordination sphere of the catalytic zinc during the reaction mechanism. In order to determine the validity of this pentahedric coordination model in a plant SDH, homology modeling and Molecular Dynamics simulations of AtSDH ternary complexes with the three polyols were performed using crystal structures of human and Bemisia argentifolii (Genn. (Hemiptera: Aleyrodidae SDHs as scaffolds. The results indicate that the differences in interaction with structural water molecules correlate very well with the observed enzymatic parameters, validate the proposed pentahedric coordination of the catalytic zinc ion in a plant SDH, and provide an explanation for why AtSDH shows a preference for polyols with a chirality of C2 (S and C4 (R.
Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh
2015-08-01
Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumour-specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60 nm near-monodisperse nanoparticles that increased the systemic exposure of PTX by sevenfold compared with free drug and twofold compared with the Food and Drug Administration-approved taxane nanoformulation (Abraxane). The tumour uptake of the CP-PTX nanoparticle was fivefold greater than free drug and twofold greater than Abraxane. In a murine cancer model of human triple-negative breast cancer and prostate cancer, CP-PTX induced near-complete tumour regression after a single dose in both tumour models, whereas at the same dose, no mice treated with Abraxane survived for >80 days (breast) and 60 days (prostate), respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for PTX delivery.
International Nuclear Information System (INIS)
Millis, D.L.; Wilkens, B.E.; Daniel, G.B.; Hubner, K.; Mathews, A.; Buonomo, F.C.; Patell, K.R.; Weigel, J.P.
1998-01-01
Objective: To determine the effect of recombinant canine somatotropin (STH) on radiographic, densitometric, and biomechanical aspects of bone healing using an unstable ostectomy gap model. Study Design: After an ostectomy of the midshaft radius, bone healing was evaluated over an 8-week period in control dogs (n = 4) and dogs receiving recombinant canine STH (n = 4). Animals Or Sample Population: Eight sexually intact female Beagle dogs, 4 to 5 years old. Methods: Bone healing was evaluated by qualitative and quantitative evaluation of serial radiographs every 2 weeks. Terminal dual-energy x-ray absorptiometry and three-point bending biomechanical testing were also performed. Results: Dogs receiving STH had more advanced radiographic healing of ostectomy sites. Bone area, bone mineral content, and bone density were two to five times greater at the ostectomy sites of treated dogs. Ultimate load at failure and stiffness were three and five times greater in dogs receiving STH. Conclusions: Using the ostectomy gap model, recombinant canine STH enhanced the radiographic, densitometric, and biomechanical aspects of bone healing in dogs. Clinical Relevance: Dogs at risk for delayed healing of fractures may benefit from treatment with recombinant canine STH
Sordaria, a model system to uncover links between meiotic pairing and recombination.
Zickler, Denise; Espagne, Eric
2016-06-01
The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) the identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Indian Academy of Sciences (India)
To the extent that genes influence our behaviour it may well be that our ... other by a coefficient of genetic relatedness r of 0.75 but a female. Figure 1. ... cal and empirical work. ... rather famous one is called PSR, for paternally transmitted sex ... Life cycle of ... Genic balance sex determination (GBSD): According to this model ...
Yu, Hua-Gen
2008-05-21
A spherical electron cloud hopping (SECH) model is proposed to study the product branching ratios of dissociative recombination (DR) of polyatomic systems. In this model, the fast electron-captured process is treated as an instantaneous hopping of a cloud of uniform spherical fractional point charges onto a target M+q ion (or molecule). The sum of point charges (-1) simulates the incident electron. The sphere radius is determined by a critical distance (Rc eM) between the incoming electron (e-) and the target, at which the potential energy of the e(-)-M+q system is equal to that of the electron-captured molecule M+q(-1) in a symmetry-allowed electronic state with the same structure as M(+q). During the hopping procedure, the excess energies of electron association reaction are dispersed in the kinetic energies of M+q(-1) atoms to conserve total energy. The kinetic energies are adjusted by linearly adding atomic momenta in the direction of driving forces induced by the scattering electron. The nuclear dynamics of the resultant M+q(-1) molecule are studied by using a direct ab initio dynamics method on the adiabatic potential energy surface of M+q(-1), or together with extra adiabatic surface(s) of M+q(-1). For the latter case, the "fewest switches" surface hopping algorithm of Tully was adapted to deal with the nonadiabaticity in trajectory propagations. The SECH model has been applied to study the DR of both CH+ and H3O+(H2O)2. The theoretical results are consistent with the experiment. It was found that water molecules play an important role in determining the product branching ratios of the molecular cluster ion.
International Nuclear Information System (INIS)
Banerjee, Santanu; Vasu, P; Von Hellermann, M; Jaspers, R J E
2010-01-01
Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is, in particular, the case when bremsstrahlung continuum radiation from the bulk plasma is used as a common reference light source for the cross-calibration of visible spectroscopy. In this paper the reflected contribution to the continuum level in Textor and ITER has been estimated for the detection channels meant for charge exchange recombination spectroscopy (CXRS). A model assuming diffuse reflection has been developed for the bremsstrahlung which is a much extended source. Based on this model, it is shown that in the case of ITER upper port 3, a wall with a moderate reflectivity of 20% leads to the wall reflected fraction being as high as 55-60% of the weak signals in the edge channels. In contrast, a complete bidirectional reflectance distribution function (BRDF) based model has been developed in order to estimate the reflections from more localized sources like the charge exchange (CX) emission from a neutral beam in tokamaks. The largest signal contamination of ∼15% is seen in the core CX channels, where the true CX signal level is much lower than that in the edge channels. Similar values are obtained for Textor also. These results indicate that the contributions from wall reflections may be large enough to significantly distort the overall spectral features of CX data, warranting an analysis at different wavelengths.
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Santanu; Vasu, P [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India); Von Hellermann, M [FOM Institute for Plasma Physics, Rijnhuizen (Netherlands); Jaspers, R J E, E-mail: sbanerje@ipr.res.i [Applied Physics Department, Eindhoven University of Technology, Eindhoven (Netherlands)
2010-12-15
Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is, in particular, the case when bremsstrahlung continuum radiation from the bulk plasma is used as a common reference light source for the cross-calibration of visible spectroscopy. In this paper the reflected contribution to the continuum level in Textor and ITER has been estimated for the detection channels meant for charge exchange recombination spectroscopy (CXRS). A model assuming diffuse reflection has been developed for the bremsstrahlung which is a much extended source. Based on this model, it is shown that in the case of ITER upper port 3, a wall with a moderate reflectivity of 20% leads to the wall reflected fraction being as high as 55-60% of the weak signals in the edge channels. In contrast, a complete bidirectional reflectance distribution function (BRDF) based model has been developed in order to estimate the reflections from more localized sources like the charge exchange (CX) emission from a neutral beam in tokamaks. The largest signal contamination of {approx}15% is seen in the core CX channels, where the true CX signal level is much lower than that in the edge channels. Similar values are obtained for Textor also. These results indicate that the contributions from wall reflections may be large enough to significantly distort the overall spectral features of CX data, warranting an analysis at different wavelengths.
Development and validation of a catalytic recombiner model for the containment code RALOC MOD4.0
International Nuclear Information System (INIS)
Rohde, J.; Klein-Hebling, W.; Chakraborty, A.K.
1997-01-01
This paper reports on the development of a catalytic recombiner model for the containment code RALOC MOD4.0 /KLH 95, KLH 96/ and the detailed validation work, carried out at GRS. The model was qualified by using the results of medium and large scale experiments, being performed in Germany /KAN 91/. The comparison of measured data with the calculations demonstrates, that this new model is suitable for real plant applications to investigate the overall effectiveness of a catalytic recombiner system under severe accident conditions for large dry containments of German PWR design. The results of such investigations will serve as the basis to work out some guidance for the determination of the system capacity needed and an optimal positioning of such devices in containments. (author)
Interacting-string picture of dual-resonance models
International Nuclear Information System (INIS)
Mandelstam, S.
1985-01-01
Dual-resonance models are an alyzed by means of operators which act within the physical Hilbert space of positive-metric states. The basis of the method is to extend the relativistic-string picture of a previous study to interacting particles. Functional methods are used, but their relation to the operator is evident, and factorization is maintained. An expression is given for the N-point amplitude in terms of physical-particle operators. For the three-point function the Neumann functions which occur in this expression are evaluated, so that we have a formula for the on- and off-energy-shell vertex. The authors assume that the string has no longitudinal degrees of freedom, and their results are Lorentz invariant and dual only if d=26
The inherent complexity in nonlinear business cycle model in resonance
International Nuclear Information System (INIS)
Ma Junhai; Sun Tao; Liu Lixia
2008-01-01
Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future
Polyakov loop and the hadron resonance gas model.
Megías, E; Arriola, E Ruiz; Salcedo, L L
2012-10-12
The Polyakov loop has been used repeatedly as an order parameter in the deconfinement phase transition in QCD. We argue that, in the confined phase, its expectation value can be represented in terms of hadronic states, similarly to the hadron resonance gas model for the pressure. Specifically, L(T)≈1/2[∑(α)g(α)e(-Δ(α)/T), where g(α) are the degeneracies and Δ(α) are the masses of hadrons with exactly one heavy quark (the mass of the heavy quark itself being subtracted). We show that this approximate sum rule gives a fair description of available lattice data with N(f)=2+1 for temperatures in the range 150 MeVmodels. For temperatures below 150 MeV different lattice results disagree. One set of data can be described if exotic hadrons are present in the QCD spectrum while other sets do not require such states.
Numerical model of electron cyclotron resonance ion source
Directory of Open Access Journals (Sweden)
V. Mironov
2015-12-01
Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.
Mitrophanov, Alexander Y; Reifman, Jaques
2011-10-01
The therapeutic potential of a hemostatic agent can be assessed by investigating its effects on the quantitative parameters of thrombin generation. For recombinant activated factor VII (rFVIIa)--a promising hemostasis-inducing biologic--experimental studies addressing its effects on thrombin generation yielded disparate results. To elucidate the inherent ability of rFVIIa to modulate thrombin production, it is necessary to identify rFVIIa-induced effects that are compatible with the available biochemical knowledge about thrombin generation mechanisms. The existing body of knowledge about coagulation biochemistry can be rigorously represented by a computational model that incorporates the known reactions and parameter values constituting the biochemical network. We used a thoroughly validated numerical model to generate activated factor VII (FVIIa) titration curves in the cases of normal blood composition, hemophilia A and B blood, blood lacking factor VII, blood lacking tissue factor pathway inhibitor, and diluted blood. We utilized the generated curves to perform systematic fold-change analyses for five quantitative parameters characterizing thrombin accumulation. The largest fold changes induced by increasing FVIIa concentration were observed for clotting time, thrombin peak time, and maximum slope of the thrombin curve. By contrast, thrombin peak height was much less affected by FVIIa titrations, and the area under the thrombin curve stayed practically unchanged. Comparisons with experimental data demonstrated that the computationally derived patterns can be observed in vitro. rFVIIa modulates thrombin generation primarily by accelerating the process, without significantly affecting the total amount of generated thrombin. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hsu, Yung-Ting; Al-Hezaimi, Khalid; Galindo-Moreno, Pablo; O'Valle, Francisco; Al-Rasheed, Abdulaziz; Wang, Hom-Lay
2017-09-01
Vertical bone augmentation (VBA) remains unpredictable and challenging for most clinicians. This study aims to compare hard tissue outcomes of VBA, with and without recombinant human bone morphogenetic protein (rhBMP)-2, under space-making titanium mesh in a canine model. Eleven male beagle dogs were used in the study. Experimental ridge defects were created to form atrophic ridges. VBA was performed via guided bone regeneration using titanium mesh and allografts. In experimental hemimandibles, rhBMP-2/absorbable collagen sponge was well mixed with allografts prior to procedures, whereas a control buffer was applied within controls. Dogs were euthanized after a 4-month healing period. Clinical and radiographic examinations were performed to assess ridge dimensional changes. In addition, specimens were used for microcomputed tomography (micro-CT) assessment and histologic analysis. Membrane exposure was found on five of 11 (45.5%) rhBMP-2-treated sites, whereas it was found on nine of 11 (81.8%) non-rhBMP-2-treated sites. Within 4 months of healing, rhBMP-2-treated sites showed better radiographic bone density, greater defect fill, and significantly more bone gain in ridge height (P 0.05). Under light microscope, predominant lamellar patterns were found in the specimen obtained from rhBMP-2 sites. With inherent limitations of the canine model and the concern of such a demanding surgical technique, current findings suggest that the presence of rhBMP-2 in a composite graft allows an increase of vertical gain, with formation of ectopic bone over the titanium mesh in comparison with non-rhBMP-2 sites.
Non-radiative recombination process in BGaAs/GaAs alloys: Two layer photothermal deflection model
Energy Technology Data Exchange (ETDEWEB)
Ilahi, S., E-mail: ilehi_soufiene@yahoo.fr [Université de Carthage, Unité de Recherche de caractérisation photothermique et modélisation, Institut Préparatoire aux Etudes d’Ingénieurs de Nabeul (IPEIN), 8000 Merazka, Nabeul (Tunisia); Baira, M.; Saidi, F. [Université de Monastir, Laboratoire de Micro-Optoélectronique et Nanostructures, Faculté des Sciences de Monastir. Avenue de l’Environnement, Monastir 5019 (Tunisia); Yacoubi, N. [Université de Carthage, Unité de Recherche de caractérisation photothermique et modélisation, Institut Préparatoire aux Etudes d’Ingénieurs de Nabeul (IPEIN), 8000 Merazka, Nabeul (Tunisia); Auvray, L. [Laboratoire Multimateriaux et Interfaces, Université Claude Bernard Lyon I, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Maaref, H. [Université de Monastir, Laboratoire de Micro-Optoélectronique et Nanostructures, Faculté des Sciences de Monastir. Avenue de l’Environnement, Monastir 5019 (Tunisia)
2013-12-25
Highlights: •We have developed a two layer photothermal deflection model. •We have determined the electronic properties of BGaAs/GaAs alloys. •We have studied the boron effect in the electronic parameters. -- Abstract: Photo-thermal deflection technique PTD is used to study the nonradiative recombination process in BGaAs/GaAs alloy with boron composition of 3% and 8% grown by metal organic chemical vapor deposition (MOCVD). A two layer theoretical model has been developed taking into account both thermal and electronic contribution in the photothermal signal allowing to extract the electronic parameters namely electronic diffusivity, surface and interface recombination. It is found that the increase of boron composition alters the BGaAs epilayers transport properties.
Matter-neutrino resonance in a multiangle neutrino bulb model
Vlasenko, Alexey; McLaughlin, G. C.
2018-04-01
Simulations of neutrino flavor evolution in compact merger environments have shown that neutrino flavor, and hence nucleosynthesis, can be strongly affected by the presence of matter-neutrino resonances (MNRs), where there is a cancelation between the matter and the neutrino potential. Simulations performed thus far follow flavor evolution along a single neutrino trajectory, but self-consistency requires all trajectories to be treated simultaneously, and it has not been known whether MNR phenomena would still occur in multiangle models. In this paper, we present the first fully multi-angle calculations of MNR. We find that familiar MNR phenomena, where neutrinos transform to a greater extent than anti-neutrinos and a feedback mechanism maintains the cancellation between the matter and neutrino potential, still occurs for a subset of angular bins, although the flavor transformation is not as efficient as in the single-angle case. In addition, we find other types of flavor transformation that are not seen in single-angle simulations. These flavor transformation phenomena appear to be robust and are present for a wide range of model parameters, as long as an MNR is present. Although computational constraints currently limit us to models with spherical symmetry, our results suggest that the presence of an MNR generally leads to large-scale neutrino flavor evolution in multiangle systems.
Application of Resonant Converter in Ozone Generator Model
Directory of Open Access Journals (Sweden)
Mochammad Facta
2008-04-01
Full Text Available Ozone is one of the favorable oxidant to use in home appliance and industry as disinfectant for food processing, food storage, odor abatement, groundwater remediation, and drinking water purification. The common and previous technical method for generating ozone uses a high voltage and low frequency. This kind of method has disadvantage of energy efficiency, size and weight. This paper proposed the use power electronics in the inverter resonant circuit to produce alternating current with high frequency. The basic RLC resonance circuit is used for early study to determine resonance frequency for inverter. As the result, the ozone chamber terminal voltage had been achieved for initiation by using resonance frequency.
Modelling and analysis of the transformer current resonance in dual active bridge converters
DEFF Research Database (Denmark)
Qin, Zian; Shen, Zhan; Blaabjerg, Frede
2017-01-01
Due to the parasitic capacitances of the transformer and inductor in Dual Active Bridge (DAB) converters, resonance happens in the transformer currents. This high frequency resonant current flowing into the full bridges will worsen their soft-switching performance and thereby reduce its efficiency....... In order to study the generation mechanism of this current resonance, the impedance of the transformer and inductor with parasitic components is modelled in this digest. Then, based on the impedance model, an approach is proposed to mitigate the current resonance. Finally, both the impedance model...
Doorway-resonance model for pion-nucleon D- and F-wave scattering
International Nuclear Information System (INIS)
Ernst, D.J.; Parnell, G.E.; Assad, C.; Texas A and M Univ., College Station, TX
1990-01-01
A model for the resonant pion-nucleon D- and F-waves is developed which assumes that the pion-plus-nucleon couples to a resonance and that the resonance can serve as a doorway to the inelastic channels. With the use of simple form factors, the model is capable of reproducing the pion-nucleon phase shifts up to an energy of T π =1.4 GeV if the coupling of the elastic channel to the inelastic channels is taken from data as input into the model. A value for the mass of the resonance that would result in the absence of the coupling to decay channels is extracted from the data utilizing the model. This is the mass that is most easily modeled by bag models. For the non-resonant D- and F-wave channels a separable potential model is used. This model, like the resonance model, is developed utilizing the invariant amplitude which is free of kinematic singularities and uses invariant norms and phase spaces. The model is also applied to the S-wave channels. A relation between the resonance model and the Chew-Low model is discovered and used to derive an extended Chew-Low model which is applied to the P 13 , P 31 and P 33 channels. Implications of the model for understanding the range of the pion-nucleon interaction and the dynamic structure of the interaction are presented. (orig.)
A three-dimensional model for calculating the micro disk laser resonant-modes
International Nuclear Information System (INIS)
Sabetjoo, H.; Bahrampor, A.; Farrahi-Moghaddam, R.
2006-01-01
In this article, a semi-analytical model for theoretical analysis of micro disk lasers is presented. Using this model, the necessary conditions for the existence of loss less and low-loss modes of micro-resonators are obtained. The resonance frequency of the resonant modes and also the attenuation of low-loss modes are calculated. By comparing the results with results of finite difference method, their validity is certified.
Self-consistent modeling of electron cyclotron resonance ion sources
International Nuclear Information System (INIS)
Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lecot, C.
2004-01-01
In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally
Self-consistent modeling of electron cyclotron resonance ion sources
Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lécot, C.
2004-05-01
In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally.
López-Villavicencio, M.; Debets, A.J.M.; Slakhorst-Wandel, S.M.; Giraud, T.; Schoustra, S.E.
2013-01-01
Why sexual reproduction is so prevalent in nature remains a major question in evolutionary biology. Most of the proposed advantages of sex rely on the benefits obtained from recombination. However, it is still unclear whether the conditions under which these recombinatorial benefits would be
International Nuclear Information System (INIS)
ZERBO Issa
2010-01-01
A bibliographic study on the techniques of characterization of silicon solar cell, diodes, massifs and silicon wafer are presented. The influence of the modulation frequency and recombination in volume and in surface phenomena of on the profiles of carriers' densities, photocurrent and photovoltage has been put in evidence. The study of surface recombination velocities permitted to show that the bi facial silicon solar cell of Back Surface Field type behaves like an ohmic contacts solar cell for modulation frequencies above 40 khz. pplicability in frequency dynamic regime in the frequency range [0 - 40 khz] of three techniques of steady state recombination parameters determination is shown. A technique of diffusion length determination, in the range of (200 Hz - 40 khz] is proposed. It rests on the measurement of the short circuit current phase that is compared with the theoretical curve of short circuit current phase. The intersection of the experimental short circuit current phase and the theoretical curve of short circuit current phase permits to get the minority carriers effective diffusion length. An equivalent electric model of a solar cell in frequency dynamic regime is proposed. A study in modelling of the bi facial solar cell shunt resistance and space charge zone capacity is led from a determination method of these parameters proposed in steady state. (Author [fr
Whitehouse, H. L. K.
1973-01-01
Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)
A new spin on primordial hydrogen recombination and a refined model for spinning dust radiation
Ali-Haimoud, Yacine
2011-08-01
This thesis describes theoretical calculations in two subjects: the primordial recombination of the electron-proton plasma about 400,000 years after the Big Bang and electric dipole radiation from spinning dust grains in the present-day interstellar medium. Primordial hydrogen recombination has recently been the subject of a renewed attention because of the impact of its theoretical uncertainties on predicted cosmic microwave background (CMB) anisotropy power spectra. The physics of the primordial recombination problem can be divided into two qualitatively different aspects. On the one hand, a detailed treatment of the non-thermal radiation field in the optically thick Lyman lines is required for an accurate recombination history near the peak of the visibility function. On the other hand, stimulated recombinations and out-of equilibrium effects are important at late times and a multilevel calculation is required to correctly compute the low-redshift end of the ionization history. Another facet of the problem is the requirement of computational efficiency, as a large number of recombination histories must be evaluated in Markov chains when analyzing CMB data. In this thesis, an effective multilevel atom method is presented, that speeds up multilevel atom computations by more than 5 orders of magnitude. The impact of previously ignored radiative transfer effects is quantified, and explicitly shown to be negligible. Finally, the numerical implementation of a fast and highly accurate primordial recombination code partly written by the author is described. The second part of this thesis is devoted to one of the potential galactic foregrounds for CMB experiments: the rotational emission from small dust grains. The rotational state of dust grains is described, first classically, and assuming that grains are rotating about their axis of greatest inertia. This assumption is then lifted, and a quantum-mechanical calculation is presented for disk-like grains with a
Fineberg, Jeffrey D.; Ritter, David M.
2012-01-01
A-type voltage-gated K+ (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na+ channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously
Systematic assignment of Feshbach resonances via an asymptotic bound state model
Goosen, M.; Kokkelmans, SJ.J.M.F.
2008-01-01
We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the
Analytical model for double split ring resonators with arbitrary ring width
DEFF Research Database (Denmark)
Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor
2008-01-01
For the first time, the analytical model for a double split ring resonator with unequal width rings is developed. The proposed models for the resonators with equal and unequal widths are based on an impedance matrix representation and provide the prediction of performance in a wide frequency range...
Heffernan, Julieanne; Biedermann, Eric; Mayes, Alexander; Livings, Richard; Jauriqui, Leanne; Goodlet, Brent; Aldrin, John C.; Mazdiyasni, Siamack
2018-04-01
Process Compensated Resonant Testing (PCRT) is a full-body nondestructive testing (NDT) method that measures the resonance frequencies of a part and correlates them to the part's material and/or damage state. PCRT testing is used in the automotive, aerospace, and power generation industries via automated PASS/FAIL inspections to distinguish parts with nominal process variation from those with the defect(s) of interest. Traditional PCRT tests are created through the statistical analysis of populations of "good" and "bad" parts. However, gathering a statistically significant number of parts can be costly and time-consuming, and the availability of defective parts may be limited. This work uses virtual databases of good and bad parts to create two targeted PCRT inspections for single crystal (SX) nickel-based superalloy turbine blades. Using finite element (FE) models, populations were modeled to include variations in geometric dimensions, material properties, crystallographic orientation, and creep damage. Model results were verified by comparing the frequency variation in the modeled populations with the measured frequency variations of several physical blade populations. Additionally, creep modeling results were verified through the experimental evaluation of coupon geometries. A virtual database of resonance spectra was created from the model data. The virtual database was used to create PCRT inspections to detect crystallographic defects and creep strain. Quantification of creep strain values using the PCRT inspection results was also demonstrated.
A one-dimensional model of resonances with a delta barrier and mass jump
International Nuclear Information System (INIS)
Alvarez, J.J.; Gadella, M.; Heras, F.J.H.; Nieto, L.M.
2009-01-01
In this Letter, we present a one-dimensional model that includes a hard core at the origin, a Dirac delta barrier at a point in the positive semiaxis and a mass jump at the same point. We study the effect of this mass jump in the behavior of the resonances of the model. We obtain an infinite number of resonances for this situation, showing that for the case of a mass jump the imaginary part of the resonance poles tend to a fixed value depending on the quotient of masses, and demonstrate that none of these resonances is degenerated.
Magnetic resonance spectroscopy of traumatic brain in SD rats model
International Nuclear Information System (INIS)
Li Ke; Li Yangbin; Li Zhiming; Huang Yong; Li Bin; Lu Guangming
2009-01-01
Objective: To assess the value and prospect of magnetic resonance spectroscopy (MRS) in early diagnosis of traumatic brain with traumatic brain model in SD rats. Methods: Traumatic brain modal was established in 40 male SD rats utilizing a weigh-drop device, and MRS was performed before trauma and 4,8,24 and 48 hours after trauma. The ratio of N-acetylaspartate/creatine (NAA/Ct) and choline/creatine (Cho/Cr) were calculated and compared with pathological findings respectively. Results: Axonal changes were confirmed in microscopic study 4 hours after injury. The ratio of NAA/Ct decreased distinctly at 4 hours after trauma, followed by a steadily recover at 8 hours, and no significant change from 24h to 48h. There was no significant change in the ratio of Cho/Cr before and after trauma. Conclusion: MRS can be used to monitor the metabolic changes of brain non-invasively. MRS could play a positive role in early diagnosis, prognosis and follow-up of traumatic brain. (authors)
Model for decays of boson resonances with arbitrary spins
International Nuclear Information System (INIS)
Grigoryan, A.A.; Ivanov, N.Ya.
1985-01-01
A formula for the width of resonance with spin J decay into hadrons with arbitrary spins is derived. This width is expressed via S-channel helicity residues of Regge trajectory α J where the resonance J lies. Using the quark-gluon picture predictions for the coupling of quarks with Regge trajectories and SU(6)-classification of hadrons this formula is applied to calculate the widths of decays of resonances, which lie on the vector and tensor trajectories, into pseudoscalar and vector, two vectors and NN-bar-pair
Martín, Verónica; Mavian, Carla; López Bueno, Alberto; de Molina, Antonio; Díaz, Eduardo; Andrés, Germán; Alcami, Antonio; Alejo, Alí
2015-10-01
Amphibian-like ranaviruses include pathogens of fish, amphibians, and reptiles that have recently evolved from a fish-infecting ancestor. The molecular determinants of host range and virulence in this group are largely unknown, and currently fish infection models are lacking. We show that European sheatfish virus (ESV) can productively infect zebrafish, causing a lethal pathology, and describe a method for the generation of recombinant ESV, establishing a useful model for the study of fish ranavirus infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Rubinelli, Francisco A.; Ramirez, Helena; Ruiz, Carlos M.; Schmidt, Javier A.
2017-05-01
Recombination losses of a-Si:H based p-i-n solar cells in the annealed state are analyzed with device computer modeling. Under AM1.5 illumination, the recombination rate in the intrinsic layer is shown to be controlled by a combination of losses through defect and tail states. The influence of the defect concentration on the characteristic parameters of a solar cell is analyzed. The impact on the light current-voltage characteristic curve of adopting very low free carrier mobilities and a high density of states at the band edge is explored under red and AM1.5 illumination. The distribution of trapped charge, electric field, and recombination loses inside the intrinsic layer is examined, and their influence on the solar cell performance is discussed. Solar cells with intrinsic layers deposited with and without hydrogen dilution are examined. It is found that the photocurrent at -2 V is not always a good approximation of the saturated reverse-bias photocurrent in a-Si:H p-i-n solar cells at room temperature. The importance of using realistic electrical parameters in solar cell simulations is emphasized.
Directory of Open Access Journals (Sweden)
D. D. Tsyrendorzhiev
2013-01-01
Full Text Available Abstract. This paper presents the results of the research on the effectiveness of recombinant TNF-binding protein of variola virus (VARV-CrmB in a model of collagen-induced arthritis (CIA in mice (CBAxC57Bl6 F1. The introduction of VARV-CrmB and polyclonal antibody to recombinant mouse TNF (poly-AbMuTNF led to an improvement of clinical manifestations of CIA by reducing the swelling and increasing the mobility of mice limbs. The introduction of VARV-CrmB and poly-AbMuTNF reduced the number of neutrophilic granulocytes and granulocytic precursors. The introduction of VARV-CrmB and poly-AbMuTNF into mice decreased collagenolysis in the blood serum and the content of glycosaminoglycans at the early stages of experimentation. Treatment with VARV-CrmB and poly-AbMuTNF of mice with CIA significantly decreased the chemiluminescence response of blood leukocytes. VARV-CrmB exerted more pronounced inhibitory effect on the production of reactive oxygen metabolites by blood leukocytes of mice with CIA than poly-AbMuTNF. Improvement of clinical condition of the mice with CIA has a more prolonged effect following introduction of the VARV-CrmB than after injection of poly-AbMuTNF. The results suggest the recombinant viral protein VARVCrmB to be a new potential TNF-antagonist.
Delayed recombination and cosmic parameters
International Nuclear Information System (INIS)
Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph
2008-01-01
Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.
Analysis and Modeling of Integrated Magnetics for LLC resonant Converters
DEFF Research Database (Denmark)
Li, Mingxiao; Ouyang, Ziwei; Zhao, Bin
2017-01-01
Shunt-inserted transformers are widely used toobtain high leakage inductance. This paper investigates thismethod in depth to make it applicable to integrate resonantinductor for the LLC resonant converters. The analysis andmodel of magnetizing inductance and leakage inductance forshunt...... transformers can provide a significantdifference. The way to obtain the desirable magnetizing andleakage inductance value for LLC resonant converters issimplified by the creation of air gaps together with a magneticshunt. The calculation and relation are validated by finiteelement analysis (FEA) simulations...
Hou, C L; Zhang, J; Liu, X T; Liu, H; Zeng, X F; Qiao, S Y
2014-06-01
Superoxide dismutase (SOD) can prevent and cure inflammatory bowel diseases by decreasing the amount of reactive oxygen species. Unfortunately, short half-life of SOD in the gastrointestinal tract limited its application in the intestinal tract. This study aimed to investigate the treatment effects of recombinant SOD Lactobacillus fermentum in a colitis mouse model. In this study, we expressed the sodA gene in Lact. fermentum I5007 to obtain the SOD recombinant strain. Then, we determined the therapeutic effects of this SOD recombinant strain in a trinitrobenzene sulphonic acid (TNBS)-induced colitis mouse model. We found that SOD activity in the recombinant Lact. fermentum was increased by almost eightfold compared with that in the wild type. Additionally, both the wild type and the recombinant Lact. fermentum increased the numbers of lactobacilli in the colon of mice (P < 0·05). Colitis mice treated with recombinant Lact. fermentum showed a higher survival rate and lower disease activity index (P < 0·05). Recombinant Lact. fermentum significantly decreased colonic mucosa histological scoring for infiltration of inflammatory cells, lipid peroxidation, the expression of pro-inflammatory cytokines and myeloperoxidase (P < 0·05) and inhibited NF-κB activity in colitis mice (P < 0·05). SOD recombinant Lact. fermentum significantly reduced oxidative stress and inflammation through inhibiting NF-κB activation in the TNBS-induced colitis model. This study provides insights into the anti-inflammatory effects of SOD recombinant Lact. fermentum, indicating the potential therapeutic effects in preventing and curing intestinal bowel diseases. © 2014 The Society for Applied Microbiology.
Directory of Open Access Journals (Sweden)
Malak Kotb
2012-12-01
Full Text Available Countering aerosolized filovirus infection is a major priority of biodefense research. Aerosol models of filovirus infection have been developed in knock-out mice, guinea pigs and non-human primates; however, filovirus infection of immunocompetent mice by the aerosol route has not been reported. A murine model of aerosolized filovirus infection in mice should be useful for screening vaccine candidates and therapies. In this study, various strains of wild-type and immunocompromised mice were exposed to aerosolized wild-type (WT or mouse-adapted (MA Ebola virus (EBOV. Upon exposure to aerosolized WT-EBOV, BALB/c, C57BL/6 (B6, and DBA/2 (D2 mice were unaffected, but 100% of severe combined immunodeficiency (SCID and 90% of signal transducers and activators of transcription (Stat1 knock-out (KO mice became moribund between 7–9 days post-exposure (dpe. Exposure to MA-EBOV caused 15% body weight loss in BALB/c, but all mice recovered. In contrast, 10–30% lethality was observed in B6 and D2 mice exposed to aerosolized MA-EBOV, and 100% of SCID, Stat1 KO, interferon (IFN-γ KO and Perforin KO mice became moribund between 7–14 dpe. In order to identify wild-type, inbred, mouse strains in which exposure to aerosolized MA-EBOV is uniformly lethal, 60 BXD (C57BL/6 crossed with DBA/2 recombinant inbred (RI and advanced RI (ARI mouse strains were exposed to aerosolized MA-EBOV, and monitored for disease severity. A complete spectrum of disease severity was observed. All BXD strains lost weight but many recovered. However, infection was uniformly lethal within 7 to 12 days post-exposure in five BXD strains. Aerosol exposure of these five BXD strains to 10-fold less MA-EBOV resulted in lethality ranging from 0% in two strains to 90–100% lethality in two strains. Analysis of post-mortem tissue from BXD strains that became moribund and were euthanized at the lower dose of MA-EBOV, showed liver damage in all mice as well as lung lesions in
Two-Mode Resonator and Contact Model for Standing Wave Piezomotor
DEFF Research Database (Denmark)
Andersen, B.; Blanke, Mogens; Helbo, J.
2001-01-01
The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailed simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...
Hadron correlations from recombination
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2005-01-01
Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.
Directory of Open Access Journals (Sweden)
Irena Cosic
2016-06-01
Full Text Available The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM. The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1 the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2 the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3 the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4 the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.
A statistical model for combustion resonance from a DI diesel engine with applications
Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.
2015-08-01
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
International Nuclear Information System (INIS)
Wang Chi; Zhou Yu-Qiu; Shen Gao-Wei; Wu Wen-Wen; Ding Wei
2013-01-01
The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the ''soil-mine'' system could be equivalent to a damping ''mass-spring'' resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil—mine system could be investigated by changing the parameter setup in a flexible manner. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
The computer simulation of the resonant network for the B-factory model power supply
International Nuclear Information System (INIS)
Zhou, W.; Endo, K.
1993-07-01
A high repetition model power supply and the resonant magnet network are simulated with the computer in order to check and improve the design of the power supply for the B-factory booster. We put our key point on a transient behavior of the power supply and the resonant magnet network. The results of the simulation are given. (author)
DEFF Research Database (Denmark)
Larsen, Malte Selch; Juul, Rasmus Vestergaard; Groth, Andreas Velsing
2018-01-01
activated factor VII (rFVIIa) and recombinant factor VIII (rFVIII) in several experimental animal models using population PK modelling, and apply a simulation-based approach to evaluate how well the developed animal population PK models predict human PK. PK models were developed for rFVIIa and r...
International Nuclear Information System (INIS)
Higuchi, Yuji; Ishikawa, Takeshi; Ozawa, Nobuki; Chazeau, Laurent; Cavaillé, Jean-Yves; Kubo, Momoji
2015-01-01
Highlights: • We study the different dynamics of dissociation and recombination processes. • Hydrogen at the chain ends collides each other in the recombination process. • Dissociation and recombination processes take different pathway. - Abstract: We investigate the different dynamics of the stress-induced dissociation and recombination reactions in a model of polyethylene by a first-principles molecular dynamics simulation at the B3LYP/6-31g(d) level. The dissociation under external forces acting on the chemical reaction site at 300 K follows the same pathway as the one calculated by the static first-principles method because it has a similar activation barrier to that of the static first-principles calculation. On the other hand, in the recombination process, thermal fluctuations causes collisions between hydrogen atoms at the chain ends. Furthermore, when external forces do not directly act on the chemical reaction site, two different dissociation processes are observed. On the other hand, recombination process is not observed due to rarely contact of the radical carbon. These results indicate that dissociation and recombination dynamics are very different, showing the importance of the dynamic calculation.
Directory of Open Access Journals (Sweden)
Bart W. Hoogenboom
2012-05-01
Full Text Available Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.
Energy Technology Data Exchange (ETDEWEB)
Fang, Yuan, E-mail: yuan.fang@fda.hhs.gov [Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993-0002 and Department of Electrical and Computer Engineering, The University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Karim, Karim S. [Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Badano, Aldo [Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993-0002 (United States)
2014-01-15
Purpose: The authors describe the modification to a previously developed Monte Carlo model of semiconductor direct x-ray detector required for studying the effect of burst and recombination algorithms on detector performance. This work provides insight into the effect of different charge generation models for a-Se detectors on Swank noise and recombination fraction. Methods: The proposed burst and recombination models are implemented in the Monte Carlo simulation package, ARTEMIS, developed byFang et al. [“Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: Application to pulse-height spectroscopy in a-Se,” Med. Phys. 39(1), 308–319 (2012)]. The burst model generates a cloud of electron-hole pairs based on electron velocity, energy deposition, and material parameters distributed within a spherical uniform volume (SUV) or on a spherical surface area (SSA). A simple first-hit (FH) and a more detailed but computationally expensive nearest-neighbor (NN) recombination algorithms are also described and compared. Results: Simulated recombination fractions for a single electron-hole pair show good agreement with Onsager model for a wide range of electric field, thermalization distance, and temperature. The recombination fraction and Swank noise exhibit a dependence on the burst model for generation of many electron-hole pairs from a single x ray. The Swank noise decreased for the SSA compared to the SUV model at 4 V/μm, while the recombination fraction decreased for SSA compared to the SUV model at 30 V/μm. The NN and FH recombination results were comparable. Conclusions: Results obtained with the ARTEMIS Monte Carlo transport model incorporating drift and diffusion are validated with the Onsager model for a single electron-hole pair as a function of electric field, thermalization distance, and temperature. For x-ray interactions, the authors demonstrate that the choice of burst model can affect the simulation results for the generation
International Nuclear Information System (INIS)
Fang, Yuan; Karim, Karim S.; Badano, Aldo
2014-01-01
Purpose: The authors describe the modification to a previously developed Monte Carlo model of semiconductor direct x-ray detector required for studying the effect of burst and recombination algorithms on detector performance. This work provides insight into the effect of different charge generation models for a-Se detectors on Swank noise and recombination fraction. Methods: The proposed burst and recombination models are implemented in the Monte Carlo simulation package, ARTEMIS, developed byFang et al. [“Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: Application to pulse-height spectroscopy in a-Se,” Med. Phys. 39(1), 308–319 (2012)]. The burst model generates a cloud of electron-hole pairs based on electron velocity, energy deposition, and material parameters distributed within a spherical uniform volume (SUV) or on a spherical surface area (SSA). A simple first-hit (FH) and a more detailed but computationally expensive nearest-neighbor (NN) recombination algorithms are also described and compared. Results: Simulated recombination fractions for a single electron-hole pair show good agreement with Onsager model for a wide range of electric field, thermalization distance, and temperature. The recombination fraction and Swank noise exhibit a dependence on the burst model for generation of many electron-hole pairs from a single x ray. The Swank noise decreased for the SSA compared to the SUV model at 4 V/μm, while the recombination fraction decreased for SSA compared to the SUV model at 30 V/μm. The NN and FH recombination results were comparable. Conclusions: Results obtained with the ARTEMIS Monte Carlo transport model incorporating drift and diffusion are validated with the Onsager model for a single electron-hole pair as a function of electric field, thermalization distance, and temperature. For x-ray interactions, the authors demonstrate that the choice of burst model can affect the simulation results for the generation
Atomic excitation and recombination in external fields
International Nuclear Information System (INIS)
Nayfeh, M.H.; Clark, C.W.
1985-01-01
This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination
Chen, Yingying; Wu, Ying; Zhu, Baotong; Zhang, Guanyu; Wei, Na
2018-01-01
Efficient conversion of cellulosic sugars in cellulosic hydrolysates is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge. The present study reports a new approach for simultaneous fermentation of cellobiose and xylose by using the co-culture consisting of recombinant Saccharomyces cerevisiae specialist strains. The co-culture system can provide competitive advantage of modularity compared to the single culture system and can be tuned to deal with fluctuations in feedstock composition to achieve robust and cost-effective biofuel production. This study characterized fermentation kinetics of the recombinant cellobiose-consuming S. cerevisiae strain EJ2, xylose-consuming S. cerevisiae strain SR8, and their co-culture. The motivation for kinetic modeling was to provide guidance and prediction of using the co-culture system for simultaneous fermentation of mixed sugars with adjustable biomass of each specialist strain under different substrate concentrations. The kinetic model for the co-culture system was developed based on the pure culture models and incorporated the effects of product inhibition, initial substrate concentration and inoculum size. The model simulations were validated by results from independent fermentation experiments under different substrate conditions, and good agreement was found between model predictions and experimental data from batch fermentation of cellobiose, xylose and their mixtures. Additionally, with the guidance of model prediction, simultaneous co-fermentation of 60 g/L cellobiose and 20 g/L xylose was achieved with the initial cell densities of 0.45 g dry cell weight /L for EJ2 and 0.9 g dry cell weight /L SR8. The results demonstrated that the kinetic modeling could be used to guide the design and optimization of yeast co-culture conditions for achieving simultaneous fermentation of cellobiose and xylose with improved ethanol productivity, which is
Directory of Open Access Journals (Sweden)
Carmela Giampà
Full Text Available Loss of huntingtin-mediated BDNF gene transcription has been shown to occur in HD and thus contribute to the degeneration of the striatum. Several studies have indicated that an increase in BDNF levels is associated with neuroprotection and amelioration of neurological signs in animal models of HD. In a recent study, an increase in BDNF mRNA and protein levels was recorded in mice administered recombinant BDNF peripherally. Chronic, indwelling osmotic mini-pumps containing either recombinant BDNF or saline were surgically placed in R6/2 or wild-type mice from 4 weeks of age until euthanasia. Neurological evaluation (paw clasping, rotarod performance, locomotor activity in an open field was performed. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that BDNF- treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as brain volume, striatal atrophy, size and morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. BDNF was effective in increasing significantly the levels of activated CREB and of BDNF the striatal spiny neurons. Moreover, systemically administered BDNF increased the synthesis of BDNF as demonstrated by RT-PCR, and this might account for the beneficial effects observed in this model.
Mathematical model of thyristor inverter including a series-parallel resonant circuit
Luft, M.; Szychta, E.
2008-01-01
The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with the aid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.
Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit
Miroslaw Luft; Elzbieta Szychta
2008-01-01
The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.
Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit
Directory of Open Access Journals (Sweden)
Miroslaw Luft
2008-01-01
Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.
Compact extended model for doppler broadening of neutron absorption resonances in solids
International Nuclear Information System (INIS)
Villanueva, A. J; Granada, J.R
2009-01-01
We present a simplified compact model for calculating Doppler broadening of neutron absorption resonances in an incoherent Debye solid. Our model extends the effective temperature gas model to cover the whole range of energies and temperatures, and reduces the information of the dynamical system to a minimum content compatible with a much better accuracy of the calculation. This model is thus capable of replacing the existing algorithm in standard codes for resonance cross sections preparation aimed at neutron and reactor physics calculations. The model is applied to the 238 U 6.671 eV effective broadened cross section. We also show how this model can be used for thermometry in an improved fashion compared to the effective temperature gas model. Experimental data of the same resonance at low and high temperatures are also shown and the performances of each model are put to the test on this basis. [es
Neutron strength functions: the link between resolved resonances and the optical model
International Nuclear Information System (INIS)
Moldauer, P.A.
1980-01-01
Neutron strength functions and scattering radii are useful as energy and channel radius independent parameters that characterize neutron scattering resonances and provide a connection between R-matrix resonance analysis and the optical model. The choice of R-matrix channel radii is discussed, as are limitations on the accuracies of strength functions. New definitions of the p-wave strength function and scattering radius are proposed. For light nuclei, where strength functions display optical model energy variations over the resolved resonances, a doubly reduced partial neutron width is introduced for more meaningful statistical analyses of widths. The systematic behavior of strength functions and scattering radii is discussed
Hadron Correlations and Parton Recombination
Energy Technology Data Exchange (ETDEWEB)
Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu
2007-02-15
Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.
Correlations between resonances in a statistical scattering model
International Nuclear Information System (INIS)
Gorin, T.; Rotter, I.
1997-01-01
The distortion of the regular motion in a quantum system by its coupling to the continuum of decay channels is investigated. The regular motion is described by means of a Poissonian ensemble. We focus on the case of only few channels K 2 K distribution in the GOE case. 2. Due to the coupling to the continuum, correlations are induced not only between the positions of the resonances but also between positions and widths. These correlations remain even in the strong coupling limit. In order to explain these results, an asymptotic expression for the width distribution is derived for the one channel case. It relates the width of a trapped resonance state to the distance between its two neighboring levels. (orig.)
Self-consistent modelling of resonant tunnelling structures
DEFF Research Database (Denmark)
Fiig, T.; Jauho, A.P.
1992-01-01
We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...... applied voltages and carrier densities at the emitter-barrier interface. We include the two-dimensional accumulation layer charge and the quantum well charge in our self-consistent scheme. We discuss the evaluation of the current contribution originating from the two-dimensional accumulation layer charges......, and our qualitative estimates seem consistent with recent experimental studies. The intrinsic bistability of resonant tunnelling diodes is analyzed within several different approximation schemes....
Open quantum system approach to the modeling of spin recombination reactions.
Tiersch, M; Steiner, U E; Popescu, S; Briegel, H J
2012-04-26
In theories of spin-dependent radical pair reactions, the time evolution of the radical pair, including the effect of the chemical kinetics, is described by a master equation in the Liouville formalism. For the description of the chemical kinetics, a number of possible reaction operators have been formulated in the literature. In this work, we present a framework that allows for a unified description of the various proposed mechanisms and the forms of reaction operators for the spin-selective recombination processes. On the basis of the concept that master equations can be derived from a microscopic description of the spin system interacting with external degrees of freedom, it is possible to gain insight into the underlying microscopic processes and develop a systematic approach toward determining the specific form of the reaction operator in concrete scenarios.
Recombinant Innovation and Endogenous Transitions
Koen Frenken; Luis R. Izquierdo; Paolo Zeppini
2012-01-01
We propose a model of technological transitions based on two different types of innovations. Branching innovations refer to technological improvements along a particular path, while recombinant innovations represent fusions of multiple paths. Recombinant innovations create “short-cuts” which reduce switching costs allowing agents to escape a technological lock-in. As a result, recombinant innovations speed up technological progress allowing transitions that are impossible with only branching ...
Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy
Rypina, I. I.; Pratt, L. J.; Wang, P.; Äe; -zgökmen, T. M.; Mezic, I.
2015-08-01
We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.
International Nuclear Information System (INIS)
Deng, X.; Hu, Z.L.; Yi, X.E.
2008-01-01
A continuous treatment process was developed to investigate the capability of genetically engineered E. coli to simultaneously accumulate mercuric ions and reproduce itself in a continuous stirred tank reactor (CSTR) system. The influence of dilution rate and initial Hg 2+ concentration on continuous process was evaluated. Results indicated that the recombinant E. coli could effectively accumulate Hg 2+ from aqueous solution with Hg 2+ removal ratio up to about 90%, and propagate its cells at the same time in the continuous treatment system under suitable operational conditions. A kinetic model based on mass balance of Hg 2+ was proposed to simulate the continuous process. The modeling results were in good agreement with the experimental data
International Nuclear Information System (INIS)
Panavas, Tadas; Nagy, Peter D.
2003-01-01
Defective interfering (DI) RNA associated with Tomato bushy stunt virus (TBSV), which is a plus-strand RNA virus, requires p33 and p92 proteins of TBSV or the related Cucumber necrosis virus (CNV), for replication in plants. To test if DI RNA can replicate in a model host, we coexpressed TBSV DI RNA and p33/p92 of CNV in yeast. We show evidence for replication of DI RNA in yeast, including (i) dependence on p33 and p92 for DI replication; (ii) presence of active CNV RNA-dependent RNA polymerase in isolated membrane-containing preparations; (iii) increasing amount of DI RNA(+) over time; (iv) accumulation of (-)stranded DI RNA; (v) presence of correct 5' and 3' ends in DI RNA; (vi) inhibition of replication by mutations in the replication enhancer; and (vii) evolution of DI RNA over time, as shown by sequence heterogeneity. We also produced evidence supporting the occurrence of DI RNA recombinants in yeast. In summary, development of yeast as a host for replication of TBSV DI RNA will facilitate studies on the roles of viral and host proteins in replication/recombination
Castro, José M; Horn, Daniel A; Pu, Xinzhu; Lewis, Karen A
2017-06-01
The RNA-binding proteins that comprise the La-related protein (LARP) superfamily have been implicated in a wide range of cellular functions, from tRNA maturation to regulation of protein synthesis. To more expansively characterize the biological function of the LARP6 subfamily, we have recombinantly expressed the full-length LARP6 proteins from two teleost fish, platyfish (Xiphophorus maculatus) and zebrafish (Danio rerio). The yields of the recombinant proteins were enhanced to >2 mg/L using a tandem approach of an N-terminal His 6 -SUMO tag and an iterative solubility screening assay to identify structurally stabilizing buffer components. The domain topologies of the purified fish proteins were probed with limited proteolysis. The fish proteins contain an internal, protease-resistant 40 kDa domain, which is considerably more stable than the comparable domain from the human LARP6 protein. The fish proteins are therefore a lucrative model system in which to study both the evolutionary divergence of this family of La-related proteins and the structure and conformational dynamics of the domains that comprise the LARP6 protein. Copyright © 2017 Elsevier Inc. All rights reserved.
Greenslade, Thomas B., Jr.
1984-01-01
Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)
Photoionization and electron-ion recombination of Fe XVII for high temperature plasmas
International Nuclear Information System (INIS)
Nahar, Sultana N.
2012-01-01
Earlier studies on electron-ion recombination of Fe XVII, e+FeXVIII→FeXVII, concentrated on low temperature region. However, due to its higher abundance, recombination in the high temperature region is of great importance. Total and level-specific recombination cross sections and rates of Fe XVII are presented from the detailed study in the high temperature. The calculations were carried out using the unified method which incorporates both the radiative recombination (RR) and dielectronic recombination (DR) including the interference effects. The method also yields self-consistent set of recombination rates and photoionization cross sections. Unified method is implemented through relativistic Breit-Pauli R-matrix (BPRM) method and close coupling (CC) approximation. For the details of the high energy and high temperature features a CC wave function expansion consisting of 60 levels from n=2 and 3 complexes of the core Fe XVIII was considered. Earlier study included core excitations to n=2 levels only. It is found that the resonances due to core excitations to n=3 levels are much more extensive and stronger than those to n=2 levels and increase the recombination considerably in the high temperature region. While earlier study of 3-level calculations agree very well with the experimentally derived low temperature recombination, the high temperature rate shows a broad peak at about 5×10 6 K, near the maximum abundance of the ion, due to dominance of DR via PEC (photo-excitation-of-core) resonances of n=3 levels. Level-specific recombination rate coefficients, which include both the RR and DR, are presented for 454 levels (n≤10, l≤9, 0 ≤J≤8 with even and odd parities) of Fe XVII. This is the first large-scale BPRM calculations for recombination of a complex atomic system beyond He- and Li-like ions. The results are expected to be accurate with 10-20% uncertainty and provide accurate modelings of ultraviolet to X-ray spectra.
Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model
Directory of Open Access Journals (Sweden)
Zhijian Fang
2018-03-01
Full Text Available In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feedback inner loop is proposed to increase the control system damping, improving dynamic performance. The modeling and design methodology for the LLC resonant converter are also presented in this paper. A frequency analysis is conducted to verify the accuracy of the simplified model. Finally, a 200 W LLC resonant converter prototype is built to verify the effectiveness of the proposed control strategy. Compared to a traditional single-loop controller, the settling time and voltage droop were reduced from 10.8 ms to 8.6 ms and from 6.8 V to 4.8 V, respectively, using the proposed control strategy.
Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits
Energy Technology Data Exchange (ETDEWEB)
Pries, Jason L. [ORNL; Tang, Lixin [ORNL; Burress, Timothy A. [ORNL
2017-10-01
This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequency and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.
Burger, Liesl; Forbes, Andrew
2007-09-01
A simple model of a Porro prism laser resonator has been found to correctly predict the formation of the "petal" mode patterns typical of these resonators. A geometrical analysis of the petals suggests that these petals are the lowest-order modes of this type of resonator. Further use of the model reveals the formation of more complex beam patterns, and the nature of these patterns is investigated. Also, the output of stable and unstable resonator modes is presented.
Grimaldi, Gabriel; Teva, Antonio; Porrozzi, Renato; Pinto, Marcelo A; Marchevsky, Renato S; Rocha, Maria Gabrielle L; Dutra, Miriam S; Bruña-Romero, Oscar; Fernandes, Ana-Paula; Gazzinelli, Ricardo T
2014-06-01
Visceral leishmaniasis (VL) is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2) protein that protects against experimental L. infantum infections in mice and dogs. Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12) adsorbed in alum (rA2/rhIL-12/alum); two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2) followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum); and plasmid DNA encoding A2 gene (DNA-A2) boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2). Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. The remarkable clinical protection induced by A2 in an animal model that is
Directory of Open Access Journals (Sweden)
Gabriel Grimaldi
2014-06-01
Full Text Available BACKGROUND: Visceral leishmaniasis (VL is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2 protein that protects against experimental L. infantum infections in mice and dogs. METHODOLOGY/PRINCIPAL FINDINGS: Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12 adsorbed in alum (rA2/rhIL-12/alum; two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2 followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum; and plasmid DNA encoding A2 gene (DNA-A2 boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2. Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. CONCLUSIONS
Transition polarizability model of induced resonance Raman optical activity
Czech Academy of Sciences Publication Activity Database
Yamamoto, S.; Bouř, Petr
2013-01-01
Roč. 34, č. 25 (2013), s. 2152-2158 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : induced resonance Raman optical activity * europium complexes * density functional computations * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013
Physical optics modeling of modal patterns in a crossed porro prism resonator
CSIR Research Space (South Africa)
Litvin, IA
2006-07-01
Full Text Available A physical optics model is proposed to describe the transverse modal patterns in crossed Porro prism resonators. The model departs from earlier attempts in that the prisms are modeled as non-classical rotating elements with amplitude and phase...
Shi, Y; Ryu, D D; Yuan, W K
1993-01-05
A model was formulated to examine the competitive growth of two phenotypes (Leu(+) and Leu(-)) and the product formation with recombinant Saccharomyces cerevisiae strain DBY-745, which contains the shuttle vector pYGH3-16-s with the foreign gene HBsAg (hepatitis B virus surface antigen) as well as experimental fedbatch fermentation data. The important state variables and the process parameters evaluated include (1) the ratio of the plasmid-free cell concentration to the plasmid-containing cell concentration (rho = X(-)X(+)), (2) the expression of human hepatitis B surface antigen g (CH), (3) the glucose consumption (S), (4) the ethanol production (/), (5) the change of working volume (V) in the fermentor, (6) the different specific growth rates of two phenotype cells, and (7) the plasmid loss frequency coefficient (alpha ). These variables and other parameters were carefully defined, their correlations were studied, and a mathematical model using a set of nonlinear ordinary differential equations (ODEs) for fed-batch fermentation was then obtained based on the theoretical considerations and the experimental results. The extended Kalman filter (EKF) methods was applied for the best estimate of these variables based on the experimentally observable variables: rhoV, and g (CH). Each of these variable was affected by random measuring errors under the different operating conditions. Simulation results presented for verification of the model agreed with our observations and provided useful information relevant to the operation and the control of the fedbatch recombinant yeast fermentation. The method of predicting an optimal profile of the cell growth was also demonstrated under the different dissolved oxygen concentrations.
Olekhno, N. A.; Beltukov, Y. M.
2018-05-01
Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric and other two-component nanocomposites. In the present work, the spectral properties of resonances in random networks are studied within the framework of the random matrix theory. We have shown that the appropriate ensemble of random matrices for the considered problem is the Jacobi ensemble (the MANOVA ensemble). The obtained analytical expressions for the density of states in such resonant networks show a good agreement with the results of numerical simulations in a wide range of metal filling fractions 0
Modeling and understanding of effects of randomness in arrays of resonant meta-atoms
DEFF Research Database (Denmark)
Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka
2013-01-01
In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations....... We show how the electromagnetic response of metasurfaces is related to the statistical parameters of the structure. Furthermore, we will discuss the phenomenon of anti-resonance in extracted effective parameters of metamaterials and clarify its relation to the periodicity (or amorphous nature...
Computer aided design of Langasite resonant cantilevers: analytical models and simulations
Tellier, C. R.; Leblois, T. G.; Durand, S.
2010-05-01
Analytical models for the piezoelectric excitation and for the wet micromachining of resonant cantilevers are proposed. Firstly, computations of metrological performances of micro-resonators allow us to select special cuts and special alignment of the cantilevers. Secondly the self-elaborated simulator TENSOSIM based on the kinematic and tensorial model furnishes etching shapes of cantilevers. As the result the number of selected cuts is reduced. Finally the simulator COMSOL® is used to evaluate the influence of final etching shape on metrological performances and especially on the resonance frequency. Changes in frequency are evaluated and deviating behaviours of structures with less favourable built-ins are tested showing that the X cut is the best cut for LGS resonant cantilevers vibrating in flexural modes (type 1 and type 2) or in torsion mode.
A model for precalculus students to determine the resonance frequency of a trumpet mouthpiece
Chapman, Robert C.
2004-05-01
The trumpet mouthpiece as a Helmholtz resonator is used to show precalculus students a mathematical model for determining the approximate resonance frequency of the mouthpiece. The mathematics is limited to algebra and trigonometry. Using a system of mouthpieces that have interchangeable cups and backbores, students are introduced to the acoustics of this resonator. By gathering data on 51 different configurations of mouthpieces, the author modifies the existing Helmholtz resonator equation to account for both cup volumes and backbore configurations. Students then use this model for frequency predictions. Included are how to measure the different physical attributes of a trumpet mouthpiece at minimal cost. This includes methods for measuring cup volume, backbore volume, backbore length, throat area, etc. A portion of this phase is de-signed for students to become acquainted with some of the vocabulary of acoustics and the physics of sound.
Texture zero neutrino models and their connection with resonant leptogenesis
Achelashvili, Avtandil; Tavartkiladze, Zurab
2018-04-01
Within the low scale resonant leptogenesis scenario, the cosmological CP asymmetry may arise by radiative corrections through the charged lepton Yukawa couplings. While in some cases, as one expects, decisive role is played by the λτ coupling, we show that in specific neutrino textures only by inclusion of the λμ the cosmological CP violation is generated at 1-loop level. With the purpose to relate the cosmological CP violation to the leptonic CP phase δ, we consider an extension of MSSM with two right handed neutrinos (RHN), which are degenerate in mass at high scales. Together with this, we first consider two texture zero 3 × 2 Dirac Yukawa matrices of neutrinos. These via see-saw generated neutrino mass matrices augmented by single ΔL = 2 dimension five (d = 5) operator give predictive neutrino sectors with calculable CP asymmetries. The latter is generated through λμ,τ coupling(s) at 1-loop level. Detailed analysis of the leptogenesis is performed. We also revise some one texture zero Dirac Yukawa matrices, considered earlier, and show that addition of a single ΔL = 2, d = 5 entry in the neutrino mass matrices, together with newly computed 1-loop corrections to the CP asymmetries, give nice accommodation of the neutrino sector and desirable amount of the baryon asymmetry via the resonant leptogenesis even for rather low RHN masses (∼few TeV-107 GeV).
International Nuclear Information System (INIS)
Garcia Gonzalez, M.; Huelamo, E.; Mazrtinez, M.; Perez, J. R.
2014-01-01
This paper presents the analysis of distribution of gases within the containment building carried out a simulation model with the code Thermo hydraulic GOTHIC, which has been evaluated based on passive autocatalytic recombiners gas control system. The model considers scenarios of severe accident with specific conditions that produce the most hydrogen generation rates. Intended to verify the effectiveness of the control system of gas expected to be installed in the Almaraz Nuclear power plant so that the number and location of recombiners equipment meets its function of preventing the formation of explosive atmospheres which impairs the integrity of the containment, reducing and limiting the concentration of combustible gases during the postulated accident. (Author)
Hadron production at RHIC: recombination of quarks
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2005-01-01
We discuss quark recombination applied to the hadronization of a quark gluon plasma. It has been shown that the quark recombination model can explain essential features of hadron production measured in high energy heavy ion collisions.
Recombinant innovation and endogenous technological transitions
Frenken, K.; Izquierdo, L.R.; Zeppini, P.
2012-01-01
We propose a model of technological transitions based on two different types of innovations. Branching innovations refer to technological improvements along a particular path, while recombinant innovations represent fusions of multiple paths. Recombinant innovations create "short-cuts" which reduce
Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps
Melezhik, Vladimir S.
2018-02-01
We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.
Roper resonances and generator coordinate method in the chiral-soliton model
International Nuclear Information System (INIS)
Meissner, T.; Gruemmer, F.; Goeke, K.; Harvey, M.
1989-01-01
The nucleon and Δ Roper resonances are described by means of the generator coordinate method in the framework of the nontopological chiral-soliton model. Solitons with various sizes are constructed with a constrained variational technique. The masses of all known Roper resonances come out to within 150 MeV of their experimental values. A nucleon compression modulus of about 4 GeV is extracted. The limits of the approach due to the polarization of the Dirac vacuum are displayed
Directory of Open Access Journals (Sweden)
Mohammad M. Al-Qattan
2014-01-01
Full Text Available nAG (newt-Anterrior Gradient protein is the key mediator of regrowth of amputated limbs in salamanders. In a previous work in our lab, a new nAG gene (suitable for humans was designed and cloned. The cloned vector was transfected into primary human fibroblasts. The expression of nAG in human primary fibroblasts was found to suppress collagen expression. The current study shows that local injection of recombinant nAG reduces scar hypertrophy in the rabbit ear model. This is associated with lower scar elevation index (SEI, lower levels of collagen I & III, higher levels of MMP1, and a higher degree of scar maturation in experimental wounds compared to controls.
Informational model verification of ZVS Buck quasi-resonant DC-DC converter
Vakovsky, Dimiter; Hinov, Nikolay
2016-12-01
The aim of the paper is to create a polymorphic informational model of a ZVS Buck quasi-resonant DC-DC converter for the modeling purposes of the object. For the creation of the model is applied flexible open standards for setting, storing, publishing and exchange of data in distributed information environment. The created model is useful for creation of many and different by type variants with different configuration of the composing elements and different inner model of the examined object.
Krupka, Jerzy; Aleshkevych, Pavlo; Salski, Bartlomiej; Kopyt, Pawel
2018-02-01
The mode of uniform precession, or Kittel mode, in a magnetized ferromagnetic sphere, has recently been proven to be the magnetic plasmon resonance. In this paper we show how to apply the electrodynamic model of the magnetic plasmon resonance for accurate measurements of the ferromagnetic resonance linewidth ΔH. Two measurement methods are presented. The first one employs Q-factor measurements of the magnetic plasmon resonance coupled to the resonance of an empty metallic cavity. Such coupled modes are known as magnon-polariton modes, i.e. hybridized modes between the collective spin excitation and the cavity excitation. The second one employs direct Q-factor measurements of the magnetic plasmon resonance in a filter setup with two orthogonal semi-loops used for coupling. Q-factor measurements are performed employing a vector network analyser. The methods presented in this paper allow one to extend the measurement range of the ferromagnetic resonance linewidth ΔH well beyond the limits of the commonly used measurement standards in terms of the size of the samples and the lowest measurable linewidths. Samples that can be measured with the newly proposed methods may have larger size as compared to the size of samples that were used in the standard methods restricted by the limits of perturbation theory.
Dielectronic recombination theory
International Nuclear Information System (INIS)
LaGattuta, K.J.
1991-01-01
A theory now in wide use for the calculation of dielectronic recombination cross sections (σ DR ) and rate coefficients (α DR ) was one introduced originally by Feshbach for nuclear physics applications, and then later adapted for atomic scattering problems by Hahn. In the following, we briefly review this theory in a very general form, which allows one to account for the effects of overlapping and interacting resonances, as well as continuum-continuum coupling. An extension of our notation will then also allow for the inclusion of the effects of direct radiative recombination, along with a treatment of the interference between radiative and dielectronic recombination. Other approaches to the calculation of σ DR have been described by Fano and by Seaton. We will not consider those theories here. Calculations of α DR have progressed considerably over the last 25 years, since the early work of Burgess. Advances in the reliability of theoretical predictions have also been promoted recently b a variety of direct laboratory measurements of σ DR . While the measurements of σ DR for δn ≠ 0 excitations have tended to agree very well with calculations, the case of δn = 0 has been much problematic. However, by invoking a mechanism originally proposed by Jacobs, which takes into account the effect of stray electric fields on high Rydberg states (HRS) participating in the DR process, new calculations have improved the agreement between theory and experiment for these cases. Nevertheless, certain discrepancies still remain
Regulation of Meiotic Recombination
Energy Technology Data Exchange (ETDEWEB)
Gregory p. Copenhaver
2011-11-09
Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system
Realistic Gamow shell model for resonance and continuum in atomic nuclei
Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.
2018-02-01
The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.
Vector and axial-vector resonances in composite models of the Higgs boson
Energy Technology Data Exchange (ETDEWEB)
Franzosi, Diogo Buarque [II. Physikalisches Institut, Universität Göttingen,Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Cacciapaglia, Giacomo; Cai, Haiying; Deandrea, Aldo [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL,F-69622, Villeurbanne (France); Frandsen, Mads [CP-Origins & Danish Institute for Advanced Study DIAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark)
2016-11-11
We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.
Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.
Directory of Open Access Journals (Sweden)
Yunsong Liu
Full Text Available Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B converges faster than previously proposed algorithms accelerated proximal algorithm (APG and alternating directional method of multipliers for balanced model (ADMM-B.
Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.
2018-04-01
The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.
Energy Technology Data Exchange (ETDEWEB)
Maneva, Yana G.; Laguna, Alejandro Alvarez; Poedts, Stefaan [Department of Mathematics, Center for Mathematical Plasma Astrophysics, Catholic University of Leuven, B-3001 Leuven (Belgium); Lani, Andrea, E-mail: yana.maneva@ws.kuleuven.be, E-mail: stefaan.poedts@wis.kuleuven.be, E-mail: alejandro.alvarez.laguna@vki.ac.be, E-mail: lani@vki.ac.be [von Karman Institute for Fluid Dynamics, CFD group, Aeronautics and Aerospace, Rhode Saint-Genèse (Belgium)
2017-02-20
In order to study chromospheric magnetosonic wave propagation including, for the first time, the effects of ion–neutral interactions in the partially ionized solar chromosphere, we have developed a new multi-fluid computational model accounting for ionization and recombination reactions in gravitationally stratified magnetized collisional media. The two-fluid model used in our 2D numerical simulations treats neutrals as a separate fluid and considers charged species (electrons and ions) within the resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskiis transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations and the solenoidality of the magnetic field is enforced with a hyperbolic divergence-cleaning scheme. The initial density and temperature profiles are similar to VAL III chromospheric model in which dynamical, thermal, and chemical equilibrium are considered to ensure comparison to existing MHD models and avoid artificial numerical heating. In this initial setup we include simple homogeneous flux tube magnetic field configuration and an external photospheric velocity driver to simulate the propagation of MHD waves in the partially ionized reactive chromosphere. In particular, we investigate the loss of chemical equilibrium and the plasma heating related to the steepening of fast magnetosonic wave fronts in the gravitationally stratified medium.
Murakami, Takashi; Li, Shukuan; Han, Qinghong; Tan, Yuying; Kiyuna, Tasuku; Igarashi, Kentaro; Kawaguchi, Kei; Hwang, Ho Kyoung; Miyake, Kentaro; Singh, Arun S; Nelson, Scott D; Dry, Sarah M; Li, Yunfeng; Hiroshima, Yukihiko; Lwin, Thinzar M; DeLong, Jonathan C; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Eilber, Fritz C; Hoffman, Robert M
2017-05-30
Methionine dependence is due to the overuse of methionine for aberrant transmethylation reactions in cancer. Methionine dependence may be the only general metabolic defect in cancer. In order to exploit methionine dependence for therapy, our laboratory previously cloned L-methionine α-deamino-γ-mercaptomethane lyase [EC 4.4.1.11]). The cloned methioninase, termed recombinant methioninase, or rMETase, has been tested in mouse models of human cancer cell lines. Ewing's sarcoma is recalcitrant disease even though development of multimodal therapy has improved patients'outcome. Here we report efficacy of rMETase against Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) model. The Ewing's sarcoma was implanted in the right chest wall of nude mice to establish a PDOX model. Eight Ewing's sarcoma PDOX mice were randomized into untreated control group (n = 4) and rMETase treatment group (n = 4). rMETase (100 units) was injected intraperitoneally (i.p.) every 24 hours for 14 consecutive days. All mice were sacrificed on day-15, 24 hours after the last rMETase administration. rMETase effectively reduced tumor growth compared to untreated control. The methionine level both of plasma and supernatants derived from sonicated tumors was lower in the rMETase group. Body weight did not significantly differ at any time points between the 2 groups. The present study is the first demonstrating rMETase efficacy in a PDOX model, suggesting potential clinical development, especially in recalcitrant cancers such as Ewing's sarcoma.
Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator.
Lydiate, Joseph
2017-07-01
This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor.
Resonances and fusion in heavy ion reactions: new models and developments
International Nuclear Information System (INIS)
Cindro, N.
1982-01-01
Several aspects of the problem of the resonant behaviour of heavy-ion induced reactions are discussed. First, the problem is set in its relation to fundamental nuclear physics and our understanding of nuclear structure. It is suggested that, if the resonant behaviour of heavy-ion reactions is indeed due to the presence of particular configurations in the composite systems, these configurations must have a very specific nature which prevents their mixing with the adjacent states or else other conditons (e.g. low level density) should be met. Further on, the problem of resonant behaviour observed in back-angle elastic scattering and in forward-angle reaction data is discussed. Collisions between heavy ions leading to the composite systems 36 Ar and 40 Ca are used to discuss the apparent lack of correlation between these two sets of data. A way to understand it, based on the fragmentation of broad resonances, is suggested. In the third part the relation between structure in the fusion cross section excitation functions and that in reaction channel cross sections is discussed. Finally, in the fourth part, the orbiting-cluster model of heavy-ion resonances is briefly described and its predictions discussed. Based on this model a list is given of colliding heavy-ion systems where resonances are expected. (author)
International Nuclear Information System (INIS)
Xu Jun; You Bo; Li Xin; Cui Juan
2007-01-01
To accurately measure temperatures, a novel temperature sensor based on a quartz tuning fork resonator has been designed. The principle of the quartz tuning fork temperature sensor is that the resonant frequency of the quartz resonator changes with the variation in temperature. This type of tuning fork resonator has been designed with a new doubly rotated cut work at flexural vibration mode as temperature sensor. The characteristics of the temperature sensor were evaluated and the results sufficiently met the target of development for temperature sensor. The theoretical model for temperature sensing has been developed and built. The sensor structure was analysed by finite element method (FEM) and optimized, including tuning fork geometry, tine electrode pattern and the sensor's elements size. The performance curve of output versus measured temperature is given. The results from theoretical analysis and experiments indicate that the sensor's sensitivity can reach 60 ppm 0 C -1 with the measured temperature range varying from 0 to 100 0 C
Non-monotonic resonance in a spatially forced Lengyel-Epstein model
Energy Technology Data Exchange (ETDEWEB)
Haim, Lev [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Oncology, Soroka University Medical Center, Beer-Sheva 84101 (Israel); Hagberg, Aric [Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Meron, Ehud [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990 (Israel)
2015-06-15
We study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. We further show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcation can be reversed. We attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.
RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE IMAGES
RATIONALE A description of lung morphological structure is necessary for modeling the deposition and fate of inhaled therapeutic aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images with the goal of creating a framework for anato...
COMPUTER RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE (MR) IMAGES
A mathematical description of the morphological structure of the lung is necessary for modeling and analysis of the deposition of inhaled aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images, with the goal of creating a frame...
A collective model description of the low lying and giant dipole resonant properties of 40424446Ca
International Nuclear Information System (INIS)
Weise, J.I.
1982-01-01
The low-lying and giant dipole resonant properties of the even-even calcium isotopes are calculated within the framework of the Gneuss-Greiner model and compared with the experimental data. In the low energy region, comparison is also made with the predictions of a coexistence model
Energy Technology Data Exchange (ETDEWEB)
Peters, Esther, E-mail: esther.peters@radboudumc.nl [Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox 710, 6500 HB, Nijmegen (Netherlands); Department of Pharmacology and Toxicology, Radboud university medical center, PO Box 9101, Internal Mailbox 149, 6500 HB, Nijmegen (Netherlands); Ergin, Bülent, E-mail: b.ergin@amc.uva.nl [Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Kandil, Asli, E-mail: aslikandil@istanbul.edu.tr [Department of Biology, Faculty of Science, Istanbul University, PK 34134, Vezneciler, Istanbul (Turkey); Gurel-Gurevin, Ebru, E-mail: egurelgurevin@gmail.com [Department of Biology, Faculty of Science, Istanbul University, PK 34134, Vezneciler, Istanbul (Turkey); Elsas, Andrea van, E-mail: a.vanelsas@am-pharma.com [AM-Pharma, Rumpsterweg 6, 3981 AK, Bunnik (Netherlands); Masereeuw, Rosalinde, E-mail: r.masereeuw@uu.nl [Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, PO Box 80082, 3508 TB Utrecht (Netherlands); Pickkers, Peter, E-mail: peter.pickkers@radboudumc.nl [Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox 710, 6500 HB, Nijmegen (Netherlands); Ince, Can, E-mail: c.ince@amc.uva.nl [Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands)
2016-12-15
Two small clinical trials indicated that administration of bovine intestinal alkaline phosphatase (AP) improves renal function in critically ill patients with sepsis-associated acute kidney injury (AKI), for which the mechanism of action is not completely understood. Here, we investigated the effects of a newly developed human recombinant AP (recAP) on renal oxygenation and hemodynamics and prevention of kidney damage and inflammation in two in vivo AKI models. To induce AKI, male Wistar rats (n = 18) were subjected to renal ischemia (30 min) and reperfusion (I/R), or sham-operated. In a second model, rats (n = 18) received a 30 min infusion of lipopolysaccharide (LPS; 2.5 mg/kg), or saline, and fluid resuscitation. In both models, recAP (1000 U/kg) was administered intravenously (15 min before reperfusion, or 90 min after LPS). Following recAP treatment, I/R-induced changes in renal blood flow, renal vascular resistance and oxygen delivery at early, and cortical microvascular oxygen tension at late reperfusion were no longer significantly affected. RecAP did not influence I/R-induced effects on mean arterial pressure. During endotoxemia, recAP treatment did not modulate the LPS-induced changes in systemic hemodynamics and renal oxygenation. In both models, recAP did exert a clear renal protective anti-inflammatory effect, demonstrated by attenuated immunostaining of inflammatory, tubular injury and pro-apoptosis markers. Whether this renal protective effect is sufficient to improve outcome of patients suffering from sepsis-associated AKI is being investigated in a large clinical trial. - Highlights: • Human recombinant alkaline phosphatase (recAP) is a potential new therapy for sepsis-associated acute kidney injury (AKI). • RecAP can modulate renal oxygenation and hemodynamics immediately following I/R-induced AKI. • RecAP did not modulate endotoxemia-induced changes in systemic hemodynamics and renal oxygenation. • RecAP did exert a clear renal protective
Nishiyama, U; Kuwaki, T; Akahori, H; Kato, T; Ikeda, Y; Miyazaki, H
2005-02-01
Previous in vitro studies demonstrated that thrombopoietin (TPO) acts on platelets to activate a variety of intracellular signaling pathways and to enhance platelet sensitivity to multiple agonists. Little is known, however, about whether TPO exerts prothrombotic effects in vivo. The aim of this study was to examine the effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF), a pegylated N-terminal domain of human TPO, in a rat model of venous thrombosis. A microthrombus was photochemically induced on the vessel wall of a mesenteric venule, but the vessel was not occluded by it. A single intravenous injection of PEG-rHuMGDF (3 microg kg(-1)) after the thrombus generation into normal rats enhanced the thrombus size, resulting in transient thrombotic occlusion in the majority of rats. Stimulatory effects on thrombus growth were also observed following administration of glycosylated recombinant human full-length TPO (6 microg kg(-1)). In rats rendered thrombocytopenic by total body irradiation, however, PEG-rHuMGDF, even at 300 microg kg(-1), did not induce a significant increase in thrombus size or thrombotic occlusion. Platelets from thrombocytopenic rats had decreased surface levels of c-Mpl and decreased sensitivity to PEG-rHuMGDF in an in vitro aggregation response. Thus, decreased prothrombotic effects of PEG-rHuMGDF in thrombocytopenic rats might be the result not only of low platelet counts but also of decreased platelet reactivity to PEG-rHuMGDF. These results indicate that PEG-rHuMGDF has little effect on venous thrombus formation in thrombocytopenic states associated with high endogenous TPO levels.
Effect of couplings in the resonance continuum
International Nuclear Information System (INIS)
Royal, J; Larson, A; Orel, A E
2004-01-01
Electronic coupling of two or more resonances via the electron scattering continuum is investigated. The effect of this coupling as a function of the resonance curves and autoionization widths is investigated, and the conditions for the maximum effect are determined. The theory is applied to two physical problems, the product state distribution produced by the dissociative recombination of electrons with HeH + and a one-dimensional model for ion-pair production resulting from electron collisions with H + 3 . It is found that the coupling does not affect the product state distribution in HeH + but produces a significant effect in the H + 3 model
Modeling dendrite density from magnetic resonance diffusion measurements
DEFF Research Database (Denmark)
Jespersen, Sune Nørhøj; Kroenke, CD; Østergaard, Leif
2007-01-01
in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (DL) and perpendicular (DT) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i.......e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides......Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal...
SMATASY. A Program for the model independent description of the Z resonance
International Nuclear Information System (INIS)
Kirsch, S.; Riemann, T.
1994-07-01
SMATASY is an interface for the ZF I T T ER package and may be used for the model independent description of the Z resonance at LEP 1 and SLC. It allows the determination of the Z mass and width and its resonance shape parameters r and j for cross-sections and their asymmetries. The r describes the peak height and j the interference of the Z resonance with photon exchange in each scattering channel and for σ T , σ FB , σ lr , σ pol etc. separately. Alternatively, the helicity amplitudes for a given scattering channel may be determined. We compare our formalism with other model independent approaches. The model independent treatment of QED corrections in SMATASY is applicable also far away from the Z peak. (orig.)
Modeling the diffusion magnetic resonance imaging signal inside neurons
International Nuclear Information System (INIS)
Nguyen, D V; Li, J R; Grebenkov, D S; Le Bihan, D
2014-01-01
The Bloch-Torrey partial differential equation (PDE) describes the complex transverse water proton magnetization due to diffusion-encoding magnetic field gradient pulses. The integral of the solution of this PDE yields the diffusion magnetic resonance imaging (dMRI) signal. In a complex medium such as cerebral tissue, it is difficult to explicitly link the dMRI signal to biological parameters such as the cellular geometry or the cellular volume fraction. Studying the dMRI signal arising from a single neuron can provide insight into how the geometrical structure of neurons influences the measured signal. We formulate the Bloch-Torrey PDE inside a single neuron, under no water exchange condition with the extracellular space, and show how to reduce the 3D simulation in the full neuron to a 3D simulation around the soma and 1D simulations in the neurites. We show that this latter approach is computationally much faster than full 3D simulation and still gives accurate results over a wide range of diffusion times
An analytical model for the determination of resonance frequencies of perforated beams
International Nuclear Information System (INIS)
Luschi, Luca; Pieri, Francesco
2014-01-01
In this paper, we develop closed expressions for the equivalent bending and shear stiffness of beams with regular square perforations, and apply them to the problem of determining the resonance frequencies of slender, regularly perforated clamped–clamped beams, which are of interest in the development of MEMS resonant devices. We prove that, depending on the perforation size, the Euler–Bernoulli equation or the more complex shear equation needs to be used to obtain accurate values for these frequencies. Extensive finite element method simulations are used to validate the proposed model over the full practical range of possible hole sizes. An experimental verification of the model is also presented. (paper)
Directory of Open Access Journals (Sweden)
Z. Hashemiyan
2016-01-01
Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.
Packo, P.; Staszewski, W. J.; Uhl, T.
2016-01-01
Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808
Partial widths of boson resonances in the quark-gluon model of strong interactions
International Nuclear Information System (INIS)
Kaidalov, A.B.; Volkovitsky, P.E.
1981-01-01
The quark-gluon model of strong interactions based on the topological expansion and the string model ib used for the calculation of the partial widths of boson resonances in the channels with two pseudoscalar mesons. The partial widths of mesons with arbitrary spins lying on the vector and tensor Regge trajectories are expressed in terms of the only rho-meson width. The violation of SU(3) symmetry increases with the growth of the spin of the resonance. The theoretical predictions are in a good agreement with experimental data [ru
Kember, G C; Fenton, G A; Armour, J A; Kalyaniwalla, N
2001-04-01
Regional cardiac control depends upon feedback of the status of the heart from afferent neurons responding to chemical and mechanical stimuli as transduced by an array of sensory neurites. Emerging experimental evidence shows that neural control in the heart may be partially exerted using subthreshold inputs that are amplified by noisy mechanical fluctuations. This amplification is known as aperiodic stochastic resonance (ASR). Neural control in the noisy, subthreshold regime is difficult to see since there is a near absence of any correlation between input and the output, the latter being the average firing (spiking) rate of the neuron. This lack of correlation is unresolved by traditional energy models of ASR since these models are unsuitable for identifying "cause and effect" between such inputs and outputs. In this paper, the "competition between averages" model is used to determine what portion of a noisy, subthreshold input is responsible, on average, for the output of sensory neurons as represented by the Fitzhugh-Nagumo equations. A physiologically relevant conclusion of this analysis is that a nearly constant amount of input is responsible for a spike, on average, and this amount is approximately independent of the firing rate. Hence, correlation measures are generally reduced as the firing rate is lowered even though neural control under this model is actually unaffected.
DEFF Research Database (Denmark)
Thorsted, Anders; Thygesen, Peter; Agersø, Henrik
2016-01-01
was developed from experimental PKPD studies of rhGH and effects of long-term treatment as measured by insulin-like growth factor 1 (IGF-1) and bodyweight gain in rats. Modelled parameter values were scaled to human values using the allometric approach with fixed exponents for PKs and unscaled for PDs...... and validated through simulations relative to patient data. KEY RESULTS: The final model described rhGH PK as a two compartmental model with parallel linear and non-linear elimination terms, parallel first-order absorption with a total s.c. bioavailability of 87% in rats. Induction of IGF-1 was described...... by an indirect response model with stimulation of kin and related to rhGH exposure through an Emax relationship. Increase in bodyweight was directly linked to individual concentrations of IGF-1 by a linear relation. The scaled model provided robust predictions of human systemic PK of rhGH, but exposure following...
Wetzel, Hanna N; Zhang, Tongli; Norman, Andrew B
2017-09-01
A recombinant humanized anti-cocaine monoclonal antibody (mAb), h2E2, is at an advanced stage of pre-clinical development as an immunotherapy for cocaine abuse. It is hypothesized that h2E2 binds to and sequesters cocaine in the blood. A three-compartment model of the effects of h2E2 on cocaine's distribution was constructed. The model assumes that h2E2 binds to cocaine and that the h2E2-cocaine complex does not enter the brain but distributes between the central and peripheral compartments. Free cocaine is eliminated from both the central and peripheral compartments, and h2E2 and the h2E2-cocaine complex are eliminated from the central compartment only. This model was tested against a new dataset measuring cocaine concentrations in the brain and plasma over 1h in the presence and absence of h2E2. The mAb significantly increased plasma cocaine concentrations with a concomitant significant decrease in brain concentration. Plasma concentrations declined over the 1-hour sampling period in both groups. With a set of parameters within reasonable physiological ranges, the three-compartment model was able to qualitatively and quantitatively simulate the increased plasma concentration in the presence of the antibody and the decreased peak brain concentration in the presence of antibody. Importantly, the model explained the decline in plasma concentrations over time as distribution of the cocaine-h2E2 complex into a peripheral compartment. This model will facilitate the targeting of ideal mAb PK/PD properties thus accelerating the identification of lead candidate anti-drug mAbs. Copyright © 2017 Elsevier Inc. All rights reserved.
Nonradiative recombination in semiconductors
Abakumov, VN; Yassievich, IN
1991-01-01
In recent years, great progress has been made in the understandingof recombination processes controlling the number of excessfree carriers in semiconductors under nonequilibrium conditions. As a result, it is now possible to give a comprehensivetheoretical description of these processes. The authors haveselected a number of experimental results which elucidate theunderlying physical problems and enable a test of theoreticalmodels. The following topics are dealt with: phenomenological theory ofrecombination, theoretical models of shallow and deep localizedstates, cascade model of carrier captu
The stochastic resonance for the incidence function model of metapopulation
Li, Jiang-Cheng; Dong, Zhi-Wei; Zhou, Ruo-Wei; Li, Yun-Xian; Qian, Zhen-Wei
2017-06-01
A stochastic model with endogenous and exogenous periodicities is proposed in this paper on the basis of metapopulation dynamics to model the crop yield losses due to pests and diseases. The rationale is that crop yield losses occur because the physiology of the growing crop is negatively affected by pests and diseases in a dynamic way over time as crop both grows and develops. Metapopulation dynamics can thus be used to model the resultant crop yield losses. The stochastic metapopulation process is described by using the Simplified Incidence Function model (IFM). Compared to the original IFMs, endogenous and exogenous periodicities are considered in the proposed model to handle the cyclical patterns observed in pest infestations, diseases epidemics, and exogenous affecting factors such as temperature and rainfalls. Agricultural loss data in China are used to fit the proposed model. Experimental results demonstrate that: (1) Model with endogenous and exogenous periodicities is a better fit; (2) When the internal system fluctuations and external environmental fluctuations are negatively correlated, EIL or the cost of loss is monotonically increasing; when the internal system fluctuations and external environmental fluctuations are positively correlated, an outbreak of pests and diseases might occur; (3) If the internal system fluctuations and external environmental fluctuations are positively correlated, an optimal patch size can be identified which will greatly weaken the effects of external environmental influence and hence inhibit pest infestations and disease epidemics.
Population inversion in recombining hydrogen plasma
International Nuclear Information System (INIS)
Furukane, Utaro; Yokota, Toshiaki; Oda, Toshiatsu.
1978-11-01
The collisional-radiative model is applied to a recombining hydrogen plasma in order to investigate the plasma condition in which the population inversion between the energy levels of hydrogen can be generated. The population inversion is expected in a plasma where the three body recombination has a large contribution to the recombining processes and the effective recombination rate is beyond a certain value for a given electron density and temperature. Calculated results are presented in figures and tables. (author)
Directory of Open Access Journals (Sweden)
Lenilton Silva da Silveira-Júnior
2017-01-01
Full Text Available A surface plasmon resonance- (SPR- based recognition method applying H-2 Ld:Ig/peptides complexes for ex vivo monitoring cellular immune responses during murine infection with Leishmania (Leishmania amazonensis is described. Lymphocytes from lesion-draining popliteal lymph nodes were captured on a carboxylated sensor chip surface previously functionalized with H-2 Ld:Ig (DimerX protein bound to synthetic peptides derived from the COOH-terminal region of cysteine proteinase B of L. (L. amazonensis. In computational analysis, these peptides presented values of kinetic constants favorable to form complexes with H-2 Ld at neutral pH, with a Gibbs free energy ΔG°<0. The assayed DimerX:peptide complexes presented the property of attaching to distinct T lymphocytes subsets, obtained from experimentally infected BALB/c mice, in each week of infection, thus indicating a temporal variation in specific T lymphocytes populations, each directed to a different COOH-terminal region-derived peptide. The experimental design proposed herein is an innovative approach for cellular immunology studies of a neglected disease, providing a useful tool for the analysis of specific T lymphocytes subsets.
Model of charge-state distributions for electron cyclotron resonance ion source plasmas
Directory of Open Access Journals (Sweden)
D. H. Edgell
1999-12-01
Full Text Available A computer model for the ion charge-state distribution (CSD in an electron cyclotron resonance ion source (ECRIS plasma is presented that incorporates non-Maxwellian distribution functions, multiple atomic species, and ion confinement due to the ambipolar potential well that arises from confinement of the electron cyclotron resonance (ECR heated electrons. Atomic processes incorporated into the model include multiple ionization and multiple charge exchange with rate coefficients calculated for non-Maxwellian electron distributions. The electron distribution function is calculated using a Fokker-Planck code with an ECR heating term. This eliminates the electron temperature as an arbitrary user input. The model produces results that are a good match to CSD data from the ANL-ECRII ECRIS. Extending the model to 1D axial will also allow the model to determine the plasma and electrostatic potential profiles, further eliminating arbitrary user input to the model.
The J3 SCR model applied to resonant converter simulation
Avant, R. L.; Lee, F. C. Y.
1985-01-01
The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.
Determination of freeze-out conditions from fluctuations in the Hadron Resonance Gas model
International Nuclear Information System (INIS)
Alba, P; Alberico, W; Sarti, V Mantovani; Ratti, C; Bellwied, R; Bluhm, M; Nahrgang, M
2015-01-01
Fluctuations of conserved charges measured in Heavy-Ion Collisions (HICs) received increasing attention in recent years, because they are good candidates to explore the phase diagram of QCD matter. During the last year, net-electric charge and net-proton moments of multiplicities measured at RHIC have been published by the STAR collaboration, for a range of collision energies which spans a region of the phase diagram at finite chemical potential. Here we present a new freeze-out curve obtained using the Hadron Resonance Gas (HRG) model approach to fit these experimental data. The HRG model is modified in order to have a realistic description of the HICs: kinematic cuts, resonance feed-down and resonance regeneration are taken into account. Our result is in agreement with preliminary studies by the ALICE collaboration, and is supported by a recent lattice analysis of the same quantities. (paper)
Vector and Axial-vector resonances in composite models of the Higgs boson
DEFF Research Database (Denmark)
Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying
2016-01-01
We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT const...... as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.......We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT...... constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used...
Transmission line model for coupled rectangular double split‐ring resonators
DEFF Research Database (Denmark)
Yan, Lei; Tang, Meng; Krozer, Viktor
2011-01-01
In this work, a model based on a coupled transmission line formulation is developed for microstrip rectangular double split‐ring resonators (DSRRs). This model allows using the physical dimensions of the DSRRs as an input avoiding commonly used extraction of equivalent parameters. The model inclu...... simulations of the DSRR structures. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:1311–1315, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25988...
Computer model for the recombination zone of a microwave-plasma electrothermal rocket
Energy Technology Data Exchange (ETDEWEB)
Filpus, J.W.; Hawley, M.C.
1987-01-01
As part of a study of the microwave-plasma electrothermal rocket, a computer model of the flow regime below the plasma has been developed. A second-order model, including axial dispersion of energy and material and boundary conditions at infinite length, was developed to partially reproduce the absence of mass-flow rate dependence that was seen in experimental temperature profiles. To solve the equations of the model, a search technique was developed to find the initial derivatives. On integrating with a trial set of initial derivatives, the values and their derivatives were checked to judge whether the values were likely to attain values outside the practical regime, and hence, the boundary conditions at infinity were likely to be violated. Results are presented and directions for further development are suggested. 17 references.
Xu, Xiaolun; Li, Yongqian; Wang, Binbin; Zhou, Zili
2015-10-01
The resonance characteristics of plasmonic metamaterials absorbers (PMAs) are strongly dependent on geometric parameters. A resistor-inductor-capacitor (RLC) circuit model has been extended to predict the resonance wavelengths and the bandwidths of multiple magnetic polaritons modes in PMAs. For a typical metallic-dielectric-metallic structure absorber working in the infrared region, the developed model describes the correlation between the resonance characteristics and the dimensional sizes. In particular, the RLC model is suitable for not only the fundamental resonance mode, but also for the second- and third-order resonance modes. The prediction of the resonance characteristics agrees fairly well with those calculated by the finite-difference time-domain simulation and the experimental results. The developed RLC model enables the facilitation of designing multi-band PMAs for infrared radiation detectors and thermal emitters.
Interface recombination influence on carrier transport
International Nuclear Information System (INIS)
Konin, A
2013-01-01
A theory of interface recombination in the semiconductor–semiconductor junction is developed. The interface recombination rate dependence on the nonequilibrium carrier densities is derived on the basis of a model in which the interface recombination occurs through the mechanism of trapping. The general relation between the interface recombination parameters at small carrier density deviation from the equilibrium ones is obtained. The validity of this relation is proved considering the generation of the Hall electric field in the extrinsic semiconductor sample. The anomalous Hall electromotive force in a weak magnetic field was investigated and interpreted by means of a new interface recombination model. The experimental data corroborate the developed theory. (paper)
Competing recombinant technologies for environmental innovation: Extending Arthur's model of lock-in
Zeppini, P.; van den Bergh, J.C.J.M.
2011-01-01
This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of B. Arthur (1989, Competing technologies, increasing returns, and lock-in by historical events, The Economic Journal, 99, pp.
Competing recombinant technologies for environmental innovation: extending Arthur’s model of lock-in
Zeppini, P.; van den Bergh, J.C.J.M.
2010-01-01
This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of Arthur (1989). This allows us to evaluate if and how an economy locked into a dirty technology can be unlocked and move towards the
Zeppini, P.; Bergh, van den J.C.J.M.
2011-01-01
This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of B. Arthur (1989, Competing technologies, increasing returns, and lock-in by historical events, The Economic Journal, 99, pp.
Energy Technology Data Exchange (ETDEWEB)
Macdonald, J Ross, E-mail: macd@email.unc.ed [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States)
2010-12-15
Consequences of the well-known Poisson-Nernst-Planck (PNP) continuum equations of charge motion in liquids or solids for ordinary or anomalous diffusion are investigated for an electrochemical cell with completely blocking electrodes. Previous work is summarized and much of it is shown to be independent of earlier published results and incomplete, with little comparison made between ordinary and anomalous diffusion. Such comparison is provided here and also includes variation of the mobility ratio of the mobilities of positive and negative charges from equality to charge of only one sign mobile. New generation-recombination effects are demonstrated for a range of mobility ratios, with particular attention given to those present for the case of charge of only one sign mobile. No previous analyses of experimental data with PNP models using complex-least-squares fitting have been published. Here such a model is found to fit frequency response data well for a hydrogel and to lead to estimates of physically meaningful parameters such as the diffusion constant and ionic concentration. PNP analysis of a synthetic data set derived from experimental results for liquid electrolytes refutes claims made in the original publication dealing with it, but verifies and extends an interesting analysis equation proposed there. PNP fitting of data for solids, including ones showing colossal low-frequency-limiting dielectric constants, suggests that they may often be well described as arising from simple diffuse-charge double-layer effects, and that continuum microscopic models such as the PNP, in series with a conducting Debye response model, may be sufficient for fitting well an appreciable amount of data involving ion hopping and trapping behavior.
International Nuclear Information System (INIS)
Macdonald, J Ross
2010-01-01
Consequences of the well-known Poisson-Nernst-Planck (PNP) continuum equations of charge motion in liquids or solids for ordinary or anomalous diffusion are investigated for an electrochemical cell with completely blocking electrodes. Previous work is summarized and much of it is shown to be independent of earlier published results and incomplete, with little comparison made between ordinary and anomalous diffusion. Such comparison is provided here and also includes variation of the mobility ratio of the mobilities of positive and negative charges from equality to charge of only one sign mobile. New generation-recombination effects are demonstrated for a range of mobility ratios, with particular attention given to those present for the case of charge of only one sign mobile. No previous analyses of experimental data with PNP models using complex-least-squares fitting have been published. Here such a model is found to fit frequency response data well for a hydrogel and to lead to estimates of physically meaningful parameters such as the diffusion constant and ionic concentration. PNP analysis of a synthetic data set derived from experimental results for liquid electrolytes refutes claims made in the original publication dealing with it, but verifies and extends an interesting analysis equation proposed there. PNP fitting of data for solids, including ones showing colossal low-frequency-limiting dielectric constants, suggests that they may often be well described as arising from simple diffuse-charge double-layer effects, and that continuum microscopic models such as the PNP, in series with a conducting Debye response model, may be sufficient for fitting well an appreciable amount of data involving ion hopping and trapping behavior.
International Nuclear Information System (INIS)
Chyla, K.; Jarczyk, L.; Maciuk, B.; Zipper, W.
1976-01-01
Alpha particle scattering from 28 Si has been studied at five bombarding energies from 23.5 to 28.5 MeV. iota-dependent resonance absorption has been introduced to the optical model analysis of 28 Si (α,β) 28 Si reaction. (author)
Czech Academy of Sciences Publication Activity Database
Vampola, T.; Horáček, Jaromír; Švec, J. G.
2015-01-01
Roč. 101, č. 3 (2015), s. 594-602 ISSN 1610-1928 R&D Projects: GA ČR(CZ) GAP101/12/1306 Institutional support: RVO:61388998 Keywords : biomechanics of voice * higher acoustic resonances in human vocal tract * reduced FE model of the vocal tract Subject RIV: BI - Acoustics Impact factor: 0.897, year: 2015
Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method
DEFF Research Database (Denmark)
Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry
2011-01-01
Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...
Directory of Open Access Journals (Sweden)
Zhigang Wu
Full Text Available Conbercept is a genetically engineered homodimeric protein for the treatment of wet age-related macular degeneration (wet AMD that functions by blocking VEGF-family proteins. Its huge, highly variable architecture makes characterization and development of a functional assay difficult. In this study, the primary structure, number of disulfide linkages and glycosylation state of conbercept were characterized by high-performance liquid chromatography, mass spectrometry, and capillary electrophoresis. Molecular modeling was then applied to obtain the spatial structural model of the conbercept-VEGF-A complex, and to study its inter-atomic interactions and dynamic behavior. This work was incorporated into a platform useful for studying the structure of conbercept and its ligand binding functions.
Mead, Emma J; Chiverton, Lesley M; Spurgeon, Sarah K; Martin, Elaine B; Montague, Gary A; Smales, C Mark; von der Haar, Tobias
2012-01-01
Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway.
Directory of Open Access Journals (Sweden)
Shevtsov MA
2014-05-01
Full Text Available Maxim A Shevtsov,1,2 Boris P Nikolaev,3 Ludmila Y Yakovleva,3 Anatolii V Dobrodumov,4 Anastasiy S Dayneko,5 Alexey A Shmonin,5,6 Timur D Vlasov,5 Elena V Melnikova,5 Alexander D Vilisov,4,5 Irina V Guzhova,1 Alexander M Ischenko,3 Anastasiya L Mikhrina,7 Oleg V Galibin,5 Igor V Yakovenko,2 Boris A Margulis1 1Institute of Cytology of the Russian Academy of Sciences (RAS, St Petersburg, Russia; 2AL Polenov Russian Research Scientific Institute of Neurosurgery, St Petersburg, Russia; 3Research Institute of Highly Pure Biopreparations, St Petersburg, Russia; 4Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS, St Petersburg, Russia; 5First St Petersburg IP Pavlov State Medical University, St Petersburg, Russia; 6Federal Almazov Medical Research Centre, St Petersburg, Russia; 7IM Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (RAS, St Petersburg, Russia Abstract: Recombinant 70 kDa heat shock protein (Hsp70 is an antiapoptotic protein that has a cell protective activity in stress stimuli and thus could be a useful therapeutic agent in the management of patients with acute ischemic stroke. The neuroprotective and neurotherapeutic activity of recombinant Hsp70 was explored in a model of experimental stroke in rats. Ischemia was produced by the occlusion of the middle cerebral artery for 45 minutes. To assess its neuroprotective capacity, Hsp70, at various concentrations, was intravenously injected 20 minutes prior to ischemia. Forty-eight hours after ischemia, rats were sacrificed and brain tissue sections were stained with 2% triphenyl tetrazolium chloride. Preliminary treatment with Hsp70 significantly reduced the ischemic zone (optimal response at 2.5 mg/kg. To assess Hsp70’s neurotherapeutic activity, we intravenously administered Hsp70 via the tail vein 2 hours after reperfusion (2 hours and 45 minutes after ischemia. Rats were then kept alive for 72 hours. The
Wave packet formulation of the boomerang model for resonant electron--molecule scattering
International Nuclear Information System (INIS)
McCurdy, C.W.; Turner, J.L.
1983-01-01
A time-dependent formulation of the boomerang model for resonant electron--molecule scattering is presented in terms of a wave packet propagating on the complex potential surface of the metastable anion. The results of calculations using efficient semiclassical techniques for propagating the wave packet are found to be in excellent agreement with full quantum-mechanical calculations of vibrational excitation cross sections in e - --N 2 scattering. The application of the wave packet formulation as a computational and conceptual approach to the problem of resonant collisions with polyatomic molecules is discussed in the light of recent wave packet calculations on polyatomic photodissociation and Raman spectra
Goychuk, I
2001-08-01
Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.
International Nuclear Information System (INIS)
Guang-Ming Zhang; Lu Yu
1998-10-01
We consider the symmetric single-impurity Anderson model in the presence of pairing fluctuations. In the isotropic limit, the degrees of freedom of the local impurity are separated into hybridizing and non-hybridizing modes. The self-energy for the hybridizing modes can be obtained exactly, leading to two subbands centered at ±U/2. For the non-hybridizing modes, the second order perturbation yields a singular resonance of the marginal Fermi liquid form. By multiplicative renormalization, the self-energy is derived exactly, showing the resonance is pinned at the Fermi level, while its strength is weakened by renormalization. (author)
Moustafa, Dina A; Scarff, Jennifer M; Garcia, Preston P; Cassidy, Sara K B; DiGiandomenico, Antonio; Waag, David M; Inzana, Thomas J; Goldberg, Joanna B
2015-01-01
Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.
Directory of Open Access Journals (Sweden)
Dina A Moustafa
Full Text Available Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.
Gabadage, Kamal; Chirino-Trejo, Manuel; Campbell, John; Luby, Christopher
2017-01-01
Staphylococcus aureus is the most common contagious mastitis pathogen of dairy cattle. Antimicrobial treatment of infected cattle results in variable cure rates. Epidermal growth factor (EGF) plays an important role in the modulation of host innate immune responses and the regulation of mammary epithelial regeneration, indicating that EGF may be useful as a treatment for mastitis. A pilot study was conducted to evaluate the efficacy of recombinant bovine EGF (rbEGF) for the treatment of S aureus intramammary infection (IMI) using an ovine model. Each ewe was experimentally infected with S aureus in both udder halves. One udder half of each ewe received one of two treatments: EGF (n=13) or pirlimycin (n=13). The contralateral udder half of each ewe received sterile saline as a control. The bacteriological cure rate following rbEGF was significantly lower (15 per cent) than that attained with pirlimycin hydrochloride (61 per cent) and did not differ from that following treatment with sterile saline. Cure rates following treatment with rbEGF were not significantly different to those following sterile saline. Given that EGF is associated with modulation of host immunity and wound healing, future studies into EGF should not focus on whether EGF increases cure rates of S aureus IMI.
Duchman, Kyle R; Goetz, Jessica E; Uribe, Bastian U; Amendola, Andrew M; Barber, Joshua A; Malandra, Allison E; Fredericks, Douglas C; Hettrich, Carolyn M
2016-08-01
Despite advances in intraoperative techniques, rotator cuff repairs frequently do not heal. Recombinant human parathyroid hormone (rhPTH) has been shown to improve healing at the tendon-to-bone interface in an established acute rat rotator cuff repair model. We hypothesized that administration of rhPTH beginning on postoperative day 7 would result in improved early load to failure after acute rotator cuff repair in an established rat model. Acute rotator cuff repairs were performed in 108 male Sprague-Dawley rats. Fifty-four rats received daily injections of rhPTH beginning on postoperative day 7 until euthanasia or a maximum of 12 weeks postoperatively. The remaining 54 rats received no injections and served as the control group. Animals were euthanized at 2 and 16 weeks postoperatively and evaluated by gross inspection, biomechanical testing, and histologic analysis. At 2 weeks postoperatively, rats treated with rhPTH demonstrated significantly higher load to failure than controls (10.9 vs. 5.2 N; P = .003). No difference in load to failure was found between the 2 groups at 16 weeks postoperatively, although control repairs more frequently failed at the tendon-to-bone interface (45.5% vs. 22.7%; P = .111). Blood vessel density appeared equivalent between the 2 groups at both time points, but increased intracellular and extracellular vascular endothelial growth factor expression was noted in the rhPTH-treated group at 2 weeks. Delayed daily administration of rhPTH resulted in increased early load to failure and equivalent blood vessel density in an acute rotator cuff repair model. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Chruscinska, A.
2009-01-01
The thermal bleaching of the optically stimulated luminescence (OSL) has been investigated by computer simulations for a model including three traps and two luminescence centres. The deepest trap is active only during the OSL process. Two other traps are active only during the thermal bleaching. The thermal bleaching effects on the OSL intensity as well as on the OSL curve shape are presented for the wide range of trap and luminescence centre parameters and for the different settings of optical detection window. The conventional OSL curve analysis consisting in decomposition of the OSL curve into first order components is applied to the simulation results and the optical cross section spectra obtained as a result of this analysis are compared with the model assumptions. The simulations show that OSL signal can decrease to undetectable level even when the traps related to this signal are not emptied during thermal bleaching. The residual level of the OSL signal after bleaching process, however, depends strongly on centre parameters and concentrations. The modifications of optical detection spectral window lead to significant changes of bleaching effects. The thermal bleaching influences also the optical cross section spectra obtained as a result of the OSL curve decomposition.
Optical model calculation for the unresolved/resolved resonance region of Fe-56
Energy Technology Data Exchange (ETDEWEB)
Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Froehner, F.H.
1997-03-01
We have studied optical model fits to total neutron cross sections of structural materials using the accurate data base for {sup 56}Fe existing in the resolved and unresolved resonance region. Averages over resolved resonances were calculated with Lorentzian weighting in Reich-Moore (reduced R matrix) approximation. Starting from the best available optical potentials we found that adjustment of the real and imaginary well depths does not work satisfactorily with the conventional weak linear energy dependence of the well depths. If, however, the linear dependences are modified towards low energies, the average total cross sections can be fitted quite well, from the resolved resonance region up to 20 MeV and higher. (author)
DEFF Research Database (Denmark)
Abadal, G.; Davis, Zachary James; Helbo, Bjarne
2001-01-01
A simple linear electromechanical model for an electrostatically driven resonating cantilever is derived. The model has been developed in order to determine dynamic quantities such as the capacitive current flowing through the cantilever-driver system at the resonance frequency, and it allows us ...
Multi-Criteria Decision-Making Model for the Material Flow of Resonant Wood Production
Directory of Open Access Journals (Sweden)
Patrik Aláč
2017-03-01
Full Text Available This paper proposes a multi-criteria decision-making model, for the selection and evaluation of the most valuable wooden input—resonant wood. Application of a given model can improve the process of input valuation as well as impact and improve particular economic indicators for the resonant wood manufacturer. We have tried to describe and evaluate the supply chain of resonant wood manufacturing and production of musical instruments. Particular value-added and non-value-added activities have been chosen according to the logical sequence of technology. Then, concrete criteria were specified and their significance weightings. Another important part of our paper is the description of resonant wood, specifications, and demands on log and wood species. There are some important physical and mechanical properties which should be taken into account and evaluated during the production of musical instruments. By the application of this model, a particular enterprise can reach an enhanced tool for the continuous evaluation of the product flowing through the supply chain. Visibility of particular operations and their logical sequence, presented by Petri nets, can lead to easier detection of possible defects in these operations and their origin. So, the main purpose of the paper lies in the suggestion of an objective and quantified managerial tool for the decision making.
An analytical model of nonproportional scintillator light yield in terms of recombination rates
International Nuclear Information System (INIS)
Bizarri, G.; Moses, W. W.; Singh, J.; Vasil'ev, A. N.; Williams, R. T.
2009-01-01
Analytical expressions for the local light yield as a function of the local deposited energy (-dE/dx) and total scintillation yield integrated over the track of an electron of initial energy E are derived from radiative and/or nonradiative rates of first through third order in density of electronic excitations. The model is formulated in terms of rate constants, some of which can be determined independently from time-resolved spectroscopy and others estimated from measured light yield efficiency as a constraint assumed to apply in each kinetic order. The rates and parameters are used in the theory to calculate scintillation yield versus primary electron energy for comparison to published experimental results on four scintillators. Influence of the track radius on the yield is also discussed. Results are found to be qualitatively consistent with the observed scintillation light yield. The theory can be applied to any scintillator if the rates of the radiative and nonradiative processes are known
Asymptotically exact solution of the multi-channel resonant-level model
International Nuclear Information System (INIS)
Zhang Guangming; Su Zhaobin; Yu Lu.
1994-01-01
An asymptotically exact partition function of the multi-channel resonant-level model is obtained through Tomonaga-Luttinger bosonization. A Fermi-liquid vs. non-Fermi-liquid transition, resulting from a competition between the Kondo and X-ray edge physics, is elucidated explicitly via the renormalization group theory. In the strong-coupling limit, the model is renormalized to the Toulouse limit. (author). 20 refs, 1 fig
Modelling the dynamic mechanisms associated with the principal resonance of the seated human body.
Matsumoto, Y; Griffin, M J
2001-01-01
Simple mathematical models have been developed to obtain insights into resonance phenomena observed at about 5 Hz in the dynamic responses of the seated human body exposed to vertical whole-body vibration. Alternative lumped parameter models with a few degrees-of-freedom have been investigated. Rotational degrees-of-freedom, with eccentricity of the centre of gravity of the mass elements, represented responses in the fore-and-aft and pitch axes caused by vertical vibration. The causes of body resonance are not fully understood, but this information is required to develop cause-effect relationships between vibration exposures and effects on human health, comfort and performance.Method. The inertial and geometric parameters for models were based on published anatomical data. Other mechanical parameters were determined by comparing model responses to experimental data. Two models, with four and five degrees-of-freedom, gave more reasonable representations than other models. Mechanical parameters obtained with median and individual experimental data were consistent for vertical degrees-of-freedom but varied for rotational degrees-of-freedom. The resonance of the apparent mass at about 5 Hz may be attributed to a vibration mode consisting of vertical motion of the pelvis and legs and a pitch motion of the pelvis, both of which cause vertical motion of the upper-body above the pelvis, a bending motion of the spine, and vertical motion of the viscera. The mathematical models developed in this study may assist understanding of the dynamic mechanisms responsible for resonances in the seated human body. The information is required to represent mechanical responses of the body and assist the development of models for specific effects of vibration.
Pionic corrections to the MIT bag model: The (3,3) resonance
International Nuclear Information System (INIS)
Theberge, S.; Thomas, A.W.; Miller, G.A.
1980-01-01
By incorporating chiral invariance in the MIT bag model, we are led to a theory in which the pion field is coupled to the confined quarks only at the bag surface. An equivalent quantized theory of nucleons and Δ's interacting with pions is then obtained. The pion-nucleon scattering amplitude in this model is found to give a good fit to experimental data on the (3,3) resonance, with a bag radius of about 0.72 fm
International Nuclear Information System (INIS)
Zhenping Li; Close, F.E.
1990-03-01
The photo and electroproduction of baryon resonances has been calculated using the Constituent Quark Model with chromodynamics consistent with O(υ 2 /c 2 ) for the quarks. We find that the successes of the nonrelativistic quark model are preserved, some problems are removed and that QCD mixing effects may become important with increasing q 2 in electroproduction. For the first time both spectroscopy and transitions receive a unified treatment with a single set of parameters. (author)
Förner, K.; Polifke, W.
2017-10-01
The nonlinear acoustic behavior of Helmholtz resonators is characterized by a data-based reduced-order model, which is obtained by a combination of high-resolution CFD simulation and system identification. It is shown that even in the nonlinear regime, a linear model is capable of describing the reflection behavior at a particular amplitude with quantitative accuracy. This observation motivates to choose a local-linear model structure for this study, which consists of a network of parallel linear submodels. A so-called fuzzy-neuron layer distributes the input signal over the linear submodels, depending on the root mean square of the particle velocity at the resonator surface. The resulting model structure is referred to as an local-linear neuro-fuzzy network. System identification techniques are used to estimate the free parameters of this model from training data. The training data are generated by CFD simulations of the resonator, with persistent acoustic excitation over a wide range of frequencies and sound pressure levels. The estimated nonlinear, reduced-order models show good agreement with CFD and experimental data over a wide range of amplitudes for several test cases.
Modelling out-of-plane and in-plane resonant modes of microplates in liquid media
International Nuclear Information System (INIS)
Ruiz-Díez, V; Hernando-García, J; Manzaneque, T; Sánchez-Rojas, J L; Kucera, M; Schmid, U
2015-01-01
In this article, the quality factor and the resonant frequency of different vibrating modes of microplates immersed in liquid are simulated by means of a finite element method (FEM) and compared with experimental data. For the in-plane modes, we studied the first extensional mode of mid-point supported microplates, which may be efficiently actuated by a thin piezoelectric film on top of the structure. A comparison of different approaches to account for the viscous loading in computationally efficient 2D finite element models is presented. As an alternative to the harmonic response, a novel multitone excitation in the fluid–structure interaction model allows for the calculation of the frequency response of the structure. For the out-of-plane modes, different modes were simulated and compared to analytical models to validate our approach. Our 2D FEM model yields more accurate estimations of the experimental resonance frequency and quality factors than the available analytical models. With the help of these tools, the applicability of the micro-resonators as viscosity and density sensors is discussed. (paper)
Energy Technology Data Exchange (ETDEWEB)
Choi, Myungseok; Olshevskiy, Alexander; Kim, Chang-Wan [Konkuk University, Seoul (Korea, Republic of); Eom, Kilho [Sungkyunkwan University, Suwon (Korea, Republic of); Gwak, Kwanwoong [Sejong University, Seoul (Korea, Republic of); Dai, Mai Duc [Ho Chi Minh City University of Technology and Education, Ho Chi Minh (Viet Nam)
2017-05-15
Carbon nanotube (CNT) has recently received much attention due to its excellent electromechanical properties, indicating that CNT can be employed for development of Nanoelectromechanical system (NEMS) such as nanomechanical resonators. For effective design of CNT-based resonators, it is required to accurately predict the vibration behavior of CNT resonators as well as their frequency response to mass adsorption. In this work, we have studied the vibrational behavior of Multi-walled CNT (MWCNT) resonators by using a continuum mechanics modeling that was implemented in Finite element method (FEM). In particular, we consider a transversely isotropic hollow cylinder solid model with Finite element (FE) implementation for modeling the vibration behavior of Multi-walled CNT (MWCNT) resonators. It is shown that our continuum mechanics model provides the resonant frequencies of various MWCNTs being comparable to those obtained from experiments. Moreover, we have investigated the frequency response of MWCNT resonators to mass adsorption by using our continuum model with FE implementation. Our study sheds light on our continuum mechanics model that is useful in predicting not only the vibration behavior of MWCNT resonators but also their sensing performance for further effective design of MWCNT- based NEMS devices.
Energy Technology Data Exchange (ETDEWEB)
Bonnet, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1961-07-01
When studying the behaviour of a magnetic resonance transducer formed by the association of an electrical network and of a set of nuclear spins, it is possible to bring about a representation that is analytically equivalent by means of an entirely electrical model, available for transients as well as steady-state. A detailed study of the validity conditions justifies its use in most cases. Also proposed is a linearity criterion of Bloch's equations in transient state that is simply the prolongation of the well-known condition of non-saturation in the steady-state. (author) [French] L'etude du comportement d'un transducteur a resonance magnetique forme de l'association d'un reseau electrique et d'un ensemble de noyaux dotes de spin, montre qu'il est possible d'en deduire une representation analytiquement equivalente au moyen d'un modele entierement electrique utilisable pour un regime transitoire aussi bien que pour un regime permanent. Une etude detaillee des conditions de validite permet d'en justifier l'emploi dans la majorite des cas. On propose enfin un critere de linearite des equations de Bloch en regime transitoire, qui constitue un prolongement de la condition connue de non-saturation en regime stationnaire. (auteur)
Petersson, Kristoffer; Jaccard, Maud; Germond, Jean-François; Buchillier, Thierry; Bochud, François; Bourhis, Jean; Vozenin, Marie-Catherine; Bailat, Claude
2017-03-01
The purpose of this work was to establish an empirical model of the ion recombination in the Advanced Markus ionization chamber for measurements in high dose rate/dose-per-pulse electron beams. In addition, we compared the observed ion recombination to calculations using the standard Boag two-voltage-analysis method, the more general theoretical Boag models, and the semiempirical general equation presented by Burns and McEwen. Two independent methods were used to investigate the ion recombination: (a) Varying the grid tension of the linear accelerator (linac) gun (controls the linac output) and measuring the relative effect the grid tension has on the chamber response at different source-to-surface distances (SSD). (b) Performing simultaneous dose measurements and comparing the dose-response, in beams with varying dose rate/dose-per-pulse, with the chamber together with dose rate/dose-per-pulse independent Gafchromic™ EBT3 film. Three individual Advanced Markus chambers were used for the measurements with both methods. All measurements were performed in electron beams with varying mean dose rate, dose rate within pulse, and dose-per-pulse (10 -2 ≤ mean dose rate ≤ 10 3 Gy/s, 10 2 ≤ mean dose rate within pulse ≤ 10 7 Gy/s, 10 -4 ≤ dose-per-pulse ≤ 10 1 Gy), which was achieved by independently varying the linac gun grid tension, and the SSD. The results demonstrate how the ion collection efficiency of the chamber decreased as the dose-per-pulse increased, and that the ion recombination was dependent on the dose-per-pulse rather than the dose rate, a behavior predicted by Boag theory. The general theoretical Boag models agreed well with the data over the entire investigated dose-per-pulse range, but only for a low polarizing chamber voltage (50 V). However, the two-voltage-analysis method and the Burns & McEwen equation only agreed with the data at low dose-per-pulse values (≤ 10 -2 and ≤ 10 -1 Gy, respectively). An empirical
Synthetic model for Doppler broadening of neutron absorption resonances in molecular fluids
Energy Technology Data Exchange (ETDEWEB)
Villanueva, Alejandro J., E-mail: villanueva@cab.cnea.gov.a [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche (RN) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Granada, J.R. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche (RN) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)
2010-08-15
A general and systematic approach expressed in modern language, accounting for molecular motion effects on Doppler Broadening of Neutron Absorption Resonances (DBNAR) is given the form of a new model. It relies on well validated hypothesis: The separability of atomic from nuclear degrees of freedom, the use of the Van Hove scattering formalism and the fact that a conceptually identical approach produced experimentally proved predictions when applied to DBNAR in solid systems. We treat the molecular internal degrees of freedom approximately as harmonic oscillators. As a second contribution of this work, a synthetic model is presented in order to make the more complete model mentioned above suitable for neutron calculation codes. This second synthetic model reduces to the exact expressions of the complete model in the low and high neutron energy regimes and provides a plausible transition in between. Numerical results are presented for a general hypothetical case to show its strengths and limitations. Also, both models are applied to a real case of the {sup 238}U 6.674 eV resonant effective broadened absorption cross-section in UF6 (uranium hexafluoride). A direct experimental validation of our models is still necessary for which a special high resolution neutron transmission experiment ought to be devised at low temperatures and pressures on a gaseous system. It is showed how the synthetic model can be used to make thermometric predictions in an improved fashion in comparison to the effective temperature gas model at low temperatures.
International Nuclear Information System (INIS)
Gneiding, N.; Zhuromskyy, O.; Peschel, U.; Shamonina, E.
2014-01-01
Metamaterials are comprised of metallic structures with a strong response to incident electromagnetic radiation, like, for example, split ring resonators. The interaction of resonator ensembles with electromagnetic waves can be simulated with finite difference or finite elements algorithms, however, above a certain ensemble size simulations become inadmissibly time or memory consuming. Alternatively a circuit description of metamaterials, a well developed modelling tool at radio and microwave frequencies, allows to significantly increase the simulated ensemble size. This approach can be extended to the IR spectral range with an appropriate set of circuit element parameters accounting for physical effects such as electron inertia and finite conductivity. The model is verified by comparing the coupling coefficients with the ones obtained from the full wave numerical simulations, and used to optimize the nano-antenna design with improved radiation characteristics.
Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models
Rosenthal, C. S.
1992-01-01
Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.
Multipole giant resonances of 12C nucleus electro excitation in intermediate coupling model
International Nuclear Information System (INIS)
Goncharova, N.G.; Zhivopistsev, F.A.
1977-01-01
Multipole giant resonances in 12 C electroexcitation are considered using the shell model with coupling. Cross sections are calculated for the states of 1 - , 2 - , 3 - , 4 - , at T=1. The distributions of the transverse form factor at transferred momenta equal to q approximately 0.75, 1.04, 1.22 and 1.56 Fm -1 and the longitudinal form factor for q = 0.75, 1.04, 1.56 Fm -1 are presented. For the excitation energies in the range from 18 to 28 MeV positive-parity states have a small contribution in the cross section. The distribution of the total form factor in the excitation energies is given. It is concluded that the multipole giant resonances of anomalous parity levels calculated within the interatomic-coupling shell model show a satisfactorily close agreement with the behavior of experimental form factors in the excitation energy range from 18 to 28 MeV
Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H
1990-07-01
Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.
Pardo, Lorena; García, Alvaro; de Espinosa, Francisco Montero; Brebøl, Klaus
2011-03-01
The determination of the characteristic frequencies of an electromechanical resonance does not provide enough data to obtain the material properties of piezoceramics, including all losses, from complex impedance measurements. Values of impedance around resonance and antiresonance frequencies are also required to calculate the material losses. Uncoupled resonances are needed for this purpose. The shear plates used for the material characterization present unavoidable mode coupling of the shear mode and other modes of the plate. A study of the evolution of the complex material coefficients as the coupling of modes evolves with the change in the aspect ratio (lateral dimension/thickness) of the plate is presented here. These are obtained using software. A soft commercial PZT ceramic was used in this study and several shear plates amenable to material characterization were obtained in the range of aspect ratios below 15. The validity of the material properties for 3-D modeling of piezoceramics is assessed by means of finite element analysis, which shows that uncoupled resonances are virtually pure thickness-driven shear modes.
Modified model of neutron resonance widths distribution. Results of total gamma-widths approximation
International Nuclear Information System (INIS)
Sukhovoj, A.M.; Khitrov, V.A.
2011-01-01
Functional dependences of probability to observe given Γ n 0 value and algorithms for determination of the most probable magnitudes of the modified model of resonance parameter distributions were used for analysis of the experimental data on the total radiative widths of neutron resonances. As in the case of neutron widths, precise description of the Γ γ spectra requires a superposition of three and more probability distributions for squares of the random normally distributed values with different nonzero average and nonunit dispersion. This result confirms the preliminary conclusion obtained earlier at analysis of Γ n 0 that practically in all 56 tested sets of total gamma widths there are several groups noticeably differing from each other by the structure of their wave functions. In addition, it was determined that radiative widths are much more sensitive than the neutron ones to resonance wave functions structure. Analysis of early obtained neutron reduced widths distribution parameters for 157 resonance sets in the mass region of nuclei 35 ≤ A ≤ 249 was also performed. It was shown that the experimental values of widths can correspond with high probability to superposition of several expected independent distributions with their nonzero mean values and nonunit dispersion
International Nuclear Information System (INIS)
Bransden, B.H.; Hewitt, R.N.
1997-01-01
Above-threshold resonances can occur in coupled-channel models of the e + + H system when Ps formation is taken into account (although it should be pointed out that, in this specific system, resonances do not occur in an exact theory). In general, to understand the mechanism of resonance formation it is useful to obtain the exact optical potential in a given channel in a localized form. The methods of achieving this localization are discussed with reference to a specific application to the resonance found in the two-state approximation for the l = 0 partial wave. (author)
Stochastic resonance induced by novel random transitions of motion of FitzHugh-Nagumo neuron model
International Nuclear Information System (INIS)
Zhang Guangjun; Xu Jianxue
2005-01-01
In contrast to the previous studies which have dealt with stochastic resonance induced by random transitions of system motion between two coexisting limit cycle attractors in the FitzHugh-Nagumo (FHN) neuron model after Hopf bifurcation and which have dealt with the phenomenon of stochastic resonance induced by external noise when the model with periodic input has only one attractor before Hopf bifurcation, in this paper we have focused our attention on stochastic resonance (SR) induced by a novel transition behavior, the transitions of motion of the model among one attractor on the left side of bifurcation point and two attractors on the right side of bifurcation point under the perturbation of noise. The results of research show: since one bifurcation of transition from one to two limit cycle attractors and the other bifurcation of transition from two to one limit cycle attractors occur in turn besides Hopf bifurcation, the novel transitions of motion of the model occur when bifurcation parameter is perturbed by weak internal noise; the bifurcation point of the model may stochastically slightly shift to the left or right when FHN neuron model is perturbed by external Gaussian distributed white noise, and then the novel transitions of system motion also occur under the perturbation of external noise; the novel transitions could induce SR alone, and when the novel transitions of motion of the model and the traditional transitions between two coexisting limit cycle attractors after bifurcation occur in the same process the SR also may occur with complicated behaviors types; the mechanism of SR induced by external noise when FHN neuron model with periodic input has only one attractor before Hopf bifurcation is related to this kind of novel transition mentioned above
International Nuclear Information System (INIS)
Saad, M.; Kasis, A.
2011-01-01
Current-voltage (j-V) characteristics of the record-efficiency CuGaSe 2 solar cell measured under several illumination levels are analyzed using a two-diode equation for a more accurate description of cell behavior. The contribution of each diode to the total cell j-V characteristic under illumination was estimated using the current separation method presented recently. This is performed in an effort to identify the distinctive features of this record-efficiency cell which have led to the up-to-date highest open circuit voltage of V o c = 946 mV and fill factor of FF = 66.5% for CuGaSe 2 solar cells. Furthermore, the interface recombination component of the cell current under illumination is quantitatively discussed applying the interface recombination model presented earlier. (author)
Modeling and control of Type-2 wind turbines for sub-synchronous resonance damping
International Nuclear Information System (INIS)
Mancilla-David, Fernando; Domínguez-García, José Luis; De Prada, Mikel; Gomis-Bellmunt, Oriol; Singh, Mohit; Muljadi, Eduard
2015-01-01
Highlights: • Dynamic modeling of Type-2 wind turbines for sub-synchronous resonance studies. • Systematic design of a power system stabilizer for Type-2 wind turbines. • Assessment of Type-2 wind turbines to suppress sub-synchronous resonance events. - Abstract: The rapid increase of wind power penetration into power systems around the world has led transmission system operators to enforce stringent grid codes requiring novel functionalities from renewable energy-based power generation. For this reason, there exists a need to asses whether wind turbines (WTs) will comply with such functionalities to ensure power system stability. This paper demonstrates that Type-2 WTs may induce sub-synchronous resonance (SSR) events when connected to a series-compensated transmission line, and with proper control, they may also suppress such events. The paper presents a complete dynamic model tailored to study, via eigenanalysis, SSR events in the presence of Type-2 WTs, and a systematic procedure to design a power system stabilizer using only local and measurable signals. Results are validated through a case study based on the IEEE first benchmark model for SSR studies, as well as with transient computer simulations
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Electron-ion recombination at low energy
International Nuclear Information System (INIS)
Andersen, L.H.
1993-01-01
The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)
Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain Models
Ravi, Aruna
Tuning plasmonic extinction resonances of sub-wavelength scale structures is essential to achieve maximum sensitivity and accuracy. These resonances can be controlled with careful design of nanoparticle geometries and incident wave attributes. In the first part of this dissertation, plasmonically enhanced effects on hexagonal-arrays of metal nanoparticles, metal-hole arrays (micro-mesh), and linear-arrays of metal nanorings are analyzed using three-dimensional Finite-Difference Time-Domain (3D-FDTD) simulations. The effect of particle size, lattice spacing, and lack of monodispersity of a self-assembled, hexagonal array layer of silver (Ag) nanoparticles on the extinction resonance is investigated to help determine optimal design specifications for efficient organic solar power harvesting. The enhancement of transmission resonances using plasmonic thin metal films with arrays of holes which enable recording of scatter-free infrared (IR) transmission spectra of individual particles is also explored. This method is quantitative, non-destructive and helps in better understanding the interaction of light with sub-wavelength particles. Next, plasmonically enhanced effects on linear arrays of gold (Au) rings are studied. Simulations employing 3D-FDTD can be used to determine the set of geometrical parameters to attain localized surface plasmon resonance (LSPR). The shifts in resonances due to changes in the effective dielectric of the structure are investigated, which is useful in sensing applications. Computational models enrich experimental studies. In the second part of this dissertation, the effect of particle size, shape and orientation on the IR spectra is investigated using 3D-FDTD and Mie-Bruggeman models. This computational analysis is extended to include clusters of particles of mixed composition. The prediction of extinction and absorption spectra of single particles of mixed composition helps in interpreting their physical properties and predict chemical
Ruzziconi, Laura
2013-06-10
We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected, the first four experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted, which includes ranges of multistability, where the nonresonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is also capable of capturing the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. © 2013 IOP Publishing Ltd.
Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.
Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui
2017-01-01
To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.
Dielectronic and Trielectronic Recombination Rate Coefficients of Be-like Ar14+
Huang, Z. K.; Wen, W. Q.; Xu, X.; Mahmood, S.; Wang, S. X.; Wang, H. B.; Dou, L. J.; Khan, N.; Badnell, N. R.; Preval, S. P.; Schippers, S.; Xu, T. H.; Yang, Y.; Yao, K.; Xu, W. Q.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Mao, L. J.; Ma, X. M.; Li, J.; Mao, R. S.; Yuan, Y. J.; Wu, B.; Sheng, L. N.; Yang, J. C.; Xu, H. S.; Zhu, L. F.; Ma, X.
2018-03-01
Electron–ion recombination of Be-like 40Ar14+ has been measured by employing the electron–ion merged-beams method at the cooler storage ring CSRm. The measured absolute recombination rate coefficients for collision energies from 0 to 60 eV are presented, covering all dielectronic recombination (DR) resonances associated with 2s 2 → 2s2p core transitions. In addition, strong trielectronic recombination (TR) resonances associated with 2s 2 → 2p 2 core transitions were observed. Both DR and TR processes lead to series of peaks in the measured recombination spectrum, which have been identified by the Rydberg formula. Theoretical calculations of recombination rate coefficients were performed using the state-of-the-art multi-configuration Breit–Pauli atomic structure code AUTOSTRUCTURE to compare with the experimental results. The plasma rate coefficients for DR+TR of Ar14+ were deduced from the measured electron–ion recombination rate coefficients in the temperature range from 103 to 107 K, and compared with calculated data from the literature. The experimentally derived plasma rate coefficients are 60% larger and 30% lower than the previously recommended atomic data for the temperature ranges of photoionized plasmas and collisionally ionized plasmas, respectively. However, good agreement was found between experimental results and the calculations by Gu and Colgan et al. The plasma rate coefficients deduced from experiment and calculated by the current AUTOSTRUCTURE code show agreement that is better than 30% from 104 to 107 K. The present results constitute a set of benchmark data for use in astrophysical modeling.
Analytical Model for LLC Resonant Converter With Variable Duty-Cycle Control
DEFF Research Database (Denmark)
Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede
2016-01-01
are identified and discussed. The proposed model enables a better understanding of the operation characteristics and fast parameter design of the LLC converter, which otherwise cannot be achieved by the existing simulation based methods and numerical models. The results obtained from the proposed model......In LLC resonant converters, the variable duty-cycle control is usually combined with a variable frequency control to widen the gain range, improve the light-load efficiency, or suppress the inrush current during start-up. However, a proper analytical model for the variable duty-cycle controlled LLC...... converter is still not available due to the complexity of operation modes and the nonlinearity of steady-state equations. This paper makes the efforts to develop an analytical model for the LLC converter with variable duty-cycle control. All possible operation models and critical operation characteristics...
A Linearized Large Signal Model of an LCL-Type Resonant Converter
Directory of Open Access Journals (Sweden)
Hong-Yu Li
2015-03-01
Full Text Available In this work, an LCL-type resonant dc/dc converter with a capacitive output filter is modeled in two stages. In the first high-frequency ac stage, all ac signals are decomposed into two orthogonal vectors in a synchronous rotating d–q frame using multi-frequency modeling. In the dc stage, all dc quantities are represented by their average values with average state-space modeling. A nonlinear two-stage model is then created by means of a non-linear link. By aligning the transformer voltage on the d-axis, the nonlinear link can be eliminated, and the whole converter can be modeled by a single set of linear state-space equations. Furthermore, a feedback control scheme can be formed according to the steady-state solutions. Simulation and experimental results have proven that the resulted model is good for fast simulation and state variable estimation.
Multi-axis force sensing using a resonant composite piezoelectric plate: model and experiments
Castaño-Cano, Davinson; Grossard, Mathieu; Hubert, Arnaud
2015-05-01
Wrist force/torque sensors used in robotic applications increase the performances and flexibility of the automated tasks. They also offer new possibilities in the manufacturing process, where physical contact between the work-piece and environment is required. The wide spreading of these sensors is for now restricted by their features. As an alternative to the existing strain-gauges force sensors, this paper presents a resonant composite structure, which is sensitive to multiple components of force that are considered via the pre-stress effect. Structurally bonded piezoelectric patches are used to bring the structure to its resonance, which is shifted according to applied forces. The relationship between force and frequency shift is modelled considering the multi-physics of this smart structure. This model is built using Hamilton's principle and takes into account pre-stress phenomena. A finite element model (FEM) based on Mindlin theory for plates, has been derived from the analytical model. The FEM model is implemented in MATLAB and compared with commercial FE software. Finally, an experimental prototype validates the model, and shows that it is possible to measure multiple force-components with one single sensing element such as a plate.
Directory of Open Access Journals (Sweden)
Nabeela Nathoo
2014-01-01
Full Text Available There are exciting new advances in multiple sclerosis (MS resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS.
Multi-axis force sensing using a resonant composite piezoelectric plate: model and experiments
International Nuclear Information System (INIS)
Castaño-Cano, Davinson; Grossard, Mathieu; Hubert, Arnaud
2015-01-01
Wrist force/torque sensors used in robotic applications increase the performances and flexibility of the automated tasks. They also offer new possibilities in the manufacturing process, where physical contact between the work-piece and environment is required. The wide spreading of these sensors is for now restricted by their features. As an alternative to the existing strain-gauges force sensors, this paper presents a resonant composite structure, which is sensitive to multiple components of force that are considered via the pre-stress effect. Structurally bonded piezoelectric patches are used to bring the structure to its resonance, which is shifted according to applied forces. The relationship between force and frequency shift is modelled considering the multi-physics of this smart structure. This model is built using Hamilton's principle and takes into account pre-stress phenomena. A finite element model (FEM) based on Mindlin theory for plates, has been derived from the analytical model. The FEM model is implemented in MATLAB and compared with commercial FE software. Finally, an experimental prototype validates the model, and shows that it is possible to measure multiple force-components with one single sensing element such as a plate. (paper)
Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.
Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L
2018-02-01
This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Modelling of magneto-acoustic resonance in ferrite-piezoelectric bilayers
Energy Technology Data Exchange (ETDEWEB)
Bichurin, M I; Petrov, V M; Averkin, S V; Filippov, A V [Institute for Electronic Information Systems, Novgorod State University, Veliky Novgorod 173003 (Russian Federation); Liverts, E [Department of Physics, Ben-Gurion University of the Negev, Beersheva 84105 (Israel); Mandal, S; Srinivasan, G [Physics Department, Oakland University, Rochester, MI 48309 (United States)
2009-11-07
A model is discussed for magnetoelectric (ME) effects in a single-crystal ferrite-piezoelectric bilayer on a substrate. The specific focus is on coupling at magneto-acoustic resonance (MAR) at the coincidence of ferromagnetic resonance in the ferrite and thickness modes of the electromechanical resonance in the piezoelectric. The clamping effect of the substrate has been considered in determining the ME voltage coefficient and applied to a model system of a bilayer of lead zirconate titanate (PZT) and yttrium iron garnet (YIG) on a gadolinium gallium garnet substrate. The theory predicts a giant ME effect at MAR due to interaction and transfer of energy between elastic modes and the uniform precession spin-wave mode. It is shown that the ME coupling strength decreases with increasing substrate thickness. Estimates for YIG-PZT for nominal film parameters predict MAR at 5 GHz and ME coefficients on the order of 5-70 V cm{sup -1} Oe{sup -1}. The phenomenon is of importance for the realization of multifunctional ME sensors and transducers operating at microwave frequencies.
International Nuclear Information System (INIS)
Jost, Sarah C.; Hope, Andrew; Kiehl, Erich; Perry, Arie; Travers, Sarah; Garbow, Joel R.
2009-01-01
Purpose: To develop a murine model of radiation necrosis using fractionated, subtotal cranial irradiation; and to investigate the imaging signature of radiation-induced tissue damage using advanced magnetic resonance imaging techniques. Methods and Materials: Twenty-four mice each received 60 Gy of hemispheric (left) irradiation in 10 equal fractions. Magnetic resonance images at 4.7 T were subsequently collected using T1-, T2-, and diffusion sequences at selected time points after irradiation. After imaging, animals were killed and their brains fixed for correlative histologic analysis. Results: Contrast-enhanced T1- and T2-weighted magnetic resonance images at months 2, 3, and 4 showed changes consistent with progressive radiation necrosis. Quantitatively, mean diffusivity was significantly higher (mean = 0.86, 1.13, and 1.24 μm 2 /ms at 2, 3, and 4 months, respectively) in radiated brain, compared with contralateral untreated brain tissue (mean = 0.78, 0.82, and 0.83 μm 2 /ms) (p < 0.0001). Histology reflected changes typically seen in radiation necrosis. Conclusions: This murine model of radiation necrosis will facilitate investigation of imaging biomarkers that distinguish between radiation necrosis and tumor recurrence. In addition, this preclinical study supports clinical data suggesting that diffusion-weighted imaging may be helpful in answering this diagnostic question in clinical settings.
Directory of Open Access Journals (Sweden)
Warsa
2014-07-01
Full Text Available Groundwater is an important economic source of water supply for drinking water and irrigation water for agriculture. Surface nuclear magnetic resonance (SNMR sounding is a relatively new geophysical method that can be used to determine the presence of culturally and economically important substances, such as subsurface water or hydrocarbon distribution. SNMR sounding allows the determination of water content and pore size distribution directly from the surface. The SNMR method is performed by stimulating an alternating current pulse through an antenna at the surface in order to confirm the existence of water in the subsurface. This paper reports the development of a 3-D forward modeling code for SNMR amplitudes and decay times, after which an improved 2-D and 3-D inversion algorithm is investigated, consisting of schemes for regularizing model parameterization. After briefly reviewing inversion schemes generally used in geophysics, the special properties of SNMR or magnetic resonance sounding (MRS inversion are evaluated. We present an extension of MRS to magnetic resonance tomography (MRT, i.e. an extension for 2-D and 3-D investigation, and the appropriate inversions.
A numerical model of the mirror electron cyclotron resonance MECR source
International Nuclear Information System (INIS)
Hellblom, G.
1986-03-01
Results from numerical modeling of a new type of ion source are presented. The plasma in this source is produced by electron cyclotron resonance in a strong conversion magnetic field. Experiments have shown that a well-defined plasma column, extended along the magnetic field (z-axis) can be produced. The electron temperature and the densities of the various plasma particles have been found to have a strong z-position dependence. With the numerical model, a simulation of the evolution of the composition of the plasma as a function of z is made. A qualitative agreement with experimental data can be obtained for certain parameter regimes. (author)
The optical/ultraviolet excess of isolated neutron stars in the resonant cyclotron scattering model
Tong, Hao; Xu, Ren-Xin; Song, Li-Ming
2011-12-01
X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.
Huang, Yanyi; Poon, Joyce K. S.; Liang, Wei; Yariv, Amnon; Zhang, Cheng; Dalton, Larry R.
2005-08-01
By combining a solid-state photoreaction model with the modal solutions of an optical waveguide, we simulate the refractive index change due to the photobleaching of CLD-1 chromophores in an amorphous polycarbonate microring resonator. The simulation agrees well with experimental results. The photobleaching quantum efficiency of the CLD-1 chromophores is determined to be 0.65%. The combined modeling of the electromagnetic wave propagation and photoreaction precisely illustrates the spatial and temporal evolution of the optical properties of the polymer material as manifested in the refractive index and their effects on the modal and physical properties of the optical devices.
Motor circuit computer model based on studies of functional Nuclear Magnetic Resonance
International Nuclear Information System (INIS)
Garcia Ramo, Karla Batista; Rodriguez Rojas, Rafael; Carballo Barreda, Maylen
2012-01-01
The basal ganglia are a complex network of subcortical nuclei involved in motor control, sensorimotor integration, and cognitive processes. Their functioning and interaction with other cerebral structures remains as a subject of debate. The aim of the present work was to simulate the basal ganglia-thalamus-cortex circuitry interaction in motor program selection, supported by functional connectivity pattern obtained by functional nuclear magnetic resonance imaging. Determination of connections weights between neural populations by functional magnetic resonance imaging, contributed to a more realistic formulation of the model; and consequently to obtain similar results to clinical and experimental data. The network allowed to describe the participation of the basal ganglia in motor program selection and the changes in Parkinson disease. The simulation allowed to demonstrate that dopamine depletion above to 40 % leads to a loss of action selection capability, and to reflect the system adaptation ability to compensate dysfunction in Parkinson disease, coincident with experimental and clinical studies
International Nuclear Information System (INIS)
Oguma, Ritsuo
1980-01-01
In the HBWR (Halden Boiling Water Reactor), there exists a resonant power oscillation with period about 0.04 Hz at power levels higher than about 9.5 MWt. While the resonant oscillation in not so large as to affect the normal reactor operation, it is significant, from the viewpoint of reactor diagnosis, to grasp its characteristics and find the cause. Noise analysis based on the autoregressive (AR) modeling technique has been made to reveal the driving source for this oscillation which led to the suggestion that it is attributed to the dynamic interference of heat exchange process between two parallel-connected steam transformers against the reactor. The present study demonstrates that the method used here is highly effective for tracing back to a noise source inducing the variation of quantities in a system, and also applicable to problems of reactor noise analysis and diagnosis. (author)
Energy Technology Data Exchange (ETDEWEB)
Li Dongxi, E-mail: lidongxi@mail.nwpu.edu.c [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Xu Wei; Guo, Yongfeng; Xu Yong [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)
2011-01-31
We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.
International Nuclear Information System (INIS)
Li Dongxi; Xu Wei; Guo, Yongfeng; Xu Yong
2011-01-01
We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.
Dielectronic recombination measurements using the Electron Beam Ion Trap
International Nuclear Information System (INIS)
Knapp, D.A.
1991-01-01
We have used the Electron Beam Ion Trap at LLNL to study dielectronic recombination in highly charged ions. Our technique is unique because we observe the x-rays from dielectronic recombination at the same time we see x-rays from all other electron-ion interactions. We have recently taken high-resolution, state-selective data that resolves individual resonances
International Nuclear Information System (INIS)
Jimenez, Miguel A.; Martin-Valdepenas, Juan M.; Martin-Fuertes, Francisco; Fernandez, Jose A.
2007-01-01
A detailed chemistry model has been adapted and developed for surface chemistry, heat and mass transfer between H 2 /CO/air/steam/CO 2 mixtures and vertical parallel Pt-coated surfaces. This model is based onto a simplified Deutschmann reaction scheme for methane surface combustion and the analysis by Elenbaas for buoyancy-induced heat transfer between parallel plates. Mass transfer is treated by the heat and mass transfer analogy. The proposed model is able to simulate the H 2 /CO recombination phenomena characteristic of parallel-plate Passive Autocatalytic Recombiners (PARs), which have been proposed and implemented as a promising hydrogen-control strategy in the safety of nuclear power stations or other industries. The transient model is able to approach the warm-up phase of the PAR and its shut-down as well as the dynamic changes within the surrounding atmosphere. The model has been implemented within the MELCOR code and assessed against results of the Battelle Model Containment tests of the Zx series. Results show accurate predictions and a better performance than traditional methods in integral codes, i.e. empirical correlations, which are also much case-specific. Influence of CO present in the mixture on the PAR performance is also addressed in this paper
Hydrogen recombiner development at AECL
International Nuclear Information System (INIS)
Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.
1997-01-01
Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial
X-ray spectroscopic measurements of dielectronic recombination of highly charged krypton ions
International Nuclear Information System (INIS)
Biedermann, C.; Fuchs, T.; Liebisch, P.; Radtke, R.; Behar, E.; Doron, R.
1999-01-01
We have performed X-ray spectroscopic measurements of the dielectronic recombination (DR) resonance strengths for the KLn (n = 2, .., 5) series of He-, Li-, and Be-like krypton ions. The ions were produced with an electron beam ion trap, and the strengths were obtained from a fit procedure that compares the experimental excitation function for DR to theory. The results agree well with the predictions. By looking at the KLL resonance, the time evolution of different krypton charge states was measured with this technique and compared with a model of the trap inventory. (orig.)
DEFF Research Database (Denmark)
Freijedo Fernandez, Francisco Daniel; Chaudhary, Sanjay Kumar; Guerrero, Josep M.
2015-01-01
-domain. As an alternative, a power based averaged modelling is also proposed. Type IV wind turbine harmonic signature and STATCOM active harmonic mitigation are considered for the simulation case studies. Simulation results provide a good insight of the features and limitations of the proposed methodologies.......This paper approaches modelling methodologies for integration of wind turbines and STATCOM in harmonic resonance studies. Firstly, an admittance equivalent model representing the harmonic signature of grid connected voltage source converters is provided. A simplified type IV wind turbine modelling...... is then straightforward. This linear modelling is suitable to represent the wind turbine in the range of frequencies at which harmonic interactions are likely. Even the admittance method is suitable both for frequency and time domain studies, some limitations arise in practice when implementing it in the time...
Damping width of giant dipole resonances of cold and hot nuclei: A macroscopic model
International Nuclear Information System (INIS)
Mughabghab, S.F.; Sonzogni, A.A.
2002-01-01
A phenomenological macroscopic model of the giant dipole resonance (GDR) damping width of cold and hot nuclei with ground-state spherical and near-spherical shapes is developed. The model is based on a generalized Fermi liquid model which takes into account the nuclear surface dynamics. The temperature dependence of the GDR damping width is accounted for in terms of surface and volume components. Parameter-free expressions for the damping width and the effective deformation are obtained. The model is validated with GDR measurements of the following nuclides: 39,40 K, 42 Ca, 45 Sc, 59,63 Cu, 109-120 Sn, 147 Eu, 194 Hg, and 208 Pb, and is compared with the predictions of other models
McIntosh, Allison L; Gormley, Shane; Tozzi, Leonardo; Frodl, Thomas; Harkin, Andrew
2017-01-01
Magnetic resonance imaging (MRI) is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.
Do basal Ganglia amplify willed action by stochastic resonance? A model.
Directory of Open Access Journals (Sweden)
V Srinivasa Chakravarthy
Full Text Available Basal ganglia are usually attributed a role in facilitating willed action, which is found to be impaired in Parkinson's disease, a pathology of basal ganglia. We hypothesize that basal ganglia possess the machinery to amplify will signals, presumably weak, by stochastic resonance. Recently we proposed a computational model of Parkinsonian reaching, in which the contributions from basal ganglia aid the motor cortex in learning to reach. The model was cast in reinforcement learning framework. We now show that the above basal ganglia computational model has all the ingredients of stochastic resonance process. In the proposed computational model, we consider the problem of moving an arm from a rest position to a target position: the two positions correspond to two extrema of the value function. A single kick (a half-wave of sinusoid, of sufficiently low amplitude given to the system in resting position, succeeds in taking the system to the target position, with high probability, only at a critical noise level. But for suboptimal noise levels, the model arm's movements resemble Parkinsonian movement symptoms like akinetic rigidity (low noise and dyskinesias (high noise.
On the synthesis of resonance lines in dynamical models of structured hot-star winds
Puls, J.; Owocki, S. P.; Fullerton, A. W.
1993-01-01
We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles are then derived from formal solution integration using this source function. Two more approximate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10% or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.
Directory of Open Access Journals (Sweden)
Yann Lesecque
2014-11-01
Full Text Available Recombination is an essential process in eukaryotes, which increases diversity by disrupting genetic linkage between loci and ensures the proper segregation of chromosomes during meiosis. In the human genome, recombination events are clustered in hotspots, whose location is determined by the PRDM9 protein. There is evidence that the location of hotspots evolves rapidly, as a consequence of changes in PRDM9 DNA-binding domain. However, the reasons for these changes and the rate at which they occur are not known. In this study, we investigated the evolution of human hotspot loci and of PRDM9 target motifs, both in modern and archaic human lineages (Denisovan to quantify the dynamic of hotspot turnover during the recent period of human evolution. We show that present-day human hotspots are young: they have been active only during the last 10% of the time since the divergence from chimpanzee, starting to be operating shortly before the split between Denisovans and modern humans. Surprisingly, however, our analyses indicate that Denisovan recombination hotspots did not overlap with modern human ones, despite sharing similar PRDM9 target motifs. We further show that high-affinity PRDM9 target motifs are subject to a strong self-destructive drive, known as biased gene conversion (BGC, which should lead to the loss of the majority of them in the next 3 MYR. This depletion of PRDM9 genomic targets is expected to decrease fitness, and thereby to favor new PRDM9 alleles binding different motifs. Our refined estimates of the age and life expectancy of human hotspots provide empirical evidence in support of the Red Queen hypothesis of recombination hotspots evolution.
Lesecque, Yann; Glémin, Sylvain; Lartillot, Nicolas; Mouchiroud, Dominique; Duret, Laurent
2014-11-01
Recombination is an essential process in eukaryotes, which increases diversity by disrupting genetic linkage between loci and ensures the proper segregation of chromosomes during meiosis. In the human genome, recombination events are clustered in hotspots, whose location is determined by the PRDM9 protein. There is evidence that the location of hotspots evolves rapidly, as a consequence of changes in PRDM9 DNA-binding domain. However, the reasons for these changes and the rate at which they occur are not known. In this study, we investigated the evolution of human hotspot loci and of PRDM9 target motifs, both in modern and archaic human lineages (Denisovan) to quantify the dynamic of hotspot turnover during the recent period of human evolution. We show that present-day human hotspots are young: they have been active only during the last 10% of the time since the divergence from chimpanzee, starting to be operating shortly before the split between Denisovans and modern humans. Surprisingly, however, our analyses indicate that Denisovan recombination hotspots did not overlap with modern human ones, despite sharing similar PRDM9 target motifs. We further show that high-affinity PRDM9 target motifs are subject to a strong self-destructive drive, known as biased gene conversion (BGC), which should lead to the loss of the majority of them in the next 3 MYR. This depletion of PRDM9 genomic targets is expected to decrease fitness, and thereby to favor new PRDM9 alleles binding different motifs. Our refined estimates of the age and life expectancy of human hotspots provide empirical evidence in support of the Red Queen hypothesis of recombination hotspots evolution.
The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice
Energy Technology Data Exchange (ETDEWEB)
Kallarackal, Jim
2011-04-28
Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the
The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice
International Nuclear Information System (INIS)
Kallarackal, Jim
2011-01-01
Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the
Bhatt, Manish; Montagnon, Emmanuel; Destrempes, François; Chayer, Boris; Kazemirad, Siavash; Cloutier, Guy
2018-03-01
Deep vein thrombosis is a common vascular disease that can lead to pulmonary embolism and death. The early diagnosis and clot age staging are important parameters for reliable therapy planning. This article presents an acoustic radiation force induced resonance elastography method for the viscoelastic characterization of clotting blood. The physical concept of this method relies on the mechanical resonance of the blood clot occurring at specific frequencies. Resonances are induced by focusing ultrasound beams inside the sample under investigation. Coupled to an analytical model of wave scattering, the ability of the proposed method to characterize the viscoelasticity of a mimicked venous thrombosis in the acute phase is demonstrated. Experiments with a gelatin-agar inclusion sample of known viscoelasticity are performed for validation and establishment of the proof of concept. In addition, an inversion method is applied in vitro for the kinetic monitoring of the blood coagulation process of six human blood samples obtained from two volunteers. The computed elasticity and viscosity values of blood samples at the end of the 90 min kinetics were estimated at 411 ± 71 Pa and 0.25 ± 0.03 Pa · s for volunteer #1, and 387 ± 35 Pa and 0.23 ± 0.02 Pa · s for volunteer #2, respectively. The proposed method allowed reproducible time-varying thrombus viscoelastic measurements from samples having physiological dimensions.
Simultaneous multislice magnetic resonance fingerprinting with low-rank and subspace modeling.
Bo Zhao; Bilgic, Berkin; Adalsteinsson, Elfar; Griswold, Mark A; Wald, Lawrence L; Setsompop, Kawin
2017-07-01
Magnetic resonance fingerprinting (MRF) is a new quantitative imaging paradigm that enables simultaneous acquisition of multiple magnetic resonance tissue parameters (e.g., T 1 , T 2 , and spin density). Recently, MRF has been integrated with simultaneous multislice (SMS) acquisitions to enable volumetric imaging with faster scan time. In this paper, we present a new image reconstruction method based on low-rank and subspace modeling for improved SMS-MRF. Here the low-rank model exploits strong spatiotemporal correlation among contrast-weighted images, while the subspace model captures the temporal evolution of magnetization dynamics. With the proposed model, the image reconstruction problem is formulated as a convex optimization problem, for which we develop an algorithm based on variable splitting and the alternating direction method of multipliers. The performance of the proposed method has been evaluated by numerical experiments, and the results demonstrate that the proposed method leads to improved accuracy over the conventional approach. Practically, the proposed method has a potential to allow for a 3× speedup with minimal reconstruction error, resulting in less than 5 sec imaging time per slice.
A Squeeze-film Damping Model for the Circular Torsion Micro-resonators
Yang, Fan; Li, Pu
2017-07-01
In recent years, MEMS devices are widely used in many industries. The prediction of squeeze-film damping is very important for the research of high quality factor resonators. In the past, there have been many analytical models predicting the squeeze-film damping of the torsion micro-resonators. However, for the circular torsion micro-plate, the works over it is very rare. The only model presented by Xia et al[7] using the method of eigenfunction expansions. In this paper, The Bessel series solution is used to solve the Reynolds equation under the assumption of the incompressible gas of the gap, the pressure distribution of the gas between two micro-plates is obtained. Then the analytical expression for the damping constant of the device is derived. The result of the present model matches very well with the finite element method (FEM) solutions and the result of Xia’s model, so the present models’ accuracy is able to be validated.
Spallation Neutron Source Drift Tube Linac Resonance Control Cooling System Modeling
Tang, Johnny Y; Champion, Marianne M; Feschenko, Alexander; Gibson, Paul; Kiselev, Yuri; Kovalishin, A S; Kravchuk, Leonid V; Kvasha, Adolf; Schubert, James P
2005-01-01
The Resonance Control Cooling System (RCCS) for the warm linac of the Spallation Neutron Source was designed by Los Alamos National Laboratory. The primary design focus was on water cooling of individual component contributions. The sizing the RCCS water skid was accomplished by means of a specially created SINDA/FLUINT model tailored to these system requirements. A new model was developed in Matlab Simulink and incorporates actual operational values and control valve interactions. Included is the dependence of RF input power on system operation, cavity detuning values during transients, time delays that result from water flows through the heat exchanger, the dynamic process of water warm-up in the cooling system due to dissipated RF power on the cavity surface, differing contributions on the cavity detuning due to drift tube and wall heating, and a dynamic model of the heat exchanger with characteristics in close agreement to the real unit. Because of the Matlab Simulink model, investigation of a wide range ...
Multi-component fiber track modelling of diffusion-weighted magnetic resonance imaging data
Directory of Open Access Journals (Sweden)
Yasser M. Kadah
2010-01-01
Full Text Available In conventional diffusion tensor imaging (DTI based on magnetic resonance data, each voxel is assumed to contain a single component having diffusion properties that can be fully represented by a single tensor. Even though this assumption can be valid in some cases, the general case involves the mixing of components, resulting in significant deviation from the single tensor model. Hence, a strategy that allows the decomposition of data based on a mixture model has the potential of enhancing the diagnostic value of DTI. This project aims to work towards the development and experimental verification of a robust method for solving the problem of multi-component modelling of diffusion tensor imaging data. The new method demonstrates significant error reduction from the single-component model while maintaining practicality for clinical applications, obtaining more accurate Fiber tracking results.
Absolute cross sections from the ''boomerang model'' for resonant electron-molecule scattering
International Nuclear Information System (INIS)
Dube, L.; Herzenberg, A.
1979-01-01
The boomerang model is used to calculate absolute cross sections near the 2 Pi/sub g/ shape resonance in e-N 2 scattering. The calculated cross sections are shown to satisfy detailed balancing. The exchange of electrons is taken into account. A parametrized complex-potential curve for the intermediate N 2 /sup ts-/ ion is determined from a small part of the experimental data, and then used to calculate other properties. The calculations are in good agreement with the absolute cross sections for vibrational excitation from the ground state, the absolute cross section v = 1 → 2, and the absolute total cross section
Estimation of parasitic losses in a proposed mesoscale resonant engine: Experiment and model
Preetham, B. S.; Anderson, M.; Richards, C.
2014-02-01
A resonant engine in which the piston-cylinder assembly is replaced by a flexible cavity is realized at the mesoscale using flexible metal bellows to demonstrate the feasibility of the concept. A four stroke motoring technique is developed and measurements are performed to determine parasitic losses. A non-linear lumped parameter model is developed to evaluate the engine performance. Experimentally, the heat transfer and friction effects are separated by varying the engine speed and operating frequency. The engine energy flow diagram showing the energy distribution among various parasitic elements reveals that the friction loss in the bellows is smaller than the sliding friction loss in a typical piston-cylinder assembly.
International Nuclear Information System (INIS)
Sparenberg, Jean-Marc; Samsonov, Boris F; Foucart, Francois; Baye, Daniel
2006-01-01
A new type of supersymmetric transformations of the coupled-channel radial Schroedinger equation is introduced, which do not conserve the vanishing behaviour of solutions at the origin. Contrary to the usual transformations, these 'non-conservative' transformations allow, in the presence of thresholds, the construction of well-behaved potentials with coupled scattering matrices from uncoupled potentials. As an example, an exactly-solvable potential matrix is obtained which provides a very simple model of the Feshbach-resonance phenomenon. (letter to the editor)
The Hagedorn Spectrum and the Dual Resonance Model: An Old Love Affair
Veneziano, Gabriele
2016-01-01
In this contribution I recall how people working in the late 1960s on the dual resonance model came to the surprising discovery of a Hagedorn-like spectrum, and why they should not have been surprised. I will then turn to discussing the Hagedorn spectrum from a string theory viewpoint (which adds a huge degeneracy to the exponential spectrum). Finally, I will discuss how all this can be reinterpreted in the new incarnation of string theory through the properties of quantum black holes.
Ando, Shin'ichiro; Sato, Katsuhiko
2003-07-01
We study the resonant spin-flavor (RSF) conversion of supernova neutrinos, which is induced by the interaction between the nonzero neutrino magnetic moment and the supernova magnetic fields, and its dependence on presupernova models. As the presupernova models, we adopt the latest ones by Woosley, Heger, and Weaver, and, further, models with both solar and zero metallicity are investigated. Since the (1-2Ye) profile of the new presupernova models, which is responsible for the RSF conversion, suddenly drops at the resonance region, the completely adiabatic RSF conversion is not realized, even if μνB0=(10-12μB)(1010 G), where B0 is the strength of the magnetic field at the surface of the iron core. In particular for the model with zero metallicity, the conversion is highly nonadiabatic in the high energy region, reflecting the (1-2Ye) profile of the model. In calculating the flavor conversion, we find that the shock wave propagation, which changes density profiles drastically, is a much more severe problem than it is for the pure Mikheyev-Smirnov-Wolfenstein (MSW) conversion case. This is because the RSF effect occurs at a far deeper region than the MSW effect. To avoid the uncertainty concerning the shock propagation, we restrict our discussion to 0.5 s after the core bounce (and for more conservative discussion, 0.25 s), during which the shock wave is not expected to affect the RSF region. We also evaluate the energy spectrum at the Super-Kamiokande detector for various models using the calculated conversion probabilities, and find that it is very difficult to obtain useful information on the supernova metallicities and magnetic fields or on the neutrino magnetic moment from the supernova neutrino observation. Future prospects are also discussed.
Therapeutic Recombinant Monoclonal Antibodies
Bakhtiar, Ray
2012-01-01
During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…
SAR in human head model due to resonant wireless power transfer system.
Zhang, Chao; Liu, Guoqiang; Li, Yanhong; Song, Xianjin
2016-04-29
Efficient mid-range wireless power transfer between transmitter and the receiver has been achieved based on the magnetic resonant coupling method. The influence of electromagnetic field on the human body due to resonant wireless power transfer system (RWPT) should be taken into account during the design process of the system. To analyze the transfer performance of the RWPT system and the change rules of the specific absorption rate (SAR) in the human head model due to the RWPT system. The circuit-field coupling method for a RWPT system with consideration of the displacement current was presented. The relationship between the spiral coil parameters and transfer performance was studied. The SAR in the human head model was calculated under two different exposure conditions. A system with output power higher than 10 W at 0.2 m distance operating at a frequency of approximately 1 MHz was designed. The FEM simulation results show the peak SAR value is below the safety limit which appeared when the human head model is in front of the transmitter. The simulation results agreed well with the experimental results, which verified the validity of the analysis and design.
Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations
Energy Technology Data Exchange (ETDEWEB)
Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Huijsmans, G. [ITER Organization, Route de Vinon, F-13115 Saint-Paul-Lez-Durance (France); Pamela, S. [IIFS-PIIM. Aix Marseille Université - CNRS, 13397 Marseille Cedex20 (France); Chapman, I.; Kirk, A.; Thornton, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxon OX14 3DB (United Kingdom); Hoelzl, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Cahyna, P. [Association EURATOM/IPP.CR, Prague (Czech Republic)
2013-10-15
The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.
Protein structure analysis using the resonant recognition model and wavelet transforms
International Nuclear Information System (INIS)
Fang, Q.; Cosic, I.
1998-01-01
An approach based on the resonant recognition model and the discrete wavelet transform is introduced here for characterising proteins' biological function. The protein sequence is converted into a numerical series by assigning the electron-ion interaction potential to each amino acid from N-terminal to C-terminal. A set of peaks is found after performing a wavelet transform onto a numerical series representing a group of homologous proteins. These peaks are related to protein structural and functional properties and named characteristic vector of that protein group. Further more, the amino acids contributing mostly to a protein's biological functions, the so-called 'hot spots' amino acids, are predicted by the continuous wavelet transform. It is found that the hot spots are clustered around the protein's cleft structure. The wavelets approach provides a novel methods for amino acid sequence analysis as well as an expansion for the newly established macromolecular interaction model: the resonant recognition model. Copyright (1998) Australasian Physical and Engineering Sciences in Medicine
Smukowski Heil, Caiti S.; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A.F.
2015-01-01
Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human–chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. PMID:26430062
Smukowski Heil, Caiti S; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A F
2015-10-01
Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Directory of Open Access Journals (Sweden)
Nicholas A. Bock
2003-11-01
Full Text Available One of the main limitations of intracranial models of diseases is our present inability to monitor and evaluate the intracranial compartment noninvasively over time. Therefore, there is a growing need for imaging modalities that provide thorough neuropathological evaluations of xenograft and transgenic models of intracranial pathology. In this study, we have established protocols for multiple-mouse magnetic resonance imaging (MRI to follow the growth and behavior of intracranial xenografts of gliomas longitudinally. We successfully obtained weekly images on 16 mice for a total of 5 weeks on a 7-T multiple-mouse MRI. T2- and Ti-weighted imaging with gadolinium enhancement of vascularity was used to detect tumor margins, tumor size, and growth. These experiments, using 3D whole brain images obtained in four mice at once, demonstrate the feasibility of obtaining repeat radiological images in intracranial tumor models and suggest that MRI should be incorporated as a research modality for the investigation of intracranial pathobiology.
Neural Model for Left-Handed CPW Bandpass Filter Loaded Split Ring Resonator
Liu, Haiwen; Wang, Shuxin; Tan, Mingtao; Zhang, Qijun
2010-02-01
Compact left-handed coplanar waveguide (CPW) bandpass filter loaded split ring resonator (SRR) is presented in this paper. The proposed filter exhibits a quasi-elliptic function response and its circuit size occupies only 12 × 11.8 mm2 (≈0.21 λg × 0.20 λg). Also, a simple circuit model is given and the parametric study of this filter is discussed. Then, with the aid of NeuroModeler software, a five-layer feed-forward perceptron neural networks model is built up to optimize the proposed filter design fast and accurately. Finally, this newly left-handed CPW bandpass filter was fabricated and measured. A good agreement between simulations and measurement verifies the proposed left-handed filter and the validity of design methodology.
Bouchaala, Adam M.
2015-01-01
We investigate the dynamics of electrically actuated Micro and Nano (Carbon nanotube (CNT)) cantilever beams implemented as resonant sensors for mass detection of biological elements. The beams are modeled using an Euler-Bernoulli beam theory including the nonlinear electrostatic forces and the added biological elements, which are modeled as a discrete point mass. A multi-mode Galerkin procedure is utilized to derive a reduced-order model, which is used for the dynamic simulations. The frequency shifts due to added mass of Escherichia coli (E. coli) and Prostate Specific Antigen (PSA) are calculated for the primary and higher order modes of vibrations. Also, analytical expressions of the natural frequency shift under dc voltage and added mass have been developed. We found that using higher-order modes of vibration of MEMS beams or miniaturizing the size of the beam to Nano scale leads to significant improved sensitivity. © Springer International Publishing Switzerland 2015.
The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice
International Nuclear Information System (INIS)
Gerhold, Philipp; Kallarackal, Jim; Humboldt-Universitaet, Berlin; Jansen, Karl
2011-11-01
The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling. (orig.)
Nonlinear Modeling and Simulation of Thermal Effects in Microcantilever Resonators Dynamic
International Nuclear Information System (INIS)
Tadayon, M A; Sayyaadi, H; Jazar, G Nakhaie
2006-01-01
Thermal dependency of material characteristics in micro electromechanical systems strongly affects their performance, design, and control. Hence, it is essential to understand and model that in MEMS devices to optimize their designs. A thermal phenomenon introduces two main effects: damping due to internal friction, and softening due to Young modulus temperature relation. Based on some reported theoretical and experimental results, we model the thermal phenomena and use two Lorentzian functions to describe the restoring and damping forces caused by thermal phenomena. In order to emphasize the thermal effects, a nonlinear model of the MEMS, by considering capacitor nonlinearity, have been used. The response of the system is developed by employing multiple time scales perturbation method on nondimensionalized form of equations. Frequency response, resonant frequency and peak amplitude are examined for variation of dynamic parameters involved
3D Modeling of Vascular Pathologies from contrast enhanced magnetic resonance images (MRI)
International Nuclear Information System (INIS)
Cantor Rivera, Diego; Orkisz, Maciej; Arias, Julian; Uriza, Luis Felipe
2007-01-01
This paper presents a method for generating 3D vascular models from contrast enhanced magnetic resonance images (MRI) using a fast marching algorithm. The main contributions of this work are: the use of the original image for defining a speed function (which determines the movement of the interface) and the calculation of the time in which the interface identifies the artery. The proposed method was validated on pathologic carotid artery images of patients and vascular phantoms. A visual appraisal of vascular models obtained with the method shows a satisfactory extraction of the vascular wall. A quantitative assessment proved that the generated models depend on the values of algorithm parameters. The maximum induced error was equal to 1.34 voxels in the diameter of the measured stenoses.
Branching innovation, recombinant innovation, and endogenous technological transitions
Frenken, K.; Izquierdo, L.; Zeppini, P.
2012-01-01
We propose a model of technological transitions based on two different types of innovations. Branching innovations refer to technological improvements along a particular path, while recombinant innovations represent fusions of multiple paths. Recombinant innovations create "short-cuts" which reduce
Efimov trimers in a harmonic potential and universality in three-body recombination
Kokkelmans, S.J.J.M.F.; Portegies, J.W.; Gross, N.; Shotan, Z.; Khaykovich, L.
2009-01-01
We report on experimental evidence of universality in ultracold 7Li atoms’three-body recombination loss in the vicinity of a Feshbach resonance [1]. We observe a recombination minimum and an Efimov resonance in regions of positive and negative scattering lengths. Both observed features lie deeply
Jet Hadronization via Recombination of Parton Showers in Vacuum and in Medium
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J.; Han, Kyongchol; Ko, Che Ming
2016-12-15
We introduce a hadronization algorithm for jet parton showers based on a hybrid approach involving recombination of quarks and fragmentation of strings. The algorithm can be applied to parton showers from a shower Monte Carlo generator at the end of their perturbative evolution. The algorithm forces gluon decays and then evaluates the recombination probabilities for quark-antiquark pairs into mesons and (anti)quark triplets into (anti)baryons. We employ a Wigner phase space formulation based on the assumption of harmonic oscillator wave functions for stable hadrons and resonances. Partons too isolated in phase space to find recombination partners are connected by QCD strings to other quarks. Fragmentation of those remnant strings and the decay of all hadron resonances complete the hadronization process. We find that our model applied to parton showers from the PYTHIA Monte Carlo event generator leads to results very similar to pure Lund string fragmentation. We suggest that our algorithm can be readily generalized to jets embedded in quark-gluon plasma by adding sampled thermal partons from the phase transition hypersurface. The recombination of thermal partons and shower partons leads to an enhancement of pions and protons at intermediate momentum at both RHIC and LHC.
Li, Miao; Cai, Ru-Jian; Song, Shuai; Jiang, Zhi-Yong; Li, Yan; Gou, Hong-Chao; Chu, Pin-Pin; Li, Chun-Ling; Qiu, Hua-Ji
2017-01-01
Glässer's disease is an economically important infectious disease of pigs caused by Haemophilus parasuis. Few vaccines are currently available that could provide effective cross-protection against various serovars of H. parasuis. In this study, five OMPs (OppA, TolC, HxuC, LppC, and HAPS_0926) identified by bioinformatic approaches, were cloned and expressed as recombinant proteins. Antigenicity of the purified proteins was verified through Western blotting, and primary screening for protective potential was evaluated in vivo. Recombinant TolC (rTolC), rLppC, and rHAPS_0926 proteins showing marked protection of mice against H. parasuis infection, and were further evaluated individually or in combination. Mice treated with these three OMPs produced humoral and host cell-mediated responses, with a significant rise in antigen-specific IgG titer and lymphoproliferative response in contrast with the mock-immunized group. Significant increases were noted in CD4+, CD8+ T cells, and three cytokines (IL-2, IL-4, and IFN-γ) in vaccinated animals. The antisera against candidate antigens could efficiently impede bacterial survival in whole blood bactericidal assay against H. parasuis infection. The multi-protein vaccine induced more pronounced immune responses and offered better protection than individual vaccines. Our findings indicate that these three OMPs are promising antigens for the development of multi-component subunit vaccines against Glässer's disease.
Application of the resonating Hartree-Fock random phase approximation to the Lipkin model
International Nuclear Information System (INIS)
Nishiyama, S.; Ishida, K.; Ido, M.
1996-01-01
We have applied the resonating Hartree-Fock (Res-HF) approximation to the exactly solvable Lipkin model by utilizing a newly developed orbital-optimization algorithm. The Res-HF wave function was superposed by two Slater determinants (S-dets) which give two corresponding local energy minima of monopole ''deformations''. The self-consistent Res-HF calculation gives an excellent ground-state correlation energy. There exist excitations due to small vibrational fluctuations of the orbitals and mixing coefficients around their stationary values. They are described by a new approximation called the resonating Hartree-Fock random phase approximation (Res-HF RPA). Matrices of the second-order variation of the Res-HF energy have the same structures as those of the Res-HF RPA's matrices. The quadratic steepest descent of the Res-HF energy in the orbital optimization is considered to include certainly both effects of RPA-type fluctuations up to higher orders and their mode-mode couplings. It is a very important and interesting task to apply the Res-HF RPA to the Lipkin model with the use of the stationary values and to prove the above argument. It turns out that the Res-HF RPA works far better than the usual HF RPA and the renormalized one. We also show some important features of the Res-HF RPA. (orig.)
Gao, Ying; Chen, Yong; Ma, Dan; Jiang, Yun; Herrmann, Kelsey A.; Vincent, Jason A.; Dell, Katherine M.; Drumm, Mitchell L.; Brady-Kalnay, Susann M.; Griswold, Mark A.; Flask, Chris A.; Lu, Lan
2015-01-01
High field, preclinical magnetic resonance imaging (MRI) scanners are now commonly used to quantitatively assess disease status and efficacy of novel therapies in a wide variety of rodent models. Unfortunately, conventional MRI methods are highly susceptible to respiratory and cardiac motion artifacts resulting in potentially inaccurate and misleading data. We have developed an initial preclinical, 7.0 T MRI implementation of the highly novel Magnetic Resonance Fingerprinting (MRF) methodology that has been previously described for clinical imaging applications. The MRF technology combines a priori variation in the MRI acquisition parameters with dictionary-based matching of acquired signal evolution profiles to simultaneously generate quantitative maps of T1 and T2 relaxation times and proton density. This preclinical MRF acquisition was constructed from a Fast Imaging with Steady-state Free Precession (FISP) MRI pulse sequence to acquire 600 MRF images with both evolving T1 and T2 weighting in approximately 30 minutes. This initial high field preclinical MRF investigation demonstrated reproducible and differentiated estimates of in vitro phantoms with different relaxation times. In vivo preclinical MRF results in mouse kidneys and brain tumor models demonstrated an inherent resistance to respiratory motion artifacts as well as sensitivity to known pathology. These results suggest that MRF methodology may offer the opportunity for quantification of numerous MRI parameters for a wide variety of preclinical imaging applications. PMID:25639694
Modeling the neutron spin-flip process in a time-of-flight spin-resonance energy filter
Parizzi, A A; Klose, F
2002-01-01
A computer program for modeling the neutron spin-flip process in a novel time-of-flight (TOF) spin-resonance energy filter has been developed. The software allows studying the applicability of the device in various areas of spallation neutron scattering instrumentation, for example as a dynamic TOF monochromator. The program uses a quantum-mechanical approach to calculate the local spin-dependent spectra and is essential for optimizing the magnetic field profiles along the resonator axis. (orig.)
The description of neutron and giant resonances within the quasiparticle-phonon nuclear model
International Nuclear Information System (INIS)
Soloviev, V.G.
1978-01-01
The general assumptions of the quasiparticle-phonon model of complex nuclei are given. The choice of the model Hamiltonian as an average field and residual forces is discussed. The phonon description and quasiparticle-phonon interaction are presented. The system of basic equations and their approximate solutions are obtained. The approximation is chosen so as to obtain the most correct description of few-quasiparticle components rather than of the whole wave function. The method of strength functions is presented, which plays a decisive role in practical realization of the quasiparticle-phonon model for the description of some properties of complex nuclei. The range of applicability of the quasiparticle-phonon nuclear model is determined as few-quasiparticle components of the wave functions at low, intermediate and high excitation energies averaged in a certain energy interval. The fragmentation of single-particle states in deformed nuclei is studied within this model. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reactions of the type (d,p) and (d,t). The s - ,p - , and d-wave neutron strength functions are calculated at the neutron binding energy Bsub(n). A satisfactory agreement with experiment is obtained. A correct description of the radiative strength functions in spherical nuclei is obtained. The influence of the tail of the giant dipole resonance on the E1-strength functions is studied. The energies and EΛ-strength functions for giant multipole resonances in spherical and deformed nuclei are calculated. A correct description of their widths is obtained. (author)
Dielectronic recombination of highly ionized iron
International Nuclear Information System (INIS)
Griffin, D.C.; Pindzola, M.S.
1987-01-01
Dielectronic recombination of the iron ions Fe/sup 15+/, Fe/sup 23+/, and Fe/sup 25+/ has been studied in the isolated-resonance, distorted-wave approximation. The cross-section calculations include the dielec- tronic transitions associated with the 3s→3l and 3s→4l excitations in Fe/sup 15+/, the 2s→2p and 2s→3l excitations in Fe/sup 23+/, and the 1s→2l excitations in Fe/sup 25+/. The effects of external electric fields have been included by employing intermediate-coupled, field-mixed eigenvectors for the doubly excited Rydberg states, determined by diagonalizing a Hamiltonian matrix which includes the internal electrostatic and spin-orbit terms, as well as the Stark matrix elements. The field effects are found to be quite large in Fe/sup 15+/, relatively small in Fe/sup 23+/, and negligible in Fe/sup 25+/. The calculations indicate that there are large resonances near threshold in Fe/sup 23+/ that are unaffected by external fields and may be measurable in new experiments currently being designed. In addition, the contributions of radiative recombination and the possible interference between radiative and dielectronic recombination in low-lying resonances are considered. Even though the radiative recombination cross sections may be appreciable near threshold in Fe/sup 15+/ and Fe/sup 23+/, the interference between these processes appears to be completely negligible
Energy Technology Data Exchange (ETDEWEB)
Singh, Deepti; Rawat, Surender [Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana (India); Waseem, Mohd; Gupta, Sunita; Lynn, Andrew [School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Nitin, Mukesh; Ramchiary, Nirala [School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Sharma, Krishna Kant, E-mail: kekulsharma@gmail.com [Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana (India)
2016-01-08
The YacK gene from Yersinia enterocolitica strain 7, cloned in pET28a vector and expressed in Escherichia coli BL21 (DE3), showed laccase activity when oxidized with 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and guaiacol. The recombinant laccase protein was purified and characterized biochemically with a molecular mass of ≈58 KDa on SDS-PAGE and showed positive zymogram with ABTS. The protein was highly robust with optimum pH 9.0 and stable at 70 °C upto 12 h with residual activity of 70%. Kinetic constants, K{sub m} values, for ABTS and guaiacol were 675 μM and 2070 μM, respectively, with corresponding Vmax values of 0.125 μmol/ml/min and 6500 μmol/ml/min. It also possess antioxidative property against BSA and Cu{sup 2+}/H{sub 2}O{sub 2} model system. Constant pH MD simulation studies at different protonation states of the system showed ABTS to be most stable at acidic pH, whereas, diclofenac at neutral pH. Interestingly, aspirin drifted out of the binding pocket at acidic and neutral pH, but showed stable binding at alkaline pH. The biotransformation of diclofenac and aspirin by laccase also corroborated the in silico results. This is the first report on biotransformation of non-steroidal anti-inflammatory drugs (NSAIDs) using recombinant laccase from gut bacteria, supported by in silico simulation studies. - Highlights: • Laccase from Yersinia enterocolitica strain 7 was expressed in Escherichia coli BL21 (DE3). • Recombinant laccase was found to be thermostable and alkali tolerant. • The in silico and experimental studied proves the biotransformation of NSAIDs. • Laccase binds to ligands differentially under different protonation state. • Laccase also possesses free radical scavenging property.
International Nuclear Information System (INIS)
Singh, Deepti; Rawat, Surender; Waseem, Mohd; Gupta, Sunita; Lynn, Andrew; Nitin, Mukesh; Ramchiary, Nirala; Sharma, Krishna Kant
2016-01-01
The YacK gene from Yersinia enterocolitica strain 7, cloned in pET28a vector and expressed in Escherichia coli BL21 (DE3), showed laccase activity when oxidized with 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and guaiacol. The recombinant laccase protein was purified and characterized biochemically with a molecular mass of ≈58 KDa on SDS-PAGE and showed positive zymogram with ABTS. The protein was highly robust with optimum pH 9.0 and stable at 70 °C upto 12 h with residual activity of 70%. Kinetic constants, K m values, for ABTS and guaiacol were 675 μM and 2070 μM, respectively, with corresponding Vmax values of 0.125 μmol/ml/min and 6500 μmol/ml/min. It also possess antioxidative property against BSA and Cu 2+ /H 2 O 2 model system. Constant pH MD simulation studies at different protonation states of the system showed ABTS to be most stable at acidic pH, whereas, diclofenac at neutral pH. Interestingly, aspirin drifted out of the binding pocket at acidic and neutral pH, but showed stable binding at alkaline pH. The biotransformation of diclofenac and aspirin by laccase also corroborated the in silico results. This is the first report on biotransformation of non-steroidal anti-inflammatory drugs (NSAIDs) using recombinant laccase from gut bacteria, supported by in silico simulation studies. - Highlights: • Laccase from Yersinia enterocolitica strain 7 was expressed in Escherichia coli BL21 (DE3). • Recombinant laccase was found to be thermostable and alkali tolerant. • The in silico and experimental studied proves the biotransformation of NSAIDs. • Laccase binds to ligands differentially under different protonation state. • Laccase also possesses free radical scavenging property.
Wu, Zhanshuai; Tang, Zeli; Shang, Mei; Zhao, Lu; Zhou, Lina; Kong, Xiangzhan; Lin, Zhipeng; Sun, Hengchang; Chen, Tingjin; Xu, Jin; Li, Xuerong; Huang, Yan; Yu, Xinbing
2017-07-01
Clonorchiasis remains a nonnegligible public health problem in endemic areas. Cysteine protease of Clonorchis sinensis (CsCP) plays indispensable roles in the parasitic physiology and pathology, and has been exploited as a promising drug and vaccine candidate. In recent years, development of spore-based vaccines against multiple pathogens has attracted many investigators' interest. In previous studies, the recombinant Escherichia coli (BL21) and Bacillus subtilis spores expressing CsCP have been successfully constructed, respectively. In this study, the immune effects of CsCP protein purified from recombinant BL21 (rCsCP) and B. subtilis spores presenting CsCP (B.s-CsCP) in Balb/c mice model were conducted with comparative analysis. Levels of specific IgG, IgG1 and IgG2a were significantly increased in sera from both rCsCP and B.s-CsCP intraperitoneally immunized mice. Additionally, recombinant spores expressing abundant fusion CsCP (0.03125 pg/spore) could strongly enhance the immunogenicity of CsCP with significantly higher levels of IgG and isotypes. Compared with rCsCP alone, intraperitoneal administration of mice with spores expressing CsCP achieved a better effect of fighting against C. sinensis infection by slowing down the process of fibrosis. Our results demonstrated that a combination of Th1/Th2 immune responses could be elicited by rCsCP, while spores displaying CsCP prominently induced Th1-biased specific immune responses, and the complex cytokine network maybe mediates protective immune responses against C. sinensis. This work further confirmed that the usage of B. subtilis spores displaying CsCP is an effective way to against C. sinensis.
Savvateeva-Popova, E V; Peresleni, A I; Sharagina, L M; Medvedeva, A V; Korochkina, S E; Grigor'eva, I V; Diuzhikova, N A; Popov, A V; Baricheva, E M; Karagodin, D; Heisenberg, M
2004-06-01
As the Human Genome and Drosophila Genome Projects were completed, it became clear that functions of human disease-associated genes may be elucidated by studying the phenotypic expression of mutations affecting their structural or functional homologs in Drosophila. Genomic diseases were identified as a new class of human disorders. Their cause is recombination, which takes place at gene-flanking duplicons to generate chromosome aberrations such as deletions, duplications, inversions, and translocations. The resulting imbalance of the dosage of developmentally important genes arises at a frequency of 10(-3) (higher than the mutation rate of individual genes) and leads to syndromes with multiple manifestations, including cognitive defects. Genomic DNA fragments were cloned from the Drosophila melanogaster agnostic locus, whose mutations impair learning ability and memory. As a result, the locus was exactly localized in X-chromosome region 11A containing the LIM kinase 1 (LIMK1) gene (CG1848), which is conserved among many species. Hemizygosity for the LIMK1 gene, which is caused by recombination at neighboring extended repeats, underlies cognitive disorders in human Williams syndrome. LIMK1 is a component of the integrin signaling cascade, which regulates the functions of the actin cytoskeleton, synaptogenesis, and morphogenesis in the developing brain. Immunofluorescence analysis revealed LIMK1 in all subdomains of the central complex and the visual system of Drosophila melanogaster. Like in the human genome, the D. melanogaster region is flanked by numerous repeats, which were detected by molecular genetic methods and analysis of ectopic chromosome pairing. The repeats determined a higher rate of spontaneous and induced recombination. including unequal crossing over, in the agnostic gene region. Hence, the agnostic locus was considered as the first D. melanogaster model suitable for studying the genetic defect associated with Williams syndrome in human.
Tong, Hao; Xu, Renxin
2013-03-01
The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.
Memory effects on a resonate-and-fire neuron model subjected to Ornstein-Uhlenbeck noise
Paekivi, S.; Mankin, R.; Rekker, A.
2017-10-01
We consider a generalized Langevin equation with an exponentially decaying memory kernel as a model for the firing process of a resonate-and-fire neuron. The effect of temporally correlated random neuronal input is modeled as Ornstein-Uhlenbeck noise. In the noise-induced spiking regime of the neuron, we derive exact analytical formulas for the dependence of some statistical characteristics of the output spike train, such as the probability distribution of the interspike intervals (ISIs) and the survival probability, on the parameters of the input stimulus. Particularly, on the basis of these exact expressions, we have established sufficient conditions for the occurrence of memory-time-induced transitions between unimodal and multimodal structures of the ISI density and a critical damping coefficient which marks a dynamical transition in the behavior of the system.
Liberti, M; Paffi, A; Maggio, F; De Angelis, A; Apollonio, F; d'Inzeo, G
2009-01-01
A number of experimental investigations have evidenced the extraordinary sensitivity of neuronal cells to weak input stimulations, including electromagnetic (EM) fields. Moreover, it has been shown that biological noise, due to random channels gating, acts as a tuning factor in neuronal processing, according to the stochastic resonant (SR) paradigm. In this work the attention is focused on noise arising from the stochastic gating of ionic channels in a model of Ranvier node of acoustic fibers. The small number of channels gives rise to a high noise level, which is able to cause a spike train generation even in the absence of stimulations. A SR behavior has been observed in the model for the detection of sinusoidal signals at frequencies typical of the speech.
Generalized Net Model of the Cognitive and Neural Algorithm for Adaptive Resonance Theory 1
Directory of Open Access Journals (Sweden)
Todor Petkov
2013-12-01
Full Text Available The artificial neural networks are inspired by biological properties of human and animal brains. One of the neural networks type is called ART [4]. The abbreviation of ART stands for Adaptive Resonance Theory that has been invented by Stephen Grossberg in 1976 [5]. ART represents a family of Neural Networks. It is a cognitive and neural theory that describes how the brain autonomously learns to categorize, recognize and predict objects and events in the changing world. In this paper we introduce a GN model that represent ART1 Neural Network learning algorithm [1]. The purpose of this model is to explain when the input vector will be clustered or rejected among all nodes by the network. It can also be used for explanation and optimization of ART1 learning algorithm.
Bodily tides near the 1:1 spin-orbit resonance: correction to Goldreich's dynamical model
Williams, James G.; Efroimsky, Michael
2012-12-01
Spin-orbit coupling is often described in an approach known as " the MacDonald torque", which has long become the textbook standard due to its apparent simplicity. Within this method, a concise expression for the additional tidal potential, derived by MacDonald (Rev Geophys 2:467-541, 1994), is combined with a convenient assumption that the quality factor Q is frequency-independent (or, equivalently, that the geometric lag angle is constant in time). This makes the treatment unphysical because MacDonald's derivation of the said formula was, very implicitly, based on keeping the time lag frequency-independent, which is equivalent to setting Q scale as the inverse tidal frequency. This contradiction requires the entire MacDonald treatment of both non-resonant and resonant rotation to be rewritten. The non-resonant case was reconsidered by Efroimsky and Williams (Cel Mech Dyn Astron 104:257-289, 2009), in application to spin modes distant from the major commensurabilities. In the current paper, we continue this work by introducing the necessary alterations into the MacDonald-torque-based model of falling into a 1-to-1 resonance. (The original version of this model was offered by Goldreich (Astron J 71:1-7, 1996). Although the MacDonald torque, both in its original formulation and in its corrected version, is incompatible with realistic rheologies of minerals and mantles, it remains a useful toy model, which enables one to obtain, in some situations, qualitatively meaningful results without resorting to the more rigorous (and complicated) theory of Darwin and Kaula. We first address this simplified model in application to an oblate primary body, with tides raised on it by an orbiting zero-inclination secondary. (Here the role of the tidally-perturbed primary can be played by a satellite, the perturbing secondary being its host planet. A planet may as well be the perturbed primary, its host star acting as the tide-raising secondary). We then extend the model to a
Quantum thermodynamics of the resonant-level model with driven system-bath coupling
Haughian, Patrick; Esposito, Massimiliano; Schmidt, Thomas L.
2018-02-01
We study nonequilibrium thermodynamics in a fermionic resonant-level model with arbitrary coupling strength to a fermionic bath, taking the wide-band limit. In contrast to previous theories, we consider a system where both the level energy and the coupling strength depend explicitly on time. We find that, even in this generalized model, consistent thermodynamic laws can be obtained, up to the second order in the drive speed, by splitting the coupling energy symmetrically between system and bath. We define observables for the system energy, work, heat, and entropy, and calculate them using nonequilibrium Green's functions. We find that the observables fulfill the laws of thermodynamics, and connect smoothly to the known equilibrium results.
Recombination rate plasticity: revealing mechanisms by design
Sefick, Stephen; Rushton, Chase
2017-01-01
For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222
Mehta, Darshan A; Oladapo, Abiola O; Epstein, Joshua D; Novack, Aaron R; Neufeld, Ellis J; Hay, Joel W
2016-02-01
Hemophilia patients use factor-clotting concentrates (factor VIII for hemophilia A and factor IX for hemophilia B) for improved blood clotting. These products are used to prevent or stop bleeding episodes. However, some hemophilia patients develop inhibitors (i.e., the patient's immune system develops antibodies against these factor concentrates). Hence, these patients do not respond well to the factor concentrates. A majority of hemophilia patients with inhibitors are managed on-demand with the following bypassing agents: recombinant factor VIIa (rFVIIa) and activated prothrombin complex concentrate (aPCC). The recently published U.S. registries Dosing Observational Study in Hemophilia (DOSE) and Hemostasis and Thrombosis Research Society (HTRS) reported higher rFVIIa on-demand use for bleed management than previously described. To estimate aPCC and rFVIIa prophylaxis costs relative to rFVIIa on-demand treatment cost based on rFVIIa doses reported in U.S. registries. A literature-based cost model was developed assuming a base case on-demand annual bleed rate (ABR) of 28.7 per inhibitor patient, which was taken from a randomized phase 3 clinical trial. The doses for rFVIIa on-demand were taken from the median dose per bleed reported by the DOSE and HTRS registries. Model inputs for aPCC and rFVIIa prophylaxis (i.e., dosing and efficacy) were derived from respective randomized clinical trials. Cost analysis was from the U.S. payer perspective, and only direct drug costs were considered. The drug cost was based on the Medicare Part B 2014 average sale price (ASP). Two-way sensitivity and threshold analyses were performed by simultaneously varying on-demand ABR, prophylaxis efficacy, and unit drug cost. In addition to studying relative costs associated with on-demand and prophylaxis treatments, relative cost per bleeding episode avoided were also calculated for aPCC and rFVIIa prophylaxis treatments. The prophylaxis efficacy reported in the trials were used to
Electron - ion recombination processes - an overview
International Nuclear Information System (INIS)
Hahn, Yukap
1997-01-01
Extensive theoretical and experimental studies have been carried out for the past 20 years on electron - ion recombination processes, as they are applied to the analysis of astrophysical and laboratory plasmas. We review the basic understanding gained through these efforts, with emphasis on some of the more recent progress made in recombination theory as the recombining system is affected by time-dependent electric fields and plasma particles at low temperature. Together with collisional ionization and excitation processes, recombination is important in determining ionization balance and excited-state population in non-equilibrium plasmas. The radiation emitted by plasmas is usually the principal medium with which to study the plasma condition, as it is produced mainly during the recombination and decay of excited states of ions inside the plasma. This is especially true when the plasma under study is not readily accessible by direct probes, as in astrophysical plasmas. Moreover, external probes may sometimes cause undesirable disturbances of the plasma. Electron-ion recombination proceeds in several different modes. The direct modes include three-body recombination (TBR) and one-step radiative recombination (RR), all to the ground- and singly-excited states of the target ions. By contrast, the indirect resonant mode is a two-step dielectronic recombination (DR), which proceeds first with the formation of doubly-excited states by radiationless excitation/capture. The resonant states thus formed may relax by autoionization and/or radiative cascades. For more exotic modes of recombination, we consider off-shell dielectronic recombination (radiative DR = RDR), in which an electron capture is accompanied by simultaneous radiative emission and excitation of the target ion. Some discussion on attachment of electrons to neutral atoms, resulting in the formation of negative ions, is also given. When resonance states involve one or more electrons in high Rydberg states
Science Court on ICRH [ion cyclotron resonance heating] modeling of tokamak plasmas
International Nuclear Information System (INIS)
Hively, L.M.; Sadowski, W.L.
1987-10-01
The Applied Plasma Physics (APP) Theory program in the Office of Fusion Energy is charged with supporting the development of advanced physics models for fusion research. One such effort is ion cyclotron resonance heating (ICRH), which has seen substantial progress recently. However, due to serious questions about the adequacy of present models for CIT (Compact Ignition Tokamak), a Science Court was formed to assess ICRH models, including: validity of theoretical and computational approximations; underlying physics assumptions and corresponding limits on the results; self-consistency; any subsidiary issues needing resolution (e.g., new computer tools); adequacy of the models in simulating experiments (especially CIT); and new or improved experiments to validate and refine the models. The Court did not review work by specific individuals, institutions, or programs, thereby avoiding any biases along these lines. Rather, the Science Court was carefully structured as a technical review of ICRH theory and modeling in the US. This paper discusses the Science Court process, findings, and conclusions
Nonlinear Container Ship Model for the Study of Parametric Roll Resonance
Directory of Open Access Journals (Sweden)
Christian Holden
2007-10-01
Full Text Available Parametric roll is a critical phenomenon for ships, whose onset may cause roll oscillations up to +-40 degrees, leading to very dangerous situations and possibly capsizing. Container ships have been shown to be particularly prone to parametric roll resonance when they are sailing in moderate to heavy head seas. A Matlab/Simulink parametric roll benchmark model for a large container ship has been implemented and validated against a wide set of experimental data. The model is a part of a Matlab/Simulink Toolbox (MSS, 2007. The benchmark implements a 3rd-order nonlinear model where the dynamics of roll is strongly coupled with the heave and pitch dynamics. The implemented model has shown good accuracy in predicting the container ship motions, both in the vertical plane and in the transversal one. Parametric roll has been reproduced for all the data sets in which it happened, and the model provides realistic results which are in good agreement with the model tank experiments.
Kalogeropoulos, A; Thuriaux, P
1985-03-01
A hybrid DNA (hDNA) model of recombination has been algebraically formulated, which allows the prediction of frequencies of postmeiotic segregation and conversion of a given allele and their probability of being associated with a crossing over. The model considered is essentially the "Aviemore model." In contrast to some other interpretations of recombination, it states that gene conversion can only result from the repair of heteroduplex hDNA, with postmeiotic segregation resulting from unrepaired heteroduplexes. The model also postulates that crossing over always occurs distally to the initiation site of the hDNA. Eleven types of conversion and postmeiotic segregation with or without associated crossover were considered. Their theoretical frequencies are given by 11 linear equations with ten variables, four describing heteroduplex repair, four giving the probability of hDNA formation and its topological properties and two giving the probability that crossing over occurs at the left or right of the converting allele. Using the experimental data of Kitani and coworkers on conversion at the six best studied gray alleles of Sordaria fimicola, we found that the model considered fit the data at a P level above or very close (allele h4) to the 5% level of sampling error provided that the hDNA is partly asymmetric. The best fitting solutions are such that the hDNA has an equal probability of being formed on either chromatid or, alternatively, that both DNA strands have the same probability of acting as the invading strand during hDNA formation. The two mismatches corresponding to a given allele are repaired with different efficiencies. Optimal solutions are found if one allows for repair to be more efficient on the asymmetric hDNA than on the symmetric one. In the case of allele g1, our data imply that the direction of repair is nonrandom with respect to the strand on which it occurs.
Energy Technology Data Exchange (ETDEWEB)
Cahyna, P.; Peterka, M.; Panek, R., E-mail: cahyna@ipp.cas.cz [Institute of Plasma Physics AS CR, Prague (Czech Republic); Liu, Y.; Kirk, A.; Harrison, J.; Thornton, A.; Chapman, I. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Nardon, E. [Association Euratom/CEA, CEA Cadarache, St. Paul-lez-Durance (France); Schmitz, O. [Forschung Zentrum Juelich, Juelich (Germany)
2012-09-15
Full text: Resonant magnetic perturbations (RMPs) for edge localized mode (ELM) mitigation in tokamaks can be modified by the plasma response and indeed strong screening of the applied perturbation is in some cases predicted by simulations. In this contribution we investigate what effect would such screening have on the spiralling patterns (footprints) which may appear at the divertor when RMPs are applied. We use two theoretical tools for investigation of the impact of plasma response on footprints: a simple model of the assumed screening currents, which can be used to translate the screening predicted by MHD codes in a simplified geometry into the real geometry, and the MHD code MARS-F. The former consistently predicts that footprints are significantly reduced when complete screening of the resonant perturbation modes (like it is the case in ideal MHD) is assumed. This result is supported by the result of MARS-F in ideal mode for the case of the MAST tokamak. To predict observed patterns of fluxes it is necessary to take into account the deformation of the scrape-off layer, and for this we developed an approximative method based on the Melnikov integral. If the screening of perturbations indeed reduces the footprints, it would provide us with an important tool to evaluate the amount of screening in experiments, as the footprints can be easily observed. We thus present a comparison between predictions and experimental data, especially for the MAST tokamak, where a significant amount of data has been collected. (author)
Applications of Magnetic Resonance in Model Systems: Tumor Biology and Physiology
Directory of Open Access Journals (Sweden)
Robert J. Gillies
2000-01-01
Full Text Available A solid tumor presents a unique challenge as a system in which the dynamics of the relationship between vascularization, the physiological environment and metabolism are continually changing with growth and following treatment. Magnetic resonance imaging (MRI and magnetic resonance spectroscopy (MRS studies have demonstrated quantifiable linkages between the physiological environment, angiogenesis, vascularization and metabolism of tumors. The dynamics between these parameters continually change with tumor aggressiveness, tumor growth and during therapy and each of these can be monitored longitudinally, quantitatively and non-invasively with MRI and MRS. An important aspect of MRI and MRS studies is that techniques and findings are easily translated between systems. Hence, pre-clinical studies using cultured cells or experimental animals have a high connectivity to potential clinical utility. In the following review, leaders in the field of MR studies of basic tumor physiology using pre-clinical models have contributed individual sections according to their expertise and outlook. The following review is a cogent and timely overview of the current capabilities and state-of-the-art of MRI and MRS as applied to experimental cancers. A companion review deals with the application of MR methods to anticancer therapy.
Energy Technology Data Exchange (ETDEWEB)
Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)
2011-12-15
We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)
International Nuclear Information System (INIS)
Nishikawa, T.; Kawachi, T.; Nishihara, K.; Fujimoto, T.
1995-09-01
We have assessed atomic data for lithium-like ions for the purpose of constructing a reliable collisional-radiative model. We show several examples of the atomic data for aluminum and oxygen ions, and comparison of data from several sources is done in detail. For ions with nuclear charge z, the scaling formulas and fitting parameters, which are based on the data of oxygen ions, are presented. By use of these data, we have constructed two collisional-radiative models: the one for aluminum ions and the one for ions according to the scaling for z. The population inversion and the amplification gain of the soft x-ray laser lines in the recombining aluminum plasma are calculated for several electron temperatures. We also examine the effects of ion collisions for Δn=0 transitions on the excited level populations
International Nuclear Information System (INIS)
Zebrev, G.I.; Zemtsov, K.S.
2016-01-01
We found that the energy deposition fluctuations in the sensitive volumes may cause the multiple cell upset (MCU) multiplicity scatter in the nanoscale (with feature sizes less than 100 nm) memories. A microdosimetric model of the MCU cross-section dependence on LET is proposed. It was shown that ideally a staircase-shaped cross-section vs LET curve spreads due to the energy-loss straggling impact into a quasi-linear dependence with a slope depending on the memory cell area, the cell critical energy and efficiency of charge collection. This paper also presents a new model of the Auger recombination as a limiting process of the electron–hole charge yield, especially at the high-LET ion impact. A modified form of the MCU cross-section vs LET data interpolation is proposed, discussed and validated.
Energy Technology Data Exchange (ETDEWEB)
Zebrev, G.I., E-mail: gizebrev@mephi.ru; Zemtsov, K.S.
2016-08-11
We found that the energy deposition fluctuations in the sensitive volumes may cause the multiple cell upset (MCU) multiplicity scatter in the nanoscale (with feature sizes less than 100 nm) memories. A microdosimetric model of the MCU cross-section dependence on LET is proposed. It was shown that ideally a staircase-shaped cross-section vs LET curve spreads due to the energy-loss straggling impact into a quasi-linear dependence with a slope depending on the memory cell area, the cell critical energy and efficiency of charge collection. This paper also presents a new model of the Auger recombination as a limiting process of the electron–hole charge yield, especially at the high-LET ion impact. A modified form of the MCU cross-section vs LET data interpolation is proposed, discussed and validated.
Tradtrantip, Lukmanee; Felix, Christian M; Spirig, Rolf; Morelli, Adriana Baz; Verkman, A S
2018-05-01
Intravenous human immunoglobulin G (IVIG) may have therapeutic benefit in neuromyelitis optica spectrum disorders (herein called NMO), in part because of the anti-inflammatory properties of the IgG Fc region. Here, we evaluated recombinant Fc hexamers consisting of the IgM μ-tailpiece fused with the Fc region of human IgG1. In vitro, the Fc hexamers prevented cytotoxicity in aquaporin-4 (AQP4) expressing cells and in rat spinal cord slice cultures exposed to NMO anti-AQP4 autoantibody (AQP4-IgG) and complement, with >500-fold greater potency than IVIG or monomeric Fc fragments. Fc hexamers at low concentration also prevented antibody-dependent cellular cytotoxicity produced by AQP4-IgG and natural killer cells. Serum from rats administered a single intravenous dose of Fc hexamers at 50 mg/kg taken at 8 h did not produce complement-dependent cytotoxicity when added to AQP4-IgG-treated AQP4-expressing cell cultures. In an experimental rat model of NMO produced by intracerebral injection of AQP4-IgG, Fc hexamers at 50 mg/kg administered before and at 12 h after AQP4-IgG fully prevented astrocyte injury, complement activation, inflammation and demyelination. These results support the potential therapeutic utility of recombinant IgG1 Fc hexamers in AQP4-IgG seropositive NMO. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kousuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M
2017-12-01
The tumor microenvironment (TME) promotes tumor growth and metastasis. We previously established the color-coded EL4 lymphoma TME model with red fluorescent protein (RFP) expressing EL4 implanted in transgenic C57BL/6 green fluorescent protein (GFP) mice. Color-coded imaging of the lymphoma TME suggested an important role of stromal cells in lymphoma progression and metastasis. In the present study, we used color-coded imaging of RFP-lymphoma cells and GFP stromal cells to identify yellow-fluorescent genetically recombinant cells appearing only during metastasis. The EL4-RFP lymphoma cells were injected subcutaneously in C57BL/6-GFP transgenic mice and formed subcutaneous tumors 14 days after cell transplantation. The subcutaneous tumors were harvested and transplanted to the abdominal cavity of nude mice. Metastases to the liver, perigastric lymph node, ascites, bone marrow, and primary tumor were imaged. In addition to EL4-RFP cells and GFP-host cells, genetically recombinant yellow-fluorescent cells, were observed only in the ascites and bone marrow. These results indicate genetic exchange between the stromal and cancer cells. Possible mechanisms of genetic exchange are discussed as well as its ramifications for metastasis. J. Cell. Biochem. 118: 4216-4221, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Precision tools and models to narrow in on the 750 GeV diphoton resonance
International Nuclear Information System (INIS)
Staub, Florian; Athron, Peter; Basso, Lorenzo
2016-02-01
The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.
A prediction model for the grade of liver fibrosis using magnetic resonance elastography.
Mitsuka, Yusuke; Midorikawa, Yutaka; Abe, Hayato; Matsumoto, Naoki; Moriyama, Mitsuhiko; Haradome, Hiroki; Sugitani, Masahiko; Tsuji, Shingo; Takayama, Tadatoshi
2017-11-28
Liver stiffness measurement (LSM) has recently become available for assessment of liver fibrosis. We aimed to develop a prediction model for liver fibrosis using clinical variables, including LSM. We performed a prospective study to compare liver fibrosis grade with fibrosis score. LSM was measured using magnetic resonance elastography in 184 patients that underwent liver resection, and liver fibrosis grade was diagnosed histologically after surgery. Using the prediction model established in the training group, we validated the classification accuracy in the independent test group. First, we determined a cut-off value for stratifying fibrosis grade using LSM in 122 patients in the training group, and correctly diagnosed fibrosis grades of 62 patients in the test group with a total accuracy of 69.3%. Next, on least absolute shrinkage and selection operator analysis in the training group, LSM (r = 0.687, P prediction model. This prediction model applied to the test group correctly diagnosed 32 of 36 (88.8%) Grade I (F0 and F1) patients, 13 of 18 (72.2%) Grade II (F2 and F3) patients, and 7 of 8 (87.5%) Grade III (F4) patients in the test group, with a total accuracy of 83.8%. The prediction model based on LSM, ICGR15, and platelet count can accurately and reproducibly predict liver fibrosis grade.
Precision tools and models to narrow in on the 750 GeV diphoton resonance
Energy Technology Data Exchange (ETDEWEB)
Staub, Florian [CERN, Theoretical Physics Department, Geneva (Switzerland); Athron, Peter [Monash University, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Melbourne, VIC (Australia); Basso, Lorenzo [CPPM, Aix-Marseille Universite, CNRS-IN2P3, UMR 7346, Marseille Cedex 9 (France); Goodsell, Mark D. [Sorbonne Universites, LPTHE, UMR 7589, CNRS and Universite Pierre et Marie Curie, Paris Cedex 05 (France); Harries, Dylan [The University of Adelaide, Department of Physics, ARC Centre of Excellence for Particle Physics at the Terascale, Adelaide, SA (Australia); Krauss, Manuel E.; Nickel, Kilian; Opferkuch, Toby [Bethe Center for Theoretical Physics and Physikalisches Institut der Universitaet Bonn, Bonn (Germany); Ubaldi, Lorenzo [Tel-Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv (Israel); Vicente, Avelino [Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Valencia (Spain); Voigt, Alexander [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)
2016-09-15
The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model. (orig.)
Precision tools and models to narrow in on the 750 GeV diphoton resonance
Energy Technology Data Exchange (ETDEWEB)
Staub, Florian [CERN, Geneva (Switzerland). Theoretical Physics Dept.; Athron, Peter [Monash Univ., Melbourne (Australia). ARC Center of Excellence for Particle Physics at the Terascale; Basso, Lorenzo [Aix-Marseille Univ., CNRS-IN2P3, UMR 7346 (France). CPPM; and others
2016-02-15
The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.
Precision tools and models to narrow in on the 750 GeV diphoton resonance
International Nuclear Information System (INIS)
Staub, Florian; Athron, Peter; Basso, Lorenzo; Goodsell, Mark D.; Harries, Dylan; Krauss, Manuel E.; Nickel, Kilian; Opferkuch, Toby; Ubaldi, Lorenzo; Vicente, Avelino; Voigt, Alexander
2016-01-01
The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model. (orig.)
Directory of Open Access Journals (Sweden)
Allison L. McIntosh
2017-05-01
Full Text Available Magnetic resonance imaging (MRI is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.
Large-scale inverse and forward modeling of adaptive resonance in the tinnitus decompensation.
Low, Yin Fen; Trenado, Carlos; Delb, Wolfgang; D'Amelio, Roberto; Falkai, Peter; Strauss, Daniel J
2006-01-01
Neural correlates of psychophysiological tinnitus models in humans may be used for their neurophysiological validation as well as for their refinement and improvement to better understand the pathogenesis of the tinnitus decompensation and to develop new therapeutic approaches. In this paper we make use of neural correlates of top-down projections, particularly, a recently introduced synchronization stability measure, together with a multiscale evoked response potential (ERP) model in order to study and evaluate the tinnitus decompensation by using a hybrid inverse-forward mathematical methodology. The neural synchronization stability, which according to the underlying model is linked to the focus of attention on the tinnitus signal, follows the experimental and inverse way and allows to discriminate between a group of compensated and decompensated tinnitus patients. The multiscale ERP model, which works in the forward direction, is used to consolidate hypotheses which are derived from the experiments for a known neural source dynamics related to attention. It is concluded that both methodologies agree and support each other in the description of the discriminatory character of the neural correlate proposed, but also help to fill the gap between the top-down adaptive resonance theory and the Jastreboff model of tinnitus.
Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances
Yang, H.; Pasko, V. P.
2003-12-01
Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model
Tuckwell, H C; Toubiana, L; Vibert, J F
2000-05-01
We extend a previous dynamical viral network model to include stochastic effects. The dynamical equations for the viral and immune effector densities within a host population of size n are bilinear, and the noise is white, additive, and Gaussian. The individuals are connected with an n x n transmission matrix, with terms which decay exponentially with distance. In a single individual, for the range of noise parameters considered, it is found that increasing the amplitude of the noise tends to decrease the maximum mean virion level, and slightly accelerate its attainment. Two different spatial dynamical models are employed to ascertain the effects of environmental stochasticity on viral spread. In the first model transmission is unrestricted and there is no threshold within individuals. This model has the advantage that it can be analyzed using a Fokker-Planck approach. The noise is found both to synchronize and uniformize the trajectories of the viral levels across the population of infected individuals, and thus to promote the epidemic spread of the virus. Quantitative measures of the speed of spread and overall amplitude of the epidemic are obtained as functions of the noise and virulence parameters. The mean amplitude increases steadily without threshold effects for a fixed value of the virulence as the noise amplitude sigma is increased, and there is no evidence of a stochastic resonance. However, the speed of transmission, both with respect to its mean and variance, undergoes rapid increases as sigma changes by relatively small amounts. In the second, more realistic, model, there is a threshold for infection and an upper limit to the transmission rate. There may be no spread of infection at all in the absence of noise. With increasing noise level and a low threshold, the mean maximum virion level grows quickly and shows a broad-based stochastic resonance effect. When the threshold within individuals is increased, the mean population virion level increases only
Intrinsic and experimental quasiparticle recombination times in superconducting films
International Nuclear Information System (INIS)
Eisenmenger, W.; Lassmann, K.; Trumpp, H.J.; Krauss, R.
1977-01-01
Experimental quasiparticle recombination lifetime data for superconducting Al, Sn, and Pb films are compared with calculations based on a ray acoustic model taking account of the film thickness dependence of the reabsorption of recombination phonons. Information on the true or intrinsic quasiparticle recombination lifetime obtained from these and other data is discussed. (orig.) [de
Directory of Open Access Journals (Sweden)
Remy Froissart
2005-03-01
Full Text Available Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment-based on data on the timing of coat protein detection-the per base and replication cycle recombination rate was on the order of 2 x 10(-5 to 4 x 10(-5. This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus.
Johnsen, Rainer
1993-01-01
Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.
Measurement and modeling of nitrogen resonance line profiles from an electrodeless discharge lamp
International Nuclear Information System (INIS)
Wood, D.R.; Skinner, G.B.; Lifshitz, A.
1987-01-01
Experimental profiles of the 1200 A resonance triplet of atomic nitrogen were measured for a variety of operating conditions of an end-on electrodeless lamp, and corresponding absorption curves were calculated. Each source profile was determined by fitting parameters to an empirical two-layer model, then convoluting with the instrumental function for comparison with experimental data. Each three-component profile was fitted with three adjustable parameters: an absorption parameter for each of the two layers and a third absorption parameter to adjust for radiation trapping. Curves of absorption as a function of atom concentration, calculated from these profiles, are very similar to the shock tube calibrations of Thielen and Roth in which a source of similar design has been used
Stochastic resonance and noise delayed extinction in a model of two competing species
Valenti, D.; Fiasconaro, A.; Spagnolo, B.
2004-01-01
We study the role of the noise in the dynamics of two competing species. We consider generalized Lotka-Volterra equations in the presence of a multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence of a periodic driving term, which accounts for the environment temperature variation. We find noise-induced periodic oscillations of the species concentrations and stochastic resonance phenomenon. We find also a nonmonotonic behavior of the mean extinction time of one of the two competing species as a function of the additive noise intensity.
Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model
Energy Technology Data Exchange (ETDEWEB)
Cannat, F., E-mail: felix.cannat@onera.fr, E-mail: felix.cannat@gmail.com; Lafleur, T. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France); Jarrige, J.; Elias, P.-Q.; Packan, D. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Chabert, P. [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)
2015-05-15
A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.
Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin
2017-12-09
Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.
BIOTECHNOLOGY OF RECOMBINANT HORMONES IN DOPING
Directory of Open Access Journals (Sweden)
Biljana Vitošević
2011-09-01
Full Text Available Recombinant DNA technology has allowed rapid progress in creating biosynthetic gene products for the treatment of many diseases. In this way it can produce large amounts of hormone, which is intended for the treatment of many pathological conditions. Recombinant hormones that are commonly used are insulin, growth hormone and erythropoietin. Precisely because of the availability of these recombinant hormones, it started their abuse by athletes. Experiments in animal models confirmed the potential effects of some of these hormones in increasing physical abilities, which attracted the attention of athletes who push the limits of their competitive capability by such manipulation. The risks of the use of recombinant hormones in doping include serious consequences for the health of athletes. Methods of detection of endogenous hormones from recombined based on the use of a monoclonal antibodies, capillary zone electrophoresis and protein biomarkers
Effects of UV radiation on genetic recombination
International Nuclear Information System (INIS)
Vlahovic, K.; Zahradka, D.; Petranovic, M.; Petranovic, D.
1996-01-01
We have used the model consisting of Escherichia coli cells and l phage to study the effects of UV radiation on genetic recombination. We found two radiation induced processes that reduce or inhibit genetic recombination. One such process leads to the inability of prophage to excise itself from the irradiated bacterial chromosome by the site-specific recombination. The other process was shown to inhibit a type of general recombination by which the prophage transfers one of its genetic markers to the infecting homologous phage. Loss of the prophage ability to take part in both site-specific and general recombination was shown to develop in recB + but not in recB cells. From this we infer that the loss of prophage recombinogenicity in irradiated cells is a consequence of one process in which RecBCD enzyme (the product of recB, recC and recD genes) plays an essential role. (author)
International Nuclear Information System (INIS)
Hiskes, J.R.; Karo, A.M.
1988-12-01
A four-step model for recombination and dissociative recombination of H 2 + and H 3 + ions on metal surfaces is discussed. Vibrationally excited molecules, H 2 (v''), from H 3 + recombination are produced in a broad spectrum that enhances the excited level distribution. The application of this latter process to hydrogen negative ion discharges is discussed. 5 refs., 3 figs., 1 tab
Kaur, Jagjit; Gorczyca, T. W.; Badnell, N. R.
2018-02-01
Context. We aim to present a comprehensive theoretical investigation of dielectronic recombination (DR) of the silicon-like isoelectronic sequence and provide DR and radiative recombination (RR) data that can be used within a generalized collisional-radiative modelling framework. Aims: Total and final-state level-resolved DR and RR rate coefficients for the ground and metastable initial levels of 16 ions between P+ and Zn16+ are determined. Methods: We carried out multi-configurational Breit-Pauli DR calculations for silicon-like ions in the independent processes, isolated resonance, distorted wave approximation. Both Δnc = 0 and Δnc = 1 core excitations are included using LS and intermediate coupling schemes. Results: Results are presented for a selected number of ions and compared to all other existing theoretical and experimental data. The total dielectronic and radiative recombination rate coefficients for the ground state are presented in tabulated form for easy implementation into spectral modelling codes. These data can also be accessed from the Atomic Data and Analysis Structure (ADAS) OPEN-ADAS database. This work is a part of an assembly of a dielectronic recombination database for the modelling of dynamic finite-density plasmas.
Directory of Open Access Journals (Sweden)
Rodrigo Bainy Leal
2011-11-01
Full Text Available Lectins are a structurally heterogeneous group of highly specific carbohydrate-binding proteins. Due to their great biotechnological potential, lectins are widely used in biomedical research. The purpose of the present study was to evaluate the healing potential of the lectin of Bauhinia variegata (nBVL and its recombinant isoform (rBVL-1. Following surgical creation of dorsal skin wounds, seven groups of mice were submitted to topical treatment for 12 days with lectin, D-galactose, BSA and saline. The animals were anesthetized and euthanized on POD 2, 7 and 12 in order to evaluate the healing potential of each treatment. The parameters considered included wound size, contraction rate, epithelialization rate and histopathological findings. Wound closure was fastest in animals treated with rBVL-1 (POD 7. nBVL was more effective than the controls. All skin layers were reconstructed and keratin deposition increased. Our findings indicate that the lectin of Bauhinia variegata possesses pro-healing properties and may be employed in the treatment of acute skin wounds.
Neto, Luiz Gonzaga do Nascimento; Pinto, Luciano da Silva; Bastos, Rafaela Mesquita; Evaristo, Francisco Flávio Vasconcelos; Vasconcelos, Mayron Alves de; Carneiro, Victor Alves; Arruda, Francisco Vassiliepe Sousa; Porto, Ana Lúcia Figueiredo; Leal, Rodrigo Bainy; Júnior, Valdemiro Amaro da Silva; Cavada, Benildo Sousa; Teixeira, Edson Holanda
2011-11-07
Lectins are a structurally heterogeneous group of highly specific carbohydrate-binding proteins. Due to their great biotechnological potential, lectins are widely used in biomedical research. The purpose of the present study was to evaluate the healing potential of the lectin of Bauhinia variegata (nBVL) and its recombinant isoform (rBVL-1). Following surgical creation of dorsal skin wounds, seven groups of mice were submitted to topical treatment for 12 days with lectin, D-galactose, BSA and saline. The animals were anesthetized and euthanized on POD 2, 7 and 12 in order to evaluate the healing potential of each treatment. The parameters considered included wound size, contraction rate, epithelialization rate and histopathological findings. Wound closure was fastest in animals treated with rBVL-1 (POD 7). nBVL was more effective than the controls. All skin layers were reconstructed and keratin deposition increased. Our findings indicate that the lectin of Bauhinia variegata possesses pro-healing properties and may be employed in the treatment of acute skin wounds.
Directory of Open Access Journals (Sweden)
Yi-Wen Liu
2017-07-01
Full Text Available Clostridium difficile is considered to be one of the major cause of infectious diarrhea in healthcare systems worldwide. Symptoms of C. difficile infection are caused largely by the production of two cytotoxins: toxin A (TcdA and toxin B (TcdB. Vaccine development is considered desirable as it would decrease the mounting medical costs and mortality associated with C. difficile infections. Biodegradable nanoparticles composed of poly-γ-glutamic acid (γ-PGA and chitosan have proven to be a safe and effective antigen delivery system for many viral vaccines. However, few studies have used this efficient antigen carrier for bacterial vaccine development. In this study, we eliminated the toxin activity domain of toxin B by constructing a recombinant protein rTcdB consists of residues 1852-2363 of TcdB receptor binding domain. The rTcdB was encapsulated in nanoparticles composed of γ-PGA and chitosan. Three rounds of intraperitoneal vaccination led to high anti-TcdB antibody responses and afforded mice full protection mice from lethal dose of C. difficile spore challenge. Protection was associated with high levels of toxin-neutralizing antibodies, and the rTcdB-encapsulated NPs elicited a longer-lasting antibody titers than antigen with the conventional adjuvant, aluminum hydroxide. Significant reductions in the level of proinflammatory cytokines and chemokines were observed in vaccinated mouse. These results suggested that polymeric nanocomplex-based vaccine design can be useful in developing vaccine against C. difficile infections.
Esposito, A.; Polosa, A.D.
2016-01-01
Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.
International Nuclear Information System (INIS)
Ruiz-Díez, V; Hernando-García, J; Toledo, J; Manzaneque, T; Sánchez-Rojas, J L; Kucera, M; Pfusterschmied, G; Schmid, U
2016-01-01
In this work, roof tile-shaped modes of MEMS (micro electro-mechanical systems) cantilever resonators with various geometries and mode orders are analysed. These modes can be efficiently excited by a thin piezoelectric film and a properly designed top electrode. The electrical and optical characterization of the resonators are performed in liquid media and the device performance is evaluated in terms of quality factor, resonant frequency and motional conductance. A quality factor as high as 165 was measured in isopropanol for a cantilever oscillating in the seventh order roof tile-shaped mode at 2 MHz. To support the results of the experimental characterization, a 2D finite element method simulation model is presented and studied. An analytical model for the estimation of the motional conductance was also developed and validated with the experimental measurements. (paper)
Fiducial-based fusion of 3D dental models with magnetic resonance imaging.
Abdi, Amir H; Hannam, Alan G; Fels, Sidney
2018-04-16
Magnetic resonance imaging (MRI) is widely used in study of maxillofacial structures. While MRI is the modality of choice for soft tissues, it fails to capture hard tissues such as bone and teeth. Virtual dental models, acquired by optical 3D scanners, are becoming more accessible for dental practice and are starting to replace the conventional dental impressions. The goal of this research is to fuse the high-resolution 3D dental models with MRI to enhance the value of imaging for applications where detailed analysis of maxillofacial structures are needed such as patient examination, surgical planning, and modeling. A subject-specific dental attachment was digitally designed and 3D printed based on the subject's face width and dental anatomy. The attachment contained 19 semi-ellipsoidal concavities in predetermined positions where oil-based ellipsoidal fiducial markers were later placed. The MRI was acquired while the subject bit on the dental attachment. The spatial position of the center of mass of each fiducial in the resultant MR Image was calculated by averaging its voxels' spatial coordinates. The rigid transformation to fuse dental models to MRI was calculated based on the least squares mapping of corresponding fiducials and solved via singular-value decomposition. The target registration error (TRE) of the proposed fusion process, calculated in a leave-one-fiducial-out fashion, was estimated at 0.49 mm. The results suggest that 6-9 fiducials suffice to achieve a TRE of equal to half the MRI voxel size. Ellipsoidal oil-based fiducials produce distinguishable intensities in MRI and can be used as registration fiducials. The achieved accuracy of the proposed approach is sufficient to leverage the merged 3D dental models with the MRI data for a finer analysis of the maxillofacial structures where complete geometry models are needed.
Directory of Open Access Journals (Sweden)
Hadert Nicole
2016-09-01
Full Text Available Metallic implants in magnetic resonance imaging (MRI are a potential safety risk since the energy absorption may increase temperature of the surrounding tissue. The temperature rise is highly dependent on implant size. Numerical examinations can be used to calculate the energy absorption in terms of the specific absorption rate (SAR induced by MRI on orthopaedic implants. This research presents the impact of titanium osteosynthesis spine implants, called spondylodesis, deduced by numerical examinations of energy absorption in simplified spondylodesis models placed in 1.5 T and 3.0 T MRI body coils. The implants are modelled along with a spine model consisting of vertebrae and disci intervertebrales thus extending previous investigations [1], [2]. Increased SAR values are observed at the ends of long implants, while at the center SAR is significantly lower. Sufficiently short implants show increased SAR along the complete length of the implant. A careful data analysis reveals that the particular anatomy, i.e. vertebrae and disci intervertebrales, has a significant effect on SAR. On top of SAR profile due to the implant length, considerable SAR variations at small scale are observed, e.g. SAR values at vertebra are higher than at disc positions.
Precision tools and models to narrow in on the 750 GeV diphoton resonance
Staub, Florian; Basso, Lorenzo; Goodsell, Mark D.; Harries, Dylan; Krauss, Manuel E.; Nickel, Kilian; Opferkuch, Toby; Ubaldi, Lorenzo; Vicente, Avelino; Voigt, Alexander
2016-09-23
The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective...
Bakalov, Veli; Amathieu, Roland; Triba, Mohamed N.; Clément, Marie-Jeanne; Reyes Uribe, Laura; Le Moyec, Laurence; Kaynar, Ata Murat
2016-01-01
Patients surviving sepsis demonstrate sustained inflammation, which has been associated with long-term complications. One of the main mechanisms behind sustained inflammation is a metabolic switch in parenchymal and immune cells, thus understanding metabolic alterations after sepsis may provide important insights to the pathophysiology of sepsis recovery. In this study, we explored metabolomics in a novel Drosophila melanogaster model of surviving sepsis using Nuclear Magnetic Resonance (NMR), to determine metabolite profiles. We used a model of percutaneous infection in Drosophila melanogaster to mimic sepsis. We had three experimental groups: sepsis survivors (infected with Staphylococcus aureus and treated with oral linezolid), sham (pricked with an aseptic needle), and unmanipulated (positive control). We performed metabolic measurements seven days after sepsis. We then implemented metabolites detected in NMR spectra into the MetExplore web server in order to identify the metabolic pathway alterations in sepsis surviving Drosophila. Our NMR metabolomic approach in a Drosophila model of recovery from sepsis clearly distinguished between all three groups and showed two different metabolomic signatures of inflammation. Sham flies had decreased levels of maltose, alanine, and glutamine, while their level of choline was increased. Sepsis survivors had a metabolic signature characterized by decreased glucose, maltose, tyrosine, beta-alanine, acetate, glutamine, and succinate. PMID:28009836
Memory-induced resonancelike suppression of spike generation in a resonate-and-fire neuron model
Mankin, Romi; Paekivi, Sander
2018-01-01
The behavior of a stochastic resonate-and-fire neuron model based on a reduction of a fractional noise-driven generalized Langevin equation (GLE) with a power-law memory kernel is considered. The effect of temporally correlated random activity of synaptic inputs, which arise from other neurons forming local and distant networks, is modeled as an additive fractional Gaussian noise in the GLE. Using a first-passage-time formulation, in certain system parameter domains exact expressions for the output interspike interval (ISI) density and for the survival probability (the probability that a spike is not generated) are derived and their dependence on input parameters, especially on the memory exponent, is analyzed. In the case of external white noise, it is shown that at intermediate values of the memory exponent the survival probability is significantly enhanced in comparison with the cases of strong and weak memory, which causes a resonancelike suppression of the probability of spike generation as a function of the memory exponent. Moreover, an examination of the dependence of multimodality in the ISI distribution on input parameters shows that there exists a critical memory exponent αc≈0.402 , which marks a dynamical transition in the behavior of the system. That phenomenon is illustrated by a phase diagram describing the emergence of three qualitatively different structures of the ISI distribution. Similarities and differences between the behavior of the model at internal and external noises are also discussed.
International Nuclear Information System (INIS)
Khalvati, Farzad; Wong, Alexander; Haider, Masoom A.
2015-01-01
Prostate cancer is the most common form of cancer and the second leading cause of cancer death in North America. Auto-detection of prostate cancer can play a major role in early detection of prostate cancer, which has a significant impact on patient survival rates. While multi-parametric magnetic resonance imaging (MP-MRI) has shown promise in diagnosis of prostate cancer, the existing auto-detection algorithms do not take advantage of abundance of data available in MP-MRI to improve detection accuracy. The goal of this research was to design a radiomics-based auto-detection method for prostate cancer via utilizing MP-MRI data. In this work, we present new MP-MRI texture feature models for radiomics-driven detection of prostate cancer. In addition to commonly used non-invasive imaging sequences in conventional MP-MRI, namely T2-weighted MRI (T2w) and diffusion-weighted imaging (DWI), our proposed MP-MRI texture feature models incorporate computed high-b DWI (CHB-DWI) and a new diffusion imaging modality called correlated diffusion imaging (CDI). Moreover, the proposed texture feature models incorporate features from individual b-value images. A comprehensive set of texture features was calculated for both the conventional MP-MRI and new MP-MRI texture feature models. We performed feature selection analysis for each individual modality and then combined best features from each modality to construct the optimized texture feature models. The performance of the proposed MP-MRI texture feature models was evaluated via leave-one-patient-out cross-validation using a support vector machine (SVM) classifier trained on 40,975 cancerous and healthy tissue samples obtained from real clinical MP-MRI datasets. The proposed MP-MRI texture feature models outperformed the conventional model (i.e., T2w+DWI) with regard to cancer detection accuracy. Comprehensive texture feature models were developed for improved radiomics-driven detection of prostate cancer using MP-MRI. Using a
Search for tt-bar resonances and implications for new physics models
International Nuclear Information System (INIS)
Khalatyan, S.
2014-01-01
CMS and ATLAS experiments searched for top quark pair resonances using 2001 data recorded in pp collisions at √(s)=7 TeV at the Large Hadron Collider in all final states: dilepton, lepton+jets, and all hadronic. No significant deviation over backgrounds are observed. The experiments have set 95% confidence level upper limits on the resonance production cross section times branching ratio, and reported the excluded resonance mass region. (author)
Magnetic resonance imaging of an equine fracture model containing stainless steel metal implants.
Pownder, S L; Koff, M F; Shah, P H; Fortier, L A; Potter, H G
2016-05-01
Post operative imaging in subjects with orthopaedic implants is challenging across all modalities. Magnetic resonance imaging (MRI) is preferred to assess human post operative musculoskeletal complications, as soft tissue and bones are evaluated without using ionising radiation. However, with conventional MRI pulse sequences, metal creates susceptibility artefact that distorts anatomy. Assessment of the post operative equine patient is arguably more challenging due to the volume of metal present, and MRI is often not performed in horses with implants. Novel pulse sequences such as multiacquisition variable resonance image combination (MAVRIC) now provide improved visibility in the vicinity of surgical-grade implants and offer an option for imaging horses with metal implants. To compare conspicuity of regional anatomy in an equine fracture-repair model using MAVRIC, narrow receiver bandwidth (NBW) fast spin echo (FSE), and wide receiver bandwidth (WBW) FSE sequences. Nonrandomised in vitro experiment. MAVRIC, NBW FSE and WBW FSE were performed on 9 cadaveric distal limbs with fractures and stainless steel implants in the third metacarpal bone and proximal phalanx. Objective measures of artefact reduction were performed by calculating the total artefact area in each transverse image as a percentage of the total anatomic area. The number of transverse images in which fracture lines were visible was tabulated for each sequence. Regional soft tissue conspicuity was assessed subjectively. Overall anatomic delineation was improved using MAVRIC compared with NBW FSE; delineation of structures closest to the metal implants was improved using MAVRIC compared with WBW FSE and NBW FSE. Total artefact area was the highest for NBW FSE and lowest for MAVRIC; the total number of transverse slices with a visible fracture line was highest in MAVRIC and lowest in NBW FSE. MAVRIC and WBW FSE are feasible additions to minimise artefact around implants. © 2015 EVJ Ltd.
Yeoh, S.Y.; Arias Moreno, A.J.; Rietbergen, van B.; Hoeve, ter N.D.; Diest, van P.J.; Grull, H.
2015-01-01
Background Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. Methods A total of 12 healthy rat femurs were ablated
International Nuclear Information System (INIS)
Chen, C.H.-T.
1980-10-01
A unified description of the following classes of nuclear collective states in terms of an interacting sp-boson model is proposed: (i) Low-lying collective states in the light nuclei, both odd-odd and even-even; (ii) Giant multipole resonances (GMR), and (iii) pairing collective motions. (Author) [pt
A comparative Pc1 case study applying two modes of ionospheric Alfvén resonator modeling
Czech Academy of Sciences Publication Activity Database
Prikner, Karel; Feygin, F. Z.; Raita, T.
2010-01-01
Roč. 54, č. 3 (2010), s. 495-511 ISSN 0039-3169 Grant - others:EU(XE) HPRI 200100132 Institutional research plan: CEZ:AV0Z30120515 Keywords : ionospheric Alfvén resonator * Pc1 pulsations * numerical simulation * EISCAT data * IRI models Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.123, year: 2010
Magnetic resonance imaging of reconstructed ferritin as an iron-induced pathological model system
Energy Technology Data Exchange (ETDEWEB)
Balejcikova, Lucia [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia); Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Strbak, Oliver [Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin (Slovakia); Baciak, Ladislav [Faculty of Chemical and Food Technology STU, Radlinskeho 9, 812 37 Bratislava (Slovakia); Kovac, Jozef [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia); Masarova, Marta; Krafcik, Andrej; Frollo, Ivan [Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Dobrota, Dusan [Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin (Slovakia); Kopcansky, Peter [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia)
2017-04-01
Iron, an essential element of the human body, is a significant risk factor, particularly in the case of its concentration increasing above the specific limit. Therefore, iron is stored in the non-toxic form of the globular protein, ferritin, consisting of an apoferritin shell and iron core. Numerous studies confirmed the disruption of homeostasis and accumulation of iron in patients with various diseases (e.g. cancer, cardiovascular or neurological conditions), which is closely related to ferritin metabolism. Such iron imbalance enables the use of magnetic resonance imaging (MRI) as a sensitive technique for the detection of iron-based aggregates through changes in the relaxation times, followed by the change in the inherent image contrast. For our in vitrostudy, modified ferritins with different iron loadings were prepared by chemical reconstruction of the iron core in an apoferritin shell as pathological model systems. The magnetic properties of samples were studied using SQUID magnetometry, while the size distribution was detected via dynamic light scattering. We have shown that MRI could represent the most advantageous method for distinguishing native ferritin from reconstructed ferritin which, after future standardisation, could then be suitable for the diagnostics of diseases associated with iron accumulation. - Highlights: • MRI is the sensitive technique for detecting iron-based aggregates. • Reconstructed Ferritin is suitable model system of iron-related disorders. • MRI allow distinguish of native ferritin from reconstructed ferritin. • MRI could be useful for diagnostics of diseases associated with iron accumulation.
A numerically efficient damping model for acoustic resonances in microfluidic cavities
Energy Technology Data Exchange (ETDEWEB)
Hahn, P., E-mail: hahnp@ethz.ch; Dual, J. [Institute of Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich (Switzerland)
2015-06-15
Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.
Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran
2015-12-01
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.
Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.
2016-10-01
Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the
Directory of Open Access Journals (Sweden)
Jake E Lowry
Full Text Available Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA. All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence
Competitive resonance interference models in direct whole core transport code nTRACER
Energy Technology Data Exchange (ETDEWEB)
Bacha, Meer; Joo, Han Gyu [Seoul National Univ., Seoul (Korea, Republic of)
2015-05-15
The capability of nTRACER was enhanced with WIMS IAEA library using the equivalence theory and Dancoff correction method based on the resonance integral data. The background XSs, for the heterogeneous system, incorporating the shadowing effects, are evaluated by the enhanced neutron current method. The effective XSs are generated using the Resonance Integral (RI) data by interpolating for background XSs and temperatures. The conventional method, which augments the background XS with average absorption XSs of all other resonant isotopes in the mixture, is used for treating the resonance interference in mixed resonant absorbers. A lot of methods are being developed for the resonance self-shielding in mixed absorbers, but still there exists some inadequacy in the XSs evaluation. The most accurate method is solving the UFG slowing down equation, but at the cost of huge computational burden. On the other hand, the conventional method is the simplest and easy to implement, but it has drawback, that it can't correctly estimate the cross sections in mixed absorbers because it adds the absorption XS. The resonance interference treatment methods are studied and implemented in nTRACER and checked the capacity to improve the overlap effects for multiple resonant isotopes. In XST method, the XSs are improved a lot as compared to conventional method, but still there exists discrepancy in the lower energy range. This method is very fast having no burden during execution.
ULF Waves in the Ionospheric Alfven Resonator: Modeling of MICA Observations
Streltsov, A. V.; Tulegenov, B.
2017-12-01
We present results from a numerical study of physical processes responsible for the generation of small-scale, intense electromagnetic structures in the ultra-low-frequency range frequently observed in the close vicinity of bright discrete auroral arcs. In particular, our research is focused on the role of the ionosphere in generating these structures. A significant body of observations demonstrate that small-scale electromagnetic waves with frequencies below 1 Hz are detected at high latitudes where the large-scale, downward magnetic field-aligned current (FAC) interact with the ionosphere. Some theoretical studies suggest that these waves can be generated by the ionospheric feedback instability (IFI) inside the ionospheric Alfven resonator (IAR). The IAR is the region in the low-altitude magnetosphere bounded by the strong gradient in the Alfven speed at high altitude and the conducting bottom of the ionosphere (ionospheric E-region) at low altitude. To study ULF waves in this region we use a numerical model developed from reduced two fluid MHD equations describing shear Alfven waves in the ionosphere and magnetosphere of the earth. The active ionospheric feedback on structure and amplitude of magnetic FACs that interact with the ionosphere is implemented through the ionospheric boundary conditions that link the parallel current density with the plasma density and the perpendicular electric field in the ionosphere. Our numerical results are compared with the in situ measurements performed by the Magnetosphere-Ionosphere Coupling in the Alfven Resonator (MICA) sounding rocket, launched on February 19, 2012 from Poker Flat Research Range in Alaska to measure fields and particles during a passage through a discreet auroral arc. Parameters of the simulations are chosen to match actual MICA parameters, allowing the comparison in the most precise and rigorous way. Waves generated in the numerical model have frequencies between 0.30 and 0.45 Hz, while MICA measured
Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.
1992-01-01
An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.
Energy Technology Data Exchange (ETDEWEB)
Punjabi, A; Vahala, G [College of William and Mary, Williamsburg, VA (USA). Dept. of Physics
1983-12-01
The point model for the toroidal core plasma in the ELMO Bumpy Torus (with neoclassical non-resonant electrons) is examined in the light of catastrophe theory. Even though the point model equations do not constitute a gradient dynamic system, the equilibrium surfaces are similar to those of the canonical cusp catastrophe. The point model is then extended to incorporate ion cyclotron resonance heating. A detailed parametric study of the equilibria is presented. Further, the nonlinear time evolution of these equilibria is studied, and it is observed that the point model obeys the delay convention (and hence hysteresis) and shows catastrophes at the fold edges of the equilibrium surfaces. Tentative applications are made to experimental results.
Total and partial recombination cross sections for F6+
International Nuclear Information System (INIS)
Mitnik, D.M.; Pindzola, M.S.; Badnell, N.R.
1999-01-01
Total and partial recombination cross sections for F 6+ are calculated using close-coupling and distorted-wave theory. For total cross sections, close-coupling and distorted-wave results, which include interference between the radiative and dielectronic pathways, are found to be in good agreement with distorted-wave results based on a sum of independent processes. Total cross sections near zero energy are dominated by contributions from low-energy dielectronic recombination resonances. For partial cross sections, the close-coupling and distorted-wave theories predict strong interference for recombination into the final recombined ground state 1s 2 2s 21 S 0 of F 5+ , but only weak interference for recombination into the levels of the 1s 2 2s2p configuration. copyright 1999 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Bansil, Arun [Northeastern Univ., Boston, MA (United States)
2016-12-01
Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.
International Nuclear Information System (INIS)
Bansil, Arun
2016-01-01
Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering-density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization-to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.
Evidence for strong Breit interaction in dielectronic recombination of highly charged heavy ions.
Nakamura, Nobuyuki; Kavanagh, Anthony P; Watanabe, Hirofumi; Sakaue, Hiroyuki A; Li, Yueming; Kato, Daiji; Currell, Fred J; Ohtani, Shunsuke
2008-02-22
Resonant strengths have been measured for dielectronic recombination of Li-like iodine, holmium, and bismuth using an electron beam ion trap. By observing the atomic number dependence of the state-resolved resonant strength, clear experimental evidence has been obtained that the importance of the generalized Breit interaction (GBI) effect on dielectronic recombination increases as the atomic number increases. In particular, it has been shown that the GBI effect is exceptionally strong for the recombination through the resonant state [1s2s(2)2p(1/2)](1).
DEFF Research Database (Denmark)
Irani, Zahra Azimzadeh; Kerkhoven, Eduard J.; Shojaosadati, Seyed Abbas
2016-01-01
prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required...... for using these models to understand and optimize protein production processes....
Time-resolved spectroscopy of plasma resonances in highly excited silicon and germanium
International Nuclear Information System (INIS)
Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.; Kurz, H.
1985-01-01
The dynamics of the electron-hole plasma in silicon and germanium samples irradiated by 20 ps. 532 nm laser pulses has been investigated in the near infrared by the time-resolved picosecond optical spectroscopy. The experimental reflectivities and transmission are compared with the predictions of the thermal model for degenerate carrier distributions through the Drude formalism. Above a certain fluence, a significant deviation between measured and calculated values indicates a strong increase of the recombination rate as soon as the plasma resonances become comparable with the band gaps. These new plasmon-aided recombination channels are particularly pronounced in germanium. 15 refs., 8 figs
Hadron correlations from recombination and fragmentation
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2005-04-01
We review the formalism of quark recombination applied to the hadronization of a quark-gluon plasma. Evidence in favour of the quark recombination model is outlined. Recent work on parton correlations, leading to detectable correlations between hadrons, is discussed. Hot spots from completely quenched jets are a likely source of such correlations which appear to be jet like. It will be discussed how such a picture compares with measurement of associated hadron yields at RHIC.
Edge Sharpness Assessment by Parametric Modeling: Application to Magnetic Resonance Imaging.
Ahmad, R; Ding, Y; Simonetti, O P
2015-05-01
In biomedical imaging, edge sharpness is an important yet often overlooked image quality metric. In this work, a semi-automatic method to quantify edge sharpness in the presence of significant noise is presented with application to magnetic resonance imaging (MRI). The method is based on parametric modeling of image edges. First, an edge map is automatically generated and one or more edges-of-interest (EOI) are manually selected using graphical user interface. Multiple exclusion criteria are then enforced to eliminate edge pixels that are potentially not suitable for sharpness assessment. Second, at each pixel of the EOI, an image intensity profile is read along a small line segment that runs locally normal to the EOI. Third, the profiles corresponding to all EOI pixels are individually fitted with a sigmoid function characterized by four parameters, including one that represents edge sharpness. Last, the distribution of the sharpness parameter is used to quantify edge sharpness. For validation, the method is applied to simulated data as well as MRI data from both phantom imaging and cine imaging experiments. This method allows for fast, quantitative evaluation of edge sharpness even in images with poor signal-to-noise ratio. Although the utility of this method is demonstrated for MRI, it can be adapted for other medical imaging applications.
Patel, Ajay M.; Joshi, Anand Y.
2016-10-01
This paper deals with the nonlinear vibration analysis of a double walled carbon nanotube based mass sensor with curvature factor or waviness, which is doubly clamped at a source and a drain. Nonlinear vibrational behaviour of a double-walled carbon nanotube excited harmonically near its primary resonance is considered. The double walled carbon nanotube is harmonically excited by the addition of an excitation force. The modelling involves stretching of the mid plane and damping as per phenomenon. The equation of motion involves four nonlinear terms for inner and outer tubes of DWCNT due to the curved geometry and the stretching of the central plane due to the boundary conditions. The vibrational behaviour of the double walled carbon nanotube with different surface deviations along its axis is analyzed in the context of the time response, Poincaré maps and Fast Fourier Transformation diagrams. The appearance of instability and chaos in the dynamic response is observed as the curvature factor on double walled carbon nanotube is changed. The phenomenon of Periodic doubling and intermittency are observed as the pathway to chaos. The regions of periodic, sub-harmonic and chaotic behaviour are clearly seen to be dependent on added mass and the curvature factors in the double walled carbon nanotube. Poincaré maps and frequency spectra are used to explicate and to demonstrate the miscellany of the system behaviour. With the increase in the curvature factor system excitations increases and results in an increase of the vibration amplitude with reduction in excitation frequency.
Directory of Open Access Journals (Sweden)
Ana Virel
Full Text Available Abnormal accumulation of iron is observed in neurodegenerative disorders. In Parkinson's disease, an excess of iron has been demonstrated in different structures of the basal ganglia and is suggested to be involved in the pathogenesis of the disease. Using the 6-hydroxydopamine (6-OHDA rat model of Parkinson's disease, the edematous effect of 6-OHDA and its relation with striatal iron accumulation was examined utilizing in vivo magnetic resonance imaging (MRI. The results revealed that in comparison with control animals, injection of 6-OHDA into the rat striatum provoked an edematous process, visible in T2-weighted images that was accompanied by an accumulation of iron clearly detectable in T2*-weighted images. Furthermore, Prussian blue staining to detect iron in sectioned brains confirmed the existence of accumulated iron in the areas of T2* hypointensities. The presence of ED1-positive microglia in the lesioned striatum overlapped with this accumulation of iron, indicating areas of toxicity and loss of dopamine nerve fibers. Correlation analyses demonstrated a direct relation between the hyperintensities caused by the edema and the hypointensities caused by the accumulation of iron.
International Nuclear Information System (INIS)
Costes, Nicolas
2017-01-01
This report presents experiences and researches in the field of in vivo medical imaging by positron emission tomography (PET) and magnetic resonance imaging (MRI). In particular, advances in terms of reconstruction, quantification and modeling in PET are described. The validation of processing and analysis methods is supported by the creation of data by simulation of the imaging process in PET. The recent advances of combined PET/MRI clinical cameras, allowing simultaneous acquisition of molecular/metabolic PET information, and functional/structural MRI information opens the door to unique methodological innovations, exploiting spatial alignment and simultaneity of the PET and MRI signals. It will lead to an increase in accuracy and sensitivity in the measurement of biological phenomena. In this context, the developed projects address new methodological issues related to quantification, and to the respective contributions of MRI or PET information for a reciprocal improvement of the signals of the two modalities. They open perspectives for combined analysis of the two imaging techniques, allowing optimal use of synchronous, anatomical, molecular and functional information for brain imaging. These innovative concepts, as well as data correction and analysis methods, will be easily translated into other areas of investigation using combined PET/MRI. (author) [fr
Directory of Open Access Journals (Sweden)
Gabriele Bobek
Full Text Available Endothelial dysfunction as a result of dysregulation of anti-angiogenic molecules secreted by the placenta leads to the maternal hypertensive response characteristic of the pregnancy complication of preeclampsia. Structural abnormalities in the placenta have been proposed to result in altered placental perfusion, placental oxidative stress, cellular damage and inflammation and the release of anti-angiogenic compounds into the maternal circulation. The exact link between these factors is unclear. Here we show, using Magnetic Resonance Imaging as a tool to examine placental changes in mouse models of perturbed pregnancies, that T 2 contrast between distinct regions of the placenta is abolished at complete loss of blood flow. Alterations in T 2 (spin-spin or transverse relaxation times are explained as a consequence of hypoxia and acidosis within the tissue. Similar changes are observed in perturbed pregnancies, indicating that acidosis as well as hypoxia may be a feature of pregnancy complications such as preeclampsia and may play a prominent role in the signalling pathways that lead to the increased secretion of anti-angiogenic compounds.
Energy Technology Data Exchange (ETDEWEB)
Marti-Bonmati, Luis [Dr Peset University Hospital, Radiology Department, Valencia (Spain); Hospital Quiron Valencia, Radiology Department, Valencia (Spain); Sanz-Requena, Roberto; Alberich-Bayarri, Angel [Hospital Quiron Valencia, Radiology Department, Valencia (Spain); Rodrigo, Jose Luis [Dr Peset University Hospital, Traumatology and Orthopedics Surgery Department, Valencia (Spain); Carot, Jose Miguel [Universidad Politecnica de Valencia, EIO Department, Valencia (Spain)
2009-06-15
Normal and degenerated cartilages have different magnetic resonance (MR) capillary permeability (K{sup trans}) and interstitial interchangeable volume (v{sub e}). Our hypothesis was that glucosamine sulfate treatment modifies these neovascularity abnormalities in osteoarthritis. Sixteen patients with patella degeneration, randomly distributed into glucosamine or control groups, underwent two 1.5-Tesla dynamic contrast-enhanced MR imaging studies (treatment initiation and after 6 months). The pain visual analog scale (VAS) and American Knee Society (AKS) score were used. A two-compartment pharmacokinetic model was used. Percentages of variations (postreatment-pretreatment/pretreatment) were compared (t-test for independent data). In the glucosamine group, pain and functional outcomes statistically improved (VAS: 7.3 {+-} 1.1 to 3.6 {+-} 1.3, p < 0.001; AKS: 18.6 {+-} 6.9 to 42.9 {+-} 2.7, p < 0.01). Glucosamine significantly increased K{sup trans} at 6 months (-54.4 {+-} 21.2% vs 126.7 {+-} 56.9%, p < 0.001, control vs glucosamine). In conclusion, glucosamine sulfate decreases pain while improving functional outcome in patients with cartilage degeneration. Glucosamine sulfate increases K{sup trans}, allowing its proposal as a surrogate imaging biomarker after 6 months of treatment. (orig.)
Modelling of a diode laser with a resonant grating of quantum wells and an external mirror
International Nuclear Information System (INIS)
Vysotskii, D V; Elkin, N N; Napartovich, A P; Kozlovskii, Vladimir I; Lavrushin, B M
2011-01-01
A three-dimensional numerical model of a diode laser with a resonant grating of quantum wells (QWs) and an external mirror is developed and used to calculate diode laser pulses that are long compared to the time of reaching a stationary regime and are short enough to neglect heating of the medium. The consistent solutions of the Helmholtz field equation and the system of diffusion equations for inversion in each QW are found. A source of charge carriers can be both an electron beam and a pump laser beam. The calculations yielded the longitudinal and radial profiles of the generated field, as well as its wavelength and power. The effective threshold pump current is determined. In the created iteration algorithm, the calculation time linearly increases with the number of QWs, which allows one to find the characteristics of lasers with a large number of QWs. The output powers and beam divergence angles of a cylindrical laser are calculated for different cavity lengths and pump spot radii. After calculating the fundamental mode characteristics, high-order modes were additionally calculated on the background of the frozen carrier distributions in the QW grating. It is shown that all the competing modes remain below the excitation threshold for the pump powers used in the experiment. The calculated and experimental data for the case of pumping by a nanosecond electron beam are qualitatively compared.
Mechanisms of sister chromatid recombination
International Nuclear Information System (INIS)
Nakai, Sayaka; Machida, Isamu; Tsuji, Satsuki
1985-01-01
Studies using T948 as a model system have been carried out aimed at elucidating the mechanism of sister chromatid recombination (SCR). Characterization of U.V. light- and x-ray-induced SCR, the relationiship between SCR induction and DNA repair using rad mutations, and the relationship between SCR induction and the time of cell division using cdc mutations are presented. It has been supposed that SCR is induced at the phase of S-G 2 following DNA replication, that postreplication break of DNA strands is strongly involved in the induction of SCR, and that induction type of SCR, i.e., conversion type or recombination type, is dependent upon the type of molecular damage of DNA. (Namekawa, K.)
International Nuclear Information System (INIS)
Zhou, Hao-Miao; Li, Chao; Xuan, Li-Ming; Zhao, Ji-Xiang; Wei, Jing
2011-01-01
This paper analyzes the magnetoelectric (ME) response around the resonance frequency in the magnetostrictive/piezoelectric/magnetostrictive (MPM) magnetoelectric laminate composites. Following the equivalent circuit method and considering the mechanical loss, we select the nonlinear magnetostrictive constitutive model to present a novel explicit nonlinear expression for the resonant magnetoelectric (ME) coefficient of the magnetoelectric laminate composites. Compared with the experimental results, the predicted resonant ME coefficient of the explicit expression shows a good agreement both qualitatively and quantitatively. Also, when the electromechanical coupling factor of the piezoelectric material, k 31 p , is small, this explicit expression can be reduced to the existing model. On this basis, this paper considers and predicts the magnetoelectric conversion characteristics of the magnetoelectric laminate composites, calculates and analyzes the influences of the thickness ratio of magnetostrictive layer and piezoelectric material, bias magnetic field, and saturation magnetostrictive coefficient on the resonant ME coefficient. This research can provide a theoretical basis for the preparation of magnetoelectric devices with good magnetoelectric conversion characteristics, such as magnetoelectric sensors, energy harvesting transducers, microwave devices etc
International Nuclear Information System (INIS)
Mantsinen, M.
1999-01-01
Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in
Energy Technology Data Exchange (ETDEWEB)
Mantsinen, M. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics
1999-06-01
Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in
Directory of Open Access Journals (Sweden)
Matteo Figini
2015-01-01
Full Text Available In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR diffusion-weighted images (DWIs is a marker of sporadic Creutzfeldt–Jakob Disease (sCJD. MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann–Sträussler–Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of
Jang, Gyoung Gug
The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films. The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under
Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja; Lukacova, Slávka; Kallehauge, Jesper F
2017-11-01
The clinical target volume (CTV) in radiotherapy is routinely based on gadolinium contrast enhanced T1 weighted (T1w + Gd) and T2 weighted fluid attenuated inversion recovery (T2w FLAIR) magnetic resonance imaging (MRI) sequences which have been shown to over- or underestimate the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve target definition in glioblastoma (GBM). Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation and a difference in white and gray matter diffusion of a ratio of 10. The tensor directionality was tested using an anisotropy weighting parameter set to zero (γ0) and twenty (γ20). The volumetric comparison was performed using Hausdorff distance, Dice similarity coefficient (DSC) and surface area. The median of the standard CTV (CTVstandard) was 180 cm 3 . The median surface area of CTVstandard was 211 cm 2 . The median surface area of respective CTV γ0 and CTV γ20 significantly increased to 338 and 376 cm 2 , respectively. The Hausdorff distance was greater than zero and significantly increased for both CTV γ0 and CTV γ20 with respective median of 18.7 and 25.2 mm. The DSC for both CTV γ0 and CTV γ20 were significantly below one with respective median of 0.74 and 0.72, which means that 74 and 72% of CTVstandard were included in CTV γ0 and CTV γ20, respectively. DTI driven growth models result in CTVs with a significantly increased surface area, a significantly increased Hausdorff distance and decreased overlap between the standard and model derived volume.
Model-based T{sub 2} relaxometry using undersampled magnetic resonance imaging
Energy Technology Data Exchange (ETDEWEB)
Sumpf, Tilman
2013-11-01
T{sub 2} relaxometry refers to the quantitative determination of spin-spin relaxation times in magnetic resonance imaging (MRI). Particularly in clinical diagnostics, the method provides important information about tissue structures and respective pathologic alterations. Unfortunately, it also requires comparatively long measurement times which preclude widespread practical applications. To overcome such limitations, a so-called model-based reconstruction concept has recently been proposed. The method allows for the estimation of spin-density and T{sub 2} parameter maps from only a fraction of the usually required data. So far, promising results have been reported for a radial data acquisition scheme. However, due to technical reasons, radial imaging is only available on a very limited number of MRI systems. The present work deals with the realization and evaluation of different model-based T{sub 2} reconstruction methods that are applicable for the most widely available Cartesian (rectilinear) acquisition scheme. The initial implementation is based on the conventional assumption of a mono-exponential T{sub 2} signal decay. A suitable sampling scheme as well as an automatic scaling procedure are developed, which remove the necessity of manual parameter tuning. As demonstrated for human brain MRI data, the technique allows for a more than 5-fold acceleration of the underlying data acquisition. Furthermore, general limitations and specific error sources are identified and suitable simulation programs are developed for their detailed analysis. In addition to phase variations in image space, the simulations reveal truncation effects as a relevant cause of reconstruction artifacts. To reduce the latter, an alternative model formulation is developed and tested. For noise-free simulated data, the method yields an almost complete suppression of associated artifacts. Residual problems in the reconstruction of experimental MRI data point to the predominant influence of other
Activated recombinant adenovirus proteinases
Anderson, Carl W.; Mangel, Walter F.
1999-08-10
This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.
Directory of Open Access Journals (Sweden)
Yaprak Gedik
2016-01-01
To generate a protective vaccine against toxoplasmosis, multistage vaccines and usage of challenging models mimicking natural route of infection are critical cornerstones. In this study, we generated a BAG1 and GRA1 multistage vaccine that induced strong immune response in which the protection was not at anticipated level. In addition, the murine model was orally challenged with tissue cysts to mimic natural route of infection.
Energy Technology Data Exchange (ETDEWEB)
Kidon, Lyran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Wilner, Eli Y. [School of Physics and Astronomy, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Rabani, Eran [The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Chemistry, University of California and Lawrence Berkeley National Laboratory, Berkeley California 94720-1460 (United States)
2015-12-21
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.
Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E
1997-02-01
Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines.
Al-Ghobashy, Medhat A.; Elmeshad, Aliaa N.; Abdelsalam, Rania M.; Nooh, Mohammed M.; Al-Shorbagy, Muhammad; Laible, Götz
2017-04-01
Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ɛ-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation. In conclusion: i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.
Directory of Open Access Journals (Sweden)
Florry E van den Boogaard
Full Text Available Pulmonary coagulopathy is intrinsic to pulmonary injury including pneumonia. Anticoagulant strategies could benefit patients with pneumonia, but systemic administration of anticoagulant agents may lead to suboptimal local levels and may cause systemic hemorrhage. We hypothesized nebulization to provide a safer and more effective route for local administration of anticoagulants. Therefore, we aimed to examine feasibility and safety of nebulization of recombinant human tissue factor pathway inhibitor (rh-TFPI in a well-established rat model of Streptococcus (S. pneumoniae pneumonia. Thirty minutes before and every 6 hours after intratracheal instillation of S. pneumonia causing pneumonia, rats were subjected to local treatment with rh-TFPI or placebo, and sacrificed after 42 hours. Pneumonia was associated with local as well as systemic activation of coagulation. Nebulization of rh-TFPI resulted in high levels of rh-TFPI in bronchoalveolar lavage fluid, which was accompanied by an attenuation of pulmonary coagulation. Systemic rh-TFPI levels remained undetectable, and systemic TFPI activity and systemic coagulation were not affected. Histopathology revealed no bleeding in the lungs. We conclude that nebulization of rh-TFPI seems feasible and safe; local anticoagulant treatment with rh-TFPI attenuates pulmonary coagulation, while not affecting systemic coagulation in a rat model of S. pneumoniae pneumonia.
Cavity-enhanced surface-plasmon resonance sensing: Modeling and performance
Czech Academy of Sciences Publication Activity Database
Giorgini, A.; Avino, S.; Malara, P.; Zullo, R.; Gaglio, G.; Homola, Jiří; De Natale, P.
2014-01-01
Roč. 25, č. 1 (2014), 015205 ISSN 0957-0233 Institutional support: RVO:67985882 Keywords : optical resonators * optical sensors * cavity ring-down spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.433, year: 2014
2016-12-01
masses collide, they form a supercritical mass . Criticality refers to the neutron population within the system. A critical system is one that can...Spectrometry, no. 242, pp. 161–168, 2005. [9] S. Raeder, “Trace analysis of actinides in the environment by means of resonance ionization mass ...first ionization potential of actinide elements by resonance ionization mass spectrometry.” Spectrochimica Acta part B: Atomic Spectroscopy. vol. 52
Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian
2013-03-01
To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.
DEFF Research Database (Denmark)
Löfgren, Karin Maria; Sondergaard, H.; Skov, Søren
2016-01-01
Background: Neutralizing antibodies towardFVIII replacement therapy (inhibitors) are the most seri-ous treatment-related complication in hemophilia A(HA). A rat model of severe HA (F8/) has recentlybeen developed, but an immunological characterization isneeded to determine the value of using...
Dissociation of recombinant prion autocatalysis from infectivity.
Noble, Geoffrey P; Supattapone, Surachai
2015-01-01
Within the mammalian prion field, the existence of recombinant prion protein (PrP) conformers with self-replicating (ie. autocatalytic) activity in vitro but little to no infectious activity in vivo challenges a key prediction of the protein-only hypothesis of prion replication--that autocatalytic PrP conformers should be infectious. To understand this dissociation of autocatalysis from infectivity, we recently performed a structural and functional comparison between a highly infectious and non-infectious pair of autocatalytic recombinant PrP conformers derived from the same initial prion strain. (1) We identified restricted, C-terminal structural differences between these 2 conformers and provided evidence that these relatively subtle differences prevent the non-infectious conformer from templating the conversion of native PrP(C) substrates containing a glycosylphosphatidylinositol (GPI) anchor. (1) In this article we discuss a model, consistent with these findings, in which recombinant PrP, lacking post-translational modifications and associated folding constraints, is capable of adopting a wide variety of autocatalytic conformations. Only a subset of these recombinant conformers can be adopted by post-translationally modified native PrP(C), and this subset represents the recombinant conformers with high specific infectivity. We examine this model's implications for the generation of highly infectious recombinant prions and the protein-only hypothesis of prion replication.
2012-09-27
protect the virions from normal host immune responses (4, 41). Orthopoxviruses are genetically and antigenically similar. The central regions of...model for smallpox disease (35). Challenges associated with working with MPXV include the use of Bio Safety Level 3+ (BSL-3+) facilities in...release of weaponized variola or monkeypox, and ongoing monkeypox outbreaks in Africa have prompted investigations into the development of new vaccine
Directory of Open Access Journals (Sweden)
Lei Jia
Full Text Available Recombination is one of the major mechanisms underlying the generation of HIV-1 variability. Currently 61 circulating recombinant forms of HIV-1 have been identified. With the development of recombination detection techniques and accumulation of HIV-1 reference stains, more accurate mosaic structures of circulating recombinant forms (CRFs, like CRF04 and CRF06, have undergone repeated analysis and upgrades. Such revisions may also be necessary for other CRFs. Unlike previous studies, whose results are based primarily on a single recombination detection program, the current study was based on multiple recombination analysis, which may have produced more impartial results.Representative references of 3 categories of intersubtype recombinants were selected, including BC recombinants (CRF07 and CRF08, BG recombinants (CRF23 and CRF24, and BF recombinants (CRF38 and CRF44. They were reanalyzed in detail using both the jumping profile hidden Markov model and RDP3.The results indicate that revisions and upgrades are very necessary and the entire re-analysis suggested 2 types of revision: (i length of inserted fragments; and (ii number of inserted fragments. The reanalysis also indicated that determination of small regions of about 200 bases or fewer should be performed with more caution.Results indicated that the involvement of multiple recombination detection programs is very necessary. Additionally, results suggested two major challenges, one involving the difficulty of accurately determining the locations of breakpoints and the second involving identification of small regions of about 200 bases or fewer with greater caution. Both indicate the complexity of HIV-1 recombination. The resolution would depend critically on development of a recombination analysis algorithm, accumulation of HIV-1 stains, and a higher sequencing quality. With the changes in recombination pattern, phylogenetic relationships of some CRFs may also change. All these results may
Inert two-Higgs-doublet model strongly coupled to a non-Abelian vector resonance
Rojas-Abatte, Felipe; Mora, Maria Luisa; Urbina, Jose; Zerwekh, Alfonso R.
2017-11-01
We study the possibility of a dark matter candidate having its origin in an extended Higgs sector which, at least partially, is related to a new strongly interacting sector. More concretely, we consider an i2HDM (i.e., a Type-I two Higgs doublet model supplemented with a Z2 under which the nonstandard scalar doublet is odd) based on the gauge group S U (2 )1×S U (2 )2×U (1 )Y . We assume that one of the scalar doublets and the standard fermion transform nontrivially under S U (2 )1 while the second doublet transforms under S U (2 )2. Our main hypothesis is that standard sector is weakly coupled while the gauge interactions associated to the second group is characterized by a large coupling constant. We explore the consequences of this construction for the phenomenology of the dark matter candidate and we show that the presence of the new vector resonance reduces the relic density saturation region, compared to the usual i2DHM, in the high dark matter mass range. In the collider side, we argue that the mono-Z production is the channel which offers the best chances to manifest the presence of the new vector field. We study the departures from the usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging even in the mono-Z channel since the typical cross sections are of the order of 10-2 fb .
Modeling and Simulation of a Resonant-Cavity-Enhanced InGaAs/GaAs Quantum Dot Photodetector
Directory of Open Access Journals (Sweden)
W. W. Wang
2015-01-01
Full Text Available We simulated and analyzed a resonant-cavity-enhancedd InGaAs/GaAs quantum dot n-i-n photodiode using Crosslight Apsys package. The resonant cavity has a distributed Bragg reflector (DBR at one side. Comparing with the conventional photodetectors, the resonant-cavity-enhanced photodiode (RCE-PD showed higher detection efficiency, faster response speed, and better wavelength selectivity and spatial orientation selectivity. Our simulation results also showed that when an AlAs layer is inserted into the device structure as a blocking layer, ultralow dark current can be achieved, with dark current densities 0.0034 A/cm at 0 V and 0.026 A/cm at a reverse bias of 2 V. We discussed the mechanism producing the photocurrent at various reverse bias. A high quantum efficiency of 87.9% was achieved at resonant wavelength of 1030 nm with a FWHM of about 3 nm. We also simulated InAs QD RCE-PD to compare with InGaAs QD. At last, the photocapacitance characteristic of the model has been discussed under different frequencies.
International Nuclear Information System (INIS)
Zhu, S.; Chen, T. P.; Liu, Y. C.; Liu, Y.; Fung, S.
2012-01-01
A quantitative modeling of the contributions of localized surface plasmon resonance (LSPR) and interband transitions to absorbance of gold nanoparticles has been achieved based on Lorentz–Drude dispersion function and Maxwell-Garnett effective medium approximation. The contributions are well modeled with three Lorentz oscillators. Influence of the structural properties of the gold nanoparticles on the LSPR and interband transitions has been examined. In addition, the dielectric function of the gold nanoparticles has been extracted from the modeling to absorbance, and it is found to be consistent with the result yielded from the spectroscopic ellipsometric analysis.
Czech Academy of Sciences Publication Activity Database
Schmitz, O.; Becoulet, M.; Cahyna, Pavel; Evans, T.E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R.A.; Reiser, D.; Fenstermacher, M.E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.
2016-01-01
Roč. 56, č. 6 (2016), č. článku 066008. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : resonant magnetic perturbations * plasma edge physics * 3D modeling * neutral particle physics * ITER * divertor heat and particle loads * ELM control Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/6/066008/meta
Directory of Open Access Journals (Sweden)
Emmanuel Frenod
2002-01-01
Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.
Breau, Cathy; Cameron, D William; Desjardins, Marc; Lee, B Craig
2012-01-31
Chancroid, a sexually transmitted genital ulcer disease caused by the Gram-negative bacterium Haemophilus ducreyi, facilitates the acquisition and transmission of HIV. An effective vaccine against chancroid has not been developed. In this preliminary study, the gene encoding the H. ducreyi outer membrane hemoglobin receptor HgbA was cloned into the plasmid pTETnir15. The recombinant construct was introduced into the attenuated Salmonella typhimurium SL3261 strain and stable expression was induced in vitro under anaerobic conditions. The vaccine strain was delivered into the temperature-dependent rabbit model of chancroid by intragastric immunization as a single dose, or as three doses administered at two-weekly intervals. No specific antibody to HgbA was elicited after either dose schedule. Although the plasmid vector survived in vivo passage for up to 15 days following single oral challenge, HgbA expression was restricted to plasmid isolates recovered one day after immunization. Rabbits inoculated with the 3-dose booster regimen achieved no protective immunity from homologous challenge. These results emphasize that refinements in plasmid design to enhance a durable heterologous protein expression are necessary for the development of a live oral vaccine against chancroid. Copyright © 2011 Elsevier B.V. All rights reserved.
Two-body molecular model for resonances in heavy ion reactions
International Nuclear Information System (INIS)
Abe, Y.
1978-01-01
It is necessary to develop qualitative arguments on resonance mechanisms, which will give an overview on occurrences of resonances in heavy ion reactions, and further to identify typical examples of nuclear molecules among existing experimental data. In section 2, qualitative arguments on resonance mechanisms are given by exemplifying the 12 C + 16 O system with the 3 - excitation of the 16 O nucleus. In section 3 a simple formulation in the coupled channel framework is given. Resonances in the 12 C - 16 O system, which has been observed well above the Coulomb barrier, are investigated in section 4. In section 5 an old, but not yet solved problem on resonances in the 12 C + 12 C system which have been observed at sub-Coulomb energies, is taken up along the nuclear molecular picture. Further discussions are given on a role of the 20 Ne-α channel along the present simple qualitative picture given in section 2, which can be extended to rearrangement channels. (Auth.)
International Nuclear Information System (INIS)
Elliott, J.H.
1983-01-01
This thesis reports on three separate investigations in solid state physics. The first is electron paramagnetic resonance in the spin glass Ag:Mn. EPR measurements were performed at two resonance frequencies, concentrating on temperatures above the glass transition temperature. The measured linewidth appears to diverge at T/sub g/ for low resonance frequencies. These results will be compared with recently proposed phenomenological and microscopic theories. The second topic reported in this thesis is the superconducting transition of thin aluminum films. These films were investigated as a function of grain size and thickness. The transition temperature was enhanced over the bulk value, in agreement with many previous investigations of granular aluminum. The third topic reported in this thesis is an extension of the variable rate hopping theory applied in one dimension to N-ME-Qn(TCNQ) 2 . This model is a classical one used to explain both the dc and ac electrical conductivity of organic conductors. The temperature dependence of the model does not agree with experiment at low temperatures. Tunneling has been added to the hopping. This increases the conductivity at low temperatures, and results in excellent agreement with the experimental conductivity over the measured temperature range. The model also predicts that the frequency dependence of the conductivity varies as ω/sup .5/ at low frequencies. This long time tail prediction agrees with the measured dielectric constant of N-Me-iso-Qn(TCNQ) 2
a{sub 0}(980) as a dynamically generated resonance in the extended Linear Sigma Model
Energy Technology Data Exchange (ETDEWEB)
Wolkanowski-Gans, Thomas; Giacosa, Francesco [Goethe-Universitaet Frankfurt am Main (Germany)
2014-07-01
We study basic properties of scalar hadronic resonances within the so-called extended linear sigma model (eLSM), which is an effective model of QCD based on chiral symmetry and dilatation invariance. In particular, we focus on the mass and decay width of the isovector state a{sub 0}(1450) and perform a numerical study of the propagator pole(s) on the unphysical Riemann sheets. Here, the a{sub 0}(1450) is understood as a seed state explicitly included in the eLSM - this is in fact not true for the corresponding resonance below 1 GeV, the a{sub 0}(980), which is sometimes interpreted as a kaonic (i.e., dynamically generated) bound state. In our work we want to clarify if the yet not included a{sub 0}(980) can be found as a propagator pole generated by hadronic loop contributions. From such an investigation one could learn more about the general dependence of the eLSM - and effective field models in general - on strongly coupled hadronic intermediate states, possibly giving new insight into the low-energy regime, scalar resonances and both its theoretical description and physical interpretation.
Energy Technology Data Exchange (ETDEWEB)
Panosetti, C.; Sebastianelli, F.; Gianturco, F.A. [Department of Chemistry and CNISM, University of Rome -La Sapienza-, Roma (Italy); Baccarelli, I. [CASPUR, Supercomputing Consortium for University and Research, Roma (Italy)
2010-10-15
We investigate some aspects of the radiation damage mechanisms in biomolecules, focusing on the modelling of resonant fragmentation caused by the attachment of low-energy electrons (LEEs) initially ejected by biological tissues when exposed to ionizing radiation. Scattering equations are formulated within a symmetry-adapted, single-center expansion of both continuum and bound electrons, and the interaction forces are obtained from a combination of ab initio calculations and a nonempirical model of exchange and correlation effects developed in our group. We present total elastic scattering cross-sections and resonance features obtained for the equilibrium geometries of glycine, alanine, proline and valine. Our results at those geometries of the target molecules are briefly shown to qualitatively explain some of the fragmentation patterns obtained in experiments. We further carry out a one-dimensional (1D) modeling for the dynamics of intramolecular energy transfers mediated by the vibrational activation of selected bonds: our calculations indicate that resonant electron attachment to glycine can trigger direct, dissociative evolution of the complex into (Gly-OH)- and -OH losses, while they also find that the same process does not occur via a direct, 1D dissociative path in the larger amino acids of the present study. (authors)
Cavity-enhanced surface-plasmon resonance sensing: modeling and performance
International Nuclear Information System (INIS)
Giorgini, A; Avino, S; Malara, P; Zullo, R; Gagliardi, G; Homola, J; De Natale, P
2014-01-01
We investigate the performance of a surface-plasmon-resonance refractive-index (RI) sensor based on an optical resonator. The resonator transforms RI changes of liquid samples, interacting with the surface plasmon excited by near-infrared light, into a variation of the intra-cavity optical loss. Cavity ring-down measurements are provided as a proof of concept of RI sensing on calibrated mixtures. A characterization of the overall sensor response and noise features as well as a discussion on possible improvements is carried out. A reproducibility analysis shows that a resolution of 10 −7 –10 −8 RIU is within reach over observation times of 1–30 s. The ultimate resolution is set only by intrinsic noise features of the cavity-based method, pointing to a potential limit below 10 −10 RIU/√Hz. (paper)
Modeling and simulation of two-step resonance ionization processes using CW and pulsed lasers
de Groote, Ruben; Flanagan, Kieran
This thesis derives and discusses equations that describe the evolution of atomic systems subjected to two monochromatic and coherent radiation fields and treats both continuous and temporally pulsed irradiation. This theoretical description is de- veloped mainly to understand the influence of the photon field intensities on experimental ionization spectra. The primary ap- plication of this theoretical framework is on methods that rely on resonant laser excitation and non-resonant laser ionization to extract information on the hyperfine structure of atomic systems. In particular, qualitative and quantitative discussions on the laser-related changes in hyperfine splitting extracted from ion- ization spectra are presented. Also, a method for increasing the resolution of resonance ionization techniques (potentially up un- til the natural linewidth of the electronic transitions) is discussed and theoretically justified. Both topics are illustrated with exper- imental data.
Rudmik, Luke; Smith, Kristine A; Soler, Zachary M; Schlosser, Rodney J; Smith, Timothy L
2014-10-01
Idiopathic olfactory loss is a common clinical scenario encountered by otolaryngologists. While trying to allocate limited health care resources appropriately, the decision to obtain a magnetic resonance imaging (MRI) scan to investigate for a rare intracranial abnormality can be difficult. To evaluate the cost-effectiveness of ordering routine MRI in patients with idiopathic olfactory loss. We performed a modeling-based economic evaluation with a time horizon of less than 1 year. Patients included in the analysis had idiopathic olfactory loss defined by no preceding viral illness or head trauma and negative findings of a physical examination and nasal endoscopy. Routine MRI vs no-imaging strategies. We developed a decision tree economic model from the societal perspective. Effectiveness, probability, and cost data were obtained from the published literature. Litigation rates and costs related to a missed diagnosis were obtained from the Physicians Insurers Association of America. A univariate threshold analysis and multivariate probabilistic sensitivity analysis were performed to quantify the degree of certainty in the economic conclusion of the reference case. The comparative groups included those who underwent routine MRI of the brain with contrast alone and those who underwent no brain imaging. The primary outcome was the cost per correct diagnosis of idiopathic olfactory loss. The mean (SD) cost for the MRI strategy totaled $2400.00 ($1717.54) and was effective 100% of the time, whereas the mean (SD) cost for the no-imaging strategy totaled $86.61 ($107.40) and was effective 98% of the time. The incremental cost-effectiveness ratio for the MRI strategy compared with the no-imaging strategy was $115 669.50, which is higher than most acceptable willingness-to-pay thresholds. The threshold analysis demonstrated that when the probability of having a treatable intracranial disease process reached 7.9%, the incremental cost-effectiveness ratio for MRI vs no
Directory of Open Access Journals (Sweden)
A. Osepian
2009-10-01
Full Text Available Accurate measurements of electron density in the lower D-region (below 70 km altitude are rarely made. This applies both with regard to measurements by ground-based facilities and by sounding rockets, and during both quiet conditions and conditions of energetic electron precipitation. Deep penetration into the atmosphere of high-energy solar proton fluxes (during solar proton events, SPE produces extra ionisation in the whole D-region, including the lower altitudes, which gives favourable conditions for accurate measurements using ground-based facilities. In this study we show that electron densities measured with two ground-based facilities at almost the same latitude but slightly different longitudes, provide a valuable tool for validation of model computations. The two techniques used are incoherent scatter of radio waves (by the EISCAT 224 MHz radar in Tromsø, Norway, 69.6° N, 19.3° E, and partial reflection of radio-waves (by the 2.8 MHz radar near Murmansk, Russia, 69.0° N, 35.7° E. Both radars give accurate electron density values during SPE, from heights 57–60 km and upward with the EISCAT radar and between 55–70 km with the partial reflection technique. Near noon, there is little difference in the solar zenith angle between the two locations and both methods give approximately the same values of electron density at the overlapping heights. During twilight, when the difference in solar zenith angles increases, electron density values diverge. When both radars are in night conditions (solar zenith angle >99° electron densities at the overlapping altitudes again become equal. We use the joint measurements to validate model computations of the ionospheric parameters f+, λ, αeff and their variations during solar proton events. These parameters are important characteristics of the lower ionosphere structure which cannot be determined by other methods.
The use of recombinant nAG protein In spinal cord crush injury in a rat model
International Nuclear Information System (INIS)
Al-Qattan, M.M.; Al-Motairi, M.; Ah-Habib, A.
2017-01-01
Objective: To evaluate the therapeutic properties of nAG protein during the recovery following acute spinal cord injuries in the rat. Study Design: An experimental study. Place and Duration of Study: King Saud University, Riyadh, Saudi Arabia, from September 2014 to September 2015. Methodology: Eight rats were studied (4 control rats and 4 experimental rats; and hence 50% were controls and 50% were experimental). All rats were subjected to an acute spinal cord injury using the aneurysmal clip injury model. Immediately after the injury, a single intra-dural injection of either normal saline (in the control group) or the nAG protein (in the experimental group) was done. Assessment of both groups was done over a 6-week period with regard to weight maintenance, motor recovery scores, MRI and histopathology of the injury site. Results: Weight maintenance was seen in the experimental and not in the control rats. Starting at 3 weeks after injury, the motor recovery was significantly (p<0.05) better in the experimental group. MRI assessment at 6 weeks showed better maintenance of cord continuity and less fluid accumulation at the injury site in the nAG-treated group. Just proximal to the injury site, there was less gliosis in the experimental group compared to the control group. At the crush injury site, there was less tissue architecture distortion, less vacuole formation, and less granulation tissue formation in the experimental group. Conclusion: The local injection nAG protein enhances neuro-restoration, reduces gliosis, and reduces vacuole/ granulation tissue formation following acute spinal cord crush injury in the rat aneurysmal clip animal model. (author)
Energy Technology Data Exchange (ETDEWEB)
Martineau, Ch.; Michaelis, V.K.; Kroeker, S. [Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2 (Canada); Schuller, S. [CEA Valrho Marcoule, LDMC, SECM, DTCD, DEN, F-30207 Bagnols Sur Ceze (France)
2010-07-01
Double-resonance nuclear magnetic resonance (NMR) techniques are used in addition to single-resonance NMR experiments to probe the degree of mixing between network-forming cations Si and B, along with the modifier cations Cs{sup +} and Na{sup +} in two molybdenum-bearing model nuclear waste glasses. The double-resonance experiments involving {sup 29}Si in natural abundance are made possible by the implementation of a CPMG pulse-train during the acquisition period of the usual REDOR experiments. For the glass with lower Mo content, the NMR results show a high degree of Si-B mixing, as well as an homogeneous distribution of the cations within the borosilicate network, characteristic of a non-phase-separated glass. For the higher-Mo glass, a decrease of B-Si(Q{sup 4}) mixing is observed, indicating phase separation. {sup 23}Na and {sup 133}Cs NMR results show that although the Cs{sup +} cations, which do not seem to be influenced by the molybdenum content, are spread within the borate network, there is a clustering of the Na{sup +} cations, very likely around the molybdate units. The segregation of a Mo-rich region with Na{sup +} cations appears to shift the bulk borosilicate glass composition toward the metastable liquid liquid immiscibility region and induce additional phase separation. Although no crystallization is observed in the present case, this liquid liquid phase separation is likely to be the first stage of crystallization that can occur at higher Mo loadings or be driven by heat treatment. From this study emerges a consistent picture of the nature and extent of such phase separation phenomena in Mo-bearing glasses, and demonstrates the potential of double-resonance NMR methods for the investigation of phase separation in amorphous materials. (authors)
Modeling of ICRH H-minorit driven n = 1 Resonant Modes in JET
International Nuclear Information System (INIS)
Gorelenkov, N.N.; Mantsinen, M.J.; Sharapov, S.E.; Cheng, C.Z.
2003-01-01
A nonperturbative code NOVA-KN (Kinetic Nonperturbative) has been developed to account for finite orbit width (FOW) effects in nonperturbative resonant modes such as the low-frequency MHD modes observed in the Joint European Torus (JET). The NOVA-KN code was used to show that the resonant modes with frequencies in the observed frequency range are ones having the characteristic toroidal precession frequency of H-minority ions. Results are similar to previous theoretical studies of fishbone instabilities, which were found to exist at characteristic precession frequencies of hot ions
Giant dipole resonances in hot nuclear matter in the model of self-relaxing mean field
International Nuclear Information System (INIS)
Okolowicz, J.; Ploszajczak, M.; Drozdz, S.; Caurier, E.
1989-01-01
The extended time-dependent Hartree-Fock approach is applied for the description of the isovector giant dipole resonance in 40 Ca at finite temperatures. The thermalization process is described using the relaxation-time ansatz for the collision integral. Strong inhibition of the giant-dipole-resonance γ-decay is found due to the fast vaporization of the nuclear surface for thermal excitation energies above E * /A ≅ 4.5 MeV. This pre-equilibrium emission of particles in the vapor phase is associated with the radial expansion of nucleus and with the vanishing particle binding energies mainly for protons. (orig.)