WorldWideScience

Sample records for resonance probability-table treatment

  1. Impact of MCNP unresolved resonance probability-table treatment on uranium and plutonium benchmarks

    Mosteller, R.D.; Little, R.C.

    1998-01-01

    Versions of MCNP up through and including 4B have not accurately modeled neutron self-shielding effects in the unresolved resonance energy region. Recently, a probability-table treatment has been incorporated into a developmental version of MCNP. This paper presents MCNP results for a variety of uranium and plutonium critical benchmarks, calculated with and without the probability-table treatment

  2. Impact of MCNP Unresolved Resonance Probability-Table Treatment on Uranium and Plutonium Benchmarks

    Mosteller, R.D.; Little, R.C.

    1999-01-01

    A probability-table treatment recently has been incorporated into an intermediate version of the MCNP Monte Carlo code named MCNP4XS. This paper presents MCNP4XS results for a variety of uranium and plutonium criticality benchmarks, calculated with and without the probability-table treatment. It is shown that the probability-table treatment can produce small but significant reactivity changes for plutonium and 233 U systems with intermediate spectra. More importantly, it can produce substantial reactivity increases for systems with large amounts of 238 U and intermediate spectra

  3. Unresolved resonance range cross section, probability tables and self shielding factor

    Sublet, J.Ch.; Blomquist, R.N.; Goluoglu, S.; Mac Farlane, R.E.

    2009-07-01

    The performance and methodology of 4 processing codes have been compared in the unresolved resonance range of a selected set of isotopes. Those isotopes have been chosen to encompass most cases encountered in the unresolved energy range contained in major libraries like Endf/B-7 or Jeff-3.1.1. The code results comparison is accompanied by data format and formalism examinations and processing code fine-interpretation study. After some improvements, the results showed generally good agreement, although not perfect with infinite dilute cross-sections. However, much larger differences occur when shelf-shielded effective cross-sections are compared. The infinitely dilute cross-section are often plot checked but it is the probability table derived and shelf-shielded cross sections that are used and interpreted in criticality and transport calculations. This suggests that the current evaluation data format and formalism, in the unresolved resonance range should be tightened up, ambiguities removed. In addition production of the shelf shielded cross-sections should be converged to a much greater accuracy. (author)

  4. An analytic approach to probability tables for the unresolved resonance region

    Brown, David; Kawano, Toshihiko

    2017-09-01

    The Unresolved Resonance Region (URR) connects the fast neutron region with the Resolved Resonance Region (RRR). The URR is problematic since resonances are not resolvable experimentally yet the fluctuations in the neutron cross sections play a discernible and technologically important role: the URR in a typical nucleus is in the 100 keV - 2 MeV window where the typical fission spectrum peaks. The URR also represents the transition between R-matrix theory used to described isolated resonances and Hauser-Feshbach theory which accurately describes the average cross sections. In practice, only average or systematic features of the resonances in the URR are known and are tabulated in evaluations in a nuclear data library such as ENDF/B-VII.1. Codes such as AMPX and NJOY can compute the probability distribution of the cross section in the URR under some assumptions using Monte Carlo realizations of sets of resonances. These probability distributions are stored in the so-called PURR tables. In our work, we begin to develop a scheme for computing the covariance of the cross section probability distribution analytically. Our approach offers the possibility of defining the limits of applicability of Hauser-Feshbach theory and suggests a way to calculate PURR tables directly from systematics for nuclei whose RRR is unknown, provided one makes appropriate assumptions about the shape of the cross section probability distribution.

  5. An analytic approach to probability tables for the unresolved resonance region

    Brown David

    2017-01-01

    Full Text Available The Unresolved Resonance Region (URR connects the fast neutron region with the Resolved Resonance Region (RRR. The URR is problematic since resonances are not resolvable experimentally yet the fluctuations in the neutron cross sections play a discernible and technologically important role: the URR in a typical nucleus is in the 100 keV – 2 MeV window where the typical fission spectrum peaks. The URR also represents the transition between R-matrix theory used to described isolated resonances and Hauser-Feshbach theory which accurately describes the average cross sections. In practice, only average or systematic features of the resonances in the URR are known and are tabulated in evaluations in a nuclear data library such as ENDF/B-VII.1. Codes such as AMPX and NJOY can compute the probability distribution of the cross section in the URR under some assumptions using Monte Carlo realizations of sets of resonances. These probability distributions are stored in the so-called PURR tables. In our work, we begin to develop a scheme for computing the covariance of the cross section probability distribution analytically. Our approach offers the possibility of defining the limits of applicability of Hauser-Feshbach theory and suggests a way to calculate PURR tables directly from systematics for nuclei whose RRR is unknown, provided one makes appropriate assumptions about the shape of the cross section probability distribution.

  6. URR [Unresolved Resonance Region] computer code: A code to calculate resonance neutron cross-section probability tables, Bondarenko self-shielding factors, and self-indication ratios for fissile and fertile nuclides

    Leal, L.C.; de Saussure, G.; Perez, R.B.

    1990-01-01

    The URR computer code has been developed to calculate cross-section probability tables, Bondarenko self-shielding factors, and self-indication ratios for fertile and fissile isotopes in the unresolved resonance region. Monte Carlo methods are utilized to select appropriate resonance parameters and to compute the cross sections at the desired reference energy. The neutron cross sections are calculated by the single-level Breit-Wigner formalism with s-, p-, and d-wave contributions. The cross-section probability tables are constructed by sampling by Doppler broadened cross-sections. The various self-shielding factors are computer numerically as Lebesgue integrals over the cross-section probability tables

  7. URR [Unresolved Resonance Region] computer code: A code to calculate resonance neutron cross-section probability tables, Bondarenko self-shielding factors, and self-indication ratios for fissile and fertile nuclides

    Leal, L.C.; de Saussure, G.; Perez, R.B.

    1989-01-01

    The URR computer code has been developed to calculate cross-section probability tables, Bondarenko self-shielding factors, and self- indication ratios for fertile and fissile isotopes in the unresolved resonance region. Monte Carlo methods are utilized to select appropriate resonance parameters and to compute the cross sections at the desired reference energy. The neutron cross sections are calculated by the single-level Breit-Wigner formalism with s-, p-, and d-wave contributions. The cross-section probability tables are constructed by sampling the Doppler broadened cross-section. The various shelf-shielded factors are computed numerically as Lebesgue integrals over the cross-section probability tables. 6 refs

  8. Qualification of the calculational methods of the fluence in the pressurised water reactors. Improvement of the cross sections treatment by the probability table method

    Zheng, S.H.

    1994-01-01

    It is indispensable to know the fluence on the nuclear reactor pressure vessel. The cross sections and their treatment have an important rule to this problem. In this study, two ''benchmarks'' have been interpreted by the Monte Carlo transport program TRIPOLI to qualify the calculational method and the cross sections used in the calculations. For the treatment of the cross sections, the multigroup method is usually used but it exists some problems such as the difficulty to choose the weighting function and the necessity of a great number of energy to represent well the cross section's fluctuation. In this thesis, we propose a new method called ''Probability Table Method'' to treat the neutron cross sections. For the qualification, a program of the simulation of neutron transport by the Monte Carlo method in one dimension has been written; the comparison of multigroup's results and probability table's results shows the advantages of this new method. The probability table has also been introduced in the TRIPOLI program; the calculational results of the iron deep penetration benchmark has been improved by comparing with the experimental results. So it is interest to use this new method in the shielding and neutronic calculation. (author). 42 refs., 109 figs., 36 tabs

  9. Statistical probability tables CALENDF program

    Ribon, P.

    1989-01-01

    The purpose of the probability tables is: - to obtain dense data representation - to calculate integrals by quadratures. They are mainly used in the USA for calculations by Monte Carlo and in the USSR and Europe for self-shielding calculations by the sub-group method. The moment probability tables, in addition to providing a more substantial mathematical basis and calculation methods, are adapted for condensation and mixture calculations, which are the crucial operations for reactor physics specialists. However, their extension is limited by the statistical hypothesis they imply. Efforts are being made to remove this obstacle, at the cost, it must be said, of greater complexity

  10. Implementation of the probability table method in a continuous-energy Monte Carlo code system

    Sutton, T.M.; Brown, F.B.

    1998-10-01

    RACER is a particle-transport Monte Carlo code that utilizes a continuous-energy treatment for neutrons and neutron cross section data. Until recently, neutron cross sections in the unresolved resonance range (URR) have been treated in RACER using smooth, dilute-average representations. This paper describes how RACER has been modified to use probability tables to treat cross sections in the URR, and the computer codes that have been developed to compute the tables from the unresolved resonance parameters contained in ENDF/B data files. A companion paper presents results of Monte Carlo calculations that demonstrate the effect of the use of probability tables versus the use of dilute-average cross sections for the URR. The next section provides a brief review of the probability table method as implemented in the RACER system. The production of the probability tables for use by RACER takes place in two steps. The first step is the generation of probability tables from the nuclear parameters contained in the ENDF/B data files. This step, and the code written to perform it, are described in Section 3. The tables produced are at energy points determined by the ENDF/B parameters and/or accuracy considerations. The tables actually used in the RACER calculations are obtained in the second step from those produced in the first. These tables are generated at energy points specific to the RACER calculation. Section 4 describes this step and the code written to implement it, as well as modifications made to RACER to enable it to use the tables. Finally, some results and conclusions are presented in Section 5

  11. The considering of the slowing down effect in the formalism of probability tables. Application to the effective cross section calculation

    Bouhelal, O.K.A.

    1990-01-01

    The exact determination of the effective multigroup cross sections imposes the numerical solution of the slowing down equation on a very fine energy mesh. Given the complexity of these calculations, different approximation methods have been developed but without a satisfactory treatment of the slowing-down effect. The usual methods are essentially based on interpolations using precalculated tables. The models that use the probability tables allow to reduce the amount of data and the computational effort. A variety of methods proposed by Soviets, then by Americans, and finally the French method, based on the ''moments of a probability distribution'' are incontestably valid within the framework of the statistical hypothesis. This stipulates that the collision densities do not depend on cross section and there is no ambiguity in the effective cross section calculation. The objective of our work is to show that the non statistical phenomena, such as the slowing-down effect which is taken into account, can be described by probability tables which are able to represent the neutronic values and collision densities. The formalism involved in the statistical hypothesis, is based on the Gauss quadrature of the cross sections moments. In the non-statistical hypothesis we introduce the crossed probability tables using the quadratures of double integrals of cross sections, comments. Moreover, a mathematical formalism allowing to establish a relationship between the crossed probability tables and the collision densities was developed. This method was applied on uranium-238 in the range of resolved resonances where the slowing down effect is significant. Validity of the method and the analysis of the obtained results are studied through a reference calculation based on a solution of a discretized slowing down equation using a very fine mesh in which each microgroup can be correctly defined via the statistical probability tables. 42 figs., 32 tabs., 49 refs. (author)

  12. Use of probability tables for propagating uncertainties in neutronics

    Coste-Delclaux, M.; Diop, C.M.; Lahaye, S.

    2017-01-01

    Highlights: • Moment-based probability table formalism is described. • Representation by probability tables of any uncertainty distribution is established. • Multiband equations for two kinds of uncertainty propagation problems are solved. • Numerical examples are provided and validated against Monte Carlo simulations. - Abstract: Probability tables are a generic tool that allows representing any random variable whose probability density function is known. In the field of nuclear reactor physics, this tool is currently used to represent the variation of cross-sections versus energy (neutron transport codes TRIPOLI4®, MCNP, APOLLO2, APOLLO3®, ECCO/ERANOS…). In the present article we show how we can propagate uncertainties, thanks to a probability table representation, through two simple physical problems: an eigenvalue problem (neutron multiplication factor) and a depletion problem.

  13. Qualification of the calculational methods of the fluence in the pressurised water reactors. Improvement of the cross sections treatment by the probability table method; Qualification des methodes de calculs de fluence dans les reacteurs a eau pressurisee. Amelioration du traitement des sections efficaces par la methode des tables de probabilite

    Zheng, S H

    1994-01-01

    It is indispensable to know the fluence on the nuclear reactor pressure vessel. The cross sections and their treatment have an important rule to this problem. In this study, two ``benchmarks`` have been interpreted by the Monte Carlo transport program TRIPOLI to qualify the calculational method and the cross sections used in the calculations. For the treatment of the cross sections, the multigroup method is usually used but it exists some problems such as the difficulty to choose the weighting function and the necessity of a great number of energy to represent well the cross section`s fluctuation. In this thesis, we propose a new method called ``Probability Table Method`` to treat the neutron cross sections. For the qualification, a program of the simulation of neutron transport by the Monte Carlo method in one dimension has been written; the comparison of multigroup`s results and probability table`s results shows the advantages of this new method. The probability table has also been introduced in the TRIPOLI program; the calculational results of the iron deep penetration benchmark has been improved by comparing with the experimental results. So it is interest to use this new method in the shielding and neutronic calculation. (author). 42 refs., 109 figs., 36 tabs.

  14. Reference tabulation of neutronic data by the concept of probability tables

    Bouhlal, O.K.; Ribon, P.

    1994-01-01

    In this paper, effective cross-sections will be computed using a model based on probability tables and the precision of results will be then examined. These tables are established from the moments of cross-sections and they consequently present interesting properties such the possibility of treating independently the nuclear effects which characterize the reactor core. Our purpose is to show that with this model fine structure resonances can be taken into account with good precision. This is achieved by the use of the 'energy groups condensation' rule which has the advantage of reducing the calculation time. Probability tables are first established on a very fine mesh and then with variable increments to analyze the effect of the increment width on precision. Reference tabulation are computed when results are satisfactory. Calculations are done for a medium that contains uranium 238 isotope which presents wide range of resonances and which is frequently present in the reactor core. (author). 1 tab., 4 refs

  15. Probability tables and gauss quadrature: application to neutron cross-sections in the unresolved energy range

    Ribon, P.; Maillard, J.M.

    1986-09-01

    The idea of describing neutron cross-section fluctuations by sets of discrete values, called ''probability tables'', was formulated some 15 years ago. We propose to define the probability tables from moments by equating the moments of the actual cross-section distribution in a given energy range to the moments of the table. This definition introduces PADE approximants, orthogonal polynomials and GAUSS quadrature. This mathematical basis applies very well to the total cross-section. Some difficulties appear when partial cross-sections are taken into account, linked to the ambiguity of the definition of multivariate PADE approximants. Nevertheless we propose solutions and choices which appear to be satisfactory. Comparisons are made with other definitions of probability tables and an example of the calculation of a mixture of nuclei is given. 18 refs

  16. Probability tables and gauss quadrature: application to neutron cross-sections in the unresolved energy range

    Ribon, P.; Maillard, J.M.

    1986-01-01

    The idea of describing neutron cross-section fluctuations by sets of discrete values, called probability tables, was formulated some 15 years ago. The authors propose to define the probability tables from moments by equating the moments of the actual cross-section distribution in a given energy range to the moments of the table. This definition introduces PADE approximants, orthogonal polynomials and GAUSS quadrature. This mathematical basis applies very well to the total cross-section. Some difficulties appear when partial cross-sections are taken into account, linked to the ambiguity of the definition of multivariate PADE approximants. Nevertheless the authors propose solutions and choices which appear to be satisfactory. Comparisons are made with other definition of probability tables and an example of the calculation of a mixture of nuclei is given

  17. Computing Moment-Based Probability Tables for Self-Shielding Calculations in Lattice Codes

    Hebert, Alain; Coste, Mireille

    2002-01-01

    As part of the self-shielding model used in the APOLLO2 lattice code, probability tables are required to compute self-shielded cross sections for coarse energy groups (typically with 99 or 172 groups). This paper describes the replacement of the multiband tables (typically with 51 subgroups) with moment-based tables in release 2.5 of APOLLO2. An improved Ribon method is proposed to compute moment-based probability tables, allowing important savings in CPU resources while maintaining the accuracy of the self-shielding algorithm. Finally, a validation is presented where the absorption rates obtained with each of these techniques are compared with exact values obtained using a fine-group elastic slowing-down calculation in the resolved energy domain. Other results, relative to the Rowland's benchmark and to three assembly production cases, are also presented

  18. Evidence reasoning method for constructing conditional probability tables in a Bayesian network of multimorbidity.

    Du, Yuanwei; Guo, Yubin

    2015-01-01

    The intrinsic mechanism of multimorbidity is difficult to recognize and prediction and diagnosis are difficult to carry out accordingly. Bayesian networks can help to diagnose multimorbidity in health care, but it is difficult to obtain the conditional probability table (CPT) because of the lack of clinically statistical data. Today, expert knowledge and experience are increasingly used in training Bayesian networks in order to help predict or diagnose diseases, but the CPT in Bayesian networks is usually irrational or ineffective for ignoring realistic constraints especially in multimorbidity. In order to solve these problems, an evidence reasoning (ER) approach is employed to extract and fuse inference data from experts using a belief distribution and recursive ER algorithm, based on which evidence reasoning method for constructing conditional probability tables in Bayesian network of multimorbidity is presented step by step. A multimorbidity numerical example is used to demonstrate the method and prove its feasibility and application. Bayesian network can be determined as long as the inference assessment is inferred by each expert according to his/her knowledge or experience. Our method is more effective than existing methods for extracting expert inference data accurately and is fused effectively for constructing CPTs in a Bayesian network of multimorbidity.

  19. New developments in resonant mixture self-shielding treatment with Apollo code and application to Jules Horowitz reactor core calculation

    Coste-Delclaux, M.; Aggery, A.; Huot, N.

    2005-01-01

    APOLLO2 is a modular multigroup transport code developed by Cea in Saclay. Until last year, the self-shielding module could only treat one resonant isotope mixed with moderator isotopes. Consequently, the resonant mixture self-shielding treatment was an iterative one. Each resonant isotope of the mixture was treated separately, the other resonant isotopes of the mixture being then considered as moderator isotopes, that is to say non-resonant isotopes. This treatment could be iterated. Last year, we have developed a new method that consists in treating the resonant mixture as a unique entity. A main feature of APOLLO2 self-shielding module is that some implemented models are very general and therefore very powerful and versatile. We can give, as examples, the use of probability tables in order to describe the microscopic cross-section fluctuations or the TR slowing-down model that can deal with any resonance shape. The self-shielding treatment of a resonant mixture was developed essentially thanks to these two models. The calculations of a simplified Jules Horowitz reactor using a Monte-Carlo code (TRIPOLI4) as a reference and APOLLO2 in its standard and improved versions, show that, as far as the effective multiplication factor is concerned, the mixture treatment does not bring an improvement, because the new treatment suppresses compensation between the reaction rate discrepancies. The discrepancy of 300 pcm that appears with the reference calculation is in accordance with the technical specifications of the Jules Horowitz reactor

  20. Resonance treatment methodology in DeCART

    Kim, Kang Seog; Joo, Han Gyu; Lee, Chung Chan; Chang, Moon Hee

    2003-12-01

    The typical nuclear design procedure consists of two steps which are the transport lattice calculation for the fuel assembly and the nodal diffusion calculation for the reactor core. DeCART (Deterministic Core Analysis based on Ray Tracing) code has been developed to perform the 3-dimensional whole-core transport calculation removing some of the approximations in the 2-step procedure. This code employs the synthesis of 1- and 2-dimensional characteristics methods in the framework of the 3-dimensional CMFD (Coarse Mesh Finite Difference) formulation. The subgroup method is used for the resonance treatment. HELIOS library is used for the multi-group neutron cross section and the resonance data without any modification. This report includes the methodology of the resonance treatment in DeCART. And this report also includes the Monte Carlo resonance treatment under development for the generation of the resonance integral table and the subgroup data. The interpolation method of the equivalence cross section is reviewed for the efficient resonance transport calculation with thermal-hydraulic feedback, and the new method to consider the temperature distribution explicitly in the subgroup method is also introduced.

  1. Projection operator treatment of single particle resonances

    Lev, A.; Beres, W.P.

    1976-01-01

    A projection operator method is used to obtain the energy and width of a single particle resonance. The resonance energy is found without scanning. An example of the first g/sub 9/2/ neutron resonance in 40 Ca is given and compared with the traditional phase shift method. The results of both approaches are quite similar. 4 figures

  2. Description of the resonance treatment in WIMS-AECL

    Donnelly, J V

    1993-05-01

    The Stamm`ler resonance treatment as applied within the WIMS-AECL lattice cell code is described. The validation work demonstrating the accuracy of the resonance treatment is reviewed and indicates that the methods used will be accurate for the current range of application within AECL. (author). 22 refs., 6 tabs.

  3. Neutron resonance absorption theory

    Reuss, P.

    1991-11-01

    After some recalls on the physics of neutron resonance absorption during their slowing down, this paper presents the main features of the theoretical developments performed by the french school of reactor physics: the effective reaction rate method so called Livolant-Jeanpierre theory, the generalizations carried out by the author, and the probability table method [fr

  4. Magnetic resonance imaging in radiotherapy treatment planning

    Moerland, Marinus Adriaan

    1996-01-01

    From its inception in the early 1970's up to the present, magnetic resonance imaging (MRI) has evolved into a sophisticated technique, which has aroused considerable interest in var- ious subelds of medicine including radiotherapy. MRI is capable of imaging in any plane and does not use ionizing

  5. Impact of neutron resonance treatments on reactor calculation

    Leszczynski, F.

    1988-01-01

    The neutron resonance treatment on reactor calculation is one of the not completely resolved problems of reactor theory. The calculation required on design, fuel management and accident analysis of nuclear reactors contains adjust coefficients and semi-empirical values introduced on the computer codes; these values are obtained comparing calculation results with experimental values and more exact calculation results. This is made when the characteristics of the analyzed system are such that this type of comparisons are possible. The impact that one fixed resonance treatment method have on the final evaluation of physics reactor parameters, reactivity, power distribution, etc., is useful to know. In this work, the differences between calculated parameters with two different methods of resonance treatment in cell calculations are shown. It is concluded that improvements on resonance treatment are necessary for growing the reliability on core calculations results. Finally, possible improvements, easy to implement in current computer codes, are presented. (Author) [es

  6. Effect of magnetic resonance imaging characteristics on uterine fibroid treatment

    Duc NM

    2018-04-01

    Full Text Available Nguyen Minh Duc, Huynh Quang HuyDepartment of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, VietnamAbstract: Uterine fibroids are the most common gynecological benign tumors adversely affecting the quality of life of women of a reproductive age. Magnetic resonance imaging (MRI is efficient at localizing the site of lesions and characterizing uterine fibroids before treatment. Understanding the different characteristics of uterine fibroids on MRI is essential, because it not only enables prompt diagnosis, but also guides the development of suitable therapeutic methods. This pictorial review demonstrates the effect of MRI features on uterine fibroid treatment. Keywords: uterine fibroids, characteristics, magnetic resonance imaging, treatments

  7. Advanced resonance self-shielding method for gray resonance treatment in lattice physics code GALAXY

    Koike, Hiroki; Yamaji, Kazuya; Kirimura, Kazuki; Sato, Daisuke; Matsumoto, Hideki; Yamamoto, Akio

    2012-01-01

    A new resonance self-shielding method based on the equivalence theory is developed for general application to the lattice physics calculations. The present scope includes commercial light water reactor (LWR) design applications which require both calculation accuracy and calculation speed. In order to develop the new method, all the calculation processes from cross-section library preparation to effective cross-section generation are reviewed and reframed by adopting the current enhanced methodologies for lattice calculations. The new method is composed of the following four key methods: (1) cross-section library generation method with a polynomial hyperbolic tangent formulation, (2) resonance self-shielding method based on the multi-term rational approximation for general lattice geometry and gray resonance absorbers, (3) spatially dependent gray resonance self-shielding method for generation of intra-pellet power profile and (4) integrated reaction rate preservation method between the multi-group and the ultra-fine-group calculations. From the various verifications and validations, applicability of the present resonance treatment is totally confirmed. As a result, the new resonance self-shielding method is established, not only by extension of a past concentrated effort in the reactor physics research field, but also by unification of newly developed unique and challenging techniques for practical application to the lattice physics calculations. (author)

  8. Conservative treatment of bronchobiliary fistula evaluated with magnetic resonance imaging

    Adžić-Vukičević Tatjana N.

    2015-01-01

    Full Text Available Introduction. Bronchobiliary fistula (BBF is a pathological communication between the bronchial system and the biliary tree that presents with bilioptysis. Many conditions can cause its development. There is still no optimal therapy for BBF. Conservative treatment is rarely indicated, as was published before in a few cases. Case report. We presented a 71-year-old Caucasian Serbian woman with BBF secondary to previous laparotomy due to multiple echinococcus liver cysts. The diagnosis was established by the presence of bilirubin and bile acids in sputum and magnetic resonance cholangiopancreatography (MRCP. A repeat MRCP performed after conservative procedure, did not reveal fistulous communication. Conclusion. We suggest that in small and less severe fistulas between the biliary and the bronchial tract, conservative treatment may be used successfully, and invasive treatment methods are not needed in all patients.

  9. A fast resonance interference treatment scheme with subgroup method

    Cao, L.; He, Q.; Wu, H.; Zu, T.; Shen, W.

    2015-01-01

    A fast Resonance Interference Factor (RIF) scheme is proposed to treat the resonance interference effects between different resonance nuclides. This scheme utilizes the conventional subgroup method to evaluate the self-shielded cross sections of the dominant resonance nuclide in the heterogeneous system and the hyper-fine energy group method to represent the resonance interference effects in a simplified homogeneous model. In this paper, the newly implemented scheme is compared to the background iteration scheme, the Resonance Nuclide Group (RNG) scheme and the conventional RIF scheme. The numerical results show that the errors of the effective self-shielded cross sections are significantly reduced by the fast RIF scheme compared with the background iteration scheme and the RNG scheme. Besides, the fast RIF scheme consumes less computation time than the conventional RIF schemes. The speed-up ratio is ~4.5 for MOX pin cell problems. (author)

  10. UNR. A code for processing unresolved resonance data for MCNP

    Hogenbirk, A.

    1994-09-01

    In neutron transport problems the correct treatment of self-shielding is important for those nuclei present in large concentrations. Monte Carlo calculations using continuous-energy cross section data, such as calculations with the code MCNP, offer the advantage that neutron transport is calculated in a very accurate way. Self-shielding in the resolved resonance region is taken into account exactly in MCNP. However, self-shielding in the unresolved resonance region can not be taken into account by MCNP, although the effect of it may be important in many applications. In this report a description is given of the computer code UNR. With this code problem-dependent cross section libraries can be produced for MCNP. In these libraries self-shielded cross section data in the unresolved resonance range are given, which are produced by NJOY-module UNRESR. It is noted, that the treatment for resonance self-shielding presented in this report is approximate. However, the current version of MCNP does not allow the use of probability tables, which would be a general solution. (orig.)

  11. Resonance

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  12. New Improvements in Mixture Self-Shielding Treatment with APOLLO2 Code

    Coste-Delclaux, M.

    2006-01-01

    Full text of the presentation follows: APOLLO2 is a modular multigroup transport code developed at the CEA in Saclay (France). Previously, the self-shielding module could only treat one resonant isotope mixed with moderator isotopes. Consequently, the resonant mixture self-shielding treatment was an iterative one. Each resonant isotope of the mixture was treated separately, the other resonant isotopes of the mixture being then considered as moderator isotopes, that is to say non-resonant isotopes. This treatment could be iterated. Recently, we have developed a new method that consists in treating the resonant mixture as a unique entity. A main feature of APOLLO2 self-shielding module is that some implemented models are very general and therefore very powerful and versatile. We can give, as examples, the use of probability tables in order to describe the microscopic cross-section fluctuations or the TR slowing-down model that can deal with any resonance shape. The self-shielding treatment of a resonant mixture was developed essentially thanks to these two models. The goal of this paper is to describe the improvements on the self-shielding treatment of a resonant mixture and to present, as an application, the calculation of the ATRIUM-10 BWR benchmark. We will conclude by some prospects on remaining work in the self-shielding domain. (author)

  13. Proton magnetic resonance spectroscopy (1H-MRS) for the evaluation of treatment of brain tumours

    Houkin, K.; Kamada, K.; Sawamura, Y.; Iwasaki, Y.; Abe, H.; Kashiwaba, T.

    1995-01-01

    We investigated metabolic changes in brain tumours following treatment, using proton magnetic resonance spectroscopy. In meningiomas, effective therapeutic embolisation led to an acute increase in lactate. In radiosensitive tumours such as malignant lymphoma, a decrease in lactate and in increase in N-acetyl-aspartate occurred after radiotherapy, which preceded changes observed on magnetic resonance imaging. On the other hand, no significant changes in spectral patterns were observed in malignant gliomas resistant to therapy. Tissue characterisation of brain tumours by spectral patterns on proton magnetic resonance spectroscopy remains controversial. However, we have shown it to be sensitive to metabolic changes following treatment, which may reflect the efficacy of the therapy. (orig.)

  14. Resonances

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  15. Review of magnetic resonance-guided focused ultrasound in the treatment of uterine fibroids

    Pedro Felipe Magalhães Peregrino

    Full Text Available Uterine leiomyoma is the most frequently occurring solid pelvic tumor in women during the reproductive period. Magnetic resonance-guided high-intensity focused ultrasound is a promising technique for decreasing menorrhagia and dysmenorrhea in symptomatic women. The aim of this study is to review the role of Magnetic resonance-guided high-intensity focused ultrasound in the treatment of uterine fibroids in symptomatic patients. We performed a review of the MEDLINE and Cochrane databases up to April 2016. The analysis and data collection were performed using the following keywords: Leiomyoma, High-Intensity Focused Ultrasound Ablation, Ultrasonography, Magnetic Resonance Imaging, Menorrhagia. Two reviewers independently performed a quality assessment; when there was a disagreement, a third reviewer was consulted. Nineteen studies of Magnetic resonance-guided high-intensity focused ultrasound-treated fibroid patients were selected. The data indicated that tumor size was reduced and that symptoms were improved after treatment. There were few adverse effects, and they were not severe. Some studies have reported that in some cases, additional sessions of Magnetic resonance-guided high-intensity focused ultrasound or other interventions, such as myomectomy, uterine artery embolization or even hysterectomy, were necessary. This review suggests that Magnetic resonance-guided high-intensity focused ultrasound is a safe and effective technique. However, additional evidence from future studies will be required before the technique can be recommended as an alternative treatment for fibroids.

  16. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    Li Dongxi, E-mail: lidongxi@mail.nwpu.edu.c [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Xu Wei; Guo, Yongfeng; Xu Yong [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-01-31

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  17. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    Li Dongxi; Xu Wei; Guo, Yongfeng; Xu Yong

    2011-01-01

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  18. Magnetic resonance imaging in monitoring of treatment of multiple sclerosis

    Bekiesinska-Figatowska, M.; Walecki, J.; Stelmasiak, Z.

    1996-01-01

    The purpose of the study was to establish the value of MR in monitoring of treatment of multiple sclerosis with new drug 2-CDA and placebo. 83 patients (51 women, 32 men) were examined - 81 of them twice, 66 - three times: before and after 6 and 12 courses of treatment. Toshiba MRT50A machine was used. After the first 6 courses of treatment the number of new plaques was twice as big in placebo group than in 2-CDA group. After 12 courses it turned out that a certain inhibitory influence of 2-CDA on new plaques' appearance was more evident after 15 than 3 months after the end of its administration. This may indicate the delayed action of 2-CDA but requires further investigation. (author)

  19. Tumor microvascular changes in antiangiogenic treatment : Assessment by magnetic resonance contrast media of different molecular weights

    Turetschek, K; Preda, A; Novikov, [No Value; Brasch, RC; Weinmann, HJ; Wunderbaldinger, P; Roberts, TPL

    Purpose: To test magnetic resonance (MR) contrast media of different molecular weights (MWs) for their potential to characterize noninvasively microvascular changes in an experimental tumor treatment model. Materials and Methods: MD-MBA-435, a poorly differentiated human breast cancer cell line, was

  20. Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation.

    Bathen, Tone F; Sitter, Beathe; Sjøbakk, Torill E; Tessem, May-Britt; Gribbestad, Ingrid S

    2010-09-01

    Personalized medicine is increasingly important in cancer treatment for its role in staging and its potential to improve stratification of patients. Different types of molecules, genes, proteins, and metabolites are being extensively explored as potential biomarkers. This review discusses the major findings and potential of tissue metabolites determined by high-resolution magic angle spinning magnetic resonance spectroscopy for cancer detection, characterization, and treatment monitoring.

  1. Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy

    Murphy, P. S.; Viviers, L; Abson, C

    2004-01-01

    Assessment of low-grade glioma treatment response remains as much of a challenge as the treatment itself. Proton magnetic resonance spectroscopy ((1)H-MRS) and imaging were incorporated into a study of patients receiving temozolomide therapy for low-grade glioma in order to evaluate and monitor...... tumour metabolite and volume changes during treatment. Patients (n=12) received oral temozolomide (200 mg m(-2) day(-1)) over 5 days on a 28-day cycle for 12 cycles. Response assessment included baseline and three-monthly magnetic resonance imaging studies (pretreatment, 3, 6, 9 and 12 months) assessing...... months, a significant reduction in the mean choline signal was observed compared with the pretreatment (P=0.035) and 3-month scan (P=0.021). The reduction in the tumour choline/water signal paralleled tumour volume change and may reflect the therapeutic effect of temozolomide...

  2. Topology Optimization for Minimizing the Resonant Response of Plates with Constrained Layer Damping Treatment

    Zhanpeng Fang

    2015-01-01

    Full Text Available A topology optimization method is proposed to minimize the resonant response of plates with constrained layer damping (CLD treatment under specified broadband harmonic excitations. The topology optimization problem is formulated and the square of displacement resonant response in frequency domain at the specified point is considered as the objective function. Two sensitivity analysis methods are investigated and discussed. The derivative of modal damp ratio is not considered in the conventional sensitivity analysis method. An improved sensitivity analysis method considering the derivative of modal damp ratio is developed to improve the computational accuracy of the sensitivity. The evolutionary structural optimization (ESO method is used to search the optimal layout of CLD material on plates. Numerical examples and experimental results show that the optimal layout of CLD treatment on the plate from the proposed topology optimization using the conventional sensitivity analysis or the improved sensitivity analysis can reduce the displacement resonant response. However, the optimization method using the improved sensitivity analysis can produce a higher modal damping ratio than that using the conventional sensitivity analysis and develop a smaller displacement resonant response.

  3. Magnetic resonance imaging in the evaluation of treatment in multiple sclerosis

    Kappos, L.; Staedt, D.; Schneiderbanger-Grygier, S.; Heitzer, T.; Ratzka, M.; Nadjmi, M.; Poser, S.; Keil, W.

    1988-01-01

    Magnetic resonance scans of 74 patients with multiple sclerosis participating in a controlled trial were compared 6 months before and at the end of a 24-32 months-treatment period with either Cyclosporin A (n=31) or Azathioprine (n=43). Both qualitative rating and computation of lesion volume showed deterioration in more than 40% of the patients, while by clinical criteria only 10-30% were worse. No significant difference was noted when the two treatment groups were compared. If careful repositioning and standardized image parameters are used, MRI is an indispensable tool for the objective determination of disease progression in MS although it cannot replace clinical examination. (orig.)

  4. Magnetic resonance imaging in the evaluation of treatment in multiple sclerosis

    Kappos, L.; Staedt, D.; Schneiderbanger-Grygier, S.; Heitzer, T.; Ratzka, M.; Nadjmi, M.; Poser, S.; Keil, W.

    1988-08-01

    Magnetic resonance scans of 74 patients with multiple sclerosis participating in a controlled trial were compared 6 months before and at the end of a 24-32 months-treatment period with either Cyclosporin A (n=31) or Azathioprine (n=43). Both qualitative rating and computation of lesion volume showed deterioration in more than 40% of the patients, while by clinical criteria only 10-30% were worse. No significant difference was noted when the two treatment groups were compared. If careful repositioning and standardized image parameters are used, MRI is an indispensable tool for the objective determination of disease progression in MS although it cannot replace clinical examination.

  5. A fully analytic treatment of resonant inductive coupling in the far field

    Sedwick, Raymond J.

    2012-02-01

    For the application of resonant inductive coupling for wireless power transfer, fabrication of flat spiral coils using ribbon wire allows for analytic expressions of the capacitance and inductance of the coils and therefore the resonant frequency. The expressions can also be used in an approximate way for the analysis of coils constructed from cylindrical wire. Ribbon wire constructed from both standard metals as well as high temperature superconducting material is commercially available, so using these derived expressions as a basis, a fully analytic treatment is presented that allows for design trades to be made for hybrid designs incorporating either technology. The model is then extended to analyze the performance of the technology as applied to inductively coupled communications, which has been demonstrated as having an advantage in circumstances where radiated signals would suffer unacceptable levels of attenuation.

  6. A fully analytic treatment of resonant inductive coupling in the far field

    Sedwick, Raymond J.

    2012-01-01

    For the application of resonant inductive coupling for wireless power transfer, fabrication of flat spiral coils using ribbon wire allows for analytic expressions of the capacitance and inductance of the coils and therefore the resonant frequency. The expressions can also be used in an approximate way for the analysis of coils constructed from cylindrical wire. Ribbon wire constructed from both standard metals as well as high temperature superconducting material is commercially available, so using these derived expressions as a basis, a fully analytic treatment is presented that allows for design trades to be made for hybrid designs incorporating either technology. The model is then extended to analyze the performance of the technology as applied to inductively coupled communications, which has been demonstrated as having an advantage in circumstances where radiated signals would suffer unacceptable levels of attenuation. - Highlights: ► An analytic framework finds power and efficiency for resonant inductive coupling. ► The framework supports superconducting, resistive and dielectric elements. ► Maximum power transfer occurs at an efficiency of 50% when in close proximity. ► A 100 turn superconducting design achieves 10% efficiency out to 280 coil radii. ► The system response to narrow band amplitude modulation is modeled and presented.

  7. Magnetic resonance imaging in the evaluation of treatment response of lateral epicondylitis of the elbow

    Savnik, Anette; Jensen, Bente; Noerregaard, Jesper; Danneskiold-Samsoee, Bente; Bliddal, Henning; Egund, Niels

    2004-01-01

    The purpose of this study was to investigate the treatment response in lateral epicondylitis (tennis elbow) by MRI. Magnetic resonance imaging was obtained in 30 patients with clinical symptoms of lateral epicondylitis of the elbow using T1-, T2- and T2-weighted fat-saturated (FS) sequences. The patients were randomised to either i.m. corticosteroid injection (n=16) or immobilisation in a wrist splint (n=14). Magnetic resonance imaging of the elbow was performed on a 1.5-T MR system at baseline and after 6 weeks. The extensor carpi radialis (ECRB) tendon, the radial collateral ligament, lateral humerus epicondyle at tendon insertion site, joint fluid and signal intensity changes within brachio-radialis and anconeus muscles were evaluated on the MR unit's workstation before and after 6 weeks of treatment. The MRI was performed once in 22 healthy controls for comparison and all images evaluated by an investigator blinded to the clinical status of the subjects. The MR images showed thickening with separation of the ECRB tendon from the radial collateral ligament and abnormal signal change in 25 of the 30 patients on the T1-weighted sequences at inclusion. The signal intensity of the ECRB tendon was increased in 24 of the 30 patients with lateral epicondylitis of the elbow on the T2-weighted FS sequences. (orig.)

  8. Magnetic resonance imaging in the evaluation of treatment response of lateral epicondylitis of the elbow

    Savnik, Anette [Parker Institute, Frederiksberg Hospital, Nordre Fasanvej 57, 2000, Frederiksberg (Denmark); Department of Radiology, Frederiksberg Hospital, Nordre Fasanvej 57, 2000, Frederiksberg (Denmark); Hovmarksvej 39, 2920, Charlottenlund (Denmark); Jensen, Bente; Noerregaard, Jesper; Danneskiold-Samsoee, Bente; Bliddal, Henning [Parker Institute, Frederiksberg Hospital, Nordre Fasanvej 57, 2000, Frederiksberg (Denmark); Egund, Niels [Department of Radiology, Aarhus University Hospital, 8000, Aarhus C (Denmark)

    2004-06-01

    The purpose of this study was to investigate the treatment response in lateral epicondylitis (tennis elbow) by MRI. Magnetic resonance imaging was obtained in 30 patients with clinical symptoms of lateral epicondylitis of the elbow using T1-, T2- and T2-weighted fat-saturated (FS) sequences. The patients were randomised to either i.m. corticosteroid injection (n=16) or immobilisation in a wrist splint (n=14). Magnetic resonance imaging of the elbow was performed on a 1.5-T MR system at baseline and after 6 weeks. The extensor carpi radialis (ECRB) tendon, the radial collateral ligament, lateral humerus epicondyle at tendon insertion site, joint fluid and signal intensity changes within brachio-radialis and anconeus muscles were evaluated on the MR unit's workstation before and after 6 weeks of treatment. The MRI was performed once in 22 healthy controls for comparison and all images evaluated by an investigator blinded to the clinical status of the subjects. The MR images showed thickening with separation of the ECRB tendon from the radial collateral ligament and abnormal signal change in 25 of the 30 patients on the T1-weighted sequences at inclusion. The signal intensity of the ECRB tendon was increased in 24 of the 30 patients with lateral epicondylitis of the elbow on the T2-weighted FS sequences. (orig.)

  9. T2-Weighted 4D Magnetic Resonance Imaging for Application in Magnetic Resonance-Guided Radiotherapy Treatment Planning.

    Freedman, Joshua N; Collins, David J; Bainbridge, Hannah; Rank, Christopher M; Nill, Simeon; Kachelrieß, Marc; Oelfke, Uwe; Leach, Martin O; Wetscherek, Andreas

    2017-10-01

    The aim of this study was to develop and verify a method to obtain good temporal resolution T2-weighted 4-dimensional (4D-T2w) magnetic resonance imaging (MRI) by using motion information from T1-weighted 4D (4D-T1w) MRI, to support treatment planning in MR-guided radiotherapy. Ten patients with primary non-small cell lung cancer were scanned at 1.5 T axially with a volumetric T2-weighted turbo spin echo sequence gated to exhalation and a volumetric T1-weighted stack-of-stars spoiled gradient echo sequence with golden angle spacing acquired in free breathing. From the latter, 20 respiratory phases were reconstructed using the recently developed 4D joint MoCo-HDTV algorithm based on the self-gating signal obtained from the k-space center. Motion vector fields describing the respiratory cycle were obtained by deformable image registration between the respiratory phases and projected onto the T2-weighted image volume. The resulting 4D-T2w volumes were verified against the 4D-T1w volumes: an edge-detection method was used to measure the diaphragm positions; the locations of anatomical landmarks delineated by a radiation oncologist were compared and normalized mutual information was calculated to evaluate volumetric image similarity. High-resolution 4D-T2w MRI was obtained. Respiratory motion was preserved on calculated 4D-T2w MRI, with median diaphragm positions being consistent with less than 6.6 mm (2 voxels) for all patients and less than 3.3 mm (1 voxel) for 9 of 10 patients. Geometrical positions were coherent between 4D-T1w and 4D-T2w MRI as Euclidean distances between all corresponding anatomical landmarks agreed to within 7.6 mm (Euclidean distance of 2 voxels) and were below 3.8 mm (Euclidean distance of 1 voxel) for 355 of 470 pairs of anatomical landmarks. Volumetric image similarity was commensurate between 4D-T1w and 4D-T2w MRI, as mean percentage differences in normalized mutual information (calculated over all respiratory phases and patients), between

  10. Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery for the Treatment of Symptomatic Uterine Fibroids

    Laura Geraci

    2017-01-01

    Full Text Available Uterine fibroids, the most common benign tumor in women of childbearing age, may cause symptoms including pelvic pain, menorrhagia, dysmenorrhea, pressure, urinary symptoms, and infertility. Various approaches are available to treat symptomatic uterine fibroids. Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS represents a recently introduced noninvasive safe and effective technique that can be performed without general anesthesia, in an outpatient setting. We review the principles of MRgFUS, describing patient selection criteria for the treatments performed at our center and we present a series of five selected patients with symptomatic uterine fibroids treated with this not yet widely known technique, showing its efficacy in symptom improvement and fibroid volume reduction.

  11. Magnetic Resonance Techniques Applied to the Diagnosis and Treatment of Parkinson’s Disease

    de Celis Alonso, Benito; Hidalgo-Tobón, Silvia S.; Menéndez-González, Manuel; Salas-Pacheco, José; Arias-Carrión, Oscar

    2015-01-01

    Parkinson’s disease (PD) affects at least 10 million people worldwide. It is a neurodegenerative disease, which is currently diagnosed by neurological examination. No neuroimaging investigation or blood biomarker is available to aid diagnosis and prognosis. Most effort toward diagnosis using magnetic resonance (MR) has been focused on the use of structural/anatomical neuroimaging and diffusion tensor imaging (DTI). However, deep brain stimulation, a current strategy for treating PD, is guided by MR imaging (MRI). For clinical prognosis, diagnosis, and follow-up investigations, blood oxygen level-dependent MRI, DTI, spectroscopy, and transcranial magnetic stimulation have been used. These techniques represent the state of the art in the last 5 years. Here, we focus on MR techniques for the diagnosis and treatment of Parkinson’s disease. PMID:26191037

  12. Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery for the Treatment of Symptomatic Uterine Fibroids.

    Geraci, Laura; Napoli, Alessandro; Catalano, Carlo; Midiri, Massimo; Gagliardo, Cesare

    2017-01-01

    Uterine fibroids, the most common benign tumor in women of childbearing age, may cause symptoms including pelvic pain, menorrhagia, dysmenorrhea, pressure, urinary symptoms, and infertility. Various approaches are available to treat symptomatic uterine fibroids. Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS) represents a recently introduced noninvasive safe and effective technique that can be performed without general anesthesia, in an outpatient setting. We review the principles of MRgFUS, describing patient selection criteria for the treatments performed at our center and we present a series of five selected patients with symptomatic uterine fibroids treated with this not yet widely known technique, showing its efficacy in symptom improvement and fibroid volume reduction.

  13. Magnetic resonance imaging in the evaluation of clinical treatment of otospongiosis: a pilot study.

    de Oliveira Vicente, Andy; Chandrasekhar, Sujana S; Yamashita, Helio K; Cruz, Oswaldo Laercio M; Barros, Flavia A; Penido, Norma O

    2015-06-01

    To evaluate the applicability of magnetic resonance imaging (MRI) as a method for monitoring the activity of otospongiotic lesions before and after clinical treatment. Prospective, randomized, controlled, double-blind study. One single tertiary care institution in a large, cosmopolitan city. Twenty-six patients (n = 42 ears) with clinical, audiometric, and tomographic diagnosis of otosclerosis were enrolled. If computed tomography (CT) demonstrated active lesions, these patients underwent MRI to detect otospongiotic foci, seen as areas of gadolinium enhancement. Patients were divided into 3 groups and received treatment with placebo, sodium alendronate, or sodium fluoride for 6 months. After this period, clinical and audiometric evaluations and a second MRI were performed. Each MRI was evaluated by both a neuroradiologist and an otolaryngologist in a subjective (visual) and objective (using specific eFilm Workstation software) manner. Otospongiosis was most predominantly identified in the region anterior to the oval window, and this site was reliable for comparing pre- and posttreatment scans. The patients in the alendronate and sodium fluoride groups had MRI findings that suggested a decrease in activity of otospongiotic lesions, more relevant in the alendronate group. These findings were statistically significant for both subjective and objective MRI evaluations. MRI shows higher sensitivity than clinical or audiometric assessment for detecting reduction in activity of otospongiosis. The objective MRI evaluation based on software analysis was the most accurate method of monitoring clinical treatment response in otospongiosis. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  14. Quantitative morphologic evaluation of magnetic resonance imaging during and after treatment of childhood leukemia

    Reddick, Wilburn E.; Glass, John O. [St. Jude Children' s Research Hospital, Division of Translational Imaging Research (MS 210), Department of Radiological Sciences, Memphis, TN (United States); Laningham, Fred H. [St. Jude Children' s Research Hospital, Division of Diagnostic Imaging, Memphis, TN (United States); Pui, Ching-Hon [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States)

    2007-11-15

    Medical advances over the last several decades, including CNS prophylaxis, have greatly increased survival in children with leukemia. As survival rates have increased, clinicians and scientists have been afforded the opportunity to further develop treatments to improve the quality of life of survivors by minimizing the long-term adverse effects. When evaluating the effect of antileukemia therapy on the developing brain, magnetic resonance (MR) imaging has been the preferred modality because it quantifies morphologic changes objectively and noninvasively. Computer-aided detection of changes on neuroimages enables us to objectively differentiate leukoencephalopathy from normal maturation of the developing brain. Quantitative tissue segmentation algorithms and relaxometry measures have been used to determine the prevalence, extent, and intensity of white matter changes that occur during therapy. More recently, diffusion tensor imaging has been used to quantify microstructural changes in the integrity of the white matter fiber tracts. MR perfusion imaging can be used to noninvasively monitor vascular changes during therapy. Changes in quantitative MR measures have been associated, to some degree, with changes in neurocognitive function during and after treatment. In this review, we present recent advances in quantitative evaluation of MR imaging and discuss how these methods hold the promise to further elucidate the pathophysiologic effects of treatment for childhood leukemia. (orig.)

  15. Quantitative morphologic evaluation of magnetic resonance imaging during and after treatment of childhood leukemia

    Reddick, Wilburn E.; Glass, John O.; Laningham, Fred H.; Pui, Ching-Hon

    2007-01-01

    Medical advances over the last several decades, including CNS prophylaxis, have greatly increased survival in children with leukemia. As survival rates have increased, clinicians and scientists have been afforded the opportunity to further develop treatments to improve the quality of life of survivors by minimizing the long-term adverse effects. When evaluating the effect of antileukemia therapy on the developing brain, magnetic resonance (MR) imaging has been the preferred modality because it quantifies morphologic changes objectively and noninvasively. Computer-aided detection of changes on neuroimages enables us to objectively differentiate leukoencephalopathy from normal maturation of the developing brain. Quantitative tissue segmentation algorithms and relaxometry measures have been used to determine the prevalence, extent, and intensity of white matter changes that occur during therapy. More recently, diffusion tensor imaging has been used to quantify microstructural changes in the integrity of the white matter fiber tracts. MR perfusion imaging can be used to noninvasively monitor vascular changes during therapy. Changes in quantitative MR measures have been associated, to some degree, with changes in neurocognitive function during and after treatment. In this review, we present recent advances in quantitative evaluation of MR imaging and discuss how these methods hold the promise to further elucidate the pathophysiologic effects of treatment for childhood leukemia. (orig.)

  16. Treatment of uterine leiomyoma with magnetic resonance-guided focused ultrasound surgery (MRgFUS)

    Fukunishi, Hidenobu

    2007-01-01

    Uterine leiomyoma is the most common pelvic tumor in women. Although hysterectomy has long been the standard treatment for uterine myoma, some uterus-preserving alternatives are available today. Among these, magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a minimally-invasive procedure that uses high intensity ultrasound waves to ablate tissue. The present study investigates the efficacy of MRgFUS in the treatment of uterine myoma and the histopathological features on extirpated myoma tissue, when alternative surgical treatment is requisite. The Ethics Committee of Shinsuma Hospital approved the treatment of uterine myoma by MRgFUS, and written informed consent was obtained from all of the patients in compliance with the principles of good clinical practice. Between June 2004 and March 2007, 81 premenopausal patients with 125 myomas confirmed by T2-weighted MRI were treated by MRgFUS. The myomas were classified into 3 types based on signal intensity of T2-weighted images type I, low intensity; type II, intermediate intensity and type III, high intensity. The ablation (the non-perfused ratio of gadolinium injection) was about 55% in type I and type II, and 38% in type III. There was no correlation between the ablation ratio and the location or the size of the myoma. The uterine muscle was spared ablation when 2 combined myomas were treated as one tumor, suggesting that the vascularity was richer in the uterine muscle layer than in the myoma Sufficient ablation of the myoma near the Os sacrum is not able to attain immediately after the treatment; however, in several cases a complete non-perfusion margin was observed 3 or 6 months after the treatment. These cases yield very satisfactory results and it is meaningful to search for the reason why such good results were induced. Alternative treatment such as hysterectomy, myomectomy, trans cervical resection (TCR) or uterine artery embolization (UAE) was indicated for 13.6% of the patients. Here, we

  17. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning.

    Fatemi, Ali; Taghizadeh, Somayeh; Yang, Claus Chunli; R Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-12-18

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID 3D and Quasar GRID 3D phantoms were used to evaluate the effects of static magnetic field (B 0 ) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning

  18. Validation of cold plasma treatment for protein inactivation: a surface plasmon resonance-based biosensor study

    Bernard, C; Leduc, A; Barbeau, J; Saoudi, B; Yahia, L'H; Crescenzo, G De

    2006-01-01

    Gas plasma is being proposed as an interesting and promising tool to achieve sterilization. The efficacy of gas plasma to destroy bacterial spores (the most resistant living microorganisms) has been demonstrated and documented over the last ten years. In addition to causing damage to deoxyribonucleic acid by UV radiation emitted by excited species originating from the plasma, gas plasma has been shown to promote erosion of the microorganism in addition to possible oxidation reactions within the microorganism. In this work, we used lysozyme as a protein model to assess the effect of gas plasma on protein inactivation. Lysozyme samples have been subjected to the flowing afterglow of a gas discharge achieved in a nitrogen-oxygen mixture. The efficiency of this plasma treatment on lysozyme has been tested by two different assays. These are an enzyme-linked immunosorbent assay (ELISA) and a surface plasmon resonance (SPR)-based biosensor assay. The two methods showed that exposure to gas plasma can abrogate lysozyme interactions with lysozyme-specific antibodies, more likely by destroying the epitopes responsible for the interaction. More specifically, two SPR-based assays were developed since our ELISA approach did not allow us to discriminate between background and low, but still intact, quantities of lysozyme epitope after plasma treatment. Our SPR results clearly demonstrated that significant protein destruction or desorption was achieved when amounts of lysozyme less than 12.5 ng had been deposited in polystyrene 96-well ELISA plates. At higher lysozyme amounts, traces of available lysozyme epitopes were detected by SPR through indirect measurements. Finally, we demonstrated that a direct SPR approach in which biosensor-immobilized lysozyme activity is directly measured prior and after plasma treatment is more sensitive, and thus, more appropriate to define plasma treatment efficacy with more certainty

  19. Validation of cold plasma treatment for protein inactivation: a surface plasmon resonance-based biosensor study

    Bernard, C.; Leduc, A.; Barbeau, J.; Saoudi, B.; Yahia, L'H.; DeCrescenzo, G.

    2006-08-01

    Gas plasma is being proposed as an interesting and promising tool to achieve sterilization. The efficacy of gas plasma to destroy bacterial spores (the most resistant living microorganisms) has been demonstrated and documented over the last ten years. In addition to causing damage to deoxyribonucleic acid by UV radiation emitted by excited species originating from the plasma, gas plasma has been shown to promote erosion of the microorganism in addition to possible oxidation reactions within the microorganism. In this work, we used lysozyme as a protein model to assess the effect of gas plasma on protein inactivation. Lysozyme samples have been subjected to the flowing afterglow of a gas discharge achieved in a nitrogen-oxygen mixture. The efficiency of this plasma treatment on lysozyme has been tested by two different assays. These are an enzyme-linked immunosorbent assay (ELISA) and a surface plasmon resonance (SPR)-based biosensor assay. The two methods showed that exposure to gas plasma can abrogate lysozyme interactions with lysozyme-specific antibodies, more likely by destroying the epitopes responsible for the interaction. More specifically, two SPR-based assays were developed since our ELISA approach did not allow us to discriminate between background and low, but still intact, quantities of lysozyme epitope after plasma treatment. Our SPR results clearly demonstrated that significant protein destruction or desorption was achieved when amounts of lysozyme less than 12.5 ng had been deposited in polystyrene 96-well ELISA plates. At higher lysozyme amounts, traces of available lysozyme epitopes were detected by SPR through indirect measurements. Finally, we demonstrated that a direct SPR approach in which biosensor-immobilized lysozyme activity is directly measured prior and after plasma treatment is more sensitive, and thus, more appropriate to define plasma treatment efficacy with more certainty.

  20. Magnetic resonance imaging in the evaluation of treatment-related central nervous system damage

    Packer, R.J.; Zimmerman, R.A.; Bilaniuk, L.T.

    1986-01-01

    Neurologic and neuropsychologic treatment related sequelae are increasingly encountered in children with cancer, but conventional means of neurologic investigation are insensitive to the presence and extent of damage. Magnetic resonance imaging (MRI) has shown brain damage not demonstrable by other means of investigation. For this reason, 11 children with cancer and with nontumor-related neurologic dysfunction were studied on a 1.5 Tesla MRI unit. All had concurrent computed tomography (CT). MRI abnormalities were seen in all (100%) patients. In 10 of 11 patients, abnormalities were of greater extent on MRI than on CT. White matter changes were frequently seen on MRI without corresponding CT abnormality. Those patients with the most severe forms of neurologic compromise had the most extensive changes on MRI. Focal neurologic findings correlated well with regions of focal signal change. Milder forms of neurologic compromise occurred in patients with definite, but less extensive, periventricular and/or subcortical change on MRI. MRI is more sensitive than CT in demonstrating treatment-related neurologic damage in children with cancer, and the type of change seen on MRI seems to correlate well with the type and severity of neurologic dysfunction present

  1. Hepatic fat quantification magnetic resonance for monitoring treatment response in pediatric nonalcoholic steatohepatitis.

    Koh, Hong; Kim, Seung; Kim, Myung-Joon; Kim, Hyun Gi; Shin, Hyun Joo; Lee, Mi-Jung

    2015-09-07

    To evaluate the possibility of treatment effect monitoring using hepatic fat quantification magnetic resonance (MR) in pediatric nonalcoholic steatohepatitis (NASH). We retrospectively reviewed the medical records of patients who received educational recommendations and vitamin E for NASH and underwent hepatic fat quantification MR from 2011 to 2013. Hepatic fat fraction (%) was measured using dual- and triple-echo gradient-recalled-echo sequences at 3T. The compliant and non-compliant groups were compared clinically, biochemically, and radiologically. Twenty seven patients (M:F = 24:3; mean age: 12 ± 2.3 years) were included (compliant group = 22, non-compliant = 5). None of the baseline findings differed between the 2 groups, except for triglyceride level (compliant vs non-compliant, 167.7 mg/dL vs 74.2 mg/dL, P = 0.001). In the compliant group, high-density lipoprotein increased and all other parameters decreased after 1-year follow-up. However, there were various changes in the non-compliant group. Dual-echo fat fraction (-19.2% vs 4.6, P fat fraction (-13.4% vs 3.5, P fat fraction showed a positive correlation (ρ = 0.418, P = 0.030). Hepatic fat quantification MR can be a non-invasive, quantitative and useful tool for monitoring treatment effects in pediatric NASH.

  2. [The role of magnetic resonance imaging to select patients for preoperative treatment in rectal cancer].

    Rödel, Claus; Sauer, Rolf; Fietkau, Rainer

    2009-08-01

    Traditionally, the decision to apply preoperative treatment for rectal cancer patients has been based on the T- and N-category. Recently, the radial distance of the tumor to the circumferential resection margin (CRM) has been identified as an important risk factor for local failure. By magnetic resonance imaging (MRI) this distance can be measured preoperatively with high reliability. Thus, selected groups have started to limit the indication for preoperative therapy to tumors extending to - or growing within 1 mm from - the mesorectal fascia (CRM+). Pros and cons of this selected approach for preoperative treatment and first clinical results are presented. Prerequisites are the availability of modern high-resolution thin-section MRI technology as well as strict quality control of MRI and surgical quality of total mesorectal excision (TME). By selecting patients with CRM-positive tumors on MRI for preoperative therapy, only approximately 35% patients will require preoperative radiotherapy (RT) or radiochemotherapy (RCT). However, with histopathologic work-up of the resected specimen after primary surgery, the indication for postoperative RCT is given for a rather large percentage of patients, i.e., for pCRM+ (5-10%), intramesorectal or intramural excision (30-40%), pN+ (30-40%). Postoperative RCT, however, is significantly less effective and more toxic than preoperative RCT. A further point of concern is the assertion that patients, in whom a CRM-negative status is achieved by surgery alone, do not benefit from additional RT. Data of the Dutch TME trial and the British MRC (Medical Research Council) CR07 trial, however, suggest the reverse. To omit preoperative RT/RCT for CRM-negative tumors on MRI needs to be further investigated in prospective clinical trials. The German guidelines for the treatment of colorectal cancer 2008 continue to indicate preoperative RT/RCT based on the T- and N-category.

  3. The role of magnetic resonance imaging to select patients for preoperative treatment in rectal cancer

    Roedel, Claus; Sauer, Rolf; Fietkau, Rainer

    2009-01-01

    Background: Traditionally, the decision to apply preoperative treatment for rectal cancer patients has been based on the T- and N-category. Recently, the radial distance of the tumor to the circumferential resection margin (CRM) has been identified as an important risk factor for local failure. By magnetic resonance imaging (MRI) this distance can be measured preoperatively with high reliability. Thus, selected groups have started to limit the indication for preoperative therapy to tumors extending to - or growing within 1 mm from - the mesorectal fascia (CRM+). Methods: Pros and cons of this selected approach for preoperative treatment and first clinical results are presented. Prerequisites are the availability of modern high-resolution thin-section MRI technology as well as strict quality control of MRI and surgical quality of total mesorectal excision (TME). Results: By selecting patients with CRM-positive tumors on MRI for preoperative therapy, only approximately 35% patients will require preoperative radiotherapy (RT) or radiochemotherapy (RCT). However, with histopathologic work-up of the resected specimen after primary surgery, the indication for postoperative RCT is given for a rather large percentage of patients, i.e., for pCRM+ (5-10%), intramesorectal or intramural excision (30-40%), pN+ (30-40%). Postoperative RCT, however, is significantly less effective and more toxic than preoperative RCT. A further point of concern is the assertion that patients, in whom a CRM-negative status is achieved by surgery alone, do not benefit from additional RT. Data of the Dutch TME trial and the British MRC (Medical Research Council) CR07 trial, however, suggest the reverse. Conclusion: To omit preoperative RT/RCT for CRM-negative tumors on MRI needs to be further investigated in prospective clinical trials. The German guidelines for the treatment of colorectal cancer 2008 continue to indicate preoperative RT/RCT based on the T- and N-category. (orig.)

  4. Possibility of magnetic resonance imaging application in teaching preclinical dentistry - endodontic and prosthetic treatment prognosis

    Tanasiewicz, T.

    2010-01-01

    Background. The necessary condition for successful both endodontic and prosthetic reconstruction treatment is the precise mapping of the shape of dental cavities. The aim of this work is an elaboration and verification of the possibility of using 3D Spin Echo MRI techniques in teaching preclinical dentistry both in endodontic and prosthetics specialty. Objectives. Author' aim was to obtain an elaboration and a verification, whether there exists a possibility to use, at the level of in vitro analysis, techniques of the Magnetic Resonance Imaging, which are based on the 3D sequence of the Spin Echo that may in the future find employment in the teaching of preclinical dentistry, clinical dental therapy and diagnostics within the scope of: a dimensional imaging of the inner topography of teeth and spatial structure of a chamber and root canals of teeth for the therapeutic and didactic aims; introduction of a nondestructive and a non-impressional method of reconstruction of the topography of the inner spaces of the human teeth for the purposes of the reconstructive dentistry. Material and Methods. 6 extracted molar teeth were used for measurements without additional preparation, after endodontic and prosthetic preparation. MR measurements were carried out on a 4.7 T research MRI system equipped with Maran DRX console. Results. Figures show 3D images of outer surface, inner space of the teeth before and after endodontic preparation and internal tooth fixation constructed using both classical methods (polymer mass impression) and non-impressional methods (MRI representation). The sizes of the presented volumes were calculated. Internal tooth volumes were determined before and after endodontic treatment; total tooth volumes were also measured. Research proceedings made it possible to compare the quality of internal tooth space after preparation for inner root canals fixations constructed using both classical methods and non-impressional MRI method. Conclusions. The results

  5. Effect of Prostate Magnetic Resonance Imaging/Ultrasound Fusion-guided Biopsy on Radiation Treatment Recommendations

    Reed, Aaron; Valle, Luca F.; Shankavaram, Uma; Krauze, Andra; Kaushal, Aradhana; Schott, Erica; Cooley-Zgela, Theresa [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Wood, Bradford [Center for Interventional Oncology, National Institutes of Health, Bethesda, Maryland (United States); Pinto, Peter [Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Choyke, Peter; Turkbey, Baris [Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Citrin, Deborah E., E-mail: citrind@mail.nih.gov [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2017-04-01

    Purpose: Targeted magnetic resonance imaging (MRI)/ultrasound fusion prostate biopsy (MRI-Bx) has recently been compared with the standard of care extended sextant ultrasound-guided prostate biopsy (SOC-Bx), with the former associated with an increased rate of detection of clinically significant prostate cancer. The present study sought to determine the influence of MRI-Bx on radiation therapy and androgen deprivation therapy (ADT) recommendations. Methods and Materials: All patients who had received radiation treatment and had undergone SOC-Bx and MRI-Bx at our institution were included. Using the clinical T stage, pretreatment prostate-specific antigen, and Gleason score, patients were categorized into National Comprehensive Cancer Network risk groups and radiation treatment or ADT recommendations assigned. Intensification of the recommended treatment after multiparametric MRI, SOC-Bx, and MRI-Bx was evaluated. Results: From January 2008 to January 2016, 73 patients received radiation therapy at our institution after undergoing a simultaneous SOC-Bx and MRI-Bx (n=47 with previous SOC-Bx). Repeat SOC-Bx and MRI-Bx resulted in frequent upgrading compared with previous SOC-Bx (Gleason score 7, 6.7% vs 44.6%; P<.001; Gleason score 8-10, 2.1% vs 38%; P<.001). MRI-Bx increased the proportion of patients classified as very high risk from 24.7% to 41.1% (P=.027). Compared with SOC-Bx alone, including the MRI-Bx findings resulted in a greater percentage of pathologically positive cores (mean 37% vs 44%). Incorporation of multiparametric MRI and MRI-Bx results increased the recommended use and duration of ADT (duration increased in 28 of 73 patients and ADT was added for 8 of 73 patients). Conclusions: In patients referred for radiation treatment, MRI-Bx resulted in an increase in the percentage of positive cores, Gleason score, and risk grouping. The benefit of treatment intensification in accordance with the MRI-Bx findings is unknown.

  6. Ezetimibe for the treatment of nonalcoholic steatohepatitis: assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial).

    Loomba, Rohit; Sirlin, Claude B; Ang, Brandon; Bettencourt, Ricki; Jain, Rashmi; Salotti, Joanie; Soaft, Linda; Hooker, Jonathan; Kono, Yuko; Bhatt, Archana; Hernandez, Laura; Nguyen, Phirum; Noureddin, Mazen; Haufe, William; Hooker, Catherine; Yin, Meng; Ehman, Richard; Lin, Grace Y; Valasek, Mark A; Brenner, David A; Richards, Lisa

    2015-04-01

    Ezetimibe inhibits intestinal cholesterol absorption and lowers low-density lipoprotein cholesterol. Uncontrolled studies have suggested that it reduces liver fat as estimated by ultrasound in nonalcoholic steatohepatitis (NASH). Therefore, we aimed to examine the efficacy of ezetimibe versus placebo in reducing liver fat by the magnetic resonance imaging-derived proton density-fat fraction (MRI-PDFF) and liver histology in patients with biopsy-proven NASH. In this randomized, double-blind, placebo-controlled trial, 50 patients with biopsy-proven NASH were randomized to either ezetimibe 10 mg orally daily or placebo for 24 weeks. The primary outcome was a change in liver fat as measured by MRI-PDFF in colocalized regions of interest within each of the nine liver segments. Novel assessment by two-dimensional and three-dimensional magnetic resonance elastography was also performed. Ezetimibe was not significantly better than placebo at reducing liver fat as measured by MRI-PDFF (mean difference between the ezetimibe and placebo arms -1.3%, P = 0.4). Compared to baseline, however, end-of-treatment MRI-PDFF was significantly lower in the ezetimibe arm (15%-11.6%, P < 0.016) but not in the placebo arm (18.5%-16.4%, P = 0.15). There were no significant differences in histologic response rates, serum alanine aminotransferase and aspartate aminotransferase levels, or longitudinal changes in two-dimensional and three-dimensional magnetic resonance elastography-derived liver stiffness between the ezetimibe and placebo arms. Compared to histologic nonresponders (25/35), histologic responders (10/35) had a significantly greater reduction in MRI-PDFF (-4.35 ± 4.9% versus -0.30 ± 4.1%, P < 0.019). Ezetimibe did not significantly reduce liver fat in NASH. This trial demonstrates the application of colocalization of MRI-PDFF-derived fat maps and magnetic resonance elastography-derived stiffness maps of the liver before and after treatment to noninvasively assess treatment

  7. The Use of Cardiac Magnetic Resonance Imaging in the Diagnostic Workup and Treatment of Atrial Fibrillation

    Peter Haemers

    2012-01-01

    Full Text Available Atrial fibrillation (AF is the most common cardiac arrhythmia and imposes a huge clinical and economic burden. AF is correlated with an increased morbidity and mortality, mainly due to stroke and heart failure. Cardiovascular imaging modalities, including echocardiography, computed tomography (CT, and cardiovascular magnetic resonance (CMR, play a central role in the workup and treatment of AF. One of the major advantages of CMR is the high contrast to noise ratio combined with good spatial and temporal resolution, without any radiation burden. This allows a detailed assessment of the structure and function of the left atrium (LA. Of particular interest is the ability to visualize the extent of LA wall injury. We provide a focused review of the value of CMR in identifying the underlying pathophysiological mechanisms of AF, its role in stroke prevention and in the guidance of radiofrequency catheter ablation. CMR is a promising technique that could add valuable information for therapeutic decision making in specific subpopulations with AF.

  8. Detection of irradiation treatment in crustacea by electron spin resonance (ESR) spectroscopy

    Stewart, E.M. [Queen`s Univ., Belfast, Northern Ireland (United Kingdom). Dept. of Food Science; Stevenson, M.H. [Queen`s Univ., Belfast, Northern Ireland (United Kingdom). Dept. of Food Science]|[Department of Agriculture for Northern Ireland, Belfast (United Kingdom); Gray, R. [Department of Agriculture for Northern Ireland, Belfast (United Kingdom)

    1996-12-31

    When the Food (Control of Irradiation) Regulations 1990 came into force in the United Kingdom in January 1991 they included provision for the irradiation of Crustacea to an overall average dose of 3 kGy. The treatment of Crustacea with ionising radiation would reduce numbers of potential pathogens and spoilage organisms thus giving a microbiologically safer product with a longer shelf-life at chill temperatures. At present the process is being used in countries such as France and The Netherlands for the decontamination/shelf-life extension of shrimp. Therefore, as for other food products such as poultry, liquid whole egg and fruit, which are also treated with ionising radiation, it is desirable that a suitable test should be available to help in the control of the irradiation process. One such detection method which has been applied to irradiated Crustacea is that of electron spin resonance (ESR) spectroscopy due to the fact that the rigid exoskeleton has a relatively high dry matter so free radicals produced by ionising irradiation can be trapped and are, therefore, sufficiently stable to be detected. (author).

  9. Detection of irradiation treatment in crustacea by electron spin resonance (ESR) spectroscopy

    Stewart, E.M.; Gray, R.

    1996-01-01

    When the Food (Control of Irradiation) Regulations 1990 came into force in the United Kingdom in January 1991 they included provision for the irradiation of Crustacea to an overall average dose of 3 kGy. The treatment of Crustacea with ionising radiation would reduce numbers of potential pathogens and spoilage organisms thus giving a microbiologically safer product with a longer shelf-life at chill temperatures. At present the process is being used in countries such as France and The Netherlands for the decontamination/shelf-life extension of shrimp. Therefore, as for other food products such as poultry, liquid whole egg and fruit, which are also treated with ionising radiation, it is desirable that a suitable test should be available to help in the control of the irradiation process. One such detection method which has been applied to irradiated Crustacea is that of electron spin resonance (ESR) spectroscopy due to the fact that the rigid exoskeleton has a relatively high dry matter so free radicals produced by ionising irradiation can be trapped and are, therefore, sufficiently stable to be detected. (author)

  10. Assessment of treatment response in nonalcoholic steatohepatitis using advanced magnetic resonance imaging measures

    Lin, Steven C.; Heba, Elhamy; Bettencourt, Ricki; Lin, Grace Y.; Valasek, Mark A.; Lunde, Ottar; Hamilton, Gavin; Sirlin, Claude B.; Loomba, Rohit

    2017-01-01

    Background Magnetic resonance imaging derived measures of liver fat and volume are emerging as accurate, non-invasive imaging biomarkers in non-alcoholic steatohepatitis (NASH). Little is known about these measures in relation to histology longitudinally. Aims This study examines this relationship between MRI-derived proton-density fat-fraction (PDFF), total liver volume (TLV), total liver fat index (TLFI), vs. histology in a NASH trial. Methods This is a secondary analysis of a 24-week randomized, double-blind, placebo-controlled trial of 50 patients with biopsy-proven NASH randomized to oral ezetimibe 10mg daily (n=25) vs. placebo (n=25). Baseline and post-treatment anthropometrics, biochemical profiling, MRI, and biopsies were obtained. Results Baseline mean PDFF correlated strongly with TLFI (Spearman’s ρ=0.94, n=45, PMRI-PDFF vs. TLV indicates that 10% reduction in MRI-PDFF predicts 257 mL reduction in TLV. Conclusions MRI-PDFF and TLV strongly correlated with TLFI. Decreases in steatosis were associated with an improvement in hepatomegaly. Lower values of these measures reflect lower histologic-steatosis grades. MRI-derived measures of liver fat and volume may be used as dynamic and more responsive imaging biomarkers in a NASH trial than histology. ClinicalTrials.gov number, NCT01766713. PMID:28116801

  11. Monte Carlo treatment of resonance-radiation imprisonment in fluorescent lamps—revisited

    Anderson, James B.

    2016-12-01

    We reported in 1985 a Monte Carlo treatment of the imprisonment of the 253.7 nm resonance radiation from mercury in the mercury-argon discharge of fluorescent lamps. The calculated spectra of the emitted radiation were found in good agreement with measured spectra. The addition of the isotope mercury-196 to natural mercury was found, also in agreement with experiments, to increase lamp efficiency. In this paper we report the extension of the earlier work with increased accuracy, analysis of photon exit-time distributions, recycling of energy released in quenching, analysis of dynamic similarity for different lamp sizes, variation of Mrozowski transfer rates, prediction and analysis of the hyperfine ultra-violet spectra, and optimization of tailored mercury isotope mixtures for increased lamp efficiency. The spectra were found insensitive to the extent of quenching and recycling. The optimized mixtures were found to increase efficiencies by as much as 5% for several lamp configurations. Optimization without increasing the mercury-196 fraction was found to increase efficiencies by nearly 1% for several configurations.

  12. Monte Carlo treatment of resonance-radiation imprisonment in fluorescent lamps—revisited

    Anderson, James B

    2016-01-01

    We reported in 1985 a Monte Carlo treatment of the imprisonment of the 253.7 nm resonance radiation from mercury in the mercury–argon discharge of fluorescent lamps. The calculated spectra of the emitted radiation were found in good agreement with measured spectra. The addition of the isotope mercury-196 to natural mercury was found, also in agreement with experiments, to increase lamp efficiency. In this paper we report the extension of the earlier work with increased accuracy, analysis of photon exit-time distributions, recycling of energy released in quenching, analysis of dynamic similarity for different lamp sizes, variation of Mrozowski transfer rates, prediction and analysis of the hyperfine ultra-violet spectra, and optimization of tailored mercury isotope mixtures for increased lamp efficiency. The spectra were found insensitive to the extent of quenching and recycling. The optimized mixtures were found to increase efficiencies by as much as 5% for several lamp configurations. Optimization without increasing the mercury-196 fraction was found to increase efficiencies by nearly 1% for several configurations. (paper)

  13. Magnetic resonance imaging of post-traumatic syringomyelia and its surgical treatment

    Isu, Toyohiko; Iwasaki, Yoshinobu; Nunomura, Mitsuru; Akino, Minoru; Koyanagi, Izumi; Abe, Hiroshi [Hokkaido Univ., Sapporo (Japan). School of Medicine; Saito, Hisatoshi

    1991-01-01

    The purpose of this study was to review magnetic resonance imaging (MRI) scans of post-traumatic syringomyelia and to assess the outcome of surgical treatment. The subjects were 16 patients (13 men and 3 women) whose ages ranged from 22 to 69 years, with a mean of 42 years. Nine patients had delayed neurologic symptoms 2 years and 2 months through 32 years after spinal injuries. The site of initial spinal cord injury was the lower cervical region in 4 patients, the thoracic region in 8, and the upper lumbar region in 4. In all patients, post-traumatic syringomyelia was easy to diagnose on MRI. MRI showed the syrinx extending superiorly and/or inferiorly from the area of old trauma, sometimes extending to the medulla oblongata. In the cervical cord and the upper thoracic cord, the syrinx was unilaterally or bilaterally situated in the postero-lateral portion. Below the middle thoracic cord, the syrinx was centrally located. Surgery was performed in 6 patients. At an average follow up of 2 years and 9 months, both pain and numbness were relieved in all patients (100%) and neurologic symptoms improved in 5 patients (83%). Post-traumatic syringomyelia should be considered in all patients having delayed onset or aggravation of neurologic symptoms after spinal injury. MRI appears promising for the early diagnosis of post-traumatic syringomyelia that can be treated favorably by surgical procedures. (N.K.).

  14. Magnetic resonance imaging of post-traumatic syringomyelia and its surgical treatment

    Isu, Toyohiko; Iwasaki, Yoshinobu; Nunomura, Mitsuru; Akino, Minoru; Koyanagi, Izumi; Abe, Hiroshi; Saito, Hisatoshi.

    1991-01-01

    The purpose of this study was to review magnetic resonance imaging (MRI) scans of post-traumatic syringomyelia and to assess the outcome of surgical treatment. The subjects were 16 patients (13 men and 3 women) whose ages ranged from 22 to 69 years, with a mean of 42 years. Nine patients had delayed neurologic symptoms 2 years and 2 months through 32 years after spinal injuries. The site of initial spinal cord injury was the lower cervical region in 4 patients, the thoracic region in 8, and the upper lumbar region in 4. In all patients, post-traumatic syringomyelia was easy to diagnose on MRI. MRI showed the syrinx extending superiorly and/or inferiorly from the area of old trauma, sometimes extending to the medulla oblongata. In the cervical cord and the upper thoracic cord, the syrinx was unilaterally or bilaterally situated in the postero-lateral portion. Below the middle thoracic cord, the syrinx was centrally located. Surgery was performed in 6 patients. At an average follow up of 2 years and 9 months, both pain and numbness were relieved in all patients (100%) and neurologic symptoms improved in 5 patients (83%). Post-traumatic syringomyelia should be considered in all patients having delayed onset or aggravation of neurologic symptoms after spinal injury. MRI appears promising for the early diagnosis of post-traumatic syringomyelia that can be treated favorably by surgical procedures. (N.K.)

  15. Magnetic resonance imaging for the treatment planning in invasive of the cervix in pregnant women

    Panek, G.; Bidzinski, M.; Krynicki, R.; Sobiczewski, P.; Ceran, A.

    2004-01-01

    To evaluate magnetic resonance imaging (MRI) in the planning of optimal treatment- radiotherapy or radical surgery in pregnant patients with invasive carcinoma of the cervix. Material and methods. Four patients with invasive carcinoma of the cervix in pregnancy underwent MRI for evaluation of the tumor extent with an emphasis on parametrial invasion and pelvic lymph node metastases. In all 4 patients the diagnosis of carcinoma of the cervix was established in the first trimester of pregnancy. Clinical stage I B was confirmed in two patients, II B in one patient and I A in one patient. The first patient with stage I B disease was treated with radical Wertheim 's hysterectomy. The second patient with stage I B was found inoperable due to bladder involvement not revealed by the MRI. This patient was subsequently treated with radiotherapy. The microscopic examination confirmed deep infiltration of the cervical stroma as detected by preoperative MRI in the radically operated case and the presence of metastases to the pelvic nodes in both patients, also detected by MRI. The third patient with stage IIB disease was treated with external beam irradiation to the pelvis and intracavitary brachytherapy. In the course of follow-up ranging from 9 to 35 months one patient recurred in the paraaortic region and was subsequently treated with surgery and adjuvant chemotherapy. MRI is a useful tool for noninvasive staging of pregnant patients with invasive carcinoma of the cervix. All data suggesting a subclinical spread of the tumor outside the cervix may be helpful in selecting the optimal method of treatment. (author)

  16. Longitudinal in vivo magnetic resonance imaging studies in experimental allergic encephalomyelitis: effect of a neurotrophic treatment on cortical lesion development

    Gispen, W.H. [Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Medical Faculty, Utrecht University Utrecht (Netherlands); Nicolay, K. [Department of in vivo NMR, Bijvoet Center, Utrecht University Utrecht (Netherlands); Verhaagen, J. [Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Medical Faculty, Utrecht University Utrecht (Netherlands); Muller, H.J. [Department of in vivo NMR, Bijvoet Center, Utrecht University Utrecht (Netherlands); Duckers, H.J. [Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Medical Faculty, Utrecht University Utrecht (Netherlands)

    1997-02-14

    Proton magnetic resonance imaging enables non-invasive monitoring of lesion formation in multiple sclerosis and has an important role in assessing the potential effects of therapy. T2-weighted and short {tau} inversion recovery magnetic resonance imaging were used to assess the effect of a neurotrophic adrenocorticotrophic hormone{sub 4-9} analogue [H-Met(O{sub 2})-Glu-His-Phe-d-Lys-Phe-OH] on the volume of lesions in the brains of rats suffering from chronic experimental allergic encephalomyelitis, an animal equivalent of multiple sclerosis. Lesion volume was monitored during a five-month period. Magnetic resonance imaging indicated that treatment with the adrenocorticotrophic hormone{sub 4-9} analogue significantly reduced the lesion volume by 84 and 85% 10 and 20 weeks after lesion induction, respectively. Furthermore, peptide treatment significantly reduced chronic experimental allergic encephalomyelitis-related neurological symptoms during the chronic phase of the disease (week 3 until week 20 after lesion induction). Both functional and morphological recovery were considerably advanced by peptide treatment. Twenty weeks after lesion induction rats with chronic experimental allergic encephalomyelitis were killed for histological analysis, to correlate magnetic resonance imaging findings with morphological changes. The regions of abnormally high signal intensities on T2-weighted magnetic resonance images coincided with areas of demyelination and concomitant widespread inflammatory infiltration, oedema formation and enlarged ventricles.The improved neurological status and the 84% reduction in the lesion volume in the cerebrum of rats chronic experimental allergic encephalomyelitis point to the potential value of trophic peptides in the development of strategies for limiting the damage caused by central demyelinating lesions in syndromes such as multiple sclerosis. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Treatment of arteriovenous malformations with stereotactic radiosurgery employing both magnetic resonance angiography and standard angiography as a database

    Petereit, D.; Mehta, M.; Turski, P.; Levin, A.; Strother, C.; Mistretta, C.; Mackie, R.; Gehring, M.; Kubsad, S.; Kinsella, T.

    1993-01-01

    Twenty-one arteriovenous malformations were prospectively evaluated using magnetic resonance angiography, compare it to stereotactic angiography, employ magnetic resonance angiography in follow-up, and semiquanitfy flow. A correlative evaluation between flow and response to stereotactic radiosurgery was carried out. Phase contrast angiograms were obtained at flow velocities of 400, 200, 100, 60 and 20 cm/sec. The fractionated velocities provided images that selectively demonstrated the arterial and venous components of the arteriovenous malformations. Qualitative assessment of the velocity within the arteriovenous malformations and the presence of fistulae were also determined by multiple velocity images. In addition, 3-dimensional time-of-flight magnetic resonance angiograms were obtained to define the exact size and shape of the nidus. This technique also permitted evaluation of the nidus and feeding arteries for the the presence of low flow aneurysms. Correlation between the two imaging modalities was carried out by subjective and semiquantitative estimation of flow velocity and estimation of nidus size. The following velocity parameters were employed: fast, intermediate, slow, and none. Early analysis suggests that slower flowing arteriovenous malformations may obliterate faster after stereotactic radiosurgery an flow parameters should be employed to predict response. In conclusion, magnetic resonance angiography permits semiquantitative flow velocity assessment and may therefore be superior to stereotactic angiography. An additional advantage of magnetic resonance angiography is the generation of serial transverse images which can replace the conventional CT scan employed for stereotactic radiosurgery treatment planning. A single diagnostic test may therefore be used for diagnosis, radiosurgical treatment planning, follow-up, and treatment selection by identifying patients likely to respond early to radiosurgical management

  18. Longitudinal in vivo magnetic resonance imaging studies in experimental allergic encephalomyelitis: effect of a neurotrophic treatment on cortical lesion development

    Gispen, W.H.; Nicolay, K.; Verhaagen, J.; Muller, H.J.; Duckers, H.J.

    1997-01-01

    Proton magnetic resonance imaging enables non-invasive monitoring of lesion formation in multiple sclerosis and has an important role in assessing the potential effects of therapy. T2-weighted and short τ inversion recovery magnetic resonance imaging were used to assess the effect of a neurotrophic adrenocorticotrophic hormone 4-9 analogue [H-Met(O 2 )-Glu-His-Phe-d-Lys-Phe-OH] on the volume of lesions in the brains of rats suffering from chronic experimental allergic encephalomyelitis, an animal equivalent of multiple sclerosis. Lesion volume was monitored during a five-month period. Magnetic resonance imaging indicated that treatment with the adrenocorticotrophic hormone 4-9 analogue significantly reduced the lesion volume by 84 and 85% 10 and 20 weeks after lesion induction, respectively. Furthermore, peptide treatment significantly reduced chronic experimental allergic encephalomyelitis-related neurological symptoms during the chronic phase of the disease (week 3 until week 20 after lesion induction). Both functional and morphological recovery were considerably advanced by peptide treatment. Twenty weeks after lesion induction rats with chronic experimental allergic encephalomyelitis were killed for histological analysis, to correlate magnetic resonance imaging findings with morphological changes. The regions of abnormally high signal intensities on T2-weighted magnetic resonance images coincided with areas of demyelination and concomitant widespread inflammatory infiltration, oedema formation and enlarged ventricles.The improved neurological status and the 84% reduction in the lesion volume in the cerebrum of rats chronic experimental allergic encephalomyelitis point to the potential value of trophic peptides in the development of strategies for limiting the damage caused by central demyelinating lesions in syndromes such as multiple sclerosis. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection.

    Sailasuta, Napapon; Ross, William; Ananworanich, Jintanat; Chalermchai, Thep; DeGruttola, Victor; Lerdlum, Sukalaya; Pothisri, Mantana; Busovaca, Edgar; Ratto-Kim, Silvia; Jagodzinski, Linda; Spudich, Serena; Michael, Nelson; Kim, Jerome H; Valcour, Victor

    2012-01-01

    Single voxel proton magnetic resonance spectroscopy (MRS) can be used to monitor changes in brain inflammation and neuronal integrity associated with HIV infection and its treatments. We used MRS to measure brain changes during the first weeks following HIV infection and in response to antiretroviral therapy (ART). Brain metabolite levels of N-acetyl aspartate (NAA), choline (tCHO), creatine (CR), myoinositol (MI), and glutamate and glutamine (GLX) were measured in acute HIV subjects (n = 31) and compared to chronic HIV+individuals (n = 26) and HIV negative control subjects (n = 10) from Bangkok, Thailand. Metabolites were measured in frontal gray matter (FGM), frontal white matter (FWM), occipital gray matter (OGM), and basal ganglia (BG). Repeat measures were obtained in 17 acute subjects 1, 3 and 6 months following initiation of ART. After adjustment for age we identified elevated BG tCHO/CR in acute HIV cases at baseline (median 14 days after HIV infection) compared to control (p = 0.0014), as well as chronic subjects (p = 0.0023). A similar tCHO/CR elevation was noted in OGM; no other metabolite abnormalities were seen between acute and control subjects. Mixed longitudinal models revealed resolution of BG tCHO/CR elevation after ART (p = 0.022) with tCHO/CR similar to control subjects at 6 months. We detected cellular inflammation in the absence of measurable neuronal injury within the first month of HIV infection, and normalization of this inflammation following acutely administered ART. Our findings suggest that early ART may be neuroprotective in HIV infection by mitigating processes leading to CNS injury.

  20. Association between magnetic resonance imaging findings of uterine leiomyomas and symptoms demanding treatment

    Ruuskanen, Anu J., E-mail: anu.ruuskanen@kuh.fi [Department of Clinical Radiology, Kuopio University Hospital, Kuopio (Finland); Hippelaeinen, Maritta I., E-mail: maritta.hippelainen@kuh.fi [Department of Obstetrics and Gynaecology, Kuopio University Hospital, Kuopio (Finland); Sipola, Petri, E-mail: petri.sipola@kuh.fi [Department of Clinical Radiology, Kuopio University Hospital, Kuopio (Finland); University of Eastern Finland, Faculty of Health Sciences, Institute of Clinical Medicine, Kuopio (Finland); Manninen, Hannu I., E-mail: hannu.manninen@kuh.fi [Department of Clinical Radiology, Kuopio University Hospital, Kuopio (Finland); University of Eastern Finland, Faculty of Health Sciences, Institute of Clinical Medicine, Kuopio (Finland)

    2012-08-15

    Purpose: To evaluate the association between magnetic resonance imaging (MRI) derived uterine and leiomyoma characteristics and symptoms demanding treatment. Materials and methods: Consecutive patients (n = 122; mean age, 47.5 years) with symptomatic leiomyomas participated in a prospective study. The leiomyoma/endometrium relationship, sizes of leiomyomas and uteri, and number and enhancement of leiomyomas were determined by MRI. Submucosal leiomyomas were classified as protruding either {>=}50% or <50% into the uterine cavity. Results: Sixty-nine patients (57%) had menorrhagia and pressure symptoms, while 26 (21%) had only menorrhagia and 27 (22%) pressure symptoms alone. Leiomyomas with {>=}50% protrusion into the uterine cavity were detected more often in patients with both symptoms or just menorrhagia than in those with pressure symptoms only (18/69 [26%] versus 1/27 [4%], P = 0.013; 10/26 [39%] versus 1/27 [4%], P = 0.002, respectively). The degree of enhancement of leiomyomas was higher (P = 0.005) and leiomyomas were smaller (P = 0.002) in patients with menorrhagia than in those with pressure symptoms. Large uterine and leiomyoma measures were associated with increased urinary frequency (P values 0.002-0.032). Urinary stress incontinence, abdominal pain, and pressure on the back were not associated with MRI findings. Conclusion: In comparison with pressure symptoms, menorrhagia is associated with smaller uterine and leiomyoma size and with more intense enhancement. While a submucosal leiomyoma largely protruding into the cavity contributes to menorrhagia, significance of a minor submucosal component seems to be unclear. The large leiomyoma and uterine volumes contribute to increased urinary frequency, whereas other mechanisms for urinary stress incontinence and pain symptoms should be considered.

  1. Production of atmospheric pressure microwave plasma with dielectric half-mirror resonator and its application to polymer surface treatment

    Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka

    2018-06-01

    For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.

  2. Treatment of External Levels in Neutron Resonance Fitting: Application to the Nonfissile Nuclide 52Cr

    Froehner, Fritz H.; Bouland, Olivier

    2001-01-01

    Measured neutron resonance cross sections are usually analyzed and parametrized by fitting theoretical curves to high-resolution point data. Theoretically, the cross sections depend mainly on the 'internal' levels inside the fitted energy range but also on the 'external' levels outside. Although the external levels are mostly unknown, they must be accounted for. If they are simply omitted, the experimental data cannot be fitted satisfactorily. Especially with elastic scattering and total cross-section data, one gets troublesome edge effects and difficulties with the potential cross section between resonances. Various ad hoc approaches to these problems are still being used, involving replacement of the unknown levels by equidistant ('picket fence') or Monte Carlo-sampled resonance sequences, or replication of the internal level sequence; however, more convenient, better working, and theoretically sound techniques have been available for decades. These analytical techniques are reviewed. They describe the contribution of external levels to the R matrix concisely in terms of average resonance parameters (strength function, effective radius, etc.). A more recent, especially convenient approximation accounts for the edge effects by just one fictitious pair of very broad external resonances. Fitting the thermal region, including accurately known thermal cross sections, is often done by adjusting a number of bound levels by trial and error, although again a simple analytical recipe involving just one bound level has been available for a long time. For illustration, these analytical techniques are applied to the resolved resonance region of 52 Cr. The distinction between channel radii and effective radii, crucial in the present context, is emphasized

  3. Moderate plasma treatment enhances the quality of optically detected magnetic resonance signals of nitrogen-vacancy centres in nanodiamonds

    Sotoma, Shingo; Igarashi, Ryuji; Shirakawa, Masahiro

    2016-05-01

    We demonstrate that a moderate plasma treatment increases the quality of optically detected magnetic resonance (ODMR) signals from negatively charged nitrogen-vacancy centres in nanodiamonds (NDs). We measured the statistics of the ODMR spectra of 50-nm-size NDs before and after plasma treatment. We then evaluated each ODMR spectrum in terms of fluorescence and ODMR intensities, line width and signal-to-noise (SN) ratio. Our results showed that plasma treatment for more than 10 min contributes to higher-quality ODMR signals, i.e. signals that are brighter, stronger, sharper and have a higher SN ratio. We showed that such signal improvement is due to alteration of the surface chemical states of the NDs by the plasma treatment. Our study contributes to the advancement of biosensing applications using ODMR of NDs.

  4. Radially and azimuthally dependent resonance self-shielding treatment for general multi-region geometry based on a unified theory

    Koike, Hiroki; Kirimura, Kazuki; Yamaji, Kazuya; Kosaka, Shinya; Yamamoto, Akio

    2018-01-01

    A unified resonance self-shielding method, which can treat general sub-divided fuel regions, is developed for lattice physics calculations in reactor physics field. In a past study, a hybrid resonance treatment has been developed by theoretically integrating equivalence theory and ultra-fine-group slowing-down calculation. It can be applied to a wide range of neutron spectrum conditions including low moderator density ranges in severe accident states, as long as each fuel region is not sub-divided. In order to extend the method for radially and azimuthally sub-divided multi-region geometry, a new resonance treatment is established by incorporating the essence of sub-group method. The present method is composed of two-step flux calculation, i.e. 'coarse geometry + fine energy' (first step) and 'fine geometry + coarse energy' (second step) calculations. The first step corresponds to a hybrid model of the equivalence theory and the ultra-fine-group calculation, and the second step corresponds to the sub-group method. From the verification results, effective cross-sections by the new method show good agreement with the continuous energy Monte-Carlo results for various multi-region geometries including non-uniform fuel compositions and temperature distributions. The present method can accurately generate effective cross-sections with short computation time in general lattice physics calculations. (author)

  5. Determination of proteins and carbohydrates in the effluents from wastewater treatment bioreactors using resonance light-scattering method.

    Zhang, Meng-Lin; Sheng, Guo-Ping; Yu, Han-Qing

    2008-07-01

    A simple and sensitive method was developed for the determination of low-concentration proteins and carbohydrates in the effluents from biological wastewater treatment reactors using resonance light-scattering (RLS) technique. Two ionic dyes, Congo red and Neutral red were, respectively used as an RLS probes for the determination of proteins and carbohydrates. This method is based on the interactions between biomacromolecules and dyes, which cause a substantial increase in the resonance scattering signal of dyes in the wavelength range of 200-650 nm. The characteristics of RLS spectra of the macromolecule-dye complexes, influencing factors, and optimum analytical conditions for the measurement were explored. The method was satisfactorily applied to the measurement of proteins and carbohydrates in the effluents from 10 aerobic or anaerobic bioreactors, and a high sensitivity were achieved.

  6. Magnetic resonance imaging-based detection of glial brain tumors in mice after antiangiogenic treatment.

    Claes, A.; Gambarota, G.; Hamans, B.C.; Tellingen, O. van; Wesseling, P.; Maass, C.N.; Heerschap, A.; Leenders, W.P.J.

    2008-01-01

    Proper delineation of gliomas using contrast-enhanced magnetic resonance imaging (CE-MRI) poses a problem in neuro-oncology. The blood brain barrier (BBB) in areas of diffuse-infiltrative growth may be intact, precluding extravasation and subsequent MR-based detection of the contrast agent

  7. A schizophrenia rat model induced by early postnatal phencyclidine treatment and characterized by Magnetic Resonance Imaging

    Broberg, Brian V; Madsen, Kristoffer H; Plath, Niels

    2013-01-01

    administration of phencyclidine (PCP) induces schizophrenia-like symptoms in healthy volunteers and exacerbates symptoms in patients with schizophrenia. In this study, pharmacological Magnetic Resonance Imaging (phMRI) was used to evaluate if rats treated with 20mg/kg PCP on postnatal days 7, 9, and 11 (neo...

  8. Air-electron stream interactions during magnetic resonance IGRT. Skin irradiation outside the treatment field during accelerated partial breast irradiation

    Park, Jong Min; Shin, Kyung Hwan; Wu, Hong-Gyun; Kim, Jung-in; Park, So-Yeon; Kim, Jin Ho; Jeon, Seung Hyuck; Choi, Noorie

    2018-01-01

    To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm 2 , respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field. (orig.) [de

  9. Giant cell tumor of the tendon sheath of the hand - magnetic resonance image and orthopaedic treatment

    Kirova, G.; Monovska, T.; Jablanski, V.; Alexieva, K.; Velev, M.

    2009-01-01

    Giant cell tumour of the tendon sheath (GCT-TS), also known as localized nodular tenosynovitis, is a benign neoplasm that occurs dominantly on the digits. These tumours most commonly occur in patients aged 30-50 years and are associated with degenerative joint disease. GCT-TS usually arises from the synovium of tendon sheets, affecting interfalangeal joints of the hand, feet, ankle and knees. Magnetic Resonance Imaging is able to depict characteristic signal intensities and can accurately assess the tumor size and degree of extent around the phalanx. We present a case of a 36 years-old male patient with GCT-TS in the flexor tendon of his left second finger, diagnosed with Magnetic Resonance imaging. The mass was excised widely with preservation of the flexor tendon without recurrence. (authors)

  10. Magnetic Resonance-Based Treatment Planning for Prostate Intensity-Modulated Radiotherapy: Creation of Digitally Reconstructed Radiographs

    Chen, Lili; Nguyen, Thai-Binh; Jones, Elan; Chen Zuoqun; Luo Wei; Wang Lu; Price, Robert A.; Pollack, Alan; Ma, C.-M. Charlie

    2007-01-01

    Purpose: To develop a technique to create magnetic resonance (MR)-based digitally reconstructed radiographs (DRR) for initial patient setup for routine clinical applications of MR-based treatment planning for prostate intensity-modulated radiotherapy. Methods and Materials: Twenty prostate cancer patients' computed tomography (CT) and MR images were used for the study. Computed tomography and MR images were fused. The pelvic bony structures, including femoral heads, pubic rami, ischium, and ischial tuberosity, that are relevant for routine clinical patient setup were manually contoured on axial MR images. The contoured bony structures were then assigned a bulk density of 2.0 g/cm 3 . The MR-based DRRs were generated. The accuracy of the MR-based DDRs was quantitatively evaluated by comparing MR-based DRRs with CT-based DRRs for these patients. For each patient, eight measuring points on both coronal and sagittal DRRs were used for quantitative evaluation. Results: The maximum difference in the mean values of these measurement points was 1.3 ± 1.6 mm, and the maximum difference in absolute positions was within 3 mm for the 20 patients investigated. Conclusions: Magnetic resonance-based DRRs are comparable to CT-based DRRs for prostate intensity-modulated radiotherapy and can be used for patient treatment setup when MR-based treatment planning is applied clinically

  11. Magnetic resonance imaging in the repair of ruptured Achilles tendons. Morphological difference in healing process between conservative and surgical treatment

    Nakano, Tetsuo; Tsuruta, Takao; Abe, Yasuyuki; Tani, Akifumi; Koga, Toshimitsu; Shimizu, Yasuhiro

    1996-01-01

    We observed the healing process of ruptured Achilles tendons in a series using magnetic resonance imaging. In six cases, tendons were repaired percutaneously with limited skin incisions. Seven cases were treated conservatively using unique functional braces. MR imaging revealed two different modes of conjoining. In the conservatively treated group, tendons inclined to conjoin in a dumbbell shape. In the surgically treated group, they inclined to conjoin in a spindle shape. The diameters of the ruptured part are wider in the spindle shape compared to the dumbbell shape at all stages. These findings suggest that surgical treatment is favorable for acquiring earlier strength. (author)

  12. Magnetic resonance imaging for pain after surgical treatment for athletic pubalgia and the "sports hernia".

    Zoga, Adam C; Meyers, William C

    2011-09-01

    Magnetic resonance (MR) imaging technique and findings in the setting of athletic pubalgia, including injury at the rectus abdominis/adductor aponeurosis, are becoming widely recognized. A subset of these patients is treated with various pelvic floor repairs, mesh reinforcements, and tendon releases. Most of these patients do well after intervention, but some have persistent or refractory groin pain, and others eventually develop new injuries in the pubic region or elsewhere about the pelvic girdle. This review describes the expected and some unexpected MRI findings in patients with recurrent or persistent groin pain after a "sports hernia" repair. © Thieme Medical Publishers.

  13. Magnetic resonance imaging findings as predictors of clinical outcome in patients with sciatica receiving active conservative treatment

    Jensen, Tue Secher; Albert, Hanne B; Sorensen, Joan S

    2007-01-01

    OBJECTIVE: The aims of this study were to investigate the possible prognostic value of disk-related magnetic resonance imaging (MRI) findings in relation to recovery at 14 months in patients with severe sciatica, and whether improvement of disk herniation and/or nerve root compromise is concurrent...... with recovery. METHODS: All patients included in this prospective observational study of patients with sciatica receiving active conservative treatment were scanned at baseline and at 14 months' follow-up. Definite recovery at follow-up was defined as an absence of sciatic leg pain and a Roland Morris...... in that the prevalence of disk-related MRI findings was different for men and women, and they had different recovery rates. Improvement of disk herniations and nerve root compromise over time did not coincide with definite recovery. CONCLUSIONS: In patients with sciatica receiving active conservative treatment, broad...

  14. The treatment of crigler-najjar syndrome by blue light as explained by resonant recognition model

    Cosic Irena

    2016-12-01

    However, the blue light treatment is less effective with ageing, due to decrease of the blue lightpenetration through skin. Thus, there is a need for alternative treatments. Here, we propose to design de-novopeptide, using this specific RRM frequency. Such peptide, according to RRM, is proposed to have the samebiological function as UDP glucuronosyltransferase 1-A1 and thus can be used for alternative treatment of Crigler-Najjar syndrome.

  15. Osteonecrosis in children treated for acute lymphoblastic leukemia: a magnetic resonance imaging study after treatment

    Ojala, A.; Lanning, F.; Paakko, E.; Lanning, B. [Oulu Univ. (Finland)

    1998-02-01

    The purpose of this study was to find out the prevalence of osteonecrosis in children with acute lymphoblastic leukaemia (ALL) in complete bone marrow remission at the end of the treatment. Finally, the study suggests that the intensification phase of the treatment protocols with intensive dexamethasone medication might be responsible for the development of osteonecrosis. (N.C.)

  16. Osteonecrosis in children treated for acute lymphoblastic leukemia: a magnetic resonance imaging study after treatment

    Ojala, A.; Lanning, F.; Paakko, E.; Lanning, B.

    1998-01-01

    The purpose of this study was to find out the prevalence of osteonecrosis in children with acute lymphoblastic leukaemia (ALL) in complete bone marrow remission at the end of the treatment. Finally, the study suggests that the intensification phase of the treatment protocols with intensive dexamethasone medication might be responsible for the development of osteonecrosis. (N.C.)

  17. Air-electron stream interactions during magnetic resonance IGRT : Skin irradiation outside the treatment field during accelerated partial breast irradiation.

    Park, Jong Min; Shin, Kyung Hwan; Kim, Jung-In; Park, So-Yeon; Jeon, Seung Hyuck; Choi, Noorie; Kim, Jin Ho; Wu, Hong-Gyun

    2018-01-01

    To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm 2 , respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field.

  18. Magnetic resonance imaging of the bone marrow following treatment with recombinant human erythropoietin in patients with end-stage renal disease

    Jensen, K E; Stenver, D; Jensen, M

    1990-01-01

    We used magnetic resonance imaging (MRI) to study vertebral bone marrow in hemodialysis patients during treatment with recombinant human erythropoietin (rHuEPO). We found changes in T1 relaxation times and image contrast within 14 days after starting treatment, before any response was seen in the...

  19. Hippocampal Neurometabolite Changes in Hypothyroidism: An In Vivo (1) H Magnetic Resonance Spectroscopy Study Before and After Thyroxine Treatment.

    Singh, S; Rana, P; Kumar, P; Shankar, L R; Khushu, S

    2016-09-01

    The hippocampus is a thyroid hormone receptor-rich region of the brain. A change in thyroid hormone levels may be responsible for an alteration in hippocampal-associated function, such as learning, memory and attention. Neuroimaging studies have shown functional and structural changes in the hippocampus as a result of hypothyroidism. However, the underlying process responsible for this dysfunction remains unclear. Therefore, the present study aimed to investigate the metabolic changes in the brain of adult hypothyroid patients during pre- and post-thyroxine treatment using in vivo proton magnetic resonance spectroscopy ((1) H MRS). (1) H MRS was performed in both healthy control subjects (n = 15) and hypothyroid patients (n = 15) (before and after thyroxine treatment). The relative ratios of the neurometabolites were calculated using the linear combination model (LCModel). Our results revealed a significant decrease of glutamate (Glu) (P = 0.045) and myo-inositol (mI) (P = 0.002) levels in the hippocampus of hypothyroid patients compared to controls. No significant changes in metabolite ratios were observed in the hypothyroid patients after thyroxine treatment. The findings of the present study reveal decreased Glu/tCr and mI/tCr ratios in the hippocampus of hypothyroid patients and these metabolite alterations persisted even after the patients became clinically euthyroid subsequent to thyroxine treatment. © 2016 British Society for Neuroendocrinology.

  20. Can cardiovascular magnetic resonance prompt early cardiovascular/rheumatic treatment in autoimmune rheumatic diseases? Current practice and future perspectives.

    Mavrogeni, Sophie I; Sfikakis, Petros P; Dimitroulas, Theodoros; Koutsogeorgopoulou, Loukia; Katsifis, Gikas; Markousis-Mavrogenis, George; Kolovou, Genovefa; Kitas, George D

    2018-06-01

    Life expectancy in autoimmune rheumatic diseases (ARDs) remains lower compared to the general population, due to various comoborbidities. Cardiovascular disease (CVD) represents the main contributor to premature mortality. Conventional and biologic disease-modifying antirheumatic drugs (DMARDs) have considerably improved long-term outcomes in ARDs not only by suppressing systemic inflammation but also by lowering CVD burden. Regarding atherosclerotic disease prevention, EULAR has recommended tight disease control accompanied by regular assessment of traditional CVD risk factors and lifestyle changes. However, this approach, although rational and evidence-based, does not account for important issues such as myocardial inflammation and the long asymptomatic period that usually proceeds clinical manifestations of CVD disease in ARDs before or after the diagnosis of systemic disease. Cardiovascular magnetic resonance (CMR) can offer reliable, reproducible and operator independent information regarding myocardial inflammation, ischemia and fibrosis. Some studies suggest a role for CMR in the risk stratification of ARDs and demonstrate that oedema/fibrosis visualisation with CMR may have the potential to inform cardiac and rheumatic treatment modification in ARDs with or without abnormal routine cardiac evaluation. In this review, we discuss how CMR findings could influence anti-rheumatic treatment decisions targeting optimal control of both systemic and myocardial inflammation irrespective of clinical manifestations of cardiac disease. CMR can provide a different approach that is very promising for risk stratification and treatment modification; however, further studies are needed before the inclusion of CMR in the routine evaluation and treatment of patients with ARDs.

  1. Cardiac effects of 3 months treatment of acromegaly evaluated by magnetic resonance imaging and B-type natriuretic peptides

    Andreassen, Mikkel; Faber, Jens; Kjær, Andreas

    2010-01-01

    Long-term treatment of acromegaly prevents aggravation and reverses associated heart disease. A previous study has shown a temporary increase in serum levels of the N-terminal fraction of pro B-type natriuretic peptide (NT-proBNP) suggesting an initial decline in cardiac function when treatment...... of acromegaly is initiated. This was a three months prospective study investigating short-term cardiac effects of treatment in acromegalic patients. Cardiac function was evaluated by the gold standard method cardiac magnetic resonance imaging (CMRI) and circulating levels of B-type natriuretic peptides (BNP......) (95% CI 3-14), P = 0.007) and an increase in levels of BNP (median (ranges) 7 (0.58-286) vs. 20 (1-489) pg/mL, P = 0.033) and of NT-proBNP (63 (20-1004) vs. 80 (20-3391) pg/mL, P = 0.027). Assessed by the highly sensitive and precise CMRI method, 3 months treatment of acromegaly resulted...

  2. Acute renal metabolic effect of metformin treatment assessed with hyperpolarized magnetic resonance imaging

    Qi, Haiyun; Nielsen, Per Mose; Schroeder, Marie

    2017-01-01

    Metformin is the primary anti-diabetic drug in type-2 diabetes patients. However, controversy exists on its use in patients with renal impairment. Here we investigated the acute metabolic effects of metformin treatment in rat kidneys, with hyperpolarized 13C pyruvate and Clark......-electrodes. A significantly altered metabolic phenotype was observed 30 min post metformin treatment. Anaerobic metabolism was elevated in the cytosol, indicated by increased lactate/pyruvate ratio, and mitochondrial aerobic metabolism was reduced, indicated by decreased bicarbonate/pyruvate ratio. Acute metformin treatment...... increased renal blood flow with higher O2 saturation and did not change tubular O2 consumption. These results indicate that metformin reduces mitochondrial respiration and enhances anaerobic metabolism, even with enough oxygen supply, within only 30 min of treatment....

  3. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a 60Co Magnetic Resonance Image Guidance Radiation Therapy System

    Wooten, H. Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H. Harold; Mutic, Sasa

    2015-01-01

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating 60 Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create 60 Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The 60 Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All 60 Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for 60 Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all 60 Co plan OARs were within clinical tolerances. Conclusions: A commercial 60 Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system

  4. Magnetic resonance imaging following treatment of advanced hepatocellular carcinoma with sorafenib

    Joon-Il Choi

    2014-06-01

    Full Text Available Hepatocellular carcinomas are highly vascular tumors, showing progressive hypervascularity by the process of neoangiogenesis. Tumor angiogenesis is critical for tumor growth as well as metastatic spread therefore, imaging and quantification of tumor neo-angiogenesis is essential for monitoring response to targeted therapies and predicting disease progression. Sorafenib is a molecular targeting agent used for treating hypervascular tumors. This drug is now the standard of care in treatment of patients with advanced hepatocellular carcinoma. Due to its anti-angiogenic and anti-proliferative actions, imaging findings following treatment with Sorafenib are quite distinct when compared to conventional chemotherapeutic agents. Liver MRI is a widely adopted imaging modality for assessing treatment response in hepatocellular carcinoma and imaging features may reflect pathophysiological changes within the tumor. In this mini-review, we will discuss MRI findings after Sorafenib treatment in hepatocellular carcinoma and review the feasibility of MRI as an early biomarker in differentiating responders from non-responders after treatment with molecular targeting agents.

  5. Approximate treatment of the deuteron+nucleus interaction in the resonating-group formulation

    Kaneko, T.

    1995-01-01

    A simplified version of the microscopic resonating-group method (RGM), called model K, is formulated for the deuteron+nucleus problem by making the simplifications of approximately treating the total center-of-mass motion and keeping only the direct and knockon-exchange terms. For these terms, the important point is that they can be analytically derived without much difficulty, with the consequence that the adoption of this model can enhance the general utility of the RGM by rendering the calculations feasible even in heavy nuclear systems. By utilizing the information obtained from previous investigations in the nucleon+nucleus case and by studying the analytical structure of the RGM kernel functions, it can be determined that this model for deuteron+nucleus scattering should work well when the nucleon-number ratio of the target and incident nuclei is larger than about 10 and when the scattering energy is higher than about 20 MeV/nucleon. A test comparison with exact RGM results for d+ 16 O scattering at 30 MeV and a fit to experiment for d+ 40 Ca scattering at 49.52 MeV yield rather convincing evidence that this model has great simplicity and generality, and can be employed to conduct a systematic and large-scale study of existing data on deuteron+nucleus scattering. (orig.)

  6. Detection of treatment success after photodynamic therapy using Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    Schreurs, Tom J.L.; Jacobs, Igor; Nicolay, Klaas; Prompers, Jeanine J.; Strijkers, Gustav J.

    2017-01-01

    Early evaluation of response to therapy is crucial for selecting the optimal therapeutic follow-up strategy for cancer patients. PDT is a photochemistry-based treatment modality that induces tumor tissue damage by cytotoxic oxygen radicals, generated by a pre-injected photosensitive drug upon light

  7. Diffusion-weighted magnetic resonance imaging: biomarker for treatment response in oncology

    Maria Luiza Testa

    2013-06-01

    Full Text Available The authors report a case where a quantitative assessment of the apparent diffusion coefficient (ADC of liver metastasis in a patient undergoing chemotherapy has shown to be an effective early marker for predicting therapeutic response, anticipating changes in tumor size. A lesion with lower initial ADC value and early increase in such value in the course of the treatment tends to present a better therapeutic response.

  8. Neuroaesthetic Resonance

    Brooks, Anthony Lewis

    2013-01-01

    Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimuli. Unconscious self- pushing of limits result from innate distractive mechanisms offered by the alternative...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....

  9. Clinical outcome of magnetic-resonance-guided focused ultrasound surgery (MRgFUS) in the treatment of symptomatic uterine fibroids

    Kamp, J.E.K.; Scheurig-Muenkler, C.; Beck, A.; David, M.; Hengst, S.

    2013-01-01

    Purpose: To investigate the clinical outcome of magnetic-resonance-guided focused ultrasound surgery (MRgFUS) treatment for symptomatic uterine fibroids in premenopausal women using the validated USF-QOL (Uterine Fibroid Symptom and Quality of Life) Questionnaire. Materials and Methods: 54 patients with symptomatic uterine fibroids were enrolled in this prospective study. The patients completed the UFS-QOL Questionnaire prior to MRgFUS treatment as well as after 3, 6, and 12 months. Results: The rate of technical success was 91.5 % (95.2 % after subtraction of screening errors). 6/54 patients (11 %) had other treatments (surgery, n = 4; UAE, n = 2), 8/54 (15 %) dropped out due to pregnancy, and 8/54 were lost to follow-up. The remaining group showed considerable symptom relief as early as after 3 months. The median overall quality of life score increased from 64.7 (quartile range QR: 49.8 - 77.6) before treatment to 77.6 (QR: 61.4 - 87.1) (p < 0.001), 78.4 (QR: 66.4 - 89.7) (p < 0.001), and 82.8 (QR: 69.8 - 92.2) (p < 0.001) at 3, 6, and 12 months, respectively. The corresponding median symptom severity score decreased from 46.9 (QR: 28.1 - 56.2) to 34.4 (QR: 21.9 - 43.7) at 3 months (p = 0.003) and 28.1 at 6 and 12 months (QR: 18.7 - 38.3, QR: 15.6 - 34.4) (p < 0.001, p = 0.002). The rate of complications requiring treatment was 9 %, and the rate of overall complications was 39 %. No major complications occurred. Conclusion: Our results indicate significant alleviation of fibroid-related symptoms within 12 months of MRgFUS with improvement beginning as early as 3 months after treatment. We observed no major complications, and some women became pregnant after MRgFUS. There was a low treatment failure rate of 11 %. (orig.)

  10. Lack of magnetic resonance imaging lesion activity as a treatment target in multiple sclerosis: An evaluation using electronically collected outcomes.

    Conway, Devon S; Thompson, Nicolas R; Cohen, Jeffrey A

    2016-09-01

    The appropriate treatment target in multiple sclerosis (MS) is unclear. Lack of magnetic resonance imaging (MRI) lesion activity, a component of the no evidence of disease activity concept, has been proposed as a treatment target in MS. We used our MS database to investigate whether aggressively pursuing MRI stability by changing disease modifying therapy (DMT) when MRI activity is observed leads to better clinical and imaging outcomes. The Knowledge Program (KP) is a database linked to our electronic medical record allowing capture of patient and clinician reported outcomes. Through KP query and chart review, we identified all relapsing-remitting MS patients visiting between 1 January 2008 and 31 December 2014 with active MRIs despite DMT. Propensity modeling based on demographic and disease characteristics was used to match DMT switchers to non-switchers. KP and MRI outcomes were compared 18 months after the active MRI using mixed-effects linear regression models. We identified 417 patients who met criteria for our analysis. After propensity matching, 78 switchers and 91 non-switchers were analyzed. There was no difference in clinical or radiologic outcomes between these groups at 18 months. We did not find a short-term benefit of changing DMT to pursue MRI stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Correlation of cumulative corticosteroid treatment with magnetic resonance imaging assessment of avascular femoral head necrosis in patients with multiple sclerosis

    Nilufer Kale

    2010-10-01

    Full Text Available Increased risk of osteoporosis, fractures, and avascular necrosis (AVN has been suggested in multiple sclerosis (MS. Patients with MS are often exposed to corticosteroid treatment (CST during the disease course and conflicting reports exist regarding complications of CST. Our study aims to investigate the association between cumulative doses of CST and radiographic evaluation of AVN of the femoral head in MS. Twenty-six MS patients (mean age, 38.4±10 yr were enrolled and prospectively evaluated for AVN by magnetic resonance imaging (MRI. The mean disease duration was 11.5±8.5 years and mean expanded disability status scale (EDSS score was 3±2. The cumulative dosage of CST varied between 20 g and 60 g; patients were grouped into two categories: 1 CST between 20-40 g, 17 (65% patients; 2 CST ≥40 g; 9 (35% patients. The relationship between cumulative CST dosage and MRI diagnosis of AVN was stat­istically insignificant (P>0.9. Clarification of the cumulative effect of CST in the development of AVN is of great importance for future long-term steroid treatment strategies.

  12. 1H magnetic resonance spectroscopy evidence for occipital involvement in treatment-naive paediatric obsessive-compulsive disorder.

    Ljungberg, Maria; Nilsson, Marie K L; Melin, Karin; Jönsson, Lars; Carlsson, Arvid; Carlsson, Åsa; Forssell-Aronsson, Eva; Ivarsson, Tord; Carlsson, Maria; Starck, Göran

    2017-06-01

    Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder leading to considerable distress and disability. Therapies are effective in a majority of paediatric patients, however, many only get partial response. It is therefore important to study the underlying pathophysiology of the disorder. 1H magnetic resonance spectroscopy (MRS) was used to study the concentration of brain metabolites in four different locations (cingulate gyrus and sulcus, occipital cortex, thalamus and right caudate nucleus). Treatment-naive children and adolescents with OCD (13 subjects) were compared with a group of healthy age- and gender-matched subjects (11 subjects). Multivariate analyses were performed on the concentration values. No separation between controls and patients was found. However, a correlation between metabolite concentrations and symptom severity as measured with the Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) was found. Strongest was the correlation with the CY-BOCS obsession subscore and aspartate and choline in the caudate nucleus (positively correlated with obsessions), lipids at 2 and 0.9 ppm in thalamus, and occipital glutamate+glutamine, N-acetylaspartate and myo-inosytol (negatively correlated with obsessions). The observed correlations between 1H MRS and CY-BOCS in treatment-naive patients further supports an occipital involvement in OCD. The results are consistent with our previous study on adult OCD patients. The 1H MRS data were not supportive of a separation between the patient and control groups.

  13. Air-electron stream interactions during magnetic resonance IGRT. Skin irradiation outside the treatment field during accelerated partial breast irradiation

    Park, Jong Min [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Seoul National University Hospital, Biomedical Research Institute, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Advanced Institutes of Convergence Technology, Robotics Research Laboratory for Extreme Environments, Suwon (Korea, Republic of); Shin, Kyung Hwan; Wu, Hong-Gyun [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Seoul National University Hospital, Biomedical Research Institute, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiation Oncology, Seoul (Korea, Republic of); Kim, Jung-in; Park, So-Yeon; Kim, Jin Ho [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Seoul National University Hospital, Biomedical Research Institute, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Jeon, Seung Hyuck [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Choi, Noorie [Seoul National University College of Medicine, Department of Radiation Oncology, Seoul (Korea, Republic of)

    2018-01-15

    To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm{sup 2}, respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field. (orig.) [German] Beim Einsatz eines Magnetresonanztomographie(MRT)-gefuehrten Bestrahlungsgeraets kann durch die Wechselwirkung von Magnetfeld und Strahlenquelle unerwuenscht

  14. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association ... MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  15. Highly sensitive panchromatic ternary polymer photodetectors enabled by Förster resonance energy transfer and post solvent treatment

    Wang, Hanyu; Zheng, Yifan; Qin, Ruiheng; Yu, Junsheng

    2018-03-01

    A panchromatic ternary polymer photodetector (PPD) with broadband response from 300 to 1000 nm is fabricated via incorporating poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-bʹ]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7) as the third component in poly(diketopyrrolopyrrole-terthiophene) (PDPP3T) [6]:-phenyl-C71-butyric acid methyl ester (PC71BM), revealing a high detectivity (D *) of 7.02  ×  1011 Jones at 850 nm. Through the analysis of photoluminescence and external quantum efficiency spectroscopy, we find that PTB7 can not only improve the absorption between 500-750 nm to induce more excitons, but also provide non-radiative transfer energy to PDPP3T via Förster resonance energy transfer (FRET). Moreover, we employ post solvent treatment (PST) to rectify the morphology of ternary blends, thus reducing charge recombination, suppressing dark current, and boosting the D * to 1.57  ×  1012 Jones at 850 nm, which is 2.34 folds higher than that of the untreated PPDs. This work indicates that the incorporation of FRET donor and PST in ternary blends is an effective way to develop highly sensitive panchromatic PPDs.

  16. Regarding the Focal Treatment of Prostate Cancer: Inference of the Gleason Grade From Magnetic Resonance Spectroscopic Imaging

    Brame, Ryan S.; Zaider, Marco; Zakian, Kristen L.; Koutcher, Jason A.; Shukla-Dave, Amita; Reuter, Victor E.; Zelefsky, Michael J.; Scardino, Peter T.; Hricak, Hedvig

    2009-01-01

    Purpose: To quantify, as a function of average magnetic resonance spectroscopy (MRS) score and tumor volume, the probability that a cancer-suspected lesion has an elevated Gleason grade. Methods and Materials: The data consist of MRS imaging ratios R stratified by patient, lesion (contiguous abnormal voxels), voxels, biopsy and pathologic Gleason grade, and lesion volume. The data were analyzed using a logistic model. Results: For both low and high Gleason score biopsy lesions, the probability of pathologic Gleason score ≥4+3 increases with lesion volume. At low values of R a lesion volume of at least 15-20 voxels is needed to reach a probability of success of 80%; the biopsy result helps reduce the prediction uncertainty. At larger MRS ratios (R > 6) the biopsy result becomes essentially uninformative once the lesion volume is >12 voxels. With the exception of low values of R, for lesions with low Gleason score at biopsy, the MRS ratios serve primarily as a selection tool for assessing lesion volumes. Conclusions: In patients with biopsy Gleason score ≥4+3, high MRS imaging tumor volume and (creatine + choline)/citrate ratio may justify the initiation of voxel-specific dose escalation. This is an example of biologically motivated focal treatment for which intensity-modulated radiotherapy and especially brachytherapy are ideally suited.

  17. Magnetic resonance imaging (MRI)-based indication for neoadjuvant treatment of rectal carcinoma and the surrogate endpoint CRM status.

    Strassburg, Joachim; Junginger, Theo; Trinh, Trong; Püttcher, Olaf; Oberholzer, Katja; Heald, Richard J; Hermanek, Paul

    2008-11-01

    Is it possible to reduce the frequency of neoadjuvant therapy for rectal carcinoma and nevertheless achieve a rate of more than 90% circumferential resection margin (CRM)-negative resection specimens by a novel concept of magnetic resonance imaging (MRI)-based therapy planning? One hundred eighty-one patients from Berlin and Mainz, Germany, with primary rectal carcinoma, without distant metastasis, underwent radical surgery with curative intention. Surgical procedures applied were anterior resection with total mesorectal excision (TME) or partial mesorectal excision (PME; PME for tumours of the upper rectum) or abdominoperineal excision with TME. With MRI selection of the highest-risk cases, neoadjuvant therapy was given to only 62 of 181 (34.3%). The rate of CRM-negative resection specimens on histology was 170 of 181 (93.9%) for all patients, and in Berlin, only 1 of 93 (1%) specimens was CRM-positive. Patients selected for primary surgery had CRM-negative specimens on histology in 114 of 119 (95.8%). Those selected for neoadjuvant therapy had a lower rate of clear margin: 56 of 62 (90%). By applying a MRI-based indication, the frequency of neoadjuvant treatment with its acute and late adverse effects can be reduced to 30-35% without reduction of pathologically CRM-negative resection specimens and, thus, without the danger of worsening the oncological long-term results. This concept should be confirmed in prospective multicentre observation studies with quality assurance of MRI, surgery and pathology.

  18. Referral Patterns for Chronic Groin Pain and Athletic Pubalgia/Sports Hernia: Magnetic Resonance Imaging Findings, Treatment, and Outcomes.

    Zoland, Mark P; Maeder, Matthew E; Iraci, Joseph C; Klein, Devon A

    Chronic groin pain is a common problem and has been well-described in high-performance athletes. Its presentation in the recreational athlete has been less frequently described. We present the experience of a tertiary group of physicians specializing in groin pain and athletic pubalgia. Dynamic magnetic resonance imaging (MRI) protocol was employed. Surgery was performed in patients failing non-surgical management. A retrospective review was performed. Of 117 mostly non-professional athletes, there were 79 MRI-positive cases of athletic pubalgia (68%). Other common findings were acetabular labral tear (57%) and inguinal hernia (35%). Employment of a dynamic MRI protocol increased sensitivity for certain pathologies. Of positive athletic pubalgia cases, 49% went on to have surgical repair. The satisfaction rate in the surgical group was 90% at follow up. Advances in MRI have increased our ability to characterize and diagnose specific injuries causing groin pain. We present our diagnostic algorithm, including an MRI protocol that not only evaluates the groin, but has increased sensitivity for additional findings such as inguinal hernia and abdominal wall deficiencies. A targeted work-up and subsequent surgical treatment in the appropriate patient, even in the recreational athletic population, has yielded a 90% satisfaction rate.

  19. Factors associated with successful magnetic resonance-guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull.

    Chang, Won Seok; Jung, Hyun Ho; Zadicario, Eyal; Rachmilevitch, Itay; Tlusty, Tal; Vitek, Shuki; Chang, Jin Woo

    2016-02-01

    Magnetic resonance-guided focused ultrasound surgery (MRgFUS) was recently introduced as treatment for movement disorders such as essential tremor and advanced Parkinson's disease (PD). Although deep brain target lesions are successfully generated in most patients, the target area temperature fails to increase in some cases. The skull is one of the greatest barriers to ultrasonic energy transmission. The authors analyzed the skull-related factors that may have prevented an increase in target area temperatures in patients who underwent MRgFUS. The authors retrospectively reviewed data from clinical trials that involved MRgFUS for essential tremor, idiopathic PD, and obsessive-compulsive disorder. Data from 25 patients were included. The relationships between the maximal temperature during treatment and other factors, including sex, age, skull area of the sonication field, number of elements used, skull volume of the sonication field, and skull density ratio (SDR), were determined. Among the various factors, skull volume and SDR exhibited relationships with the maximum temperature. Skull volume was negatively correlated with maximal temperature (p = 0.023, r(2) = 0.206, y = 64.156 - 0.028x, whereas SDR was positively correlated with maximal temperature (p = 0.009, r(2) = 0.263, y = 49.643 + 11.832x). The other factors correlate with the maximal temperature, although some factors showed a tendency to correlate. Some skull-related factors correlated with the maximal target area temperature. Although the number of patients in the present study was relatively small, the results offer information that could guide the selection of MRgFUS candidates.

  20. Favorable effects on arterial stiffness after renal sympathetic denervation for the treatment of resistant hypertension: a cardiovascular magnetic resonance study

    Hammer TA

    2016-09-01

    Full Text Available Tommy Arild Hammer,1 Knut Asbjørn Rise Langlo,2 Pål Erik Goa,1,3 Fadl Elmula M Fadl Elmula,4,5 Pavel Hoffmann,6 Knut Haakon Stensaeth1,7 1Department of Radiology and Nuclear Medicine, 2Department of Nephrology, St Olav’s University Hospital, Trondheim, Norway; 3Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; 4Institute of Cardiovascular and Renal Research, Department of Cardiology, Oslo University Hospital, Oslo, Norway; 5Faculty of Clinical Medicine, University of Oslo, Oslo, Norway; 6Department of Cardiology, Oslo University Hospital, Oslo, Norway; 7Institute of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway Aims: Renal sympathetic denervation (RDN has recently been suggested to be a novel treatment strategy for patients with treatment-resistant hypertension. However, the latest randomized studies have provided conflicting results and the influence of RDN on arterial stiffness remains unclear. Therefore, this study aimed to detect the effects of RDN on arterial stiffness as measured with aortic pulse wave velocity (PWV and distensibility in addition to cardiac function and T1 mapping at baseline and at 6-month follow-up.Methods: RDN was performed in a total of 16 patients with treatment-resistant hypertension, and the procedures were conducted at two university hospitals using two different RDN devices. All patients and age-matched controls underwent a comprehensive clinical examination and cardiac magnetic resonance protocols both at baseline and at a 6-month follow-up.Results: In the treatment group, the systolic blood pressure (SBP was found to be decreased at the follow-up visit (office SBP; 173±24 compared to 164±25 mmHg [P= 0.033], the 24-hour ambulatory SBP had decreased (163±25 compared to 153±20 mmHg [P=0.057], the aortic PWV had decreased from 8.24±3.34 to 6.54±1.31 m/s (P=0.053, and the aortic distensibility had increased from 2

  1. In vivo quantification of response to treatment in patients with multiple myeloma by 1H magnetic resonance spectroscopy of bone marrow.

    Oriol, Albert; Valverde, Daniel; Capellades, Jaume; Cabañas, Miquel E; Ribera, Josep-Maria; Arús, Carles

    2007-04-01

    Magnetic resonance imaging (MRI) is the gold standard non-invasive technique to detect malignant disease in the bone marrow. Proton magnetic resonance spectroscopy (MRS) can be performed as a quick adjunct to routine spinal MRI. We performed proton MRS to patients with multiple myeloma (MM) at diagnosis and after treatment to investigate the possible correlation of MRS data with response to therapy. Twenty-one patients with newly diagnosed MM underwent combined MRI/MRS explorations of a transverse center section in the fifth lumbar vertebral body. MRS was acquired with STEAM and 40 ms TE. Areas of unsuppressed water and lipid resonances were used to calculate the lipid-to-water ratio (LWR). No association was detected between initial LWRs and the clinical characteristics of patients. Post treatment MRS was available in 16 patients of whom 11 (69%) presented an LWR increase, this included all complete responders (8/8, 100%, P = 0.012). A post-treatment LWR value equal to or larger than one is proposed as a non-invasive marker of complete response to treatment. Only patients responding to treatment presented a significant increase in bone marrow LWR after therapy. MRS may provide an adequate quantification of response to chemotherapy in patients with MM.

  2. Noninvasive monitoring of radiation-induced treatment response using proton magnetic resonance spectroscopy and diffusion-weighted magnetic resonance imaging in a colorectal tumor model

    Seierstad, Therese; Roe, Kathrine; Olsen, Dag Rune

    2007-01-01

    Background and purpose: To examine whether in vivo proton magnetic resonance spectroscopy ( 1 H MRS) and diffusion-weighted magnetic resonance imaging (DW-MRI) can monitor radiation-induced changes in HT29 xenografts in mice. Materials and methods: HT29 xenografts in mice received a dose of 15 Gy. In vivo 1 H MRS and DW-MRI were acquired pretreatment and 1, 3, 6 and 10 days post-irradiation. After imaging, tumors were excised for histological analysis. The amounts of necrosis, fibrosis and viable cells in the cross sections were scored and compared to changes in apparent diffusion coefficient (ADC) and choline/water ratio. Results: Radiation-induced necrosis in the xenografts was observed as increased tumor ADC. In-growth of fibrosis three days post-irradiation restricting water mobility was accompanied by decreased tumor ADC. Choline/water ratio correlated with metabolic activity and tumor growth. Conclusions: ADC and choline/water ratio assessed by in vivo DW-MRI and 1 H MRS depicts radiation-induced changes in HT29 xenografts following irradiation

  3. Longitudinal in vivo magnetic resonance imaging studies in experimental allergic encephalomyelitis : effect of a neurotrophic treatment on cortical lesion development

    Duckers, H.J.; Muller, H J; Verhaagen, J; Nicolay, K; Gispen, Willem Hendrik

    Proton magnetic resonance imaging enables non-invasive monitoring of lesion formation in multiple sclerosis and has an important role in assessing the potential effects of therapy. T2-weighted and short tau inversion recovery magnetic resonance imaging were used to assess the effect of a

  4. Determination of the inferior border of the thecal sac using magnetic resonance imaging: implications on radiation therapy treatment planning

    Scharf, Carole B.; Paulino, Arnold C.; Goldberg, Kenneth N.

    1998-01-01

    Purpose: To determine whether the traditional teaching of placing the caudal border of the spinal field at the S2-S3 interspace in children receiving craniospinal irradiation (CSI) is appropriate. Methods and Materials: Twenty-three children had magnetic resonance imaging (MRI) of the spine with gadolinium prior to craniospinal irradiation at one institution. Thecal sac termination using MRI was determined by drawing a perpendicular line from the point of convergence of dural margins to the corresponding vertebral body. Results: Location of thecal sac termination varied from mid-S1 to low S3 vertebral body, with the most frequent site at the upper S2 vertebral level. Only 2 of 23 (8.7%) children had thecal sac terminations below the S2-S3 interspace. For the nine patients with neuraxis disease, none had thecal sac terminations below the S2-S3 interspace. In seven of the nine patients who had neuraxis seeding at initial presentation, MRI of the spine after CSI was performed and showed that thecal sac termination was lower after radiation therapy in two children, higher in one, and the same in four. Conclusions: In 2 of 23 children (8.7%), placement of the inferior border at the bottom of the S2 vertebral body would have missed the entire thecal sac. Treatment to the entire neuraxis with adequate coverage of distal spinal theca can be achieved by using MRI. Individualized spinal fields using the MRI may help minimize radiation scatter to the gonads while adequately covering the target volume

  5. Multimodal Magnetic Resonance Imaging Study of Treatment-Naïve Adults with Attention-Deficit/Hyperactivity Disorder

    Chaim, Tiffany M.; Zhang, Tianhao; Zanetti, Marcus V.; da Silva, Maria Aparecida; Louzã, Mário R.; Doshi, Jimit; Serpa, Mauricio H.; Duran, Fabio L. S.; Caetano, Sheila C.; Davatzikos, Christos; Busatto, Geraldo F.

    2014-01-01

    Background Attention-Deficit/Hiperactivity Disorder (ADHD) is a prevalent disorder, but its neuroanatomical circuitry is still relatively understudied, especially in the adult population. The few morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) studies available to date have found heterogeneous results. This may be at least partly attributable to some well-known technical limitations of the conventional voxel-based methods usually employed to analyze such neuroimaging data. Moreover, there is a great paucity of imaging studies of adult ADHD to date that have excluded patients with history of use of stimulant medication. Methods A newly validated method named optimally-discriminative voxel-based analysis (ODVBA) was applied to multimodal (structural and DTI) MRI data acquired from 22 treatment-naïve ADHD adults and 19 age- and gender-matched healthy controls (HC). Results Regarding DTI data, we found higher fractional anisotropy in ADHD relative to HC encompassing the white matter (WM) of the bilateral superior frontal gyrus, right middle frontal left gyrus, left postcentral gyrus, bilateral cingulate gyrus, bilateral middle temporal gyrus and right superior temporal gyrus; reductions in trace (a measure of diffusivity) in ADHD relative to HC were also found in fronto-striatal-parieto-occipital circuits, including the right superior frontal gyrus and bilateral middle frontal gyrus, right precentral gyrus, left middle occipital gyrus and bilateral cingulate gyrus, as well as the left body and right splenium of the corpus callosum, right superior corona radiata, and right superior longitudinal and fronto-occipital fasciculi. Volumetric abnormalities in ADHD subjects were found only at a trend level of significance, including reduced gray matter (GM) in the right angular gyrus, and increased GM in the right supplementary motor area and superior frontal gyrus. Conclusions Our results suggest that adult ADHD is associated with

  6. Multimodal magnetic resonance imaging study of treatment-naïve adults with attention-deficit/hyperactivity disorder.

    Tiffany M Chaim

    Full Text Available BACKGROUND: Attention-Deficit/Hiperactivity Disorder (ADHD is a prevalent disorder, but its neuroanatomical circuitry is still relatively understudied, especially in the adult population. The few morphometric magnetic resonance imaging (MRI and diffusion tensor imaging (DTI studies available to date have found heterogeneous results. This may be at least partly attributable to some well-known technical limitations of the conventional voxel-based methods usually employed to analyze such neuroimaging data. Moreover, there is a great paucity of imaging studies of adult ADHD to date that have excluded patients with history of use of stimulant medication. METHODS: A newly validated method named optimally-discriminative voxel-based analysis (ODVBA was applied to multimodal (structural and DTI MRI data acquired from 22 treatment-naïve ADHD adults and 19 age- and gender-matched healthy controls (HC. RESULTS: Regarding DTI data, we found higher fractional anisotropy in ADHD relative to HC encompassing the white matter (WM of the bilateral superior frontal gyrus, right middle frontal left gyrus, left postcentral gyrus, bilateral cingulate gyrus, bilateral middle temporal gyrus and right superior temporal gyrus; reductions in trace (a measure of diffusivity in ADHD relative to HC were also found in fronto-striatal-parieto-occipital circuits, including the right superior frontal gyrus and bilateral middle frontal gyrus, right precentral gyrus, left middle occipital gyrus and bilateral cingulate gyrus, as well as the left body and right splenium of the corpus callosum, right superior corona radiata, and right superior longitudinal and fronto-occipital fasciculi. Volumetric abnormalities in ADHD subjects were found only at a trend level of significance, including reduced gray matter (GM in the right angular gyrus, and increased GM in the right supplementary motor area and superior frontal gyrus. CONCLUSIONS: Our results suggest that adult ADHD is associated

  7. Semiclassical wave packet treatment of scattering resonances: application to the delta zero-point energy effect in recombination reactions.

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-09-28

    For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.

  8. Diagnostic significance of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in thrombolytic treatment for acute myocardial infarction: its potential in assessing reperfusion.

    van der Wall, E E; van Dijkman, P R; de Roos, A; Doornbos, J; van der Laarse, A; Manger Cats, V; van Voorthuisen, A E; Matheijssen, N A; Bruschke, A V

    1990-01-01

    The diagnostic value of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in patients treated by thrombolysis for acute myocardial infarction was assessed in 27 consecutive patients who had a first acute myocardial infarction (14 anterior, 13 inferior) and who underwent thrombolytic treatment and coronary arteriography within 4 hours of the onset of symptoms. Magnetic resonance imaging was performed 93 hours (range 15-241) after the onset of symptoms. A Philips Gyroscan (0.5 T) was used, and spin echo measurements (echo time 30 ms) were made before and 20 minutes after intravenous injection of 0.1 mmol/kg gadolinium-DTPA. In all patients contrast enhancement of the infarcted areas was seen after Gd-DTPA. The signal intensities of the infarcted and normal values were used to calculate the intensity ratios. Mean (SD) intensity ratios after Gd-DTPA were significantly increased (1.15 (0.17) v 1.52 (0.29). Intensity ratios were higher in the 17 patients who underwent magnetic resonance imaging more than 72 hours after the onset of symptoms than in the 10 who underwent magnetic resonance imaging earlier, the difference being significantly greater after administration of Gd-DTPA (1.38 (0.12) v 1.61 (0.34). When patients were classified according to the site and size of the infarcted areas, or to reperfusion (n = 19) versus non-reperfusion (n = 8), the intensity ratios both before and after Gd-DTPA did not show significant differences. Magnetic resonance imaging with Gd-DTPA improved the identification of acutely infarcted areas, but with current techniques did not identify patients in whom thrombolytic treatment was successful. Images PMID:2310640

  9. Dosimetric and geometric evaluation of an open low-field magnetic resonance simulator for radiotherapy treatment planning of brain tumours

    Kristensen, B.H.; Laursen, F.J.; Logager, V.

    2008-01-01

    Background and purpose: Magnetic resonance (MR) imaging is superior to computed tomography (CT) in radiotherapy of brain tumours. In this study an open low-field MR-simulator is evaluated in order to eliminate the cost of and time spent on additional CT scanning. Materials and methods: Eleven...

  10. T2-Weighted 4D Magnetic Resonance Imaging for Application in Magnetic Resonance–Guided Radiotherapy Treatment Planning

    Freedman, Joshua N.; Collins, David J.; Bainbridge, Hannah; Rank, Christopher M.; Nill, Simeon; Kachelrieß, Marc; Oelfke, Uwe; Leach, Martin O.; Wetscherek, Andreas

    2017-01-01

    Objectives The aim of this study was to develop and verify a method to obtain good temporal resolution T2-weighted 4-dimensional (4D-T2w) magnetic resonance imaging (MRI) by using motion information from T1-weighted 4D (4D-T1w) MRI, to support treatment planning in MR-guided radiotherapy. Materials and Methods Ten patients with primary non–small cell lung cancer were scanned at 1.5 T axially with a volumetric T2-weighted turbo spin echo sequence gated to exhalation and a volumetric T1-weighted stack-of-stars spoiled gradient echo sequence with golden angle spacing acquired in free breathing. From the latter, 20 respiratory phases were reconstructed using the recently developed 4D joint MoCo-HDTV algorithm based on the self-gating signal obtained from the k-space center. Motion vector fields describing the respiratory cycle were obtained by deformable image registration between the respiratory phases and projected onto the T2-weighted image volume. The resulting 4D-T2w volumes were verified against the 4D-T1w volumes: an edge-detection method was used to measure the diaphragm positions; the locations of anatomical landmarks delineated by a radiation oncologist were compared and normalized mutual information was calculated to evaluate volumetric image similarity. Results High-resolution 4D-T2w MRI was obtained. Respiratory motion was preserved on calculated 4D-T2w MRI, with median diaphragm positions being consistent with less than 6.6 mm (2 voxels) for all patients and less than 3.3 mm (1 voxel) for 9 of 10 patients. Geometrical positions were coherent between 4D-T1w and 4D-T2w MRI as Euclidean distances between all corresponding anatomical landmarks agreed to within 7.6 mm (Euclidean distance of 2 voxels) and were below 3.8 mm (Euclidean distance of 1 voxel) for 355 of 470 pairs of anatomical landmarks. Volumetric image similarity was commensurate between 4D-T1w and 4D-T2w MRI, as mean percentage differences in normalized mutual information (calculated over all

  11. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a ⁶⁰Co Magnetic Resonance Image Guidance Radiation Therapy System.

    Wooten, H Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H Harold; Mutic, Sasa

    2015-07-15

    This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. All (60)Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for (60)Co was within 20 Gy. The mean doses for all (60)Co plan OARs were within clinical tolerances. A commercial (60)Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Decay of organic free radicals in γ-ray irradiated pepper during thermal treatment as detected by electron spin resonance spectroscopy

    Ukai, Mitsuko; Shimoyama, Yuhei

    2004-01-01

    Using electron spin resonance (ESR) spectroscopy we analysed the thermal decay process of radicals in γ-Irradiated pepper Upon irradiation, the satellite signals were newly induced and appeared at the symmetric positions of the organic free radical, i.e., the g=2.0 signal. Heat treatment decreased the satellite signals exponentially. The ESR signal of the pepper heated for more than 10 min was essentially the same as that before irradiation. To evaluate the radical decay by heat-treatment, we formulated a time-dependent master equation. We could evaluate the time constant of the radical decay based upon the general solution of the equation together with the nonlinear least-squares method

  13. Visualizing the Acute Effects of Vascular-Targeted Therapy In Vivo Using Intravital Microscopy and Magnetic Resonance Imaging: Correlation with Endothelial Apoptosis, Cytokine Induction, and Treatment Outcome

    Mukund Seshadri

    2007-02-01

    Full Text Available The acute effects of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA were investigated in vivo using intravital microscopy (IVM and magnetic resonance imaging (MRI. Changes in vascular permeability and blood flow of syngeneic CT-26 murine colon adenocarcinomas were assessed at 4 and 24 hours after DMXAA treatment (30 mg/kg, i.p. and correlated with induction of tumor necrosis factor-α (TNF-α, endothelial damage [CD31/terminal deoxynucleotidyl transferase (TdT], and treatment outcome. Intravital imaging revealed a marked increase in vascular permeability 4 hours after treatment, consistent with increases in intratumoral mRNA and protein levels of TNF-α. Parallel contrast-enhanced MRI studies showed a ~ 4-fold increase in longitudinal relaxation rates (ΔR1, indicative of increased contrast agent accumulation within the tumor. Dualimmunostained tumor sections (CD31/TdT revealed evidence of endothelial apoptosis at this time point. Twenty-four hours after treatment, extensive hemorrhage and complete disruption of vascular architecture were observed with IVM, along with a significant reduction in ΔR1 and virtual absence of CD31 immunostaining. DMXAA-induced tumor vascular damage resulted in significant long-term (60-day cures compared to untreated controls. Multimodality imaging approaches are useful in visualizing the effects of antivascular therapy in vivo. Such approaches allow cross validation and correlation of findings with underlying molecular changes contributing to treatment outcome.

  14. Multiphoton resonances

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  15. Osteoid osteoma: Magnetic resonance guided high intensity focused ultrasound for entirely non-invasive treatment. A prospective developmental study

    Napoli, A.; de Soccio, V.; Cartocci, G.; Boni, F.; Anzidei, M.; Catalano, C.

    2017-03-01

    To determine the effect of acoustic energy delivered during MR guided Focused Ultrasound (MRgFUS) treatment of symptomatic osteoid osteomas. This prospective, IRB approved study involved 15 consecutive patients (11 m; 4f; mean age, 21) with clinical and imaging diagnosis of Osteoid Osteoma; all patients underwent MRgFUS ablation (ExAblate, InSightec; Discovery 750 MR unit, GE). Lesions located in the vertebral body were excluded, while lesions in proximity to joints or neurovascular bundles were included. Treatment success was determined at clinical and imaging follow-up at 1, 6 and 12 months post-treatment. A visual Analog Pain Score (VAS) was used to assess changes in symptoms. Bone changes at nidus site were evaluated on the basis of CT and dynamic ce-MR imaging (Gd-Bopta; Bracco) pre- and post-treatment. Treatment was carried out using a variable number of sonications (mean 4±1.8) with a mean energy deposition of 866±211 J. There were no treatment- or anesthesia-related complications. A statistically significant (p=0.001) difference was noted between the overall pre- and post-treatment mean VAS scores (8.3±1.6 and 0.6±1.5, respectively). Two treatments were conducted in patients with prior CTgRFA failure and needed two different session for achieving complete clinical successful. At imaging, edema and hyperemia associated with typical osteoid osteoma, gradually disappeared in all lesions. No apparent relationship between nidus vascular extinction and successful outcome was found. Variable reabsorption degree of sclerotic reaction was observed with nidus disappearance in 4 cases (27%). Treatment of osteoid osteoma using MR guided Focused Ultrasound can be performed safely with a high rate of success and without treatment related morbidity; our results indicated also a positive trend to bone rearrangement after treatment.

  16. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a (60)Co Magnetic Resonance Image Guidance Radiation Therapy System

    Wooten, H Omar; Green, Olga; Yang, Min

    2015-01-01

    : The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup...

  17. Cardiac Sarcoidosis or Giant Cell Myocarditis? On Treatment Improvement of Fulminant Myocarditis as Demonstrated by Cardiovascular Magnetic Resonance Imaging

    Hari Bogabathina

    2012-01-01

    Full Text Available Giant cell myocarditis, but not cardiac sarcoidosis, is known to cause fulminant myocarditis resulting in severe heart failure. However, giant cell myocarditis and cardiac sarcoidosis are pathologically similar, and attempts at pathological differentiation between the two remain difficult. We are presenting a case of fulminant myocarditis that has pathological features suggestive of cardiac sarcoidosis, but clinically mimicking giant cell myocarditis. This patient was treated with cyclosporine and prednisone and recovered well. This case we believe challenges our current understanding of these intertwined conditions. By obtaining a sense of severity of cardiac involvement via delayed hyperenhancement of cardiac magnetic resonance imaging, we were more inclined to treat this patient as giant cell myocarditis with cyclosporine. This resulted in excellent improvement of patient’s cardiac function as shown by delayed hyperenhancement images, early perfusion images, and SSFP videos.

  18. Diagnosis and treatment of progressive space-occupying radiation necrosis following stereotactic radiosurgery for brain metastasis: value of proton magnetic resonance spectroscopy

    Kimura, T.; Sako, K.; Tohyama, Y.; Aizawa, S.; Tanaka, T.; Yoshida, H.; Aburano, T.; Tanaka, K.

    2003-01-01

    There have been some reports that radiation necrosis can be controlled conservatively. There are rare cases showing progressive space-occupying radiation necrosis (PSORN). It is very difficult to control PSORN by conservative treatment. The purpose of this study was to evaluate the early diagnosis of these cases and the timing of surgery for patients with PSORN. We have experienced some cases where quality of life was improved by the removal of PSORN after stereotactic radiosurgery (SRS) for brain metastases. Therefore, we evaluated retrospectively the diagnosis and treatment of six cases of symptomatic PSORN at approximately 6-12 months after SRS for metastatic brain tumours. In all six cases, on Magnetic Resonance Imaging with Gd contrast material (Gd-MRI), PSORN was revealed as a ring-like enhanced mass with large perifocal oedema coupled with the appearance of neurological deficit. Proton Magnetic Resonance Spectroscopy ( 1 H-MRS) enabled us to differentiate PSORN from recurrence of metastases in all six cases. Single Photon Emission Computed Tomography with thallium-201 chloride ( 201 TICI-SPECT) enabled us to do this in four cases of the six. In four cases of the six, lesionectomy of the ring-like enhanced mass (PSORN) was performed, und in two of these cases the removal was performed within 4 weeks from the time when conservative treatment became ineffective, and the neurological deficit and perifocal oedema was improved as was the quality of life. However, in the other two patients who were left for more than 16 weeks, the deficit was gradually progressive. The two patients who did not receive lesionectomy were treated by conservative means with steroids and/or heparin and warfarin and they had progressive neurological symptoms. Although, the number of patients is small in this study, and more data will be needed, it is recommended that lesionectomy is performed at an early stage, if possible, when conservative management has failed. (author)

  19. Doubly resonant multiphoton ionization

    Crance, M.

    1978-01-01

    A particular case of doubly resonant multiphoton ionization is theoretically investigated. More precisely, two levels quasi-resonant with two successive harmonics of the field frequency are considered. The method used is based on the effective operator formalism first introduced for this problem by Armstrong, Beers and Feneuille. The main result is to show the possibility of observing large interference effects on the width of the resonances. Moreover this treatment allows us to make more precise the connection between effective operator formalism and standard perturbation theory

  20. Investigation of change of tumor optical properties after laser-induced plasmon-resonant photothermal treatment of transplanted tumors in rats

    Genin, Vadim D.; Genina, Elina A.; Bucharskaya, Alla B.; Tuchin, Valery V.; Khlebtsov, Nikolay G.; Terentyuk, Georgy S.; Bashkatov, Alexey N.

    2018-04-01

    The paper presents the investigation of change of tumor optical properties of the rat tumor doped by gold nanoparticles after laser-induced plasmon-resonant photothermal treatment. To obtain the model tumors the rats have been implanted by suspension of alveolar kidney cancer cells. An hour before the experiment the animals have been injected by the suspension of gold nanorods intratumorally. For irradiation a diode laser with wavelength 808 nm has been used. After the irradiation the tumor has been removed and sliced. Spectra of total and collimated transmission and diffuse reflectance of the samples of different layers of the tumors have been measured in the wavelength range 350-2500 nm. Absorption, scattering, reduced scattering coefficients and scattering anisotropy factor of tumor tissues have been calculated with inverse adding-doubling method. The results of the experiment have shown that after doping the tumor tissue by the plasmon resonant nanoparticles and NIR laser irradiating, there is the decreases of absorption as well as scattering properties of the tumor and surrounding tissues. However, despite the sufficiently high temperature on the surface (about 80°C), the changes in the center of the tumor are insignificant.

  1. Self-consistent treatment of nuclear collective motion with an application to the giant-dipole resonance

    Liran, S.; Technion-Israel Inst. of Tech., Haifa. Dept. of Physics)

    1977-01-01

    This paper extends the recent theory of Liran, Scheefer, Scheid and Greiner on non-adiabatic cranking and nuclear collective motion. In the present work we show the self-consistency conditions for the collective motion, which are indicated by appropriate time-dependent Lagrange multipliers, can be treated explicitly. The energy conservation and the self-consistency condition in the case of one collective degree of freedom are expressed in differential form. This leads to a set of coupled differential equations in time for the many-body wave function, for the collective variable and for the Lagrange multiplier. An iteration procedure similar to that of the previous work is also presented. As an illustrative example, we investigate Brink's single-particle description of the giant-dipole resonance. In this case, the important role played by non-adiabaticity and self-consistency in determining the collective motion is demonstrated and discussed. We also consider the fact that in this example of a fast collective motion, the adiabatic cranking model of Inglis gives the correct mass parameter. (orig.) [de

  2. Effectiveness of the levonorgestrel-releasing intrauterine system in the treatment of adenomyosis diagnosed and monitored by magnetic resonance imaging.

    Bragheto, Aristides M; Caserta, Nelson; Bahamondes, Luis; Petta, Carlos A

    2007-09-01

    This study was conducted to evaluate the effect of the levonorgestrel-releasing intrauterine system (LNG-IUS) on adenomyotic lesions diagnosed and monitored by magnetic resonance imaging (MRI). LNG-IUS was inserted during menstrual bleeding in 29 women, 24 to 46 years of age, with MRI-diagnosed adenomyosis associated with menorrhagia and dysmenorrhea. Clinical evaluations were carried out at baseline and at 3 and 6 months postinsertion. MRI was performed at baseline and at 6 months postinsertion and was used to calculate junctional zone thickness (in mm), to define the junctional zone borders, to identify the presence of high-signal foci on T(2)-weighted images and to calculate uterine volume (in mL). A significant reduction of 24.2% in junctional zone thickness was observed (puterine volume was observed (142.6 mL vs. 136.4 mL; p=.2077) between baseline and the 6-month evaluation. A significant decrease in pain score was observed at 3 and 6 months after insertion (p3 at 6 months of observation. At 3 months of use, the most common bleeding pattern was spotting, and at 6 months of observation, oligomenorrhea was the most common pattern observed, although spotting was present in one third of the women. The insertion of an LNG-IUS led to a reduction in pain and abnormal bleeding associated with adenomyosis. MRI was useful for monitoring response of adenomyotic lesions to the LNG-IUS.

  3. Magnetic resonance imaging in monitoring of treatment of multiple sclerosis; Zastosowanie metody rezonansu magnetycznego w monitorowaniu leczenia stwardnienia rozsianego

    Bekiesinska-Figatowska, M.; Walecki, J.; Stelmasiak, Z. [Zaklad Diagnostyki Obrazowej, Centralny Szpital Kolejowy i Centrum Medyczne Ksztalcenia Podyplomowego, Miedzylesie (Poland)]|[Centrum Naukowo-Kliniczne and Zespol Naukowo Badawczy Chorob Demielinizacyjnych, Akademia Medyczna, Lublin (Poland)

    1996-12-31

    The purpose of the study was to establish the value of MR in monitoring of treatment of multiple sclerosis with new drug 2-CDA and placebo. 83 patients (51 women, 32 men) were examined - 81 of them twice, 66 - three times: before and after 6 and 12 courses of treatment. Toshiba MRT50A machine was used. After the first 6 courses of treatment the number of new plaques was twice as big in placebo group than in 2-CDA group. After 12 courses it turned out that a certain inhibitory influence of 2-CDA on new plaques` appearance was more evident after 15 than 3 months after the end of its administration. This may indicate the delayed action of 2-CDA but requires further investigation. (author) 8 refs, 2 figs, 7 tabs

  4. Comparison of treatments with the Forsus fatigue resistant device in relation to skeletal maturity: a cephalometric and magnetic resonance imaging study.

    Aras, Aynur; Ada, Emel; Saracoğlu, Hatice; Gezer, Naciye S; Aras, Isil

    2011-11-01

    The aim of this study was to compare the dentoskeletal changes and alterations of mandibular condyle-disc-fossa relationships in subjects at the peak and the end of the pubertal growth period treated with the Forsus fatigue resistant device (3M Unitek, Monrovia, Calif). The sample consisted of 29 subjects with Class II Division 1 malocclusions who were classified according to their hand-wrist radiographs. Fifteen patients were at or just before the peak phase of pubertal growth (peak pubertal group). Fourteen patients were near the end of the pubertal growth period (late pubertal group). The study was conducted by using lateral cephalometric radiographs and magnetic resonance images obtained at the beginning and at the end of the application of the Forsus fatigue resistant device. The treatment period was 9 months. The Wilcoxon signed rank test was used to evaluate differences within groups. The changes observed in both groups were compared by using the Mann-Whitney U test. There were statistically significant group differences in mandibular length and ramus length, with significant increases of these parameters in the peak pubertal group (P 0.05), with the exception of mandibular molar vertical movements, which were significantly greater in the peak pubertal group (P positional changes of the mandibular condyle in relation to the glenoid fossa in either group (P >0.05). Although the articular disc was positioned more anteriorly in the peak pubertal group compared with its pretreatment position (P position of the disc was still within the physiologic range. No significant intergroup difference was observed for disc-condyle relationship (P >0.05). The Forsus fatigue resistant device did not appear to cause significant increases in mandibular dimensions in subjects in late puberty. According to the magnetic resonance image findings, Forsus treatment is not a risk factor for the development of temporomandibular dysfunction in subjects with no signs and clinical

  5. Evaluation of body fat composition after linagliptin treatment in a rat model of diet-induced obesity: a magnetic resonance spectroscopy study in comparison with sibutramine.

    Klein, T; Niessen, H G; Ittrich, C; Mayoux, E; Mueller, H-P; Cheetham, S; Stiller, D; Kassubek, J; Mark, M

    2012-11-01

    The effects of linagliptin on fat content in diet-induced obese rats were compared with those of the appetite suppressant sibutramine. Female Wistar rats fed a high-fat diet (HFD) for 3 months received vehicle, linagliptin (10 mg/kg) or sibutramine (5 mg/kg) treatment orally, once daily for 6 additional weeks, while continuing the HFD. Magnetic resonance spectroscopy analysis of fat content was performed at baseline and at the end of the 6-week treatment period. Linagliptin treatment profoundly reduced hepatic fat compared with vehicle, with an effect comparable to that of sibutramine. The vehicle-corrected mean change (95% CI) from baseline in hepatic fat and intramyocellular lipid was -59.0% (-104.3%, -13.6%; p = 0.015) and -62.1% (-131.6%, 7.4%; p = 0.073), respectively, for linagliptin compared with -54.3% (-101.5%, -7.1%; p = 0.027) and -72.4% (-142.4%, -2.4%; p = 0.044), respectively, for sibutramine. © 2012 Blackwell Publishing Ltd.

  6. Imaging diagnostics in ovarian cancer: magnetic resonance imaging and a scoring system guiding choice of primary treatment.

    Kasper, Sigrid M; Dueholm, Margit; Marinovskij, Edvard; Blaakær, Jan

    2017-03-01

    To analyze the ability of magnetic resonance imaging (MRI) and systematic evaluation at surgery to predict optimal cytoreduction in primary advanced ovarian cancer and to develop a preoperative scoring system for cancer staging. Preoperative MRI and standard laparotomy were performed in 99 women with either ovarian or primary peritoneal cancer. Using univariate and multivariate logistic regression analysis of a systematic description of the tumor in nine abdominal compartments obtained by MRI and during surgery plus clinical parameters, a scoring system was designed that predicted non-optimal cytoreduction. Non-optimal cytoreduction at operation was predicted by the following: (A) presence of comorbidities group 3 or 4 (ASA); (B) tumor presence in multiple numbers of different compartments, and (C) numbers of specified sites of organ involvement. The score includes: number of compartments involved (1-9 points), >1 subdiaphragmal location with presence of tumor (1 point); deep organ involvement of liver (1 point), porta hepatis (1 point), spleen (1 point), mesentery/vessel (1 point), cecum/ileocecal (1 point), rectum/vessels (1 point): ASA groups 3 and 4 (2 points). Use of the scoring system based on operative findings gave an area under the curve (AUC) of 91% (85-98%) for patients in whom optimal cytoreduction could not be achieved. The score AUC obtained by MRI was 84% (76-92%), and 43% of non-optimal cytoreduction patients were identified, with only 8% of potentially operable patients being falsely evaluated as suitable for non-optimal cytoreduction at the most optimal cut-off value. Tumor in individual locations did not predict operability. This systematic scoring system based on operative findings and MRI may predict non-optimal cytoreduction. MRI is able to assess ovarian cancer with peritoneal carcinomatosis with satisfactory concordance with laparotomic findings. This scoring system could be useful as a clinical guideline and should be evaluated and

  7. Synchrobetatron resonances

    1977-03-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  8. Snake resonances

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  9. Magnetic resonance imaging in the treatment planning of radiation therapy in carcinoma of the cervix treated with the four-field pelvic technique

    Thomas, Laurence; Chacon, Bosco; Kind, Michele; Lasbareilles, Olivier; Muyldermans, Piet; Chemin, Antony; Le Treut, Alain; Pigneux, Jaques; Kantor, Guy

    1997-01-01

    Purpose: To evaluate magnetic resonance imaging (MRI) in the planning of radiation therapy for patients with carcinoma of the cervix treated with a four-field technique. Methods and Materials: Between May 1994 and February 1995, 18 patients with carcinoma of the cervix were entered in the study (1 T1 N-; 2 T2a N-; 1 T2b NO; 10 T2b N-; 2 T2b N+; 2 T3b N+). Node status was assessed by a laparoscopic pelvic lymphadenectomy. During the first step, all the patients were simulated with an isocentric four-field pelvic technique. In one group (11 patients) simulation was done based on clinical examination, computed tomography (CT), and standard guidelines. In the second group (seven patients) simulation was based on clinical examination, CT, and with the help of diagnostic MRI, which was available at that time. During the second step, MRI in treatment position with skin markings of the isocenter of the radiation fields was then performed in every patient. During the third step, in each patient, the simulated radiation fields were correlated with the MRI defined target volume by superimposing them on midsagittal and midcoronal MR images. The adequacy of the margins was arbitrarly defined as 1 cm around the MRI defined target volume (tumor of the cervix and its extension, and uterus). Results: In the first group (11 patients), MRI in treatment position led to a change in 7 patients: six inadequate margins in the lateral fields and one in the anterior and lateral field. In almost all the cases, the adjustments were of an increase of 10 mm, equally matched between the anterior and posterior borders of the lateral fields. In the second group (seven patients), MRI in treatment position has led to a change in lateral fields in five patients. The mean adjustment was 10 mm: four increases (two anterior border, one posterior border, one anterior and posterior border), and one decrease of the posterior border. In the two groups, modifications of the anterior border of the lateral

  10. Feasibility assessment of using oxygen-enhanced magnetic resonance imaging for evaluating the effect of pharmacological treatment in COPD

    Morgan, Alexandra R., E-mail: alex.morgan@bioxydyn.com [Bioxydyn Ltd, Manchester (United Kingdom); Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Parker, Geoff J.M.; Roberts, Caleb [Bioxydyn Ltd, Manchester (United Kingdom); Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Buonaccorsi, Giovanni A.; Maguire, Niall C. [Bioxydyn Ltd, Manchester (United Kingdom); Hubbard Cristinacce, Penny L. [Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Singh, Dave; Vestbo, Jørgen [University of Manchester, Medicines Evaluation Unit, Manchester Academic Health Sciences Centre, University Hospital of South Manchester, Manchester (United Kingdom); Bjermer, Leif [Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund (Sweden); Jögi, Jonas [Department of Clinical Physiology, Skåne University Hospital and Lund University, Lund (Sweden); Taib, Ziad; Sarv, Janeli; Bruijnzeel, Piet L.B.; Olsson, Lars E.; Bondesson, Eva [AstraZeneca R and D, Mölndal (Sweden); Nihlén, Ulf [Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund (Sweden); AstraZeneca R and D, Mölndal (Sweden); McGrath, Deirdre M. [Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Young, Simon S. [AstraZeneca R and D, Alderley Park (United Kingdom); and others

    2014-11-15

    Highlights: • We investigate physiologic response to standard COPD treatment regimes using OE-MRI. • We assess the potential role of OE-MRI in future drug development studies. • In COPD, OE-MRI parameters showed response to single-dose formoterol. • OE-MRI parameters showed response to 8-week formoterol/budesonide treatment. • OE-MRI measurements are feasible in a small-scale multi-center trial setting. - Abstract: Objectives: Oxygen-enhanced MRI (OE-MRI) biomarkers have potential value in assessment of COPD, but need further evaluation before treatment-induced changes can be interpreted. The objective was to evaluate how OE-MRI parameters of regional ventilation and oxygen uptake respond to standard pharmacological interventions in COPD, and how the response compares to that of gold standard pulmonary function tests. Materials and methods: COPD patients (n = 40), mean FEV{sub 1} 58% predicted normal, received single-dose inhaled formoterol 9 μg, or placebo, followed by 8 weeks treatment bid with a combination of budesonide and formoterol Turbuhaler{sup ®} 320/9 μg or formoterol Turbuhaler{sup ®}. OE-MRI biomarkers were obtained, as well as X-ray computed tomography (CT) biomarkers and pulmonary function tests, in a two-center study. An ANCOVA statistical model was used to assess effect size of intervention measurable in OE-MRI parameters of lung function. Results: OE-MRI data were successfully acquired at both study sites. 8-week treatment with budesonide/formoterol significantly decreased lung wash-out time by 31% (p < 0.01), decreased the change in lung oxygen level upon breathing pure oxygen by 13% (p < 0.05) and increased oxygen extraction from the lung by 58% (p < 0.01). Single-dose formoterol increased both lung wash-out time (+47%, p < 0.05) and lung oxygenation time (+47%, p < 0.05). FEV{sub 1} was improved by single-dose formoterol (+12%, p < 0.001) and 8 weeks of budesonide/formoterol (+ 18%, p < 0.001), consistent with published studies

  11. Feasibility assessment of using oxygen-enhanced magnetic resonance imaging for evaluating the effect of pharmacological treatment in COPD

    Morgan, Alexandra R.; Parker, Geoff J.M.; Roberts, Caleb; Buonaccorsi, Giovanni A.; Maguire, Niall C.; Hubbard Cristinacce, Penny L.; Singh, Dave; Vestbo, Jørgen; Bjermer, Leif; Jögi, Jonas; Taib, Ziad; Sarv, Janeli; Bruijnzeel, Piet L.B.; Olsson, Lars E.; Bondesson, Eva; Nihlén, Ulf; McGrath, Deirdre M.; Young, Simon S.

    2014-01-01

    Highlights: • We investigate physiologic response to standard COPD treatment regimes using OE-MRI. • We assess the potential role of OE-MRI in future drug development studies. • In COPD, OE-MRI parameters showed response to single-dose formoterol. • OE-MRI parameters showed response to 8-week formoterol/budesonide treatment. • OE-MRI measurements are feasible in a small-scale multi-center trial setting. - Abstract: Objectives: Oxygen-enhanced MRI (OE-MRI) biomarkers have potential value in assessment of COPD, but need further evaluation before treatment-induced changes can be interpreted. The objective was to evaluate how OE-MRI parameters of regional ventilation and oxygen uptake respond to standard pharmacological interventions in COPD, and how the response compares to that of gold standard pulmonary function tests. Materials and methods: COPD patients (n = 40), mean FEV 1 58% predicted normal, received single-dose inhaled formoterol 9 μg, or placebo, followed by 8 weeks treatment bid with a combination of budesonide and formoterol Turbuhaler ® 320/9 μg or formoterol Turbuhaler ® . OE-MRI biomarkers were obtained, as well as X-ray computed tomography (CT) biomarkers and pulmonary function tests, in a two-center study. An ANCOVA statistical model was used to assess effect size of intervention measurable in OE-MRI parameters of lung function. Results: OE-MRI data were successfully acquired at both study sites. 8-week treatment with budesonide/formoterol significantly decreased lung wash-out time by 31% (p < 0.01), decreased the change in lung oxygen level upon breathing pure oxygen by 13% (p < 0.05) and increased oxygen extraction from the lung by 58% (p < 0.01). Single-dose formoterol increased both lung wash-out time (+47%, p < 0.05) and lung oxygenation time (+47%, p < 0.05). FEV 1 was improved by single-dose formoterol (+12%, p < 0.001) and 8 weeks of budesonide/formoterol (+ 18%, p < 0.001), consistent with published studies. Conclusions: In COPD

  12. Usefulness of the computed tomography and magnetic resonance in evaluation of progress of treatment of the neoplasmatic diseases in children

    Myga-Porosiło, Jolanta; Borowiak, Hanna; Sraga, Wojciech; Jackowska, Zuzanna; Serafin, Magdalena; Kluczewska, Ewa

    2012-01-01

    Neoplastmatic diseases constitute about 1% diseases in children in Poland, what makes about 1200 new incidents during one year. Fast diagnosis in those illnesses is crucial in treatment results. The point of this work was to value usefulness of CT and MRI in diagnostics of neoplasmatic diseases in children. The retrospective study involved 121 children examined in CT and MRI because of suspicion or during treatment of neoplasmatic disease. Together 184 CT and 119 MRI examination were performed. Eventually in 106 children neoplasmatic disease was diagnosed. In 16 cases neoplasm was excluded. In the analyzed group of patients acute lymphoblastic and non lymphoblastic leukemia was diagnosed in 68 children (55.7%); among them mycosis was identified after radiological examinations in 7 cases (10.3%). 8 children (6.6%) with non Hodgkin lymphoma and 11 (9%) with Hodgkin lymphoma were examined. Nephroblastoma was found after MRI and CT in 6 cases (4.9%). Presence of tumors, that were classified histopatologically as PNET, was confirmed in 4 children. In 15 cases after MRI and CT neoplasmatic disease was excluded. Depending on the kind of sickness MRI and CT may fulfill basic or subsidiary role in diagnostic and estimating the progress of treatment in neoplasmatic diseases among children

  13. Magnetic resonance imaging patterns of treatment-related toxicity in the pediatric brain: an update and review of the literature

    Rossi Espagnet, Maria Camilla; Longo, Daniela [Bambino Gesu Children' s Hospital, IRCCS, Neuroradiology Unit, Department of Imaging, Rome (Italy); Pasquini, Luca [Bambino Gesu Children' s Hospital, IRCCS, Neuroradiology Unit, Department of Imaging, Rome (Italy); Sant' Andrea Hospital, Sapienza University, NESMOS Department, Rome (Italy); Napolitano, Antonio [Bambino Gesu Children' s Hospital, IRCCS, Enterprise Risk Management, Medical Physics Department, Rome (Italy); Cacchione, Antonella; Mastronuzzi, Angela; Caruso, Roberta [Bambino Gesu Children' s Hospital, IRCCS, Department of Hematology/Oncology and Stem Cell Transplantation, Rome (Italy); Toma, Paolo [Bambino Gesu Children' s Hospital, IRCCS, Department of Imaging, Rome (Italy)

    2017-05-15

    Treatment-related neurotoxicity is a potentially life-threatening clinical condition that can represent a diagnostic challenge. Differentiating diagnoses between therapy-associated brain injury and recurrent disease can be difficult, and the immediate recognition of neurotoxicity is crucial to providing correct therapeutic management, ensuring damage reversibility. For these purposes, the knowledge of clinical timing and specific treatment protocols is extremely important for interpreting MRI patterns. Neuroradiologic findings are heterogeneous and sometimes overlapping, representing the compounding effect of the different treatments. Moreover, MRI patterns can be acute, subacute or delayed and involve different brain regions, depending on (1) the mechanism of action of the specific medication and (2) which brain regions are selectively vulnerable to specific toxic effects. This review illustrates the most common radiologic appearance of radiotherapy, chemotherapy and medication-associated brain injury in children, with special focus on the application of advanced MRI techniques (diffusion, perfusion and proton spectroscopy) in the diagnosis of the underlying processes leading to brain toxicity. (orig.)

  14. High intensity focused ultrasound treatment of adenomyosis: The relationship between the features of magnetic resonance imaging on T2 weighted images and the therapeutic efficacy

    Gong, Chunmei [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Haifu Hospital, College of Biomedical Engineering, Chongqing Medical University, Chongqing (China); Setzen, Raymond [Department of Obstetrics and Gynecology, Chris Hani Baragwanath Academic Hospital, Johannesburg (South Africa); Liu, Zhongqiong; Liu, Yunchang [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Haifu Hospital, College of Biomedical Engineering, Chongqing Medical University, Chongqing (China); Xie, Bin [Department of Ultrasound, Huanggang Central Hospital, Huanggang City, Hubei 438000 (China); Aili, Aixingzi, E-mail: 1819483078@qq.com [Shanghai First Maternity and Infant Health Hospital, Shanghai (China); Zhang, Lian, E-mail: lianwzhang@yahoo.com [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Haifu Hospital, College of Biomedical Engineering, Chongqing Medical University, Chongqing (China)

    2017-04-15

    Objectives: To investigate the relationship between the features of magnetic resonance imaging (MRI) on T2 weighted images (T2WI) and the therapeutic efficacy of high intensity focused ultrasound (HIFU) on adenomyosis. Materials and methods: From January 2011 to November 2015, four hundred and twenty-eight patients with symptomatic adenomyosis were treated with HIFU. Based on the signal intensity and the number of hyperintense foci in the adenomyotic lesions on T2WI, the patients were classified into groups. The day after HIFU ablation patients underwent contrast-enhanced MRI and a comparison was made of non-perfused volume (NPV) ratio, energy efficiency factor (EEF), treatment time, sonication time, and adverse effects. Results: No significant difference in terms of HIFU treatment settings and results was observed between the group of patients with hypointense adenomyotic lesions and the group with isointense adenomyotic lesions (P > 0.05). However, the sonication time and EEF were significantly higher in the group with multiple hyperintense foci compared to the group with few hyperintense foci. The NPV ratio achieved in the lesions with multiple hyperintenese foci was significantly lower than that in the lesions with few hyperintense foci (P < 0.05). No significant difference was observed in the rate of adverse effects between the two groups. Conclusions: Based on our results, the response of the adenomyotic lesions to HIFU treatment is not related to the signal intensity of adenomyotic lesions on T2WI. However, the number of the high signal intensity foci in the adenomyotic lesions on T2WI can be considered as a predictive factor to help select patients for HIFU treatment.

  15. Characterization of low molecular weight dissolved natural organic matter along the treatment trait of a waterworks using Fourier transform ion cyclotron resonance mass spectrometry.

    Zhang, Haifeng; Zhang, Yahe; Shi, Quan; Ren, Shuoyi; Yu, Jianwei; Ji, Feng; Luo, Wenbin; Yang, Min

    2012-10-15

    Dissolved natural organic matter (DOM), particularly the low molecular weight DOM, can affect the performance of water treatment processes and serve as a main precursor of disinfection by-products (DBPs) during chlorination. In this study, electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize the low molecular weight DOM along the treatment trait of a conventional drinking water treatment plant. The ESI FT-ICR MS data showed that various C, H, O-only class species were the major components in the source water. According to the van Krevelen diagram analysis, lignin- and tannin-like compounds were the most abundant components. Within an isobaric group, the DOM molecules with a high degree of oxidation (high O/C value) were preferentially removed during coagulation, while those with low degree of oxidation were found to be more reactive toward chlorine. In addition, 357 one-chlorine containing products and 199 two-chlorine containing products formed during chlorination were detected in the chlorination effluent sample at a high confidence level. The chlorinated products can be arranged into series, suggesting that they were originated from C, H, O-only precursor compounds, which were in series related by the replacement of CH(4) against oxygen. For the first time, this study explored the behavior of low molecular weight DOM along a drinking water treatment trait on the molecular level, and revealed the presence of abundant unknown chlorinated products, which are probably rich in carboxylic and phenolic groups, in drinking water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. High intensity focused ultrasound treatment of adenomyosis: The relationship between the features of magnetic resonance imaging on T2 weighted images and the therapeutic efficacy

    Gong, Chunmei; Setzen, Raymond; Liu, Zhongqiong; Liu, Yunchang; Xie, Bin; Aili, Aixingzi; Zhang, Lian

    2017-01-01

    Objectives: To investigate the relationship between the features of magnetic resonance imaging (MRI) on T2 weighted images (T2WI) and the therapeutic efficacy of high intensity focused ultrasound (HIFU) on adenomyosis. Materials and methods: From January 2011 to November 2015, four hundred and twenty-eight patients with symptomatic adenomyosis were treated with HIFU. Based on the signal intensity and the number of hyperintense foci in the adenomyotic lesions on T2WI, the patients were classified into groups. The day after HIFU ablation patients underwent contrast-enhanced MRI and a comparison was made of non-perfused volume (NPV) ratio, energy efficiency factor (EEF), treatment time, sonication time, and adverse effects. Results: No significant difference in terms of HIFU treatment settings and results was observed between the group of patients with hypointense adenomyotic lesions and the group with isointense adenomyotic lesions (P > 0.05). However, the sonication time and EEF were significantly higher in the group with multiple hyperintense foci compared to the group with few hyperintense foci. The NPV ratio achieved in the lesions with multiple hyperintenese foci was significantly lower than that in the lesions with few hyperintense foci (P < 0.05). No significant difference was observed in the rate of adverse effects between the two groups. Conclusions: Based on our results, the response of the adenomyotic lesions to HIFU treatment is not related to the signal intensity of adenomyotic lesions on T2WI. However, the number of the high signal intensity foci in the adenomyotic lesions on T2WI can be considered as a predictive factor to help select patients for HIFU treatment.

  17. Nonlinear resonances

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  18. The value of diffusion kurtosis magnetic resonance imaging for assessing treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer

    Yu, Jing; Xu, Qing; Song, Jia-Cheng; Li, Yan; Dai, Xin; Zhang, Ling; Shi, Hai-Bin [First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing (China); Huang, Dong-Ya [First Affiliated Hospital of Nanjing Medical University, Department of General Surgery, Nanjing (China); Li, Yang [First Affiliated Hospital of Nanjing Medical University, Department of Pathology, Nanjing (China)

    2017-05-15

    To evaluate the feasibility and value of diffusion kurtosis (DK) imaging in assessing treatment response to neoadjuvant chemoradiotherapy (CRT) in patients with locally advanced rectal cancer (LARC). Forty-one patients were included. All patients underwent pre- and post-CRT DCE-MRI on a 3.0-Tesla MRI scanner. Imaging indices (D{sub app}, K{sub app} and ADC values) were measured. Change value (∇X) and change ratio (r ∇X) were calculated. Pathological tumour regression grade scores (Mandard) were the standard reference (good responders: pTRG 1-2; poor responders: pTRG 3-5). Diagnostic performance was compared using ROC analysis. For the pre-CRT measurements, pre-D{sub app-10th} was significantly lower in the good responder group than that of the poor responder group (p = 0.036). For assessing treatment response to neoadjuvant CRT, pre-D{sub app-10th} resulted in AUCs of 0.753 (p = 0.036) with a sensitivity of 66.67 % and a specificity of 77.78 %. The r ∇D{sub app} had a relatively high AUC (0.859) and high sensitivity (100 %) compared with other image indices. DKI is feasible for selecting good responders for neoadjuvant CRT for LARC. (orig.)

  19. Evaluation of Effective Parameters on Quality of Magnetic Resonance Imaging-computed Tomography Image Fusion in Head and Neck Tumors for Application in Treatment Planning

    Atefeh Shirvani

    2017-01-01

    Full Text Available Background: In radiation therapy, computed tomography (CT simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. Materials and Methods: In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. Results: According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P 4 cm and image fusion quality was <25%. Conclusion: The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle.

  20. Advances in the development of a subgroup method for the self-shielding of resonant isotopes in arbitrary geometries

    Hebert, A.

    1997-01-01

    The subgroup method is used to compute self-shielded cross sections defined over coarse energy groups in the resolved energy domain. The validity of the subgroup approach was extended beyond the unresolved energy domain by partially taking into account correlation effects between the slowing-down source with the collision probability terms of the transport equation. This approach enables one to obtain a pure subgroup solution of the self-shielding problem without relying on any form of equivalence in dilution. Specific improvements are presented on existing subgroup methods: an N-term rational approximation for the fuel-to-fuel collision probability, a new Pade deflation technique for computing probability tables, and the introduction of a superhomogenization correction. The absorption rates obtained after self-shielding are compared with exact values obtained using an elastic slowing-down calculation where each resonance is modeled individually in the resolved energy domain

  1. Improvement of the matching speed of AIMS for development of an automatic totally tuning system for hyperthermia treatment using a resonant cavity applicator.

    Shindo, Y; Kato, K; Tsuchiya, K; Hirashima, T; Suzuki, M

    2009-01-01

    In this paper, we discuss the improvement of the speed of AIMS (Automatic Impedance Matching System) to automatically make impedance matching for a re-entrant resonant cavity applicator for non-invasive deep brain tumors hyperthermia treatments. We have already discussed the effectiveness of the heating method using the AIMS, with experiments of heating agar phantoms. However, the operating time of AIMS was about 30 minutes. To develop the ATT System (Automatic Totally Tuning System) including the automatic frequency tuning system, we must improve this problem. Because, when using the ATTS, the AIMS is used repeatedly to find the resonant frequency. In order to improve the speed of impedance matching, we developed the new automatic impedance matching system program (AIMS2). In AIMS, the stepping motors were connected to the impedance matching unit's dials. These dials were turned to reduce the reflected power. AIMS consists of two phases: all range searching and detailed searching. We focused on the three factors affecting the operating speed and improved them. The first factor is the interval put between the turning of the motors and AD converter. The second factor is how the steps of the motor when operating all range searching. The third factor is the starting position of the motor when detail searching. We developed the simple ATT System (ATT-beta) based on the AIMS2. To evaluate the developed AIMS2 and ATT- beta, experiments with an agar phantom were performed. From these results, we found that the operating time of the AIMS2 is about 4 minutes, which was approximately 12% of AIMS. From ATT-beta results, it was shown that it is possible to tune frequency and automatically match impedance with the program based on the AIMS2.

  2. TU-AB-BRA-10: Treatment of Gastric MALT Lymphoma Utilizing a Magnetic Resonance Image-Guided Radiation Therapy (MR-IGRT) System: Evaluation of Gating Feasibility

    Mazur, T; Gach, H; Chundury, A; Fischer-Valuck, B; Huang, J; Thomas, M; Green, O [Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: To evaluate the feasibility of real-time, real-anatomy tracking and gating for gastric lymphoma patients treated with magnetic resonance image-guided radiation therapy (MR-IGRT) Methods: Over the last 2 years, 8 patients with gastric lymphoma were treated with 0.3-T, Co-60 MR-IGRT. Post-treatment analysis of real-time cine imaging in the sagittal plane during each patient’s treatment revealed significant motion of the stomach. While this motion was accounted for with generous PTV margins, the system’s capability for real-time, real-anatomy tracking could be used to reduce treatment margins by gating. However, analysis was needed for the feasibility of gating using only the single available sagittal imaging plane. While any plane may be chosen, if the stomach moves differently where it is not being observed, there may potentially be a mistreatment. To that end, imaging with healthy volunteers was done to ascertain stomach motion over 2–4 min by analyzing multiple parallel sagittal and coronal planes 0.75 cm apart. The stomach was contoured on every slice, and the mean displacement between pairs of contour centroids was used to determine the amount of overall motion. Results: The mean displacement of the centroid in the image plane was 4.3 ± 0.7 mm. The greatest observed motion was more medial with respect to the patient, and less motion laterally, which implies that gating on a plane located closer to MRI isocenter will provide the more conservative scenario as it will turn the radiation delivery off when the stomach is observed to move outside a predetermined boundary. Conclusion: The stomach was observed to move relatively uniformly throughout, with maximum extent of motion closer to where most MRI systems have the best spatial integrity (near isocenter). Analysis of possible PTV margins from the healthy volunteer study (coupled with previous patient data on interfraction volumetric stomach deformation) is pending.

  3. Electron Paramagnetic Resonance Imaging

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  4. Characterization and Identification of Gamma-Irradiated Kimchi Cabbage and Broccoli by Electron Spin Resonance Spectroscopy using Different Sample Pre-treatments

    Kwak, J.Y.; Ahn, J.J.; Kashif Akram; Kim, G.R.; Kwon, J.H.

    2012-01-01

    Electron spin resonance (ESR) spectroscopy of gamma-irradiated fresh broccoli and kimchi cabbage was conducted to identify their irradiation history. Different pretreatments, such as freeze-drying (FD), oven-drying (OD), alcoholic-drying (ALD), and water-washing and alcoholic-drying (WAD) were used to lower the moisture contents of the samples prior to ESR analysis. The non-irradiated samples exhibited a single central signal (g 0 = 2.0007) with clear effect of Mn 2+ , especially in kimchi cabbage. Upon irradiation, there was an increase in the intensity of the central signal, and two side peaks, mutually spaced at 6 mT, were also observed. These side peaks with g 1 (left) = 2.023 and g 2 (right) = 1.985 were attributed to radiation-induced cellulose radicals. Leaf and stem in broccoli, and root and stem in kimchi cabbage provided good ESR signal responses upon irradiation. The signal noise was reduced in case of ALD and WAD pretreatments, particularly due to Mn 2+ signals. The ALD treatment was found most feasible to detect the improved ESR spectra in the irradiated samples. (author)

  5. Evaluation of treatment response to enzyme replacement therapy with Velaglucerase alfa in patients with Gaucher disease using whole-body magnetic resonance imaging.

    Laudemann, K; Moos, L; Mengel, E; Lollert, A; Hoffmann, C; Brixius-Huth, M; Wagner, D; Düber, C; Staatz, G

    2016-03-01

    This was a retrospective data analysis to evaluate the treatment response to enzyme replacement therapy (ERT) with Velaglucerase alfa using whole-body magnetic resonance imaging (MRI). A baseline and follow-up MRI were performed on 18 Gaucher Type 1 patients at an interval of 11.6 months. The MRI score systems determined the Bone-Marrow-Burden (BMB) score, the Düsseldorf-Gaucher score (DGS), and the Vertebra-Disc-Ratio (VDR). The Severity Score Index Type 1 (GD-DS3) was also assessed. The baseline MRI medians were: BMB, 7.00; DGS, 3.00; and VDR: 1.70; while, the follow-up MRI medians were: BMB, 7.00; DGS, 3.00; and VDR: 1.73. The baseline GD-DS3 median was 2.40 (BMB excl.: 0.50) and the follow-up median was 2.00 (BMB excl.: 0.50). There was weak statistical significance with the Wilcoxon signed-rank test for the DGS (p=0.034) and GD-DS3 (p=0.047) between both MRIs. Velaglucerase alfa therapy is a effective long-term treatment for Gaucher Type 1 patients who are newly diagnosed or switching therapies. Measurements with whole-body MRI and an objective scoring system were reliable tools for detecting early stage bone marrow activity. Further research is needed to evaluate the "Booster-Effect" of Velaglucerase alfa therapy in Gaucher skeletal disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The Use of Magnetic Resonance Imaging to Predict the Clinical Outcome of Non-Surgical Treatment for Lumbar Interverterbal Disc Herniation

    Choi, Soo Jung; Kim, Chung Hwan; Shin, Myung Jin; Ryu, Dae Sik; Ahn, Jae Hong; Jung, Seung Moon; Park, Man Soo; Song, Jae Seok

    2007-01-01

    We wanted to investigate the relationship between the magnetic resonance (MR) findings and the clinical outcome after treatment with non-surgical transforaminal epidural steroid injections (ESI) for lumbar herniated intervertebral disc (HIVD) patients. Transforaminal ESI were performed in 91 patients (50 males and 41 females, age range: 13 78 yrs) because of lumbosacral HIVD from March 2001 to August 2002. Sixty eight patients whose MRIs and clinical follow-ups were available were included in this study. The medical charts were retrospectively reviewed and the patients were divided into two groups; the successful (responders, n = 41) and unsatisfactory (non-responders, n = 27) outcome groups. A successful outcome required a patient satisfaction score greater than two and a pain reduction score greater than 50%. The MR findings were retrospectively analyzed and compared between the two groups with regard to the type (protrusion, extrusion or sequestration), hydration (the T2 signal intensity), location (central, right/left central, subarticular, foraminal or extraforaminal), and size (volume) of the HIVD, the grade of nerve root compression (grade 1 abutment, 2 displacement and 3 entrapment), and an association with spinal stenosis. There was no significant difference between the responders and nonresponders in terms of the type, hydration and size of the HIVD, or an association with spinal stenosis (p > 0.05). However, the location of the HIVD and the grade of nerve root compression were different between the two groups (p < 0.05). MRI could play an important role in predicting the clinical outcome of non-surgical transforaminal ESI treatment for patients with lumbar HIVD

  7. The Use of Magnetic Resonance Imaging to Predict the Clinical Outcome of Non-Surgical Treatment for Lumbar Interverterbal Disc Herniation

    Choi, Soo Jung; Kim, Chung Hwan; Shin, Myung Jin; Ryu, Dae Sik; Ahn, Jae Hong; Jung, Seung Moon; Park, Man Soo [GangNeung Asan Hospital, University of Ulsan College of Medicine, GangNeung, Seoul (Korea, Republic of); Song, Jae Seok [University of Kwandong College of Medicine, GangNeung (Korea, Republic of)

    2007-04-15

    We wanted to investigate the relationship between the magnetic resonance (MR) findings and the clinical outcome after treatment with non-surgical transforaminal epidural steroid injections (ESI) for lumbar herniated intervertebral disc (HIVD) patients. Transforaminal ESI were performed in 91 patients (50 males and 41 females, age range: 13 78 yrs) because of lumbosacral HIVD from March 2001 to August 2002. Sixty eight patients whose MRIs and clinical follow-ups were available were included in this study. The medical charts were retrospectively reviewed and the patients were divided into two groups; the successful (responders, n = 41) and unsatisfactory (non-responders, n = 27) outcome groups. A successful outcome required a patient satisfaction score greater than two and a pain reduction score greater than 50%. The MR findings were retrospectively analyzed and compared between the two groups with regard to the type (protrusion, extrusion or sequestration), hydration (the T2 signal intensity), location (central, right/left central, subarticular, foraminal or extraforaminal), and size (volume) of the HIVD, the grade of nerve root compression (grade 1 abutment, 2 displacement and 3 entrapment), and an association with spinal stenosis. There was no significant difference between the responders and nonresponders in terms of the type, hydration and size of the HIVD, or an association with spinal stenosis (p > 0.05). However, the location of the HIVD and the grade of nerve root compression were different between the two groups (p < 0.05). MRI could play an important role in predicting the clinical outcome of non-surgical transforaminal ESI treatment for patients with lumbar HIVD.

  8. Diffusion-weighted magnetic resonance imaging for pretreatment prediction and monitoring of treatment response of patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy

    Nilsen, Line; Olsen, Dag Rune; Seierstad, Therese; Fangberget, Anne; Geier, Oliver

    2010-01-01

    Background. For patients with locally advanced breast cancer (LABC) undergoing neoadjuvant chemotherapy (NACT), the European Guidelines for Breast Imaging recommends magnetic resonance imaging (MRI) to be performed before start of NACT, when half of the NACT has been administered and prior to surgery. This is the first study addressing the value of flow-insensitive apparent diffusion coefficients (ADCs) obtained from diffusion-weighted (DW) MRI at the recommended time points for pretreatment prediction and monitoring of treatment response. Materials and methods. Twenty-five LABC patients were included in this prospective study. DW MRI was performed using single-shot spin-echo echo-planar imaging with b-values of 100, 250 and 800 s/mm 2 prior to NACT, after four cycles of NACT and at the conclusion of therapy using a 1.5 T MR scanner. ADC in the breast tumor was calculated from each assessment. The strength of correlation between pretreatment ADC, ADC changes and tumor volume changes were examined using Spearman's rho correlation test. Results. Mean pretreatment ADC was 1.11 ± 0.21 x 10 -3 mm 2 /s. After 4 cycles of NACT, ADC was significantly increased (1.39 ± 0.36 x 10 -3 mm 2 /s; p=0.018). There was no correlation between individual pretreatment breast tumor ADC and MR response measured after four cycles of NACT (p=0.816) or prior to surgery (p=0.620). Conclusion. Pretreatment tumor ADC does not predict treatment response for patients with LABC undergoing NACT. Furthermore, ADC increase observed mid-way in the course of NACT does not correlate with tumor volume changes.

  9. Diffusion-Weighted Magnetic Resonance Imaging Early After Chemoradiotherapy to Monitor Treatment Response in Head-and-Neck Squamous Cell Carcinoma

    Vandecaveye, Vincent, E-mail: Vincent.Vandecaveye@uzleuven.be [Department of Radiology, University Hospitals Leuven (Belgium); Dirix, Piet [Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven (Belgium); De Keyzer, Frederik; Op de Beeck, Katya [Department of Radiology, University Hospitals Leuven (Belgium); Vander Poorten, Vincent [Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven (Belgium); Hauben, Esther [Department of Pathology, University Hospitals Leuven (Belgium); Lambrecht, Maarten; Nuyts, Sandra [Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven (Belgium); Hermans, Robert [Department of Radiology, University Hospitals Leuven (Belgium)

    2012-03-01

    Purpose: To evaluate diffusion-weighted imaging (DWI) for assessment of treatment response in head and neck squamous cell carcinoma (HNSCC) three weeks after the end of chemoradiotherapy (CRT). Methods and Materials: Twenty-nine patients with HNSCC underwent magnetic resonance imaging (MRI) prior to and 3 weeks after CRT, including T{sub 2}-weighted and pre- and postcontrast T{sub 1}-weighted sequences and an echo-planar DWI sequence with six b values (0 to 1,000 s/mm{sup 2}), from which the apparent diffusion coefficient (ADC) was calculated. ADC changes 3 weeks posttreatment compared to baseline ( Increment ADC) between responding and nonresponding primary lesions and adenopathies were correlated with 2 years locoregional control and compared with a Mann-Whitney test. In a blinded manner, the Increment ADC was compared to conventional MRI 3 weeks post-CRT and the routinely implemented CT, on average 3 months post-CRT, which used size-related and morphological criteria. Positive and negative predictive values (PPV and NPV, respectively) were compared between the Increment ADC and anatomical imaging. Results: The Increment ADC of lesions with later tumor recurrence was significantly lower than lesions with complete remission for both primary lesions (-2.3% {+-} 0.3% vs. 80% {+-} 41%; p < 0.0001) and adenopathies (19.9% {+-} 32% vs. 63% {+-} 36%; p = 0.003). The Increment ADC showed a PPV of 89% and an NPV of 100% for primary lesions and a PPV of 70% and an NPV of 96% for adenopathies per neck side. DWI improved PPV and NPV compared to anatomical imaging. Conclusion: DWI with the Increment ADC 3 weeks after concluding CRT for HNSCC allows for early assessment of treatment response.

  10. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... by the interpreting radiologist. Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with ... Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  11. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... MRI) exam. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, ...

  12. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    Ciller, Carlos, E-mail: carlos.cillerruiz@unil.ch [Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne (Switzerland); Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Centre d’Imagerie BioMédicale, University of Lausanne, Lausanne (Switzerland); De Zanet, Sandro I.; Rüegsegger, Michael B. [Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Department of Ophthalmology, Inselspital, Bern University Hospital, Bern (Switzerland); Pica, Alessia [Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern (Switzerland); Sznitman, Raphael [Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Department of Ophthalmology, Inselspital, Bern University Hospital, Bern (Switzerland); Thiran, Jean-Philippe [Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne (Switzerland); Signal Processing Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Maeder, Philippe [Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne (Switzerland); Munier, Francis L. [Unit of Pediatric Ocular Oncology, Jules Gonin Eye Hospital, Lausanne (Switzerland); Kowal, Jens H. [Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Department of Ophthalmology, Inselspital, Bern University Hospital, Bern (Switzerland); and others

    2015-07-15

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

  13. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma.

    Ciller, Carlos; De Zanet, Sandro I; Rüegsegger, Michael B; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L; Kowal, Jens H; Cuadra, Meritxell Bach

    2015-07-15

    Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    Ciller, Carlos; De Zanet, Sandro I.; Rüegsegger, Michael B.; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L.; Kowal, Jens H.

    2015-01-01

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor

  15. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose–Volume Parameters and First Clinical Results

    Dimopoulos, Johannes C.A.; Schmid, Maximilian P.; Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Pötter, Richard

    2012-01-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45–50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model (α/β = 10 Gy for tumor; α/β = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV (± 1 standard deviation) at diagnosis was 45.3 (±30) cm 3 , and the mean GTV at brachytherapy was 10 (±14) cm 3 . The mean D90 for the HRCTV was 86 (±13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 (±20) Gy, 76 (±16) Gy, 70 (±9) Gy, and 60 (±9) Gy, respectively. After a median follow-up of 43 months (range, 19–87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and organs at risk are in a comparable

  16. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose-Volume Parameters and First Clinical Results

    Dimopoulos, Johannes C.A. [Department of Radiation Oncology, Metropolitan Hospital, Athens (Greece); Schmid, Maximilian P., E-mail: maximilian.schmid@akhwien.at [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria); Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Poetter, Richard [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria)

    2012-04-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and

  17. Multiquark Resonances

    Esposito, A.; Polosa, A.D.

    2016-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  18. Baryon Resonances

    Oset, E.; Sarkar, S.; Sun Baoxi; Vicente Vacas, M.J.; Ramos, A.; Gonzalez, P.; Vijande, J.; Martinez Torres, A.; Khemchandani, K.

    2010-01-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the Λ(1405) resonance, as well as the prediction of one 1/2 + baryon state around 1920 MeV which might have been seen in the γp→K + Λ reaction.

  19. 996 RESONANCE November 2013

    IAS Admin

    996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...

  20. 817 RESONANCE September 2013

    IAS Admin

    817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...

  1. 369 RESONANCE April 2016

    IAS Admin

    369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.

  2. Magnetic resonance imaging in the radiation treatment planning of localized prostate cancer using intra-prostatic fiducial markers for computed tomography co-registration

    Parker, C.C.; Damyanovich, A.; Haycocks, T.; Haider, M.; Bayley, A.; Catton, C.N.

    2003-01-01

    Purpose: To assess the feasibility, and potential implications, of using intra-prostatic fiducial markers, rather than bony landmarks, for the co-registration of computed tomography (CT) and magnetic resonance (MR) images in the radiation treatment planning of localized prostate cancer. Methods: All men treated with conformal therapy for localized prostate cancer underwent routine pre-treatment insertion of prostatic fiducial markers to assist with gross target volume (GTV) delineation and to identify prostate positioning during therapy. Six of these men were selected for investigation. Phantom MRI measurements were obtained to quantify image distortion, to determine the most suitable gold alloy marker composition, and to identify the spin-echo sequences that optimized both marker identification and the contrast between the prostate and the surrounding tissues. The GTV for each patient was contoured independently by three radiation oncologists on axial planning CT slices, and on axial MRI slices fused to the CT slices by matching the implanted fiducial markers. From each set of contours the scan common volume (SCV), and the scan encompassing volume (SEV), were obtained. The ratio SEV/SCV for a given scan is a measure of inter-observer variation in contouring. For each of the 18 patient-observer combinations the observer common volume (OCV) and the observer encompassing volume (OEV) was obtained. The ratio OEV/OCV for a given patient-observer combination is a measure of the inter-modality variation in contouring. The distance from the treatment planning isocenter to the prostate contours was measured and the discrepancy between the CT- and the MR-defined contour recorded. The discrepancies between the CT- and MR-defined contours of the posterior prostate were recorded in the sagittal plane at 1-cm intervals above and below the isocenter. Results: Phantom measurements demonstrated trivial image distortion within the required field of view, and an 18K Au/Cu alloy to

  3. Synchrobetatron resonances

    Anon.

    1977-01-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. These resonances occur when the betatron oscillation wave numbers ν/sub x/ or ν/sub y/ and the synchrotron wave number ν/sub s/ satisfy the relation (ν/sub x,y/ - mν/sub s/) = 5, with m an integer denoting the m/sup th/ satellite. The main difference between SPEAR II and SPEAR I is the value of ν/sub s/, which in SPEAR II is approximately 0.04, an order of magnitude larger than in SPEAR I. An ad hoc meeting was held at the 1975 Particle Accelerator Conference, where details of the SPEAR II results were presented and various possible mechanisms for producing these resonances were discussed. Later, experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  4. Autostereogram resonators

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  5. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MRgHIFU) for Treatment of Symptomatic Uterine Fibroids: An Economic Analysis

    Babashov, V; Palimaka, S; Blackhouse, G; O'Reilly, D

    2015-01-01

    Background Uterine fibroids, or leiomyomas, are the most common benign tumours in women of childbearing age. Some women experience symptoms (e.g., heavy bleeding) that require aggressive forms of treatment such as uterine artery embolization (UAE), myomectomy, magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU), and even hysterectomy. It is important to note that hysterectomy is not appropriate for women who desire future childbearing. Objectives The objective of this analysis was to evaluate the cost-effectiveness and budgetary impact of implementing MRgHIFU as a treatment option for symptomatic uterine fibroids in premenopausal women for whom drugs have been ineffective. Review Methods We performed an original cost-effectiveness analysis to assess the long-term costs and effects of MRgHIFU compared with hysterectomy, myomectomy, and UAE as a strategy for treating symptomatic uterine fibroids in premenopausal women aged 40 to 51 years. We explored a number of scenarios, e.g., comparing MRgHIFU with uterine-preserving procedures only, considering MRgHIFU-eligible patients only, and eliminating UAE as a treatment option. In addition, we performed a one-year budget impact analysis, using data from Ontario administrative sources. Four scenarios were explored in the budgetary impact analysis: MRgHIFU funded at 2 centres MRgHIFU funded at 2 centres and replacing only uterine-preserving procedures MRgHIFU funded at 6 centres MRgHIFU funded at 6 centres and replacing only uterine-preserving procedures Analyses were conducted from the Ontario public payer perspective. Results The base case determined that the uterine artery embolization (UAE) treatment strategy was the cost-effective option at commonly accepted willingness-to-pay values. Compared with hysterectomy, UAE was calculated as having an incremental cost-effectiveness ratio (ICER) of $46,480 per quality-adjusted life-year (QALY) gained. The MRgHIFU strategy was extendedly dominated by a

  6. Resonating Statements

    Hjelholt, Morten; Jensen, Tina Blegind

    2015-01-01

    IT projects are often complex arrangements of technological components, social actions, and organizational transformation that are difficult to manage in practice. This paper takes an analytical discourse perspective to explore the process of legitimizing IT projects. We introduce the concept...... of resonating statements to highlight how central actors navigate in various discourses over time. Particularly, the statements and actions of an IT project manager are portrayed to show how individuals can legitimize actions by connecting statements to historically produced discourses. The case study...... as part of a feedback loop to re-attach the localized IT project to the broader national discourse. The paper concludes with reflections on how to actively build on resonating statements as a strategic resource for legitimizing IT projects...

  7. Gravitoelectromagnetic resonances

    Tsagas, Christos G.

    2011-01-01

    The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski background, which also applies to astrophysical environments where gravity is weak, at the second perturbative level. We use covariant methods that describe gravitational waves via the transverse component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravitationally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging, gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our Minkowski space study to cosmology and discuss analogies and differences in the physics and in the phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.

  8. Magnetic resonance annual 1986

    Kressel, H.Y.

    1986-01-01

    This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging

  9. 1004 RESONANCE November 2013

    IAS Admin

    1004. RESONANCE │ November 2013. Page 2. 1005. RESONANCE │ November 2013. Page 3. 1006. RESONANCE │ November 2013. Page 4. 1007. RESONANCE │ November 2013. Page 5. 1008. RESONANCE │ November 2013. Page 6. 1009. RESONANCE │ November 2013. Page 7. 1010. RESONANCE ...

  10. Even order snake resonances

    Lee, S.Y.

    1993-01-01

    We found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune shift of imperfection resonances, each snake resonance splits into two

  11. Advances in magnetic resonance 2

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 2, features a mixture of experimental and theoretical contributions. The book contains four chapters and begins with an ambitious and general treatment of the problem of signal-to-noise ratio in magnetic resonance. This is followed by separate chapters on the interpretation of nuclear relaxation in fluids, with special reference to hydrogen; and various aspects of molecular theory of importance in NMR.

  12. Complementary information from magnetic resonance imaging and 18F-fluoromisonidazole positron emission tomography in the assessment of the response to an antiangiogenic treatment in a rat brain tumor model

    Valable, Samuel; Petit, Edwige; Roussel, Simon; Marteau, Lena; Toutain, Jerome; Divoux, Didier; Sobrio, Franck; Delamare, Jerome; Barre, Louisa; Bernaudin, Myriam

    2011-01-01

    Introduction: No direct proof has been brought to light in a link between hypoxic changes in glioma models and the effects of antiangiogenic treatments. Here, we assessed the sensitivity of the detection of hypoxia through the use of 18 F-fluoromisonidazole positron emission tomography ([ 18 F]-FMISO PET) in response to the evolution of the tumor and its vasculature. Methods: Orthotopic glioma tumors were induced in rats after implantation of C6 or 9L cells. Sunitinib was administered from day (D) 17 to D24. At D17 and D24, multiparametric magnetic resonance imaging was performed to characterize tumor growth and vasculature. Hypoxia was assessed by [ 18 F]-FMISO PET. Results: We showed that brain hypoxic volumes are related to glioma volume and its vasculature and that an antiangiogenic treatment, leading to an increase in cerebral blood volume and a decrease in vessel permeability, is accompanied by a decrease in the degree of hypoxia. Conclusions: We propose that [ 18 F]-FMISO PET and multiparametric magnetic resonance imaging are pertinent complementary tools in the evaluation of the effects of an antiangiogenic treatment in glioma.

  13. The value of magnetic resonance imaging (MRI) in the treatment planning of vertebral metastasis considering economic aspects. A cost benefit-analysis; Die Wertigkeit der Magnetresonanztomographie (MRT) unter oekonomischen Aspekten bei der Bestrahlungsplanung von Wirbelkoerpermetastasen. Eine Kosten-Nutzen-Analyse

    Prott, F.J.; Schlehuber, E.; Scharding, B.J.; Rinast, E. [Strahlentherapie Wiesbaden, St.-Josefs-Hospital (Germany); Micke, O. [Klinik und Poliklinik fuer Strahlentherapie - Radioonkologie, Universitaetsklinikum Muenster (Germany)

    2002-05-01

    Is magnetic resonance imaging (MRI) based target volume definition for treatment planning of vertebral metastasis effective under economic considerations.From 1994 to 1999, a total of 137 patients with bone metastases affecting the vertebral column underwent MRI of the cercival, thoracic, or lumbar spine for the treatment planning of palliative radiation therapy. The following radiation treatment consisted in a irradiation of the affected vertebral region up to a total dose of 30-40 Gy.The cost calculation for radiotherapy and magnetic resonance tomography was done using the common tariff model (EBM) of the German Health Insurances.In 73% of patients (101 patients), magnetic resonance imaging resulted in marked corrections of the irradiation fields which would have resulted in the necessity of treatment for recurrence in the case of treatment planning without MRI.Consequently, the higher cost of MRI of 345.00 DEM (176,40 EUR) lead to a saving of 497.00 DEM (254,11 EUR) compared to a recurrence treatment of 10 fractions and of 1,428.00 DEM (730,12 EUR) compared to 20 fractions. The transport expenses for the second treatment could be saved as well.Even under economic considerations MRI is effective. (orig.) [German] Ist eine MRT-gestuetzte Zielvolumendefinition bei der Strahlentherapie von Knochenmetastasen ein sinnvolles Vorgehen unter oekonomischen Gesichtspunkten?1994-1999 wurde bei 137 Patienten mit einem ossaer metastasierenden Tumor und Befall der Wirbelsaeule eine Magnetresonanztomographie (MRT) zur Planung einer palliativen Radiatio durchgefuehrt. Die nachfolgende Strahlentherapie bestand aus einer Radiatio des betroffenen Wirbelkoerperabschnitts bis zu einer Gesamtherddosis von 30-40 Gy. Fuer die Berechnung der Kosten wurde der einheitliche Bewertungsmassstab der Deutschen Krankenkassen zugrunde gelegt.Aufgrund der MRT-Untersuchungen wurde bei 73% der Patienten eine Veraenderung des Bestrahlungsfeldes vorgenommen, die im Falle einer nicht MRT

  14. One-dimensional full wave treatment of mode conversion process at the ion-ion hybrid resonance in a bounded tokamak plasma

    Monakhov, I.; Becoulet, A.; Fraboulet, D.; NGuyen, F.

    1998-09-01

    A consistent picture of the mode conversion (MC) process at the ion-ion hybrid resonance in a bounded plasma of a tokamak is discussed, which clarifies the role of the global fast wave interference and cavity effects in the determination of the MC efficiency. This picture is supported by simulations with one-dimensional full wave kinetic code 'VICE'. The concept of the 'global resonator', formed by the R = n 2 || boundary cutoffs [B. Saoutic et al., Phys. Rev. Lett. 76, 1647 (1996)], is justified, as well as the importance of a proper tunneling factor choice η cr = 0.22 [A. K. Ram et al., Phys. Plasmas 3, 1976 (1996)]. The MC scheme behavior appears to be very sensitive to the MC layer position relative to the global wave field pattern, i.e. to the local value of 'poloidal' electric field at the resonance. Optimal MC regimes are found to be attainable without requirement of a particular parallel wavenumber choice. (author)

  15. Monitoring mammary tumor progression and effect of tamoxifen treatment in MMTV-PymT using MRI and magnetic resonance spectroscopy with hyperpolarized [1-13C]pyruvate

    Asghar Butt, Sadia; Søgaard, Lise V.; Ardenkjær-Larsen, Jan Henrik

    2015-01-01

    Purpose: To use dynamic magnetic resonance spectroscopy (MRS) of hyperpolarized 13C-pyruvate to follow the progress over time in vivo of breast cancer metabolism in the MMTV-PymT model, and to follow the response to the anti-estrogen drug tamoxifen. Methods: Tumor growth was monitored by anatomical...... significantly in the treated group. Conclusion: These hyperpolarized 13C MRS findings indicate that tumor metabolic changes affects kP. The measured kp did not relate to treatment response to the same extent as did tumor growth, histological evaluation, and in vitro determination of LDH activity. © 2014 Wiley...

  16. Applied neutron resonance theory

    Froehner, F.H.

    1980-01-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (author)

  17. Applied neutron resonance theory

    Froehner, F.H.

    1978-07-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.) [de

  18. Narrow dibaryon resonances

    Kajdalov, A.B.

    1986-01-01

    Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered

  19. MRI (Magnetic Resonance Imaging)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  20. Regenerative feedback resonant circuit

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  1. Resonant state expansions

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  2. Resonances, resonance functions and spectral deformations

    Balslev, E.

    1984-01-01

    The present paper is aimed at an analysis of resonances and resonance states from a mathematical point of view. Resonances are characterized as singular points of the analytically continued Lippman-Schwinger equation, as complex eigenvalues of the Hamiltonian with a purely outgoing, exponentially growing eigenfunction, and as poles of the S-matrix. (orig./HSI)

  3. Simple classical approach to spin resonance phenomena

    Gordon, R A

    1977-01-01

    A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...

  4. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  7. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...

  9. Stochastic resonance

    Wellens, Thomas; Shatokhin, Vyacheslav; Buchleitner, Andreas

    2004-01-01

    We are taught by conventional wisdom that the transmission and detection of signals is hindered by noise. However, during the last two decades, the paradigm of stochastic resonance (SR) proved this assertion wrong: indeed, addition of the appropriate amount of noise can boost a signal and hence facilitate its detection in a noisy environment. Due to its simplicity and robustness, SR has been implemented by mother nature on almost every scale, thus attracting interdisciplinary interest from physicists, geologists, engineers, biologists and medical doctors, who nowadays use it as an instrument for their specific purposes. At the present time, there exist a lot of diversified models of SR. Taking into account the progress achieved in both theoretical understanding and practical application of this phenomenon, we put the focus of the present review not on discussing in depth technical details of different models and approaches but rather on presenting a general and clear physical picture of SR on a pedagogical level. Particular emphasis will be given to the implementation of SR in generic quantum systems-an issue that has received limited attention in earlier review papers on the topic. The major part of our presentation relies on the two-state model of SR (or on simple variants thereof), which is general enough to exhibit the main features of SR and, in fact, covers many (if not most) of the examples of SR published so far. In order to highlight the diversity of the two-state model, we shall discuss several examples from such different fields as condensed matter, nonlinear and quantum optics and biophysics. Finally, we also discuss some situations that go beyond the generic SR scenario but are still characterized by a constructive role of noise

  10. "Effectiveness of continuous vertebral resonant oscillation using the POLD method in the treatment of lumbar disc hernia". A randomized controlled pilot study.

    López-Díaz, Juan Vicente; Arias-Buría, José Luis; Lopez-Gordo, Estrella; Lopez Gordo, Sandra; Oyarzún, Alejandra P Aros

    2015-06-01

    This study analyses the efficacy of manual oscillatory therapy, following the POLD technique, for acute Lumbar Disc Hernia (LDH) and compares it to usual treatment. A randomised, controlled, triple-blind pilot clinical trial. The sample of 30 patients was divided into two homogeneous groups to receive usual treatment (A) or treatment with the POLD technique (B). We analysed range of motion and subjective variables such as the severity (visual analogue pain scale (VAS)) and extension of the pain. With the application of POLD therapy, patients presented significant changes on range of motion (forward flexion with p lumbar, glutaeus and thigh pain, which improved from 5.09 to 0.79, 5.07 to 0.97 and 4.43 to 0.49 respectively (p < 0.05), and also when compared to usual treatment (p < 0.05) for all body regions. Moreover, we observed a reduction in pain extension (centralization phenomena) (p < 0.001) in comparison with usual treatment. In our study the POLD Method was shown to be an effective manual therapy approach for reducing the severity and irradiation of the pain in LDH patients with sciatica, and more efficient than usual treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Relation between pO2, 31P magnetic resonance spectroscopy parameters and treatment outcome in patients with high-grade soft tissue sarcomas treated with thermoradiotherapy

    Dewhirst, Mark W.; Poulson, Jean M.; Yu Daohai; Sanders, Linda; Lora-Michiels, Michael; Vujaskovic, Zeljko; Jones, Ellen L.; Samulski, Thaddeus V.; Powers, Barbara E.; Brizel, David M.; Prosnitz, Leonard R.; Charles, H. Cecil

    2005-01-01

    Purpose: In a prior study, the combination of 31 P magnetic resonance spectroscopy (MRS)-based intracellular pH (pHi) and T2 relaxation time was highly predictive of the pathologic complete response (pCR) rate in a small series of patients with soft tissue sarcomas (STSs) treated with thermoradiotherapy. Changes in the magnetic resonance metabolite ratios and pO 2 were related to the pCR rate. Hypoxia also correlated with a greater likelihood for the development of metastases. Because of the limited number of patients in the prior series, we initiated this study to determine whether the prior observations were repeatable and whether 31 P MRS lipid-related resonances were related to a propensity for metastasis. Methods and materials: Patients with high-grade STSs were enrolled in an institutional review board-approved Phase II thermoradiotherapy trial. All tumors received daily external beam radiotherapy (1.8-2.0 Gy, five times weekly) to a total dose of 30-50 Gy. Hyperthermia followed radiotherapy by 31 P metabolite ratios, pHi, and T2 relaxation time. The median pO 2 and hypoxic fraction were determined using pO 2 histography. Comparisons between experimental endpoints and the pCR rate and metastasis-free and overall survival were made. Results: Of 35 patients, 21 and 28 had reportable pretreatment MRS/MRI and pO 2 data, respectively. The cutpoints for a previously tested receiver operating curve for a pCR were T2 = 100 and pHi = 7.3. In the current series, few tumors fell below the cutpoints so validation was not possible. The phosphodiester (PDE)/inorganic phosphate (Pi) ratio and hypoxic fraction correlated inversely with the pCR rate in the current series (Spearman correlation coefficient -0.51, p = 0.017; odds ratio of percentage of necrosis ≥95% = 0.01 for a 1% increase in the hypoxic fraction; Wald p = 0.036). The pretreatment phosphomonoester (PME)/Pi ratio also correlated inversely with the pCR rate (odds ratio of percentage of necrosis ≥95% = 0

  12. Treatment

    Safaa M. Raghab

    2013-08-01

    The main goal of this study is to utilize a natural low cost material “as an accelerator additive to enhance the chemical treatment process using Alum coagulant and the accelerator substances were Perlite and Bentonite. The performance of the chemical treatment was enhanced using the accelerator substances with 90 mg/l Alum as a constant dose. Perlite gave better performance than the Bentonite effluent. The removal ratio for conductivity, turbidity, BOD and COD for Perlite was 86.7%, 87.4%, 89.9% and 92.8% respectively, and for Bentonite was 83.5%, 85.0%, 86.5% and 85.0% respectively at the same concentration of 40 mg/l for each.

  13. Resonance frequency analysis

    Rajiv K Gupta

    2011-01-01

    Full Text Available Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized

  14. Prognostic indicators of the outcome of arthrocentesis with and without sodium hyaluronate injection for the treatment of disc displacement without reduction: a magnetic resonance imaging study.

    Aktas, I; Yalcin, S; Sencer, S

    2010-11-01

    This study analysed the prognostic factors for successful arthrocentesis with and without sodium hyaluronate (SH) injection for the treatment of temporomandibular joint (TMJ) disc displacement without reduction (DDwoR) using clinical and radiological results. 29 TMJs in 25 patients with DDwoR were included. Patients were treated with arthrocentesis or arthrocentesis followed by intra-articular (i.a.) injection of SH. Treatment was evaluated for postoperative range of maximum mouth opening and the degree of postoperative pain on a VAS. Prognostic factors analysed were age, sex, duration of locking, trauma history, previous TMJ treatment, depression, bruxism, malocclusion and missing teeth. Degenerative changes were evaluated as probable prognostic factors. After treatment, 24 joints (83%) fulfilled the criteria for success. Duration of locking and present preoperative degenerative changes were the most significant factors for treatment outcome. The results suggest it is sufficient to use only arthrocentesis in patients without preoperative degenerative changes and arthrocentesis with SH in patients with degenerative changes on their preoperative MRIs, but because there were some significant differences between the two groups preventing the authors from comparing them statistically, they cannot come to that conclusion. To clarify the use of SH in such cases, standardized study groups are necessary for future studies. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  15. Magnetic Resonance Imaging Follow-up Study on Two Cases of Lumbar intervertebral Disc Sequestration Patients Treated with Oriental Medicine Treatment

    Ki-Su Lee

    2011-09-01

    Full Text Available Objectives: The purpose of this study is to report the image changes of two cases of Lumbar intervertebral Disc Sequestration after oriental medical treatment. Methods: We examined 2 patients with Lumbar intervertebral Disc Sequestration who showed changes on MRI images before/after the treatment. And we assessed clinical symptoms by using numeric rating scale(NRS and straight leg raising test(SLRT. Results & Conclusions : In this study, the first MRI examination of Lumbar intervertebral Disc Sequestration patients was performed at the first visit and re-examination of MRI was done after treatment. In each case, the size of the disc sequestration was considerably reduced in MRI image. And both patients represented effective improvment in NRS score and SLRT test angle.

  16. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with head and neck tumors, a systematic review and meta-analysis

    van der Hoorn, Anouk; van Laar, Peter Jan; Holtman, Gea A.; Westerlaan, Henriette E.

    2017-01-01

    Background Novel advanced MRI techniques are investigated in patients treated for head and neck tumors as conventional anatomical MRI is unreliable to differentiate tumor from treatment related imaging changes. Purpose As the diagnostic accuracy of MRI techniques to detect tumor residual or

  17. The Role of Diffusion-Weighted Magnetic Resonance Imaging in the Treatment Response Evaluation of Hepatocellular Carcinoma Patients Treated With Radiation Therapy

    Yu, Jeong Il; Park, Hee Chul; Lim, Do Hoon; Choi, Yunseon; Jung, Sang Hoon; Paik, Seung Woon; Kim, Seong Hyun; Jeong, Woo Kyoung; Kim, Young Kon

    2014-01-01

    Purpose: We investigated the role of diffusion-weighted magnetic resonance imaging (DW MRI) as a response evaluation indicator for hepatocellular carcinoma (HCC) treated with radiation therapy (RT). Methods and Materials: Inclusion criteria of this retrospective study were DW MRI acquisition within 1 month before and 3 to 5 months after RT. In total, 48 patients were enrolled. Two radiation oncologists measured the apparent diffusion coefficient (ADC). Possible predictive factors, including alteration of the ADC value before and 3 to 5 month after RT, in relation to local progression-free survival (LPFS) were analyzed and compared. Results: Three months after RT, 6 patients (12.5%) showed a complete response, and 27 patients (56.3%) showed a partial response when evaluated using the modified response evaluation criteria in solid tumors (mRECIST). The average ADC ± SD values were 1.21 ± 0.27 ( × 10 −3  mm 2 /s) before and 1.41 ± 0.36 ( × 10 −3  mm 2 /s) after RT (P<.001). The most significant prognostic factor related to LPFS was mRECIST (P<.001). The increment of ADC value (≥20%) was also a significant factor (P=.02), but RECIST (version 1.1; P=.11) was not. When RECIST was combined with the increment of ADC value (≥20%), the LPFS rates were significantly different between the groups (P=.004), and the area under the curve value (0.745) was comparable with that of mRECIST (0.765). Conclusions: ADC value change before and after RT in HCC was closely related to LPFS. ADC value and RECIST may substitute for mRECIST in patients who cannot receive contrast agents

  18. A newly designed radiation therapy protocol in combination with prednisolone as treatment for meningoencephalitis of unknown origin in dogs: a prospective pilot study introducing magnetic resonance spectroscopy as monitor tool.

    Beckmann, Katrin; Carrera, Inés; Steffen, Frank; Golini, Lorenzo; Kircher, Patrick R; Schneider, Uwe; Bley, Carla Rohrer

    2015-01-31

    A plethora of treatment options have been described for canine meningoencephalitis of unknown origin (MUO), yet a gold standard has not been established. The aim of this prospective pilot study was to document the effect of a newly designed 30 Gray (Gy) radiation therapy (RT) protocol plus corticosteroids as treatment for focal and multifocal MUO, to monitor clinical and imaging changes during the course of the disease with conventional magnetic resonance imaging (MRI) and proton MR Spectroscopy (H-1 MRS) and to detect the occurrence of radiation related side effects. Six dogs (3 with focal and 3 with multifocal lesions) were included in the study. The RT protocol used consisted of 30 Gy in 10 fractions. The neurological status of all six dogs improved during RT, with 3 of 6 cases returning to a normal condition. One dog was euthanized early during follow-up (dog and improved in 3 dogs and H-1 MRS normalized in 4. In the dog without improvement of the MRI lesions, the N-acetyl aspartate continued to decrease, while choline and creatine concentrations remained stable during that time. This dog was euthanized 18 month after the end of RT due to relapse. One dog was lost to follow up 12 month after completion of RT. The other 3 dogs are still alive at the time of writing. RT with 30 Gy in 10 fractions can provide an additional option for anti-inflammatory treatment of focal and multifocal MUO. The protocol used for treatment monitoring was feasible while no side effects of RT could be observed during the follow up period. Moreover, H-1 MRS could represent a new and non-invasive tool to control the progression of the disease during the treatment course.

  19. Recent developments pertinent to processing of ENDF/B-6 type resonance cross section data

    Hwang, R. N.

    1998-01-01

    In view of our increasing dependence on computations rather than construction and operation of more costly experimental facilities, the rigor and accuracy achievable by calculational methods certainly deserve more attention. This is particularly so for the Monte Carlo methods which are generally regarded as the ultimate computational standard for the entire nuclear community around the globe. One obvious question that one may raise is whether the numerical algorithms deployed to process cross sections accurately reflect the rigor of the state-of-the-art nuclear data. The case in point is particularly essential in the resolved and the unresolved resonance regions, which constitute the most demanding task in all processing codes for reactor applications. For the resolved energy region, the point-wise cross sections are highly fluctuating functions of energy and temperature. In light of the availability of a large body of resonance data spanning over the much expanded energy ranges for most of major nuclides, critical examinations and improvement where appropriate, of the existing methods are apparently in order. For the unresolved energy region, improvement of traditional methods based on statistical approaches for treating the self-shielding effects is also desirable. From the perspective of the Monte Carlo approach, an alternative means for generating the probability tables without the inevitable difficulties associated with statistical uncertainties and/or those with concerns of uniqueness is needed. The accuracy considerations provide the motivation for the recent efforts at ANL to upgrade the existing VIMB processing code developed in early 70's in order to deal processing codes with these issues. Various tasks of upgrading are still at various stages of development. The purpose of this paper is to present an up-to-date account of the work in progress

  20. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis

    Dijken, Bart R.J. van [University of Groningen, University Medical Center Groningen Department of Radiology, Groningen (Netherlands); Laar, Peter Jan van; Hoorn, Anouk van der [University of Groningen, University Medical Center Groningen Department of Radiology, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen (Netherlands); Holtman, Gea A. [University of Groningen, University Medical Center Groningen, Department of General Practice, Groningen (Netherlands)

    2017-10-15

    Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in high-grade gliomas. Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSC-perfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in high-grade gliomas. (orig.)

  1. Crossing simple resonances

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances

  2. Acoustic Fano resonators

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state

  3. Neutron resonance averaging

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs

  4. Crossing simple resonances

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances.

  5. Supplementation of Antipsychotic Treatment with the Amino Acid Sarcosine Influences Proton Magnetic Resonance Spectroscopy Parameters in Left Frontal White Matter in Patients with Schizophrenia

    Dominik Strzelecki

    2015-10-01

    Full Text Available Dysfunction of the glutamatergic system, the main stimulating system in the brain, has a major role in pathogenesis of schizophrenia. The frontal white matter (WM is partially composed of axons from glutamatergic pyramidal neurons and glia with glutamatergic receptors. The natural amino acid sarcosine, a component of a normal diet, inhibits the glycine type 1 transporter, increasing the glycine level. Thus, it modulates glutamatergic transmission through the glutamatergic ionotropic NMDA (N-methyl-d-aspartate receptor, which requires glycine as a co-agonist. To evaluate the concentrations of brain metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine, and γ-aminobutyric acid (GABA; mI, myo-inositol; Cr, creatine; Cho, choline in the left frontal WM, Proton Nuclear Magnetic Resonance (1H-NMR spectroscopy was used. Twenty-five patients randomly chosen from a group of fifty with stable schizophrenia (DSM-IV-TR and dominant negative symptoms, who were receiving antipsychotic therapy, were administered 2 g of sarcosine daily for six months. The remaining 25 patients received placebo. Assignment was double blinded. 1H-NMR spectroscopy (1.5 T was performed twice: before and after the intervention. NAA, Glx and mI were evaluated as Cr and Cho ratios. All patients were also assessed twice with the Positive and Negative Syndrome Scale (PANSS. Results were compared between groups and in two time points in each group. The sarcosine group demonstrated a significant decrease in WM Glx/Cr and Glx/Cho ratios compared to controls after six months of therapy. In the experimental group, the final NAA/Cr ratio significantly increased and Glx/Cr ratio significantly decreased compared to baseline values. Improvement in the PANSS scores was significant only in the sarcosine group. In patients with schizophrenia, sarcosine augmentation can reverse the negative effect of glutamatergic system overstimulation, with a simultaneous beneficial increase

  6. Pediatric magnetic resonance imaging

    Cohen, M.D.

    1986-01-01

    This book defines the current clinical potential of magnetic resonance imaging and focuses on direct clinical work with pediatric patients. A section dealing with the physics of magnetic resonance imaging provides an introduction to enable clinicians to utilize the machine and interpret the images. Magnetic resonance imaging is presented as an appropriate imaging modality for pediatric patients utilizing no radiation

  7. Resonant thermonuclear reaction rate

    Haubold, H.J.; Mathai, A.M.

    1986-01-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-function is discussed in physical terms

  8. Quantum mechanical resonances

    Cisneros S, A.; McIntosh, H.V.

    1982-01-01

    A discussion of the nature of quantum mechanical resonances is presented from the point of view of the spectral theory of operators. In the case of Bohr-Feshbach resonances, graphs are presented to illustrate the theory showing the decay of a doubly excited metastable state and the excitation of the resonance by an incident particle with proper energy. A characterization of resonances is given as well as a procedure to determine widths using the spectral density function. A sufficient condition is given for the validity of the Breit-Wigner formula for Bohr-Feshbach resonances. (author)

  9. Resonance shielding in thermal reactor lattices

    Rothenstein, W.; Taviv, E.; Aminpour, M.

    1982-01-01

    The theoretical foundations of a new methodology for the accurate treatment of resonance absorption in thermal reactor lattice analysis are presented. This methodology is based on the solution of the point-energy transport equation in its integral or integro-differential form for a heterogeneous lattice using detailed resonance cross-section profiles. The methodology is applied to LWR benchmark analysis, with emphasis on temperature dependence of resonance absorption during fuel depletion, spatial and mutual self-shielding, integral parameter analysis and treatment of cluster geometry. The capabilities of the OZMA code, which implements the new methodology are discussed. These capabilities provide a means against which simpler and more rapid resonance absorption algorithms can be checked. (author)

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Home; Journals; Resonance – Journal of Science Education. Mugdha Deshpande. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 11 November 2000 pp 56-68 General Article. Techniques of WasteWater Treatment - Introduction to Effluent Treatment and Industrial Methods · Amol A Kulkarni ...

  11. Cardiovascular magnetic resonance in congenital heart disease

    Cazacu, A.; Ciubotaru, A.

    2010-01-01

    The increasing prevalence of congenital heart disease can be attributed to major improvements in diagnosis and treatment. Cardiovascular magnetic resonance imaging plays an important role in the clinical management strategy of patients with congenital heart disease. The development of new cardiovascular magnetic resonance (CMR) techniques allows comprehensive assessment of complex cardiac anatomy and function and provides information about the long-term residual post-operative lesions and complications of surgery. It overcomes many of the limitations of echocardiography and cardiac catheterization. This review evaluates the role of cardiovascular magnetic resonance imaging modality in the management of subject with congenital heart disease (CHD). (authors)

  12. Microstrip resonators for electron paramagnetic resonance experiments

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  13. Microstrip resonators for electron paramagnetic resonance experiments.

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  14. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings

    Tao, Hongyue; Feng, Xiaoyuan; Chen, Shuang; Li, Hong; Hua, Yinghui; Chen, Zhongqing

    2015-01-01

    To evaluate repair tissue (RT) after microfracture treatment for full-thickness cartilage defect models using quantitative MRI and investigate the correlations between MRI and histological findings. The animal experiment was approved by the Animal Care and Use Committee of our college. Thirty-six full-thickness cartilage defect models in rabbit knee joints were assigned to the microfracture or joint debridement group (as control). Each group consisted of 3-week, 5-week, and 7-week subgroups. MR imaging, including a three-dimensional double-echo steady-state sequence (3D-DESS), and T2 mapping were performed at 3, 5, and 7 weeks postoperatively. The thickness and T2 indices of RT were calculated. After MRI scans at each time point, operation sites were removed to make hematoxylin-eosin (H and E)-stained sections. Histological results were evaluated using the modified O'Driscoll score system. Comparisons were made between the two groups with respect to the MRI and histological findings, and correlation analysis was performed within each group. The thickness index and histological O'Driscoll score of RT in the two groups increased over time, while the T2 index decreased. The thickness index and histological O'Driscoll score of the microfracture group were higher than in the joint debridement group at each time point. The T2 index of the microfracture group was lower than in the joint debridement group at 3 weeks (P = 0.006), while it was higher than in the joint debridement group at 5 and 7 weeks (P = 0.025 and 0.025). The thickness index was positively correlated with the histological O'Driscoll score in both groups (microfracture: r s = 0.745, P s = 0.680, P = 0.002). The T2 index was negatively correlated with the histological O'Driscoll score in both groups (microfracture: r s = -0.715, P = 0.002; joint debridement: r s = -0.826, P < 0.001). Significant improvement over time after microfracture can be expected on the basis of the quantitative MRI finding and

  15. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings

    Tao, Hongyue; Feng, Xiaoyuan; Chen, Shuang [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Li, Hong; Hua, Yinghui [Fudan University, Department of Sports Medicine, Huashan Hospital, Shanghai (China); Chen, Zhongqing [Fudan University, Department of Pathology, Huashan Hospital, Shanghai (China)

    2014-11-26

    To evaluate repair tissue (RT) after microfracture treatment for full-thickness cartilage defect models using quantitative MRI and investigate the correlations between MRI and histological findings. The animal experiment was approved by the Animal Care and Use Committee of our college. Thirty-six full-thickness cartilage defect models in rabbit knee joints were assigned to the microfracture or joint debridement group (as control). Each group consisted of 3-week, 5-week, and 7-week subgroups. MR imaging, including a three-dimensional double-echo steady-state sequence (3D-DESS), and T2 mapping were performed at 3, 5, and 7 weeks postoperatively. The thickness and T2 indices of RT were calculated. After MRI scans at each time point, operation sites were removed to make hematoxylin-eosin (H and E)-stained sections. Histological results were evaluated using the modified O'Driscoll score system. Comparisons were made between the two groups with respect to the MRI and histological findings, and correlation analysis was performed within each group. The thickness index and histological O'Driscoll score of RT in the two groups increased over time, while the T2 index decreased. The thickness index and histological O'Driscoll score of the microfracture group were higher than in the joint debridement group at each time point. The T2 index of the microfracture group was lower than in the joint debridement group at 3 weeks (P = 0.006), while it was higher than in the joint debridement group at 5 and 7 weeks (P = 0.025 and 0.025). The thickness index was positively correlated with the histological O'Driscoll score in both groups (microfracture: r{sub s} = 0.745, P < 0.001; joint debridement: r{sub s} = 0.680, P = 0.002). The T2 index was negatively correlated with the histological O'Driscoll score in both groups (microfracture: r{sub s} = -0.715, P = 0.002; joint debridement: r{sub s} = -0.826, P < 0.001). Significant improvement over time after

  16. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    Aslian, Hossein [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sadeghi, Mahdi [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of); Mahdavi, Seied Rabie [Department of Medical Physics, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Babapour Mofrad, Farshid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Astarakee, Mahdi, E-mail: M-Astarakee@Engineer.com [Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khaledi, Navid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Fadavi, Pedram [Department of Radiation Oncology, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-09-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  17. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    Aslian, Hossein; Sadeghi, Mahdi; Mahdavi, Seied Rabie; Babapour Mofrad, Farshid; Astarakee, Mahdi; Khaledi, Navid; Fadavi, Pedram

    2013-01-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer

  18. Atlas of neutron resonances

    Mughabghab, Said

    2018-01-01

    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...

  19. Automation on computer of the partial area method in the analysis of resonances induced by 'S' neutrons 2. with an interference term and extension of the method to the treatment of multi resonances (1963); Automatisation sur ordinateur de la methode des aires partielles dans l'analyse des resonances induites par les neutrons ''S''. 2, avec terme d'interference et extension de la methode au traitement des multiresonances (1963)

    Bianchi, G; Corge, C R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    This report deals with the numerical analysis on an I.B.M. 7090 computer of transmission resonances induced by 's' wave neutrons in time of flight experiments. The analysis method used is the partial area one. In this second part the interference term is taken into account. Modifications have been made in the programs and subroutines described in the first part, to determine the resonant transmissions from experimental raw data, and the relating partial areas. Also programs and subroutines are thoroughly described, which estimate the resonance parameters. The field of the partial area method has been extended to cover the case where several resonances have to be treated simultaneously, provided they do not interfere. (authors) [French] Le pretent rapport a pour objet l'analyse numerique sur ordinateur I.B.M. 7090 des resonances dues aux neutrons ''s'' dans les experiences de transmission par temps de vol, la methode d'analyse utilisee etant la methode dea aires partielles. Dans cette deuxieme partie il a ete tenu compte du terme d'interference. On y trouvera une description des amenagements apportes aux programmes et sous-programmes decrits dans la premiere partie pour determiner les transmissions interfero-resonnantes a partir des donnees experimentales brutes et les aires partielles afferentes. Sont egalement decrits les programmes et sous-programmes necessaires au calcul des parametres caracteristiques des resonances. Le domaine d'application de la methode a ete etendu au traitement simultane de plusieurs resonances groupees n'interferant pas entre elles. (auteurs)

  20. Magnetic resonance imaging apparatus

    Ehnholm, G.J.

    1991-01-01

    This patent describes an electron spin resonance enhanced magnetic resonance (MR) imaging (ESREMRI) apparatus able to generate a primary magnetic field during periods of nuclear spin transition excitation and magnetic resonance signal detection. This allows the generation of ESREMRI images of a subject. A primary magnetic field of a second and higher value generated during periods of nuclear spin transition excitation and magnetic resonance signal detection can be used to generate conventional MR images of a subject. The ESREMRI and native MR images so generated may be combined, (or superimposed). (author)

  1. Electron paramagnetic resonance

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  2. Ramifide resonators for cyclotrons

    Smirnov, Yu.V.

    2000-01-01

    The resonators with the conductors ramified form for cyclotrons are systematized and separated into the self-contained class - the ramified resonators for cyclotrons (Carr). The ramified resonators are compared with the quarter-wave and half-wave nonramified resonators, accomplished from the transmitting lines fragments. The CRR are classified into two types: ones with the additional structural element, switched in parallel and in series. The CRR may include several additional structural elements. The CRR calculations may be concluded by analytical methods - the method of matrix calculation or the method of telegraph equations and numerical methods - by means of the ISFEL3D, MAFIA and other programs [ru

  3. Noncontrast Magnetic Resonance Lymphography.

    Arrivé, Lionel; Derhy, Sarah; El Mouhadi, Sanaâ; Monnier-Cholley, Laurence; Menu, Yves; Becker, Corinne

    2016-01-01

    Different imaging techniques have been used for the investigation of the lymphatic channels and lymph glands. Noncontrast magnetic resonance (MR) lymphography has significant advantages in comparison with other imaging modalities. Noncontrast MR lymphography uses very heavily T2-weighted fast spin echo sequences which obtain a nearly complete signal loss in tissue background and specific display of lymphatic vessels with a long T2 relaxation time. The raw data can be processed with different algorithms such as maximum intensity projection algorithm to obtain an anatomic representation. Standard T2-weighted MR images easily demonstrate the location of edema. It appears as subcutaneous infiltration of soft tissue with a classical honeycomb pattern. True collection around the muscular area may be demonstrated in case of severe lymphedema. Lymph nodes may be normal in size, number, and signal intensity; in other cases, lymph nodes may be smaller in size or number of lymph nodes may be restricted. MR lymphography allows a classification of lymphedema in aplasia (no collecting vessels demonstrated); hypoplasia (a small number of lymphatic vessels), and numerical hyperplasia or hyperplasia (with an increased number of lymphatic vessels of greater and abnormal diameter). Noncontrast MR lymphography is a unique noninvasive imaging modality for the diagnosis of lymphedema. It can be used for positive diagnosis, differential diagnosis, and specific evaluation of lymphedema severity. It may also be used for follow-up evaluation after treatment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Controlling Parametric Resonance

    Galeazzi, Roberto; Pettersen, Kristin Ytterstad

    2012-01-01

    the authors review the conditions for the onset of parametric resonance, and propose a nonlinear control strategy in order to both induce the resonant oscillations and to stabilize the unstable motion. Lagrange’s theory is used to derive the dynamics of the system and input–output feedback linearization...

  5. Electron Paramagnetic Resonance Spectroscopy

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Electromagnetic resonance waves

    Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.

    1994-01-01

    We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs

  7. Laser magnetic resonance spectroscopy

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  8. Resonance and Fractal Geometry

    Broer, Henk W.

    The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena

  9. Nuclear Magnetic Resonance Spectroscopy

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  10. Cardiac magnetic resonance imaging

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  11. Fundamentals of nanomechanical resonators

    Schmid, Silvan; Roukes, Michael Lee

    2016-01-01

    This authoritative book introduces and summarizes the latest models and skills required to design and optimize nanomechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The authors cover the electrical and mechanical aspects of nano electromechanical system (NEMS) devices. The introduced mechanical models are also key to the understanding and optimization of nanomechanical resonators used e.g. in optomechanics. Five comprehensive chapters address: The eigenmodes derived for the most common continuum mechanical structures used as nanomechanical resonators; The main sources of energy loss in nanomechanical resonators; The responsiveness of micro and nanomechanical resonators to mass, forces, and temperature; The most common underlying physical transduction mechanisms; The measurement basics, including amplitude and frequency noise. The applied approach found in this book is appropriate for engineering students and researchers working with micro and nanomechanical...

  12. Resonant snubber inverter

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  13. A Boltzmann equation approach to the damping of giant resonances in nuclei

    Schuck, P.; Winter, J.

    1983-01-01

    The Vlasov equation plus collision term (Boltzmann equation) represents an appropriate frame for the treatment of giant resonances (zero sound modes) in nuclei. With no adjustable parameters we obtain correct positions and widths for the giant quadrupole resonances. (author)

  14. Advances in magnetic resonance 10

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  15. Multiple photon resonances

    Elliott, C.J.; Feldman, B.J.

    1979-02-01

    A detailed theoretical analysis is presented of the interaction of intense near-resonant monochromatic radiation with an N-level anharmonic oscillator. In particular, the phenomenon of multiple photon resonance, the process by which an N-level system resonantly absorbs two or more photons simultaneously, is investigated. Starting from the Schroedinger equation, diagrammatic techniques are developed that allow the resonant process to be analyzed quantitatively, in analogy with well-known two-level coherent phenomena. In addition, multiple photon Stark shifts of the resonances, shifts absent in two-level theory, are obtained from the diagrams. Insights into the nature of multiple photon resonances are gained by comparing the quantum mechanical system with classical coupled pendulums whose equations of motion possess identical eigenvalues and eigenvectors. In certain limiting cases, including that of the resonantly excited N-level harmonic oscillator and that of the equally spaced N-level system with equal matrix elements, analytic results are derived. The influence of population relaxation and phase-disrupting collisions on the multiple photon process are also analyzed, the latter by extension of the diagrammatic technique to the density matrix equations of motion. 11 figures

  16. Properties of spiral resonators

    Haeuser, J.

    1989-10-01

    The present thesis deals with the calculation and the study of the application possibilities of single and double spiral resonators. The main aim was the development and the construction of reliable and effective high-power spiral resonators for the UNILAC of the GSI in Darmstadt and the H - -injector for the storage ring HERA of DESY in Hamburg. After the presentation of the construction and the properties of spiral resonators and their description by oscillating-circuit models the theoretical foundations of the bunching are presented and some examples of a rebuncher and debuncher and their influence on the longitudinal particle dynamics are shown. After the description of the characteristic accelerator quantities by means of an oscillating-circuit model and the theory of an inhomogeneous λ/4 line it is shown, how the resonance frequency and the efficiency of single and double spiral resonators can be calculated from the geometrical quantities of the structure. In the following the dependence of the maximal reachable resonator voltage in dependence on the gap width and the surface of the drift tubes is studied. Furthermore the high-power resonators are presented, which were built for the different applications for the GSI in Darmstadt, DESY in Hamburg, and for the FOM Institute in Amsterdam. (orig./HSI) [de

  17. Magnetic Resonance Force Microscopy System

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  18. Resonant power converters

    Kazimierczuk, Marian K

    2012-01-01

    This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them wit

  19. Excitation of Nucleon Resonances

    Burkert, Volker D.

    2001-01-01

    I discuss developments in the area of nucleon resonance excitation, both necessary and feasible, that would put our understanding of nucleon structure in the regime of strong QCD on a qualitatively new level. They involve the collection of high quality data in various channels, a more rigorous approach in the search for ''missing'' resonances, an effort to compute some critical quantities in nucleon resonance excitations from first principles, i.e. QCD, and a proposal focused to obtain an understanding of a fundamental quantity in nucleon structure

  20. Dihadronic and dileptonic resonances

    Gareev, F.A.; Barabanov, M.Yu.; Kazacha, G.S.

    1997-01-01

    Simple phenomenological rules are suggested for calculation of dihadron and dilepton resonance masses. A general interpretation is given for different exotic resonances in nuclear physics: Darmstadt-effect, dibaryon, dipion and other resonances. Information about the inner structure of e ± , proton, neutron, pions and so on can be obtained from the usual reactions of the type e + + e - =>γγ, e ± +γ=>e ± γ, e ± μ ± , e ± N... at low, intermediate and high energies using existing experimental devices

  1. Multiquark resonant states

    Shahbazian, B.A.

    1982-01-01

    The invariant mass spectra of forty nine hadronic systems with hypercharge, strangeness and baryon number, varied in wide limits have been studied. Resonance peaks have been found in the invariant mass spectra of Y 2 and #betta#pπ 2495 MeV/c 2 resonant states. Three more candidates for anti qq 4 states were found #bettaπ# + π + : 1705, 2072, 2605 MeV/c 2 . The masses of all these candidates are in good agreement with Bag Model predictions. A hypercharge selection rule is suggested: ''The hypercharge of hadronic resonances in weak gravitational fields cannot exceed one Y <= 1

  2. Resonant halide perovskite nanoparticles

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  3. Writing with resonance

    Meier, Ninna; Wegener, Charlotte

    2017-01-01

    In this article, we explore what organization and management scholars can do to write with resonance and to facilitate an emotional, bodily, or in other ways sensory connection between the text and the reader. We propose that resonance can be relevant for organization and management scholars in two......, and thus bring forward the field of research in question. We propose that writing with resonance may be a way to further the impact of academic work by extending the modalities with which our readers can relate to and experience our work....

  4. Diffusion-weighted magnetic resonance imaging in metastatic gastrointestinal stromal tumor (GIST) - A pilot study on the assessment of treatment response in comparison with 18F-FDG PET/CT

    Schmidt, Sabine; Koehli, Melanie; Meuli, Reto [Dept. of Radiology, Centre Hospitalier Universitaire Vaudois, Univ. of Lausanne, Lausanne (Switzerland)], e-mail: sabine.schmidt@chuv.ch; Dunet, Vincent; Prior, John O. [Dept. of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois, Uniausanne, Lausanne (Switzerland); Montemurro, Michael [Dept. of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Univ. of Lausanne, Lausanne (Switzerland)

    2013-10-15

    Background: Diffusion-weighted magnetic resonance imaging (MRI) is increasingly being used for assessing the treatment success in oncology, but the real clinical value needs to evaluated by comparison with other, already established, metabolic imaging techniques. Purpose: To prospectively evaluate the clinical potential of diffusion-weighted MRI with apparent diffusion coefficient (ADC) mapping for gastrointestinal stromal tumor (GIST) response to targeted therapy compared with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Material and Methods: Eight patients (mean age, 56{+-}11 years) known to have metastatic GIST underwent 18F-FDG PET/CT and MRI (T1Gd, DWI [b = 50,300,600], ADC mapping) simultaneously, before and after change in targeted therapy. MR and PET/CT examinations were first analyzed blindly. Second, PET/CT images were co-registered with T1Gd-MR images for lesion detection. Only 18F-FDG avid lesions were considered. Maximum standardized uptake value (SUV{sub max}) and the corresponding minimum ADC{sub min} were measured for the six largest lesions per patient, if any, on baseline and follow-up examinations. The relationship between changes in SUV{sub max} and ADCmin was analyzed (Spearman's correlation). Results: Twenty-four metastases (12 hepatic, 12 extra-hepatic) were compared on PET/CT and MR images. SUV{sub max} decreased from 7.7{+-}8.1 g/mL to 5.5{+-}5.4 g/mL (P = 0.20), while ADC{sub min} increased from 1.2{+-}0.3 X 10{sup -3}mm{sup 2}/s to 1.5{+-}0.3 X 10{sup -3}mm{sup 2}/s (P = 0.0002). There was a significant association between changes in SUV{sub max} and ADC{sub min} (rho = - 0.62, P = 0.0014), but not between changes in lesions size (P = 0.40). Conclusion: Changes in ADCmin correlated with the response of 18F-FDG avid GIST to targeted therapy. Thus, diffusion-weighted MRI may represent a radiation-free alternative for follow-up treatment for metastatic GIST patients.

  5. Line broadening in multiphoton processes with a resonant intermediate transition

    Wang, C.C.; James, J.V.; Xia, J.

    1983-01-01

    The linewidth of the excitation spectrum for multiphoton ionization is found to be broadened much more severely than the cascade fluorescence originating from the resonant intermediate level. These results are due to the mutual effects of the ionizing and resonating transitions, which are not properly accounted for in perturbative treatments

  6. Magnetic Resonance (MR) Defecography

    ... to a CD or uploaded to a digital cloud server. Magnetic resonance (MR) defecography is a special ... with you. top of page What are the benefits vs. risks? Benefits MR defecography helps assess pelvic ...

  7. Quantum Proximity Resonances

    Heller, E.J.

    1996-01-01

    It is well known that at long wavelengths λ an s-wave scatterer can have a scattering cross section σ on the order of λ 2 , much larger than its physical size, as measured by the range of its potential. Very interesting phenomena can arise when two or more identical scatterers are placed close together, well within one wavelength. We show that, for a pair of identical scatterers, an extremely narrow p-wave open-quote open-quote proximity close-quote close-quote resonance develops from a broader s-wave resonance of the individual scatterers. A new s-wave resonance of the pair also appears. The relation of these proximity resonances (so called because they appear when the scatterers are close together) to the Thomas and Efimov effects is discussed. copyright 1996 The American Physical Society

  8. Resonances in QCD

    Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others

    2016-04-15

    We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  9. Magnetic resonance angiography (MRA)

    Arlart, I.P.; Guhl, L.

    1992-01-01

    An account is given in this paper of the physical and technical principles underlying the 'time-of-flight' technique for imaging of vessels by magnetic resonance tomography. Major indications for the new procedure of magnetic resonance angiography at present are intracerebral and extracerebral vessels, with digital subtraction angiography quite often being required to cope with minor alterations (small aneurysms, small occlusions). Magnetic resonance angiography and digital subtraction angiography are compared to each other for advantages and disadvantages. Basically, replacement of radiological angiography by magnetic resonance angiography appears to be possible only within limits, since X-ray diagnostics primarily provides morphological information about vessels, whereas flow dynamics is visualized by the 'time-of-flight' technique. (orig.) [de

  10. Magnetic Resonance Cholangiopancreatography (MRCP)

    ... radio waves and a computer to evaluate the liver, gallbladder, bile ducts, pancreas and pancreatic duct for disease. It is ... of the hepatobiliary and pancreatic systems, including the liver, gallbladder, bile ducts, pancreas and pancreatic duct . Magnetic resonance imaging (MRI) ...

  11. Piezoelectric MEMS resonators

    Piazza, Gianluca

    2017-01-01

    This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associate...

  12. Lattices of dielectric resonators

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  13. Resonances in QCD

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  14. Accidental degeneracy of resonances

    Hernandez, E.; Mondragon, A.; Jauregui, A.

    2001-01-01

    Full text: It will be shown that a degeneracy of resonances is associated with a second rank pole in the scattering matrix and a Jordan cycle of generalized eigenfunctions of the radial Schrodinger equation. The generalized Gamow-Jordan eigenfunctions are basis elements of an expansion in complex resonance energy eigenfunctions. In this orthonormal basis, the Hamiltonian is represented by a non-diagonal complex matrix with a Jordan block of rank two. Some general properties of the degeneracy of resonances will be exhibited and discussed in an explicit example of degeneracy of resonant states and double poles in the scattering matrix of a double barrier potential. The cross section, scattering wave functions and Jordan-Gamow eigenfunctions are computed at degeneracy and their properties as functions of the control parameters of the system are discussed. (Author)

  15. Resonant diphoton phenomenology simplified

    Panico, Giuliano; Vecchi, Luca; Wulzer, Andrea

    2016-01-01

    A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results. We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J≥2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonant diphoton production.

  16. Magnetic Resonance Sensors

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  17. Magnetic resonance angiography

    ... Saunders; 2015:chap 17. Litt H, Carpenter JP. Magnetic resonance imaging. In: Cronenwett JL, Johnston KW, eds. Rutherford's Vascular Surgery . 8th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap ...

  18. Nuclear magnetic resonance

    Ethier, R.; Melanson, D.; Peters, T.M.

    1983-01-01

    Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography [fr

  19. Magnetic resonance imaging

    Robertson, Angus

    1990-01-01

    An assessment is made of the clinical benefits of expensive diagnostic technology, such as the magnetic resonance imaging. It is concluded that to most radiologists, magnetic resonance imaging has a definite place in the diagnostic scenario, especially for demonstrating central nervous system lesions in multiple sclerosis. While it is recognized that medical and financial resources are limited, it is emphasised that the cost to society must be balanced against the patient benefit. 17 refs

  20. Comment on resonant absorption

    Hammerling, P.

    1977-01-01

    An average over angles of incidence of the usual resonant absorption function is presented. This form is appropriate under experimental conditions where the angles of incidence vary greatly and in an unknown manner. For comparison a lens-ellipsoidal mirror illumination system with a known longitudinal aberration is considered. In the latter example the angles of incidence are readily obtained and the resulting resonance absorption function evaluated. The associated fields are calculated in a similar fashion. (author)

  1. Nuclear magnetic resonance gyroscope

    Grover, B.C.

    1984-01-01

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor

  2. Microwave Resonators and Filters

    2015-12-22

    1 Microwave Resonators and Filters Daniel E. Oates MIT Lincoln Laboratory 244 Wood St. Lexington, MA 02478 USA Email: oates@ll.mit.edu...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...resonators and filters in the first edition of this handbook (Z.-Y. Shen 2003) discussed the then state of the art of microwave frequency applications

  3. Resonance phenomena near thresholds

    Persson, E.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1995-12-01

    The trapping effect is investigated close to the elastic threshold. The nucleus is described as an open quantum mechanical many-body system embedded in the continuum of decay channels. An ensemble of compound nucleus states with both discrete and resonance states is investigated in an energy-dependent formalism. It is shown that the discrete states can trap the resonance ones and also that the discrete states can directly influence the scattering cross section. (orig.)

  4. Nuclear magnetic resonance imaging

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  5. Laser Resonators and Beam Propagation Fundamentals, Advanced Concepts and Applications

    Hodgson, Norman

    2005-01-01

    Optical Resonators provides a detailed discussion of the properties of optical resonators for lasers from basic theory to recent research. In addition to describing the fundamental theories of resonators such as geometrical optics, diffraction, and polarisation the characteristics of all important resonator schemes and their calculation are presented. Experimental examples, practical problems and a collection of measurement techniques support the comprehensive treatment of the subject. Optical Resonators is the only book currently available that provides a comprehensive overview of the the subject. Combined with the structure of the text and the autonomous nature of the chapters this work will be as suitable for those new to the field as it will be invaluable to specialists conducting research. This second edition has been enlarged by new sections on Q-switching and resonators with internal phase/amplitude control. In addition, the whole book has been brought up-to-date.

  6. Electron paramagnetic resonance of transition ions

    Abragam, Anatole

    1970-01-01

    This book is a reissue of a classic Oxford text, and provides a comprehensive treatment of electron paramagnetic resonance of ions of the transition groups. The emphasis is on basic principles, with numerous references to publications containing further experimental results and more detailed developments of the theory. An introductory survey gives a general understanding, and a general survey presents such topics as the classical and quantum resonance equations, thespin-Hamiltonian, Endor, spin-spin and spin-lattice interactions, together with an outline of the known behaviour of ions of each

  7. A Resonant Damping Study Using Piezoelectric Materials

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  8. Resonance probe; La sonde a resonance

    Lepechinsky, D; Messiaen, A; Rolland, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    After a brief review of papers recently published on the resonance probe as a tool for plasma diagnostics, the main features of the theory proposed by one of us are recalled. In this theory the geometry of the resonator formed by the probe, the ion sheath and the plasma is explicitly taken into account with the quasi-static and cold plasma approximations. Some new results emerging from this theory are indicated and a comparison with experimental data obtained with a spherical probe placed in a quiescent mercury-vapour plasma is made. A good quantitative agreement has been observed, indicating that the theory is satisfactory and justifying the assumptions involved. Nevertheless it appears that in some cases experimental results can only be interpreted when non collisional damping phenomena are taken into consideration. (author) [French] Apres un apercu des etudes recemment publiees sur la sonde a resonance pour le diagnostic des plasmas, on rappelle l'essentiel de la theorie proposee par l'un de nous ou il est tenu compte explicitement de la geometrie du resonateur forme par le systeme sonde-gaine ionique-plasma dans l'approximation quasi-statique et du plasma froid. On indique quelques resultats nouveaux pouvant etre tires de cette theorie et on la confronte avec les donnees experimentales obtenues pour une sonde spherique placee dans un plasma de mercure en equilibre. Un tres bon accord quantitatif a ete constate, indiquant que la theorie est satisfaisante et justifiant les approximations faites dans celle-ci. Il apparait toutefois que certains resultats experimentaux ne peuvent etre interpretes qu'en tenant compte des phenomenes d'amortissement non collisionnels. (auteur)

  9. Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions--a pilot study.

    Geburek, Florian; Mundle, Kathrin; Conrad, Sabine; Hellige, Maren; Walliser, Ulrich; van Schie, Hans T M; van Weeren, René; Skutella, Thomas; Stadler, Peter M

    2016-02-01

    Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are frequently used to treat equine tendinopathies. Up to now, knowledge about the fate of autologous AT-MSCs after intralesional injection into equine superficial digital flexor tendons (SDFTs) is very limited. The purpose of this study was to monitor the presence of intralesionally injected autologous AT-MSCs labelled with superparamagnetic iron oxide (SPIO) nanoparticles and green fluorescent protein (GFP) over a staggered period of 3 to 9 weeks with standing magnetic resonance imaging (MRI) and histology. Four adult warmblood horses received a unilateral injection of 10 × 10(6) autologous AT-MSCs into surgically created front-limb SDFT lesions. Administered AT-MSCs expressed lentivirally transduced reporter genes for GFP and were co-labelled with SPIO particles in three horses. The presence of AT-MSCs in SDFTs was evaluated by repeated examinations with standing low-field MRI in two horses and post-mortem in all horses with Prussian blue staining, fluorescence microscopy and with immunofluorescence and immunohistochemistry using anti-GFP antibodies at 3, 5, 7 and 9 weeks after treatment. AT-MSCs labelled with SPIO particles were detectable in treated SDFTs during each MRI in T2*- and T1-weighted sequences until the end of the observation period. Post-mortem examinations revealed that all treated tendons contained high numbers of SPIO- and GFP-labelled cells. Standing low-field MRI has the potential to track SPIO-labelled AT-MSCs successfully. Histology, fluorescence microscopy, immunofluorescence and immunohistochemistry are efficient tools to detect labelled AT-MSCs after intralesional injection into surgically created equine SDFT lesions. Intralesional injection of 10 × 10(6) AT-MSCs leads to the presence of high numbers of AT-MSCs in and around surgically created tendon lesions for up to 9 weeks. Integration of injected AT-MSCs into healing tendon tissue is an essential pathway after intralesional

  10. Resonant enhancement in leptogenesis

    Dev, P. S. B.; Garny, M.; Klaric, J.; Millington, P.; Teresi, D.

    2018-02-01

    Vanilla leptogenesis within the type I seesaw framework requires the mass scale of the right-handed neutrinos to be above 109 GeV. This lower bound can be avoided if at least two of the sterile states are almost mass degenerate, which leads to an enhancement of the decay asymmetry. Leptogenesis models that can be tested in current and upcoming experiments often rely on this resonant enhancement, and a systematic and consistent description is therefore necessary for phenomenological applications. In this paper, we give an overview of different methods that have been used to study the saturation of the resonant enhancement when the mass difference becomes comparable to the characteristic width of the Majorana neutrinos. In this limit, coherent flavor transitions start to play a decisive role, and off-diagonal correlations in flavor space have to be taken into account. We compare various formalisms that have been used to describe the resonant regime and discuss under which circumstances the resonant enhancement can be captured by simplified expressions for the CP asymmetry. Finally, we briefly review some of the phenomenological aspects of resonant leptogenesis.

  11. Resonant ultrasound spectrometer

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  12. Electrothermally Tunable Arch Resonator

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  13. Searching for multijet resonances at the LHC

    Kilic, Can; Son, Minho; Schumann, Steffen

    2009-01-01

    Recently it was shown that there is a class of models in which colored vector and scalar resonances can be copiously produced at the Tevatron with decays to multijet final states, consistent with all experimental constraints and having strong discovery potential. We investigate the collider phenomenology of TeV scale colored resonances at the LHC and demonstrate a strong discovery potential for the scalars with early data as well as the vectors with additional statistics. We argue that the signal can be self-calibrating and using this fact we propose a search strategy which we show to be robust to systematic errors typically expected from Monte Carlo background estimates. We model the resonances with a phenomenological Lagrangian that describes them as bound states of colored vectorlike fermions due to new confining gauge interactions. However, the phenomenological Lagrangian treatment is quite general and can represent other scenarios of microscopic physics as well.

  14. Josephson junctions array resonators

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  15. Electrothermally Tunable Bridge Resonator

    Hajjaj, Amal Z.; Alcheikh, Nouha; Ramini, Abdallah; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2016-01-01

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  16. Electrothermally Tunable Bridge Resonator

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  17. Higgs-photon resonances

    Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John [Fermilab, Theoretical Physics Department, Batavia, IL (United States)

    2017-10-15

    We study models that produce a Higgs boson plus photon (h{sup 0}γ) resonance at the LHC. When the resonance is a Z{sup '} boson, decays to h{sup 0}γ occur at one loop. If the Z{sup '} boson couples at tree level to quarks, then the h{sup 0}γ branching fraction is typically of order 10{sup -5} or smaller. Nevertheless, there are models that would allow the observation of Z{sup '} → h{sup 0}γ at √(s) = 13 TeV with a cross section times branching fraction larger than 1 fb for a Z{sup '} mass in the 200-450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the Z{sup '} into lepton pairs competes with h{sup 0}γ, even if the Z{sup '} couplings to leptons vanish at tree level. We also present a model in which a Z{sup '} boson decays into a Higgs boson and a pair of collimated photons, mimicking an h{sup 0}γ resonance. In this model, the h{sup 0}γ resonance search would be the discovery mode for a Z{sup '} as heavy as 2 TeV. When the resonance is a scalar, although decay to h{sup 0}γ is forbidden by angular momentum conservation, the h{sup 0} plus collimated photons channel is allowed. We comment on prospects of observing an h{sup 0}γ resonance through different Higgs decays, on constraints from related searches, and on models where h{sup 0} is replaced by a nonstandard Higgs boson. (orig.)

  18. Magnetic resonance annual, 1988

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system

  19. Acoustic Fano resonators

    Amin, Muhammad

    2014-07-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state with a continuum one. During the last decade this concept has been applied in plasmonics where the interference between a narrowband polariton and a broader one has been used to generate electromagnetically induced transparency (EIT) (M. Rahmani, et al., Laser Photon. Rev., 7, 329-349, 2013).

  20. Giant nuclear resonances

    Snover, K.A.

    1989-01-01

    Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes

  1. Nanoantenna using mechanical resonance

    Chang Hwa Lee,

    2010-11-01

    Nanoantenna using mechanical resonance vibration is made from an indium tin oxide (ITO) coated vertically aligned nanorod array. Only this structure works as a radio with demodulator without any electrical circuit using field emission phenomenon. A top-down fabrication method of an ITO coated nanorod array is proposed using a modified UV lithography. The received radio frequency and the resonance frequency of nanoantenna can be controlled by the fabrication condition through the height of a nanorod array. The modulated signals are received successfully with the transmission carrier wave frequency (248MHz) and the proposed nanoantenna is expected to be used in communication system for ultra small scale sensor. ©2010 IEEE.

  2. Resonant freak microwaves

    Aguiar, F.M. de

    2011-01-01

    The Helmholtz equation describing transverse magnetic modes in a closed flat microwave resonator with 60 randomly distributed discs is numerically solved. At lower frequencies, the calculated wave intensity spatially distributed obeys the universal Porter-Thomas form if localized modes are excluded. A superposition of resonant modes is shown to lead to rare events of extreme intensities (freak waves) at localized 'hot spots'. The temporally distributed intensity of such a superposition at the center of a hot spot also follows the Porter-Thomas form. Branched modes are found at higher frequencies. The results bear resemblance to recent experiments reported in an open cavity.

  3. Physics of Sports: Resonances

    Browning, David

    2000-04-01

    When force is applied by an athlete to sports equipment resonances can occur. Just a few examples are: the ringing of a spiked volleyball, the strumming of a golf club shaft during a swing, and multiple modes induced in an aluminum baseball bat when striking a ball. Resonances produce acoustic waves which, if conditions are favorable, can be detected off the playing field. This can provide a means to evaluate athletic performance during game conditions. Results are given from the use of a simple hand-held acoustic detector - by a spectator sitting in the stands - to determine how hard volleyballs were spiked during college and high school games.

  4. Hadronic Resonances from STAR

    Wada Masayuki

    2012-11-01

    Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.

  5. Uncertainty quantification in resonance absorption

    Williams, M.M.R.

    2012-01-01

    We assess the uncertainty in the resonance escape probability due to uncertainty in the neutron and radiation line widths for the first 21 resonances in 232 Th as given by . Simulation, quadrature and polynomial chaos methods are used and the resonance data are assumed to obey a beta distribution. We find the uncertainty in the total resonance escape probability to be the equivalent, in reactivity, of 75–130 pcm. Also shown are pdfs of the resonance escape probability for each resonance and the variation of the uncertainty with temperature. The viability of the polynomial chaos expansion method is clearly demonstrated.

  6. Magnetic resonance of phase transitions

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  7. Imaging by magnetic resonance

    Duroure, J.F.; Serpolay, H.; Vallens, D.

    1995-01-01

    Here are described the advanced technology for nuclear magnetic resonance imaging: reduction of acquisition times, and rebuilding times, images quality improvement. The tendency is to open the machines at low and middle field, on a market being at 10% of NMR I sales, with economical, scientifical and ergonomic reasons broadly developed by constructors

  8. Neutron resonance spectroscopy

    Gunsing, F.

    2005-06-01

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  9. Neutron resonance spectroscopy

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  10. Magnetic resonance fingerprinting.

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A

    2013-03-14

    Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.

  11. Resonance charge exchange processes

    Duman, E.L.; Evseev, A.V.; Eletskij, A.V.; Radtsig, A.A.; Smirnov, B.M.

    1979-01-01

    The calculation results for the resonance charge exchange cross sections for positive and negative atomic and molecular ions are given. The calculations are performed on the basis of the asymptotic theory. The factors affecting the calculation accuracy are analysed. The calculation data for 28 systems are compared with the experiment

  12. Functional Magnetic Resonance Imaging

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  13. Magnetic resonance imaging

    Anon.

    1988-01-01

    Magnetic resonance imaging (MRI) is a new and innovative technique that affords anatomic images in multiple planes and that may provide information about tissue characterization. The magnetic resonance images are obtained by placing the patient or the area of interest within a powerful, highly uniform, static magnetic field. Magnetized protons (hydrogen nuclei) within the patient align like small magnets in this field. Radiofrequency pulses are then used to create an oscillating magnetic field perpendicular to the main field. Magnetic resonance images differ from those produced by x-rays: the latter are associated with absorption of x-ray energy while magnetic resonance images are based on proton density and proton relaxation dynamics. Proton characteristics vary according to the tissue under examination and reflect its physical and chemical properties. To resolve issues regarding safety and efficacy, the Warren Grant Magnuson Clinical Center and the Office of Medical Applications of Research of the National Institutes of Health (NIH) convened a consensus conference about MRI Oct 26 through 28, 1987. At the NIH, the Consensus Development Conference brings together investigators in the biomedical sciences, clinical investigators, practicing physicians, and consumer and special interest groups to make a scientific assessment of technologies, including drugs, devices, and procedures, and to seek agreement on their safety and effectiveness

  14. Baryon resonances in nuclei

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  15. Resonant filtered fiber amplifiers

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  16. Nuclear magnetic resonance spectroscopy

    Rueterjans, H.

    1987-01-01

    Contributions by various authors who are working in the field of NMR imaging present the current status and the perspectives of in-vivo nuclear magnetic resonance spectroscopy, explaining not only the scientific and medical aspects, but also technical and physical principles as well as questions concerning practical organisation and training, and points of main interest for further research activities. (orig./TRV) [de

  17. Isotopic effect giant resonances

    Buenerd, M.; Lebrun, D.; Martin, P.; Perrin, G.; Saintignon, P. de; Chauvin, J.; Duhamel, G.

    1981-10-01

    The systematics of the excitation energy of the giant dipole, monopole, and quadrupole resonances are shown to exhibit an isotopic effect. For a given element, the excitation energy of the transition decreases faster with the increasing neutron number than the empirical laws fitting the overall data. This effect is discussed in terms of the available models

  18. Magnetostatic wave tunable resonators

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  19. Proton resonance spectroscopy

    Shriner, J.F. Jr.

    1991-11-01

    This report discusses the following topics: Complete Level Scheme for 30 P; A Search for Resonances Suitable for Tests of Detailed-Balance Violation; The Fourier Transform as a Tool for Detecting Chaos; Entrance Channel Correlations in p + 27 Al; The Parity Dependence of Level Densities in 49 V; and A Computer Program for the Calculation of Angular Momentum Coupling

  20. Screening Resonances In Plasmas

    Winkler, P.

    1998-01-01

    When it was suggested that a new recombination mechanism (Resonant Radiative Recombination (RRR)) which, based on very general physical arguments, should happen in dense plasmas and promises to provide useful information for the local temperature and density diagnostics of plasmas, they assumed the existence of screening resonances. For model potentials the existence of screening resonances has been demonstrated beyond reasonable doubt in a number of calculations. The key question, how well those potentials describe the dominant effects of a real plasma remains open. The relation of theoretical predictions to experimentally measurable effects is an important issue at the present stage of their research. In particular, RRR is expected to account for enhanced recombination rates of low energetic electrons with their ions, since the first stage is the resonant capture of a slow electron by an atom or ion. The mechanism that traps an electron is a combination of complicated many-body interactions of the ions and electrons. For clarity they start here, however, with a discussion in terms of local potential traps the shapes of which are determined predominantly and in an average way by two factors: the degree of screening present at the ionic site and the degree of short-range order in the immediate neighborhood of this ion

  1. Nuclear magnetic resonance imaging

    1983-06-01

    This report summarises the aspects of nuclear magnetic resonance imaging (NMRI) considered by the National Health Technology Advisory Panel and makes recommendations on its introduction in Australia with particular regard to the need for thorough evaluation of its cost effectiveness. Topics covered are: principles of the technique, equipment required, installation, costs, reliability, performance parameters, clinical indications, training and staff requirements, and safety considerations

  2. Transition of EMRIs through resonance: higher order corrections in resonant flux enhancement

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Extreme mass ratio inspirals (EMRIs) are candidate events for gravitational wave detection in the millihertz range (by detectors like LISA and eLISA). These events involve a stellar-mass black hole, or a similar compact object, descending into the gravitational field of a supermassive black hole, eventually merging with it. Properties of the inspiraling trajectory away from resonance are well known and have been studied extensively, however little is known about the behaviour of these binary systems at resonance, when the radial and lateral frequencies of the orbit become commensurate. There are two resonance models in the literature, the instantaneous frequency function by Gair, Bender, and Yunes, and the standard two timescales approach devised by Flanagan and Hinderer. We argue that the Gair, Bender and Yunes model provides a valid treatment of the resonance problem and extend this solution to higher order in the size of the on-resonance perturbation. The non-linear differential equations which arise in treating resonances are interesting from a mathematical view point. We present our algorithm for perturbative solutions and the results to third order in the infinitesimal parameter, and discuss the scope of this approach. Deyan Mihaylov is funded by the STFC.

  3. Isoscalar giant resonances

    Youngblood, D. H. [Texas A and M Univ., College Station (USA). Cyclotron Inst.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    The current status of the knowledges of giant quadrupole resonance (GQR), low energy octupole resonance (LEOR), and giant monopole resonance (GMR), is described. In the lowest order of multipole resonance, both isoscalar and isovector modes can occur. The characteristics of the GQR in light nuclei are apparent in the experimental result for Mg-24. All of the isoscalar E2 strength are known in Mg-24. The Goldhaber-Teller model is preferred over the Steinwedel-Jensen model for the giant dipole resonance (GDR) transition density. A few interesting and puzzling features have been seen in Pb-208. There is some conflict between inelastic alpha and electron scatterings. About LEOR, the RPA calculation of Liu and Brown was compared to the data for 3/sup -/ strength in Ca-40, Zr-90 and Pb-208. The calculation was employed the residual interaction of the Skyrme type. The agreement in Zr-90 was excellent. The effect of quadrupole deformation on the LEOR in Sm isotopes was large. The inelastic alpha scattering data on Al-27, Ca-40, Ti-48, Ni-58, Zn-64 and 66, Zr-90, Sn-116, 118, 120 and 124, Sm-144, 148 and 154, and Pb-208 were utilized in order to identify the GMR, and the GMR parameters were obtained. The GMR exhausting a large fraction of the sum rule was apparent in the nuclei with mass larger than 90. The splitting of the GDR and the broadening of the GQR in permanently deformed nuclei were established. The splitting of GMR was seen in Sm-154. The studies with heavy ions are also described.

  4. Magnetic Resonance Imaging (MRI) Safety

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining ...

  5. Nanoelectromechanical resonator for logic operations

    Kazmi, Syed N. R.; Hafiz, Md A. Al; Chappanda, Karumbaiah N.; Ilyas, Saad; Holguin, Jorge; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    We report an electro-thermally tunable in-plane doubly-clamped nanoelectromechanical resonator capable of dynamically performing NOR, NOT, XNOR, XOR, and AND logic operations. Toward this, a silicon based resonator is fabricated using standard e

  6. Magnetic Resonance Imaging of Stroke

    Bouts, Mark. J. R. J.; Wu, O.; Dijkhuizen, R. M.

    2017-01-01

    Magnetic resonance imaging (MRI) provides a powerful (neuro)imaging modality for the diagnosis and outcome prediction after (acute) stroke. Since MRI allows noninvasive, longitudinal, and three-dimensional assessment of vessel occlusion (with magnetic resonance angiography (MRA)), tissue injury

  7. Assessment of the Unresolved Resonance Treatment for Cross-section and Covariance Representation. A report by the Working Party on International Evaluation Co-operation of the NEA Nuclear Science Committee

    Leal, L.; Shibata, K.; Iwamoto, O.; Chiba, G.; Noguere, G.; Saint Jean, C. de; Sirakov, I.; Capote, R.; Sublet, J.C.; Coste-Delclaux, M.; Jouanne, C.; MacFarlane, R.E.; Kahler, A.C. Jr.; Lubitz, C.R.; Cullen, D.; Herman, M.; Ribon, P.

    2011-01-01

    This report summarises the work performed under WPEC Subgroup 32 (SG32) on issues pertinent to the methodology used in the unresolved resonance region (URR). The main purpose of SG32 was to verify the validity of the Single-level Breit-Wigner (SLBW) cross-section representation in the URR for self-shielding calculations. While SG32 work was under way, several other developments related to the URR on this subject came into play that had a direct impact on the results of calculations. The work described in this report focuses on: - testing of the SLBW formalism in the URR for fissile and fertile isotopes; - URR covariance representation; - interpolation issue with a URR resonance parameter for the infinitely dilute cross-section calculations; - ENDF URR parameter representation based on the LSSF = 0 or LSSF = 1 option

  8. Probabilistic interpretation of resonant states

    The present paper reviews the basic definition of the resonant state in quantum ... We show that particles leak from the central region in the resonant state. The ..... The basic idea is as follows (figure 4): Consider a resonant eigenstate. Φn(x ...

  9. Children's (Pediatric) Magnetic Resonance Imaging

    ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  10. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  12. Introduction lecture to magnetic resonance

    Conard, J.

    1980-01-01

    This lecture deals with all that is common either to electron paramagnetic resonance (E.P.R.) or to nuclear magnetic resonance (N.M.R.). It will present, in an as elementary form as possible, the main concepts used in magnetic resonance emphasizing some aspects, specific for interface science. (orig./BHO)

  13. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging ( ... the limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  15. Electron spin resonance identification of irradiated fruits

    Raffi, J.J.; Agnel, J.-P.L.

    1989-01-01

    The electron spin resonance spectrum of achenes, pips, stalks and stones from irradiated fruits (stawberry, raspberry, red currant, bilberry, apple, pear, fig, french prune, kiwi, water-melon and cherry) always displays, just after γ-treatment, a weak triplet (a H ∼30 G) due to a cellulose radical; its left line (lower field) can be used as an identification test of irradiation, at least for strawberries, raspberries, red currants or bilberries irradiated in order to improve their storage time. (author)

  16. Resonant SIMP dark matter

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  17. Nuclear magnetic resonance apparatus

    Lambert, R.

    1991-01-01

    In order to include the effect of a magnetic object in a subject under investigation, Nuclear Magnetic Resonance (NMR) apparatus is operable at more than one radio frequency (RF) frequency. The apparatus allows normal practice as far as obtaining an NMR response or image from a given nuclear species is concerned, but, in addition, interrogates the nuclear spin system at a frequency which is different from the resonance frequency normally used for the given nuclear species, as determined from the applied magnetic field. The magnetic field close to a magnetised or magnetisable object is modified and the given nuclear species gives a response at the different frequency. Thus detection of a signal at the frequency indicates the presence of the chosen nuclei close to the magnetised or magnetisable object. Applications include validation of an object detection or automatic shape inspection system in the presence of magnetic impurities, and the detection of magnetic particles which affect measurement of liquid flow in a pipe. (author)

  18. A New Resonance Tube

    Bates, Alan

    2017-12-01

    The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at the point where sound is perceived to have maximum loudness, or at the point where the amplitude of the standing wave has maximum value, namely an antinode. An antinode coincides with the position of the tuning fork, beyond the end of the air column, which consequently introduces an end correction. One way to minimize this end correction is to measure the distance between consecutive antinodes.

  19. Resonance of curved nanowires

    Calabri, L [CNR-INFM-National Research Center on nanoStructures and bioSystems at Surfaces (S3), Via Campi 213/a, 41100 Modena (Italy); Pugno, N [Department of Structural Engineering and Geotechnics, Politecnico di Torino, Turin (Italy); Ding, W [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111 (United States); Ruoff, R S [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111 (United States)

    2006-08-23

    The effects of non-ideal experimental configuration on the mechanical resonance of boron (B) nanowires (NWs) were studied to obtain the corrected value for the Young's modulus. The following effects have been theoretically considered: (i) the presence of intrinsic curvature (ii) non-ideal clamps (iii) spurious masses (iv) coating layer, and (v) large displacements. An energy-based analytical analysis was developed to treat such effects and their interactions. Here, we focus on treating the effect of the intrinsic curvature on the mechanical resonance. The analytical approach has been confirmed by numerical FEM analysis. A parallax method was used to obtain the three-dimensional geometry of the NW.

  20. Theory of the cancellation of 4-photon resonances by an off-resonance 3-photon cancellation

    Elk, M.; Lambropoulos, P.; Tang, X.

    1992-01-01

    We present a complete account of our recent work [Phys. Rev. A 44, 31 (1991)] in which we investigate the theory of cancellation by interference between the absorption of three fundamental laser photons and one third-harmonic photon. The theory is formulated in terms of the density matrix so...... as to take detunings, dephasing, and laser bandwidth into account. The result is a theory of cancellation for finite detuning that explains how four-photon resonances can be canceled by a three-photon mechanism if there is an atomic level at near-three-photon resonance. The treatment is extended to focused...

  1. Magnetic resonance imaging

    Sigal, R.

    1988-01-01

    This book is an introduction to magnetic resonance imaging (MRI). The basic principles for the interpretation of MR images are developed. The book is divided into five chapters: introduction, tissue, parameters, acquisition parameters, contribution to diagnosis, and practical management of an MR examination. Eight exercises allow the reader to test the knowledge he has acquired. Signal localization and MR artefacts are reviewed in an appendix

  2. Ultraminiature resonator accelerometer

    Koehler, D.R.; Kravitz, S.H.; Vianco, P.T.

    1996-04-01

    A new family of microminiature sensors and clocks is being developed with widespread application potential for missile and weapons applications, as biomedical sensors, as vehicle status monitors, and as high-volume animal identification and health sensors. To satisfy fundamental technology development needs, a micromachined clock and an accelerometer have initially been undertaken as development projects. A thickness-mode quartz resonator housed in a micromachined silicon package is used as the frequency-modulated basic component of the sensor family. Resonator design philosophy follows trapped energy principles and temperature compensation methodology through crystal orientation control, with operation in the 20--100 MHz range, corresponding to quartz wafer thicknesses in the 75--15 micron range. High-volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Chemical etching of quartz, as well as micromachining of silicon, achieves the surface and volume mechanical features necessary to fashion the resonating element and the mating package. Integration of the associated oscillator and signal analysis circuitry into the silicon package is inherent to the realization of a size reduction requirement. A low temperature In and In/Sn bonding technology allows assembly of the dissimilar quartz and silicon materials, an otherwise challenging task. Unique design features include robust vibration and shock performance, capacitance sensing with micromachined diaphragms, circuit integration, capacitance-to-frequency transduction, and extremely small dimensioning. Accelerometer sensitivities were measured in the 1--3 ppm/g range for the milligram proof-mass structures employed in the prototypes evaluated to date.

  3. Magnetic resonance imaging (MRI

    Takavar A

    1993-04-01

    Full Text Available Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I, a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D. factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  4. Magnetic resonance imaging (MRI)

    Takavar A

    1993-01-01

    Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I), a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D.) factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  5. Resonant Tunneling Spin Pump

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  6. Optical resonator theory

    Yoo, Jaeg Won; Cho, Sunh Oh; Jeong, Young Uk; Lee, Byung Cheol; Lee, Jong Min

    2000-10-01

    In this report we present a theoretical study of bare optical resonators having in mind to extend it to active resonators. To compute diffractional losses, phase shifts, intensity distributions and phases of radiation fields on mirrors, we coded a package of numerical procedures on bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, are programmed for finding numeric solutions to the pair of integral equations. The iterative method had been tried by Fox and Li, but it was not applicable to cases for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this report, we implemented the matrix method to extend the computational limit further. A great deal of case studies are carried out with various configurations of stable and unstable resonators. Our results presented in this report show not only a good agreement with the results previously obtained by Fox and Li, but also a legitimacy of our numerical procedures in high Fresnel numbers.

  7. Injection-controlled laser resonator

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  8. Persistence, resistance, resonance

    Tsadka, Maayan

    Sound cannot travel in a vacuum, physically or socially. The ways in which sound operates are a result of acoustic properties, and the ways by which it is considered to be music are a result of social constructions. Therefore, music is always political, regardless of its content: the way it is performed and composed; the choice of instrumentation, notation, tuning; the medium of its distribution; its inherent hierarchy and power dynamics, and more. My compositional praxis makes me less interested in defining a relationship between music and politics than I am in erasing---or at least blurring---the borders between them. In this paper I discuss the aesthetics of resonance and echo in their metaphorical, physical, social, and musical manifestations. Also discussed is a political aesthetic of resonance, manifested through protest chants. I transcribe and analyze common protest chants from around the world, categorizing and unifying them as universal crowd-mobilizing rhythms. These ideas are explored musically in three pieces. Sumud: Rhetoric of Resistance in Three Movements, for two pianos and two percussion players, is a musical interpretation of the political/social concept of sumud, an Arabic word that literally means "steadfastness" and represents Palestinian non-violent resistance. The piece is based on common protest rhythms and uses the acoustic properties inherent to the instruments. The second piece, Three Piano Studies, extends some of the musical ideas and techniques used in Sumud, and explores the acoustic properties and resonance of the piano. The final set of pieces is part of my Critical Mess Music Project. These are site-specific musical works that attempt to blur the boundaries between audience, performers and composer, in part by including people without traditional musical training in the process of music making. These pieces use the natural structure and resonance of an environment, in this case, locations on the UCSC campus, and offer an active

  9. Parametric Resonance in Dynamical Systems

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  10. A new theoretical approach to resonant dtμ formation

    Armour, E.A.G.

    1996-01-01

    A key process in the muon-catalysed fusion cycle is a low-energy collision of Tμ with a D 2 molecule which leads, at appropriate incident energies, to the formation of a resonant complex containing DTμ. In this paper the result is described of a formal derivation of the partial wave cross section for resonant DTμ formation, which makes use of elements of Feshbach's treatment of resonances. The expression obtained is similar to the Breit-Wigner formula. Full details of the calculation will be published elsewhere. (orig.)

  11. Magnetic resonance imaging of pelvic endometriosis

    Vieira, G.P.; Martin, B.; Tubiana, J.M.

    1994-01-01

    Twenty-five magnetic resonance imaging (MRI) studies were performed in 18 patients with proven endometriosis. MRI findings were analyzed and compared with laparoscopic or surgical findings; MRI accurately demonstrated ovarian endometrial cysts as well as ectopic foci of endometriosis. Adhesions may be also suggested. Contrary to laparoscopy, MRI easily depicts both deep lesions and endometrial implants under the peritoneum. Consequently, MRI appears as an useful adjunct to laparoscopy for initial diagnosis before starting a medical treatment and above all as the imaging modality of choice for evaluation of the answer to treatment, avoiding iterative and often adhesions limited laparoscopies. (author). 7 refs.; 9 figs

  12. Lateral patellar luxation: magnetic resonance findings

    Armesto, V.; Pulpeiro, J.R.

    1995-01-01

    The objective of this article is to present the magnetic resonance (MR) findings associated with lateral patellar luxation. The series consisted of eight patients, all of whom presented joint effusion, damage to the medical retinaculum and cortical contusion or fracture of medical aspect of the patella or of anterolateral surface of the outer condyle. Five patients also presented patellar sub luxation. Diagnosis depends on the technique employed, with axial planes being very useful. Thus, it is recommended that they be used as the standard plane, especially in pathologies that are clinically unsuspicious as in this case. MR can also provide information that leads to surgical treatment rather than the standard conservative treatment. (Author)

  13. Presurgical functional magnetic resonance imaging

    Stippich, C.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is an important and novel neuroimaging modality for patients with brain tumors. By non-invasive measurement, localization and lateralization of brain activiation, most importantly of motor and speech function, fMRI facilitates the selection of the most appropriate and sparing treatment and function-preserving surgery. Prerequisites for the diagnostic use of fMRI are the application of dedicated clinical imaging protocols and standardization of the respective imaging procedures. The combination with diffusion tensor imaging (DTI) also enables tracking and visualization of important fiber bundles such as the pyramidal tract and the arcuate fascicle. These multimodal MR data can be implemented in computer systems for functional neuronavigation or radiation treatment. The practicability, accuracy and reliability of presurgical fMRI have been validated by large numbers of published data. However, fMRI cannot be considered as a fully established modality of diagnostic neuroimaging due to the lack of guidelines of the responsible medical associations as well as the lack of medical certification of important hardware and software components. This article reviews the current research in the field and provides practical information relevant for presurgical fMRI. (orig.) [de

  14. Endometrial cancer: magnetic resonance imaging.

    Manfredi, R; Gui, B; Maresca, G; Fanfani, F; Bonomo, L

    2005-01-01

    Carcinoma of the endometrium is the most common invasive gynecologic malignancy of the female genital tract. Clinically, patients with endometrial carcinoma present with abnormal uterine bleeding. The role of magnetic resonance imaging (MRI) in endometrial carcinoma is disease staging and treatment planning. MRI has been shown to be the most valuable imaging mod-ality in this task, compared with endovaginal ultrasound and computed tomography, because of its intrinsic contrast resolution and multiplanar capability. MRI protocol includes axial T1-weighted images; axial, sagittal, and coronal T2-weighted images; and dynamic gadolinium-enhanced T1-weighted imaging. MR examination is usually performed in the supine position with a phased array multicoil using a four-coil configuration. Endometrial carcinoma is isointense with the normal endometrium and myometrium on noncontrast T1-weighted images and has a variable appearance on T2-weighted images demonstrating heterogeneous signal intensity. The appearance of noninvasive endometrial carcinoma on MRI is characterized by a normal or thickened endometrium, with an intact junctional zone and a sharp tumor-myometrium interface. Invasive endometrial carcinoma is characterized disruption or irregularity of the junctional zone by intermediate signal intensity mass on T2-weighted images. Invasion of the cervical stroma is diagnosed when the low signal intensity cervical stroma is disrupted by the higher signal intensity endometrial carcinoma. MRI in endometrial carcinoma performs better than other imaging modalities in disease staging and treatment planning. Further, the accuracy and the cost of MRI are equivalent to those of surgical staging.

  15. Integrin αvβ3–Targeted Dynamic Contrast–Enhanced Magnetic Resonance Imaging Using a Gadolinium-Loaded Polyethylene Gycol–Dendrimer–Cyclic RGD Conjugate to Evaluate Tumor Angiogenesis and to Assess Early Antiangiogenic Treatment Response in a Mouse Xenograft Tumor Model

    Wei-Tsung Chen

    2012-07-01

    Full Text Available The purpose of this study was to validate an integrin αvβ3–targeted magnetic resonance contrast agent, PEG-G3-(Gd-DTPA6-(cRGD-DTPA2, for its ability to detect tumor angiogenesis and assess early response to antiangiogenic therapy using dynamic contrast–enhanced (DCE magnetic resonance imaging (MRI. Integrin αvβ3–positive U87 cells and control groups were incubated with fluorescein-labeled cRGD-conjugated dendrimer, and the cellular attachment of the dendrimer was observed. DCE MRI was performed on mice bearing KB xenograft tumors using either PEG-G3-(Gd-DTPA6-(cRGD-DTPA2 or PEG-G3-(Gd-DTPA6-(cRAD-DTPA2. DCE MRI was also performed 2 hours after anti–integrin αvβ3 monoclonal antibody treatment and after bevacizumab treatment on days 3 and 6t. Using DCE MRI, the 30-minute contrast washout percentage was significantly lower in the cRGD-conjugate injection groups. The enhancement patterns were different between the two contrast injection groups. In the antiangiogenic therapy groups, a rapid increase in 30-minute contrast washout percentage was observed in both the LM609 and bevacizumab treatment groups, and this occurred before there was an observable decrease in tumor size. The integrin αvβ3 targeting ability of PEG-G3-(Gd-DTPA6-(cRGD-DTPA2 in vitro and in vivo was demonstrated. The 30-minute contrast washout percentage is a useful parameter for examining tumor angiogenesis and for the early assessment of antiangiogenic treatment response.

  16. Object-oriented magnetic resonance classes and objects, calculations and computations

    Mehring, Michael

    2001-01-01

    This book presents, for the first time, a unified treatment of the quantum mechanisms of magnetic resonance, including both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). Magnetic resonance is perhaps the most advanced type of spectroscopy and it is applied in biology, chemistry, physics, material science, and medicine. If applied in conjunction with spectroscopy, the imaging version of magnetic resonance has no counterpart in any type of experimental technique. The authors present explanations and applications from fundamental to advanced levels. Additionally, the

  17. Magnetic resonance instrumentation

    Bell, R.A.

    1987-01-01

    Magnetic resonance (MR), while opening new vistas to diagnostic medicine, utilizes equipment that is unfamiliar to most clinicians. Beyond learning to cope with new terms, such as spin-echo, T1, T2, and spin density, health care professionals are faced with the inclusion of magnetic and radiofrequency effects in their facilities produced by a complex array of devices. It is the purpose of this chapter to outline the components of an MR imaging system, to discuss their functions, and to note the variations in equipment commercially available

  18. General resonance mediation

    McGarrie, Moritz

    2012-07-01

    We extend the framework of general gauge mediation to cases where the mediating fields have a nontrivial spectral function, as might arise from strong dynamics. We demonstrate through examples that this setup describes a broad class of possible models of gauge mediated supersymmetry breaking. A main emphasis is to give general formulas for cross sections for σ(visible → hidden) in these resonance models. We will also give formulas for soft masses, A-terms and demonstrate the framework with a holographic setup.

  19. Advanced Nuclear Magnetic Resonance

    Alonso, Diego A.

    2014-01-01

    Transparencias en inglés de la asignatura "Resonancia Magnética Nuclear Avanzada" (Advanced Nuclear Magnetic Resonance) (36643) que se imparte en el Máster de Química Médica como asignatura optativa de 3 créditos ECTS. En esta asignatura se completa el estudio iniciado en la asignatura de quinto curso de la licenciatura en Química "Determinación estructural" (7448) y en la del Grado de Química de tercer curso "Determinación estructural de los compuestos orgánicos" (26030) en lo referente a té...

  20. Cranial magnetic resonance imaging

    Elster, A.D.

    1988-01-01

    Cranial Magnetic Resonance Imaging is comprehensive, well structured, and well written. The material is current and well referenced. The illustrations are good and complement the text well. The overall quality of publication is above average. The greatest attribute of the book is its readability. The author demonstrates ample skill in making complex subjects, such as MR physics and imaging of cerebral hemorrhage, easy to understand. The book closes with a detailed atlas on the anatomic appearance of the brain on MR images in the axial, coronal, and sagittal planes

  1. Dental magnetic resonance imaging

    Hilgenfeld, Tim; Bendszus, Martin; Haehnel, Stefan

    2016-01-01

    Growing distribution and utilization of digital volume tomography (DVT) extend the spectrum of clinical dental imaging. Additional diagnostic value, however, comes along with an increasing amount of radiation. In contrast, magnetic resonance imaging is a radiation free imaging technique. Furthermore, it offers a high soft tissue contrast. Morphological and numerical dental anomalies, differentiation of periapical lesions and exclusion of complications of dental diseases are field of applications for dental MRI. In addition, detection of caries and periodontal lesions and injury of inferior alveolar nerve are promising application areas in the future.

  2. General resonance mediation

    McGarrie, Moritz

    2012-07-15

    We extend the framework of general gauge mediation to cases where the mediating fields have a nontrivial spectral function, as might arise from strong dynamics. We demonstrate through examples that this setup describes a broad class of possible models of gauge mediated supersymmetry breaking. A main emphasis is to give general formulas for cross sections for {sigma}(visible {yields} hidden) in these resonance models. We will also give formulas for soft masses, A-terms and demonstrate the framework with a holographic setup.

  3. Nuclear magnetic resonance scattering

    Young, I.R.

    1985-01-01

    A nuclear magnetic resonance apparatus is described including a magnet system which is capable of providing a steady magnetic field along an axis, and is constructed so as to define a plurality of regions along the axis in each of which the field is substantially homogeneous so that in each region an imaging operation may be separately carried out. Iron shields increase the field homogeneity. In use, each patient lies on a wheeled trolley which is provided with magnetic field gradient coils and an RF coil system, some of the coils being movable to facilitate positioning of the patient, and there are terminals for connection to a common computing and control facility. (author)

  4. Resonant MEMS tunable VCSEL

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta

    2013-01-01

    We demonstrate how resonant excitation of a microelectro-mechanical system can be used to increase the tuning range of a vertical-cavity surface-emitting laser two-fold by enabling both blue- and red-shifting of the wavelength. In this way a short-cavity design enabling wide tuning range can...... be realized. A high-index-contrast subwavelength grating verticalcavity surface-emitting laser with a monolithically integrated anti-reflection coating is presented. By incorporating an antireflection coating into the air cavity, higher tuning efficiency can be achieved at low threshold current. The first...

  5. Resonance test system

    Musial, Walter [Boulder, CO; White, Darris [Superior, CO

    2011-05-31

    An apparatus (10) for applying at least one load to a specimen (12) according to one embodiment of the invention may comprise a mass (18). An actuator (20) mounted to the specimen (12) and operatively associated with the mass (18) moves the mass (18) along a linear displacement path (22) that is perpendicular to a longitudinal axis of the specimen (12). A control system (26) operatively associated with the actuator (20) operates the actuator (20) to reciprocate the mass (18) along the linear displacement path (22) at a reciprocating frequency, the reciprocating frequency being about equal to a resonance frequency of the specimen (12) in a test configuration.

  6. Electron spin resonance

    Wasson, J.R.; Salinas, J.E.

    1980-01-01

    Published literature concerning electron spin resonance (ESR) from July 1977 to July 1979 is reviewed. The 108 literature sources cited were chosen from literally thousands and are intended to serve as a guide to the current literature and to provide an eclectic selection of publications cited for their contributions to the advance and/or applications of ESR spectroscopy. 40 of the sources are reviews, and a table is included to indicate the topic(s) mainly covered in each review. Other divisions of the material reviewed are apparatus and spectral analysis, analytical applications, and selected paramagnetic materials

  7. Apodized coupled resonator waveguides.

    Capmany, J; Muñoz, P; Domenech, J D; Muriel, M A

    2007-08-06

    In this paper we propose analyse the apodisation or windowing of the coupling coefficients in the unit cells of coupled resonator waveguide devices (CROWs) as a means to reduce the level of secondary sidelobes in the bandpass characteristic of their transfer functions. This technique is regularly employed in the design of digital filters and has been applied as well in the design of other photonic devices such as corrugated waveguide filters and fiber Bragg gratings. The apodisation of both Type-I and Type-II structures is discussed for several windowing functions.

  8. Nanotube resonator devices

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  9. Proton capture resonance studies

    Mitchell, G.E. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bilpuch, E.G. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bybee, C.R. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Cox, J.M.; Fittje, L.M. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Labonte, M.A.; Moore, E.F.; Shriner, J.D. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Shriner, J.F. Jr. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Vavrina, G.A. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Wallace, P.M. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708

    1997-02-01

    The fluctuation properties of quantum systems now are used as a signature of quantum chaos. The analyses require data of extremely high quality. The {sup 29}Si(p,{gamma}) reaction is being used to establish a complete level scheme of {sup 30}P to study chaos and isospin breaking in this nuclide. Determination of the angular momentum J, the parity {pi}, and the isospin T from resonance capture data is considered. Special emphasis is placed on the capture angular distributions and on a geometric description of these angular distributions. {copyright} {ital 1997 American Institute of Physics.}

  10. Resonantly scattering crystals and surfaces

    Gunn, J.M.F.; Mahon, P.J.

    1990-12-01

    We examine coherence effects from forming a crystal of resonant scatterers by generalising the Fano model for autoionising resonances in electron scattering from atoms to a lattice of such scatterers. (We have in mind the case of neutron scattering from nuclei.) We solve this problem to yield two branches to the dispersion relation for the neutron in general and three when the resonance coincides with a Brillouin Zone boundary. The 'width' of the resonance is enhanced over the isolated nucleus, the best candidate for observation being the 2eV 185 Re resonance near the Bragg condition. We use these results to calculate the reflection coefficient from a surface, revealing total external reflection near resonance. We discuss experimental feasibility in both the neutron and electron cases. (author)

  11. Nuclear magnetic resonance spectroscopy

    Rabenstein, D.L.; Guo, W.

    1988-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most widely used instrumental methods, with applications ranging from the characterization of pure compounds by high-resolution NMR to the diagnosis of disease by magnetic resonance imaging (MRI). To give some idea of the wide-spread use of NMR, a computer search for the period 1985-1987 turned up over 500 books and review articles and over 7000 literature citations, not including papers in which NMR was used together with other spectroscopic methods for the routine identification of organic compounds. Consequently, they have by necessity been somewhat selective in the topics they have chosen to cover and in the articles they have cited. In this review, which covers the published literature for the approximate period Sept 1985-Aug 1987, they have focused on new developments and applications of interest to the chemist. First they review recent developments in instrumentation and techniques. Although there have not been any major break-throughs in NMR instrumentation during the past two years, significant refinements have been reported which optimize instrumentation for the demanding multiple pulse experiments in routine use today. Next they review new developments in methods for processing NMR data, followed by reviews of one-dimensional and two-dimensional NMR experiments

  12. Behavioral Stochastic Resonance

    Freund, Jan A.; Schimansky-Geier, Lutz; Beisner, Beatrix; Neiman, Alexander; Russell, David F.; Yakusheva, Tatyana; Moss, Frank

    2001-03-01

    Zooplankton emit weak electric fields into the surrounding water that originate from their own muscular activities associated with swimming and feeding. Juvenile paddlefish prey upon single zooplankton by detecting and tracking these weak electric signatures. The passive electric sense in the fish is provided by an elaborate array of electroreceptors, Ampullae Lorenzini, spread over the surface of an elongated rostrum. We have previously shown that the fish use stochastic resonance to enhance prey capture near the detection threshold of their sensory system. But stochastic resonance requires an external source of electrical noise in order to function. The required noise can be provided by a swarm of plankton, for example Daphnia. Thus juvenile paddlefish can detect and attack single Daphnia as outliers in the vicinity of the swarm by making use of noise from the swarm itself. From the power spectral density of the noise plus the weak signal from a single Daphnia we calculate the signal-to-noise ratio and the Fisher information at the surface of the paddlefish's rostrum. The results predict a specific attack pattern for the paddlefish that appears to be experimentally testable.

  13. Advances in magnetic resonance 11

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 11, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters and begins with a discussion of the principles and applications of dynamic nuclear polarization, with emphasis on molecular motions and collisions, intermolecular couplings, and chemical interactions. Subsequent chapters focus on the assessment of a proposed broadband decoupling method and studies of time-domain (or Fourier transform) multiple-quantum nuclear magnetic resonance.

  14. Slowing down with resonance absorption

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The presence of heavy nuclei in nuclear reactors, in significant concentrations, facilitates the appearance of absorption resonances. For the moderation in the presence of absorbers an exact solution of the integral equations is possible by numerical methods. Approximated solutions for separated resonances in function of the practical width, (NR and NRIM approximations) are discussed in this paper. The method is generalized, presenting the solution by an intermediate approximation, in the definition of the resonance integral. (Author) [pt

  15. Q-Boosted Optomechanical Resonators

    2015-11-18

    type a knob for optical Qo, where the inability to smooth etched nitride sidewall surfaces relegates OMO’s using it to Qo’s on the order of...6: Operation of an RP-OMO. As the ring resonator coupled to tapered fiber in (a) displaces by ∂r, the optical path length change produces the shift...frequency 0, B input pump laser field, tot the total optical resonator damping, ext the coupling between optical resonator and the tapered fiber

  16. Spectra of resonance surface photoionization

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G. [Budker Nuclear Physics Institute, Novosibirsk (Russian Federation)

    1995-09-01

    The theory of nonactivated electron transfer between atoms interacting reasonantly with coherent radiation and a metal surface is developed. The spectral resonances in photoabsorption and surface photoionization are found to be related to nonlinear interference effects in the interaction between discrete atomic levels and the continuum formed by the quasi-continuous electron spectrum of a normal metal. The asymmetry in the resonance surface photoionization spectrum is shown to have a shape typical of the Fano autoionization resonances. 18 refs.

  17. Resonance capture and Saturn's rings

    Patterson, C.W.

    1986-05-01

    We have assigned the resonances apparently responsible for the stabilization of the Saturn's shepherd satellites and for the substructure seen in the F-ring and the ringlets in the C-ring. We show that Saturn's narrow ringlets have a substructure determined by three-body resonances with Saturn's ringmoons and the sun. We believe such resonances have important implications to satellite formation. 17 refs., 1 fig., 1 tab

  18. Efficient primary and parametric resonance excitation of bistable resonators

    Ramini, Abdallah

    2016-09-12

    We experimentally demonstrate an efficient approach to excite primary and parametric (up to the 4th) resonance of Microelectromechanical system MEMS arch resonators with large vibrational amplitudes. A single crystal silicon in-plane arch microbeam is fabricated such that it can be excited axially from one of its ends by a parallel-plate electrode. Its micro/nano scale vibrations are transduced using a high speed camera. Through the parallel-plate electrode, a time varying electrostatic force is applied, which is converted into a time varying axial force that modulates dynamically the stiffness of the arch resonator. Due to the initial curvature of the structure, not only parametric excitation is induced, but also primary resonance. Experimental investigation is conducted comparing the response of the arch near primary resonance using the axial excitation to that of a classical parallel-plate actuation where the arch itself forms an electrode. The results show that the axial excitation can be more efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting the structure from pull-in. In addition to primary resonance, parametrical resonances are demonstrated at twice, one-half, and two-thirds the primary resonance frequency. The ability to actuate primary and/or parametric resonances can serve various applications, such as for resonator based logic and memory devices. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

  19. Resonance phenomenon in classical cepheids

    Takeuti, Mine; Aikawa, Toshiki

    1981-01-01

    To investigate resonance phenomenon in classical cepheids, the non-linear radial oscillation of stars is studied based on the assumption that the non-adiabatic perturbation is expressed in terms of van der Pol's type damping. Two- and three-wave resonance in this system is applied to classical cepheids to describe their bump and double-mode behavior. The phase of bump and the depression of amplitude are explained for bump cepheids. The double-periodicity is shown by the enhancement of the third overtone in three-wave resonance. Non-linear effect on resonant period is also discussed briefly. (author)

  20. Transit time for resonant tunneling

    Garcia Calderon, G.; Rubio, A.

    1990-09-01

    This work considers properties of the partial widths in one dimensional elastic resonant tunneling in order to propose a transit-time τ tr = (h/2π)/Γ n T res ) where Γ n is the elastic width and T res the transmission coefficient at resonance energy. This time is interpreted as an average over the resonance energy width. It is shown that the tunneling current density integrated across a sharp resonance is inversely proportional to τ tr . This transit time may be much larger than the values predicted by other definitions. (author). 20 refs

  1. Advances in magnetic resonance 6

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 6 focuses on the theoretical and practical aspects of applying magnetic resonance methods to various problems in physical chemistry, emphasizing the different aspects of the exegesis of these problems. This book discusses the gas phase magnetic resonance of electronically excited molecules; techniques for observing excited electronic states; NMR studies in liquids at high pressure; and effect of pressure on self-diffusion in liquids. The nuclear magnetic resonance investigations of organic free radicals; measurement of proton coupling constants by NMR; an

  2. Orbital resonances around black holes.

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  3. Properties of resonance wave functions.

    More, R. M.; Gerjuoy, E.

    1973-01-01

    Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.

  4. Advances in magnetic resonance 12

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 12, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains six chapters and begins with a discussion of diffusion and self-diffusion measurements by nuclear magnetic resonance. This is followed by separate chapters on spin-lattice relaxation time in hydrogen isotope mixtures; the principles of optical detection of nuclear spin alignment and nuclear quadropole resonance; and the spin-1 behavior, including the relaxation of the quasi-invariants of the motion of a system of pairs of dipolar coupled spin-1/2 nu

  5. Resonant scattering in the presence of an electromagnetic field

    Rosenberg, L.

    1983-01-01

    The theory of resonant reactions, in the projection-operator formulation of Feshbach, is generalized to account for the presence of an external electromagnetic field. The theory is used as the basis for the construction of low-frequency approximations for the transition amplitude. Results obtained here for scattering in a laser field confirm earlier versions of the low-frequency approximation when the resonances are isolated. However, if there are several closely spaced resonances additional terms must be included (their importance magnified by the appearance of near singularities) which account for the effect of radiative transitions between pairs of nearly degenerate resonant states. The weak-field limit of this result yields a low-frequency approximation for single-photon spontaneous bremsstrahlung which, through the inclusion of correction terms associated with closely spaced resonances, provides an improvement over the Feshbach-Yennie version derived some time ago. A separate treatment is required to deal with the limiting case of a static external field and this is worked out here in the context of a time-dependent formulation of the scattering problem. Linear and quadratic Stark splitting of the resonance positions, and resonance broadening due to the tunneling mechanism, are expected to play a significant role in the static limit and these effects are included in the approximation derived here for the transition amplitude

  6. Amplitude saturation of MEMS resonators explained by autoparametric resonance

    Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M; Van der Hout, R; Hulshof, J; Fey, R H B

    2010-01-01

    This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators

  7. Amplitude saturation of MEMS resonators explained by autoparametric resonance

    Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M [NXP Research, Eindhoven (Netherlands); Van der Hout, R; Hulshof, J [Department of Mathematics, VU University—Faculty of Sciences, De Boelelaan 1081a, 1081 HV Amsterdam (Netherlands); Fey, R H B, E-mail: cas.van.der.avoort@nxp.com [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands)

    2010-10-15

    This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators.

  8. Cyclotron resonance for electrons over helium in resonator

    Shikin, V B

    2002-01-01

    The problem on the cyclotron resonance (CR) for electrons on the helium film, positioned in the resonator lower part, is solved. It is shown, that it relates to one of the examples of the known problem on the oscillations of the coupled oscillators system. The coupling constant between these oscillators constituting the variable function of the problem parameters. It is minimal in the zero magnetic field and reaches its maximum under the resonance conditions, when the cyclotron frequency coincides with one of the resonator modes. The CR details of the Uhf CR-energy absorption coupled by the electrons + resonator system, are calculated. The applications of the obtained results to the available CR experiments for electrons over helium

  9. Endovascular interventional magnetic resonance imaging

    Bartels, L W; Bakker, C J G

    2003-01-01

    Minimally invasive interventional radiological procedures, such as balloon angioplasty, stent placement or coiling of aneurysms, play an increasingly important role in the treatment of patients suffering from vascular disease. The non-destructive nature of magnetic resonance imaging (MRI), its ability to combine the acquisition of high quality anatomical images and functional information, such as blood flow velocities, perfusion and diffusion, together with its inherent three dimensionality and tomographic imaging capacities, have been advocated as advantages of using the MRI technique for guidance of endovascular radiological interventions. Within this light, endovascular interventional MRI has emerged as an interesting and promising new branch of interventional radiology. In this review article, the authors will give an overview of the most important issues related to this field. In this context, we will focus on the prerequisites for endovascular interventional MRI to come to maturity. In particular, the various approaches for device tracking that were proposed will be discussed and categorized. Furthermore, dedicated MRI systems, safety and compatibility issues and promising applications that could become clinical practice in the future will be discussed. (topical review)

  10. Resonant High Power Combiners

    Langlois, Michel; Peillex-Delphe, Guy

    2005-01-01

    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  11. Laser cooling at resonance

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  12. Nuclear magnetic resonance

    Cremin, B.J.

    1981-01-01

    Recent advances in diagnostic imaging, have been the medical application of nuclear magnetic resonance (NMR). It's been used to study the structure of various compounds in chemistry and physics, and in the mid-1970 to produce images of rabbits and eventually of the human hand and head. The images are produced by making use of the nuclear magnetization of the hydrogen ion, or proton, that is present in biological material to record the density distribution of protons in cellular water and lipids. An exploration of the end-results of complicated free induction decay signals, that have been digitized and frequency-analysed by mathematical computerized techniques to produce an image of tissue density, is given. At present NMR produces images comparable to those of early computed tomography

  13. Magnetic resonance spectroscopy

    Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    A major function of the liver is regulation of carbohydrate, lipid, and nitrogen metabolism. Food is absorbed by the intestines and transported to the liver by the portal circulation. Substrates are metabolized and stored in the liver to maintain optimal blood concentrations of glucose and lipids. Ammonia generated in the gastrointestinal tract is converted to urea in the liver by the urea cycle. Various forms of liver disease are associated with disorders of carbohydrate, fat, and nitrogen metabolism. Therefore the ability to characterize liver metabolism noninvasively is of potential diagnostic value. Magnetic resonance spectroscopy (MRS) provides information about tissue metabolism by measuring concentrations of metabolites. However, to determine the anatomic location from which spectroscopic signals are derived, MRS could be performed in conjunction with MRI. This paper summarizes the current experience with spectroscopy ion animal models of human disease and reviews the clinical experience with hepatic MRS to date

  14. Magnetic resonance in neuroborreliosis

    Ustymowicz, A.; Zajkowska, J.

    2003-01-01

    Magnetic resonance (MR) is commonly used in diagnosing infections of the central nervous system. The aim of the study is to evaluate central nervous system changes in neuroborreliosis patients. MR examinations were performed in 44 patients with clinical symptoms, epidemiology and laboratory tests results of neuroborreliosis. Abnormalities were detected in 22 patients. Most of them presented cortico-subcortical atrophy (86%). In 9 cases foci of increased signal in T2-weighted and FLAIR images were observed in white matter. They were single or multiple, located subcorticaly and paraventriculary. In 2 subjects areas of increased signal were found in the brain stem. Central nervous system abnormalities detected with MR are not specific for Lyme disease. They can suggest demyelinating lesions and/or gliosis observed in many nervous system disorders (SM, ADEM, lacunar infarcts). (author)

  15. Cine magnetic resonance

    Higgins, C.B.; Sechtem, U.P.; Pflugfelder, P.

    1987-01-01

    Cine magnetic resonance (MR) is a fast MR imaging process with referencing of the imaging data to the electrocardiogram (ECG) so that images corresponding to 21-msec segments of the cardiac cycle are acquired. A series of such images, each corresponding to a 21-msec segment of the cardiac cycle, can be laced together for viewing in the cine format at a framing rate of 20 to 40 frames per second. Since cine angiograms of the heart are usually done at 30 frames per second, this technique achieves a temporal resolution adequate for the evluation of central cardiovascular function. The major application of this technique is to depict central cardiovascular function and blood flow

  16. Cascaded resonant bridge converters

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  17. An analysis of uncertainties in the reference resonance absorption calculations

    Milosevic, M.; Pesic, M.

    1997-05-01

    A recently appeared generation of design-oriented methods, which allows to compute the space and energy dependence of the resonant absorption inside the fuel rod, induces a new problem of validation of results obtained with improved resonance treatments, Because no experimental results are available on the spatial and energy distribution of resonance absorption, detailed reference calculations were generated with the continuos-energy Monte Carlo and energy pointwise slowing-down codes. The accuracy of these calculations depends>on various in.fluences. In this paper an analysis of some influences, such as differences ;n nuclear data libraries and philosophy of reproducing the cross section data, is presented. Example application is given for a calculation benchmark that consists of determination of resonance absorption by 238 U in typical PWR pin cell geometry (author)

  18. Shape resonances in molecular fields

    Dehmer, J.L.

    1984-01-01

    A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field

  19. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful ... for an MRI exam contains a metal called gadolinium . Gadolinium can be used in patients with iodine ...

  20. Stark resonances in disordered systems

    Grecchi, V.; Maioli, M.; Modena Univ.; Sacchetti, A.

    1992-01-01

    By slightly restricting the conditions given by Herbst and Howland, we prove the existence of resonances in the Stark effect of disordered systems (and atomic crystals) for large atomic mean distance. In the crystal case the ladders of resonances have the Wannier behavior for small complex field. (orig.)

  1. Atomic and molecular resonance ionization

    Botter, R.; Petit, A.

    1990-01-01

    Published in summary form only the paper recalls the principle of resonance photoionization, transition probability, selectivity and critical parameters. Examples of applications are briefly treated: Trace analysis by resonance ionization mass spectroscopy for detection of Fe in Zr F 4 for fabrication of optical fibers and laser isotopic separation of U 235 and Gd 157 [fr

  2. Physics of optimal resonant tunneling

    Racec, P.N.; Stoica, T.; Popescu, C.; Lepsa, M.I.; Roer, van de T.G.

    1997-01-01

    The optimal resonant tunneling, or the complete tunneling transparence of a biased double-barrier resonant-tunneling (DBRT) structure, is discussed. It is shown that its physics does not rest on the departure from the constant potential within the barriers and well, due to the applied electric

  3. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... work? Unlike conventional x-ray examinations and computed tomography (CT) scans, MRI does not utilize ionizing radiation. Instead, ... Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging (MRI) Safety Contrast Materials Children ...

  4. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses ... identify and accurately characterize diseases than other imaging methods. This detail makes MRI an invaluable tool in ...

  5. Resonance journal of science education

    IAS Admin

    RESONANCE | May 2010. Resonance journal of science education. May 2010 Volume 15 Number 5. On the Measurement of Phase Difference using CROs b. SERIES ARTICLES. 400. Aerobasics – An Introduction to Aeronautics. Mini and Micro Airplanes. S P Govinda Raju. GENERAL ARTICLES. 411. Bird of Passage at ...

  6. Integrated unaligned resonant modulator tuning

    Zortman, William A.; Lentine, Anthony L.

    2017-10-03

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, from the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.

  7. Giant first-forbidden resonances

    Krmpotic, F.; Nakayama, K.; Sao Paulo Univ.; Pio Galeao, A.; Sao Paulo Univ.

    1983-01-01

    Recent experimental data on first-forbidden charge-exchange resonances are discussed in the framework of a schematic model. We also evaluate the screening of the weak coupling constants induced by both the giant resonances and the δ-isobar. It is shown that the last effect does not depend on the multipolarity of the one-particle moment. Due to the same reason, the fraction of the reaction strength pushed up into the δ-resonance region is always the same regardless of the quantum numbers carried by the excitation. Simple expressions are derived for the dependence of the excitation energies of the first-forbidden giant resonances on the mass number and isospin of the target. The model reproduces consistently both the Gamow-Teller and the first-forbidden resonances. (orig.)

  8. Nonlinear elasticity in resonance experiments

    Li, Xun; Sens-Schönfelder, Christoph; Snieder, Roel

    2018-04-01

    Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These experiments produce resonance curves that represent the response amplitude as a function of the driving frequency. We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward and downward, and (d) the presence of a "cliff" segment to the left of the resonant peak under the condition of strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening, which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.

  9. Auxiliary resonant DC tank converter

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  10. Application of semiclassical and geometrical optics theories to resonant modes of a coated sphere.

    Bambino, Túlio M; Breitschaft, Ana Maria S; Barbosa, Valmar C; Guimarães, Luiz G

    2003-03-01

    This work deals with some aspects of the resonant scattering of electromagnetic waves by a metallic sphere covered by a dielectric layer, in the weak-absorption approximation. We carry out a geometrical optics treatment of the scattering and develop semiclassical formulas to determine the positions and widths of the system resonances. In addition, we show that the mean lifetime of broad resonances is strongly dependent on the polarization of the incident light.

  11. Resonant neutron-induced atomic displacements

    Elmaghraby, Elsayed K., E-mail: e.m.k.elmaghraby@gmail.com

    2017-05-01

    Highlights: • Neutron induced atomic displacements was investigated based on scattering of energy of neutron. • Model for cascade function (multiplication of displacements with increasing energy transfer) was proposed and justified. • Parameterizations for the dpa induced in all elements were performed. • Table containing all necessary parameters to calculate the displacement density induced by neutron is given. • Contribution of non resonance displacement and resonant-neutron induced displacements are distinguished. - Abstract: A model for displacement cascade function was modified to account for the continuous variation of displacement density in the material in response to neutron exposure. The model is based on the Gaussian distribution of displacement energies of atoms in a material. Analytical treatment for moderated epithermal neutron field was given in which the displacement density was divided into two terms, discrete-resonance term and continuum term. Calculation are done for all isotopes using ENDF/B VII.1 data files and temperature dependent cross section library. Weighted elemental values were reported a fitting was performed to obtain energy-dependent formula of displacement density and reduce the number of parameters. Results relevant the present specification of the cascade function are tabulated for each element to enable calculation of displacement density at any value of displacement energy in the between 5 eV and 55 eV.

  12. Prostate resonance imaging: morphology and metabolism

    Ocantos, Jorge A.; Pietrani, Marcelo A.; Paganini, Lisandro

    2007-01-01

    The cancer of prostate is the most frequent neoplasms and the third cause of death in men, although the average of survival of patients it improved, the cancer of prostate is an important problem in health. The majority of these tumors are of slow growth and the early detection allows high probabilities of definitive treatment. The neoplasms of prostate detected at present are smaller than the detected ones 20 years ago behind, nevertheless exist big differences in the aggressiveness of these tumors. The images are very important in the management of prostate cancer, and the magnetic resonance imaging of the prostate is a new tool in the evaluation of prostate cancer [es

  13. Nanoplatforms for magnetic resonance imaging of cancer

    Cywinska, M. A.; Grudzinski, I. P.; Cieszanowski, A.; Bystrzejewski, M.; Poplawska, M.

    2011-01-01

    The application of biomedical nanotechnology in magnetic resonance imaging (MRI) is expect to have a major impact leading to the development of new contrast drug candidates on the nanoscale (1 - 100 nm) that are able to react with specific biological targets at a molecular level. One of the major challenges in this regard is the construction of nanomaterials, especially used in molecular MRI diagnostics of cancer in vivo, specialized antitumor drug delivery or real-time evaluation of the efficacy of the implemented cancer treatment. In this paper, we tried to gain further insights into current trends of nanomedicine, with special focus on preclinical MRI studies in translation cancer research. (authors)

  14. Magnetic resonance of the renal transplantation

    Cauquil, P.; Hiesse, C.; Say, C.; Verdier, J.P.; Cauquil, M.; Brunet, A.M.; Galindo, R.; Tessier, J.P.

    1989-01-01

    Renal transplantation is the treatment of choice for renal insufficiency. Progress of surgical techniques and immuno-suppression have lead to better results. One year graft survival rate are 80% in most series. In this article, the role of imaging in renal transplantation, is defined. In surgical complications (fluid collections, obstruction, vascular insufficiency) non invasive radiology and interventionnal radiologic procedures have a great impact. Despite the perspectives of duplex and magnetic resonance, sensibility and specificity are not yet specified in medical complications: rejection, acute tubular necrosis, infection, drug toxicity. Association of these lesions is frequent and complicate analysis of results. Finally, transplant biopsy is still necessary to confirm the diagnosis [fr

  15. Review on resonance cone fields

    Ohnuma, Toshiro.

    1980-02-01

    Resonance cone fields and lower hybrid heating are reviewed in this report. The resonance cone fields were reported by Fisher and Gould, and they proposed the use of the measurement of resonance cones and structure as a diagnostic tool to determine the plasma density and electron temperature in magnetoplasma. After the resonance cone, a wave-like disturbance persists. Ohnuma et al. have measured bending, reflection and ducting of resonance cones in detail. The thermal modes in inhomogeneous magnetoplasma were seen. The reflection of thermal mode near an electron plasma frequency layer and an insulating plate has been observed. The non-linear effects of resonance cones is reported. Monochromatic electron beam produces the noise of broad band whistler mode. Lower hybrid waves have been the subject of propagation from the edge of plasma to the lower hybrid layer. Linear lower hybrid waves were studied. The lower hybrid and ion acoustic waves radiated from a point source were observed. The parametric decay of finite-extent, cold electron plasma waves was studied. The lower hybrid cone radiated from a point source going along magnetic field lines was observed. Several experimental data on the lower hybrid heating in tokamak devices have been reported. The theories on resonance cones and lower hybrid waves are introduced in this report. (Kato, T.)

  16. Resonance ionization spectroscopy 1990

    Parks, J.E.; Omenetto, N.

    1991-01-01

    The Fifth International Symposium on Resonance Ionization Spectroscopy (RIS) and its Applications was held in Varese, Italy, 16-21 September 1990. Interest in RIS and its applications continues to grow, and RIS is expanding into a more diverse and mature field of study. This maturity was evident in this meeting both in the basic science and understanding of RIS processes and in the number of new and improved applications and techniques. The application of RIS techniques to molecular detection problems made remarkable progress since the last meeting two years ago. Subtle effects pertaining to isotopic discrimination received more theoretical attention, and there now seems to be good understanding of these effects, which can lead to correction procedures and/or methods to avoid isotopic effects. RIS applications were presented in which significant, real world problems were addressed, demonstrating its capability to solve problems that previously could not be accurately solved by other more traditional techniques. The contributions to the conference are grouped under the following major topic headings: physics applications of rare atoms; laser ionization mechanisms - spectroscopy; atomic, molecular and ion sources; molecular RIS; atomic RIS - Rydberg states; environmental trace analysis; biological and medical applications; state selected chemistry; new laser sources and techniques; ultra-high resolution and isotopic selectivity; surface and bulk analysis. (Author)

  17. Transverse electron resonance accelerator

    Osonka, P.L.

    1985-01-01

    Transverse (to the velocity, v-bar, of the particles to be accelerated) electron oscillations are generated in high (e.g. solid) density plasms by either an electromagnetic wave or by the field of charged particles traveling parallel to v-bar. The generating field oscillates with frequency ω = ω/sub p/, where ω/sub p/ is the plasma frequency. The plasma is confined to a sequence of microstructures with typical dimensions of d≅2πc/ω/sub p/, allowing the generating fields to penetrate. Since ω/sub p/ is now high, the time scales, T, are correspondingly reduced. The microstructures are allowed to explode after t = T, until then they are confined by ion inertia. As a result of resonance, the electric field, E, inside the microstructures can exceed the generating field E/sub L/. The generating force is proportional to E/sub L/ (as opposed to E 2 /sub L/). Phase matching of particles is possible by appropriate spacing of the microstructures or by a gas medium. The generating beam travels outside the plasma, filamentation is not a problem. The mechanism is relatively insensitive to the exact shape and position of the microstructures. This device contains features of various earlier proposed acceleration mechanisms and may be considered as the limiting case of several of those for small d, T and high E

  18. Nucleon Resonance Physics

    Burkert, Volker D.

    2016-07-25

    Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and $\\Delta$ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger Equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of $Q^2 > 1.5GeV^2$. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.

  19. Transverse electron resonance accelerator

    Csonka, P.L.

    1985-01-01

    Transverse (to the velocity, v, of the particles to be accelerated) electron oscillations are generated in high (e.g. solid) density plasmas by either an electromagnetic wave or by the field of charged particles traveling parallel to v. The generating field oscillates with frequency ω = ω/sub p/, where ω/sub p/ is the plasma frequency. The plasma is confined to a sequence of microstructures with typical dimensions of d approx. = 2πc/ω/sub p/, allowing the generating fields to penetrate. Since ω/sub p/ is now high, the time scales, T, are correspondingly reduced. The microstructures are allowed to explode after t = T, until then they are confined by ion inertia. As a result of resonance, the electric field, E, inside the microstructures can exceed the generating field E/sub L/. The generating force is proportional to E/sub L/ (as opposed to E/sub L/ 2 ). Phase matching of particles is possible by appropriate spacing of the microstructures or by a gas medium. The generating beam travels outside the plasma, filamentation is not a problem. The mechanism is relatively insensitive to the exact shape and position of the microstructures. This device contains features of various earlier proposed acceleration mechanisms and may be considered as the limiting case of several of those for small d, T and high E

  20. Parallel magnetic resonance imaging

    Larkman, David J; Nunes, Rita G

    2007-01-01

    Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed. (invited topical review)

  1. Magnetic resonance imaging methodology

    Moser, Ewald; Stadlbauer, Andreas; Windischberger, Christian; Quick, Harald H.; Ladd, Mark E.

    2009-01-01

    Magnetic resonance (MR) methods are non-invasive techniques to provide detailed, multi-parametric information on human anatomy, function and metabolism. Sensitivity, specificity, spatial and temporal resolution may, however, vary depending on hardware (e.g., field strength, gradient strength and speed) and software (optimised measurement protocols and parameters for the various techniques). Furthermore, multi-modality imaging may enhance specificity to better characterise complex disease patterns. Positron emission tomography (PET) is an interesting, largely complementary modality, which might be combined with MR. Despite obvious advantages, combining these rather different physical methods may also pose challenging problems. At this early stage, it seems that PET quality may be preserved in the magnetic field and, if an adequate detector material is used for the PET, MR sensitivity should not be significantly degraded. Again, this may vary for the different MR techniques, whereby functional and metabolic MR is more susceptible than standard anatomical imaging. Here we provide a short introduction to MR basics and MR techniques, also discussing advantages, artefacts and problems when MR hardware and PET detectors are combined. In addition to references for more detailed descriptions of MR fundamentals and applications, we provide an early outlook on this novel and exciting multi-modality approach to PET/MR. (orig.)

  2. Magnetic resonance imaging. 1

    Wall, E.E. van der; Roos, A.A. de; Doornbos, J.; Dijkman, P.R.M. van; Matheijssen, N.A.A.; Laarse, A. van der; Krauss, X.H.; Blokland, J.A.k.; Manger Cats, V.; Voorthuisen, A.E. van; Bruschke, A.V.G.

    1991-01-01

    The cardiovascular applications of MRI in coronary artery disease have considerably increased in recent years. Although many applications overlap those of other more cost-effective techniques, such as echocardiography, radionuclide angiography, and CT, MRI offers unique features not shared by the conventional techniques. Technical advantages are the excellent spatial resolution, the characterization of myocardial tissue, and the potential for three-dimensional imaging. This allows the accurate assessment of left ventricular mass and volume, the differentiation of infarcted tissue from normal myocardial tissue, and the determination of systolic wall thickening and regional wall motion abnormalities. Also inducible myocardial ischemia using pharmacological stress (dipyramidole or dobutamine) may be assessed by magnetic resonance imaging. Future technical developments include real-time imaging and noninvasive visualization of the coronary arteries. These advantages will have a major impact on the application of MRI in coronary artery disease, potentially unsurpassed by other techniques and certainly justifying the expenses. Consequently, the clinical use of MRI for the detection of coronary artery disease largely depends on the progress of technical developments. (author). 134 refs.; 10 figs.; 2 tabs

  3. Current Status of CALENDF

    Sublet, J.Ch.; Ribon, P.

    2006-01-01

    CALENDF-2005 represents a Fortran-95 update of the 1994, 2002 code distributions with emphasize on programming quality and standard, physics and usage improvements. The code is used to convert the evaluation defining the cross section in Endf format, the pointwise cross sections and the resonance parameters, both resolved and unresolved, into forms useful for applications. Devised to process multigroup cross-sections the forms used to describe neutron cross section fluctuations correspond to 'cross section probability tables', based on Gauss quadratures mathematical principle and strength, and effective cross section. The followings processes can be handled by the code: moment probability tables and effective cross-sections calculation; regroups pointwise cross sections, probability tables and effective cross-sections; probability table condensation; probability table mix for several isotopes; probability table interpolation; effective cross section based probability table calculations; probability table calculations from effective cross-sections; cross-section comparison, complete energies pointwise cross-section processing and thickness dependant averaged transmission sample calculation. The different probabilities table forms and usages will be exemplified. (authors)

  4. Efficient primary and parametric resonance excitation of bistable resonators

    Ramini, Abdallah; Alcheikh, Nouha; Ilyas, Saad; Younis, Mohammad I.

    2016-01-01

    efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting

  5. Superresolution Imaging Using Resonant Multiples

    Guo, Bowen

    2017-12-22

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  6. Advances in magnetic resonance 9

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 9 describes the magnetic resonance in split constants and dipolar relaxation. This book discusses the temperature-dependent splitting constants in the ESR spectra of organic free radicals; temperature-dependent splittings in ion pairs; and magnetic resonance induced by electrons. The electron impact excitation of atoms and molecules; intramolecular dipolar relaxation in multi-spin systems; and dipolar cross-correlation problem are also elaborated. This text likewise covers the NMR studies of molecules oriented in thermotropic liquid crystals and diffusion

  7. The Resonance Integral of Gold

    Jirlow, K; Johansson, E

    1959-04-15

    The resonance activation integral of gold has been determined, by means of cadmium ratio measurements of thin foils in a neutron beam. Comparison was made with a 1/v detector, and the neutron spectra were measured with a chopper. The resonance integral, RI, is defined as {integral}{sub 0.5}{sup {infinity}}{sigma}{sub r}(E)dE/E, where {sigma}{sub r}(E) is the differenc between the total absorption cross section and the 1/v part. An experimental value of 1490 {+-} 40 barns has been obtained. RI has also been computed from resonance parameter data with the result 1529 {+-} 70 barns.

  8. Advances in magnetic resonance 1

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 1, discusses developments in various areas of magnetic resonance. The subject matter ranges from original theoretical contributions through syntheses of points of view toward series of phenomena to critical and painstaking tabulations of experimental data. The book contains six chapters and begins with a discussion of the theory of relaxation processes. This is followed by separate chapters on the development of magnetic resonance techniques for studying rate processes in chemistry and the application of these techniques to various problems; the geometri

  9. Hadron excitation of giant resonances

    Morsch, H.-P.

    1985-01-01

    A review is given on giant resonance studies in heavy nuclei using scattering of different hadronic probes. Concerning isoscalar giant resonances compression modes are discussed with the possibility to obtain more detailed structure information. From detailed studies of α scattering the distribution of isoscalar strengths of multipolarity up to L=6 was obtained. Some recent aspects of heavy ion excitation of collective modes are mentioned. The possibility to study isovector giant resonances in hadron charge exchange reactions is discussed. Finally, a comparison is made between α and 200 MeV proton scattering from which isoscalar and spin-isospin continuum response are extracted. (orig.)

  10. Statistical decay of giant resonances

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-01-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the resutls on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monople giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excelent agreement with recent experimental data, showing that the decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  11. Statistical decay of giant resonances

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-02-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the results on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monopole giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excellent agreement with recent experimental data, showing that decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  12. Superresolution Imaging Using Resonant Multiples

    Guo, Bowen; Schuster, Gerard T.

    2017-01-01

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  13. Resonance self-shielding methodology of new neutron transport code STREAM

    Choi, Sooyoung; Lee, Hyunsuk; Lee, Deokjung; Hong, Ser Gi

    2015-01-01

    This paper reports on the development and verification of three new resonance self-shielding methods. The verifications were performed using the new neutron transport code, STREAM. The new methodologies encompass the extension of energy range for resonance treatment, the development of optimum rational approximation, and the application of resonance treatment to isotopes in the cladding region. (1) The extended resonance energy range treatment has been developed to treat the resonances below 4 eV of three resonance isotopes and shows significant improvements in the accuracy of effective cross sections (XSs) in that energy range. (2) The optimum rational approximation can eliminate the geometric limitations of the conventional approach of equivalence theory and can also improve the accuracy of fuel escape probability. (3) The cladding resonance treatment method makes it possible to treat resonances in cladding material which have not been treated explicitly in the conventional methods. These three new methods have been implemented in the new lattice physics code STREAM and the improvement in the accuracy of effective XSs is demonstrated through detailed verification calculations. (author)

  14. Multiband discrete ordinates method: formalism and results

    Luneville, L.

    1998-06-01

    The multigroup discrete ordinates method is a classical way to solve transport equation (Boltzmann) for neutral particles. Self-shielding effects are not correctly treated due to large variations of cross sections in a group (in the resonance range). To treat the resonance domain, the multiband method is introduced. The main idea is to divide the cross section domain into bands. We obtain the multiband parameters using the moment method; the code CALENDF provides probability tables for these parameters. We present our implementation in an existing discrete ordinates code: SN1D. We study deep penetration benchmarks and show the improvement of the method in the treatment of self-shielding effects. (author)

  15. Laparoscopic surgery for chronic groin pain in athletes is more effective than nonoperative treatment: a randomized clinical trial with magnetic resonance imaging of 60 patients with sportsman's hernia (athletic pubalgia).

    Paajanen, Hannu; Brinck, Tuomas; Hermunen, Heikki; Airo, Ilari

    2011-07-01

    Chronic groin pain in athletes presents often a diagnostic and therapeutic challenge. Sportsman's hernia (also called "athletic pubalgia") is a deficiency of the posterior wall of the inguinal canal, which is often repaired by laparoscopic mesh placement. Endoscopic mesh repair may offer a faster recovery for athletes with sportsman's hernia than nonoperative therapy. A randomized, prospective study was conducted on 60 patients with a diagnosis of chronic groin pain and suspected sportsman's hernia. Clinical data and MRI were collected on all patients. After 3 to 6 months of groin symptoms, the patients were randomized into an operative or a physiotherapy group (n = 30 patients in each group). Operation was performed using a totally extraperitoneal repair in which mesh was placed behind the symphysis and painful groin area. Conservative treatment included at least 2 months of active physiotherapy, including corticosteroid injections and oral anti-inflammatory analgesics. The outcome measures were pre- and postoperative pain using a visual analogue scale and partial or full recovery to sports activity at 1, 3, 6, and 12 months after randomization. The athletes in both treatment groups had similar characteristics and pain scores. Operative repair was more effective than nonoperative treatment to decrease chronic groin pain after 1 month and up to 12 months of follow-up (P pubalgia). Copyright © 2011 Mosby, Inc. All rights reserved.

  16. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  17. Resonance interference method in lattice physics code stream

    Choi, Sooyoung; Khassenov, Azamat; Lee, Deokjung

    2015-01-01

    Newly developed resonance interference model is implemented in the lattice physics code STREAM, and the model shows a significant improvement in computing accurate eigenvalues. Equivalence theory is widely used in production calculations to generate the effective multigroup (MG) cross-sections (XS) for commercial reactors. Although a lot of methods have been developed to enhance the accuracy in computing effective XSs, the current resonance treatment methods still do not have a clear resonance interference model. The conventional resonance interference model simply adds the absorption XSs of resonance isotopes to the background XS. However, the conventional models show non-negligible errors in computing effective XSs and eigenvalues. In this paper, a resonance interference factor (RIF) library method is proposed. This method interpolates the RIFs in a pre-generated RIF library and corrects the effective XS, rather than solving the time consuming slowing down calculation. The RIF library method is verified for homogeneous and heterogeneous problems. The verification results using the proposed method show significant improvements of accuracy in treating the interference effect. (author)

  18. On Analytic Solution of resonant Mixing for Solar Neutrino Oscillations

    Masatoshi, ITO; Takao, KANEKO; Masami, NAKAGAWA; Department of Physics, Meijo University; Department of Physics, Meijo University; Department of Physics, Meijo University

    1988-01-01

    Behavior of resonant mixing in matter-enhancing region for solar neutrino oscillation, the Mikheyev-Smirnov-Wolfenstein mechanism, is reanalyzed by means of an analytic treatment recently proposed. We give solutions in terms of confluent hypergeometric functions, which agree with "exact" solutions of coupled differential equations.

  19. Surface Plasmon Resonance Biosensor

    Nina GRIDINA

    2013-02-01

    Full Text Available Performed in this paper is numerical modeling of the angular dependence for light reflectivity R(F in surface plasmon-polariton resonance (SPR realized in Kretschmann geometry when studying the interface gold/suspension of spherical particles (cells in the assumption that the dielectric permittivity of particles suspension is described by the theory of effective medium. It has been shown that availability of suspended particles in solution inevitably results in appearance of an intermediate layer with the ε gradient between gold surface and suspension bulk, as a result of which the SPR angle shifts to lower values. Near the critical angle, the first derivative dR/dF demonstrates a clearly pronounced peak, which allows determining the value for suspension bulk and the gradient in the intermediate layer. Obtained in our experiments were SPR curves for two suspensions of erythrocytes – the dense one (erythrocyte mass after centrifuging and loose solution (whole blood. In the case of erythrocyte mass, fitting the experimental and calculated curves enabled us to quantitatively determine the bulk value for this erythrocyte mass (εb =1.96, thickness of the intermediate layer dm (300…400 nm and gradient in the intermediate layer. On the contrary, the SPR curve for whole blood appeared to be close to that of pure plasma. This fact allows only estimation of the thickness dm~2000...3000 nm as well as minimum ε value in the intermediate layer, which is close to that of plasma (ε = 1.79. Also, discussed is the mechanism of influence of the cell shape near the gold surface on the SPR effect.

  20. Ion cyclotron resonance heating

    Tajima, T.

    1982-01-01

    Ion cyclotron resonance heating of plasmas in tokamak and EBT configurations has been studied using 1-2/2 and 2-1/2 dimensional fully self-consistent electromagnetic particle codes. We have tested two major antenna configurations; we have also compared heating efficiencies for one and two ion species plasmas. We model a tokamak plasma with a uniform poloidal field and 1/R toroidal field on a particular q surface. Ion cyclotron waves are excited on the low field side by antennas parallel either to the poloidal direction or to the toroidal direction with different phase velocities. In 2D, minority ion heating (vsub(perpendicular)) and electron heating (vsub(parallel),vsub(perpendicular)) are observed. The exponential electron heating seems due to the decay instability. The minority heating is consistent with mode conversion of fast Alfven waves and heating by electrostatic ion cyclotron modes. Minority heating is stronger with a poloidal antenna. The strong electron heating is accompanied by toroidal current generation. In 1D, no thermal instability was observed and only strong minority heating resulted. For an EBT plasma we model it by a multiple mirror. We have tested heating efficiency with various minority concentrations, temperatures, mirror ratios, and phase velocities. In this geometry we have beach or inverse beach heating associated with the mode conversion layer perpendicular to the toroidal field. No appreciable electron heating is observed. Heating of ions is linear in time. For both tokamak and EBT slight majority heating above the collisional rate is observed due to the second harmonic heating. (author)

  1. Nested trampoline resonators for optomechanics

    Weaver, M. J., E-mail: mweaver@physics.ucsb.edu; Pepper, B.; Luna, F.; Perock, B. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de [Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands); Bouwmeester, D. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands)

    2016-01-18

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si{sub 3}N{sub 4} with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  2. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no ... Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. ...

  3. Dipole Resonances of 76Ge

    Ilieva, R. S.; Cooper, N.; Werner, V.; Rusev, G.; Pietralla, N.; Kelly, J. H.; Tornow, W.; Yates, S. W.; Crider, B. P.; Peters, E.

    2013-10-01

    Dipole resonances in 76Ge have been studied using the method of Nuclear Resonance Fluorescence (NRF). The experiment was performed using the Free Electron Laser facility at HI γS/TUNL, which produced linearly polarised quasi-monoenergetic photons in the 4-9 MeV energy range. Photon strength, in particular dipole strength, is an important ingredient in nuclear reaction calculations, and recent interest in its study has been stimulated by observations of a pygmy dipole resonance near the neutron separation energy Sn of certain nuclei. Furthermore, 76Ge is a candidate for 0 ν 2 β -decay. The results are complimentary to a relevant experiment done at TU Darmstadt using Bremsstrahlung beams. Single-resonance parities and a preliminary estimate of the total photo-excitation cross section will be presented. This work was supported by the U.S. DOE under grant no. DE-FG02-91ER40609.

  4. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... are the limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging ( ... brain) in routine clinical practice. top of page What are some common uses of the procedure? MR ...

  5. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary ... story about radiology? Share your patient story here Images × Image Gallery Radiologist prepping patient for magnetic resonance ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary ... story about radiology? Share your patient story here Images × Image Gallery Magnetic Resonance Imaging (MRI) procedure View ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  8. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  9. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... immediately after the exam. A few patients experience side effects from the contrast material, including nausea and local ... Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic ...

  10. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... magnetic resonance imaging (MRI) uses a powerful magnetic field, radio waves and a computer to produce detailed ... problems, medications, recent surgeries and allergies. The magnetic field is not harmful, but it may cause some ...

  11. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... or thyroid problems. Any of these conditions may influence the decision on whether contrast material will be ... bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ...

  12. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... it is useful to bring that to the attention of the technologist or scheduler before the exam. ... patient for magnetic resonance imaging (MRI) exam. View full size with caption Pediatric Content Some imaging tests ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... it is useful to bring that to the attention of the scheduler before the exam and bring ... Image Gallery Magnetic Resonance Imaging (MRI) procedure View full size with caption Pediatric Content Some imaging tests ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... necessary in trauma situations. Although there is no reason to believe that magnetic resonance imaging harms the ...

  15. Magnetic resonance imaging the basics

    Constantinides, Christakis

    2014-01-01

    Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction and provides a detailed explanation of the mathematical formulation of MRI. Numerous image quantitative indices are discussed, including (among others) signal, noise, signal-to-noise, contrast, and resolution. The second part of the book examines the hardware and electronics of an MRI scanner and the typical measurements and simulations of m...

  16. Ion Cyclotron Resonance Facility (ICR)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  17. Nested trampoline resonators for optomechanics

    Weaver, M. J.; Pepper, B.; Luna, F.; Perock, B.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si 3 N 4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators

  18. Nested trampoline resonators for optomechanics

    Weaver, M. J.; Pepper, B.; Luna, F.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Perock, B.; Heeck, K.; de Man, S.; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si3N4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  19. Narrow n anti n resonances

    Bogdanova, L.N.; Dalkarov, O.D.; Kerbikov, B.O.; Shapiro, I.S.

    1975-01-01

    The present status of the problem of quasinuclear states in systems of nucleons and antinucleons is reviewed. The theoretical predictions are compared with experimental data on narrow meson resonances near N anti N threshold which appeared in 1971-74

  20. Children's (Pediatric) Magnetic Resonance Imaging

    Full Text Available ... Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic ... the possible charges you will incur. Web page review process: This Web page is reviewed regularly by ...

  1. Resonance detection of Moessbauer radiation

    Morozov, V.V.

    1985-01-01

    The resonance detection method as compared with the usual method of registering Moessbauer spectra has a number of advantages, one of which is the increase of resolution of the Moessbauer spectrum. The method is based on the modulation of a secondary radiation of a converter tuned in the resonance with the Moessbauer gamma-quantum source. The resonance detection method with account of supression, secondary radiation outgoing from the converter is investigated. The converter represents a substrate enriched by the Moessbauer isotope placed either inside the gas counter, or coupled with any other detecting device. Analytical expressions for Moessbauer spectrum parameters: effect, area and width of the spectral line are derived. It is shown that the joint application of usual and resonance detection methods for registering the Moessbauer spectrum allows one to determine parameters of the source, converter and the investigated absorber

  2. Triplet State Resonance Raman Spectroscopy

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1978-01-01

    Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied......Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied...

  3. Magnetic Resonance Imaging. Chapter 15

    Leach, M. O. [The Institute of Cancer Research and The Royal Marsden Hospital, London (United Kingdom)

    2014-09-15

    In Chapter 14, the principles of nuclear magnetic resonance were presented, along with an introduction to image forming processes. In this chapter, magnetic resonance imaging (MRI) will be reviewed, beginning with the hardware needed and its impact on image quality. The acquisition processes and image reconstruction will be discussed, as well as the artefacts that are possible, with discussion of the important area of safety and bioeffects completing the chapter.

  4. The nuclear magnetic resonance spectroscopy

    Goyer, Ph.

    1997-01-01

    The spectroscopy of nuclear magnetic resonance constitutes a major analytical technique in biological and organic analysis. This technique appears now in the programme of preparatory classes and its teaching is developed in the second year of DEUG. The following article reviews on the nuclear magnetic resonance and on the possibilities it offers to bring to the fore the physico-chemical properties of molecules. (N.C.)

  5. Resonant Impulsive Stimulated Raman Scattering

    Mokhtari, A; Chesnoy, J

    1988-03-15

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.

  6. Hadronic resonances at FAIR energies

    Vogel, Sascha

    2013-01-01

    These proceedings cover the analysis of hadronic resonances in heavy ion collisions. The model used for these studies is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model. The model will be briefly explained, resonance observables will be highlighted and various kinematical issues will be investigated. Special emphasis will be put on the FAIR energy regime, especially highlighting the Compressed Baryonic Matter (CBM) program.

  7. Resonant Impulsive Stimulated Raman Scattering

    Mokhtari, A.; Chesnoy, J.

    1988-01-01

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution

  8. Memory effects on stochastic resonance

    Neiman, Alexander; Sung, Wokyung

    1996-02-01

    We study the phenomenon of stochastic resonance (SR) in a bistable system with internal colored noise. In this situation the system possesses time-dependent memory friction connected with noise via the fluctuation-dissipation theorem, so that in the absence of periodic driving the system approaches the thermodynamic equilibrium state. For this non-Markovian case we find that memory usually suppresses stochastic resonance. However, for a large memory time SR can be enhanced by the memory.

  9. Magnetic Resonance Imaging of Liver Metastasis.

    Karaosmanoglu, Ali Devrim; Onur, Mehmet Ruhi; Ozmen, Mustafa Nasuh; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver magnetic resonance imaging (MRI) is becoming the gold standard in liver metastasis detection and treatment response assessment. The most sensitive magnetic resonance sequences are diffusion-weighted images and hepatobiliary phase images after Gd-EOB-DTPA. Peripheral ring enhancement, diffusion restriction, and hypointensity on hepatobiliary phase images are hallmarks of liver metastases. In patients with normal ultrasonography, computed tomography (CT), and positron emission tomography (PET)-CT findings and high clinical suspicion of metastasis, MRI should be performed for diagnosis of unseen metastasis. In melanoma, colon cancer, and neuroendocrine tumor metastases, MRI allows confident diagnosis of treatment-related changes in liver and enables differential diagnosis from primary liver tumors. Focal nodular hyperplasia-like nodules in patients who received platinum-based chemotherapy, hypersteatosis, and focal fat can mimic metastasis. In cancer patients with fatty liver, MRI should be preferred to CT. Although the first-line imaging for metastases is CT, MRI can be used as a problem-solving method. MRI may be used as the first-line method in patients who would undergo curative surgery or metastatectomy. Current limitation of MRI is low sensitivity for metastasis smaller than 3mm. MRI fingerprinting, glucoCEST MRI, and PET-MRI may allow simpler and more sensitive diagnosis of liver metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Magnetic Resonance Imaging Evaluation of Cardiac Masses

    Braggion-Santos, Maria Fernanda; Koenigkam-Santos, Marcel; Teixeira, Sara Reis; Volpe, Gustavo Jardim; Trad, Henrique Simão; Schmidt, André

    2013-01-01

    Cardiac tumors are extremely rare; however, when there is clinical suspicion, proper diagnostic evaluation is necessary to plan the most appropriate treatment. In this context, cardiovascular magnetic resonance imaging (CMRI) plays an important role, allowing a comprehensive characterization of such lesions. To review cases referred to a CMRI Department for investigation of cardiac and paracardiac masses. To describe the positive case series with a brief review of the literature for each type of lesion and the role of cardiovascular magnetic resonance imaging in evaluation. Between August 2008 and December 2011, all cases referred for CMRI with suspicion of tumor involving the heart were reviewed. Cases with positive histopathological diagnosis, clinical evolution or therapeutic response compatible with the clinical suspicion and imaging findings were selected. Among the 13 cases included in our study, eight (62%) had histopathological confirmation. We describe five benign tumors (myxomas, rhabdomyoma and fibromas), five malignancies (sarcoma, lymphoma, Richter syndrome involving the heart and metastatic disease) and three non-neoplastic lesions (pericardial cyst, intracardiac thrombus and infectious vegetation). CMRI plays an important role in the evaluation of cardiac masses of non-neoplastic and neoplastic origin, contributing to a more accurate diagnosis in a noninvasive manner and assisting in treatment planning, allowing safe clinical follow-up with good reproducibility

  11. Valuation for magnetic resonance of neuro tuberculosis

    Bolivar c, Guillermo; Delgado, Jorge A; Toro Nancy

    1997-01-01

    The increased incidence of neuro tuberculosis (NTB), due to the world epidemic of resistant strains and AIDS, has made of magnetic resonance (MR) imaging the study of choice for the early detection of lesions that lead the clinicians to an effective treatment. We present our experience with six cases of NTB, with meningoencephalic (4 cases), spinal, (1 case) and epidural (1 case) involvement. We identified basal arachnoiditis that was also seen on CT. Two cases demonstrated non-classifying tuberculomas, the spinal lesion consisted of casseifying tuberculoma that responded to treatment and disappeared on a follow up MR study. Epidural involvement consisted of Pott's disease with displacement and edema of the spinal cord. The differential diagnosis of these lesions includes mycoses, cysticercosis, sarcoidosis and leptomeningeal metastases

  12. Micro-machined resonator oscillator

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  13. Fourier transform nuclear magnetic resonance

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  14. Treatment of subclinical hyperthyroidism

    Mark, Peter D; Andreassen, Mikkel; Petersen, Claus L

    2015-01-01

    PURPOSE: The aim of this study was to investigate structure and function of the heart in subclinical hyperthyroidism (SH) before and after obtaining euthyroidism by radioactive iodine treatment, using high precision and observer-independent magnetic resonance imaging (MRI) technology. METHODS...

  15. Symmetry and resonance in Hamiltonian systems

    Tuwankotta, J.M.; Verhulst, F.

    2000-01-01

    In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After giving a sharp estimate of the resonance domain, we

  16. Symmetry and resonance in Hamiltonian systems

    Tuwankotta, J.M.; Verhulst, F.

    1999-01-01

    In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After determining the size of the resonance domain, we

  17. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging

    Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both...

  18. Microelectromechanical resonator and method for fabrication

    Wittwer, Jonathan W [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2009-11-10

    A method is disclosed for the robust fabrication of a microelectromechanical (MEM) resonator. In this method, a pattern of holes is formed in the resonator mass with the position, size and number of holes in the pattern being optimized to minimize an uncertainty .DELTA.f in the resonant frequency f.sub.0 of the MEM resonator due to manufacturing process variations (e.g. edge bias). A number of different types of MEM resonators are disclosed which can be formed using this method, including capacitively transduced Lame, wineglass and extensional resonators, and piezoelectric length-extensional resonators.

  19. Unusual Presentation of Popliteal Cyst on Magnetic Resonance Imaging

    Tsuyoshi Ohishi

    2016-01-01

    Full Text Available Popliteal cyst commonly presents as an ellipsoid mass with uniform low signal intensity on T1-weighted magnetic resonance images and high signal intensity on T2-weighted images. Here, we describe a popliteal cyst with unusual appearance on magnetic resonance imaging, including heterogeneous intermediate signal intensity on T2-weighted images. Arthroscopic cyst decompression revealed that the cyst was filled with necrotic synovial villi, indicative of rheumatoid arthritis. Arthroscopic enlargement of unidirectional valvular slits with synovectomy was useful for the final diagnosis and treatment.

  20. Transmission Line Resonator Segmented with Series Capacitors

    Zhurbenko, Vitaliy; Boer, Vincent; Petersen, Esben Thade

    2016-01-01

    Transmission line resonators are often used as coils in high field MRI. Due to distributed nature of such resonators, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the resonator. The equations for optimal...... values of evenly distributed capacitors are presented. The performances of the segmented resonator and a regular transmission line resonator are compared....

  1. Highly Tunable Electrostatic Nanomechanical Resonators

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  2. Magnetic resonance and porous materials

    McDonald, P.; Strange, J.

    1998-01-01

    Mention the words magnetic resonance to your medical advisor and he or she will immediately think of a multi-million pound scanner that peers deep into the brain. A chemist, on the other hand, will imagine a machine that costs several hundred thousand pounds and produces high-resolution spectra for chemical analysis. Food technologists will probably think of a bench-top instrument for determining moisture content, while an oil prospector will envisage a device that can be operated several kilometres down an oil well. To a physicist the term is more likely to conjure up a mental picture of nuclear spins precessing in a magnetic field. These examples illustrate the diverse aspects of a phenomenon discovered by physicists over 50 years ago. Electron spin resonance was first discovered by Russian scientists, and nuclear magnetic resonance was discovered in the US shortly afterwards by Ed Purcell at Harvard University and Felix Bloch at Stanford University. Today, nuclear magnetic resonance (NMR) is the most widely used technique. Modern NMR machines are making it possible to probe microstructure and molecular movement in materials as diverse as polymers, cements, rocks, soil and foods. NMR allows the distribution of different components in a material to be determined with a resolution approaching 1μm, although the signal can be sensitive to even smaller lengthscales. In this article the authors describe how physicists are still developing magnetic resonance to exploit a range of new applications. (UK)

  3. Nonlinear Dynamics of Nanomechanical Resonators

    Ramakrishnan, Subramanian; Gulak, Yuiry; Sundaram, Bala; Benaroya, Haym

    2007-03-01

    Nanoelectromechanical systems (NEMS) offer great promise for many applications including motion and mass sensing. Recent experimental results suggest the importance of nonlinear effects in NEMS, an issue which has not been addressed fully in theory. We report on a nonlinear extension of a recent analytical model by Armour et al [1] for the dynamics of a single-electron transistor (SET) coupled to a nanomechanical resonator. We consider the nonlinear resonator motion in both (a) the Duffing and (b) nonlinear pendulum regimes. The corresponding master equations are derived and solved numerically and we consider moment approximations as well. In the Duffing case with hardening stiffness, we observe that the resonator is damped by the SET at a significantly higher rate. In the cases of softening stiffness and the pendulum, there exist regimes where the SET adds energy to the resonator. To our knowledge, this is the first instance of a single model displaying both negative and positive resonator damping in different dynamical regimes. The implications of the results for SET sensitivity as well as for, as yet unexplained, experimental results will be discussed. 1. Armour et al. Phys.Rev.B (69) 125313 (2004).

  4. Space charge in nanostructure resonances

    Price, Peter J.

    1996-10-01

    In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.

  5. Highly Tunable Electrostatic Nanomechanical Resonators

    Kazmi, Syed Naveed Riaz; Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  6. Pattern formation in optical resonators

    Weiss, C O; Larionova, Ye

    2007-01-01

    We review pattern formation in optical resonators. The emphasis is on 'particle-like' structures such as vortices or spatial solitons. On the one hand, similarities impose themselves with other fields of physics (condensed matter, phase transitions, particle physics, fluds/super fluids). On the other hand the feedback is led by the resonator mirrors to bi- and multi-stability of the spatial field structure, which is the basic ingredient for optical information processing. The spatial dimension or the 'parallelism' is the strength of optics compared to electronics (and will have to be employed to fully use the advantages optics offers in information processing). But even in the 'serial' processing tasks of telecoms (e.g. information buffering) spatial resonator solitons can do better than the schemes proposed so far-including 'slow light'. Pattern formation in optical resonators will likely be the key to brain-like information processing like cognition, learning and association; to complement the precise but limited algorithmic capabilities of electronic processing. But even in the short term it will be useful for solving serial optical processing problems. The prospects for technical uses of pattern formation in resonators are one motivation for this research. The fundamental similarities with other fields of physics, on the other hand, inspire transfer of concepts between fields; something that has always proven fruitful for gaining deeper insights or for solving technical problems

  7. Resonant scattering induced thermopower in one-dimensional disordered systems

    Müller, Daniel; Smit, Wilbert J.; Sigrist, Manfred

    2015-05-01

    This study analyzes thermoelectric properties of a one-dimensional random conductor which shows localization effects and simultaneously includes resonant scatterers yielding sharp conductance resonances. These sharp features give rise to a distinct behavior of the Seebeck coefficient in finite systems and incorporate the degree of localization as a means to enhance thermoelectric performance, in principle. The model for noninteracting electrons is discussed within the Landauer-Büttiker formalism such that analytical treatment is possible for a wide range of properties, if a special averaging scheme is applied. The approximations in the averaging procedure are tested with numerical evaluations showing good qualitative agreement, with some limited quantitative disagreement. The validity of low-temperature Mott's formula is determined and a good approximation is developed for the intermediate temperature range. In both regimes the intricate interplay between Anderson localization due to disorder and conductance resonances of the disorder potential is analyzed.

  8. Parametric Resonance in the Early Universe - A Fitting Analysis

    Figueroa, Daniel G.

    2017-02-01

    Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in $3+1$ dimensions, we parametrise the dynamics' outcome scanning over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasise the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequ...

  9. Characterization of human breast disease using phosphorus magnetic resonance spectroscopy and proton magnetic resonance imaging

    Merchant, T.E.

    1992-01-01

    This thesis provides the fundamental characterization and differentiation of breast tissues using in vivo and ex vivo MR techniques in the hope that these techniques and experimental findings will be used on a larger scale and in a predictive manner in order to improve the specificity of diagnosis and treatment of breast cancer. In this dissertation, clinical studies were performed using proton magnetic resonance imaging and phosphorus magnetic resonance spectro-scopy ( 31 P MRS) to characterize and differentiate malignant breast tumors, benign breast tumors and normal breast tissues in vivo. These studies were carried out following the methodical characterization of chemical extracts of malignant breast tumor, benign breast tumor and normal breast parenchymal surgical tissue specimens using high resolution 31 P MRS. Alterations in breast tissue metabolism, as a result of pathological processes, were postulated to be responsible for measurable differences between malignant breast tumors, benign breast tumors and normal breast tissues using magnetic resonance techniques. (author). 365 refs.; 37 figs.; 25 tabs

  10. Nuclear level mixing resonance spectroscopy

    Coussement, R.; Put, P.; Scheveneels, G.; Hardeman, F.

    1985-01-01

    The existent methods for measuring quadrupole interactions are not suited to nuclei with lifetimes in the micro-seconds to minutes region. AD/NQR, a possible candidate in this lifetime gap, has not yet succeeded in overcoming its predicted difficulties. A new resonant method, recently developed and based on the principles of level mixing (cfr atomic spectroscopy) covers this less accessible lifetime range. Many other kinds of resonances can be described according to the level mixing formalism. The particular example of NMR as a level mixing resonance (LMR) is discussed. The underlying theory of LMR and its important consequences, leading to some interesting features of the method, is briefly formulated. Two successfully performed measurements demonstrate the feasibility and the predicted characteristics of this new promising method. (orig.)

  11. Optical resonators and neural networks

    Anderson, Dana Z.

    1986-08-01

    It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.

  12. Nuclear magnetic resonance diagnostic apparatus

    Sugimoto, H.

    1985-01-01

    Nuclear magnetic resonance diagnostic apparatus including a coil for generating a gradient field in a plane perpendicular to a static magnetic field, means for controlling the operation of the coil to rotationally shift in angular steps the gradient direction of the gradient field at an angle pitch of some multiple of the unit index angle through a plurality of rotations to assume all the shift positions of the gradient direction, a rough image reconstructor for reconstructing a rough tomographic image on the basis of nuclear magnetic resonance signals acquired during a rotation of the second gradient magnetic field, a rough image display for depicting the rough tomographic image, a final image reconstructor for reconstructing a final tomographic image on the basis of all nuclear magnetic resonance signals corresponding to all of the expected rotation shift positions acquired during a plurality of rotations and a final image display for depicting the final tomographic image

  13. Resonance Ionization Laser Ion Sources

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  14. Gadolinium-enhanced magnetic resonance imaging in acute myocardial infarction

    Dijkman, P.R.M. van; Wall, E.E. van der; Roos, A. de; Doornbos, J.; Laarse, A. van der; Voorthuisen, A.E. van; Bruschke, A.V.G.; Rossum, A.C. van

    1990-01-01

    To evaluate he usefulness of the paramagnetic contrast agent Gadolinium-DTPA (diethylenetriaminepentaacetic acid) in Magnetic Resonance. Imaging of acute myocardial infarction, we studied a total of 45 patients with a first acute myocardial infarction by ECG-gated magnetic resonance imaging before and after intravenous administration of 0.1 mmol/kg Gadolinium-DTPA. All patients received thrombolytic treatment by intravenous streptokinase. The magnetic resonance imaging studies were preformed after a meam of 88 h (range 15-241) after the acute onset of acute myocardial infarction. Five patients without evidence of cardiac disease served as controls. Spin-echo measurements (TE 30 ms) were made using a Philips Gyroscan (0.5 Tesla) or a Teslacon II (0.6 Tesla). The 45 patients were divided into four groups of patients. In Group I( patients) Gadolinium-DTPA improved the detection of myocardial infarction by Gadolinium-DTPA. In Group II (20 patients) the magnetic resonance imaging procedure was repeated every 10 min for up to 40 min following administration of Gadolinium-DTPA. Optimal contrast enhancement was obtained 20-25 min after Gadolinium-DTPA. In Group III (27 patients) signal intensities were significantly higher in the patients who underwent the magnetic resonance imaging study more than 72 h (mean 120) after the acute event, suggesting increased acculumation of Gadolinium-DTPA in a more advanced stage of the infarction process. In Group IV (45 patients) Gadolinium-DTPA was administered in an attempt to distinguish between reperfused and nonreperfused myocardial areas after thrombolytic treatment for acute myocardial infarction. The signal intensities did not differ, but reperfused areas showed a more homogeneous aspect whereas nonreperfused areas were visualized as a more heterogeneous contrast enhancement. It is concluded that magnetic resonance imaging using the contrast agent Gadolinium-DTPA significantly improves the detection of infarcted myocardial areas

  15. Nanoelectromechanical resonator for logic operations

    Kazmi, Syed N. R.

    2017-08-29

    We report an electro-thermally tunable in-plane doubly-clamped nanoelectromechanical resonator capable of dynamically performing NOR, NOT, XNOR, XOR, and AND logic operations. Toward this, a silicon based resonator is fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer of a silicon-on-insulator (SOI) wafer. The performance of this logic device is examined at elevated temperatures, ranging from 25 °C to 85 °C, demonstrating its resilience for most of the logic operations; thereby paving the way towards nano-elements-based mechanical computing.

  16. The Resonance Integral of Niobium

    Hellstrand, E; Lundgren, G

    1962-08-15

    The resonance integral of niobium has been studied by both pile oscillator and activation techniques. A value of 8.15b {+-} 0.65 b was obtained for the infinitely dilute integral. In addition, the variation of the resonance integral with foil thickness has been measured for thicknesses in the range 0.06 mm to 1.36 mm. A separate study of the half-life of the isomeric state in {sup 94}Nb yielded a value T{sub 1/2} = 6.30 - 0.03 m which is about 5 % lower than the value given in literature.

  17. Recommendations concerning magnetic resonance spectroscopy

    1986-01-01

    In medicine the technique of nuclear magnetic resonance (NMR) is applied in the form of in vivo nuclear magnetic resonance spectroscopy (MRS). In vivo MRS can be carried out non-invasively. The committee of the Dutch Health Council briefly discusses the qualities and potentialities of the nuclei that will probably be used in future clinical spectroscopy: 31 P, 13 C, 1 H (and possibly 19 F and 23 Na). The committee discusses several possibilities of combining imaging and spectroscopy. The imaging of nuclei other than protons is also possible with MRS. Potential applications are considered in oncology, cardiology, neurology and hepatology. (Auth.)

  18. Inelastic scattering in resonant tunneling

    Wingreen, Ned S.; Jacobsen, Karsten Wedel; Wilkins, John W.

    1989-01-01

    The exact resonant-tunneling transmission probability for an electron interacting with phonons is presented in the limit that the elastic coupling to the leads is independent of energy. The phonons produce transmission sidebands but do not affect the integrated transmission probability or the esc......The exact resonant-tunneling transmission probability for an electron interacting with phonons is presented in the limit that the elastic coupling to the leads is independent of energy. The phonons produce transmission sidebands but do not affect the integrated transmission probability...

  19. Thermal resonance in signal transmission

    Reigada, Ramon; Sarmiento, Antonio; Lindenberg, Katja

    2001-01-01

    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems

  20. Thermal resonance in signal transmission

    Reigada, Ramon; Sarmiento, Antonio; Lindenberg, Katja

    2001-06-01

    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.