WorldWideScience

Sample records for resonance line shape

  1. Line shapes of atomic-candle-type Rabi resonances

    International Nuclear Information System (INIS)

    Coffer, J.G.; Camparo, J.C.; Sickmiller, B.; Presser, A.

    2002-01-01

    When atoms interact with a phase-modulated field, the probability of finding the atom in the excited-state oscillates at the second harmonic of the modulation frequency, 2ω m . The amplitude of this oscillating probability is a resonant function of the Rabi frequency Ω, and this is termed a β Rabi resonance. In this work, we examine the line shape of the β Rabi resonance both theoretically and experimentally. We find that a small-signal theory of the β-Rabi-resonance condition captures much of the line shape's character, and, in particular, that the resonance's 'line Q' (i.e., 2δΩ 1/2 /Ω) is proportional to the modulation frequency. This result can be applied to the atomic candle, where β Rabi resonances are employed to stabilize field strength. Considering our results in the context of developing an optical atomic candle, we find that a free-running diode laser's intensity noise could be improved by orders of magnitude using the atomic candle concept

  2. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  3. Use of Green functions in line shape problems in nuclear Magnetic resonance

    International Nuclear Information System (INIS)

    Martin, M.; Moreno, J.A.

    1982-01-01

    A method based on the two times Green function formalism is presented. It permits the straightforward determination of the line shape in Magnetic Resonance experiments together with its temperature behavior. Model calculations are made on a two-spin system attached to a one-dimensional rotor obtaining the temperature dependence of its Magnetic Resonance line shape and second moment

  4. Calculation of Resonance Interaction Effects Using a Rational Approximation to the Symmetric Resonance Line Shape Function

    International Nuclear Information System (INIS)

    Haeggblom, H.

    1968-08-01

    The method of calculating the resonance interaction effect by series expansions has been studied. Starting from the assumption that the neutron flux in a homogeneous mixture is inversely proportional to the total cross section, the expression for the flux can be simplified by series expansions. Two types of expansions are investigated and it is shown that only one of them is generally applicable. It is also shown that this expansion gives sufficient accuracy if the approximate resonance line shape function is reasonably representative. An investigation is made of the approximation of the resonance shape function with a Gaussian function which in some cases has been used to calculate the interaction effect. It is shown that this approximation is not sufficiently accurate in all cases which can occur in practice. Then, a rational approximation is introduced which in the first order approximation gives the same order of accuracy as a practically exact shape function. The integrations can be made analytically in the complex plane and the method is therefore very fast compared to purely numerical integrations. The method can be applied both to statistically correlated and uncorrelated resonances

  5. Calculation of Resonance Interaction Effects Using a Rational Approximation to the Symmetric Resonance Line Shape Function

    Energy Technology Data Exchange (ETDEWEB)

    Haeggblom, H

    1968-08-15

    The method of calculating the resonance interaction effect by series expansions has been studied. Starting from the assumption that the neutron flux in a homogeneous mixture is inversely proportional to the total cross section, the expression for the flux can be simplified by series expansions. Two types of expansions are investigated and it is shown that only one of them is generally applicable. It is also shown that this expansion gives sufficient accuracy if the approximate resonance line shape function is reasonably representative. An investigation is made of the approximation of the resonance shape function with a Gaussian function which in some cases has been used to calculate the interaction effect. It is shown that this approximation is not sufficiently accurate in all cases which can occur in practice. Then, a rational approximation is introduced which in the first order approximation gives the same order of accuracy as a practically exact shape function. The integrations can be made analytically in the complex plane and the method is therefore very fast compared to purely numerical integrations. The method can be applied both to statistically correlated and uncorrelated resonances.

  6. Shape of the Hα emission line in non resonant charge exchange in hydrogen plasmas

    International Nuclear Information System (INIS)

    Susino Bueno, A.; Zurro Hernandez, B.

    1977-01-01

    The Hα line shape emitted from a maxwellian hydrogen plasma and produced by non resonant change exchange has been calculated. Its explicit shape depends on the ion temperature, on background neutral energy and on the relative shape of the collision cross section. A comparison between theoretical and experimental shapes of the Hα line is carried out to check the model and to deduce the ion plasma temperature. (author) [es

  7. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    Directory of Open Access Journals (Sweden)

    Martina Gerken

    2013-06-01

    Full Text Available Multiferroic composite magnetoelectric (ME sensors are based on the elastic coupling of a magnetostrictive phase and a piezoelectric phase. A deformation of the magnetostrictive phase causes strain in the piezoelectric phase and thus an induced voltage. Such sensors may be applied both for static as well as for dynamic magnetic field measurements. Particularly high sensitivities are achieved for operation at a mechanical resonance. Here, the resonance line shape of layered (2-2 composite cantilever ME sensors at the first bending-mode resonance is investigated theoretically. Finite element method (FEM simulations using a linear material model reveal an asymmetric resonance profile and a zero-response frequency for the ME coefficient. Frequency-dependent strain and electric potential distributions inside the magnetoelectric composite are studied for the case of a magnetostrictive-piezoelectric bilayer. It is demonstrated that a positive or a negative voltage may be induced across the piezoelectric layer depending on the position of the neutral plane. The frequency-dependent induced electric potential is investigated for structured cantilevers that exhibit magnetostriction only at specific positions. For static operation an induced voltage is obtained locally at positions with magnetostriction. In addition to this direct effect a resonance-assisted effect is observed for dynamic operation. Magnetostriction in a limited area of the cantilever causes a global vibration of the cantilever. Thus, deformation of the piezoelectric layer and an induced electric potential also occur in areas of the cantilever without magnetostriction. The direct and the resonance-assisted pathway may induce voltages of equal or of opposite sign. The net induced voltage results from the superposition of the two effects. As the resonance-assisted induced voltage changes sign upon passing the resonance frequency, while the direct component is constant, an asymmetric line

  8. Experimental verification of the line-shape distortion in resonance Auger spectra

    International Nuclear Information System (INIS)

    Aksela, S.; Kukk, E.; Aksela, H.; Svensson, S.

    1995-01-01

    When the mean excitation energy and the width of a broad photon band are varied the Kr 3d 5/2 -1 5p→4p -2 5p resonance Auger electron lines show strong asymmetry and their average kinetic energies shift. Even extra peaks appear. Our results demonstrate experimentally, for the first time, that the incident photon energy distribution has very crucial importance on the resonance Auger line shape and thus on the reliable data analysis of complicated Auger spectra

  9. The natural line shape of the giant dipole resonance

    International Nuclear Information System (INIS)

    Gordon, E.F.; Pitthan, R.

    1977-01-01

    Investigation of photoabsorption experiments in the spherical nucleus 141 Pr, the quasispherical dynamically deformed 197 Au, and the statically deformed 165 Ho showed that the function which describes best the energy dependence of the reduced transition probability is given by the Breit-Wigner form rather than the Lorentz form. However, the form of the resulting measured cross section is approximately of the Lorentz type. The dependence of the giant resonance width GAMMA on the excitation energy was also investigated, and found to be less than 1% per MeV if one considered the known isovector E2 resonance above the giant dipole resonance. Best fit values of the reduced transition probabilities for the three nuclei are given and compared to (e,e') results. (Auth.)

  10. Resonant infiltration of an opal: Reflection line shape and contribution from in-depth regions.

    Science.gov (United States)

    Maurin, Isabelle; Bloch, Daniel

    2015-06-21

    We analyze the resonant variation of the optical reflection on an infiltrated artificial opal made of transparent nanospheres. The resonant infiltration is considered as a perturbation in the frame of a previously described one-dimensional model based upon a stratified effective index. We show that for a thin slice of resonant medium, the resonant response oscillates with the position of this slice. We derive that for adequate conditions of incidence angle, this spatially oscillating behavior matches the geometrical periodicity of the opal and hence the related density of resonant infiltration. Close to these matching conditions, the resonant response of the global infiltration varies sharply in amplitude and shape with the incidence angle and polarization. The corresponding resonant reflection originates from a rather deep infiltration, up to several wavelengths or layers of spheres. Finally, we discuss the relationship between the present predictions and our previous observations on an opal infiltrated with a resonant vapor.

  11. Shape of the nuclear magnetic resonance line in anisotropic superconductors with an irregular vortex lattice

    International Nuclear Information System (INIS)

    Minkin, A.V.; Tsarevskij, S.L.

    2006-01-01

    For high-temperature superconductors the shape of a NMR spectrum line is built regarding for variation of inhomogeneity of irregular vortex lattice magnetic field near superconductor surface. It is shown that the shape of a NMR line is not simply widened but noticeably varies depending on the degree of irregularity of a superconductor vortex lattice. This variation is associated with a local symmetry decrease in an irregular vortex lattice of the superconductor. Taking into account these circumstances may considerably change conclusions about the type of a vortex lattice and superconductor parameters which are commonly gained from NMR line shape analysis [ru

  12. FPSPH DFPSPF, Line Shape Function for Doppler Broadened Resonance Cross-Sections Calculation

    International Nuclear Information System (INIS)

    Ribon, P.

    1982-01-01

    1 - Description of problem or function: In the computation of Doppler- broadened resonance cross sections, use is made of the symmetric and anti-symmetric line shape functions. These functions usually denoted as Psi and Phi (Psi and Chi in Anglo-Saxon formalism) are defined in terms of the real and imaginary parts of the error function for complex arguments. They are the product of the convolution of a Gaussian function with the symmetric and anti-symmetric Breit-Wigner functions, respectively. FPSPH and DFPSPH compute these functions. 2 - Method of solution: For (1+x 2 ) > 20 Beta 2 , the calculation is based upon the asymptotic expansion: Psi+(i*Phi) = 1/(1-ix)*(1-t+3t 2 -3.5t 3 +3.5+7t 4 ---), with: t = 1/(2z 2 ); z = (1-ix)/Beta. The half-plane (Beta,x) is split in several parts, and use is made of PADE approximants. For 1 + x 2 2 , the calculation is based upon the relation with the erf function: Psi + i*Phi = SQRT(Pi)/Beta*(e (z 2 ) )*(1-erf(z)) (z = (1-ix)/Beta, and erf(z) being calculated from its analytic expansion: erf(z) = 2/SQRT(Pi)*z*e (-z 2 ) *(1+z 2 /3+z 4 /(3*5) + z 6 /(3*5*7)+---). PADE approximants are used to compute the expansion and e z 2

  13. Nuclear magnetic resonance line-shape analysis and determination of exchange rates

    International Nuclear Information System (INIS)

    Rao, B.D.

    1989-01-01

    The fact that chemical exchange processes occur at rates that cover a broad range and produce readily detectable effects on the spectrum is one of the attractive features of high-resolution NMR. The description of these line shapes in the presence of spin-spin coupling requires the density matrix theory which is rather complex. Analysis of the line shapes usually needs computer simulations and is capable of providing reliable information on the exchange rates as well as spectral parameters in the absence of exchange. Simplified procedures, ignoring spin-spin coupling, often result in deviations in these exchange and spectral parameters determined. A step-by-step procedure is detailed in this chapter for setting up the matrices required for computing the line shapes of exchanges involving weakly coupled spin systems on the basis of the density matrix theory without the need for a detailed understanding of the theory. A knowledge of the energy level structure and allowed transitions in the NMR spectra of the individual weakly coupled spin systems is all that is required. The procedure is amenable to numerical computation. The group of illustrative examples chosen to demonstrate the development of the computational tools cover some of the commonly encountered cases of exchange from simple systems to rather complex ones. Such exchanges occur frequently in biological molecules, especially those involving enzyme-substrate complexes. In cases where the experimental line shapes are obtained with respectable precision, and the relevant exchange processes are unambiguously identifiable, the computer simulation method of line-shape analysis is capable of providing useful and incisive information. The example of the 31P exchanges in the adenylate kinase is illustrative of this point

  14. Theory of strongly saturated double-resonance line shapes in arbitrary angular momentum states of molecules

    International Nuclear Information System (INIS)

    Galbraith, H.W.; Dubs, M.; Steinfeld, J.I.

    1982-01-01

    We calculate the steady-state probe absorption line-shape function for a strongly driven, Zeeman-degenerate molecular system. The probe laser is treated to lowest order while the pump laser is dealt with to all orders. We obtain the probe line shape for the cases of parallel and perpendicular linear polarization of the two lasers. As expected, the effects of M degeneracy, as well as differences due to the relative laser polarizations, are most pronounced when Doppler broadening is not important. However, even in the presence of large Doppler broadening we find a narrowing of the population hole by including the Zeeman degeneracy and a further narrowing if perpendicular laser polarizations are used

  15. Slit shaped microwave induced atmospheric pressure plasma based on a parallel plate transmission line resonator

    Science.gov (United States)

    Kang, S. K.; Seo, Y. S.; Lee, H. Wk; Aman-ur-Rehman; Kim, G. C.; Lee, J. K.

    2011-11-01

    A new type of microwave-excited atmospheric pressure plasma source, based on the principle of parallel plate transmission line resonator, is developed for the treatment of large areas in biomedical applications such as skin treatment and wound healing. A stable plasma of 20 mm width is sustained by a small microwave power source operated at a frequency of 700 MHz and a gas flow rate of 0.9 slm. Plasma impedance and plasma density of this plasma source are estimated by fitting the calculated reflection coefficient to the measured one. The estimated plasma impedance shows a decreasing trend while estimated plasma density shows an increasing trend with the increase in the input power. Plasma uniformity is confirmed by temperature and optical emission distribution measurements. Plasma temperature is sustained at less than 40 °C and abundant amounts of reactive species, which are important agents for bacteria inactivation, are detected over the entire plasma region. Large area treatment ability of this newly developed device is verified through bacteria inactivation experiment using E. coli. Sterilization experiment shows a large bacterial killing mark of 25 mm for a plasma treatment time of 10 s.

  16. Spectral Line Shapes. Proceedings

    International Nuclear Information System (INIS)

    Zoppi, M.; Ulivi, L.

    1997-01-01

    These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple-free and ultra-fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction-induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energy Science and Technology database

  17. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.

    2016-10-21

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  18. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.; Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Andreeva, C.; Cinins, A.; Markovski, A.; Iftikhar, Z.; Ekers, Aigars; Ryabtsev, I. I.

    2016-01-01

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  19. Effects of diffusion and surface interactions on the line shape of electron paramagnetic resonances in the presence of a magnetic field gradient

    International Nuclear Information System (INIS)

    Schaden, M.; Zhao, K. F.; Wu, Z.

    2007-01-01

    In an evanescent wave magnetometer the Zeeman polarization is probed at micrometer to submicrometer distances from the cell surface. The electron paramagnetic resonance lines of an evanescent wave magnetometer in the presence of a magnetic field gradient exhibit edge enhancement seen previously in nuclear magnetic resonance lines. We present a theoretical model that describes quantitatively the shape of the magnetic resonance lines of an evanescent wave magnetometer under a wide range of experimental conditions. It accounts for diffusion broadening in the presence of a magnetic field gradient as well as interactions of spin polarized Rb atoms with the coated Pyrex glass surfaces. Depending on the field gradient, cell thickness, and buffer gas pressure, the resonance line may have the form of a single asymmetric peak or two peaks localized near the front and back surfaces in frequency space. The double-peaked response depends on average characteristics of the surface interactions. Its shape is sensitive to the dwell time, relaxation probability, and average phase shift of adsorbed spin polarized Rb atoms

  20. Intrinsic line shape of electromagnetic radiation from a stack of intrinsic Josephson junctions synchronized by an internal cavity resonance

    Science.gov (United States)

    Koshelev, Alexei

    2013-03-01

    Stacks of intrinsic Josephson-junctions are realized in mesas fabricated out of layered superconducting single crystals, such as Bi2Sr2CaCu2O8 (BSCCO). Synchronization of phase oscillations in different junctions can be facilitated by the coupling to the internal cavity mode leading to powerful and coherent electromagnetic radiation in the terahertz frequency range. An important characteristic of this radiation is the shape of the emission line. A finite line width appears due to different noise sources leading to phase diffusion. We investigated the intrinsic line shape caused by the thermal noise for a mesa fabricated on the top of a BSCCO single crystal. In the ideal case of fully synchronized stack the finite line width is coming from two main contributions, the quasiparticle-current noise inside the mesa and the fluctuating radiation in the base crystal. We compute both contributions and conclude that for realistic mesa's parameters the second mechanism typically dominates. The role of the cavity quality factor in the emission line spectrum is clarified. Analytical results were verified by numerical simulations. In real mesa structures part of the stack may not be synchronized and chaotic dynamics of unsynchronized junctions may determine the real line width. Work supported by UChicago Argonne, LLC, under contract No. DE-AC02-06CH11357.

  1. Shape resonances in molecular fields

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1984-01-01

    A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field

  2. Autoionization spectral line shapes in dense plasmas

    International Nuclear Information System (INIS)

    Rosmej, F.B.; Hoffmann, D.H.H.; Faenov, A.Ya.; Pikuz, T.A.; Suess, W.; Geissel, M.

    2001-01-01

    The distortion of resonance line shapes due to the accumulation of a large number of satellite transitions is discovered by means of X-ray optical methods with simultaneous high spectral (λ/δλ≅8000) and spatial resolution (δx≅7 μm). Disappearance of the He α resonance line emission near the target surface is observed while Rydberg satellite intensity accumulates near the resonance line position. He β and He γ resonance line shapes are also shown to be seriously affected by opacity, higher-order line emissions from autoionizing states and inhomogeneous spatial emission. Opposite to resonance line emissions the He β satellites originate only from a very narrow spatial interval. New temperature and density diagnostics employing the 1s2131' and 1s3131'-satellites are developed. Moreover, even-J components of the satellite line emissions were resolved in the present high resolution experiments. Line transitions from the autoionizing states 1s2131' are therefore also proposed for space resolved Stark broadening analysis and local high density probing. Theorists are encouraged to provide accurate Stark broadening data for the transitions 1s2131 ' →1s 2 21+hv

  3. Resonances in photoabsorption: Predissociation line shapes in the 3pπD1Π+u ← Χ1Σg+ system in H2

    International Nuclear Information System (INIS)

    Mezei, J. Zs.; Schneider, I. F.; Glass-Maujean, M.; Jungen, Ch.

    2014-01-01

    The predissociation of the 3pπD 1 Π u + ,v≥3,N=1, N = 2, and N = 3 levels of diatomic hydrogen is calculated by ab initio multichannel quantum defect theory combined with a R-matrix type approach that accounts for interfering predissociation and autoionization. The theory yields absorption line widths and shapes that are in good agreement with those observed in the high-resolution synchrotron vacuum-ultraviolet absorption spectra obtained by Dickenson et al. [J. Chem. Phys. 133, 144317 (2010)] at the DESIRS beamline of the SOLEIL synchrotron. The theory predicts further that many of the D state resonances with v ⩾ 6 exhibit a complex fine structure which cannot be modeled by the Fano profile formula and which has not yet been observed experimentally

  4. Anomaly in shape of resonance absorption lines of atoms with large fine-structure splitting of levels

    International Nuclear Information System (INIS)

    Parkhomenko, A.I.; yachev, S.P."" >Podyachev, S.P.; Privalov, T.I.; Shalagin, A.M.

    1997-01-01

    Absorption line of monochromatic radiation by atoms nonselective excitation by velocities under conditions of optical excitation of components of superfine structure of the basic electron state is considered. It is shown that the absorption line has unusual substructures for certain values of the basic state superfine desintegration. These substructures in the absorption spectrum may be pointed out by accounting the superfine structure of the electron excited state. The absorption spectra of monochromatic radiation close tot he D 1 - and D 2 -lines of the atomic rubidium are calculated

  5. Transmission Line Resonator Segmented with Series Capacitors

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Boer, Vincent; Petersen, Esben Thade

    2016-01-01

    Transmission line resonators are often used as coils in high field MRI. Due to distributed nature of such resonators, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the resonator. The equations for optimal...... values of evenly distributed capacitors are presented. The performances of the segmented resonator and a regular transmission line resonator are compared....

  6. First observation of the Λ(1405) line shape in electroproduction

    Science.gov (United States)

    Lu, H. Y.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.

    2013-10-01

    We report the first observation of the line shape of the Λ(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K+Λ(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0resonance parameters, nor free parameters fitting to a single Breit-Wigner resonance represent the line shape. In our fits, the line shape corresponds approximately to predictions of a two-pole meson-baryon picture of the Λ(1405), with a lower mass pole near 1368 MeV/c2 and a higher mass pole near 1423 MeV/c2. Furthermore, with increasing photon virtuality the mass distribution shifts toward the higher mass pole.

  7. Anisotropic Hanle line shape via magnetothermoelectric phenomena

    NARCIS (Netherlands)

    Das, Kumar; Dejene, Fasil; van Wees, Bart; Vera Marun, Ivan

    2016-01-01

    We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times

  8. Spectral Line Shapes in Plasmas and Gases

    International Nuclear Information System (INIS)

    Oks, E.; Dalimier, D.; Stamm, R.; Stehle, CH.; Gonzalez, M.A.

    2011-01-01

    The subject of spectral line shapes (SLS), a.k.a. spectral line broadening, which embraces both shapes and shifts of spectral lines, is of both fundamental and practical importance. On the fundamental side, the study of the spectral line profiles reveals the underlying atomic and molecular interactions. On the practical side, the spectral line profiles are employed as powerful diagnostic tools for various media, such as neutral gases, technological gas discharges, magnetically confined plasmas for fusion, laser- and Z-pinch-produced plasmas (for fusion and other purposes), astrophysical plasmas (most importantly, solar plasmas), and planetary atmospheres. The research area covered by this special issue includes both the SLS dominated by various electric fields (including electron and ion micro fields in strongly ionized plasmas) and the SLS controlled by neutral particles. In the physical slang, the former is called plasma broadening while the latter is called neutral broadening (of course, the results of neutral broadening apply also to the spectral line broadening in neutral gases)

  9. EVo: Net Shape RTM Production Line

    Directory of Open Access Journals (Sweden)

    Sven Torstrick

    2016-04-01

    Full Text Available EVo research platform is operated by the Center for Lightweight-Production-Technology of the German Aerospace Center in Stade. Its objective is technology demonstration of a fully automated RTM (Resin Transfer Molding production line for composite parts in large quantities. Process steps include cutting and ply handling, draping, stacking, hot-forming, preform-trimming to net shape, resin injection, curing and demolding.

  10. Chemical exchange effects in spectral line shapes

    International Nuclear Information System (INIS)

    Diaz, M.A.; Veguillas, J.

    1990-01-01

    A theory of spectral-line shapes has been extended to the case in which relaxation broadening may be influenced by reactive interactions. This extension is valid for gaseous systems in the same way it is valid for condensed media, and particularly, for such chemical mechanisms as isomerizations. The dependence of the spectral rate on the chemical exchange rate is clarified. Finally, a discussion concerning the above aspects and their applications has been included. (author)

  11. Electron paramagnetic resonance line shifts and line shape changes due to heisenberg spin exchange and dipole-dipole interactions of nitroxide free radicals in liquids 8. Further experimental and theoretical efforts to separate the effects of the two interactions.

    Science.gov (United States)

    Peric, Mirna; Bales, Barney L; Peric, Miroslav

    2012-03-22

    The work in part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole interactions (DD) on electron paramagnetic resonance (EPR) spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations, were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral parameters to the rate constants due to HSE and DD have been derived. By employing nonlinear least-squares fitting of theoretical spectra to a simple analytical function and the proposed equations, the contributions of the two interactions to items 1-3 may be quantified and compared with the same parameters obtained by fitting experimental spectra. This comparison supports the theory in its broad predictions; however, at low temperatures, the DD contribution to the experimental dispersion amplitude does not increase linearly with concentration. We are unable to deduce whether this discrepancy is due to inadequate analysis of the experimental data or an incomplete theory. A new key aspect of the more comprehensive theory is that there is enough information in the experimental spectra to find items 1-3 due to both interactions; however, in principle, appeal must be made to a model of molecular diffusion to separate the two. The permanent diffusion model is used to

  12. Los resonance lines in promethiumlike heavy ions

    International Nuclear Information System (INIS)

    Nakamura, Nobuyuki; Kobayashi, Yusuke; Kato, Daiji; Sakaue, Hiroyuki A.; Murakami, Izumi

    2016-01-01

    Identifying the ns - np resonance lines in alkali-metal-like ions is an important issue in fusion plasma science in the view of spectroscopic diagnostics and radiation power loss. Whereas for n=2, 3 and 4 these resonances are prominent and well studied, so far no one could clearly identify the resonance lines for n=5 in the promethiumlike sequence. We have now experimentally clarified the reason for the 'lost resonance lines. In the present study, highly-charged bismuth ions have been studied using a compact electron beam ion trap (EBIT). Extreme ultraviolet emission from the bismuth ions produced and trapped in the EBIT is observed with a grazing-incidence flat-field spectrometer. The energy dependent spectra are compared with a collisional-radiative model calculation, and we show that the 5s - 5p resonance lines are very weak in plasma with a wide range of electron density due to the presence of a long-lived metastable state. (author)

  13. Characterization of superconducting transmission line resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Summer, Philipp; Meier, Sebastian; Haeberlein, Max; Wulschner, Karl Friedrich; Eder, Peter; Fischer, Michael; Schwarz, Manuel; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Krawczyk, Marta; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Baust, Alexander; Xie, Edwar; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    Superconducting transmission line resonators are widely used in circuit quantum electrodynamics experiments as quantum bus or storage devices. For these applications, long coherence times, which can be linked to the internal quality factor of the resonators, are crucial. Here, we show a systematic study of the internal quality factor of niobium thin film resonators. We analyze different cleaning methods and substrate parameters for coplanar waveguide as well as microstrip geometries. In addition, we investigate the impact of a niobium-aluminum interface which is necessary for galvanically coupled flux qubits made from aluminum. This interface can be avoided by fabricating the complete resonator-qubit structure using Al/AlO{sub x}/Al technology during fabrication.

  14. Resonant Alfven waves on auroral field lines

    International Nuclear Information System (INIS)

    Chiu, Y.T.

    1987-01-01

    It is shown that resonant Alfven waves on dipole magnetic field geometry and plasma distributions suitable for auroral field lines can be conveniently treated in the theory of Mathieu functions. Resurgent interest in invoking large-scale Alfven waves to structure some elements of auroral electrodynamics calls for interpretation of measured perpendicular electric and magnetic disturbance fields in terms of Alfven waves. The ability to express the resonant eigenmodes in closed form in terms of Mathieu functions allows for convenient tests of the Alfven wave structuring hypothesis. Implications for current vector electric and magnetic disturbance measurements are discussed

  15. Radiofrequency spark chambers and delay line resonators

    International Nuclear Information System (INIS)

    Sayag, Jacques

    1971-01-01

    According to a suggestion of A. Kastler, a spark chamber was excited by an undamped radiofrequency pulse and tracks about 1 mm wide obtained; the result was interpreted by computation of the coefficients of electronic amplification and partial ambipolar diffusion. This work led us to the construction of a new fast triggering undamped wave-train generator of very high tension (patent taken out by the C.E.A. under the no.: EN 7 134 650 the 27.9.1971). Since this apparatus uses a resonant storage line, its design implied a precise knowledge of high impedance delay lines. The experimental radiofrequency spectra of the input impedance of opened or short-circuited lines were plotted completely and analysed by the circuits theory, new measuring methods were established, dispersion relations accurately checked and the equivalence of the formulas, within the third order, with theses of Debye's Dipolar Absorption demonstrated. General properties of Hilbert's transform were also investigated. From the experimental point of view, the electromagnetic energy storage process was extended to the case of a liquid nitrogen-immersed resonant delay line. The good behavior of the cryogenic experiment, where the main difficulty of icing was overcame by the construction of special electrodes, offers great promise for extrapolation to superconductivity. (author) [fr

  16. Resistively detected NMR line shapes in a quasi-one-dimensional electron system

    Science.gov (United States)

    Fauzi, M. H.; Singha, A.; Sahdan, M. F.; Takahashi, M.; Sato, K.; Nagase, K.; Muralidharan, B.; Hirayama, Y.

    2017-06-01

    We observe variation in the resistively detected nuclear magnetic resonance (RDNMR) line shapes in quantum Hall breakdown. The breakdown occurs locally in a gate-defined quantum point contact (QPC) region. Of particular interest is the observation of a dispersive line shape occurring when the bulk two-dimensional electron gas (2DEG) set to νb=2 and the QPC filling factor to the vicinity of νQPC=1 , strikingly resemble the dispersive line shape observed on a 2D quantum Hall state. This previously unobserved line shape in a QPC points to a simultaneous occurrence of two hyperfine-mediated spin flip-flop processes within the QPC. Those events give rise to two different sets of nuclei polarized in the opposite direction and positioned at a separate region with different degrees of electronic spin polarization.

  17. Calculation of the line shapes of radiators immersed in plasma

    International Nuclear Information System (INIS)

    Hayrapetian, A.S.

    1987-01-01

    This work reports the results of theoretical calculations of line shapes of radiators immersed in plasma. The fluctuating electric field of the plasma perturbs the atomic structure of the immersed ions or atoms. The perturbed line shape is an important diagnostic tool for the temperature and density measurements of plasma. The line-shape calculation here is done by first deriving the line-shape expression, then it is shown that the problem is equivalent to calculating the temperature Green's function of the bound electron. The total Hamiltonian of the system includes the atomic, plasma, and atom-plasma parts. The temperature Green's function is calculated perturbatively by expanding in orders of atom-plasma interaction. By solving a Dyson equation, the dressed Green's functions of the bound electrons are obtained. At this point, the line shape is calculated by an analytic continuation from the complex frequency plane to real line. To derive the atomic electron Green's function, the momentum integral in the self-energy is approximated by a Riemann sum. With this approximation, the algebraic form of the line shape is obtained for an undetermined number of terms in the Riemann sum. Numerical calculation of line shape is done by using this result

  18. Determination of Dimensionless Attenuation Coefficient in Shaped Resonators

    Science.gov (United States)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2003-01-01

    The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.

  19. Modeling of hydrogen Stark line shapes with kinetic theory methods

    Science.gov (United States)

    Rosato, J.; Capes, H.; Stamm, R.

    2012-12-01

    The unified formalism for Stark line shapes is revisited and extended to non-binary interactions between an emitter and the surrounding perturbers. The accuracy of this theory is examined through comparisons with ab initio numerical simulations.

  20. Spectral signature barcodes based on S-shaped Split Ring Resonators (S-SRRs

    Directory of Open Access Journals (Sweden)

    Herrojo Cristian

    2016-01-01

    Full Text Available In this paper, it is shown that S-shaped split ring resonators (S-SRRs are useful particles for the implementation of spectral signature (i.e., a class of radiofrequency barcodes based on coplanar waveguide (CPW transmission lines loaded with such resonant elements. By virtue of its S shape, these resonators are electrically small. Hence S-SRRs are of interest for the miniaturization of the barcodes, since multiple resonators, each tuned at a different frequency, are used for encoding purposes. In particular, a 10-bit barcode occupying 1 GHz spectral bandwidth centered at 2.5 GHz, with dimensions of 9 cm2, is presented in this paper.

  1. A universal representation of Rydberg spectral line shapes in plasmas

    International Nuclear Information System (INIS)

    Mosse, C.; Calisti, A.; Stamm, R.; Talin, B.; Bureyeva, L.; Lisitsa, V. S.

    2001-01-01

    A universal representation of Rydberg atom line shapes in plasmas is obtained. It bases on analytical formulas for intensity distribution in radiation transitions n→n' between highly excited atomic states with large values of principle quantum numbers n, n'>>1, Δn=n-n'<< n and the frequency fluctuation model (FFM) for account of ion thermal motion effects. The line shapes are presented in a universal manner as functions of plasma temperatures and densities

  2. The Number of Neutrinos and the Z Line Shape

    CERN Document Server

    Blondel, Alain

    2016-01-01

    The Standard Theory can fit any number of fermion families, as long as the number of leptons and quark families are the same. At the time of the conception of LEP, the number of such families was unknown, and it was feared that the Z resonance would be washed out by decaying into so many families of neutrinos! It took only a few weeks in the fall of 1989 to determine that the number is three. The next six years (from 1990 to 1995) were largely devoted to the accurate determination of the Z line shape, with a precision that outperformed the most optimistic expectations by a factor of 10. The tale of these measurements is a bona fide mystery novel, the precession of electrons being strangely perturbed by natural phenomena, such as tides, rain, hydroelectric power, fast trains, not to mention vertical electrostatic separators. The number hidden in the loops of this treasure hunt was 179, the first estimate of the mass of the top quark; then, once that was found, where predicted, the next number was close to zero...

  3. Analysis of acoustic resonator with shape deformation using finite ...

    Indian Academy of Sciences (India)

    G M KALMSEa, AJAY CHAUDHARIb and P B PATILb a Science College, PB No. 62, Nanded 431603, India b Department of Physics, Dr B A M University, Aurangabad 431 004, India e-mail: bamuaur@bom4.vsnl.net.in. MS received 23 September 1999. Abstract. An acoustic resonator with shape deformation has been ...

  4. Line-shape asymmetry of water vapor absorption lines in the 720-nm wavelength region

    Science.gov (United States)

    Grossmann, Benoist E.; Browell, Edward V.

    1991-01-01

    Spectral line-shape analyses were performed for water vapor lines broadened by argon, oxygen, and xenon in the 720-nm wavelength region. A line-shape asymmetry was observed, which is attributed to statistical dependence or correlation between velocity- and state-changing collisions. The generalized (asymmetric) Galatry profile, which results from the soft-collision profile and includes correlation between velocity- and state-changing collisions, was fitted to the observed line shapes and was found to compare favorably with the observed data. The most prominent asymmetries were observed with xenon as the buffer gas.

  5. Study of the Auger line shape of polyethylene and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M; Pepper, S V

    1984-03-01

    The KVV Auger electron line shapes of carbon in polyethylene and diamond have been studied. The spectra were obtained in derivative form by electron beam excitation. They were treated by background subtraction, integration and deconvolution to produce the intrinsic Auger line shape. Electron energy loss spectra provided the response function in the deconvolution procedure. The line shape from polyethylene is compared with spectra from linear alkanes and with a previous spectrum of Kelber et al. Both spectra are compared with the self-convolution of their full valence band densities of states and of their p-projected densities. The experimental spectra could not be understood in terms of existing theories. This is so even when correlation effects are qualitatively taken into account according to the theories of Cini and Sawatzky and Lenselink.

  6. Effect of the Potential Shape on the Stochastic Resonance Processes

    Science.gov (United States)

    Kenmoé, G. Djuidjé; Ngouongo, Y. J. Wadop; Kofané, T. C.

    2015-10-01

    The stochastic resonance (SR) induced by periodic signal and white noises in a periodic nonsinusoidal potential is investigated. This phenomenon is studied as a function of the friction coefficient as well as the shape of the potential. It is done through an investigation of the hysteresis loop area which is equivalent to the input energy lost by the system to the environment per period of the external force. SR is evident in some range of the shape parameter of the potential, but cannot be observed in the other range. Specially, variation of the shape potential affects significantly and not trivially the heigh of the potential barrier in the Kramers rate as well as the occurrence of SR. The finding results show crucial dependence of the temperature of occurrence of SR on the shape of the potential. It is noted that the maximum of the input energy generally decreases when the friction coefficient is increased.

  7. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions

    International Nuclear Information System (INIS)

    Xiao-Lan, Kong; Yong-Jian, Xiong

    2010-01-01

    We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction

  8. Design of a broadband hexagonal-shaped zeroth-order resonance antenna with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Dong Sik; Kim, Kang Wook; Choi, Hyun Chul [Kyungpook National University, Daegu (Korea, Republic of)

    2014-11-15

    A broadband hexagonal-shaped metamaterials (MTMs)-based zeroth-order resonant (ZOR) antenna was designed and fabricated. The hexagonal shape of a top patch on a mushroom structure makes not only direct-current paths between the two ends of the patch but also round-current paths along the outside of the patch, thereby widening the resonance frequency of the mushroom MTM antenna. According to the shape of the hexagon patch, the presented antenna achieved impedance bandwidth of 58.6% corresponding to ultra-wideband technology. The proposed ZOR antenna was modeled by utilizing a composite right- and left-handed (CRLH) transmission line and provided 4 to 9.3 dBi of the antenna gain with reduced size as compared to conventional microstrip antennas at Ku- to K-band frequencies.

  9. Modern quantum kinetic theory and spectral line shapes

    International Nuclear Information System (INIS)

    Monchick, L.

    1991-01-01

    The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs

  10. Ideal Coulomb Plasma Approximation in Line Shape Models: Problematic Issues

    Directory of Open Access Journals (Sweden)

    Joel Rosato

    2014-06-01

    Full Text Available In weakly coupled plasmas, it is common to describe the microfield using a Debye model. We examine here an “artificial” ideal one-component plasma with an infinite Debye length, which has been used for the test of line shape codes. We show that the infinite Debye length assumption can lead to a misinterpretation of numerical simulations results, in particular regarding the convergence of calculations. Our discussion is done within an analytical collision operator model developed for hydrogen line shapes in near-impact regimes. When properly employed, this model can serve as a reference for testing the convergence of simulations.

  11. Rules of thumb for the Z line shape

    International Nuclear Information System (INIS)

    Beenakker, W.; Berends, F.A.; Marck, S.C. van der

    1990-01-01

    In this paper the theoretical parameters of the Z line shape, such as M Z and Γ Z , and the one photon exchange diagram are related to a set of parameters characterizing the experimental line shape. The latter are the peak height σ max , peak position √S max and half peak positions √S ± . The rules of thumb are accurate within 10 MeV. As a result we obtain approximate formulae which express M Z and Γ Z in the measured √S max and √S + -√S - . (orig.)

  12. Observing shape resonances in ultraslow H^++H elastic scattering

    Science.gov (United States)

    Macek, J. H.; Schultz, D. R.; Ovchinnikov, S. Yu.; Krstic, P. S.

    2004-05-01

    We have calculated highly accurate elastic and charge transfer cross sections for proton-hydrogen scattering at energies 0.0001-10 eV, using fully quantal approach (P.S. Krstic and D.R. Schultz, J. Phys. B 32, 3485 (1999)). A number of resonances are observed. We calculate the positions and widths of the shape resonances in the effective potentials for various orbital angular momenta (J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. A 50, 468 (1994)). These correlate well with the observed resonances. We acknowledge support from the US DOE through ORNL, managed by UT-Battelle, LLC under contract DE-AC05-00OR22725.

  13. Laser line shape and spectral density of frequency noise

    International Nuclear Information System (INIS)

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-01-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise

  14. Wireless overhead line temperature sensor based on RF cavity resonance

    International Nuclear Information System (INIS)

    Ghafourian, Maryam; Nezhad, Abolghasem Zeidaabadi; Bridges, Greg E; Thomson, Douglas J

    2013-01-01

    The importance of maximizing power transfer through overhead transmission lines necessitates the use of dynamic power control to keep transmission line temperatures within acceptable limits. Excessive conductor operating temperatures lead to an increased sag of the transmission line conductor and may reduce their expected life. In this paper, a passive wireless sensor based on a resonant radio frequency (RF) cavity is presented which can be used to measure overhead transmission line temperature. The temperature sensor does not require a power supply and can be easily clamped to the power line with an antenna attached. Changing temperature causes a change of cavity dimensions and a shift in resonant frequency. The resonant frequency of the cavity can be interrogated wirelessly. This temperature sensor has a resolution of 0.07 °C and can be interrogated from distances greater than 4.5 m. The sensor has a deviation from linearity of less than 2 °C. (paper)

  15. Line Shape Variability in a Sample of AGN with Broad Lines

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We give here a comparative review of the line shape variability in a sample of five type 1 AGNs, those with broad emission lines in their spectra, of the data obtained from the international long-term optical monitoring campaign coordinated by the Special Astrophysical Observatory of the Russian Academy ...

  16. Shape resonance in K-shell photodetachment from C-

    International Nuclear Information System (INIS)

    Walter, C. W.; Gibson, N. D.; Bilodeau, R. C.; Berrah, N.; Bozek, J. D.; Ackerman, G. D.; Aguilar, A.

    2006-01-01

    The core-excited (1s2s 2 2p 4 4 P) negative ion shape resonance of C - near 281.7 eV has been investigated using the merged ion beam--photon beam photodetachment technique on the Advanced Light Source beamline 10.0.1. C + ions formed by double detachment were detected as a function of photon energy. Higher resolution spectra yield more precise values for the energy and width of the resonance than our previous measurements [N. D. Gibson et al., Phys. Rev. A 67, 030703(R) (2003)]. The absolute cross section for double detachment from C - following 1s photoexcitation is measured for the first time and the spectrum is compared to previous theoretical calculations. These measurements also provide information on the lowest core-excited state of neutral carbon (1s2s 2 2p 3 5 S)

  17. Coil extensions improve line shapes by removing field distortions

    Science.gov (United States)

    Conradi, Mark S.; Altobelli, Stephen A.; McDowell, Andrew F.

    2018-06-01

    The static magnetic susceptibility of the rf coil can substantially distort the field B0 and be a dominant source of line broadening. A scaling argument shows that this may be a particular problem in microcoil NMR. We propose coil extensions to reduce the distortion. The actual rf coil is extended to a much longer overall length by abutted coil segments that do not carry rf current. The result is a long and nearly uniform sheath of copper wire, in terms of the static susceptibility. The line shape improvement is demonstrated at 43.9 MHz and in simulation calculations.

  18. Suitable spectral line shape calculations for inertial confinement plasma diagnosis

    International Nuclear Information System (INIS)

    Lambert, D.; Louis-Jacquet, M.

    1982-09-01

    In plasma confinement experiments, the knowledge of the plasma state at the maximum compression time would be of utmost interest. For quite many experiments, this time can correspond to a stationary state during which the X emission conditions for a moderate Z element are maximum. Since this diagnosis mean deals with emission only, we need to get rid of reabsorption problems, since their calculation depends on the use of an ionization-excitation plasma model. That is the reason why we focus our attention onto the aspects of spectroscopic theory which control the low reabsorption line shapes - from high values of n - and more precisely the lesser reabsorbed parts of the line shapes - the wings instead of the center

  19. The giant resonance and the shape of hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, A; Camera, F; Million, B; Pignanelli, M [Milan Univ. (Italy). Ist. di Fisica; Gaardhoje, J J; Maj, A; Atac, A [Niels Bohr Inst., Copenhagen (Denmark)

    1992-08-01

    The gamma decay of the giant dipole resonance is a sensitive tool for investigating how nuclear shape changes with spin and excitation energy, but the information is coded in a subtle way, inasmuch as the shape and orientation of nuclei at finite temperature display large fluctuations. At the time of the conference, the three systems {sup 109-110}Sn, {sup 161-162}Yb and {sup 165-167}Er had recently been studied on the HECTOR spectrometer. The Sn nuclei are spherical in their ground states, and are expected to become oblate under the stress of rotation. The Yb and Er nuclei are prolate, and are expected to become first spherical, then oblate. While the patterns of the measured angular anisotropies are consistent with this general picture, many questions still remain open. 3 refs., 1 tab., 3 figs.

  20. Time-dependent scattering in resonance lines

    International Nuclear Information System (INIS)

    Kunasz, P.B.

    1983-01-01

    A numerical finite-difference method is presented for the problem of time-dependent line transfer in a finite slab in which material density is sufficiently low that the time of flight between scatterings greatly exceeds the relaxation time of the upper state of the scattering transition. The medium is assumed to scatter photons isotropically, with complete frequency redistribution. Numerical solutions are presented for a homogeneous, time-independent slab illuminated by an externally imposed radiation field which enters the slab at t = 0. Graphical results illustrate relaxation to steady state of trapped internal radiation, emergent energy, and emergent profiles. A review of the literature is also given in which the time-dependent line transfer problem is discussed in the context of recent analytical work

  1. A new design of dielectric elastomer membrane resonator with tunable resonant frequencies and mode shapes

    Science.gov (United States)

    Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang

    2018-06-01

    Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.

  2. Dielectronic satellites to the Ne-like yttrium resonance lines

    International Nuclear Information System (INIS)

    Osterheld, A.L.; Nilsen, J.; Khakhalin, S.Ya.; Faenov, A.Ya.; Pikuz, S.A.

    1996-01-01

    We present a detailed analysis of the spectrum of satellite transitions to the n=2-3 and n=2-4 Ne-like yttrium resonance lines. Satellite lines from the double excited 2s 2 2p 5 3l3l', 2s 2 2p 5 3l4l', 2s2p 6 3l3l' and 2s2p 6 3l4l' levels of Na-like Y as well as from 2s 2 2p 5 3l3l'3l '' and 2s2p 6 3l3l'3l '' levels of Mg-like Y were observed in spectra from a laser-produced plasma. The X-ray spectra were recorded with high spectral resolution λ/Δλ∼3500-5000 in the wavelength region of the n=2-3 Ne-like resonance lines and with λ/Δλ>1000 in the region of the n=2-4 Ne-like resonance lines. A total of more than 50 spectral features were identified, and their wavelengths were measured. A simple intensity model was developed, which agreed well with the measured spectra and assisted the line identification. The consistency of the model for different spectral regions demonstrates the potential of the Na-like and Mg-like satellite lines for diagnosing plasma conditions. (orig.)

  3. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  4. Parallel inhomogeneity and the Alfven resonance. 1: Open field lines

    Science.gov (United States)

    Hansen, P. J.; Harrold, B. G.

    1994-01-01

    In light of a recent demonstration of the general nonexistence of a singularity at the Alfven resonance in cold, ideal, linearized magnetohydrodynamics, we examine the effect of a small density gradient parallel to uniform, open ambient magnetic field lines. To lowest order, energy deposition is quantitatively unaffected but occurs continuously over a thickened layer. This effect is illustrated in a numerical analysis of a plasma sheet boundary layer model with perfectly absorbing boundary conditions. Consequences of the results are discussed, both for the open field line approximation and for the ensuing closed field line analysis.

  5. Shape resonances in low-energy-electron collisions with halopyrimidines

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Alessandra Souza; Bettega, Márcio H. F., E-mail: bettega@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-990 Curitiba, Paraná (Brazil)

    2013-12-07

    We report calculated cross sections for elastic collisions of low-energy electrons with halopyrimidines, namely, 2-chloro, 2-bromo, and 5-bromopyrimidine. We employed the Schwinger multichannel method with pseudopotentials to compute the cross sections in the static-exchange and static-exchange plus polarization levels of approximation for energies up to 10 eV. We found four shape resonances for each molecule: three of π* nature localized on the ring and one of σ* nature localized along the carbon–halogen bond. We compared the calculated positions of the resonances with the electron transmission spectroscopy data measured by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)]. In general the agreement between theory and experiment is good. In particular, our results show the existence of a π* temporary anion state of A{sub 2} symmetry for all three halopyrimidines, in agreement with the dissociative electron attachment spectra also reported by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)].

  6. Influence of the whispering-gallery mode resonators shape on its inertial movement sensitivity

    Science.gov (United States)

    Filatov, Yuri V.; Kukaev, Alexander S.; Shalymov, Egor V.; Venediktov, Vladimir Yu.

    2018-01-01

    The optical whispering-gallery mode (WGM) resonators are axially symmetrical resonators with smooth edges, supporting the existence of the WGMs by the total internal reflection on the surface of the resonator. As of today, various types of such resonators have been developed, namely the ball shaped, tor shaped, bottle shaped, disk shaped, etc. The movement of WGM resonators in inertial space causes the changes in their shape. The result is a spectral shift of the WGMs. Optical methods allow to register this shift with high precision. It can be used in particular for the measurement of angular velocities in inertial orientation and navigation systems. However, different types of resonators react to the movement in different manners. In addition, their sensitivity to movement can be changed when changing the geometric parameters of these resonators. The work is devoted to investigation of these aspects.

  7. The influence of the whispering gallery modes resonators shape on their sensitivity to the movement

    Science.gov (United States)

    Filatov, Yuri V.; Govorenko, Ekaterina V.; Kukaev, Alexander S.; Shalymov, Egor V.; Venediktov, Vladimir Yu.

    2017-05-01

    The optical whispering gallery modes resonators are axially symmetrical resonators with smooth edges, supporting the existence of the whispering gallery modes by the total internal reflection on the surface of the resonator. For today various types of such resonators were developed, namely the ball-shaped, tor-shaped, bottle-shaped, disk-shaped etc. The movement of whispering gallery modes resonators in inertial space causes the changes of their shape. The result is a spectral shift of the whispering gallery modes. Optical methods allow to register this shift with high precision. It can be used in particular for the measurement of angular velocities in inertial orientation and navigation systems. However, different types of resonators react to the movement on a miscellaneous. In addition, their sensitivity to movement can be changed when changing the geometric parameters of these resonators. This work is devoted to a research of these aspects.

  8. Mutual Coupling Reduction of E-Shaped MIMO Antenna with Matrix of C-Shaped Resonators

    Directory of Open Access Journals (Sweden)

    Raghad Ghalib Saadallah Alsultan

    2018-01-01

    Full Text Available E-shaped multiple-input-multiple-output (MIMO microstrip antenna systems operating in WLAN and WiMAX bands (between 5 and 7.5 GHz are proposed with enhanced isolation features. The systems are comprised of two antennas that are placed parallel and orthogonal to each other, respectively. According to the simulation results, the operating frequency of the MIMO antenna system is 6.3 GHz, and mutual coupling is below −18 dB in a parallel arrangement, whereas they are 6.4 GHz and −25 dB, respectively, in the orthogonal arrangement. The 2 × 3 matrix of C-shaped resonator (CSR is proposed and placed between the antenna elements over the substrate, to reduce the mutual coupling and enhance the isolation between the antennas. More than 30 dB isolation between the array elements is achieved at the resonant frequency for both of the configurations. The essential parameters of the MIMO array such as mutual coupling, surface current distribution, envelop correlation coefficient (ECC, diversity gain (DG, and the total efficiency have been simulated to verify the reliability and the validity of the MIMO system in both parallel and orthogonal configurations. The experimental results are also provided and compared for the mutual coupling with simulated results. An adequate match between the measured and simulated results is achieved.

  9. PREFACE: XXII International Conference on Spectral Line Shapes 2014

    Science.gov (United States)

    Parigger, C. G.

    2014-11-01

    The 22nd International Conference on Spectral Line Shapes (ICSLS) was convened at The University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee, USA, during June 1 to 6, 2014. A variety of topics of interest to the line shape community were addressed during invited and contributed oral and poster presentations. General categories of the ICSLS 2014 scientific contents included Astrophysics, Biomedical Physics, High and Low Temperature Plasma Physics, Magnetic Fusion Physics, Neutrals Atomic-Molecular-Optical (AMO) Physics, and Applied Physics. Research interests at UTSI and at the Center for Laser Applications (CLA) focus on Applied Physics and Plasma Physics areas such as laser-induced breakdown spectroscopy, spectroscopy with ultra-short light pulses, combustion diagnostics, to name a few. Consequently, the presentations during the conference addressed a variety of these topics. Attendance at the conference included researchers from North America, Africa, Asia and Europe, with an international representation showing 250 authors and co-authors with over 25 different citizenships, and 100 participants at the Conference. Figure 1 shows a photo of Conference attendees. The schedule included 82 contributions, 41 oral and 41 poster presentations. The 29 invited, 12 contributed oral and 41 contributed poster presentations were selected following communication with the international organizing committee members. A smart phone ''app'' was also utilized, thanks to Elsevier, to communicate electronic versions of the posters during the conference. Special thanks go to the members of the international and local committees for their work in organizing the 22nd ICSLS. In addition, thank you notes also go to the peer reviewers for the proceedings. Following the success of the IOP: Journal of Physics Conference Series selected for the 21st ICSLS publication, the proceedings papers report ongoing research activities. Papers submitted amount to 68 in number, or 83% of

  10. A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III

    Science.gov (United States)

    Ma, Q.; Tipping, R. H.

    1992-01-01

    The far wing line shape theory developed previously and applied to the calculation of the continuum absorption of pure water vapor is extended to foreign-broadened continua. Explicit results are presented for H2O-N2 and H2O-CO2 in the frequency range from 0 to 10,000/cm. For H2O-N2 the positive and negative resonant frequency average line shape functions and absorption coefficients are computed for a number of temperatures between 296 and 430 K for comparison with available laboratory data. In general the agreement is very good.

  11. Dielectronic satellites to the Ne-like yttrium resonance lines

    Energy Technology Data Exchange (ETDEWEB)

    Osterheld, A.L. [Lawrence Livermore National Lab., CA (United States); Nilsen, J. [Lawrence Livermore National Lab., CA (United States); Khakhalin, S.Ya. [MISDC, VNIIFTRI, Mendeleevo (Russian Federation); Faenov, A.Ya. [MISDC, VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, S.A. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Inst.

    1996-09-01

    We present a detailed analysis of the spectrum of satellite transitions to the n=2-3 and n=2-4 Ne-like yttrium resonance lines. Satellite lines from the double excited 2s{sup 2}2p{sup 5}3l3l`, 2s{sup 2}2p{sup 5}3l4l`, 2s2p{sup 6}3l3l` and 2s2p{sup 6}3l4l` levels of Na-like Y as well as from 2s{sup 2}2p{sup 5}3l3l`3l{sup ``} and 2s2p{sup 6}3l3l`3l{sup ``} levels of Mg-like Y were observed in spectra from a laser-produced plasma. The X-ray spectra were recorded with high spectral resolution {lambda}/{Delta}{lambda}{approx}3500-5000 in the wavelength region of the n=2-3 Ne-like resonance lines and with {lambda}/{Delta}{lambda}>1000 in the region of the n=2-4 Ne-like resonance lines. A total of more than 50 spectral features were identified, and their wavelengths were measured. A simple intensity model was developed, which agreed well with the measured spectra and assisted the line identification. The consistency of the model for different spectral regions demonstrates the potential of the Na-like and Mg-like satellite lines for diagnosing plasma conditions. (orig.).

  12. Excitation of helium resonance lines in solar flares

    International Nuclear Information System (INIS)

    Porter, J.G.; Gebbie, K.B.; November, L.J.; Joint Institute for Laboratory Astrophysics, Boulder, CO; National Solar Observatory, Sunspot, NM)

    1985-01-01

    Helium resonance line intensities are calculated for a set of six flare models corresponding to two rates of heating and three widely varying incident fluxes of soft X-rays. The differing ionization and excitation equilibria produced by these models, the processes which dominate the various cases, and the predicted helium line spectra are examined. The line intensities and their ratios are compared with values derived from Skylab NRL spectroheliograms for a class M flare, thus determining which of these models most nearly represents the density vs temperature structure and soft X-ray flux in the flaring solar transition region, and the temperature and dominant mechanaism of formation of the helium line spectrum during a flare. 26 references

  13. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    Science.gov (United States)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  14. Analytically continued Fock space multi-reference coupled-cluster theory: Application to the shape resonance

    International Nuclear Information System (INIS)

    Pal, Sourav; Sajeev, Y.; Vaval, Nayana

    2006-01-01

    The Fock space multi-reference coupled-cluster (FSMRCC) method is used for the study of the shape resonance energy and width in an electron-atom/molecule collision. The procedure is based upon combining a complex absorbing potential (CAP) with FSMRCC theory. Accurate resonance parameters are obtained by solving a small non-Hermitian eigen-value problem. We study the shape resonances in e - -C 2 H 4 and e - -Mg

  15. Fabrication of hexagonal star-shaped and ring-shaped patterns arrays by Mie resonance sphere-lens-lithography

    Science.gov (United States)

    Liu, Xianchao; Wang, Jun; Li, Ling; Gou, Jun; Zheng, Jie; Huang, Zehua; Pan, Rui

    2018-05-01

    Mie resonance sphere-lens-lithography has proved to be a good candidate for fabrication of large-area tunable surface nanopattern arrays. Different patterns on photoresist surface are obtained theoretically by adjusting optical coupling among neighboring spheres with different gap sizes. The effect of light reflection from the substrate on the pattern produced on the photoresist with a thin thickness is also discussed. Sub-micron hexagonal star-shaped and ring-shaped patterns arrays are achieved with close-packed spheres arrays and spheres arrays with big gaps, respectively. Changing of star-shaped vertices is induced by different polarization of illumination. Experimental results agree well with the simulation. By using smaller resonance spheres, sub-400 nm star-shaped and ring-shaped patterns can be realized. These tunable patterns are different from results of previous reports and have enriched pattern morphology fabricated by sphere-lens-lithography, which can find application in biosensor and optic devices.

  16. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    International Nuclear Information System (INIS)

    Dighe, P.M.; Das, D.

    2015-01-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×10 4 neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors

  17. PREFACE: XXI International Conference on Spectral Line Shapes (ICSLS 2012)

    Science.gov (United States)

    Devdariani, Alexander Z.

    2012-12-01

    The 21st International Conference on Spectral Line Shapes, ICSLS, was held in the historic main building of St Petersburg State University (St. Petersburg, Russia) on 3-9 June 2012. The event continued the tradition started in 1978 in Meudon Observatory in Paris. Representatives of line shape physics have since met every two years in different locations in Europe and North America. The most recent events were held in St John's, Newfoundland, Canada (2010), Valladolid, Spain (2008), and Auburn, AL (USA). Traditionally, the conferences consider experimental and theoretical issues of studying spectral line shapes, diagnostic utilization of spectral line profiles observed in absorption, emission or scattering of electromagnetic radiation by atoms, molecules, and clusters in different environments, including neutral environments, laboratory low and fusion plasmas, astrophysical conditions, and planetary atmospheres. The Conference was attended by over 100 professionals from Europe, Asia, America, Africa and New Zealand. The conference program was put together in such a way so as to exclude any parallel sessions. Five afternoon sessions featured 19 invited talks and 20 oral contributions, and two evening sessions offered 61 poster presentations, including post-deadline posters. This setup allowed for a relaxed and unhurried discussion of results and facilitated productive networking. The invited talks were selected by recommendation of members of the International Scientific Committee. The Organizers would like to thank all the members of the International Scientific Committee for their proposals on the agenda and their valuable advice. When considering candidates for oral contributions, the organizers took into account the suggestions and preferences of potential conference participants. When selecting the theses of poster presentations, the organizers focused on the topics in line with the theme of the conference and studies with well-formulated results. It must be

  18. Line ratios and wavelengths of helium-like argon n=2 satellite transitions and resonance lines

    International Nuclear Information System (INIS)

    Biedermann, C.; Radtke, R.; Fournier, K.

    2003-01-01

    The characteristic X-ray emission from helium-like argon was investigated as a mean to diagnose hot plasmas. We have measured the radiation from n=2-1 parent lines and from KLn dielectronic recombination satellites with high wavelength resolution as function of the excitation energy using the Berlin Electron Beam Ion Trap. Values of wavelength relative to the resonance and forbidden line are tabulated and compared with references. The line intensity observed over a wide range of excitation energies is weighted with a Maxwellian electron-energy distribution to analyze line ratios as function of plasma temperature. Line ratios (j+z)/w and k/w compare nicely with theoretical predictions and demonstrate their applicability as temperature diagnostic. The ratio z/(x+y) shows not to depend on the electron density

  19. CdTe reflection anisotropy line shape fitting

    International Nuclear Information System (INIS)

    Molina-Contreras, J.R.

    2010-01-01

    In this paper, an empirical novel plane-wave time dependent ensemble is introduced to fit the RA, the reflectance (R) and the imaginary part of the dielectric function oscillation measured around the E 1 and E 1 + Δ 1 transition region in II-VI semiconductors. By applying the new plane-wave time dependent ensemble to the measured spectrum for a (0 0 1) oriented CdTe undoped commercial wafer, crystallized in a zinc-blende structure, a very good agreement was found between the measured spectrum and the fitting. In addition to this, the reliability of the plane-wave time dependent ensemble was probed, by comparing the results with the calculated fitting in terms of a Fourier series and in terms of a six-order polynomial fit. Our analysis suggests, that the experimental oscillation in the line shape of the RA cannot be fitted with a Fourier series using harmonics multiples of the number which dominates the measured RA spectra in the argument of the plane-wave ensemble.

  20. Quality factor of a transmission line coupled coplanar waveguide resonator

    Energy Technology Data Exchange (ETDEWEB)

    Besedin, Ilya [National University for Science and Technology (MISiS), Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Menushenkov, Alexey P. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2018-12-15

    We investigate analytically the coupling of a coplanar waveguide resonator to a coplanar waveguide feedline. Using a conformal mapping technique we obtain an expression for the characteristic mode impedances and coupling coefficients of an asymmetric multi-conductor transmission line. Leading order terms for the external quality factor and frequency shift are calculated. The obtained analytical results are relevant for designing circuit-QED quantum systems and frequency division multiplexing of superconducting bolometers, detectors and similar microwave-range multi-pixel devices. (orig.)

  1. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    International Nuclear Information System (INIS)

    Naqui, J.; Su, L.; Mata, J.; Martín, F.

    2015-01-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties. - Highlights: • Magnetic-coupling between resonant elements affects transmission properties. • Inter-resonant coupling enhances the distance of two resonant frequencies. • The structures are useful for sensors and comparators, etc

  2. Analysis and design of a coupled coaxial line TEM resonator for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Benahmed, Nasreddine; Feham, Mohammed; Khelif, M'Hamed

    2006-01-01

    In this paper, we have successfully realized a numerical tool to analyse and to design an n-element unloaded coaxial line transverse electromagnetic (TEM) resonator. This numerical tool allows the determination of the primary parameters, matrices [L], [C] and [R], and simulates the frequency response of S 11 at the RF port of the designed TEM resonator. The frequency response permits evaluation of the unloaded quality factor Q 0 . As an application, we present the analysis and the design of an eight-element unloaded TEM resonator for animal studies at 4.7 T. The simulated performance has a -62.81 dB minimum reflection and a quality factor of 260 around 200 MHz

  3. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    International Nuclear Information System (INIS)

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-01-01

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  4. X-ray spectral line shapes for the excimer-laser-produced high density plasma diagnostics

    International Nuclear Information System (INIS)

    Magunov, A.; Faenov, A.; Skobelev, I.; Pikuz, T.; Batani, D.; Milani, M.; Conti, A.; Masini, A.; Costato, M.; Pozzi, A.; Turcu, E.; Allot, R.; Lisi, N.; Koenig, M.; Benuzzi, A.; Flora, F.; Letardi, T.; Palladino, L.; Reale, A.

    1997-01-01

    The time and space-integrated emission spectra measurements have been performed in plasma produced by 308 nm wavelength XeCl laser radiation (I L =(4-10)·10 12 W/cm 2 , τ=10 ns) and by 248 nm wavelength KrF laser pulse train radiation (I L =5·10 15 W/cm 2 , τ=7 ps, 16 pulses in train) on CF n plane target. The lines' shapes and intensities modeling of Lyman series and He-like ion resonance series of fluorine up to n=7 by fitting experimental data shows the considerable difference of plasma formation features for these two sets of the laser pulse parameters

  5. Large field-of-view transmission line resonator for high field MRI

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Johannesson, Kristjan Sundgaard; Boer, Vincent

    2016-01-01

    Transmission line resonators is often a preferable choice for coils in high field magnetic resonance imaging (MRI), because they provide a number of advantages over traditional loop coils. The size of such resonators, however, is limited to shorter than half a wavelength due to high standing wave....... Achieved magnetic field distribution is compared to the conventional transmission line resonator. Imaging experiments are performed using 7 Tesla MRI system. The developed resonator is useful for building coils with large field-of-view....

  6. Stochastic theory of relaxation and collisional broadening of spectral line shapes

    International Nuclear Information System (INIS)

    Faid, K.

    1986-01-01

    A complete stochastic theory of relaxation is developed in terms of a homogeneous equation for the averaged density matrix of a system immersed in a thermal bath. This theory is then used as the basis of a new stochastic approach to the phenomenon of collisional broadening of spectral line shapes. Single-photon and multiphoton processes are studied. The features of a line shape are linked by simple expressions to the statistical properties of a stochastic hermitian Hamiltonian. The ordinary line shape predicted by Kubo's approach is generalized. The present approach predicts broadening as well as asymmetry and shift. A representation of line shapes in multiphoton processes by diagrams is also developed

  7. Electromagnetically induced transparency line shapes for large probe fields and optically thick media

    International Nuclear Information System (INIS)

    Pack, M. V.; Camacho, R. M.; Howell, J. C.

    2007-01-01

    We calculate the line shape and linewidths for electromagnetically induced transparency (EIT) in optically thick, Doppler broadened media (buffer gasses are also considered). In generalizing the definition of the EIT linewidth to optically thick media, we find two different linewidth definitions apply depending on whether the experiment is pulsed or continuous wave (cw). Using the cw definition for the EIT line shape we derive analytic expressions describing the linewidth as a function of optical depth. We also review the EIT line shapes in optically thin media and provide physical arguments for how the line shapes change as a function of various parameters

  8. Ultra-small v-shaped gold split ring resonators for biosensing using fundamental magnetic resonance in the visible spectrum

    Science.gov (United States)

    Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye

    2017-10-01

    Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.

  9. Method of shaping fields of controlled extension in a resonator with a large electrical length

    International Nuclear Information System (INIS)

    Bomko, V.A.; Rudiak, B.I.

    A method is discussed for controlling the energy of particles accelerated in a linear accelerator consisting of a volume resonator with drift tubes. Results are described for experimental studies of problems with field shaping of controlled extension of fields in an accelerating structure having drift tubes and a large electrical length. The possibility of shaping the field in a resonator using a stabilizing system of the ''antipode'' type is considered

  10. Analysis of Hα(Dα) Line Shape Xu Wei & Li Yan

    Indian Academy of Sciences (India)

    Abstract. The particles energy distribution is derived directly from the Hα(Dα) line shape, which is measured by two sets of OMA. The dissociative excitation of molecular is dominating when the local elec- tron temperature is >10eV. The Dα line shape is also simulated by the Monte–Carlo method, the molecular dissociation ...

  11. Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications

    DEFF Research Database (Denmark)

    Stadler, Robert; Markussen, Troels

    2011-01-01

    Asymmetric line shapes can occur in the transmission function describing electron transport in the vicinity of a minimum caused by quantum interference effects. Such asymmetry can be used to increase the thermoelectric efficiency of molecular junctions. So far, however, asymmetric line shapes hav...... calculations for a variety of t-stub molecules and also address their suitability for thermoelectric applications....

  12. Shape dependent resonance light scattering properties of gold nanorods

    International Nuclear Information System (INIS)

    Zhu Jian; Huang Liqing; Zhao Junwu; Wang Yongchang; Zhao Yanrui; Hao Limei; Lu Yimin

    2005-01-01

    Suspended gold nanorods with mean aspect ratio 2.5 have been synthesized via electrochemical method. Resonance scattering properties have been studied. Two scattering peaks fixed at 400 and 640 nm are due to the scattering of the gold nanorods via coupling to the transverse and longitudinal surface plasmon resonance. The quasi-static calculation results indicate that with the increasing aspect ratio of the nanorods, the longer wavelength scattering peak red shifts linearly and the shorter wavelength peak blue shifts non-linearly. When aspect ratio a/b = 1.0, ellipse degenerate to sphere and the two peaks unite into one peak at 450 nm

  13. Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators

    Science.gov (United States)

    Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.

    2018-02-01

    Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.

  14. Effects of collisions on linear and non-linear spectroscopic line shapes

    International Nuclear Information System (INIS)

    Berman, P.R.

    1978-01-01

    A fundamental physical problem is the determination of atom-atom, atom-molecule and molecule-molecule differential and total scattering cross sections. In this work, a technique for studying atomic and molecular collisions using spectroscopic line shape analysis is discussed. Collisions occurring within an atomic or molecular sample influence the sample's absorptive or emissive properties. Consequently the line shapes associated with the linear or non-linear absorption of external fields by an atomic system reflect the collisional processes occurring in the gas. Explicit line shape expressions are derived characterizing linear or saturated absorption by two-or three-level 'active' atoms which are undergoing collisions with perturber atoms. The line shapes may be broadened, shifted, narrowed, or distorted as a result of collisions which may be 'phase-interrupting' or 'velocity-changing' in nature. Systematic line shape studies can be used to obtain information on both the differential and total active atom-perturber scattering cross sections. (Auth.)

  15. Surface vibrational modes in disk-shaped resonators.

    Science.gov (United States)

    Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P

    2014-03-01

    The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. On field line resonances of hydromagnetic Alfven waves in dipole magnetic field

    International Nuclear Information System (INIS)

    Chen, Liu; Cowley, S.C.

    1989-07-01

    Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs

  17. Universal FFM Hydrogen Spectral Line Shapes Applied to Ions and Electrons

    Science.gov (United States)

    Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.

    2008-10-01

    We present a method for the calculation of hydrogen spectral line shapes based on two combined approaches: Universal Model and FFM procedure. We start with the analytical functions for the intensities of the Stark components of radiative transitions between highly excited atomic states with large values of principal quantum numbers n,n'γ1, with Δn = n-n'≪n for the specific cases of Hn-α line (Δn = 1) and Hn-β line (Δn = 2). The FFM line shape is obtained by averaging on the electric field of the Hooper's field distribution for ion and electron perturber dynamics and by mixing the Stark components with a jumping frequency rate ve (vi) where v = N1/3u (N is electron density and u is the ion or electron thermal velocity). Finally, the total line shape is given by convolution of ion and electron line shapes. Hydrogen line shape calculations for Balmer Hα and Hβ lines are compared to experimental results in low density plasma (Ne˜1016-1017cm-3) and low electron temperature in order of 10 000K. This method relying on analytic expressions permits fast calculation of Hn-α and Hn-β lines of hydrogen and could be used in the study of the Stark broadening of radio recombination lines for high principal quantum number.

  18. Line width and line shape analysis in the inductively coupled plasma by high resolution Fourier transform spectrometry

    International Nuclear Information System (INIS)

    Faires, L.M.; Palmer, B.A.; Brault, J.W.

    1984-01-01

    High resolution Fourier transform spectrometry has been used to perform line width and line shape analysis of eighty-one iron I emision lines in the spectral range 290 to 390nm originating in the normal analytical zone of an inductively coupled plasma. Computer programs using non-linear least squares fitting techniques for line shape analysis were applied to the fully resolved spectra to determine Gaussian and Lorentzian components of the total observed line width. The effect of noise in the spectrum on the precision of the line fitting technique was assessed, and the importance of signal to noise ratio for line shape analysis is discussed. Translational (Doppler) temperatures were calculated from the Gaussian components of the line width and were found to be on the order of 6300 0 K. The excitation temperature of iron I was also determined from the same spectral data by the spectroscopic slope method based on the Einstein-Boltzmann expression for spectral intensity and was found to be on the order of 4700 0 K. 31 references

  19. Spectral line shape simulation for electron stark-broadening of ion emitters in plasmas

    International Nuclear Information System (INIS)

    Dufour, Emmanuelle; Calisti, Annette; Talin, Bernard; Gigosos, Marco A.; Gonzalez, Manuel A.; Dufty, Jim W.

    2002-01-01

    Electron broadening for ions in plasmas is investigated in the framework of a simplified semi-classical model involving an ionic emitter imbedded in an electron gas. A regularized Coulomb potential that removes the divergence at short distances is postulated for the ion-electron interaction. Line shape simulations based on Molecular Dynamics for the ion impurity and the electrons, accounting for all the correlations, are reported. Comparisons with line shapes obtained with a quasi-particle model show expected correlation effects. Through an analysis of the results with the line shape code PPP, it is inferred that the correlation effect results mainly from the microfield dynamic properties

  20. Argon line broadening by neutral atoms and application to the measurement of oscillator strengths of AI resonance lines

    International Nuclear Information System (INIS)

    Vallee, O.; Ranson, P.; Chapelle, J.

    1977-01-01

    AI line broadening was studied from collisions between neutral argon atoms (3p 5 4p-3p 5 4s transitions) in a weakly ionised plasma jet (neutral atoms temperature T 0 approximately 4000K, electrons temperature Tsub(e) approximately 6000K, electronic density Nsub(e) 15 cm -3 , ionisation rate α -4 , and pressure range from 1 to 3 kg/cm 2 ). A satisfactory description of Van der Waals broadened lines is obtained by means of a Lennard-Jones potential. Measurement of line widths whose corresponding transitions occur on resonant levels, gives with relatively good accuracy the oscillator strength of the argon resonance lines [fr

  1. Toeless pulse shaping with a single delay-line network

    International Nuclear Information System (INIS)

    Tauhata, L.; Binns, D.C.

    1976-04-01

    New unipolar delay-line clippers producing negligible cancellation remnant have been developed. Near perfect clipping is achieved using a combination of several types of coaxial cable tranformers working as a phase inverter, a new pulse adder, or an impedance transformer. Only passive elements are used in the bridge network. The construction is simple and the performance is extremely stable and wide in dynamic range and frequency band width. Completely symmetrical bipolar pulses are also easily obtained using this technique

  2. The Ratio of the Resonance Line to Intercombination Line in Neonlike Ions

    Science.gov (United States)

    Panchenko, D.; Andrianarijaona, Vm; Brown, Gv; Hell, N.; Beiersdorfer, P.

    2017-04-01

    We present the measurement results of the intensity ratios of astrophysically important 1s22s22p1/2 53d3/2 -> 1s22s22p6 resonance line to the 1s2 2s2 2p3/253d5/2 -> 1s22s22p6 intercombination line for Ne-like Kr26+ and Mo32+. The experiment was done at the EBIT-I electron beam ion trap at Lawrence Livermore National Laboratory and utilized an x-ray microcalorimeter. The Mo32+ experiment is the highest Z-measurement of such type to date, where the dominant role of the intercombination line, known to increase with Z, puts our measurement firmly into the relativistic regime. Compared to the earlier measurements of ions with lower atomic numbers, the measurement for Mo32+ shows much a closer agreement with theory. Our results support the hypothesis that the disagreement should narrow with atomic number. This implies that the disagreement with theory may be confined to the range of atomic numbers where the correlation effects are largest. This work was performed under the auspices of the U.S. DoE by LLNL, contract DE-AC52-07NA27344, and was supported in part by NASA's APRA program and by the ESA, contract 4000114313/15/NL/CB.

  3. A precision measurement of the Z0-line shape

    International Nuclear Information System (INIS)

    Schmitt, B.

    1996-01-01

    A precise measurement of the cross section of the process e + e - → hadrons at energies around the Z 0 -resonance is performed. The aim is to achieve a systematic error of 0.1%. Data recorded with the OPAL detector at LEP during the years 1990 to 1994 are used. To achieve a small systematic luminosity error the OPAL detector was upgraded with a new luminosity monitor. The new luminosity detector, the luminosity measurement, and the selection of multi hadronic events is described in detail. The measured hadronic cross sections together with the leptonic cross sections are used to determine the mass and the width of the Z 0 -boson. The partial widths are used for a precision test of the standard model. (orig.)

  4. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state

  5. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.

    2012-02-02

    This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes. © 2012 Springer Science+Business Media B.V.

  6. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.; Berger, M. A.

    2012-01-01

    of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions

  7. Electron-impact excitation of the In+ ion resonance line

    International Nuclear Information System (INIS)

    Gomonai, A.; OvcharenkO, E.; Imre, A.; Hutych, Yu.

    2004-01-01

    Full text: Study of the electron-impact excitation of the In + ion is important not only for atomic structure research, but also for applications to astrophysics, analytical techniques and fusion research, as well as for new applications of this ion such as a component of solid state laser media and as a source for an optical frequency standart. The energy dependence of the electron-impact excitation of the In + ion resonance line was studied by spectroscopic method using the crossed-beam technique in the energy range from the threshold up to 300 eV for the following process: e + In + (4d 10 5s 2 ) 1 S 0 e' + In + (4d 10 5s5p) 1 P 0 1 e' + In + (4d 10 5s 2 ) 1 S 0 +h (1) Process (1) includes the direct electron-impact excitation of the 5s5p 1 P 0 1 state from the ground 5s 2 1 S 0 state, as well as the contribution of the cascade transitions and resonance processes: In + (4d 10 5s nln 1 l 1 , 4d 10 5p 2 nl, 4d 9 5s 2 nln 1 l 1 ) In + (4d 10 5s 2 ) 1 S 0 + e' (2) The peculiarity of this investigation is the presence of low lying metastable states and high temperature (T1250K) of atomic vapour. The ions produced in the ion source on the heated tantalum surface were extracted, focused and accelerated by a system of ion optical lenses into a beam (E i = 700eV, I i (11.4)10 -6 A), separated from neutral atoms by means of a 90 deg electrostatic selector and crossed at the right angle by the ribbon electron beam (E e = (7300)eV, Ie = (610)10 -5 A, 0 1/2 (0.40.5)eV) in the collision region (at P 10 -8 Torr) [1]. Radiation observed at 90 deg with respect to the beam intersection plane was spectrally separated by a 70 deg vacuum monochromator (d/dl = 1.7nm/mm) based on the Seya- Namioka scheme and detected by a photomultiplier. The measurements and experimental data processing were realised by means of a PC. The drop of the energy dependence of the excitation cross section obey the E -1 lnE rule specific for the optically allow transitions. A distinct structure in the energy

  8. Spectral line shapes in linear absorption and two-dimensional spectroscopy with skewed frequency distributions

    NARCIS (Netherlands)

    Farag, Marwa H.; Hoenders, Bernhard J.; Knoester, Jasper; Jansen, Thomas L. C.

    2017-01-01

    The effect of Gaussian dynamics on the line shapes in linear absorption and two-dimensional correlation spectroscopy is well understood as the second-order cumulant expansion provides exact spectra. Gaussian solvent dynamics can be well analyzed using slope line analysis of two-dimensional

  9. Line broadening in multiphoton processes with a resonant intermediate transition

    International Nuclear Information System (INIS)

    Wang, C.C.; James, J.V.; Xia, J.

    1983-01-01

    The linewidth of the excitation spectrum for multiphoton ionization is found to be broadened much more severely than the cascade fluorescence originating from the resonant intermediate level. These results are due to the mutual effects of the ionizing and resonating transitions, which are not properly accounted for in perturbative treatments

  10. Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures

    Science.gov (United States)

    Cetin, Arif E.; Kaya, Sabri; Mertiri, Alket; Aslan, Ekin; Erramilli, Shyamsunder; Altug, Hatice; Turkmen, Mustafa

    2015-06-01

    In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constituting aperture elements, through finite difference time domain calculations. Our numerical calculations show that at the dual-resonances, the aperture system supports large and easily accessible local electromagnetic fields. In order to experimentally realize the aperture system, we utilize a high-precision and lift-off free fabrication method based on electron-beam lithography. We also introduce a fine-tuning mechanism for controlling the dual-resonant spectral response through geometrical device parameters. Finally, we show the aperture system's highly advantageous far- and near-field characteristics through numerical calculations on refractive index sensitivity. The quantitative analyses on the availability of the local fields supported by the aperture system are employed to explain the grounds behind the sensitivity of each spectral feature within the dual-resonant behavior. Possessing dual-resonances with large and accessible electromagnetic fields, Jerusalem cross-shaped apertures can be highly advantageous for wide range of applications demanding multiple spectral features with strong nearfield characteristics.

  11. Time-dependent shape fluctuations and the giant dipole resonance in hot nuclei: Realistic calculations

    International Nuclear Information System (INIS)

    Alhassid, Y.; Bush, B.; Yale Univ., New Haven, CT

    1990-01-01

    The effects of time-dependent shape fluctuations on the giant dipole resonance (GDR) in hot rotating nuclei are investigated. Using the framework of the Landau theory of shape transitions we develop a realistic macroscopic stochastic model to describe the quadrupole time-dependent shape fluctuations and their coupling to the dipole degrees of freedom. In the adiabatic limit the theory reduces to a previous adiabatic theory of static fluctuations in which the GDR cross section is calculated by averaging over the equilibrium distribution with the unitary invariant metric. Nonadiabatic effects are investigated in this model and found to cause structural changes in the resonance cross section and motional narrowing. Comparisons with experimental data are made and deviations from the adiabatic calculations can be explained. In these cases it is possible to determine from the data the damping of the quadrupole motion at finite temperature. (orig.)

  12. Heuristics comparison for u-shaped assembly line balancing in the apparel factory

    Directory of Open Access Journals (Sweden)

    Nuchsara Kriengkorakot

    2014-06-01

    Full Text Available In recent year, many industries have adopted a Just-in-time (JIT approach to manufacturing. One of the important changes resulting from JIT implementation is the replacement of the traditional straight lines with Ushaped assembly lines. The important characteristic of these new configurations is that multiskilled workers perform various tasks of different stations along the production line. This research is to improve the assembly line balancing in apparel factory in case study of T-shirt style 53287. The efficiency of production line was 55.48%, the factory balanced line with the traditional method in straight line. Then, the u-shaped assembly line balancing problem (UALBP is to be performed instead of straight line. By using the heuristics of Maximum Task Time, Minimum Task Time, Maximum Ranked Positional Weight (RPWmax and Greedy Randomized to determine the optimal solutions related to the number of stations and line efficiency. The results indicate that two heuristics have given the good solution which have produced by the use of Maximum Task Time and Greedy Randomized. The minimum number of stations have reduced from 17 stations to 11 stations in UALB and the line efficiency was increased from 55.48% to 85.75%. The U-line configuration frequently improves the line efficiency and has fewer work stations compared to the traditional lines.

  13. Far from Equilibrium Percolation, Stochastic and Shape Resonances in the Physics of Life

    Directory of Open Access Journals (Sweden)

    Antonio Bianconi

    2011-10-01

    Full Text Available Key physical concepts, relevant for the cross-fertilization between condensed matter physics and the physics of life seen as a collective phenomenon in a system out-of-equilibrium, are discussed. The onset of life can be driven by: (a the critical fluctuations at the protonic percolation threshold in membrane transport; (b the stochastic resonance in biological systems, a mechanism that can exploit external and self-generated noise in order to gain efficiency in signal processing; and (c the shape resonance (or Fano resonance or Feshbach resonance in the association and dissociation processes of bio-molecules (a quantum mechanism that could play a key role to establish a macroscopic quantum coherence in the cell.

  14. Scalable nanofabrication of U-shaped nanowire resonators with tunable optical magnetism.

    Science.gov (United States)

    Zhou, Fan; Wang, Chen; Dong, Biqin; Chen, Xiangfan; Zhang, Zhen; Sun, Cheng

    2016-03-21

    Split ring resonators have been studied extensively in reconstituting the diminishing magnetism at high electromagnetic frequencies in nature. However, breakdown in the linear scaling of artificial magnetism is found to occur at the near-infrared frequency mainly due to the increasing contribution of self-inductance while reducing dimensions of the resonators. Although alternative designs have enabled artificial magnetism at optical frequencies, their sophisticated configurations and fabrication procedures do not lend themselves to easy implementation. Here, we report scalable nanofabrication of U-shaped nanowire resonators (UNWRs) using the high-throughput nanotransfer printing method. By providing ample area for conducting oscillating electric current, UNWRs overcome the saturation of the geometric scaling of the artificial magnetism. We experimentally demonstrated coarse and fine tuning of LC resonances over a wide wavelength range from 748 nm to 1600 nm. The added flexibility in transferring to other substrates makes UNWR a versatile building block for creating functional metamaterials in three dimensions.

  15. Spectrophotometry of Bowen resonance fluorescence lines in three planetary nebulae

    Science.gov (United States)

    O'Dell, C. R.; Miller, Christopher O.

    1992-01-01

    The results are presented of a uniquely complete, carefully reduced set of observations of the O III Bowen fluorescence lines in the planetary nebulae NGC 6210, NGC 7027, and NGC 7662. A detailed comparison with the predictions of radiative excitation verify that some secondary lines are enhanced by selective population by the charge exchange mechanism involving O IV. Charge exchange is most important in NGC 6210, which is of significantly lower ionization than the other nebulae. In addition to the principal Bowen lines arising from Ly-alpha pumping of the O III O1 line, lines arising from pumping of the O3 line are also observed. Comparison of lines produced by O1 and O3 with the theoretical predictions of Neufeld indicate poor agreement; comparison with the theoretical predictions of Harrington show agreement with NGC 7027 and NGC 7662.

  16. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    International Nuclear Information System (INIS)

    Klofai, Yerima; Essimbi, B Z; Jaeger, D

    2011-01-01

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  17. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    Energy Technology Data Exchange (ETDEWEB)

    Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

    2011-10-15

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  18. Structure, shape, and evolution of radiatively accelerated QSO emission-line clouds

    International Nuclear Information System (INIS)

    Blumenthal, G.R.; Mathews, W.G.

    1979-01-01

    The possibility that the broad emission-line regions of QSOs and active galactic nuclei are formed by a multitude of small clouds which are radiatively accelerated is discussed. Although this model is by no means certain at present, it has four virtues: (1) Observed emission-line widths can be produced with observationally allowed electron densities, UV luminosities, and ionization levels. (2) The acceleration force is coherent in each cloud are found. (3) Reasonable line profiles can result for all emission lines. (4) Photoionization of hydrogen accounts for both heating and acceleration of the emission-line gas. A self-consistent model is developed for the structure, shape, and evolution of radiatively accelerated clouds. The shape varies with cloud mass, and two distinct types of clouds. Fully ionized clouds of very low mass approach a nearly spherical shape. However, all clouds having masses greater than some critical mass adopt a ''pancake'' shape. The condition for constant cloud mass in the cloud frame is shown to be equivalent to the equation of motion of a cloud in the rest frame of the QSO. The emission-line profiles can be sensitive to radial variations in the properties of the intercloud medium, and those properties that correspond to observed profiles are discussed. Finally, the covering factor of a system of pancake clouds is estimated along with the total number of clouds required--approximately 10 14 clouds in each QSO

  19. Design of Miniaturized 10dB Wideband Branch Line Coupler Using Dual and T-Shape Transmission Lines

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2018-04-01

    Full Text Available This paper presents a design mechanism of miniaturized wideband branch line coupler (BLC with loose coupling of 10 dB. Dual transmission lines are used as a feed network which provides a size reduction of 32% with a fractional bandwidth (FBW of 60% for 10±0.5 dB coupling but return loss performance is found to be poor in the operating band. For further improvement of return loss performance as well as for size reduction of the BLC, a T- shape transmission lines are used instead of series quarter wavelength transmission lines, and hence the overall size reduction of around 44% with FBW of 50.4% is achieved. The return loss and isolation performance is found to be les than 15 dB in the entire operating band (2.5–4.1 GHz with respect to design frequency 3G Hz. The proposed BLC is analyzed, fabricated and tested.

  20. A Near-Threshold Shape Resonance in the Valence-Shell Photoabsorption of Linear Alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.; Gans, Bérenger; de Oliveira, N.; Ito, K.; Joyeux, D.; Archer, L. E.; Lucchese, R. R.; Xu, Hong; Pratt, S. T.

    2015-12-17

    The room-temperature photoabsorption spectra of a number of linear alkynes with internal triple bonds (e.g., 2-butyne, 2-pentyne, and 2- and 3-hexyne) show similar resonances just above the lowest ionization threshold of the neutral molecules. These features result in a substantial enhancement of the photoabsorption cross sections relative to the cross sections of alkynes with terminal triple bonds (e.g., propyne, 1-butyne, 1-pentyne,...). Based on earlier work on 2-butyne [Xu et al., J. Chem. Phys. 2012, 136, 154303], these features are assigned to excitation from the neutral highest occupied molecular orbital (HOMO) to a shape resonance with g (l = 4) character and approximate pi symmetry. This generic behavior results from the similarity of the HOMOs in all internal alkynes, as well as the similarity of the corresponding g pi virtual orbital in the continuum. Theoretical calculations of the absorption spectrum above the ionization threshold for the 2- and 3-alkynes show the presence of a shape resonance when the coupling between the two degenerate or nearly degenerate pi channels is included, with a dominant contribution from l = 4. These calculations thus confirm the qualitative arguments for the importance of the l = 4 continuum near threshold for internal alkynes, which should also apply to other linear internal alkynes and alkynyl radicals. The 1-alkynes do not have such high partial waves present in the shape resonance. The lower l partial waves in these systems are consistent with the broader features observed in the corresponding spectra.

  1. Calculation of self-absorption coefficients of calcium resonance lines in the case of a CaCl2-water plasma

    International Nuclear Information System (INIS)

    Hannachi, R.; Cressault, Y.; Teulet, Ph.; Gleizes, A.; Lakhdar, Z. Ben

    2008-01-01

    The resonance escape factors for the lines emitted by a neutral calcium atom Ca I at 4226.73 A and of ionic calcium Ca II at 3933.66 A and at 3968.47 A are calculated assuming a Voigt profile and in the case of CaCl 2 -water plasma. The dependence of the escape factor on the optical thickness f 0 from the line center which itself depends on the two main spectral line shape broadening mechanisms (pressure and Doppler effects) are considered. The variation of the resonance escape factors with the temperature, the CaCl 2 molar proportion and the size of the plasma are also investigated. This calculation is useful for the application of Laser-Induced Breakdown Spectroscopy in the quantitative analysis of elemental composition. Its application allows us to reduce the non-linearities in the relation between resonance lines intensities of calcium in our case and its concentration

  2. Transformation lines in an Fe-Cr-Ni-Mn-Si polycrystalline shape memory alloy

    International Nuclear Information System (INIS)

    Tanaka, Kikuaki; Hayashi, Toshimitsu; Fischer, F.D.; Buchmayr, B.

    1994-01-01

    Transformation lines, the martensite/austenite start and finish conditions in the stress-temperature plane, are determined in an Fe-Cr-Ni-Mn-Si polycrystalline shape memory alloy with two different experimental procedures. The transformation lines are shown to be almost linear with nearly the same slope. The martensitic transformation zone and the reverse transformation zone do not coincide, and the reverse transformation zone is very wide; T Af -T As ∼ 180 K. The strong dependence on the preloading of the transformation lines, especially of the reverse transformation lines, is examined. (orig.)

  3. Resonance line-profiles in galactic disk UV-bright stars

    International Nuclear Information System (INIS)

    Carrasco, L.; Costero, R.

    1987-01-01

    We have made a comparative analysis of UV resonance line-profiles in O-type stars members of young clusters and OB associations, with those of hot stars located away from sites of recent star formation (including ''runaway'' stars). The resonance line-profiles are found to be generally dominated by stellar winds that appear to depend mainly on the surface gravity and temperature of the star, and not on its mass. We also present the C IV, Si IV and N V resonance line-profiles for eleven stars not published in the previous two papers. The use of only the largest stellar wind velocity detectable in the resonance lines as a stellar population indicator, is disputed. (author)

  4. Resonance broadening of Hg lines as a density diagnostic in high intensity discharge lamps

    International Nuclear Information System (INIS)

    Lawler, J E

    2004-01-01

    The use of width measurements on resonance broadened lines of Hg as a density diagnostic in high intensity discharge (HID) lamps is reviewed and further developed in this paper. Optical depths of Hg I lines at 491.6 nm, 577.0 nm, and 1014 nm are computed as a function of temperature to confirm that these lines are optically thin in most HID lamps. The effect of quadratic and quartic radial temperature variation on the width of resonance broadened lines is computed for arc core temperatures from 4000 K to 7000 K. Such variations in temperature, and inverse variations in Hg density, are found to increase the line widths by less than 10% for 'side-on' emission measurements averaged over the arc radius. Theoretical profiles of resonance broadened spectral lines, both radially averaged and as a function of chord offset, are presented. Observations of resonance broadened lines in a metal-halide HID lamp are presented and analysed. It is concluded that the widths of resonance broadened lines provide a convenient and reliable diagnostic for the arc core Hg density but are generally not very sensitive to the radial temperature and Hg density gradient

  5. NMRKIN: Simulating line shapes from two-dimensional spectra of proteins upon ligand binding

    International Nuclear Information System (INIS)

    Guenther, Ulrich L.; Schaffhausen, Brian

    2002-01-01

    The analysis of the shape of signals in NMR spectra is a powerful tool to study exchange and reaction kinetics. Line shapes in two-dimensional spectra of proteins recorded for titrations with ligands provide information about binding rates observed at individual residues. Here we describe a fast method to simulate a series of line shapes derived from two-dimensional spectra of a protein during a ligand titration. This procedure, which takes the mutual effects of two dimensions into account, has been implemented in MATLAB as an add-on to NMRLab (Guenther et al., 2000). In addition, more complex kinetic models, including sequential and parallel reactions, were simulated to demonstrate common features of more complex line shapes which could be encountered in protein-ligand interactions. As an example of this method, we describe its application to line shapes obtained for a titration of the p85 N-SH2 domain of PI3-kinase with a peptide derived from polyomavirus middle T antigen (MT)

  6. Unresolved dielectronic satellites of the resonance line of heliumlike iron (Fe XXV)

    International Nuclear Information System (INIS)

    Bitter, M.; von Goeler, S.; Hill, K.W.; Horton, R.; Johnson, D.; Roney, W.; Sauthoff, N.; Silver, E.; Stodiek, W.

    1981-02-01

    (1s 2 nl - 1s2pnl, n greater than or equal to 3) dielectronic satellites of the resonance line of Fe XXV at 1.85 A have been observed from PLT (Princeton Large Torus) tokamak discharges and are used for a detailed comparison with theory. The necessary corrections for Doppler broadening measurements are discussed, and accurate satellite to resonance line ratios allowing for a determination of the total dielectronic recombination rate of Fe XXV are derived

  7. Line Shape Modeling for the Diagnostic of the Electron Density in a Corona Discharge

    Directory of Open Access Journals (Sweden)

    Joël Rosato

    2017-09-01

    Full Text Available We present an analysis of spectra observed in a corona discharge designed for the study of dielectrics in electrical engineering. The medium is a gas of helium and the discharge was performed at the vicinity of a tip electrode under high voltage. The shape of helium lines is dominated by the Stark broadening due to the plasma microfield. Using a computer simulation method, we examine the sensitivity of the He 492 nm line shape to the electron density. Our results indicate the possibility of a density diagnostic based on passive spectroscopy. The influence of collisional broadening due to interactions between the emitters and neutrals is discussed.

  8. Effect of weld line shape on material flow during friction stir welding of aluminum and steel

    International Nuclear Information System (INIS)

    Yasui, Toshiaki; Ando, Naoyuki; Morinaka, Shinpei; Mizushima, Hiroki; Fukumoto, Masahiro

    2014-01-01

    The effect of weld line shape on material flow during the friction stir welding of aluminum and steel was investigated. The material flow velocity was evaluated with simulated experiments using plasticine as the simulant material. The validity of the simulated experiments was verified by the marker material experiments on aluminum. The circumferential velocity of material around the probe increased with the depth from the weld surface. The effect is significant in cases where the advancing side is located on the outside of curve and those with higher curvature. Thus, there is an influence of weld line shape on material flow

  9. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie [Key laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academic of Sciences, Beijing 100029 (China); Ou, Yi; Ou, Wen [Key laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academic of Sciences, Beijing 100029 (China); Smart Sensor Engineering Center, Jiangsu R& D Center for Internet of Things, Wuxi 214315 (China)

    2015-07-15

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  10. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    International Nuclear Information System (INIS)

    Wu, Meng; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie; Ou, Yi; Ou, Wen

    2015-01-01

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes

  11. First observation of the Λ(1405) line shape in electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Y.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D’Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.

    2013-10-01

    We report the first observation of the line shape of the Λ ( 1405 ) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K + Λ ( 1405 ) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0 < Q 2 < 3.0 (GeV/ c ) 2 . The analysis utilized the decay channels Σ + π - of the Λ ( 1405 ) and p π 0 of the Σ + . Neither the standard Particle Data Group resonance parameters, nor free parameters fitting to a single Breit-Wigner resonance represent the line shape. In our fits, the line shape corresponds approximately to predictions of a two-pole meson-baryon picture of the Λ ( 1405 ) , with a lower mass pole near 1368 MeV/ c 2 and a higher mass pole near 1423 MeV/ c 2 . Furthermore, with increasing photon virtuality the mass distribution shifts toward the higher mass pole.

  12. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    Science.gov (United States)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  13. Off-line tests of superconducting resonators of the JAERI tandem booster

    International Nuclear Information System (INIS)

    Shibata, Michihiro; Ishii, Tetsuro; Takeuchi, Suehiro

    1993-01-01

    The JAERI tandem booster linac, which consists of 46 superconducting quarter wave resonators, is under construction. Off-line tests for resonators were performed. Accelerating field levels of 7MV/m were obtained at an rf input of 4W with most resonators. A maximum field level of 12.7MV/m was obtained. The Q-value was degraded when resonators were cooled down slowly around a temperature of 120K. We investigated this phenomenon by changing the cooling rate. (author)

  14. High-spin isomer in 211Rn, and the shape of the yrast line

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Fahlander, C.; Poletti, A.R.

    1981-08-01

    High spin yrast states in 211 Rn have been identified. A 61/2 - , 380 ns isomer found at 8856 keV is characterised as a core-excited configuration. The average shape of the yrast line shows a smooth behaviour with spin, in contrast to its neighbour 212 Rn. This difference is attributed to the presence of the neutron hole

  15. Deterministic Line-Shape Programming of Silicon Nanowires for Extremely Stretchable Springs and Electronics.

    Science.gov (United States)

    Xue, Zhaoguo; Sun, Mei; Dong, Taige; Tang, Zhiqiang; Zhao, Yaolong; Wang, Junzhuan; Wei, Xianlong; Yu, Linwei; Chen, Qing; Xu, Jun; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere

    2017-12-13

    Line-shape engineering is a key strategy to endow extra stretchability to 1D silicon nanowires (SiNWs) grown with self-assembly processes. We here demonstrate a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns with the aid of indium droplets that absorb amorphous Si precursor thin film to produce ultralong c-Si NWs along programmed step edges. A reliable and faithful single run growth of c-SiNWs over turning tracks with different local curvatures has been established, while high resolution transmission electron microscopy analysis reveals a high quality monolike crystallinity in the line-shaped engineered SiNW springs. Excitingly, in situ scanning electron microscopy stretching and current-voltage characterizations also demonstrate a superelastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. We suggest that this highly reliable line-shape programming approach holds a strong promise to extend the mature c-Si technology into the development of a new generation of high performance biofriendly and stretchable electronics.

  16. Intensity and shape of spectral lines from laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jamelot, G; Jaegle, P; Carillon, A; Wehenkel, C [Centre National de la Recherche Scientifique, 91 - Orsay (France); Paris-11 Univ., 91 - Orsay (France); Ecole Polytechnique, 91 - Palaiseau (France))

    1979-01-01

    In starting from spectral studies of multicharged ions in dense laser-produced plasmas, the main processes which determine the intensity and the shape of lines in the X-UV range are described. The role of radiation transfer is underlined. Intensity anomalies resulting from occurrence of population inversions are considered and a recent experiment performed for investigating such anomalies is described.

  17. Theory of direct-interband-transition line shapes based on Mori's method

    International Nuclear Information System (INIS)

    Sam Nyung Yi; Jai Yon Ryu; Ok Hee Chung; Joung Young Sug; Sang Don Choi; Yeon Choon Chung

    1987-01-01

    A theory of direct interband optical transition in the electron-phonon system is introduced on the basis of the Kubo formalism and by using Mori's method of calculation. The line shape functions are introduced in two different ways and are compared with those obtained by Choi and Chung based on Argyres and Sigel's projection technique

  18. Experimental investigation of shaping disturbance observer design for motion control of precision mechatronic stages with resonances

    Science.gov (United States)

    Yang, Jin; Hu, Chuxiong; Zhu, Yu; Wang, Ze; Zhang, Ming

    2017-08-01

    In this paper, shaping disturbance observer (SDOB) is investigated for precision mechatronic stages with middle-frequency zero/pole type resonance to achieve good motion control performance in practical manufacturing situations. Compared with traditional standard disturbance observer (DOB), in SDOB a pole-zero cancellation based shaping filter is cascaded to the mechatronic stage plant to meet the challenge of motion control performance deterioration caused by actual resonance. Noting that pole-zero cancellation is inevitably imperfect and the controller may even consequently become unstable in practice, frequency domain stability analysis is conducted to find out how each parameter of the shaping filter affects the control stability. Moreover, the robust design criterion of the shaping filter, and the design procedure of SDOB, are both proposed to guide the actual design and facilitate practical implementation. The SDOB with the proposed design criterion is applied to a linear motor driven stage and a voice motor driven stage, respectively. Experimental results consistently validate the effectiveness nature of the proposed SDOB scheme in practical mechatronics motion applications. The proposed SDOB design actually could be an effective unit in the controller design for motion stages of mechanical manufacture equipments.

  19. Second-order quadrupolar line shapes under molecular dynamics: An additional transition in the extremely fast regime.

    Science.gov (United States)

    Hung, Ivan; Wu, Gang; Gan, Zhehong

    NMR spectroscopy is a powerful tool for probing molecular dynamics. For the classic case of two-site exchange, NMR spectra go through the transition from exchange broadening through coalescence and then motional narrowing as the exchange rate increases passing through the difference between the resonance frequencies of the two sites. For central-transition spectra of half-integer quadrupolar nuclei in solids, line shape change due to molecular dynamics occurs in two stages. The first stage occurs when the exchange rate is comparable to the second-order quadrupolar interaction. The second spectral transition comes at a faster exchange rate which approaches the Larmor frequency and generally reduces the isotropic quadrupolar shift. Such a two-stage transition phenomenon is unique to half-integer quadrupolar nuclei. A quantum mechanical formalism in full Liouville space is presented to explain the physical origin of the two-stage phenomenon and for use in spectral simulations. Variable-temperature 17 O NMR of solid NaNO 3 in which the NO 3 - ion undergoes 3-fold jumps confirms the two-stage transition process. The spectra of NaNO 3 acquired in the temperature range of 173-413K agree well with simulations using the quantum mechanical formalism. The rate constants for the 3-fold NO 3 - ion jumps span eight orders of magnitude (10 2 -10 10 s -1 ) covering both transitions of the dynamic 17 O line shape. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Mechanically Reconfigurable Microstrip Lines Loaded with Stepped Impedance Resonators and Potential Applications

    Directory of Open Access Journals (Sweden)

    J. Naqui

    2014-01-01

    Full Text Available This paper is focused on exploring the possibilities and potential applications of microstrip transmission lines loaded with stepped impedance resonators (SIRs etched on top of the signal strip, in a separated substrate. It is shown that if the symmetry plane of the line (a magnetic wall is perfectly aligned with the electric wall of the SIR at the fundamental resonance, the line is transparent. However, if symmetry is somehow ruptured, a notch in the transmission coefficient appears. The notch frequency and depth can thus be mechanically controlled, and this property can be of interest for the implementation of sensors and barcodes, as it is discussed.

  1. Ultrafast method of calculating the dynamic spectral line shapes for integrated modelling of plasmas

    International Nuclear Information System (INIS)

    Lisitsa, V.S.

    2009-01-01

    An ultrafast code for spectral line shape calculations is presented to be used in the integrated modelling of plasmas. The code is based on the close analogy between two mechanisms: (i) Dicke narrowing of the Doppler-broadened spectral lines and (ii) transition from static to impact regime in the Stark broadening. The analogy makes it possible to describe the dynamic Stark broadening in terms of an analytical functional of the static line shape. A comparison of new method with the widely used Frequency Fluctuating Method (FFM) developed by the Marseille University group (B. Talin, R. Stamm, et al.) shows good agreement, with the new method being faster than the standard FFM by nearly two orders of magnitude. The method proposed may significantly simplify the radiation transport modeling and opens new possibilities for integrated modeling of the edge and divertor plasma in tokamaks. (author)

  2. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Calisti, A.; Mosse, C.; Talin, B.; Lisitsa, V.

    2010-01-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  3. Optical line shape of molecular rings: Influence of correlated nondiagonal disorder

    International Nuclear Information System (INIS)

    Barvik, I.; Warns, Ch.; Reineker, P.

    2006-01-01

    We investigate the optical properties of molecular rings which are generally influenced by many kinds of static disorder. Recently, Papiz suggested that quasistatic disorder, anticorrelated between neighboring transfer integrals, plays an important role. We simulate such a disorder by slow colored dichotomic Markov processes with long-time constants for the decay of their correlation functions. The colored dichotomic Markov processes leading to transfer integral fluctuations can be uncorrelated, anticorrelated or partially correlated between nearest neighboring transfer integrals in the ring. The optical line shape of the molecular ring is modeled and investigated in dependence on the parameters of the stochastic processes. Conclusions as regards the influence of the correlation on the splitting of the optical line shape, the shift of the optical absorption maximum and the width of the optical line are drawn

  4. Interior and exterior resonances in acoustic scattering. pt. 2 - Targets of arbitrary shape (T-matrix approach)

    International Nuclear Information System (INIS)

    Uberall, H.; Gaunaurd, G.C.; Tanglis, E.

    1983-01-01

    The T-matrix approach, which describes the scattering of acoustic waves (or of other waves) from objects of arbitrary shape and geometry, is here 'married' to the resonance scattering theory in order to obtain the (complex) resonance frequencies of an arbitrary shaped target. For the case of nearly impenetrable targets the partial-wave scattering amplitudes are splitted into terms corresponding to 'internal' resonances, plus an apparently nonresonant background amplitude which, however, contains the broad resonances caused by 'external' diffracted (or Franz-type, creeping) waves, in addition to geometrically reflected and refracted (ray) contributions

  5. Line shape parameters for the H2O-H2 collision system for application to exoplanet and planetary atmospheres

    Science.gov (United States)

    Renaud, Candice L.; Cleghorn, Kara; Hartmann, Léna; Vispoel, Bastien; Gamache, Robert R.

    2018-05-01

    Water can be detected throughout the universe: in comets, asteroids, dwarf planets, the inner and outer planets in our solar system, cool stars, brown dwarfs, and on many exoplanets. Here the focus is on locations rich in hydrogen gas. To properly study these environments, there is a need for the line shape parameters for H2O transitions in collision with hydrogen. This work presents calculations of the half-width and line shift, made using the Modified Complex Robert-Bonamy (MCRB) formalism, at a number of temperatures. It is shown that this collision system is strongly off-resonance. For such conditions, the atom-atom part of the intermolecular potential dominates the interaction of the radiating and perturbing molecules. The atom-atom parameters were adjusted by fitting the H2O-H2 measurements of Brown and Plymate (1996). Several techniques were used to extract lines for which there is more confidence in the quality of the data. The final potential yields results that agree with the measurements with ∼0.3% difference and a 5.9% standard deviation. Using this potential, MCRB calculations were made for all transitions in the pure rotation, ν2, ν1, and ν3 bands. The structure of the line shape parameters and the temperature dependence of the half-width, as a function of the rotational and vibrational quantum numbers, are discussed. It is shown that the power law model of the T-dependence of the half-width is inadequate over large temperature ranges.

  6. Proton Resonance Lines of Water in Heulandite, Mordenite and Clinoptilolite

    International Nuclear Information System (INIS)

    Cruz Inclan, C.; Diaz Quintanilla, D.; Diaz Ruano, A.

    1986-01-01

    It is reported for the first time the proton magnetic resonance spectra of the clinoptilolite and mordenite between 220 K and 440 K. In mordenite it was observed that all water molecules have so an intensive diffusive movement, that they are completely delocalized. In clinoptilolite below 390 K, only a part of the water molecules are completely delocalized. Over 390 K all water molecules become delocalized. This particular behavior of the water molecules in clinoptilolite and mordenite is confronted with those structural models proposed by D.W. Breck. The concept of non-localized quantum state is introduced in order to explain the difference observed with the structural models. (author)

  7. Characteristics of the λ/4 transmission line resonator

    International Nuclear Information System (INIS)

    Hashimoto, Y.; Masuda, H.; Yoshida, K.; Arai, S.; Niki, K.

    1994-01-01

    Though the spiral cavity is adequate for low frequency operation, mechanical instability becomes serious for such a low frequency as 20 MHz. We have then studied how to shorten the spiral length by using λ/4 transmission line models. Four models with reduced spiral length are presented. (author)

  8. Research on Bell-Shaped Vibratory Angular Rate Gyro’s Character of Resonator

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2013-04-01

    Full Text Available Bell-shaped vibratory angular rate gyro (abbreviated as BVG is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator’s mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG.

  9. Evaluation of acoustic resonance at branch section in main steam line. Part 1. Effects of steam wetness on acoustic resonance

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Morita, Ryo

    2011-01-01

    The power uprating of the nuclear power plant (NPP) is conducted in United States, EU countries and so on, and also is planned in Japan. However, the degradation phenomena such as flow-induced vibration and wall thinning may increase or expose in the power uprate condition. In U.S. NPP, the dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a 17% extended power uprating (EPU) condition. This is caused by acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSL). Increased velocity by uprating excites the pressure fluctuations and makes large amplitude resonance. To evaluate the acoustic resonance at the stub pipes of SRVs in actual BWR, it is necessary to clarify the acoustic characteristics in steam flow. Although there are several previous studies about acoustic resonance, most of them are not steam flow but air flow. Therefore in this study, to investigate the acoustic characteristics in steam flow, we conducted steam flow experiments in each dry and wet steam conditions, and also nearly saturated condition. We measured pressure fluctuation at the top of the single stub pipe and in main steam piping. As a result, acoustic resonance in dry steam flow could be evaluated as same as that in air flow. It is clarified that resonance amplitude of fluctuating pressure at the top of the stub pipe in wet steam was reduced to one-tenth compared with that in dry. (author)

  10. Feshbach shape resonance for high Tc superconductivity in superlattices of nanotubes

    International Nuclear Information System (INIS)

    Bianconi, Antonio

    2006-01-01

    The case of a Feshbach shape resonance in the pairing mechanism for high T c superconductivity in a crystalline lattice of doped metallic nanotubes is described. The superlattice of doped metallic nanotubes provides a superconductor with a strongly asymmetric gap. The disparity and different spatial locations of the wave functions of electrons in different subbands at the Fermi level should suppress the single electron impurity interband scattering giving multiband superconductivity in the clean limit. The Feshbach resonances will arise from the component single-particle wave functions out of which the electron pair wave function is constructed: pairs of wave functions which are time inverse of each other. The Feshbach shape resonance increases the critical temperature by tuning the chemical potential at the Lifshitz electronic topological transition (ETT) where the Fermi surface of one of the bands changes from the one dimensional (1D) to the two dimensional (2D) topology (1D/2D ETT). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    International Nuclear Information System (INIS)

    Niu, Kai; Lee, Soo-Y.

    2015-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms

  12. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Kai [School of Science, Tianjin University of Technology and Education, Tianjin, 300222 (China); Lee, Soo-Y., E-mail: sooying@ntu.edu.sg [Division of Physics & Applied Physics, and Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-12-15

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  13. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    Science.gov (United States)

    Niu, Kai; Lee, Soo-Y.

    2015-12-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  14. Hippocampus shape analysis for temporal lobe epilepsy detection in magnetic resonance imaging

    Science.gov (United States)

    Kohan, Zohreh; Azmi, Reza

    2016-03-01

    There are evidences in the literature that Temporal Lobe Epilepsy (TLE) causes some lateralized atrophy and deformation on hippocampus and other substructures of the brain. Magnetic Resonance Imaging (MRI), due to high-contrast soft tissue imaging, is one of the most popular imaging modalities being used in TLE diagnosis and treatment procedures. Using an algorithm to help clinicians for better and more effective shape deformations analysis could improve the diagnosis and treatment of the disease. In this project our purpose is to design, implement and test a classification algorithm for MRIs based on hippocampal asymmetry detection using shape and size-based features. Our method consisted of two main parts; (1) shape feature extraction, and (2) image classification. We tested 11 different shape and size features and selected four of them that detect the asymmetry in hippocampus significantly in a randomly selected subset of the dataset. Then, we employed a support vector machine (SVM) classifier to classify the remaining images of the dataset to normal and epileptic images using our selected features. The dataset contains 25 patient images in which 12 cases were used as a training set and the rest 13 cases for testing the performance of classifier. We measured accuracy, specificity and sensitivity of, respectively, 76%, 100%, and 70% for our algorithm. The preliminary results show that using shape and size features for detecting hippocampal asymmetry could be helpful in TLE diagnosis in MRI.

  15. The static and dynamic behavior of MEMS arch resonators near veering and the impact of initial shapes

    KAUST Repository

    Hajjaj, Amal Z.; Alcheikh, Nouha; Younis, Mohammad I.

    2017-01-01

    We investigate experimentally and analytically the effect of initial shapes, arc and cosine wave, on the static and dynamic behavior of microelectromechanical systems (MEMS) arch resonators. We show that by carefully choosing the geometrical

  16. Determination of edge plasma parameters by a genetic algorithm analysis of spectral line shapes

    International Nuclear Information System (INIS)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Capes, H.; Guirlet, R.

    2003-01-01

    Comparing an experimental and a theoretical line shape can be achieved by a genetic algorithm (GA) based on an analogy to the mechanisms of natural selection. Such an algorithm is able to deal with complex non-linear models, and can avoid local minima. We have used this optimization tool in the context of edge plasma spectroscopy, for a determination of the temperatures and fractions of the various populations of neutral deuterium emitting the D α line in 2 configurations of Tore-Supra: ergodic divertor and toroidal pumped limiter. Using the GA fit, the neutral emitters are separated into up to 4 populations which can be identified as resulting from molecular dissociation reactions, charge exchange, or reflection. In all the edge plasmas studied, a significant fraction of neutrals emit in the line wings, leading to neutrals with a temperature up to a few hundreds eV if a Gaussian line shape is assumed. This conclusion could be modified if the line wing exhibits a non Gaussian behavior

  17. Determination of edge plasma parameters by a genetic algorithm analysis of spectral line shapes

    Energy Technology Data Exchange (ETDEWEB)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R. [Universite de Provence (PIIM), Centre de Saint-Jerome, 13 - Marseille (France); Capes, H.; Guirlet, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    Comparing an experimental and a theoretical line shape can be achieved by a genetic algorithm (GA) based on an analogy to the mechanisms of natural selection. Such an algorithm is able to deal with complex non-linear models, and can avoid local minima. We have used this optimization tool in the context of edge plasma spectroscopy, for a determination of the temperatures and fractions of the various populations of neutral deuterium emitting the D{sub {alpha}} line in 2 configurations of Tore-Supra: ergodic divertor and toroidal pumped limiter. Using the GA fit, the neutral emitters are separated into up to 4 populations which can be identified as resulting from molecular dissociation reactions, charge exchange, or reflection. In all the edge plasmas studied, a significant fraction of neutrals emit in the line wings, leading to neutrals with a temperature up to a few hundreds eV if a Gaussian line shape is assumed. This conclusion could be modified if the line wing exhibits a non Gaussian behavior.

  18. Connections between molecular photoionization and electron-molecule scattering with emphasis on shape resonances

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dill, D.

    1979-01-01

    Most of our detailed information on the spectroscopy and dynamics of the electronic continuum of molecules is based on the complementary probes - photoionization and electron scattering. Though usually studied separately, it is most useful to appreciate the connections between these two processes since our understanding of one is often the key to interpreting or even generating new results in the other. We approach this subject in two steps. First, we very briefly outline the well-established connections, e.g., the Bethe-Born theory and comparisons of isoelectronic systems. Then we focus on a point of contact - the role of shape resonances in molecular photoionization and electron-molecule scattering - for which a substantial amount of new information has become available. Specific topics include mapping of resonances from the neutral (hν + molecule) to the negative ion (e + molecule) system, angular distributions, and interaction with vibration

  19. Computing resonant frequency of C-shaped compact microstrip antennas by using ANFIS

    Science.gov (United States)

    Akdagli, Ali; Kayabasi, Ahmet; Develi, Ibrahim

    2015-03-01

    In this work, the resonant frequency of C-shaped compact microstrip antennas (CCMAs) operating at UHF band is computed by using the adaptive neuro-fuzzy inference system (ANFIS). For this purpose, 144 CCMAs with various relative dielectric constants and different physical dimensions were simulated by the XFDTD software package based on the finite-difference time domain (FDTD) method. One hundred and twenty-nine CCMAs were employed for training, while the remaining 15 CCMAs were used for testing of the ANFIS model. Average percentage error (APE) values were obtained as 0.8413% and 1.259% for training and testing, respectively. In order to demonstrate its validity and accuracy, the proposed ANFIS model was also tested over the simulation data given in the literature, and APE was obtained as 0.916%. These results show that ANFIS can be successfully used to compute the resonant frequency of CCMAs.

  20. Dual and tri-band bandpass filters based on novel Π-shaped resonator

    Science.gov (United States)

    Xiao, Jian-Kang; Zhu, Wen-Jun; Zhao, Wei

    2014-05-01

    A novel Π-shaped resonator is proposed, and compact dual-band and tri-band bandpass filters that meet IEEE 802.11 application requirements by using the new resonator are designed. The dual-band bandpass filter centres at 2.45 and 5.6 GHz with a simulated passband insertion loss of no more than 0.8 dB, and the tri-band bandpass filter which is got by two-path coupling achieves simulated passband insertion loss of no more than 1.1 dB. The new designs are demonstrated by experiment. The new filters have advantages of simple and compact structures, low passband insertion losses, good frequency selectivity and miniature circuit sizes. All these have prospect to be applied in future wireless communication systems.

  1. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    International Nuclear Information System (INIS)

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen; Qi, Dong-Xiang

    2015-01-01

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths

  2. A comparison of colour, shape, and flash induced illusory line motion.

    Science.gov (United States)

    Hamm, Jeff P

    2017-04-01

    When a bar suddenly appears between two boxes, the bar will appear to shoot away from the box that matches it in colour or in shape-a phenomenon referred to as attribute priming of illusory line motion (ILM; colour ILM and shape ILM, respectively). If the two boxes are identical, ILM will still occur away from a box if it changes luminance shortly before the presentation of the bar ( flash ILM). This flash condition has been suggested to produce the illusory motion due to the formation of an attentional gradient surrounding the flashed location. However, colour ILM and shape ILM cannot be explained by an attentional gradient as there is no way for attention to select the matching box prior to the presentation of the bar. These findings challenge the attentional gradient explanation for ILM, but only if it is assumed that ILM arises for the same underlying reason. Two experiments are presented that address the question of whether or not flash ILM is the same as colour ILM or shape ILM. The results suggest that while colour ILM and shape ILM reflect a common illusion, flash ILM arises for a different reason. Therefore, the attentional gradient explanation for flash ILM is not refuted by the occurrence of colour ILM or shape ILM, which may reflect transformational apparent motion (TAM).

  3. Application of Numerical Analysis of the Shape of Electron Paramagnetic Resonance Spectra for Determination of the Number of Different Groups of Radicals in the Burn Wounds

    Directory of Open Access Journals (Sweden)

    Paweł Olczyk

    2017-01-01

    Full Text Available Background. The evidence exists that radicals are crucial agents necessary for the wound regeneration helping to enhance the repair process. Materials and methods. The lineshape of the electron paramagnetic resonance (EPR spectra of the burn wounds measured with the low microwave power (2.2 mW was numerically analyzed. The experimental spectra were fitted by the sum of two and three lines. Results. The number of the lines in the EPR spectrum corresponded to the number of different groups of radicals in the natural samples after thermal treatment. The component lines were described by Gaussian and Lorentzian functions. The spectra of the burn wounds were superposition of three lines different in shape and in linewidths. The best fitting was obtained for the sum of broad Gaussian, broad Lorentzian, and narrow Lorentzian lines. Dipolar interactions between the unpaired electrons widened the broad Gaussian and broad Lorentzian lines. Radicals with the narrow Lorentzian lines existed mainly in the tested samples. Conclusions. The spectral shape analysis may be proposed as a useful method for determining the number of different groups of radicals in the burn wounds.

  4. Feshbach shape resonance for high Tc pairing in superlattices of quantum stripes and quantum wells

    Directory of Open Access Journals (Sweden)

    A Bianconi

    2006-09-01

    Full Text Available   The Feshbach shape resonances in the interband pairing in superconducting superlattices of quantum wells or quantum stripes is shown to provide the mechanism for high Tc superconductivity. This mechanism provides the Tc amplification driven by the architecture of material: superlattices of quantum wells (intercalated graphite or diborides and superlattices of quantum stripes (doped high Tc cuprate perovskites where the chemical potential is tuned to a Van Hove-Lifshitz singularity (vHs in the electronic energy spectrum of the superlattice associated with the change of the Fermi surface dimensionality in one of the subbands.

  5. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Zeyu; Yang, Tian, E-mail: tianyang@sjtu.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-04-18

    We report the design and experimental realization of a type of miniaturized device for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two-dimensional launching efficiency of about 51%, under the normal illumination of a 5-μm waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel, and Airy profiles are launched and imaged with leakage radiation microscopy.

  6. Development of On-line Monitoring System for Shape Memory Alloy Composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Park, Young Chul; Lee, Min Rae; Lee, Dong Hwa; Lee, Kyu Chang

    2003-01-01

    A hot press method was use for the optimal manufacturing condition for a shape memory alloy(SMA) composite. The bonding between the matrix and the reinforcement within the SMA composite by the hot press method was strengthened by cold rolling. In this study, the objective was to develop an on-line monitoring system for the prevention of the crack initiation and propagation by shape memory effort of SMA composite. Shape memory effect was used to prevent the SMA composite from cracking. For the system to be developed, an optimal hE parameter should be determined based on the degree of damage and crack initiation. When the SHA composite was heated by the plate heater attached at the composite, the propagating cracks appeared to be controlled by the compressive force of SMA

  7. Shape of a clamped stiff harpsichord wire driven at a resonant frequency

    Science.gov (United States)

    Hanson, Roger J.; Macomber, Hilliard Kent; Boucher, Mathew A.

    2002-05-01

    A wire transversely driven by a sinusoidal force at the resonant frequency of a vibrational mode vibrates at the driving frequency and at harmonics generated by nonlinear processes in the wire. If the amplitude of a harmonic is measured as a function of position along the wire, its shape is revealed. It differs significantly from a sinusoid in the vicinity of either end of the wire because the ends are clamped and the wire has significant stiffness. The shapes of various harmonics have been determined for a brass harpsichord wire, 70 cm long, from optical detector measurements made at different distances from a clamped end. Knowledge of shape facilitates the determination of antinode amplitudes of harmonics when the gross motion of the wire is so large that the detectors must be positioned near an end of the wire because of their very limited dynamic range. Some observations of harmonics and related phenomena were reported previously [Hanson et al., J. Acoust Soc. Am. 108, 2592 (2000); 106, 2141 (1999)]. The shape information is also needed to help separate nonlinear effects possibly occurring in the detectors from those of interest, occurring in the wire itself.

  8. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing.

    Science.gov (United States)

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-11-09

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model's diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m(2) to 11.6 mW/m(2) for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8-20 mW/m(2) for the air traffic in the year 2000.

  9. Effects of self-similar correlations on the spectral line shape in the neutral gas

    International Nuclear Information System (INIS)

    Kharintsev, S.S.; Salakhov, M.Kh.

    2001-01-01

    The paper is devoted to the study of the influence of self-similar correlations on the Doppler and pressure broadening within the non-equilibrium Boltzmann gas. The diffuse model for the thermal motion of the radiator and the self-similar mechanism of interference of scalar perturbations for phase shifts of an atomic oscillator are developed. It is shown that taking into account self-similar correlation in a description of the spectral line shape allows one to explain, on the one hand, the additional spectral line Dicke-narrowing in the Doppler regime, and, on the other hand, the asymmetry in wings of the spectral line in a high pressure region

  10. Vibrational structures in electron-CO2 scattering below the 2Πu shape resonance

    International Nuclear Information System (INIS)

    Allan, Michael

    2002-01-01

    Structures of vibrational origin were discovered in vibrationally inelastic electron-CO 2 cross sections in the energy range 0.4-0.9 eV, well below the 2 Π u shape resonance. They appear in the excitation of higher vibrational levels, in particular the highest members of the Fermi polyads of the type (n, 2m, 0) with n+m=2-4. The lowest two structures, at 0.445 and 0.525 eV, are narrow; higher-lying structures are broader and boomerang-like. The structures are absent when the antisymmetric stretch is co-excited. The structures are interpreted in terms of a wavepacket of the nuclei reflected from a potential surface of the CO 2 - anion in a bent and stretched geometry. A state emerging from the virtual state upon bending and stretching and the state resulting from bending the 2 Π u shape resonance are discussed as possibly being responsible for the structures. (author). Letter-to-the-editor

  11. Air Damping in a Fan-Shaped Rotational Resonator with Comb Electrodes

    Science.gov (United States)

    Uchida, Yuki; Sugano, Koji; Tsuchiya, Toshiyuki; Tabata, Osamu; Ikehara, Tsuyoshi

    We theoretically and experimentally evaluated the damping effect in a rotational resonator with a comb-drive actuator and sensor. The resonator was fabricated from an SOI wafer and has a fan-shaped mass. The underlying substrate was removed using back side deep reactive ion etching. One set of comb electrodes was attached to each side of the mass: one for electrostatic driving and the other for capacitive detection. In our theoretical analysis, the dynamics of the resonator were simplified so that they could be represented by a lumped system. In this lumped system, the damping coefficient was estimated by assuming the damping to be slide film damping and the air flow to be a Stokes flow. The phase shift due to the slide film damping of thick air layers was included in the lumped system. In the experimental evaluation, one side of the rotational combs was removed step-by-step and a half of the mass using a laser trimming tool so that the individual damping effects caused by the comb electrodes and mass could be determined quantitatively. We compared the experimental results with the results of the theoretical analysis and found that the difference in the damping coefficients between the experimental results and results of the theoretical analysis was less than 40%.

  12. Exploiting NiTi shape memory alloy films in design of tunable high frequency microcantilever resonators

    Science.gov (United States)

    Stachiv, I.; Sittner, P.; Olejnicek, J.; Landa, M.; Heller, L.

    2017-11-01

    Shape memory alloy (SMA) films are very attractive materials for microactuators because of their high energy density. However, all currently developed SMA actuators utilize martensitic transformation activated by periodically generated heating and cooling; therefore, they have a slow actuation speed, just a few Hz, which restricts their use in most of the nanotechnology applications such as high frequency microcantilever based physical and chemical sensors, atomic force microscopes, or RF filters. Here, we design tunable high frequency SMA microcantilevers for nanotechnology applications. They consist of a phase transforming NiTi SMA film sputtered on the common elastic substrate material; in our case, it is a single-crystal silicon. The reversible tuning of microcantilever resonant frequencies is then realized by intentionally changing the Young's modulus and the interlayer stress of the NiTi film by temperature, while the elastic substrate guarantees the high frequency actuation (up to hundreds of kHz) of the microcantilever. The experimental results qualitatively agree with predictions obtained from the dedicated model based on the continuum mechanics theory and a phase characteristic of NiTi. The present design of SMA microcantilevers expands the capability of current micro-/nanomechanical resonators by enabling tunability of several consecutive resonant frequencies.

  13. An unusual π* shape resonance in the near-threshold photoionization of S1 para-difluorobenzene

    Science.gov (United States)

    Bellm, Susan M.; Davies, Julia A.; Whiteside, Paul T.; Guo, Jingwei; Powis, Ivan; Reid, Katharine L.

    2005-06-01

    Previously reported dramatic changes in photoelectron angular distributions (PADs) as a function of photoelectron kinetic energy following the ionization of S1p-difluorobenzene are shown to be explained by a shape resonance in the b2g symmetry continuum. The characteristics of this resonance are clearly demonstrated by a theoretical multiple-scattering treatment of the photoionization dynamics. New experimental data are presented which demonstrate an apparent insensitivity of the PADs to both vibrational motion and prepared molecular alignment, however, the calculations suggest that strong alignment effects may nevertheless be recognized in the detail of the comparison with experimental data. The apparent, but unexpected, indifference to vibrational excitation is rationalized by considering the nature of the resonance. The correlation of this shape resonance in the continuum with a virtual π* antibonding orbital is considered. Because this orbital is characteristic of the benzene ring, the existence of similar resonances in related substituted benzenes is discussed.

  14. Simulating the Mg II NUV Spectra & C II Resonance Lines During Solar Flares

    Science.gov (United States)

    Kerr, Graham Stewart; Allred, Joel C.; Leenaarts, Jorrit; Butler, Elizabeth; Kowalski, Adam

    2017-08-01

    The solar chromosphere is the origin of the bulk of the enhanced radiative output during solar flares, and so comprehensive understanding of this region is important if we wish to understand energy transport in solar flares. It is only relatively recently, however, with the launch of IRIS that we have routine spectroscopic flarea observations of the chromsphere and transition region. Since several of the spectral lines observed by IRIS are optically thick, it is necessary to use forward modelling to extract the useful information that these lines carry about the flaring chromosphere and transition region. We present the results of modelling the formation properties Mg II resonance lines & subordinate lines, and the C II resonance lines during solar flares. We focus on understanding their relation to the physical strucutre of the flaring atmosphere, exploiting formation height differences to determine if we can extract information about gradients in the atmosphere. We show the effect of degrading the profiles to the resolution of the IRIS, and that the usual observational techniques used to identify the line centroid do a poor job in the early stages of the flare (partly due to multiple optically thick line components). Finally, we will tentatively comment on the effects that 3D radiation transfer may have on these lines.

  15. On the synthesis of resonance lines in dynamical models of structured hot-star winds

    Science.gov (United States)

    Puls, J.; Owocki, S. P.; Fullerton, A. W.

    1993-01-01

    We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles are then derived from formal solution integration using this source function. Two more approximate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10% or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.

  16. Measurements of line overlap for resonant spoiling of x-ray lasing transitions

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Elliott, S.R.; MacGowan, B.J.; Nilsen, J.

    1994-06-01

    High-precision measurements are presented of candidate line pairs for resonant spoiling of x-ray lasing transitions in the nickel-like W 46+ , the neon-like Fe 16+ , and the neon-like La 47+ x-ray lasers. Our measurements were carried out with high-resolution crystal spectrometers, and a typical precision of 20--50 ppM was achieved. While most resonances appear insufficient for effective photo-spoiling, two resonance pairs are identified that provide a good overlap. These are the 4p 1/2 → 3d 3/2 transition in nickel-like W 46+ with the 2p 3/2 → 1s 1/2 transition in hydrogenic Al 12+ , and the 3s 1/2 → 2p 3/2 transition in neon-like La 47+ with the 1 1 S 0 -2 1 P 1 line in heliumlike Ti 20+

  17. Bibliography on atomic line shapes and shifts (June 1975 through June 1978). Interim report

    International Nuclear Information System (INIS)

    Fuhr, J.R.; Miller, B.J.; Martin, G.A.

    1978-12-01

    This is the third supplement to the NBS Special Publication 366, Bibliography on Atomic Line Shapes and Shifts (1889 through March 1972). It contains about 600 references and covers the literature from June 1975 through June 1978. As before, the bibliography contains five major parts: (1) All general interest papers are catalogued according to the broadening mechanisms (and, further, according to special topics under several of the mechanisms) and as to whether the work is a general theory, a general review, a table of profiles or parameters, a comment on existing work, a study of general experimental measurement techniques, or an experimental effort of general importance. Also included are selected papers on important applications of line broadening and on miscellaneous topics relating to atomic spectral line shapes and shifts. (2) In Part 2 all papers containing numerical data are ordered as to element, ionization stage, and broadening mechanism (in the case of foreign gas broadening the perturbing species are listed), and it is indicated whether the data are experimentally or theoretically derived. (3) While in the two preceding parts of the bibliography the references are listed for brevity by identification numbers only, in Part 3 all references are listed completely by journal, authors, and title and are generally arranged by year of publication and alphabetically by authors' names within the year. (4) This section contains a list of all authors and their papers. (5) A final section provides corrections or additions to the second supplement to the original bibliography

  18. A line scanned light-sheet microscope with phase shaped self-reconstructing beams.

    Science.gov (United States)

    Fahrbach, Florian O; Rohrbach, Alexander

    2010-11-08

    We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.

  19. Detailed single-crystal EPR line shape measurements for the single-molecule magnets Fe8Br and Mn12-acetate

    Science.gov (United States)

    Hill, S.; Maccagnano, S.; Park, Kyungwha; Achey, R. M.; North, J. M.; Dalal, N. S.

    2002-06-01

    It is shown that our multi-high-frequency (40-200 GHz) resonant cavity technique yields distortion-free high-field electron paramagnetic resonance (EPR) spectra for single-crystal samples of the uniaxial and biaxial spin S=10 single-molecule magnets (SMM's) [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O and [Fe8O2(OH)12(tacn)6]Br8.9H2O. The observed line shapes exhibit a pronounced dependence on temperature, magnetic field, and the spin quantum numbers (MS values) associated with the levels involved in the transitions. Measurements at many frequencies allow us to separate various contributions to the EPR linewidths, including significant D strain, g strain, and broadening due to the random dipolar fields of neighboring molecules. We also identify asymmetry in some of the EPR line shapes for Fe8 and a previously unobserved fine structure to some of the EPR lines for both the Fe8 and Mn12 systems. These findings prove relevant to the mechanism of quantum tunneling of magnetization in these SMM's.

  20. Measurement of the Auger decay after resonance excitation of Xe 4d and Kr 3d resonance lines

    International Nuclear Information System (INIS)

    Eberhardt, W.; Kalkoffen, G.; Kunz, C.

    1978-03-01

    The Nsub(4,5) 0sub(2,3) 0sub(2,3) Auger spectra from Xe and the Msub(4,5) Nsub(2,3) Nsub(2,3) Auger spectra from Kr are investigated for different photon energies around threshold of ionization. When exciting at the resonance line (4d 9 5s 2 5p 6 6p for Xe and 3d 9 4s 2 4p 6 5p for Kr) we observe the usual Auger multiplet structure to be shifted to higher kinetic energies. Additionally, new lines appear which can be assigned to shake-up processes int he Xe + and Kr + ions. (orig.) [de

  1. Thirteen pump-probe resonances of the sodium D1 line

    International Nuclear Information System (INIS)

    Wong, Vincent; Boyd, Robert W.; Stroud, C. R. Jr.; Bennink, Ryan S.; Marino, Alberto M.

    2003-01-01

    We present the results of a pump-probe laser spectroscopic investigation of the Doppler-broadened sodium D1 resonance line. We find 13 resonances in the resulting spectra. These observations are well described by the numerical predictions of a four-level atomic model of the hyperfine structure of the sodium D1 line. We also find that many, but not all, of these features can be understood in terms of processes originating in a two-level or three-level subset of the full four-level model. The processes we observed include forward near-degenerate four-wave mixing and saturation in a two-level system, difference-frequency crossing and nondegenerate four-wave mixing in a three-level V system, electromagnetically induced transparency and optical pumping in a three-level lambda system, cross-transition resonance in a four-level double-lambda system, and conventional optical pumping. Most of these processes lead to sub-Doppler or even subnatural linewidths. The dependence of these resonances on the pump intensity and pump detuning from atomic resonance are also studied

  2. VUV emission spectra from binary rare gas mixtures near the resonance lines of Xe I and Kr I

    CERN Document Server

    Morozov, A; Gerasimov, G; Arnesen, A; Hallin, R

    2003-01-01

    Emission spectra of Xe-X (X = He, Ne, Ar and Kr) and of Kr-Y (Y = He, Ne and Ar) mixtures with low concentrations of the heavier gases (0.1-1%) and moderate total pressures (50-200 hPa) have been recorded near each of the two resonance lines of Xe and Kr in DC glow capillary discharges. The recorded intense emissions have narrow spectral profiles with FWHM of about 0.1 nm. The profiles are very similar in shape to profiles of known high resolution absorption spectra recorded at comparable gas pressures. A tentative identification of the emission structures is given, which involves transitions in heteronuclear molecules and quasimolecules between weakly-bound states.

  3. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  4. The static and dynamic behavior of MEMS arch resonators near veering and the impact of initial shapes

    KAUST Repository

    Hajjaj, Amal Z.

    2017-07-19

    We investigate experimentally and analytically the effect of initial shapes, arc and cosine wave, on the static and dynamic behavior of microelectromechanical systems (MEMS) arch resonators. We show that by carefully choosing the geometrical parameters and the initial shape of the arch, the veering phenomenon (avoided-crossing) among the first two symmetric modes can be strongly activated. To demonstrate this, we study electrothermally tuned and electrostatically driven initially curved MEMS resonators. Upon changing the electrothermal voltage, we demonstrate high frequency tunability of arc resonators compared to the cosine-configuration resonators for the first and third resonance frequencies. For arc beams, we show that the first resonance frequency increases up to twice its fundamental value and the third resonance frequency decreases until getting very close to the first resonance frequency triggering the veering phenomenon. Around the veering regime, we study experimentally and analytically the dynamic behavior of the arc beam for different electrostatic loads. The analytical study is based on a reduced order model of a nonlinear Euler–Bernoulli shallow arch beam model. The veering phenomenon is also confirmed through a finite-element multi-physics and nonlinear model.

  5. A monolithic constant-fraction discriminator using distributed R-C delay-line shaping

    International Nuclear Information System (INIS)

    Simpson, M.L.; Young, G.R.; Xu, M.

    1995-01-01

    A monolithic, CMOS, constant-fraction discriminator (CFD) was fabricated in the Orbit Semiconductor, 1.2 μ N-well process. This circuit uses an on-chip, distributed, R-C delay-line to realize the constant-fraction shaping. The delay-line is constructed from a narrow, 500-μ serpentine layer of polysilicon above a wide, grounded, second layer of polysilicon. This R-C delay-line generates about 1.1 ns of delay for 5 ns risetime signals with a slope degradation of only ≅ 15% and an amplitude reduction of about 6.1%. The CFD also features an automatic walk adjustment. The entire circuit, including the delay line, has a 200 μ pitch and is 950 μ long. The walk for a 5 ns risetime signal was measured as ± 100 ps over the 100:1 dynamic range from -15 mV to -1.5 mV. to -1.5 V. The CFD consumes 15 mW

  6. Mechanical detection and mode shape imaging of vibrational modes of micro and nanomechanical resonators by dynamic force microscopy

    International Nuclear Information System (INIS)

    Paulo, A S; GarcIa-Sanchez, D; Perez-Murano, F; Bachtold, A; Black, J; Bokor, J; Esplandiu, M J; Aguasca, A

    2008-01-01

    We describe a method based on the use of higher order bending modes of the cantilever of a dynamic force microscope to characterize vibrations of micro and nanomechanical resonators at arbitrarily large resonance frequencies. Our method consists on using a particular cantilever eigenmode for standard feedback control in amplitude modulation operation while another mode is used for detecting and imaging the resonator vibration. In addition, the resonating sample device is driven at or near its resonance frequency with a signal modulated in amplitude at a frequency that matches the resonance of the cantilever eigenmode used for vibration detection. In consequence, this cantilever mode is excited with an amplitude proportional to the resonator vibration, which is detected with an external lock-in amplifier. We show two different application examples of this method. In the first one, acoustic wave vibrations of a film bulk acoustic resonator around 1.6 GHz are imaged. In the second example, bending modes of carbon nanotube resonators up to 3.1 GHz are characterized. In both cases, the method provides subnanometer-scale sensitivity and the capability of providing otherwise inaccessible information about mechanical resonance frequencies, vibration amplitude values and mode shapes

  7. Theoretical and experimental study on electron interactions with chlorobenzene: Shape resonances and differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Alessandra Souza [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Varella, Márcio T. do N. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1731, 05508-090 São Paulo, SP (Brazil); Sanchez, Sergio d’A.; Bettega, Márcio H. F., E-mail: bettega@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Ameixa, João; Limão-Vieira, Paulo; Ferreira da Silva, Filipe [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Blanco, Francisco [Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); and others

    2016-08-28

    In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in the high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7{sup ∘} to 110{sup ∘}. From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene.

  8. Noodles and stars allow a precise and efficient calculation of the Z-line shape and the polarization asymmetry

    International Nuclear Information System (INIS)

    Jung-Choon Im, C.

    1990-01-01

    We give a pedagogical introduction to the star functions and the Noodle method. The Z-line shape and the polarization asymmetry at SLC/LEP can be evaluated elegantly and efficiently using the star functions and the Noodle method

  9. Recognition and use of line drawings by children with severe intellectual disabilities: the effects of color and outline shape.

    Science.gov (United States)

    Stephenson, Jennifer

    2009-03-01

    Communication symbols for students with severe intellectual disabilities often take the form of computer-generated line drawings. This study investigated the effects of the match between color and shape of line drawings and the objects they represented on drawing recognition and use. The match or non-match between color and shape of the objects and drawings did not have an effect on participants' ability to match drawings to objects, or to use drawings to make choices.

  10. On-line measurement of ski-jumper trajectory: combining stereo vision and shape description

    Science.gov (United States)

    Nunner, T.; Sidla, O.; Paar, G.; Nauschnegg, B.

    2010-01-01

    Ski jumping has continuously raised major public interest since the early 70s of the last century, mainly in Europe and Japan. The sport undergoes high-level analysis and development, among others, based on biodynamic measurements during the take-off and flight phase of the jumper. We report on a vision-based solution for such measurements that provides a full 3D trajectory of unique points on the jumper's shape. During the jump synchronized stereo images are taken by a calibrated camera system in video rate. Using methods stemming from video surveillance, the jumper is detected and localized in the individual stereo images, and learning-based deformable shape analysis identifies the jumper's silhouette. The 3D reconstruction of the trajectory takes place on standard stereo forward intersection of distinct shape points, such as helmet top or heel. In the reported study, the measurements are being verified by an independent GPS measurement mounted on top of the Jumper's helmet, synchronized to the timing of camera exposures. Preliminary estimations report an accuracy of +/-20 cm in 30 Hz imaging frequency within 40m trajectory. The system is ready for fully-automatic on-line application on ski-jumping sites that allow stereo camera views with an approximate base-distance ratio of 1:3 within the entire area of investigation.

  11. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.

    Science.gov (United States)

    Gong, Jianxiao; Zhou, Fei; Li, Zhiyuan; Tang, Zhiyong

    2012-06-19

    We have synthesized Au@Ag core-shell nanocubes containing Au cores with varying shapes and sizes through modified seed-mediated methods. Bromide ions are found to be crucial in the epitaxial growth of Ag atoms onto Au cores and in the formation of the shell's cubic shape. The Au@Ag core-shell nanocubes exhibit very abundant and distinct localized surface plasmon resonance (LSPR) properties, which are core-shape and size-dependent. With the help of theoretical calculation, the physical origin and the resonance mode profile of each LSPR peak are identified and studied. The core-shell nanocrystals with varying shaped cores offer a new rich category for LSPR control through the plasmonic coupling effect between core and shell materials.

  12. Neural - levelset shape detection segmentation of brain tumors in dynamic susceptibility contrast enhanced and diffusion weighted magnetic resonance images

    International Nuclear Information System (INIS)

    Vijayakumar, C.; Bhargava, Sunil; Gharpure, Damayanti Chandrashekhar

    2008-01-01

    A novel Neuro - level set shape detection algorithm is proposed and evaluated for segmentation and grading of brain tumours. The algorithm evaluates vascular and cellular information provided by dynamic contrast susceptibility magnetic resonance images and apparent diffusion coefficient maps. The proposed neural shape detection algorithm is based on the levels at algorithm (shape detection algorithm) and utilizes a neural block to provide the speed image for the level set methods. In this study, two different architectures of level set method have been implemented and their results are compared. The results show that the proposed Neuro-shape detection performs better in differentiating the tumor, edema, necrosis in reconstructed images of perfusion and diffusion weighted magnetic resonance images. (author)

  13. Transmission-line resonators for the study of individual two-level tunneling systems

    Science.gov (United States)

    Brehm, Jan David; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey V.; Lisenfeld, Jürgen

    2017-09-01

    Parasitic two-level tunneling systems (TLS) emerge in amorphous dielectrics and constitute a serious nuisance for various microfabricated devices, where they act as a source of noise and decoherence. Here, we demonstrate a new test bed for the study of TLS in various materials which provides access to properties of individual TLS as well as their ensemble response. We terminate a superconducting transmission-line resonator with a capacitor that hosts TLS in its dielectric. By tuning TLS via applied mechanical strain, we observe the signatures of individual TLS strongly coupled to the resonator in its transmission characteristics and extract the coupling components of their dipole moments and energy relaxation rates. The strong and well-defined coupling to the TLS bath results in pronounced resonator frequency fluctuations and excess phase noise, through which we can study TLS ensemble effects such as spectral diffusion, and probe theoretical models of TLS interactions.

  14. Shape resonances and EXAFS scattering in the $Pt L_{2,3}$ XANES from a Pt electrode

    CERN Document Server

    O'Grady, W E

    1999-01-01

    Atomic hydrogen and oxygen adsorption on a platinum electrode in H /sub 2/SO/sub 4/ and HClO/sub 4/ electrolytes were studied by Pt L /sub 23/ XANES. The Pt electrode was formed of highly dispersed 1.5-3.0 nm particles supported on $9 carbon. A difference procedure utilizing the L/sub 2/ and L/sub 3/ spectra at various applied voltages was used to isolate the electronic and geometric effects in the XANES spectra. At 0.54 V (relative to RHE) the Pt electrode in $9 HClO/sub 4/ is assumed to be "clean". By taking the difference between the spectra at 0.0 and 0.54 V, the Pt-H antibonding state (electronic effect) is isolated and found to have a Fano-resonance line shape. In addition, a $9 significant Pt-H EXAFS scattering (geometric effect) was found for photon energies 0 to 20 eV above the edge. The difference between the spectra at 1.14 and 0.54 V allows isolation of the Pt-O antibonding state and the Pt-O EXAFS $9 scattering. (7 refs).

  15. Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna.

    Science.gov (United States)

    Yang, Jing; Zhang, Jiasen

    2013-04-08

    We propose a nano-polarization-converter made of a resonant L-shaped slot antenna in a gold film and study its optical properties using the finite-difference time-domain method. Phase retardation between the fast and slow axes of the nano-polarization-converter originates from the simultaneous excitation of both single-surface first-order magnetic plasmon resonance mode and second-order magnetic plasmon resonance mode at the working wavelength. By adjusting the size of the slot antenna, which is still much smaller than the wavelength, the working wavelength can be tuned within a large wavelength range.

  16. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong; Chen, Youhe

    2015-01-01

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields

  17. The dielectronic satellites to the 2s-3p Ne-like krypton resonance lines

    International Nuclear Information System (INIS)

    Khakhalin, S.Ya.; Dyakin, V.M.; Faenov, A.Ya.; Fiedorowicz, H.; Bartnik, A.; Parys, P.; Nilsen, J.; Osterheld, A.

    1994-01-01

    We present an analysis of dielectronic satellite spectra of 2p 6 -2s2p 6 3p Ne-like krypton resonance lines. The satellite structure was registered with high (better than λ/Δλ > 3500) spectral resolution in the emission of a laser irradiated gas puff target. We perform an unambiguous identification of satellite lines caused by radiative transitions from autoionizing states of sodium-like krypton ions. A total of about 20 spectral features are identified, most of them for the first time. Very good agreement between the satellite structure calculations and experimental emission spectra is obtained. (orig.)

  18. The dielectronic satellites to the 2s-3p Ne-like krypton resonance lines

    Energy Technology Data Exchange (ETDEWEB)

    Khakhalin, S.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Dyakin, V.M. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Faenov, A.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Fiedorowicz, H. (Inst. of Optoelectronics, Warsaw (Poland)); Bartnik, A. (Inst. of Optoelectronics, Warsaw (Poland)); Parys, P. (Inst. of Plasma Physics and Laser Microfusion, Warsaw (Poland)); Nilsen, J. (Lawrence Livermore National Lab., Livermore, CA (United States)); Osterheld, A. (Lawrence Livermore National Lab., Livermore, CA (United States))

    1994-08-01

    We present an analysis of dielectronic satellite spectra of 2p[sup 6]-2s2p[sup 6]3p Ne-like krypton resonance lines. The satellite structure was registered with high (better than [lambda]/[Delta][lambda] > 3500) spectral resolution in the emission of a laser irradiated gas puff target. We perform an unambiguous identification of satellite lines caused by radiative transitions from autoionizing states of sodium-like krypton ions. A total of about 20 spectral features are identified, most of them for the first time. Very good agreement between the satellite structure calculations and experimental emission spectra is obtained. (orig.).

  19. Active high-power RF pulse compression using optically switched resonant delay lines

    International Nuclear Information System (INIS)

    Tantawi, S.G.; Ruth, R.D.; Vlieks, A.E.

    1996-11-01

    The authors present the design and a proof of principle experimental results of an optically controlled high power rf pulse compression system. The design should, in principle, handle few hundreds of Megawatts of power at X-band. The system is based on the switched resonant delay line theory. It employs resonant delay lines as a means of storing rf energy. The coupling to the lines is optimized for maximum energy storage during the charging phase. To discharge the lines, a high power microwave switch increases the coupling to the lines just before the start of the output pulse. The high power microwave switch, required for this system, is realized using optical excitation of an electron-hole plasma layer on the surface of a pure silicon wafer. The switch is designed to operate in the TE 01 mode in a circular waveguide to avoid the edge effects present at the interface between the silicon wafer and the supporting waveguide; thus, enhancing its power handling capability

  20. New insight into hydration and aging mechanisms of paper by the line shape analysis of proton NMR spectra

    International Nuclear Information System (INIS)

    Mallamace, D.; Vasi, S.; Missori, M.; Corsaro, C.

    2016-01-01

    The action of water within biological systems is strictly linked either with their physical chemical properties and with their functions. Cellulose is one of the most studied biopolymers due to its biological importance and its wide use in manufactured products. Among them, paper is mainly constituted by an almost equimolar ratio of cellulose and water. Therefore the study of the behavior of water within pristine and aged paper samples can help to shed light on the degradation mechanisms that irremediably act over time and spoil paper. In this work we present Nuclear Magnetic Resonance (NMR) experiments on modern paper samples made of pure cellulose not aged and artificially aged as well as on ancient paper samples made in 1413 in Perpignan (France). The line shape parameters of the proton NMR spectra were studied as a function of the hydration content. Results indicate that water in aged samples is progressively involved in the hydration of the byproducts of cellulose degradation. This enhances the degradation process itself through the progressive consumption of the cellulose amorphous regions.

  1. Measurement of collisional self broadening of atomic resonance lines in selective reflection experiment

    International Nuclear Information System (INIS)

    Papoyan, A.V.

    1998-01-01

    A method is developed to measure directly the collisional self broadening rate for a dense atomic vapor from selective reflection spectra. Experimental realization for the atomic D 1 and D 2 resonance lines of Rb confirms a validity of the proposed technique. The deflection of experimentally measured values is not more than 20% from theoretically predicted ones in the atomic number density range of 7· 10 16 - 7· 10 17 cm - 3 . 10 refs

  2. Thermal fluctuations in resonant motion of fluxons on a Josephson transmission line: Theory and experiment

    DEFF Research Database (Denmark)

    Jørgensen, E.; Koshelets, V. P.; Monaco, Roberto

    1982-01-01

    The radiation emission from long and narrow Josephson tunnel junctions dc-current biased on zero-field steps has been ascribed to resonant motion of fluxons on the transmission line. Within this dynamic model a theoretical expression for the radiation linewidth is derived from a full statistical ...... treatment of thermal fluctuations in the fluxon velocity. The result appears to be very general and is corroborated by experimental determination of linewidth and frequency of radiation emitted from overlap Nb-I-Pb junctions....

  3. Transmission line model for coupled rectangular double split‐ring resonators

    DEFF Research Database (Denmark)

    Yan, Lei; Tang, Meng; Krozer, Viktor

    2011-01-01

    In this work, a model based on a coupled transmission line formulation is developed for microstrip rectangular double split‐ring resonators (DSRRs). This model allows using the physical dimensions of the DSRRs as an input avoiding commonly used extraction of equivalent parameters. The model inclu...... simulations of the DSRR structures. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:1311–1315, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25988...

  4. Linear headache: a recurrent unilateral head pain circumscribed in a line-shaped area.

    Science.gov (United States)

    Wang, Yu; Tian, Miao-Miao; Wang, Xian-Hong; Zhu, Xiao-Qun; Liu, Ying; Lu, Ya-Nan; Pan, Qing-Qing

    2014-06-26

    A headache circumscribed in a line-shaped area but not confined to the territory of one particular nerve had ever been described in Epicrania Fugax (EF) of which the head pain is moving and ultrashort. In a 25-month period from Feb 2012 to Mar 2014, we encountered 12 patients with a paroxysmal motionless head pain restricted in a linear trajectory. The head pain trajectory was similar to that of EF, but its all other features obviously different from those of EF. We named this distinctive but undescribed type of headache linear headache (LH). A detailed clinical feature of the headache was obtained in all cases to differentiate with EF, trigeminal autonomic cephalalgias (TACs) and cranial neuralgia. Similarities and differences in clinical features were compared between LH and migraine. The twelve LH patients (mean age 43.9 ± 12.2) complained of a recurrent, moderate to severe, distending (n = 9), pressure-like (n = 3) or pulsating (n = 3) pain within a strictly unilateral line-shaped area. The painful line is distributed from occipital or occipitocervical region to the ipsilateral eye (n = 5), forehead (n = 6) or parietal region (n = 1). The pain line has a trajecory similar to that of EF but no characteristics of moving. The headache duration would be ranged from five minutes to three days, but usually from half day to one day in most cases (n = 8). Six patients had the accompaniment of nausea with or without vomiting, and two patients had the accompaniment of ipsilateral dizziness. The attacks could be either spontaneous (n = 10) or triggered by noise, depression and resting after physical activity (n = 1), or by stress and staying up late (n = 1). The frequency of attacks was variable. The patients had well response to flunarizine, sodium valproate and amitriptyline but not to carbamazepine or oxcarbazepine. LH is different from EF, trigeminal autonomic cephalalgias (TACs) and cranial neuralgia, but it had couple of features similar to that of migraine. The

  5. ZEST: A Fast Code for Simulating Zeeman-Stark Line-Shape Functions

    Directory of Open Access Journals (Sweden)

    Franck Gilleron

    2018-03-01

    Full Text Available We present the ZEST code, dedicated to the calculation of line shapes broadened by Zeeman and Stark effects. As concerns the Stark effect, the model is based on the Standard Lineshape Theory in which ions are treated in the quasi-static approximation, whereas the effects of electrons are represented by weak collisions in the framework of a binary collision relaxation theory. A static magnetic field may be taken into account in the radiator Hamiltonian in the dipole approximation, which leads to additional Zeeman splitting patterns. Ion dynamics effects are implemented using the fast Frequency-Fluctuation Model. For fast calculations, the static ion microfield distribution in the plasma is evaluated using analytic fits of Monte-Carlo simulations, which depend only on the ion-ion coupling parameter and the electron-ion screening factor.

  6. Measured signatures of low energy, physical sputtering in the line shape of neutral carbon emission

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, N.H. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)]. E-mail: brooks@fusion.gat.com; Isler, R.C. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Whyte, D.G. [University of Wisconsin, Madison, WI 53706 (United States); Fenstermacher, M.E. [Livermore National Laboratory, Livermore, CA 94550 (United States); Groebner, R.J. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Stangeby, P.C. [University of Toronto Institute for Aerospace Studies, Toronto, M3H 5T6 (Canada); Heidbrink, W.W. [University of California, Irvine, CA 92697 (United States); Jackson, G.L. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Mahdavi, M.A. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); West, W.P. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2005-03-01

    The most important mechanisms for introducing carbon into the DIII-D divertors [J.L. Luxon, Nucl. Fusion 42 (2002) 614] are physical and chemical sputtering. Previous investigations have indicated that operating conditions where one or the other of these is dominant can be distinguished by using CD and C{sub 2} emissions to infer C I influxes from dissociation of hydrocarbons and comparing to measured C I influxes. The present work extends these results through detailed analysis of the C I spectral line shapes. In general, it is found that the profiles are actually asymmetric and have shifted peaks. These features are interpreted as originating from a combination of an anisotropic velocity distribution from physical sputtering (the Thompson model) and an isotropic distribution from molecular dissociation. The present study utilizes pure helium plasmas to benchmark C I spectral profiles arising from physical sputtering alone.

  7. Application of positron annihilation line-shape analysis to fatigue damage for nuclear plant materials

    International Nuclear Information System (INIS)

    Maeda, N.; Uchida, M.; Ohta, Y.; Yoshida, K.

    1996-01-01

    Positron annihilation line-shape analysis is sufficiently sensitive to detect microstructural defects such as vacancies and dislocations. We are developing a portable positron annihilation system and applying this technique to fatigue damage in type 316 stainless steel and SA508 low alloy steel. The positron annihilation technique was found to be sensitive in the early fatigue life, i.e. up to 10% of the fatigue life, but showed little sensitivity in later stages of the fatigue life in type 316 stainless steel and SA508 low alloy steel. Type 316 stainless steel a higher positron annihilation sensitivity than that of SA508. It was considered that the amount of dislocation density change in the stainless steel was greater than that in the low alloy steel, because the initial microstructure contained a low dislocation density because of the solution heat treatment for the type 316 stainless steel. (orig.)

  8. Raman study of pressure effects on frequencies and isotropic line shapes in liquid acetone

    International Nuclear Information System (INIS)

    Schindler, W.; Sharko, P.T.; Jonas, J.

    1982-01-01

    The Raman line shape of the symmetric C = O stretching band at 1710 cm -1 has been measured in liquid acetone as a function of pressure from 1 bar to 4 kbar over the temperature range from -25 to 50 0 C. The experimental data obtained show several unusual features. First, there is a frequency difference of about 7 cm -1 between the polarized and depolarized components. Sceond, the isotropic linewidth GAMMA/sub iso/ decreases with increasing density, in contrast to the opposite trend usually found in other liquids. Third, the second moment M 2 (V) of the isotropic band appears to decrease with increasing density. The consideration of the experimental linewidth and frequency data leads to a conclusion that intermolecular dipole--dipole coupling between polar acetone molecules are responsible for the observed unusual behavior of , GAMMA/sub iso/, and M 2

  9. Dependency of non-homogeneity energy dispersion on absorbance line-shape of luminescent polymers

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Castanheira da, E-mail: mar_castanheira@yahoo.com.br [Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, CP 500, 69915-900 Rio Branco, AC (Brazil); Instituto de Física, Universidade Federal de Uberlândia, CP 593, 38400-902 Uberlândia, MG (Brazil); Santos Silva, H.; Silva, R.A.; Marletta, Alexandre [Instituto de Física, Universidade Federal de Uberlândia, CP 593, 38400-902 Uberlândia, MG (Brazil)

    2013-01-16

    In this paper, we study the importance of the non-homogeneity energy dispersion on absorption line-shape of luminescent polymers. The optical transition probability was calculated based on the molecular exciton model, Franck–Condon states, Gaussian distribution of non-entangled chains with conjugate degree n, semi-empirical parameterization of energy gap, electric dipole moment, and electron-vibrational mode coupling. Based on the approach of the energy gap functional dependence 1/n, the inclusion of the non-homogeneity energy dispersion 1/n{sup 2} is essential to obtain good experimental data agreement, mainly, where the absorption spectra display peaks width of about 65 meV. For unresolved absorption spectra, such as those observed for a large number of conjugated polymers processed via spin-coating technique, for example, the non-homogeneity energy dispersion parameterization is not significant. Results were supported by the application of the model for poly (p-phenylene vinylene) films.

  10. Line shape and thermal Kinetics analysis of the Fe2+ -band in Brazilian Green beryl

    International Nuclear Information System (INIS)

    Isotani, S.; Furtado, W.; Antonini, R.; Dias, O.L.

    1988-03-01

    The optical absorption spectra study through isothermal treatments of the σ- and Π-polarized bands of Fe 2+ -band is reported. It was shown a linear correlation between these bands through thermal treatments. Irradiation with γ-rays from 60 Co, showed the decrease of this band. The line shape analysis and the discussions lend us to assign the Π- and σ-polarized bands to Fe 2+ ions in the structural channels with and without neighbour water molecules, respectively. The kinetics analysis through a ''bimolecular-like'' model gives untrapping parameter with Arrhenius behavior. The retrapping and recombination parameters showed a behavior proportional to T 1/2 - T 1/2 o which were explained from free electron distribution of velocities and minimum untrapped electron energy due to a potential barrier of the trap. The kinetics cut-off temperature, T 0 , agrees with the previous experimental observation. (author) [pt

  11. Modelling and characterization of the roof tile-shaped modes of AlN-based cantilever resonators in liquid media

    International Nuclear Information System (INIS)

    Ruiz-Díez, V; Hernando-García, J; Toledo, J; Manzaneque, T; Sánchez-Rojas, J L; Kucera, M; Pfusterschmied, G; Schmid, U

    2016-01-01

    In this work, roof tile-shaped modes of MEMS (micro electro-mechanical systems) cantilever resonators with various geometries and mode orders are analysed. These modes can be efficiently excited by a thin piezoelectric film and a properly designed top electrode. The electrical and optical characterization of the resonators are performed in liquid media and the device performance is evaluated in terms of quality factor, resonant frequency and motional conductance. A quality factor as high as 165 was measured in isopropanol for a cantilever oscillating in the seventh order roof tile-shaped mode at 2 MHz. To support the results of the experimental characterization, a 2D finite element method simulation model is presented and studied. An analytical model for the estimation of the motional conductance was also developed and validated with the experimental measurements. (paper)

  12. Effects of pairing correlation on low-lying quasi-particle resonance in neutron drip-line nuclei

    OpenAIRE

    Kobayashi, Yoshihiko; Matsuo, Masayuki

    2015-01-01

    We discuss effects of pairing correlation on quasi-particle resonance. We analyze in detail how the width of low-lying quasi-particle resonance is governed by the pairing correlation in the neutron drip-line nuclei. We consider the 46Si + n system to discuss low-lying p wave quasi-particle resonance. Solving the Hartree-Fock-Bogoliubov equation in the coordinate space with scattering boundary condition, we calculate the phase shift, the elastic cross section, the resonance width and the reson...

  13. Line-Shape Code Comparison through Modeling and Fitting of Experimental Spectra of the C ii 723-nm Line Emitted by the Ablation Cloud of a Carbon Pellet

    Directory of Open Access Journals (Sweden)

    Mohammed Koubiti

    2014-07-01

    Full Text Available Various codes of line-shape modeling are compared to each other through the profile of the C ii 723-nm line for typical plasma conditions encountered in the ablation clouds of carbon pellets, injected in magnetic fusion devices. Calculations were performed for a single electron density of 1017 cm−3 and two plasma temperatures (T = 2 and 4 eV. Ion and electron temperatures were assumed to be equal (Te = Ti = T. The magnetic field, B, was set equal to either to zero or 4 T. Comparisons between the line-shape modeling codes and two experimental spectra of the C ii 723-nm line, measured perpendicularly to the B-field in the Large Helical Device (LHD using linear polarizers, are also discussed.

  14. High data density and capacity in chipless radiofrequency identification (chipless-RFID) tags based on double-chains of S-shaped split ring resonators (S-SRRs)

    Science.gov (United States)

    Herrojo, Cristian; Mata-Contreras, Javier; Paredes, Ferran; Martín, Ferran

    2017-11-01

    The data density per surface (DPS) is a figure of merit in chipless radiofrequency identification (chipless-RFID) tags. In this paper, it is demonstrated that chipless-RFID tags with high DPS can be implemented by using double-chains of S-shaped split ring resonators (S-SRRs). Tag reading is achieved by near-field coupling between the tag and the reader, a CPW transmission line fed by a harmonic signal tuned to the resonance frequency of the S-SRRs. By transversally displacing the tag over the CPW, the transmission coefficient of the line is modulated by tag motion. This effectively modulates the amplitude of the injected (carrier) signal at the output port of the line, and the identification (ID) code, determined by the presence or absence of S-SRRs at predefined and equidistant positions in the chains, is contained in the envelope function. The DPS is determined by S-SRR dimensions and by the distance between S-SRRs in the chains. However, by using two chains of S-SRRs, the number of bits per unit length that can be accommodated is very high. This chipless-RFID system is of special interest in applications where the reading distance can be sacrificed in favor of data capacity (e.g., security and authentication). Encoding of corporate documents, ballots, exams, etc., by directly printing the proposed tags on the item product to prevent counterfeiting is envisaged.

  15. A novel L-shaped linear ultrasonic motor operating in a single resonance mode

    Science.gov (United States)

    Zhang, Bailiang; Yao, Zhiyuan; Liu, Zhen; Li, Xiaoniu

    2018-01-01

    In this study, a large thrust linear ultrasonic motor using an L-shaped stator is described. The stator is constructed by two mutually perpendicular rectangular plate vibrators, one of which is mounted in parallel with the slider to make the motor structure to be more compact. The symmetric and antisymmetric modes of the stator based on the first order bending vibration of two vibrators are adopted, in which each resonance mode is assigned to drive the slider in one direction. The placement of piezoelectric ceramics in a stator could be determined by finite element analysis, and the influence of slots in the head block on the vibration amplitudes of driving foot was studied as well. Three types of prototypes (non-slotted, dual-slot, and single-slot) were fabricated and experimentally investigated. Experimental results demonstrated that the prototype with one slot exhibited the best mechanical output performance. The maximum loads under the excitation of symmetric mode and antisymmetric mode were 65 and 90 N, respectively.

  16. Effect of non-ideal clamping shape on the resonance frequencies of silicon nanocantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Nicu, Liviu [CNRS, LAAS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France); Perisanu, Sorin; Vincent, Pascal [LPMCN, Universite Claude Bernard Lyon 1 et CNRS, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Lazarus, Arnaud; Thomas, Olivier, E-mail: sguillon@laas.fr [Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Metiers, 2 rue Conte, 75003 Paris (France)

    2011-06-17

    In this paper, we investigate the effects of non-ideal clamping shapes on the dynamic behavior of silicon nanocantilevers. We fabricated silicon nanocantilevers using silicon on insulator (SOI) wafers by employing stepper ultraviolet (UV) lithography, which permits a resolution of under 100 nm. The nanocantilevers were driven by electrostatic force inside a scanning electron microscope (SEM). Both lateral and out-of-plane resonance frequencies were visually detected with the SEM. Next, we discuss overhanging of the cantilever support and curvature at the clamping point in the silicon nanocantilevers, which generally arises in the fabrication process. We found that the fundamental out-of-plane frequency of a realistically clamped cantilever is always lower than that for a perfectly clamped cantilever, and depends on the cantilever width and the geometry of the clamping point structure. Using simulation with the finite-elements method, we demonstrate that this discrepancy is attributed to the particular geometry of the clamping point (non-zero joining curvatures and a flexible overhanging) that is obtained in the fabrication process. The influence of the material orthotropy is also investigated and is shown to be negligible.

  17. Precise predictions of H2O line shapes over a wide pressure range using simulations corrected by a single measurement

    Science.gov (United States)

    Ngo, N. H.; Nguyen, H. T.; Tran, H.

    2018-03-01

    In this work, we show that precise predictions of the shapes of H2O rovibrational lines broadened by N2, over a wide pressure range, can be made using simulations corrected by a single measurement. For that, we use the partially-correlated speed-dependent Keilson-Storer (pcsdKS) model whose parameters are deduced from molecular dynamics simulations and semi-classical calculations. This model takes into account the collision-induced velocity-changes effects, the speed dependences of the collisional line width and shift as well as the correlation between velocity and internal-state changes. For each considered transition, the model is corrected by using a parameter deduced from its broadening coefficient measured for a single pressure. The corrected-pcsdKS model is then used to simulate spectra for a wide pressure range. Direct comparisons of the corrected-pcsdKS calculated and measured spectra of 5 rovibrational lines of H2O for various pressures, from 0.1 to 1.2 atm, show very good agreements. Their maximum differences are in most cases well below 1%, much smaller than residuals obtained when fitting the measurements with the Voigt line shape. This shows that the present procedure can be used to predict H2O line shapes for various pressure conditions and thus the simulated spectra can be used to deduce the refined line-shape parameters to complete spectroscopic databases, in the absence of relevant experimental values.

  18. A low cost surface plasmon resonance biosensor using a laser line generator

    Science.gov (United States)

    Chen, Ruipeng; Wang, Manping; Wang, Shun; Liang, Hao; Hu, Xinran; Sun, Xiaohui; Zhu, Juanhua; Ma, Liuzheng; Jiang, Min; Hu, Jiandong; Li, Jianwei

    2015-08-01

    Due to the instrument designed by using a common surface plasmon resonance biosensor is extremely expensive, we established a portable and cost-effective surface plasmon resonance biosensing system. It is mainly composed of laser line generator, P-polarizer, customized prism, microfluidic cell, and line Charge Coupled Device (CCD) array. Microprocessor PIC24FJ128GA006 with embedded A/D converter, communication interface circuit and photoelectric signal amplifier circuit are used to obtain the weak signals from the biosensing system. Moreover, the line CCD module is checked and optimized on the number of pixels, pixels dimension, output amplifier and the timing diagram. The micro-flow cell is made of stainless steel with a high thermal conductivity, and the microprocessor based Proportional-Integral-Derivative (PID) temperature-controlled algorithm was designed to keep the constant temperature (25 °C) of the sample solutions. Correspondingly, the data algorithms designed especially to this biosensing system including amplitude-limiting filtering algorithm, data normalization and curve plotting were programmed efficiently. To validate the performance of the biosensor, ethanol solution samples at the concentrations of 5%, 7.5%, 10%, 12.5% and 15% in volumetric fractions were used, respectively. The fitting equation ΔRU = - 752987.265 + 570237.348 × RI with the R-Square of 0.97344 was established by delta response units (ΔRUs) to refractive indexes (RI). The maximum relative standard deviation (RSD) of 4.8% was obtained.

  19. Shape resonances and the excitation of helium autoionising states by electrons in the 57-66 eV region

    International Nuclear Information System (INIS)

    Burgt, P.J.M. van der; Eck, J. van; Heideman, H.G.M.

    1986-01-01

    Optical excitation functions of singly excited helium states are presented, measured by detecting the yield of emitted photons as a function of the incident electron energy from 56 to 66 eV. Many structures are observed, which are caused by negative-ion resonances and by the decay of autoionising states followed by post-collision interaction. Some of the structures are interpreted as being caused by hitherto unknown shape resonances lying very close to the thresholds of a particular class of autoionising states. As these shape resonances almost exclusively decay to their respective parent (autoionising) states, thereby considerably enhancing the threshold excitation cross sections of these states, they can only be observed via the PCI effect on the excitation functions of (higher lying) singly excited states. Using the recently introduced supermultiplet classification for doubly excited states a selection rule for the near-threshold excitation of doubly excited states by electron impact is deduced from the measurements. Only states with large probabilities in the Wannier region of configuration space (where the two electrons are at nearly equal distances and on opposite sides of the nucleus) are strongly excited. It is pointed out that these states are precisely the states that can support the above mentioned shape resonances at their thresholds. (author)

  20. Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators.

    Science.gov (United States)

    Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A

    2012-05-01

    This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss.

  1. A scheme to expand the delay-bandwidth product in the resonator-based delay lines by optical OFDM technique

    DEFF Research Database (Denmark)

    Zhu, Jiangbo; Tao, Li; Zhang, Ziran

    2013-01-01

    We propose a novel scheme to expand the inherent limit in the product of the optical delay and the transmission bandwidth in resonator-based delay lines, with the optical orthogonal frequency division multiplexing (OOFDM) technique. The optical group delay properties of a single ring resonator we...

  2. Excitation dependence of resonance line self-broadening at different atomic densities

    OpenAIRE

    Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2009-01-01

    We study the dipole-dipole spectral broadening of a resonance line at high atomic densities when the self-broadening dominates. The selective reflection spectrum of a weak probe beam from the interface of the cell window and rubidium vapor are recorded in the presence of a far-detuned pump beam. The excitation due to the pump reduces the self-broadening. We found that the self-broadening reduction dependence on the pump power is atomic density independent. These results provide experimental e...

  3. Measurement of the $\\Sigma \\pi$ photoproduction line shapes near the $\\Lambda(1405)$

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, K; Adhikari, K P; Adikaram, D; Aghasyan, M; Anderson, M D; Anefalos Pereira, S; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Bedlinskiy, I; Bellis, M; Biselli, A S; Bono, J; Boiarinov, S; Briscoe, W J; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Cole, P L; Collins, P; Crede, V; D& #x27; Angelo, A; Dashyan, N; De Sanctis, E; De Vita, R; Deur, A; Dey, B; Djalali, C; Doughty, R; Dupre, R; Egiyan, H; El Fassi, L; Eugenio, P; Fedotov, G; Fegan, S; Fersch, R; Fleming, J A; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Heddle, D; Hicks, K; Ho, D; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jo, H S; Keller, D; Khandaker, M; Khertarpal, P; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, A; Kubarovsky, V; Kuleshov, S V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I.J. D; Markov, N; Mayer, M; McCracken, M; McKinnon, B; Mestayer, M D; Meyer, C A; Mirazita, M; Mineeva, T; Mokeev, V; Montgomery, R A; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Nasseripour, R; Nepali, C S; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Phelps, E; Phillips, J J; Pisano, S; Pivnyuk, N; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Protopopescu, D; Rimal, D; Ripani, M; Ritchie, B G; Rosner, G; Rossi, P; Sabatio, F; Saini, M S; Salgado, C; Schott, D; Seder, E; Seraydaryan, H; Sharabian, Y G; Smith, E S; Smith, G D; Sober, D I; Stepanyan, S S; Stepanyan, S; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Tang, W; Taylor, S; Taylor, C E; Tian, Ye; Tkachenko, S; Torayev, B; Ungaro, M; Vernarsky, B; Vlassov, A V; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P

    2013-03-01

    The reaction {gamma} + p -> K{sup +} + {Sigma} + {p}i was used to determine the invariant mass distributions or "line shapes" of the {Sigma}{sup +} {pi}{sup -}, {Sigma}{sup -} {pi}{sup +} and {Sigma}{sup 0} {pi}{sup 0} final states, from threshold at 1328 MeV/c^2 through the mass range of the {Lambda}(1405) and the {Lambda}(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95 < W < 2.85 GeV. The three mass distributions differ strongly in the vicinity of the I=0 {Lambda}(1405), indicating the presence of substantial I=1 strength in the reaction. Background contributions to the data from the {Sigma}{sup 0}(1385) and from K* {Sigma} production were studied and shown to have negligible influence. To separate the isospin amplitudes, Breit-Wigner model fits were made that included channel-coupling distortions due to the Nkbar threshold. A best fit to all the data was obtained after including a phenomenological I=1, J{sup P} = 1/2{sup -} amplitude with a centroid at 1394\\pm20 MeV/c^2 and a second I=1 amplitude at 1413\\pm10 MeV/c^2. The centroid of the I=0 {Lambda}(1405) strength was found at the {Sigma} {pi} threshold, with the observed shape determined largely by channel-coupling, leading to an apparent overall peak near 1405 MeV/c^2.

  4. Resonance scattering formalism for the hydrogen lines in the presence of magnetic and electric fields

    International Nuclear Information System (INIS)

    Casini, Roberto

    2005-01-01

    We derive a formalism for the computation of resonance-scattering polarization of hydrogen lines in the presence of simultaneous magnetic and electric fields, within a framework of the quantum theory of polarized line formation in the limit of complete frequency redistribution and of collisionless regime. Quantum interferences between fine-structure levels are included in this formalism. In the presence of a magnetic field, these interferences affect, together with the magnetic Hanle effect, the polarization of the atomic levels. In the presence of an electric field, interferences between distinct orbital configurations are also induced, further affecting the polarization of the hydrogen levels. In turn, the electric field is expected to affect the polarization of the atomic levels (electric Hanle effect), in a way analogous to the magnetic Hanle effect. We find that the simultaneous action of electric and magnetic fields give rise to complicated patterns of polarization and depolarization regimes, for varying geometries and field strengths

  5. Line shape and ray trace calculations in saturated X-ray lasers: Application to Ni-like silver

    International Nuclear Information System (INIS)

    Benredjem, D.; Guilbaud, O.; Moeller, C.; Klisnick, A.; Ros, D.; Dubau, J.; Calisti, A.; Talin, B.

    2006-01-01

    Longitudinal coherence length in X-ray lasers depends strongly on the shape of the amplified line. We have modelled an experiment performed at the LULI facility of Ecole Polytechnique. The experiment was devoted to the study of the temporal (longitudinal) coherence of the transient Ni-like silver 4d-4p transition X-ray laser at 13.9 nm. Accurate line shape calculations using PPP, a spectral line shape code, confirm that the Voigt profile is a good approximation for this X-ray laser line. This allows us to extensively use the Voigt shape in conditions where the amplifier, i.e. the plasma produced by the interaction of a high intensity laser with a slab target, is neither stationary nor homogeneous. Our calculations involve a ray trace code which is a post-processor to the hydrodynamic simulation EHYBRID. As the effect of saturation is important for the level populations and gains we include the interaction between the amplified beam and the medium using the Maxwell-Bloch formalism. While the FWHM of the spontaneous emission profile is ∼10 mA, the amplified X-ray line exhibits gain narrowing leading to the smaller width ∼3 mA. Comparison with experiment is discussed

  6. Shaping the spectra of the line-to-line voltage using signal injection in the common mode voltage

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Rasmussen, Peter Omand; Pedersen, John Kim

    2009-01-01

    A drawback of Pulse Width Modulation in electrical drives is the high harmonic content of the line to line voltages, which gives rise to Electro-Magnetic Interference and acoustic noise. By injection of a signal into the common mode voltage, the fundamental is not affected, but new frequency...

  7. V-shaped resonators for addition of broad-area laser diode arrays

    Science.gov (United States)

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  8. On low-dimensional models at NMR line shape analysis in nanomaterial systems

    Science.gov (United States)

    Kucherov, M. M.; Falaleev, O. V.

    2018-03-01

    We present a model of localized spin dynamics at room temperature for the low-dimensional solid-state spin system, which contains small ensembles of magnetic nuclei (N ~ 40). The standard spin Hamiltonian (XXZ model) is the sum of the Zeeman term in a strong external magnetic field and the magnetic dipole interaction secular term. The 19F spins in a single crystal of fluorapatite [Ca5(PO4)3F] have often been used to approximate a one-dimensional spin system. If the constant external field is parallel to the c axis, the 3D 19F system may be treated as a collection of many identical spin chains. When considering the longitudinal part of the secular term, we suggest that transverse component of a spin in a certain site rotates in a constant local magnetic field. This field changes if the spin jumps to another site. On return, this spin continues to rotate in the former field. Then we expand the density matrix in a set of eigenoperators of the Zeeman Hamiltonian. A system of coupled differential equations for the expansion coefficients then solved by straightforward numerical methods, and the fluorine NMR line shapes of fluorapatite for different chain lengths are calculated.

  9. First application of the spectral difference method for lifetime measurements of doppler attenuated line shapes

    Energy Technology Data Exchange (ETDEWEB)

    Duckwitz, Hannah [Institut fuer Kernphysik, Koeln Univ. (Germany); Petkov, Pavel [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2016-07-01

    In this new approach to lifetime measurements via Doppler attenuated line shapes, the spectra of a feeding f and a deexciting transition d of the level of interest are used to determine the lifetime without any lineshape analysis of the feeding transition (direct or indirect). Similarly to the DDC method, the decay function λ{sub d}n{sub d}(t) of the deexciting transition is determined. The feeding of the level is included via the spectral difference of the two successive decays. Consequently, the determined lifetime is the real lifetime. After transforming both transitions into the same energy region, their spectral difference D(v{sub θ}) = S{sub d}(v{sub θ})-S{sub f}(v{sub θ}) = ∫{sub 0}{sup ∞}(∂P{sub θ}(t,v{sub θ}))/(∂t)n{sub d}(t) dt, is solved for n{sub d}(t). Dividing n{sub d}(t) by the decay function λ{sub d}n{sub d}(t) should yield a constant τ value for the level lifetime as a function of the time t. After the development and test of the procedure in 2015, it is now applied for the first time. Two level lifetimes are determined in {sup 86}Sr for the 2{sup +}{sub 2} and the 2{sup +}{sub 3} levels.

  10. Design Optimization of An Axial Flow Fan Blade Considering Airfoil Shape and Stacking Line

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sang; Kim, Kwang Yong; Samad, Abdus [Inha Univ., Incheon (Korea, Republic of)

    2007-07-01

    This work presents a numerical optimization procedure for a low-speed axial flow fan blade with polynomial response surface approximation model. Reynolds-averaged Navier-Stokes equations with Shear Stress Turbulence (SST) model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. The airfoil shape as well as stacking line is modified to enhance blade total efficiency, i.e., the objective function. The design variables of blade lean, maximum thickness and location of maximum thickness are selected, and a design of experiments technique produces design points where flow analyses are performed to obtain values of the objective function. A gradient-based search algorithm is used to find the optimal design in the design space from the constructed response surface model for the objective function. As a main result, the efficiency is increased effectively by the present optimization procedure. And, it is also shown that the modification of blade lean is more effective to improve the efficiency rather than modifying blade profile.

  11. Measurement of the Σπ photoproduction line shapes near the Λ(1405)

    Science.gov (United States)

    Moriya, K.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bellis, M.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Collins, P.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Sanctis, E.; De Vita, R.; Deur, A.; Dey, B.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McCracken, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, S.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Torayev, B.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weygand, D. P.; Williams, M.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2013-03-01

    The reaction γ+p→K++Σ+π was used to determine the invariant mass distributions or “line shapes” of the Σ+π-, Σ-π+, and Σ0π0 final states, from threshold at 1328 MeV/c2 through the mass range of the Λ(1405) and the Λ(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95shape determined largely by channel coupling, leading to an apparent overall peak near 1405 MeV/c2.

  12. Measurement of the profile and intensity of the solar He I lambda 584-A resonance line

    Science.gov (United States)

    Maloy, J. O.; Hartmann, U. G.; Judge, D. L.; Carlson, R. W.

    1978-01-01

    The intensity and profile of the helium resonance line at 584 A from the entire disk of the sun was investigated by using a rocket-borne helium-filled spectrometer and a curve-of-growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 + or - 10 mA, while the integrated intensity was measured to be 2.6 + or - 1.3 billion photons/s per sq cm at solar activity levels of F(10.7) = 90.8 x 10 to the -22nd per sq m/Hz and Rz = 27. The measured line width is in good agreement with previous spectrographic measurements, but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of 20 + or - 10 billion photons/s per sq cm/A is in good agreement with values inferred from airglow measurements.

  13. Ferromagnetic resonance frequency increase and resonance line broadening of a ferromagnetic Fe–Co–Hf–N film with in-plane uniaxial anisotropy by high-frequency field perturbation

    International Nuclear Information System (INIS)

    Seemann, K.; Leiste, H.; Krüger, K.

    2013-01-01

    Soft ferromagnetic Fe-Co-Hf-N films, produced by reactive r.f. magnetron sputtering, are useful to study the ferromagnetic resonance (FMR) by means of frequency domain permeability measurements up to the GHz range. Films with the composition Fe 33 Co 43 Hf 10 N 14 exhibit a saturation polarisation J s of around 1.35 T. They are consequently considered as being uniformly magnetised due to an in-plane uniaxial anisotropy of approximately μ 0 H u ≈4.5 m T after annealing them, e.g., at 400 °C in a static magnetic field for 1 h. Being exposed to a high-frequency field, the precession of magnetic moments leads to a marked frequency-dependent permeability with a sharp Lorentzian shaped imaginary part at around 2.33 GHz (natural resonance peak), which is in a very good agreement with the modified Landau–Lifschitz–Gilbert (LLG) differential equation. A slightly increased FMR frequency and a clear increase in the resonance line broadening due to an increase of the exciting high-frequency power (1–25.1 mW), considered as an additional perturbation of the precessing system of magnetic moments, could be discovered. By solving the homogenous LLG differential equation with respect to the in-plane uniaxial anisotropy, it was revealed that the high-frequency field perturbation impacts the resonance peak position f FMR and resonance line broadening Δf FMR characterised by a completed damping parameter α=α eff +Δα. Adapted from this result, the increase in f FMR and decrease in lifetime of the excited level of magnetic moments associated with Δf FMR , similar to a spin-½ particle in a static magnetic field, was theoretically elaborated as well as compared with experimental data. - Highlights: • Impact on the resonance frequency and resonance line by the high-frequency power. • Theoretic approach by solving the LLG differential equation. • Experimental verification and magnon processes. • Theoretical and experimental determination of the resonance state

  14. 3-D Printed Fabry–Pérot Resonator Antenna with Paraboloid-Shape Superstrate for Wide Gain Bandwidth

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2017-11-01

    Full Text Available A three-dimensional (3-D printed Fabry–Pérot resonator antenna (FPRA, which designed with a paraboloid-shape superstrate for wide gain bandwidth is proposed. In comparison with the commonly-adopted planar superstrate, the paraboloid-shape superstrate is able to provide multiple resonant heights and thus satisfy the resonant condition of the FPRA in a wide frequency band. A FPRA working at 6 GHz is designed, fabricated, and tested. Considering the fabrication difficulty caused by its complex structure, the prototype antenna was fabricated by using the 3-D printing technology, i.e., all components of the prototype antenna were printed with photopolymer resin and then treated by the surface metallization process. Measurement results agree well with the simulation results, and show the 3-D printed FPRA has a |S11| < −10 dB impedance bandwidth of 12.4%, and a gain of 16.8 dBi at its working frequency of 6 GHz. Moreover, in comparison with the planar superstrate adopted in traditional FPRAs, the paraboloid-shape superstrate of the proposed FPRA significantly improves the 3-dB gain bandwidth from 6% to 22.2%.

  15. Small scale structure of magnetospheric electron density through on-line tracking of plasma resonances

    International Nuclear Information System (INIS)

    Higel, B.

    1978-01-01

    The plasma resonance phenomena observed at fsub(pe), nfsub(ce), and fsub(qn) by the GEOS-1 S-301 relaxation sounder are identified through a pattern recognition software process implemented in a mini-computer which receives on-line the compressed data. First, this processing system distributes in real time fsub(pe) and fsub(ce) measurements to the ground media. Second, it drives and controls automatically the S-301 on-board experiment by sending appropriate telecommands: the tracking of resonances is performed by shortening the frequency sweeps to a narrow range centered on the resonance location. Examples of such tracking sequences are presented, exhibiting sampling rates of the electron density measurements from once every 22s (slowest rate) to once every 86 ms (highest rate available). The results give evidence of the existence of very small scale structures in the magnetospheric density, having characteristic sizes of the order of a few 10 2 m or/and a few 10 -1 s. The relative amplitude of these density fluctuations is typically 1%. Because of satellite spinning, fixed frequency sounding sequences allow to measure in a few seconds the directivity features of the plasma resonance signals. Examples of directional patterns in the plane perpendicular to the geomagnetic field are presented: the electrostatic nature of the waves received at fsub(pe), nfsub(ce), and fsub(qn) being consistent with these patterns, the corresponding k vector orientations become available. The Bernstein modes properties are used to interpret the nfsub(ce) and fsub(qn) results. (Auth.)

  16. Influence of thin porous Al2O3 layer on aluminum cathode to the Hα line shape in glow discharge

    International Nuclear Information System (INIS)

    Steflekova, V.; Sisovic, N. M.; Konjevic, N.

    2009-01-01

    The results of the Balmer alfa line shape study in a plane cathode-hollow anode Grimm discharge with aluminum (Al) cathode covered with thin layer of porous Al 2 O 3 are presented. The comparison with same line profile recorded with pure Al cathode shows lack of excessive Doppler broadened line wings, which are always detected in glow discharge with metal cathode. The effect is explained by the lack of strong electric field in the cathode sheath region, which is missing in the presence of thin oxide layer in, so called, spray discharge.

  17. Scanning electron microscope measurement of width and shape of 10 nm patterned lines using a JMONSEL-modeled library

    Energy Technology Data Exchange (ETDEWEB)

    Villarrubia, J.S., E-mail: john.villarrubia@nist.gov [Semiconductor and Dimensional Metrology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Vladár, A.E.; Ming, B. [Semiconductor and Dimensional Metrology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Kline, R.J.; Sunday, D.F. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Chawla, J.S.; List, S. [Intel Corporation, RA3-252, 5200 NE Elam Young Pkwy, Hillsboro, OR 97124 (United States)

    2015-07-15

    The width and shape of 10 nm to 12 nm wide lithographically patterned SiO{sub 2} lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm.

  18. Scanning electron microscope measurement of width and shape of 10nm patterned lines using a JMONSEL-modeled library.

    Science.gov (United States)

    Villarrubia, J S; Vladár, A E; Ming, B; Kline, R J; Sunday, D F; Chawla, J S; List, S

    2015-07-01

    The width and shape of 10nm to 12 nm wide lithographically patterned SiO2 lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm. Published by Elsevier B.V.

  19. Spatial Variations of Poloidal and Toroidal Mode Field Line Resonances Observed by MMS

    Science.gov (United States)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Anderson, B. J.; Kepko, L.; Nakamura, R.; Plaschke, F.; Torbert, R. B.

    2017-12-01

    Field line resonances (FLRs) are magnetosphere's responses to solar wind forcing and internal instabilities generated by solar wind-magnetospheric interactions. They are standing waves along the Earth's magnetic field lines oscillating in either poloidal or toroidal modes. The two types of waves have their unique frequency characteristics. The eigenfrequency of FLRs is determined by the length of the field line and the plasma density, and thus gradually changes with L. For toroidal mode oscillations with magnetic field perturbations in the azimuthal direction, ideal MHD predicts that each field line oscillates independently with its own eigenfrequency. For poloidal mode waves with field lines oscillating radially, their frequency cannot change with L easily as L shells need to oscillate in sync to avoid efficient damping due to phase mixing. Observations, mainly during quiet times, indeed show that poloidal mode waves often exhibit nearly constant frequency across L shells. Our recent observations, on the other hand, reveal a clear L-dependent frequency trend for a long lasting storm-time poloidal wave event, indicating the wave can maintain its power with changing frequencies for an extended period [Le et al., 2017]. The spatial variation of the frequency shows discrete spatial structures. The frequency remains constant within each discrete structure that spans about 1 REalong L, and changes discretely. We present a follow-up study to investigate spatial variations of wave frequencies using the Wigner-Ville distribution. We examine both poloidal and toroidal waves under different geomagnetic conditions using multipoint observations from MMS, and compare their frequency and occurrence characteristics for insights into their generation mechanisms. Reference: Le, G., et al. (2017), Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm, Geophys. Res. Lett., 44, 3456-3464, doi:10.1002/2017GL073048.

  20. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating

    Science.gov (United States)

    Yan, Haitao; Han, Daofu; Li, Ming; Lin, Bo

    2017-01-01

    This paper presents the design, fabrication, and characterization of a D-shaped fiber coated with polyvinyl alcohol (PVA) embedding an Au grating-based relative humidity (RH) sensor. The Au grating is fabricated on a D-shaped fiber to match the wave-vector and excite the surface plasmon, and the PVA is embedded in the Au grating as a sensitive cladding film. The refractive index of PVA changes with the ambient humidity. Measurements in a controlled environment show that the RH sensor can achieve a sensitivity of 5.4 nm per relative humidity unit in the RH range from 0% to 70% RH. Moreover, the surface plasmon resonance can be realized and used for RH sensing at the C band of optical fiber communication instead of the visible light band due to the metallic grating microstructure on the D-shaped fiber.

  1. Photon and spin dependence of the resonance line shape in the strong coupling regime

    NARCIS (Netherlands)

    Miyashita, Seiji; Shirai, Tatsuhiko; Mori, Takashi; De Raedt, Hans; Bertaina, Sylvain; Chiorescu, Irinel

    2012-01-01

    We study the quantum dynamics of a spin ensemble coupled to cavity photons. Recently, related experimental results have been reported, showing the existence of the strong coupling regime in such systems. We study the eigenenergy distribution of the multi-spin system (following the Tavis-Cummings

  2. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.

    Science.gov (United States)

    Allen, Vivian; Bates, Karl T; Li, Zhiheng; Hutchinson, John R

    2013-05-02

    Locomotion in living birds (Neornithes) has two remarkable features: feather-assisted flight, and the use of unusually crouched hindlimbs for bipedal support and movement. When and how these defining functional traits evolved remains controversial. However, the advent of computer modelling approaches and the discoveries of exceptionally preserved key specimens now make it possible to use quantitative data on whole-body morphology to address the biomechanics underlying this issue. Here we use digital body reconstructions to quantify evolutionary trends in locomotor biomechanics (whole-body proportions and centre-of-mass position) across the clade Archosauria. We use three-dimensional digital reconstruction to estimate body shape from skeletal dimensions for 17 archosaurs along the ancestral bird line, including the exceptionally preserved, feathered taxa Microraptor, Archaeopteryx, Pengornis and Yixianornis, which represent key stages in the evolution of the avian body plan. Rather than a discrete transition from more-upright postures in the basal-most birds (Avialae) and their immediate outgroup deinonychosauria, our results support hypotheses of a gradual, stepwise acquisition of more-crouched limb postures across much of theropod evolution, although we find evidence of an accelerated change within the clade Maniraptora (birds and their closest relatives, such as deinonychosaurs). In addition, whereas reduction of the tail is widely accepted to be the primary morphological factor correlated with centre-of-mass position and, hence, evolution of hindlimb posture, we instead find that enlargement of the pectoral limb and several associated trends have a much stronger influence. Intriguingly, our support for the onset of accelerated morpho-functional trends within Maniraptora is closely correlated with the evolution of flight. Because we find that the evolution of enlarged forelimbs is strongly linked, via whole-body centre of mass, to hindlimb function during

  3. Population trapping: The mechanism for the lost resonance lines in Pm-like ions

    Science.gov (United States)

    Kato, Daiji; Sakaue, Hiroyuki A.; Murakami, Izumi; Nakamura, Nobuyuki

    2017-10-01

    We report a population kinetics study on line emissions of the Pm-like Bi22+ performed by using a collisional-radiative (CR) model. Population rates of excited levels are analyzed to explain the population trapping in the 4f135s2 state which causes the loss of the 5s - 5p resonance lines in emission spectra. Based on the present analysis, we elucidate why the population trapping is not facilitated for a meta-stable excited level of the Sm-like Bi21+. The emission line spectra are calculated for the Pm-like isoelectronic sequence from Au18+ through W13+ and compared with experimental measurements by electron-beam-ion-traps (EBITs). Structures of the spectra are similar for all of the cases except for calculated W13+ spectra. The calculated spectra are hardly reconciled with the measured W13+ spectrum using the compact electron-beam-ion-trap (CoBIT) [Phys. Rev. A 92 (2015) 022510].

  4. Resonance ionization laser ion sources for on-line isotope separators (invited)

    International Nuclear Information System (INIS)

    Marsh, B. A.

    2014-01-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented

  5. An improved ultra-wideband bandpass filter design using split ring resonator with coupled microstrip line

    Science.gov (United States)

    Umeshkumar, Dubey Suhmita; Kumar, Manish

    2018-04-01

    This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.

  6. On resonance processes in near threshold excitation of resonance lines of Zn+ ion at electron-ion collisions

    International Nuclear Information System (INIS)

    Imre, A.I.; Gomonaj, A.N.; Vukstich, V.S.; Nemet, A.N.

    1998-01-01

    The results of spectroscopic investigation of resonances in excitation of near threshold region of separate components of resonance doublet 4p 2 P 1/2,3/2 0 of Zn + ion by electron impact are given in the present work. The physical basis of their production nature is suggested

  7. [Influence of cold spot temperature on 253.7 nm resonance spectra line of electrodeless discharge lamps].

    Science.gov (United States)

    Dong, Jin-yang; Zhang, Gui-xin; Wang, Chang-quan

    2012-01-01

    As a kind of new electric light source, electrodeless discharge lamps are of long life, low mercury and non-stroboscopic light. The lighting effect of electrodeless discharge lamps depends on the radiation efficiency of 253.7 nm resonance spectra line to a large extent. The influence of cold temperature on 253.7 nm resonance spectra line has been studied experimentally by atomic emission spectral analysis. It was found that the radiation efficiency of 253.7 nm resonance spectra line is distributed in a nearly normal fashion with the variation of cold spot temperature, in other words, there is an optimum cold spot temperature for an electrodeless discharge lamp. At last, the results of experiments were analyzed through gas discharge theory, which offers guidance to the improvement of lighting effect for electrodeless discharge lamps.

  8. In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer.

    Science.gov (United States)

    Wu, Chuang; Tse, Ming-Leung Vincent; Liu, Zhengyong; Guan, Bai-Ou; Lu, Chao; Tam, Hwa-Yaw

    2013-09-01

    We propose and demonstrate a highly sensitive in-line photonic crystal fiber (PCF) microfluidic refractometer. Ultrathin C-shaped fibers are spliced in-between the PCF and standard single-mode fibers. The C-shaped fibers provide openings for liquid to flow in and out of the PCF. Based on a Sagnac interferometer, the refractive index (RI) response of the device is investigated theoretically and experimentally. A high sensitivity of 6621 nm/RIU for liquid RI from 1.330 to 1.333 is achieved in the experiment, which agrees well with the theoretical analysis.

  9. Welcome to the 21st International Conference on Spectral Line Shapes

    Science.gov (United States)

    2012-12-01

    organizing committee of the conference has not forgotten about the cultural and tourism significance of the host city, with Hermitage and the Russian Museum, memorial museums of Pushkin and Dostoevsky, Mariinsky and Mikhailovsky Theaters being only a few of the many places to visit. Early June is the time of white nights, the best time to visit the environs of St. Petersburg with its many imperial palaces and parks, and attend multiple music and theater festivals. This is just the right time to take a break from physics overall and spectral line shapes in particular. On behalf of the Rector's Office let me wish the Conference every success, and do not forget to take some time out to enjoy your visit. Welcome! Professor N G Skvortsov Vice-Rector for Research St. Petersburg University

  10. Revisiting Vertical Models To Simulate the Line Shape of Electronic Spectra Adopting Cartesian and Internal Coordinates.

    Science.gov (United States)

    Cerezo, Javier; Santoro, Fabrizio

    2016-10-11

    Vertical models for the simulation of spectroscopic line shapes expand the potential energy surface (PES) of the final state around the equilibrium geometry of the initial state. These models provide, in principle, a better approximation of the region of the band maximum. At variance, adiabatic models expand each PES around its own minimum. In the harmonic approximation, when the minimum energy structures of the two electronic states are connected by large structural displacements, adiabatic models can breakdown and are outperformed by vertical models. However, the practical application of vertical models faces the issues related to the necessity to perform a frequency analysis at a nonstationary point. In this contribution we revisit vertical models in harmonic approximation adopting both Cartesian (x) and valence internal curvilinear coordinates (s). We show that when x coordinates are used, the vibrational analysis at nonstationary points leads to a deficient description of low-frequency modes, for which spurious imaginary frequencies may even appear. This issue is solved when s coordinates are adopted. It is however necessary to account for the second derivative of s with respect to x, which here we compute analytically. We compare the performance of the vertical model in the s-frame with respect to adiabatic models and previously proposed vertical models in x- or Q 1 -frame, where Q 1 are the normal coordinates of the initial state computed as combination of Cartesian coordinates. We show that for rigid molecules the vertical approach in the s-frame provides a description of the final state very close to the adiabatic picture. For sizable displacements it is a solid alternative to adiabatic models, and it is not affected by the issues of vertical models in x- and Q 1 -frames, which mainly arise when temperature effects are included. In principle the G matrix depends on s, and this creates nonorthogonality problems of the Duschinsky matrix connecting the normal

  11. The influence of instrumental line shape degradation on NDACC gas retrievals: total column and profile

    Directory of Open Access Journals (Sweden)

    Y. Sun

    2018-05-01

    Full Text Available We simulated instrumental line shape (ILS degradations with respect to typical types of misalignment, and compared their influence on each NDACC (Network for Detection of Atmospheric Composition Change gas. The sensitivities of the total column, the root mean square (rms of the fitting residual, the total random uncertainty, the total systematic uncertainty, the total uncertainty, degrees of freedom for signal (DOFs, and the profile with respect to different levels of ILS degradation for all current standard NDACC gases, i.e. O3, HNO3, HCl, HF, ClONO2, CH4, CO, N2O, C2H6, and HCN, were investigated. The influence of an imperfect ILS on NDACC gases' retrieval was assessed, and the consistency under different meteorological conditions and solar zenith angles (SZAs were examined. The study concluded that the influence of ILS degradation can be approximated by the linear sum of individual modulation efficiency (ME amplitude influence and phase error (PE influence. The PE influence is of secondary importance compared with the ME amplitude. Generally, the stratospheric gases are more sensitive to ILS degradation than the tropospheric gases, and the positive ME influence is larger than the negative ME. For a typical ILS degradation (10 %, the total columns of stratospheric gases O3, HNO3, HCl, HF, and ClONO2 changed by 1.9, 0.7, 4, 3, and 23 %, respectively, while the columns of tropospheric gases CH4, CO, N2O, C2H6, and HCN changed by 0.04, 2.1, 0.2, 1.1, and 0.75 %, respectively. In order to suppress the fractional difference in the total column for ClONO2 and other NDACC gases within 10 and 1 %, respectively, the maximum positive ME degradations for O3, HNO3, HCl, HF, ClONO2, CO, C2H6, and HCN should be less than 6, 15, 5, 5, 5, 5, 9, and 13 %, respectively; the maximum negative ME degradations for O3, HCl, and HF should be less than 6, 12, and 12 %, respectively; the influence of ILS degradation on CH4 and N2O can be regarded as being

  12. M series resonant x-ray lines of barium for near threshold electron excitation

    International Nuclear Information System (INIS)

    Morgon, D.V.

    1992-01-01

    An investigation of the M series resonant x-ray emission lines of barium for near threshold electron excitation was undertaken with a vacuum double crystal spectrometer equipped with potassium acid phthalate crystals. X-ray continuum isochromats were obtained for barium samples using the double crystal spectrometer as a monochrometer set to pass 532 eV photons. The rotatable anode allowed the samples to be observed by either the double crystal spectrometer or a soft x-ray appearance potential spectrometer, which was used for monitoring the surface of the varium sample for contamination, and to provide a cross-check for the double crystal spectrometer data. Barium M series characteristic x-ray spectra for 2.0 keV electron excitation were obtained for a variety of samples, and it was discovered that the fluorescent and resonant x-ray emission line energies remained virtually the same, regardless of the chemical condition of the sample. The continuum resonance effect was observed for near-threshold energy electron excitation, but it was significantly weaker than the same effect observed previously for lanthanum or cerium. The electron excitation energy and intensity of this effect were strongly dependent on the chemical condition of the barium sample. X-ray continuum isochromats were observed for pure and contaminated barium samples at a photon energy of 532 eV. For pure metallic barium, a peak associated with 4f electronic states was observed at an energy of about 10.2 eV above the Fermi level. When the sample was exposed to 1.5 x 10 4 Langmuir of air, the 4f structure became more sharply peaked, and shifted to an energy of about 12.0 eV above the Fermi level. A continuum isochromat of barium oxide was also observed. Chemical shifts in barium M IV and M V appearance potential spectra are therefore caused soley by shifts in the energy position of the empty 4f electronic states relative to the Fermi level

  13. Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Mi Xian-Wu

    2011-01-01

    Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya—Perot optical cavity via radiation—pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. 600 GHz resonant mode in a parallel array of Josephson tunnel junctions connected by superconducting microstrip lines

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Larsen, Britt Hvolbæk; Mygind, Jesper

    1994-01-01

    on experimental and numerical investigations of a resonant step observed at a voltage corresponding to 600 GHz in the dc current-voltage characteristic of a parallel array of 20 identical small NbAl2O3Nb Josephson junctions interconnected by short sections of superconducting microstrip line. The junctions...... are mutually phase locked due to collective interaction with the line sections excited close to the half wavelength resonance. The phase locking range can be adjusted by means of an external dc magnetic field and the step size varies periodically with the magnetic field. The largest step corresponds...

  15. Coordinated observation of field line resonance in the mid-tail

    Directory of Open Access Journals (Sweden)

    Y. Zheng

    2006-03-01

    Full Text Available Standing Alfvén waves of 1.1 mHz (~15 min in period were observed by the Cluster satellites in the mid-tail during 06:00-07:00 UT on 8 August 2003. Pulsations with the same frequency were also observed at several ground stations near Cluster's footpoint. The standing wave properties were determined from the electric and magnetic field measurements of Cluster. Data from the ground magnetometers indicated a latitudinal amplitude and phase structure consistent with the driven field line resonance (FLR at 1.1 mHz. Simultaneously, quasi-periodic oscillations at different frequencies were observed in the post-midnight/early morning sector by GOES 12 (l0≈8.7, Polar (l0≈11-14 and Geotail (l0≈9.8. The 8 August 2003 event yields rare and interesting datasets. It provides, for the first time, coordinated in situ and ground-based observations of a very low frequency FLR in the mid-tail on stretched field lines.

  16. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    Science.gov (United States)

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  17. Distribution of smile line, gingival angle and tooth shape among the Saudi Arabian subpopulation and their association with gingival biotype.

    Science.gov (United States)

    AlQahtani, Nabeeh A; Haralur, Satheesh B; AlMaqbol, Mohammad; AlMufarrij, Ali Jubran; Al Dera, Ahmed Ali; Al-Qarni, Mohammed

    2016-04-01

    To determine the occurrence of smile line and maxillary tooth shape in the Saudi Arabian subpopulation, and to estimate the association between these parameters with gingival biotype. On the fulfillment of selection criteria, total 315 patients belong to Saudi Arabian ethnic group were randomly selected. Two frontal photographs of the patients were acquired. The tooth morphology, gingival angle, and smile line classification were determined with ImageJ image analyzing software. The gingival biotype was assessed by probe transparency method. The obtained data were analyzed with SPSS 19 (IBM Corporation, New York, USA) software to determine the frequency and association between other parameters and gingival biotype. Among the clinical parameters evaluated, the tapering tooth morphology (56.8%), thick gingival biotype (53%), and average smile line (57.5%) was more prevalent. The statistically significant association was found between thick gingival biotype and the square tooth, high smile line. The high gingival angle was associated with thin gingival biotype. The study results indicate the existence of an association between tooth shape, smile line, and gingival angle with gingival biotype.

  18. Localized surface plasmon resonance enhanced photoluminescence of CdSe QDs in PMMA matrix on silver colloids with different shapes

    International Nuclear Information System (INIS)

    Lu Liu; Xu Xiaoliang; Shi Chaoshu; Ming Hai

    2010-01-01

    Localized surface plasmon resonance (LSPR) enhanced photoluminescences (PL) from CdSe quantum dots (QDs) on worm-like or quasi-spherical silver colloids have been investigated. The shape of silver colloid film is controlled by annealing temperature (200 o C∼350 o C). Strong PL enhancements of CdSe QDs on both as-grown and annealed silver colloid films are observed. The results show that the PL enhancement factor of CdSe QDs on worm-like silver colloid film reaches as high as 15-fold. Moreover, the enhancement factor is 5 times larger than that obtained from the quasi-spherical silver colloids. The superiority of worm-like silver nanostructure on LSPR enhanced photoluminescence is attributed to its larger size, hot spots and multiple dipole resonance modes coupling, which are induced by aggregation effect.

  19. Effect of duct shape, Mach number, and lining construction on measured suppressor attenuation and comparison with theory

    Science.gov (United States)

    Olsen, W. A.; Krejsa, E. A.; Coats, J. W.

    1972-01-01

    Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.

  20. Study of semiconductor valence plasmon line shapes via electron energy-loss spectroscopy in the transmission electron microscope

    International Nuclear Information System (INIS)

    Kundmann, M.K.

    1988-11-01

    Electron energy-loss spectra of the semiconductors Si, AlAs, GaAs, InAs, InP, and Ge are examined in detail in the regime of outer-shell and plasmon energy losses (0--100eV). Particular emphasis is placed on modeling and analyzing the shapes of the bulk valence plasmon lines. A line shape model based on early work by Froehlich is derived and compared to single-scattering probability distributions extracted from the measured spectra. Model and data are found to be in excellent agreement, thus pointing the way to systematic characterization of the plasmon component of EELS spectra. The model is applied to three separate investigations. 82 refs

  1. High-resolution measurements and multichannel quantum defect analysis of spectral line shapes of autoionizing Rydberg series

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    1997-01-01

    Spectral line shapes for autoionizing Rydberg series are briefly reviewed within the framework of multichannel quantum defect theory (MQDT). Recent high-resolution measurements and MQDT analysis for the spectra line shapes are reviewed for the mp 5 ( 2 P 1/2 )ns ' and nd ' J=1 odd spectra of the Ar, Kr, and Xe atoms (m=3,4,5 for Ar, Kr, and Xe) and the 3p 5 ( 2 P 1/2 )nd ' J=2 and 3 odd spectra of Ar*3p 5 4p excited atoms. Some results are also discussed for the Ca 4p( 2 P 1/2,3/2 )ns and nd J=1 odd spectrum and the Ba 5d( 2 P 5/2 )nd J=1 odd spectrum

  2. Memory function approach to the line shape problem in collision-induced light scattering

    International Nuclear Information System (INIS)

    Balucani, U.; Tognetti, V.; Vallauri, R.

    1980-01-01

    This article mainly deals with the problem of the shape of the spectrum due to interacting pairs of atoms at low and moderate densities. A memory function approach is used which permits to obtain in a consistent way the shape of the scattered spectrum. In order to obtain 'exact' time correlation functions and spectral shapes, molecular-dynamics 'experiments' in Lennard-Jones argon at two different densities were also performed. The dipole-induced dipole (DID) polarizabilities have been used to ascertain the validity of the theoretical approach in a well-defined physical model. The theoretical shapes and correlation functions can be then directly compared with computer simulations. Finally, a comparison with the data of real experiments clarifies the relevance of other-than-DID polarizability mechanisms as far as the spectrum is concerned. (KBE)

  3. The Impact of Injector-Based Contrast Agent Administration on Bolus Shape and Magnetic Resonance Angiography Image Quality.

    Science.gov (United States)

    Jost, Gregor; Endrikat, Jan; Pietsch, Hubertus

    2017-01-01

    To compare injector-based contrast agent (CA) administration with hand injection in magnetic resonance angiography (MRA). Gadobutrol was administered in 6 minipigs with 3 protocols: (a) hand injection (one senior technician), (b) hand injection (6 less-experienced technicians), and (c) power injector administration. The arterial bolus shape was quantified by test bolus measurements. A head and neck MRA was performed for quantitative and qualitative comparison of signal enhancement. A significantly shorter time to peak was observed for protocol C, whereas no significant differences between protocols were found for peak height and bolus width. However, for protocol C, these parameters showed a much lower variation. The MRA revealed a significantly higher signal-to-noise ratio for injector-based administration. A superimposed strong contrast of the jugular vein was found in 50% of the hand injections. Injector-based CA administration results in a more standardized bolus shape, a higher vascular contrast, and a more robust visualization of target vessels.

  4. Shape of argon spectral lines emitted from an electric arc (P=760 Torr). Study and application of pressure broadening

    International Nuclear Information System (INIS)

    Kretzas, Dimitrios.

    1978-01-01

    We have studied the broadening and shift of argon spectral lines corresponding to 3p 5 5p-3p 5 4s and 3p 5 4p-3p 5 4s transitions emitted from an electric arc burning under atmospheric pressure. We have revealed the broadening due to neutral atoms pressure effect, distinguishing the transitions whose lower level is a metastable one (1s 3 and 1s 5 ) or a level of strong (1s 2 ) or feeble resonance (1s 4 ). In this study we have employed a mixture of argon (98%) and hydrogen (2%); hydrogen's feeble proportion does not perturb much the discharge and is very suitable for the measure of the electronic density. The important departure of L.T.E. has guided us to imagine and apply an original method to measure the temperature and the overpopulation of the neutral atoms in the fondamental state. Our method which is independent of the existence of L.T.E. is based on the different behavior of the spectral lines which are under the influence of the resonance or Van der Waals broadening. The measure of the broadening constants which in the resonance case are independent of the temperature and vary as Tsup(0,3) for V.d.W's broadening, give us a suitable tool to measure the density and the temperature of the neutral atoms [fr

  5. Spectrophotometry near the atmospheric cutoff of the strongest Bowen resonance fluorescence lines of O III in two planetary nebulae

    Science.gov (United States)

    O'Dell, C. R.; Opal, Chet B.

    1989-01-01

    Spectrophotometric results are presented for the stronger, well-resolved Bowen O III resonance fluorescence emission lines in the planetary nebulae 7027 and NGC 7662 down to and including the intrinsically strong line at 3133 A. These data are combined with results from the IUE atlas of spectra and similar results for the longer wavelength lines by Likkel and Aller (1986) to give the first full coverage of the Bowen lines. Good agreement is found with fluorescence theory for the primary cascade lines, except for the Likkel and Aller results. The efficiency of conversion of the exciting He II Ly-alpha into O III lines is determined, and values comparable to other planetary nebulae are found.

  6. Pseudo-field line resonances in ground Pc5 pulsation events

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-02-01

    Full Text Available In this work we study four representative cases of Pc5 ground pulsation events with discrete and remarkably stable frequencies extended at least in a high-latitude range of ~20°; a feature that erroneously gives the impression for an oscillation mode with "one resonant field line". Additionally, the presented events show characteristic changes in polarization sense, for a meridian chain of stations from the IMAGE array, and maximize their amplitude at or close to the supposed resonant magnetic field shell, much like the typical FLR. Nevertheless, they are not authentic FLRs, but pseudo-FLRs, as they are called. These structures are produced by repetitive and tilted twin-vortex structures caused by magnetopause surface waves, which are probably imposed by solar wind pressure waves. The latter is confirmed with in-situ measurements obtained by the Cluster satellites, as well as the Geotail, Wind, ACE, and LANL 1994-084 satellites. This research effort is largely based on two recent works: first, Sarafopoulos (2004a has observationally established that a solar wind pressure pulse (stepwise pressure variation produces a twin-vortex (single vortex current system over the ionosphere; second, Sarafopoulos (2004b has studied ground events with characteristic dispersive latitude-dependent structures and showed that these are associated with twin-vortex ionosphere current systems. In this work, we show that each pseudo-FLR event is associated with successive and tilted large-scale twin-vortex current systems corresponding to a magnetopause surface wave with wavelength 10-20RE. We infer that between an authentic FLR, which is a spatially localized structure with an extent 0.5RE in the magnetospheric equatorial plane, and the magnetopause surface wavelength, there is a scale factor of 20-40. A chief observational finding, in this work, is that there are Pc5 ground pulsation events showing two gradual and latitude dependent phase-shifts of 180°, at the

  7. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    DEFF Research Database (Denmark)

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) bea...

  8. First line shape analysis and spectroscopic parameters for the ν11 band of 12C2H4

    KAUST Repository

    Es-sebbar, Et-touhami

    2016-08-11

    An accurate knowledge of line intensities, collisional broadening coefficients and narrowing parameters is necessary for the interpretation of high-resolution infrared spectra of the Earth and other planetary atmospheres. One of the most promising spectral domains for (C2H4)-C-12 monitoring in such environments is located near the 336 gm window, through its v(11) C-H stretching mode. In this paper, we report an extensive study in which we precisely determine spectroscopic parameters of (C2H4)-C-12 v(11) band at 297 +/- 1 K, using a narrow Difference-Frequency-Generation (DFG) laser with 10(-4) cm(-1) resolution. Absorption measurements were performed in the 2975-2980 cm(-1) spectral window to investigate 32 lines corresponding to where, J\\'ka\\',kc\\'<- Jka,kc, 5 <= J <= 7; 0.5 <= K-a <= 6 and 1 <= K-c <= 14. Spectroscopic parameters are retrieved using either Voigt or appropriate Galatry profile to simulate the measured (C2H4)-C-12 line shape. Line intensities along with self-broadening coefficients are reported for all lines. Narrowing coefficients for each isolated line are also derived. To our knowledge, the current study reports the first extensive spectroscopic parameter measurements of the (C2H4)-C-12 v(11) band in the 2975-2980 cm(-1) range. (C) 2016 Elsevier Ltd. All rights reserved.

  9. First line shape analysis and spectroscopic parameters for the ν11 band of 12C2H4

    KAUST Repository

    Es-sebbar, Et-touhami; Mantzaras, John; Benilan, Yves; Farooq, Aamir

    2016-01-01

    An accurate knowledge of line intensities, collisional broadening coefficients and narrowing parameters is necessary for the interpretation of high-resolution infrared spectra of the Earth and other planetary atmospheres. One of the most promising spectral domains for (C2H4)-C-12 monitoring in such environments is located near the 336 gm window, through its v(11) C-H stretching mode. In this paper, we report an extensive study in which we precisely determine spectroscopic parameters of (C2H4)-C-12 v(11) band at 297 +/- 1 K, using a narrow Difference-Frequency-Generation (DFG) laser with 10(-4) cm(-1) resolution. Absorption measurements were performed in the 2975-2980 cm(-1) spectral window to investigate 32 lines corresponding to where, J'ka',kc'<- Jka,kc, 5 <= J <= 7; 0.5 <= K-a <= 6 and 1 <= K-c <= 14. Spectroscopic parameters are retrieved using either Voigt or appropriate Galatry profile to simulate the measured (C2H4)-C-12 line shape. Line intensities along with self-broadening coefficients are reported for all lines. Narrowing coefficients for each isolated line are also derived. To our knowledge, the current study reports the first extensive spectroscopic parameter measurements of the (C2H4)-C-12 v(11) band in the 2975-2980 cm(-1) range. (C) 2016 Elsevier Ltd. All rights reserved.

  10. A novel C-shaped, gold nanoparticle coated, embedded polymer waveguide for localized surface plasmon resonance based detection.

    Science.gov (United States)

    Prabhakar, Amit; Mukherji, Soumyo

    2010-12-21

    In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.

  11. In-line moisture monitoring in fluidized bed granulation using a novel multi-resonance microwave sensor.

    Science.gov (United States)

    Peters, Johanna; Bartscher, Kathrin; Döscher, Claas; Taute, Wolfgang; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2017-08-01

    Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g. colored granules, large variations in bulk density. However, previous sensor systems operating around a single resonance frequency showed limitations above approx. 7.5% granule moisture. This paper describes the application of a novel sensor working with four resonance frequencies. In-line data of all four resonance frequencies were collected and further processed. Based on calculation of density-independent microwave moisture values multiple linear regression (MLR) models using Karl-Fischer titration (KF) as well as loss on drying (LOD) as reference methods were build. Rapid, reliable in-process moisture control (RMSEP≤0.5%) even at higher moisture contents was achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Inverse resonance problems for the Schrödinger operator on the real line with mixed given data

    Science.gov (United States)

    Xu, Xiao-Chuan; Yang, Chuan-Fu

    2018-01-01

    In this work, we study inverse resonance problems for the Schrödinger operator on the real line with the potential supported in [0, 1]. In general, all eigenvalues and resonances cannot uniquely determine the potential. (i) It is shown that if the potential is known a priori on [0, 1 / 2], then the unique recovery of the potential on the whole interval from all eigenvalues and resonances is valid. (ii) If the potential is known a priori on [0, a], then for the case a>1/2, infinitely many eigenvalues and resonances can be missing for the unique determination of the potential, and for the case alogarithmic derivative values of eigenfunctions and wave-functions at 1 / 2, can uniquely determine the potential.

  13. Study of CPO resonances on the intercombination line in 173Yb

    Science.gov (United States)

    Kumar, Pushpander; Singh, Alok K.; Bharti, Vineet; Natarajan, Vasant; Pandey, Kanhaiya

    2018-02-01

    We study coherent population oscillations in an odd isotope of the two-electron atom Yb. The experiments are done using magnetic sublevels of the {F}g=5/2\\to {F}e=3/2 hyperfine transition in 173Yb of the {}1{{{S}}}0\\to {}3{{{P}}}1 intercombination line. The experiments are done both with and without an applied magnetic field. In the absence of an applied field, the complicated sublevel structure along with the saturated fluorescence effect causes the linewidth to be larger than the 190 kHz natural linewidth of the transition. In the presence of a field (of magnitude 330 mG), a well-defined quantization axis is present which results in the formation of two M-type systems. The total fluorescence is then limited by spin coherence among the ground sublevels. In addition, the pump beam gets detuned from resonance which results in a reduced scattering rate from the {}3{{{P}}}1 state. Both of these effects result in a reduction of the linewidth to a subnatural value of about 100 kHz.

  14. Calculation of the resonance cross section functions

    International Nuclear Information System (INIS)

    Slipicevic, K.F.

    1967-11-01

    This paper includes the procedure for calculating the Doppler broadened line shape functions ψ and χ which are needed for calculation of resonance cross section functions. The obtained values are given in tables

  15. Calculation of the resonance cross section functions

    Energy Technology Data Exchange (ETDEWEB)

    Slipicevic, K F [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1967-11-15

    This paper includes the procedure for calculating the Doppler broadened line shape functions {psi} and {chi} which are needed for calculation of resonance cross section functions. The obtained values are given in tables.

  16. Deltoid muscle shape analysis with magnetic resonance imaging in patients with chronic rotator cuff tears.

    Science.gov (United States)

    Meyer, Dominik C; Rahm, Stefan; Farshad, Mazda; Lajtai, Georg; Wieser, Karl

    2013-08-19

    It seems appropriate to assume, that for a full and strong global shoulder function a normally innervated and active deltoid muscle is indispensable. We set out to analyse the size and shape of the deltoid muscle on MR-arthrographies, and analyse its influence on shoulder function and its adaption (i.e. atrophy) for reduced shoulder function. The fatty infiltration (Goutallier stages), atrophy (tangent sign) and selective myotendinous retraction of the rotator cuff, as well as the thickness and the area of seven anatomically defined segments of the deltoid muscle were measured on MR-arthrographies and correlated with shoulder function (i.e. active abduction). Included were 116 patients, suffering of a rotator cuff tear with shoulder mobility ranging from pseudoparalysis to free mobility. Kolmogorov-Smirnov test was used to determine the distribution of the data before either Spearman or Pearson correlation and a multiple regression was applied to reveal the correlations. Our developed method for measuring deltoid area and thickness showed to be reproducible with excellent interobserver correlations (r = 0.814-0.982).The analysis of influencing factors on active abduction revealed a weak influence of the amount of SSP tendon (r = -0.25; p muscle retraction (r = -0.27; p muscle infiltration (GFDI: r = -0.36; p muscle shape with the degree of active glenohumeral abduction. Furthermore, long-standing rotator cuff tears did not appear to influence the deltoid shape, i.e. did not lead to muscle atrophy. Our data support that in chronic rotator cuff tears, there seems to be no disadvantage to exhausting conservative treatment and to delay implantation of reverse total shoulder arthroplasty, as the shape of deltoid muscle seems only to be influenced by natural aging, but to be independent of reduced shoulder motion.

  17. Processing of complex shapes with single-mode resonant frequency microwave applicators

    International Nuclear Information System (INIS)

    Fellows, L.A.; Delgado, R.; Hawley, M.C.

    1994-01-01

    Microwave processing is an alternative to conventional composite processing techniques. Single-mode microwave applicators efficiently couple microwave energy into the composite. The application of the microwave energy is greatly affected by the geometry of the composite. In the single mode microwave applicator, two types of modes are available. These modes are best suited to processing flat planar samples or cylindrical samples with geometries that align with the electric fields. Mode-switching is alternating between different electromagnetic modes with the intelligent selection of the modes to alleviate undesirable temperature profiles. This method has improved the microwave heating profiles of materials with complex shapes that do not align with either type of electric field. Parts with two different complex geometries were fabricated from a vinyl toluene/vinyl ester resin with a continuous glass fiber reinforcement by autoclaving and by microwave techniques. The flexural properties of the microwave processed samples were compared to the flexural properties of autoclaved samples. The trends of the mechanical properties for the complex shapes were consistent with the results of experiments with flat panels. This demonstrated that mode-switching techniques are as applicable for the complex shapes as they are for the simpler flat panel geometry

  18. Engineered SOI slot waveguide ring resonator V-shape resonance combs for refraction index sensing up to 1300nm/RIU (Conference Presentation)

    Science.gov (United States)

    Zhang, Weiwei; Serna, Samuel; Le Roux, Xavier; Vivien, Laurent; Cassan, Eric

    2016-05-01

    breakthrough of the performance of slot ring resonator sensing ability. Different from the normal sensing regime by monitoring one specific resonance (λres) peak shift, the proposed approach stems from the sensitivity of the RR critical coupling. The critical coupling peak is auto-selected out by matching the following condition: the ring resonator's round trip attenuation coefficient a(λ) being equal to the coupler self-coupling coefficient k(λ), thus resulting in the deepest extinction ratio (ER) among the spectrum RR comb. The obtained sensing comb, based on a V-shape spectrum envelop, is engineered by controlling a(λ) and k(λ) with opposite monotonicities. Both a(λ)and k(λ) are tuned to have a large dispersion along the wavelength, which means that |a(λ)-k(λ)| keeps rapidly increasing as λres is far away from λc, eliminating the resonance ER quickly down to 0. Experimentally, slot waveguide ring resonators with a radius of 50µm have been fabricated on a standard silicon platform with a Si thickness of 220nm, loaded by racetrack couplers with a straight coupling length of 20µm. Sensing experiments have been carried out by changing the top cladding material from a series of Cargille optical liquids with refraction index values ranging from 1.3 to 1.5. The Q factors of critical coupling resonances was monitored from 2,000 to 6,000, and measured wavelength shifts of this peak are from 1.41µm to 1.56µm. The maximum sensitivity of 1300nm/RIU is observed in the cladding index range 1.30-1.35. To conclude, a new sensing regime by tracking the critical coupling resonance λc of slot waveguide ring resonators is demonstrated. The reported sensitivity is up 1300nm/RIU around the water RI of 1.33, and the monitored sensing FOM is about 2300, which is very close to the FOM values achieved from nanobeam cavities. This work can thus contribute to future integrated optical sensing schemes based on slot RRs.

  19. Pseudo-field line resonances in ground Pc5 pulsation events

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-02-01

    Full Text Available In this work we study four representative cases of Pc5 ground pulsation events with discrete and remarkably stable frequencies extended at least in a high-latitude range of ~20°; a feature that erroneously gives the impression for an oscillation mode with "one resonant field line". Additionally, the presented events show characteristic changes in polarization sense, for a meridian chain of stations from the IMAGE array, and maximize their amplitude at or close to the supposed resonant magnetic field shell, much like the typical FLR. Nevertheless, they are not authentic FLRs, but pseudo-FLRs, as they are called. These structures are produced by repetitive and tilted twin-vortex structures caused by magnetopause surface waves, which are probably imposed by solar wind pressure waves. The latter is confirmed with in-situ measurements obtained by the Cluster satellites, as well as the Geotail, Wind, ACE, and LANL 1994-084 satellites. This research effort is largely based on two recent works: first, Sarafopoulos (2004a has observationally established that a solar wind pressure pulse (stepwise pressure variation produces a twin-vortex (single vortex current system over the ionosphere; second, Sarafopoulos (2004b has studied ground events with characteristic dispersive latitude-dependent structures and showed that these are associated with twin-vortex ionosphere current systems. In this work, we show that each pseudo-FLR event is associated with successive and tilted large-scale twin-vortex current systems corresponding to a magnetopause surface wave with wavelength 10-20RE. We infer that between an authentic FLR, which is a spatially localized structure with an extent 0.5RE in the magnetospheric equatorial plane, and the magnetopause surface wavelength, there is a scale factor of 20-40. A chief observational finding, in this work, is that there are Pc5 ground pulsation events showing two gradual and latitude

  20. Influence of nonuniform external magnetic fields and anode--cathode shaping on magnetic insulation in coaxial transmission lines

    International Nuclear Information System (INIS)

    Mostrom, M.A.

    1979-01-01

    Coaxial transmission lines, used to transfer the high voltage pulse into the diode region of a relativistic electron beam generator, have been studied using the two-dimensional time-dependent fully relativistic and electromagnetic particle simulation code CCUBE. A simple theory of magnetic insulation that agrees well with simulation results for a straight cylindrical coax in a uniform external magnetic field is used to interpret the effects of anode--cathode shaping and nonuniform external magnetic fields. Loss of magnetic insulation appears to be minimized by satisfying two conditions: (1) the cathode surface should follow a flux surface of the external magnetic field; (2) the anode should then be shaped to insure that the magnetic insulation impedance, including transients, is always greater than the effective load impedance wherever there is an electron flow in the anode--cathode gap

  1. Tunable Fano resonance in MDM stub waveguide coupled with a U-shaped cavity

    Science.gov (United States)

    Yi, Xingchun; Tian, Jinping; Yang, Rongcao

    2018-04-01

    A new compact metal-dielectric-metal waveguide system consisting of a stub coupled with a U-cavity is proposed to produce sharp and asymmetric Fano resonance. The transmission properties of the proposed structure are numerically studied by the finite element method and verified by the coupled mode theory. Simulation results reveal that the spectral profile can be easily tuned by adjusting the geometric parameters of the structure. One of the potential application of the proposed structure as a highly efficient plasmonic refractive index nanosensor was investigated with its sensitivity of more than 1000 nm/RIU and a figure of merit of up to 5500. Another application is integrated slow-light device whose group index can be greater than 6. In addition, multiple Fano resonances will occur in the broadband transmission spectrum by adding another U-cavity or (and) stub. The characteristics of the proposed structure are very promising for the highly performance filters, on-chip nanosensors, and slow-light devices.

  2. The Transfer of Resonance Line Polarization with Partial Frequency Redistribution in the General Hanle–Zeeman Regime

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, E. Alsina; Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Belluzzi, L., E-mail: ealsina@iac.es [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland)

    2017-02-10

    The spectral line polarization encodes a wealth of information about the thermal and magnetic properties of the solar atmosphere. Modeling the Stokes profiles of strong resonance lines is, however, a complex problem both from a theoretical and computational point of view, especially when partial frequency redistribution (PRD) effects need to be taken into account. In this work, we consider a two-level atom in the presence of magnetic fields of arbitrary intensity (Hanle–Zeeman regime) and orientation, both deterministic and micro-structured. Working within the framework of a rigorous PRD theoretical approach, we have developed a numerical code that solves the full non-LTE radiative transfer problem for polarized radiation, in one-dimensional models of the solar atmosphere, accounting for the combined action of the Hanle and Zeeman effects, as well as for PRD phenomena. After briefly discussing the relevant equations, we describe the iterative method of solution of the problem and the numerical tools that we have developed and implemented. We finally present some illustrative applications to two resonance lines that form at different heights in the solar atmosphere, and provide a detailed physical interpretation of the calculated Stokes profiles. We find that magneto-optical effects have a strong impact on the linear polarization signals that PRD effects produce in the wings of strong resonance lines. We also show that the weak-field approximation has to be used with caution when PRD effects are considered.

  3. An EPR line shape study of anisotropic rotational reorientation and slow tumbling in liquid and frozen jojoba oil

    Science.gov (United States)

    Hwang, J. S.; Al-Rashid, W. A.

    Spin probe investigation of jojoba oil was carried out by electron paramagnetic rresonance (EPR) spectroscopy. The spin probe used was 2,2,6,6-tetramethyl-4-piperidone- N-oxide. The EPR line shape studies were carried out in the lower temperature range of 192 to 275 K to test the applicability of the stochastic Liouville theory in the simulation of EPR line shapes where earlier relaxation theories do not apply. In an earlier study, this system was analysed by employing rotational diffusion at the fast-motional region. The results show that PD-Tempone exhibits asymmetric rotational diffusion with N = 3.3 at an axis z'= Y in the plane of the molecule and perpendicular to the NO bond direction. In this investigation we have extended the temperature range to lower temperatures and observed slow tumbling EPR spectra. It is shown that the stochastic Liouville method can be used to simulate all but two of the experimentally observed EPR spectra in the slow-motional region and details of the slow-motional line shape are sensitive to the anisotropy of rotation and showed good agreement for a moderate jump model. From the computer simulation of EPR line shapes it is found that the information obtained on τ R, and N in the motional-narrowing region can be extrapolated into the slow-tumbling region. It is also found that ln (τ R) is linear in 1/ T in the temperature range studied and the resulting activation energy for rotation is 51 kJ/mol. The two EPR spectra at 240 and 231 K were found to exhibit the effects of anisotropic viscosity observed by B IRELL for nitroxides oriented in tubular cavities in inclusion crystals in which the molecule is free to rotate about the long axis but with its rotation hindered about the other two axes because of the cavity geometry. These results proved that the slow-tumbling spectra were very sensitive to the effects of anisotropy in the viscosity.

  4. Investigating the structural origin of trpzip2 temperature dependent unfolding fluorescence line shape based on a Markov state model simulation.

    Science.gov (United States)

    Song, Jian; Gao, Fang; Cui, Raymond Z; Shuang, Feng; Liang, Wanzhen; Huang, Xuhui; Zhuang, Wei

    2012-10-25

    Vibrationally resolved fluorescence spectra of the β-hairpin trpzip2 peptide at two temperatures as well as during a T-jump unfolding process are simulated on the basis of a combination of Markov state models and quantum chemistry schemes. The broad asymmetric spectral line shape feature is reproduced by considering the exciton-phonon couplings. The temperature dependent red shift observed in the experiment has been attributed to the state population changes of specific chromophores. Through further theoretical study, it is found that both the environment's electric field and the chromophores' geometry distortions are responsible for tryptophan fluorescence shift.

  5. Design of Compact Wilkinson Power Divider with Harmonic Suppression using T-Shaped Resonators

    Science.gov (United States)

    Siahkamari, Hesam; Yasoubi, Zahra; Jahanbakhshi, Maryam; Mousavi, Seyed Mohammad Hadi; Siahkamari, Payam; Nouri, Mohammad Ehsan; Azami, Sajad; Azadi, Rasoul

    2018-04-01

    A novel scheme of a shrunken Wilkinson power divider with harmonic suppression, using two identical resonators in the conventional Wilkinson power divider is designed. Moreover, the LC equivalent circuit and its relevant formulas are provided. To substantiate the functionality and soundness of design, a microstrip implementation of this design operating at 1 GHz with the second to eighth harmonic suppression, is developed. The proposed circuit is relatively smaller than the conventional circuit, (roughly 55% of the conventional circuit). Simulation and measurement results for the proposed scheme, which are highly consistent with one another, indicate a good insertion loss about 3.1 dB, input return loss of 20 dB and isolation of 20 dB, while sustaining high-power handling capability over the Wilkinson power divider.

  6. Shaping a Favorable Environment in Line with Social Expectations on Residential Areas

    Directory of Open Access Journals (Sweden)

    Joanna Agnieszka Pawłowicz

    2017-12-01

    Full Text Available The driving force behind the development of any city includes its residents. Hence, it is very important that they have the opportunity to live, work and rest in a friendly environment. The source of their well-being and positive aesthetic experience is a harmonious landscape shaped by a functional spatial arrangement of streets, shapes of buildings, as well as the accompanying nature, ensuring rational development of the city space. One of the key stages that developers and construction companies must take into consideration when planning new investments, is becoming familiar with people's expectations regarding their future place of residence. It is no secret that each square meter of building land is a potential source of profit for developers. The more apartments they build and sell, the more they earn. However, in order for apartments to be sold, they must meet the expectations of their potential buyers related not only to apartments and buildings themselves, but also to the environment surrounding them. Therefore, it is very important that residential estates be attractive and satisfy the needs of their dwellers, which substantially comes down to the comfort of living, rest and recreation within their place of residence. The primary objective behind meeting these needs is to stimulate the demand for new apartments among people, integrate the local community and increase the people' satisfaction with living in a friendly environment.

  7. Influence of Projection Operator on Oxygen Line Shapes and its effect on Rosseland-Mean Opacity in Stellar Interiors

    Science.gov (United States)

    Gomez, Thomas; Nagayama, Taisukue; Kilcrease, David; Hansen, Stephanie; Montgomery, Mike; Winget, Don

    2018-01-01

    The Rosseland-Mean opacity (RMO) is an important quantity in determining radiation transport through stars. The solar-convection-zone boundary predicted by the standard solar model disagrees with helioseismology measurements by many sigma; a 14% increase in the RMO would resolve this discrepancy. Experiments at Sandia National Laboratories are now measuring iron opacity at solar-interior conditions, and significant discrepancies are already observed. Highly-ionized oxygen is one of the dominant contributions to the RMO. The strongest line, Lyman alpha, is at the peak of the Rosseland weighting function. The accuracy of line-broadening calculations has been called into question due to various experimental results and comparisons between theory. We have developed an ab-initio calculation to explore different physical effects, our current focus is treating penetrating collisions explicitly. The equation of motion used to calculate line shapes within the relaxation and unified theories includes a projection operator, which performs an average over plasma electron states; this is neglected due to past calculations approximate treatment of penetrations. We now include this projection term explicitly, which results in a significant broadening of spectral lines from highly-charged ions (low-Z elements are not much affected). The additional broadening raises the O Ly-alpha wing opacity by a factor of 5; we examine the consequences of this additional broadening on the Rosseland mean.

  8. FANAC - a shape analysis program for resonance parameter extraction from neutron capture data for light and medium-weight nuclei

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1977-11-01

    A least-squares shape analysis program is described which is used at the Karlsruhe Nuclear Research Center for the extraction of resonance parameters from high-resolution capture data. The FORTRAN program was written for light to medium-weight or near-magic target nuclei whose cross sections are characterized on one hand by broad s-wave levels with negligible Doppler broadening but pronounced multi-level interference, on the other hand by narrow p-, d- ... wave resonances with negligible multi-level interference but pronounced Doppler broadening. Accordingly the Reich-Moore multi-level formalism without Doppler broadening is used for s-wave levels, and a single-level description with Doppler braodening for p-, d- ... wave levels. Calculated capture yields are resolution broadened. Multiple-collision events are simulated by Monte Carlo techniques. Up to five different time-of-flight capture data sets can be fitted simultaneously for samples containing up to ten isotopes. Input and output examples are given and a FORTRAN list is appended. (orig.)

  9. Formation of H_2^+ and its Isotopomers by Radiative Association: the Role of Shape and Feshbach Resonances

    Science.gov (United States)

    Beyer, Maximilian; Merkt, Frederic

    2017-06-01

    The recent observations [1,2] of shape and Feshbach resonances in the high-resolution photoelectron spectra of H_2, HD and D_2 in the vicinity of the dissociation thresholds of H_2^+, HD^+ and D_2^+ raise questions concerning their potential role in the formation of H_2^+ and its isotopomers in the early universe by radiative association, a topic of astrophysical interest [3]. Close-coupling calculations for the cross sections of the reactions {H}^+ + {H} &\\to {H}_2^+ + hν {H}^+ + {D} &\\to {HD}^+ + hν {D}^+ + {H} &\\to {HD}^+ + hν {D}^+ + {D} &\\to {D}_2^+ + hν, will be presented which take into account nonadiabatic couplings involving rovibronic and hyperfine interactions, as well as relativistic and radiative corrections. The calculated energies and widths will be compared with the experimental results of Ref. [1,2] for H_2^+ and new data for HD^+ and D_2^+. The effect of the resonances on the radiative association rate coefficients will be discussed, also in comparison with earlier studies [4]. [1] M. Beyer and F. Merkt, Phys. Rev. Lett. 116, 093001 (2016). [2] M. Beyer and F. Merkt, J. Mol. Spectrosc. 330, 147 (2016). [3] Molecule formation in dust-poor environments, J. F. Babb and K. P. Kirby, in "The molecular astrophysics of stars and galaxies", T. W. Hartquist and D. A. Williams, eds., Oxford University Press, Oxford, 1998, pp. 11-34. [4] D. E. Ramaker and J. M. Peek, Phys. Rev. A 13, 58 (1976).

  10. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  11. Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    Science.gov (United States)

    Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.

    2015-01-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  12. Observation of High Transformer Ratio of Shaped Bunch Generated by an Emittance-Exchange Beam Line.

    Science.gov (United States)

    Gao, Q; Ha, G; Jing, C; Antipov, S P; Power, J G; Conde, M; Gai, W; Chen, H; Shi, J; Wisniewski, E E; Doran, D S; Liu, W; Whiteford, C E; Zholents, A; Piot, P; Baturin, S S

    2018-03-16

    Collinear wakefield acceleration has been long established as a method capable of generating ultrahigh acceleration gradients. Because of the success on this front, recently, more efforts have shifted towards developing methods to raise the transformer ratio (TR). This figure of merit is defined as the ratio of the peak acceleration field behind the drive bunch to the peak deceleration field inside the drive bunch. TR is always less than 2 for temporally symmetric drive bunch distributions and therefore recent efforts have focused on generating asymmetric distributions to overcome this limitation. In this Letter, we report on using the emittance-exchange method to generate a shaped drive bunch to experimentally demonstrate a TR≈5 in a dielectric wakefield accelerator.

  13. Line-shape theory and molecular dynamics in collision-induced light scattering

    International Nuclear Information System (INIS)

    Balucani, U.; Tognetti, V.; Vallauri, R.

    1979-01-01

    Molecular-dynamics studies in argon at 148 amagats are presented for gaining information on the dynamical properties responsible for the depolarized light scattering from simple fluids. The total and pair-correlation functions are computed within the simple dipole--induced-dipole model of polarizability anisotropy. The pair spectral shape is derived. These results are compared with a theoretical analysis based on a continued-fraction approach. The necessary frequency moments are calculated both in the low-density limit and taking into account first-order density corrections, and compared with the molecular-dynamics data. The agreement between the theoretical spectra and molecular-dynamics data shows the validity of the memory-function approach. The comparison with the real experimental results allows one to test the relevant physical contributions to the polarizability anisotropy

  14. The Impact of Injector-Based Contrast Agent Administration on Bolus Shape and Magnetic Resonance Angiography Image Quality

    Directory of Open Access Journals (Sweden)

    Gregor Jost

    2017-04-01

    Full Text Available Objective: To compare injector-based contrast agent (CA administration with hand injection in magnetic resonance angiography (MRA. Methods: Gadobutrol was administered in 6 minipigs with 3 protocols: (a hand injection (one senior technician, (b hand injection (6 less-experienced technicians, and (c power injector administration. The arterial bolus shape was quantified by test bolus measurements. A head and neck MRA was performed for quantitative and qualitative comparison of signal enhancement. Results: A significantly shorter time to peak was observed for protocol C, whereas no significant differences between protocols were found for peak height and bolus width. However, for protocol C, these parameters showed a much lower variation. The MRA revealed a significantly higher signal-to-noise ratio for injector-based administration. A superimposed strong contrast of the jugular vein was found in 50% of the hand injections. Conclusions: Injector-based CA administration results in a more standardized bolus shape, a higher vascular contrast, and a more robust visualization of target vessels.

  15. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor.

    Science.gov (United States)

    Tan, Zhixin; Hao, Xin; Shao, Yonghong; Chen, Yuzhi; Li, Xuejin; Fan, Ping

    2014-06-16

    We numerically investigate a D-shaped fiber surface plasmon resonance sensor based on all-solid photonic crystal fiber (PCF) with finite element method. In the side-polished PCF sensor, field leakage is guided to penetrate through the gap between the rods, causing a pronounced phase modulation in the deep polishing case. Taking advantage of these amplified phase shifts, a high-performance fiber sensor design is proposed. The significant enhancements arising from this new sensor design should lift the performance of the fiber SPR sensor into the range capable of detecting a wide range of biochemical interactions, which makes it especially attractive for many in vivo and in situ bioanalysis applications. Several parameters which influence the field leakage, such as the polishing position, the pitch of the PCF, and the rod diameter, are inspected to evaluate their impacts. Furthermore, we develop a mathematical model to describe the effects of varying the structural parameters of a D-shaped PCF sensor on the evanescent field and the sensor performance.

  16. Heave and Flow: Understanding the role of resonance and shape evolution for heaving flexible panels

    Science.gov (United States)

    Hoover, Alexander; Cortez, Ricardo; Tytell, Eric; Fauci, Lisa

    2017-11-01

    Many animals that swim or fly use their body to accelerate the fluid around them, transferring momentum from their bodies to the surrounding fluid. The emergent kinematics from this transfer are a result of the coupling between the fluid and the material properties of the body. Here we present a computational study of a 3-dimensional flexible panel that is heaved at its leading edge in an incompressible, viscous fluid. These high-fidelity numerical simulations enable us to examine the role of resonance, fluid forces, and panel deformations have on swimming performance. Varying both the passive material properties and the heaving frequency of the panel, we find peaks in trailing edge amplitude and forward swimming speed are determined by a dimensionless quantity, the effective flexibility. Modal decompositions of panel deflections reveal that the strength of each mode is related to the effective flexibility and peaks in the swimming speed and trailing edge amplitude correspond to peaks in the contributions of different modes. Panels of different material properties but with similar effective flexibilities have modal contributions that evolve similarly over the phase of the heaving cycle and agreement in dominant vortex structures generated by the panel. NSF RTG 1043626.

  17. Shape resonances of Be- and Mg- investigated with the method of analytic continuation

    Science.gov (United States)

    Čurík, Roman; Paidarová, I.; Horáček, J.

    2018-05-01

    The regularized method of analytic continuation is used to study the low-energy negative-ion states of beryllium (configuration 2 s2ɛ p 2P ) and magnesium (configuration 3 s2ɛ p 2P ) atoms. The method applies an additional perturbation potential and requires only routine bound-state multi-electron quantum calculations. Such computations are accessible by most of the free or commercial quantum chemistry software available for atoms and molecules. The perturbation potential is implemented as a spherical Gaussian function with a fixed width. Stability of the analytic continuation technique with respect to the width and with respect to the input range of electron affinities is studied in detail. The computed resonance parameters Er=0.282 eV, Γ =0.316 eV for the 2 p state of Be- and Er=0.188 eV, Γ =0.167 for the 3 p state of Mg- agree well with the best results obtained by much more elaborate and computationally demanding present-day methods.

  18. Thickness periodicity in the auger line shape from epitaxial (111)Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Y; Vook, R W; Chao, S S

    1981-01-01

    The 61 eV MMM Cu Auger line doublet was recorded in the derivative mode as a function of thickness for epitaxial (111)Cu films approximately 1500 angstrom thick. The overlap of the doublet lines makes it possible to define a measure of the doublet profile called the ''R-factor'' as a ratio of the peak-to-peak heights of the small overlap oscillation to that of the major oscillation. To within the experimental error, it was found that the R-factor varies with a periodicity of approximately one monoatomic layer as the film thickens. Since these films grow by a layer growth mechaniism, the surface topography varies periodically with the number of monolayers deposited, going from a smooth to a rough to a smooth, etc. surface. It is believed that the occurrence of such a periodicity implies that there is a difference in the electronic structure at the surface of the flat areas of the film from that at the edges of monolayer high, flat islands. The amplitude of the oscillation in R is interpreted to be a measure of the relative amounts of edge area compared to flat area. These results show that it is possible to use Auger electron spectroscopy to monitor surface topography and the electronic structure changes that accompany the topographical changes occurring when epitaxial films grow by a layer growth mechanism.

  19. Auger line shape changes in epitaxial (111)Pd/(111)Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Chao, S S; Knabbe, E A; Vook, R W

    1980-01-01

    Epitaxial Pd films ranging in thickness from a few tenths of a monolayer up to many monolayers were formed on (111)Cu substrate films at room temperature under uhv conditions. The growth of these Pd films was monitored in situ by Auger electron spectroscopy. The line profiles of the Cu MMM (61 eV) and Pd MVV (329 eV) AES doublets varied significantly with the amount of Pd deposited. A new measure of the AES doublet line profile, called the R-factor, was defined. A graph of R/sub Pd/ versus Pd film thickness shows a sharp decline with increasing thickness. Superimposed on the major trends is a cyclical variation. A corresponding periodicity in R/sub Cu/ was observed for the Cu MMM (61 eV) AES doublet. The results suggest that the R-factor provides a direct measure of changes in the electronic structures of the overgrowth and substrate films as the former thickens by a layer-growth mechanism.

  20. Quasibound levels and shape resonances of 39K2(B 1Pi/sub u/) crossed laser-molecular beam studies and analytical interpretation

    International Nuclear Information System (INIS)

    Heinze, J.; Kowalczyk, P.; Engelke, F.

    1988-01-01

    Quasibound levels and shape resonances in the (B 1 Pi/sub u/ -X 1 Σ + /sub g/) band system of 39 K 2 have been recorded by crossed laser-molecular beam techniques. Using optical--optical double resonance, individual rovibrational levels (v'' = 15--18, J'' = 3--25) of the K 2 state are prepared by Franck--Condon pumping (FCP) in a supersonic nozzle beam. Excitation into quasibound levels below and above the (B 1 Pi/sub u/) state barrier is detected as molecular and atomic (K4 2 P 3 /sub // 2 →4 2 S 1 /sub // 2 only) fluorescence. The resonance transition frequencies and shapes are measured and the results are used (a) to determine the scattering resonance energies, widths, and lifetimes; (b) to compare them with values obtained by a ''maximum internal amplitude'' approach [R. J. LeRoy and R. B. Bernstein, J. Chem. Phys. 54, 5114 (1971)]; and (c) to check the agreement with exact calculations of the B state potential using the ''inverted perturbation approach (IPA).'' The bound and quasibound part of the B 1 Pi/sub u/ state including the locus (R = 8.08 +- 0.05 A) of the barrier maximum (298 +- 8 cm -1 above the adiabatic dissociation limit) is found in excellent agreement with previous results. The shape resonances are not highly sensitive to the long-range interatomic forces, here the repulsive dipole--dipole resonance interaction

  1. Controlling the shapes and sizes of metallic nanoantennas for detection of biological molecules using hybridization phase of plasmon resonances and photonic lattice modes

    Science.gov (United States)

    Gutha, Rithvik R.; Sharp, Christina; Wing, Waylin J.; Sadeghi, Seyed M.

    2018-02-01

    Chemical sensing based on Localized Surface Plasmonic Resonances (LSPR) and the ultra-sharp optical features of surface lattice resonances (SLR) of arrays of metallic nanoantennas have attracted much attention. Recently we studied biosensing based on the transition between LSPR and SLR (hybridization phase), demonstrating significantly higher refractive index sensitivity than each of these resonances individually. In this contribution we study the impact of size and shape of the metallic nanoantennas on the hybridization process and the way they influence application of this process for biosensing, wherein miniscule variation of the refractive index of the environment leads to dramatic changes in the spectral properties of the arrays.

  2. Improvement of the instrumental line shape of X-ray spectrometers with Si(Li) - detectors

    International Nuclear Information System (INIS)

    Berdikov, V.V.; Zajtsev, E.A.; Iokhin, B.S.

    1983-01-01

    The possibility of decreasing the background of the X-ray spectrometer detector using the rise-time pulse selection method was investigated. Si(Li)-detectors of 10 and 25 mm 2 square were investigated. Spectrometer channel was composed of ORTEC-472 amplifier and ULTIMA/2 multichannel analyzer on the base of NOVA-3 minicomputer. The energy resolution was equal to 300 eV on 14 KeV line. The pulses of detection allowing were transmitted to analog-to-digital converter. The detection was allowed if front photopeak square) were measured at 17.4, 20.3 and 59.6 keV. 4-6-fold decrease of X-factor was obtained without any loss of detection efficiency. The combination of the method with collimation of radiation in the centre of the detector gives an extremely low value of X-factor which agress with theretical estimations

  3. On the line-shape analysis of Compton profiles and its application to neutron scattering

    International Nuclear Information System (INIS)

    Romanelli, G.; Krzystyniak, M.

    2016-01-01

    Analytical properties of Compton profiles are used in order to simplify the analysis of neutron Compton scattering experiments. In particular, the possibility to fit the difference of Compton profiles is discussed as a way to greatly decrease the level of complexity of the data treatment, making the analysis easier, faster and more robust. In the context of the novel method proposed, two mathematical models describing the shapes of differenced Compton profiles are discussed: the simple Gaussian approximation for harmonic and isotropic local potential, and an analytical Gauss–Hermite expansion for an anharmonic or anisotropic potential. The method is applied to data collected by VESUVIO spectrometer at ISIS neutron and muon pulsed source (UK) on Copper and Aluminium samples at ambient and low temperatures. - Highlights: • A new method to analyse neutron Compton scattering data is presented. • The method allows many corrections on the experimental data to be avoided. • The number of needed fitting parameters is drastically reduced using the new method. • Mass-selective analysis is facilitated with parametric studies benefiting the most. • Observables linked to anisotropic momentum distribution are obtained analytically.

  4. Magnetic resonance imaging of prostate cancer cell lines labled with manganese chloride in vitro

    International Nuclear Information System (INIS)

    Zhuang Wenquan; Fan Huishuang; Zhang Xiaoling; Xiang Xianhong; Tang Yubo; Mao Lijuan; Zou Xuenong

    2010-01-01

    Objective: To assess the feasibility and security of prostate cancer cell lines (PC-3) labeled with manganese chloride (MnCl 2 ) for magnetic resonance imaging (MRI) in vitro. Methods: The PC-3 that purchased from American Type Culture Collection (ATCC) were recovered, cultured and amplified. The PC-3 were cultured in F-12 HAM'S medium with different concentrations of MnCl 2 in cell incubator and collected for MRI after 1 hour. The labeled cells were also collected for MRI in different amount and different time after labeling. The labeled cells were incubated with verapamil for 4 hours and the changes of the labeled cellular signal intensities were recorded in different time. Cell Counting Kit-8 (CCK-8) was used to determine the activities of the labeled cells. Results: The PC-3 labeled with MnCl 2 were high signal intensities on T 1 -weighted MRI. There were statistically significant differences between labeled cells and unlabeled cells (P 2 . The signal intensity obviously decreased after 24 hours and became to normal signal intensity of unlabeled PC-3 after 72 hours. The PC-3 labeled with 1.0 mM MnCl 2 solution showed high signal intensity on T 1 -weighted MRI with the minimum cell amount of 5.0 x 10 5 and lasted to 72 hours after a 4 hours incubation with verapamil. After 4 hours labeling, except the concentration of 0.1 mM, the other concentrations of MnCl 2 (>0.1 mM) had a certain toxicity on PC-3 (P 0.05). Conclusion: The PC-3 could be labeled with MnCl 2 and appears high signal intensity on T 1 -weighted MRI. The PC-3 can be safety labeled with MnCl 2 in concentrations which were equal or less than 1.0 mM, but the duration of Mn +2 in PC-3 is shorter. Calcium channel blocker (verapamil) may be extend the duration of PC-3 labeled with MnCl 2 . (authors)

  5. On beam shaping of the field radiated by a line source coupled to finite or infinite photonic crystals.

    Science.gov (United States)

    Ceccuzzi, Silvio; Jandieri, Vakhtang; Baccarelli, Paolo; Ponti, Cristina; Schettini, Giuseppe

    2016-04-01

    Comparison of the beam-shaping effect of a field radiated by a line source, when an ideal infinite structure constituted by two photonic crystals and an actual finite one are considered, has been carried out by means of two different methods. The lattice sums technique combined with the generalized reflection matrix method is used to rigorously investigate the radiation from the infinite photonic crystals, whereas radiation from crystals composed of a finite number of rods along the layers is analyzed using the cylindrical-wave approach. A directive radiation is observed with the line source embedded in the structure. With an increased separation distance between the crystals, a significant edge diffraction appears that provides the main radiation mechanism in the finite layout. Suitable absorbers are implemented to reduce the above-mentioned diffraction and the reflections at the boundaries, thus obtaining good agreement between radiation patterns of a localized line source coupled to finite and infinite photonic crystals, when the number of periods of the finite structure is properly chosen.

  6. Spectral Line Shapes in the ν_3 Q Branch of ^{12}CH_4 Near 3.3 μm

    Science.gov (United States)

    Devi, V. Malathy; Benner, D. Chris; Gamache, Robert R.; Smith, Mary Ann H.; Sams, Robert L.

    2017-06-01

    Detailed knowledge of spectroscopic parameters for prominent Q branches of methane is necessary for interpretation and modeling of high resolution infrared spectra of terrestrial and planetary atmospheres. We have measured air-broadened line shape parameters in the Q branch of ^{12}CH_4 in the ν_3 fundamental band for a large number of transitions in the 3000 to 3023 cm^{-1} region by analyzing 13 room-temperature laboratory absorption spectra. Twelve of these spectra were recorded with 0.01 cm^{-1} resolution using the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory (NSO) on Kitt Peak, and one higher-resolution (˜0.0011 cm^{-1}) low pressure (˜1 Torr) spectrum of methane was obtained using the Bruker IFS 120HR FTS at the Pacific Northwest National Laboratory (PNNL) in Richland, WA. The air-broadened spectra were recorded using various absorption cells with path lengths of 5, 20, 25, and 150 cm, total sample pressures between 50 and 500 Torr, and CH_4 volume mixing ratios of 0.01 or less. All 13 spectra were fit simultaneously covering the 3000-3023 cm^{-1} spectral region using a multispectrum nonlinear least squares technique to retrieve accurate line positions, absolute intensities, Lorentz air-broadened widths and pressure-shift coefficients. Line mixing using the off-diagonal relaxation matrix element formalism was measured for a number of pairs of transitions for the CH_4-air collisional system. The results will be compared to values reported in the literature. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith, D. Atkins, JQSRT 53 (1995) 705-721. A. Levy, N. Lacome, C. Chackerian, Collisional line mixing, in Spectroscopy of the Earth's Atmosphere and Interstellar Medium, Academic Press, Inc., Boston (1992) 261-337.

  7. On the evaluation of temperature dependence of elastic constants of martensitic phases in shape memory alloys from resonant ultrasound spectroscopy studies

    Czech Academy of Sciences Publication Activity Database

    Landa, Michal; Sedlák, Petr; Šittner, Petr; Seiner, Hanuš; Heller, Luděk

    481-482, - (2008), s. 567-573 ISSN 0921-5093 R&D Projects: GA ČR GA101/06/0768 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z10100520 Keywords : modal resonant ultrasound spectroscopy * elastic properties * shape memory alloy s Subject RIV: BI - Acoustics Impact factor: 1.806, year: 2008

  8. The '0.4 eV' shape resonance of electron scattering from mercury in a Franck-Hertz tube

    International Nuclear Information System (INIS)

    Nicoletopoulos, Peter

    2004-01-01

    The alternative version of the Franck-Hertz experiment with mercury, in which a two-grid tube is used as a combination of electron gun, equipotential collision space and detection cell, was analysed recently in considerable detail. In particular, it was inferred that, at optimal pressure, the formation of peaks in the anode current at inelastic thresholds is mediated inside the detection cell by the large variation, a maximum at 0.4 eV, in the cross section for elastic scattering. This variation is due to a shape resonance in the electron-mercury system and is observable persuasively at the onset of anode current as a sharp peak followed by a clear minimum. In this paper, the passage of electrons through the second grid to the anode region is analysed in terms of kinetic theory. The discussion is based on a simplified expression for the electron current derivable from an approximate form of the Boltzmann transport equation that maintains the spatial density gradient but omits elastic energy losses. The estimated range of pressure underlying this kind of idealization is in good agreement with experiment. An explicit solution is obtained by constructing an analytic expression for the momentum transfer cross section of mercury using a recent theory of generalized Fano profiles for overlapping resonances. This solution is used in order to model successfully the formation of peaks at the threshold of anode current and at excitation potentials, and to explain the dependence of the observed profiles on the pressure and on the sign and magnitude of the potential across the detection cell

  9. Study of the interplay between magnetic shear and resonances using Hamiltonian models for the magnetic field lines

    Science.gov (United States)

    Firpo, M.-C.; Constantinescu, D.

    2011-03-01

    The issue of magnetic confinement in magnetic fusion devices is addressed within a purely magnetic approach. Using some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is shown in a unified way. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and stochastic transport reduction. When low shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be quite low. The approach can be applied to assess the robustness versus magnetic perturbations of general (almost) integrable magnetic steady states, including nonaxisymmetric ones such as the important single-helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  10. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  11. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement.

    Science.gov (United States)

    Vampola, Tomáš; Horáček, Jaromír; Laukkanen, Anne-Maria; Švec, Jan G

    2015-04-01

    Resonance frequencies of the vocal tract have traditionally been modelled using one-dimensional models. These cannot accurately represent the events in the frequency region of the formant cluster around 2.5-4.5 kHz, however. Here, the vocal tract resonance frequencies and their mode shapes are studied using a three-dimensional finite element model obtained from computed tomography measurements of a subject phonating on vowel [a:]. Instead of the traditional five, up to eight resonance frequencies of the vocal tract were found below the prominent antiresonance around 4.7 kHz. The three extra resonances were found to correspond to modes which were axially asymmetric and involved the piriform sinuses, valleculae, and transverse vibrations in the oral cavity. The results therefore suggest that the phenomenon of speaker's and singer's formant clustering may be more complex than originally thought.

  12. Enhanced optical transmission through a star-shaped bull's eye at dual resonant-bands in UV and the visible spectral range.

    Science.gov (United States)

    Nazari, Tavakol; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Kong, Byung-Joo; Oh, Kyunghwan

    2015-07-13

    Dual resonant bands in UV and the visible range were simultaneously observed in the enhanced optical transmission (EOT) through star-shaped plasmonic structures. EOTs through four types of polygonal bull's eyes with a star aperture surrounded by the concentric star grooves were analyzed and compared for 3, 4, 5, and 6 corners, using finite difference time domain (FDTD) method. In contrast to plasmonic resonances in the visible range, the UV-band resonance intensity was found to scale with the number of corners, which is related with higher order multipole interactions. Spectral positions and relative intensities of the dual resonances were analyzed parametrically to find optimal conditions to maximize EOT in UV-visible dual bands.

  13. Simulation of Standby Efficiency Improvement for a Line Level Control Resonant Converter Based on Solar Power Systems

    Directory of Open Access Journals (Sweden)

    Ming-Tse Kuo

    2015-01-01

    Full Text Available This paper proposes a new scheme to improve the standby efficiency of the high-power half-bridge line level control (LLC resonant converter. This new circuit is applicable to improving the efficiency of the renewable energy generation system in distributed power systems. The main purpose is to achieve high-efficiency solar and wind power and stable output under different load conditions. In comparison with the traditional one, this novel method can improve standby efficiency at standby. The system characteristics of this proposed method have been analyzed through detailed simulations, which prove its feasibility.

  14. Wireless Power Supply via Coupled Magnetic Resonance for on-line Monitoring Wireless Sensor of High-voltage Electrical Equipment

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Yudi, Xiao

    2016-01-01

    On-line monitoring of high-voltage electrical equipment (HV-EE) aiming to detect faults effectively has become crucial to avoid serious accidents. Moreover, highly reliable power supplies are the key component for the wireless sensors equipped in such on-line monitoring systems. Therefore......, in this paper, the wireless power supply via coupled magnetic resonance (MR-WPS) is proposed for powering the wireless sensor and the associated wireless sensor solution is also proposed. The key specifications of the MR-WPS working in switchgear cabinet with a harsh operation environment are analyzed...... power is able to be delivered to the wireless sensor through the designed MR-WPS, and therefore the theoretical analysis and design is verified....

  15. Identification and quantification of polycarboxylates in detergent products using off-line size exclusion chromatography-nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ilona, E-mail: ilona.visser@unilever.com [Unilever Research and Development Vlaardingen, Olivier van Noortlaan 120, PO box 114, 3130 AC Vlaardingen (Netherlands); Klinkenberg, Monique; Hoos, Peter; Janssen, Hans-Gerd; Duynhoven, John van [Unilever Research and Development Vlaardingen, Olivier van Noortlaan 120, PO box 114, 3130 AC Vlaardingen (Netherlands)

    2009-11-03

    The performance of many contemporary detergent products critically depends on polymers. Water-soluble polycarboxylates represent an important class of detergent polymers, and their quantitative assessment in detergent matrices stands as a considerable challenge. The presence of high levels of surfactants is a major complication, due to the strong tendency of surfactants to form micelles and to interact with the polymers. First, we addressed critical steps in the subsequent combined use of liquid extraction and off-line size exclusion chromatography-nuclear magnetic resonance (SEC-NMR) for identification and quantification of polycarboxylates in detergent products. Next, the different steps in the off-line SEC-NMR procedure were optimized with respect to precision and accuracy. This resulted in recoveries of more than 80% for maleic acid/acrylic acid copolymers; in detergent products a proportional bias of 30% is achieved. The method showed good precision with a relative standard deviation of within-laboratory reproducibility between 5% and 14%.

  16. Scheme for realizing quantum computation and quantum information transfer with superconducting qubits coupling to a 1D transmission line resonator

    International Nuclear Information System (INIS)

    Zhen-Gang, Shi; Xiong-Wen, Chen; Xi-Xiang, Zhu; Ke-Hui, Song

    2009-01-01

    This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on dc-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, but also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line. (general)

  17. Identification and quantification of polycarboxylates in detergent products using off-line size exclusion chromatography-nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Visser, Ilona; Klinkenberg, Monique; Hoos, Peter; Janssen, Hans-Gerd; Duynhoven, John van

    2009-01-01

    The performance of many contemporary detergent products critically depends on polymers. Water-soluble polycarboxylates represent an important class of detergent polymers, and their quantitative assessment in detergent matrices stands as a considerable challenge. The presence of high levels of surfactants is a major complication, due to the strong tendency of surfactants to form micelles and to interact with the polymers. First, we addressed critical steps in the subsequent combined use of liquid extraction and off-line size exclusion chromatography-nuclear magnetic resonance (SEC-NMR) for identification and quantification of polycarboxylates in detergent products. Next, the different steps in the off-line SEC-NMR procedure were optimized with respect to precision and accuracy. This resulted in recoveries of more than 80% for maleic acid/acrylic acid copolymers; in detergent products a proportional bias of 30% is achieved. The method showed good precision with a relative standard deviation of within-laboratory reproducibility between 5% and 14%.

  18. Anomalies in resonant absorption line profiles of atoms with large hyperfine splitting

    International Nuclear Information System (INIS)

    Parkhomenko, A.I.; Pod'yachev, S.P.; Privalov, T.I.; Shalagin, A.M.

    1997-01-01

    We examine a monochromatic absorption line in the velocity-nonselective excitation of atoms when the components of the hyperfine stricture of the electronic ground states are optically pumped. We show that the absorption lines possess unusual substructures for some values of the hyperfine splitting of the ground state (which exceed the Doppler absorption linewidth severalfold). These substructures in the absorption spectrum are most apparent if the hyperfine structure of the excited electronic state is taken into account. We calculate the absorption spectra of monochromatic light near the D 1 and D 2 lines of atomic rubidium 85,87 Rb. With real hyperfine splitting taken into account, the D 1 and D 2 lines are modeled by 4- and 6-level diagrams, respectively. Finally, we show that atomic rubidium vapor can be successfully used to observe the spectral features experimentally

  19. Spectral shapes of Ar-broadened HCl lines in the fundamental band by classical molecular dynamics simulations and comparison with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tran, H., E-mail: ha.tran@lisa.u-pec.fr [Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil, Université Paris Diderot, Institut Pierre-Simon Laplace, 94010 Créteil Cedex (France); Domenech, J.-L. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, (IEM-CSIC), Serrano 123, 28006 Madrid (Spain)

    2014-08-14

    Spectral shapes of isolated lines of HCl perturbed by Ar are investigated for the first time using classical molecular dynamics simulations (CMDS). Using reliable intermolecular potentials taken from the literature, these CMDS provide the time evolution of the auto-correlation function of the dipole moment, whose Fourier-Laplace transform leads to the absorption spectrum. In order to test these calculations, room temperature spectra of various lines in the fundamental band of HCl diluted in Ar are measured, in a large pressure range, with a difference-frequency laser spectrometer. Comparisons between measured and calculated spectra show that the CMDS are able to predict the large Dicke narrowing effect on the shape of HCl lines and to satisfactorily reproduce the shapes of HCl spectra at different pressures and for various rotational quantum numbers.

  20. Simulation of excitonic optical line shapes of cyclic oligomers - models for basic units of photosynthetic antenna systems: Transfer integral versus local energy fluctuations with dichotomic coloured noise

    International Nuclear Information System (INIS)

    Barvik, I.; Reineker, P.; Warns, C.; Neidlinger, T.

    1995-08-01

    For Frenkel excitons moving on cyclic and linear molecular chains modeling in part photosynthetic antenna systems we investigate the influence of dynamic and static disorder on their optical line shapes. The dynamic disorder describes the influence of vibrational degrees of freedom and is taken into account by fluctuations of the transfer matrix element between neighbouring molecules. The fluctuations are represented by dichotomic Markov processes with coloured noise. We obtain a closed set of equations of motion for the correlation functions determining the optical line shape which is solved exactly. The line shapes are discussed for various sets of the model parameters and arrangements of molecules and their dipole moments. (author). 63 refs, 10 figs

  1. Endocytosis Pathways of the Folate Tethered Star-Shaped PEG-PCL Micelles in Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yu-Lun Li

    2014-03-01

    Full Text Available This study reports on the cellular uptake of folate tethered micelles using a branched skeleton of poly(ethylene glycol and poly(ε-caprolactone. The chemical structures of the copolymers were characterized by proton nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy. Doxorubicin (DOX was utilized as an anticancer drug. The highest drug loading efficiencies of DOX in the folate decorated micelle (DMCF and folate-free micelle (DMC were found to be 88.5% and 88.2%, respectively, depending on the segment length of the poly(ε-caprolactone in the copolymers. A comparison of fluorescent microscopic images of the endocytosis pathway in two cell lines, human breast cancer cells (MCF-7 and human oral cavity carcinoma cells (KB, revealed that the micelles were engulfed by KB and MCF-7 cells following in vitro incubation for one hour. Flow cytometric analysis revealed that free folic acid can inhibit the uptake of DOX by 48%–57% and 26%–39% in KB cells and MCF-7 cells, respectively. These results prove that KB cells are relatively sensitive to folate-tethered micelles. Upon administering methyl-β-cyclodextrin, an inhibitor of the caveolae-mediated endocytosis pathway, the uptake of DOX by KB cells was reduced by 69% and that by MCF-7 cells was reduced by 56%. This finding suggests that DMCF enters cells via multiple pathways, thus implying that the folate receptor is not the only target of tumor therapeutics.

  2. Mechanism of the reactions 14N(d,p)15N and 14N(d,n)15O by Doppler shift line shape method

    International Nuclear Information System (INIS)

    Abdel-Moneim, A.M.

    1976-06-01

    In this investigation the total and the differential absolute cross sections of the 14 N(d,p) 15 N reaction leading to excited states at 7.3, 8.3 and 9.05 MeV levels in 15 N and the 14 N(d,n) 15 O reaction leading to the 6.79 MeV level in 15 O, have been studied over the energy range from 0.5 MeV to 3 MeV. Doppler shift line shape method as well as γ-ray yield measurements have been used. The absolute cross sections are determined relative to the known 14 N(p,p) elastic differential cross sections. A comparison with previously determined values for the same reactions at selected energies shows good agreement in angular distribution as well as in absolute values. The total cross section for the d,p reaction shows a general energy dependence which is typical for direct reactions, but with minor contribution from compound nucleus formation at certain energy ranges. For the 14 N(d,n) 15 N reaction, the method applied is unique, since it allows the differential cross section to be studied all the way down to the threshold energy of deuterons at 2 MeV, with a detectorsystem efficiency which is constant over the entire range of neutron energies. The larger part of the energy range that has been investigated is dominated by a resonance at 2.55 π+ 0.05 MeV deuteron energy and a halfwidth depending on the amount of contribution from the direct reaction of the order of 200-400 keV. (JIW)

  3. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.

    Science.gov (United States)

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-02-01

    The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. © 2012 Acoustical Society of America

  4. Calculated Resonance Line Profiles of [Mg II], [C II], and [Si IV] in the Solar Atmosphere

    Science.gov (United States)

    Avrett, E.; Landi, E.; McKillop, S.

    2013-12-01

    NASA's Interface Region Imaging Spectrograph space mission, launched 2013 June 27, is intended to study the structure of the solar chromosphere and the transition region between the chromosphere and corona. The spectral lines to be observed include the Mg II k line at 2796.5 Å, the C II 1334.5 Å line, and the Si IV line at 1393.8 Å, which are formed in the middle chromosphere, the upper chromosphere, and the lower transition region, respectively. Here we calculate the profiles of these lines from four models of the solar atmosphere, intended to represent the faint and mean internetwork, a network lane, and bright network. We show how the profiles change from the center of the solar disk toward the limb of the Sun and in response to outflows and inflows. These results are intended to cover the range of expected quiet-Sun observations and assist in their interpretation. We expect that the observations will lead to improvements in the models, which can then be used to estimate the required non-radiative heating in the different regions.

  5. Calculated resonance line profiles of [Mg II], [C II], and [Si IV] in the solar atmosphere

    International Nuclear Information System (INIS)

    Avrett, E.; McKillop, S.; Landi, E.

    2013-01-01

    NASA's Interface Region Imaging Spectrograph space mission, launched 2013 June 27, is intended to study the structure of the solar chromosphere and the transition region between the chromosphere and corona. The spectral lines to be observed include the Mg II k line at 2796.5 Å, the C II 1334.5 Å line, and the Si IV line at 1393.8 Å, which are formed in the middle chromosphere, the upper chromosphere, and the lower transition region, respectively. Here we calculate the profiles of these lines from four models of the solar atmosphere, intended to represent the faint and mean internetwork, a network lane, and bright network. We show how the profiles change from the center of the solar disk toward the limb of the Sun and in response to outflows and inflows. These results are intended to cover the range of expected quiet-Sun observations and assist in their interpretation. We expect that the observations will lead to improvements in the models, which can then be used to estimate the required non-radiative heating in the different regions.

  6. Precision Measurement of the Energies and Line Shapes of Antiprotonic Lyman and Balmer Transitions From Hydrogen and Helium Isotopes

    CERN Multimedia

    2002-01-01

    % PS207 \\\\ \\\\ For the study of the antiproton-proton and antiproton-nuclear spin-spin and spin-orbital interaction at threshold a high resolution measurement is proposed of the line shapes and energy shifts of antiprotonic K$\\alpha$ and L$\\alpha$ transitions of hydrogen and helium isotopes. The intense LEAR beam, stopped in the cyclotron trap at low gas pressure, provides a unique~X-ray~source with sufficient brightness. Charge coupled devices with their excellent background rejection and energy resolution allow a precise determination of the strong shifts and widths of the 1s hyperfine states of protonium, in addition the detection of the $\\bar{p}$D K$\\alpha$ transition should be possible. A focussing crystal spectrometer with a resolution $\\Delta$E/E of about l0$ ^- ^{4} $, which is superior in the accuracy of the energy determination by two orders of magnitude as compared to the present detection methods, will be used to measure the energies of the L$\\alpha$ transitions. This permits a first direct measure...

  7. Constraints on dark matter and the shape of the Milky Way dark halo from the 511 keV line

    CERN Document Server

    Ascasibar, Y; Knödlseder, J; Jean, P

    2006-01-01

    About one year ago, it was speculated that decaying or annihilating Light Dark Matter (LDM) particles could explain the flux and extension of the 511 keV line emission in the galactic centre. Here we present a thorough comparison between theoretical expectations of the galactic positron distribution within the LDM scenario and observational data from INTEGRAL/SPI. Unlike previous analyses, there is now enough statistical evidence to put tight constraints on the shape of the dark matter halo of our galaxy, if the galactic positrons originate from dark matter. For annihilating candidates, the best fit to the observed 511 keV emission is provided by a radial density profile with inner logarithmic slope gamma=1.03+-0.04. In contrast, decaying dark matter requires a much steeper density profile, gamma>1.5, rather disfavoured by both observations and numerical simulations. Within the annihilating LDM scenario, a velocity-independent cross-section would be consistent with the observational data while a cross-section...

  8. Modulating the line shape of magnetoconductance by varying the charge injection in polymer light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Nidya Chitraningrum

    2018-02-01

    Full Text Available We fabricate the phenyl-substituted poly(p-phenylene vinylene copolymer (super yellow, SY-PPV-based polymer light-emitting diodes (PLEDs with different device architectures to modulate the injection of opposite charge carriers and investigate the corresponding magnetoconductance (MC responses. At the first glance, we find that all PLEDs exhibit the positive MC responses. By applying the mathematical analysis to fit the curves with two empirical equations of a non-Lorentzian and a Lorentzian function, we are able to extract the hidden negative MC component from the positive MC curve. We attribute the growth of the negative MC component to the reduced interaction of the triplet excitons with charges to generate the free charge carriers as modulated by the applied magnetic field, known as the triplet exciton-charge reaction, by analyzing MC responses for PLEDs of the charge-unbalanced and hole-blocking device configurations. The negative MC component causes the broadening of the line shape in MC curves.

  9. A microscopic study of giant resonances in nuclei near drip lines

    CERN Document Server

    Sagawa, H; Zhang, X Z

    1999-01-01

    We study giant resonances using the self-consistent Hartree-Fock calculation plus the random phase approximation with Skyrme interactions. Including simultaneously both the isoscalar and the isovector correlation the RPA response function is calculated in the coordinate space so as to take properly into account the continuum effect. Giant monopole states are discussed in relation with the nuclear compression modulus of the nuclear matter K sub n sub m. The core polarization charges are also discussed in comparison with recent empirical data in sup 1 sup 0 sup 0 Sn region.

  10. The Ca II resonance lines in M dwarf stars without H-alpha emission

    Energy Technology Data Exchange (ETDEWEB)

    Giampapa, M.S.; Cram, L.E.; Wild, W.J. (National Solar Observatory, Tucson, AZ (USA) Sydney Univ. (Australia) Arizona Univ., Tucson (USA))

    1989-10-01

    Spectra of the Ca II H and K lines in a sample of 31 M dwarf stars without H-alpha emission are used to calculate chromospheric K line radiative losses, F(k), and to study the joint response of Ca II K and H-alpha to chromospheric heating in dwarf M stars. It is suggested that the poor correlation found in the equivalent width - log F(K) diagram may be due either to radial segregation of the H-alpha and K line forming regions or to lateral inhomogeneities in the chromospheres. The results confirm the existence of dM stars with weak H-alpha absorption and K line emission only slightly weaker than that of the dMe stars, and show that dM stars with weak H-alpha but kinematics and metallicities representative of the young disk population belong to a class characterized by a comparatively high degree of chromospheric activity. 32 refs.

  11. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO4 by Shape-Controlled Au Nanoparticles.

    Science.gov (United States)

    Lee, Mi Gyoung; Moon, Cheon Woo; Park, Hoonkee; Sohn, Woonbae; Kang, Sung Bum; Lee, Sanghan; Choi, Kyoung Jin; Jang, Ho Won

    2017-10-01

    The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape-controlled Au NPs on bismuth vanadate (BiVO 4 ) are studied, and a largely enhanced photoactivity of BiVO 4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO 4 achieves 2.4 mA cm -2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO 4 . It is the highest value among the previously reported plasmonic Au NPs/BiVO 4 . Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape-controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Line overlap measurements for resonant photo-pumping of x-ray lasers

    International Nuclear Information System (INIS)

    Elliott, S.R.; Beiersdorfer, P.; Nilsen, J.

    1993-01-01

    Measurement taken on the LLNL EBIT to search for the possible photo-pumping of the 3p-3s lasing transitions in Ni-like ions of elements with Z=30--40 and the 4d-4p lasing transitions in Ne-like ions of elements with Z=47-73 are reported. A high-resolution crystral spectrometer was used to measure wavelengths of the Ne-like 2p-4d and the Ni-like 3d-5f and 3d-6f laser level feeding transitions relative to candidate pump lines in various H-, He-, and Ni-like ions. To date, the most promising candidate is Ni-like Pt pumping Ne-like Rb at 2512 eV. The line energies differ by 0.4±0.1 eV or by 160 ppm

  13. Antioxidant capacity of hesperidin from citrus peel using electron spin resonance and cytotoxic activity against human carcinoma cell lines.

    Science.gov (United States)

    Al-Ashaal, Hanan A; El-Sheltawy, Shakinaz T

    2011-03-01

    Hesperidin is a flavonoid that has various pharmacological activities including anti-inflammatory, antimicrobial and antiviral activities. The aim of the study is the isolation of hesperidin from the peel of Citrus sinensis L. (Rutaceae), and the evaluation of its antioxidant capacity and cytotoxicity against different human carcinoma cell lines. In the present work, hesperidin is identified and confirmed using chromatographic and spectral analysis. To correlate between hesperidin concentration and antioxidant capacity of peel extracts, extraction was carried out using 1% HCl-MeOH, MeOH, alkaline solution, the concentration of hesperidin determined qualitatively and quantitatively using high performance thin layer chromatography (HPTLC), high performance liquid chromatography (HPLC) analysis, in vitro antioxidant capacity of hesperidin and the extracts against free radical diphenylpicrylhydrazyl (DPPH•) performed using an electron spin resonance spectrophotometer (ESR). Cytotoxic assay against larynx, cervix, breast and liver carcinoma cell lines was performed. Hesperidin was found to be moderately active as an antioxidant agent; its capacity reached 36%. In addition, the results revealed that hesperidin exhibited pronounced anticancer activity against the selected cell lines. IC₅₀ were 1.67, 3.33, 4.17, 4.58 µg/mL, respectively. Orange peels are considered to be a cheap source for hesperidin which may be used in the pharmaceutical industry as a natural chemopreventive agent. Hesperidin and orange peel extract could possess antioxidant properties with a wide range of therapeutic applications.

  14. THE {sup 7}Be ii RESONANCE LINES IN TWO CLASSICAL NOVAE V5668 SGR AND V2944 OPH

    Energy Technology Data Exchange (ETDEWEB)

    Tajitsu, Akito [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Sadakane, Kozo [Astronomical Institute, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582 (Japan); Naito, Hiroyuki [Nayoro Observatory, 157-1 Nisshin, Nayoro, Hokkaido 096-0066 (Japan); Arai, Akira; Kawakita, Hideyo [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Aoki, Wako, E-mail: tajitsu@naoj.org [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-20

    We report spectroscopic observations of the resonance lines of singly ionized {sup 7}Be in the blueshifted absorption line systems found in the post-outburst spectra of two classical novae—V5668 Sgr (Nova Sagittarii 2015 No. 2) and V2944 Oph (Nova Ophiuchi 2015). The unstable isotope {sup 7}Be should have been created during the thermonuclear runaway (TNR) of these novae and decayed to form {sup 7}Li within a short period (a half-life of 53.22 days). These confirmations of {sup 7}Be are the second and the third ones following the first case found in V339 Del by Tajitsu et al. The blueshifted absorption line systems in both novae are clearly divided into two velocity components, both of which contain {sup 7}Be. This means that the absorbing gases in both velocity components consist of products of TNR. We estimated the amounts of {sup 7}Be produced during the outbursts of both novae and concluded that significant {sup 7}Li should have been created. These findings strongly suggest that the explosive production of {sup 7}Li via the reaction {sup 3}He(α,γ){sup 7}Be and its  subsequent decay to {sup 7}Li occurs frequently among classical novae and contributes to the process of Galactic Li enrichment.

  15. Proton magnetic resonance spectroscopy (MRS) in on-line game addiction

    Science.gov (United States)

    Han, Doug Hyun; Lee, Young Sik; Shi, Xianfeng; Renshaw, Perry F.

    2015-01-01

    Recent brain imaging studies suggested that both the frontal and temporal cortices are important candidate areas for mediating the symptoms of internet addiction. We hypothesized that deficits of prefrontal and temporal cortical function in patients with on-line game addiction (PGA) would be reflected in decreased levels of N-acetyl aspartate (NAA) and cytosolic, choline containing compound (Cho). Seventy three young PGA and 38 age and sex matched healthy control subjects were recruited in the study. Structural MR and 1H MRS data were acquired using a 3.0 T MRI scanner. Voxels were sequentially placed in right frontal cortex and right medial temporal cortices. In the right frontal cortex, the levels of NAA in PGA were lower than those in healthy controls. In the medial temporal cortex, the levels of Cho in PGA participants were lower than those observed in healthy controls. The Young Internet Addiction Scale (YIAS) scores and perseverative responses in PGA were negatively correlated with the level of NAA in right frontal cortex. The Beck Depressive Inventory (BDI) scores in the PGA cohort were negatively correlated with Cho levels in the right temporal lobe. To the best of our knowledge, this is the first MRS study of individuals with on-line game addiction. Although, the subjects with on-line game addiction in the current study were free from psychiatric co-morbidity, patients with on-line game addiction appear to share characteristics with ADHD and MDD in terms of neurochemical changes in frontal and temporal cortices. PMID:25088284

  16. The line shape analysis of electron spectroscopy spectra by the artifical intelligence methods for identification of C sp.sup.2./sup./sp.sup.3./sup. bonds

    Czech Academy of Sciences Publication Activity Database

    Lesiak, B.; Zemek, Josef; Jiříček, Petr; Stobinski, L.; Jozwik, A.

    2010-01-01

    Roč. 247, 11-12 (2010), s. 2838-2842 ISSN 0370-1972 R&D Projects: GA ČR GA202/09/0428 Institutional research plan: CEZ:AV0Z10100521 Keywords : carbon nanotubes * temperature functionalization * electron spectroscopy * line shape analysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.344, year: 2010

  17. Calculation of the vibrational linewidth and line shape of Raman spectra using the relaxation function : I. method and application to nitrogen

    NARCIS (Netherlands)

    Kooi, M.E.; Smit, F.; Michels, J.P.J.; Schouten, J.A.

    2000-01-01

    The spectral line shape of the fundamental vibration of nitrogen is calculated from molecular dynamics simulations by determining the Fourier transform of the relaxation function. It has been applied to the fluid phase at various pressures and temperatures, and to solid d-N2. The validity of the

  18. Measurement and modeling of nitrogen resonance line profiles from an electrodeless discharge lamp

    International Nuclear Information System (INIS)

    Wood, D.R.; Skinner, G.B.; Lifshitz, A.

    1987-01-01

    Experimental profiles of the 1200 A resonance triplet of atomic nitrogen were measured for a variety of operating conditions of an end-on electrodeless lamp, and corresponding absorption curves were calculated. Each source profile was determined by fitting parameters to an empirical two-layer model, then convoluting with the instrumental function for comparison with experimental data. Each three-component profile was fitted with three adjustable parameters: an absorption parameter for each of the two layers and a third absorption parameter to adjust for radiation trapping. Curves of absorption as a function of atom concentration, calculated from these profiles, are very similar to the shock tube calibrations of Thielen and Roth in which a source of similar design has been used

  19. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  20. The effect of shape, length and diameter of implants on primary stability based on resonance frequency analysis

    Directory of Open Access Journals (Sweden)

    Hamidreza Barikani

    2014-01-01

    Full Text Available Background: The aim of this in vitro study was to evaluate the effect of shape, diameter and length of implants on their primary stability based on resonance frequency analysis. Materials and Methods: Replace select tapered and Branemark MK III implants were selected. Each of these two selected groups was divided into nine subgroups based on the implant length (IL (short, medium and long and the implant diameter (ID (narrow platform [NP], regular platform [RP] and wide platform [WP]. Five implants were assigned to each of the nine subgroups. Implants were placed in artificial bone blocks with bone quality similar to D3 bone. Immediately after the implant placement, its primary stability was measured using Osstell Mentor equipment. T-test and Tukey′s honest significant difference Post hoc were performed for data analysis. Statistical significance was defined at P < 0.05. Results: Replace select system showed significantly higher primary stability compared to the Branemark system, when using the short implants for all three diameters (P ≤ 0.004. However, in medium length implants there were no significant differences between the two implant systems (P ≥ 0.31. In long implants, only when the NP and RP implants were used, the Replace Select system showed significantly higher primary stability compared to the Branemark system (P = 0.000. In the replace select system, long implants had a significantly higher primary stability compared to medium and short length implants (P ≤ 0.003. In the NP and RP Branemark implants, short implants showed significantly lower primary stability compared to medium and long implants (P ≤ 0.002. However, in WP Branemark implants, primary stability increased significantly with increasing the IL from short to medium and from medium to long (P = 0.000. There were also significant differences between NP and the two other wider implants in both systems (P = 0.000. Conclusion: The use of tapered implants is

  1. Anomalous intensities of Ne-like ion resonance line in plasma produced by picosecond laser pulse

    International Nuclear Information System (INIS)

    Bryunetkin, B.A.; Skobelev, I.Yu.; Faenov, A.Ya.; Kalashnikov, M.P.; Nikles, P.; Shnyupep, M.

    1995-01-01

    An anomalous structure of intensities of spectral lines of CuXX and GeXXX Ne-like ions emitted by plasma produced by laser pulses of picosecond duration and up to 2x10 18 W/cm 2 flux density is recorded for the first time. It is shown that spectrum maximum of these ions is emitted from a plasma region whose density is significantly above the critical value of the length of heating laser radiation wave. 9 refs.; 3 figs

  2. Miniaturized bandpass filter using a meandered stepped-impedance resonator with a meandered-line stub-load on a GaAs substrate.

    Science.gov (United States)

    Chuluunbaatar, Z; Wang, C; Kim, N Y

    2014-01-01

    This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  3. Miniaturized Bandpass Filter Using a Meandered Stepped-Impedance Resonator with a Meandered-Line Stub-Load on a GaAs Substrate

    Directory of Open Access Journals (Sweden)

    Z. Chuluunbaatar

    2014-01-01

    Full Text Available This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  4. Time dependence of the UV resonance lines in the cataclysmic variables SU UMa, RX And and 0623+71

    International Nuclear Information System (INIS)

    Woods, J.A.; Drew, J.E.; Verbunt, Frank

    1990-01-01

    We present IUE observations of the dwarf novae SU UMa and RX And, and of the nova-like variable 0623 + 71. At the time of observation, SU UMa and RX And were in outburst. All three systems show variability in the wind-formed UV resonance lines of N v λ 1240, Si IV λ 1397 and C IV λ 1549 on timescale of hours. The amplitude of variation is smallest in RX And and largest in 0623 + 71. There is evidence that the variations observed in SU UMa's UV spectrum repeat on the orbital period. Our observations of SU UMa also reveal variability in the continuum flux during the decline from outburst maximum that is much more marked in the UV than at optical wavelengths. (author)

  5. Resonance-line transfer with partial redistribution. VIII. Solution in the comoving frame for moving atmospheres

    International Nuclear Information System (INIS)

    Mihalas, D.; Shine, R.A.; Kunasz, P.B.; Hummer, D.G.

    1976-01-01

    An analysis of the effects of partial frequency redistribution in the scattering process for lines formed in moving atmospheres has been performed using a flexible and general method which allows solutions of the transfer equation in the comoving frame of the gas. As a specific example, we consider the same chromospheric and atomic model, with the same velocity field, that was studied by Cannon and Vardavas. We find that the large changes in the profiles obtained by those authors, between the cases of complete and partial redistribution are spurious effects of angle averaging in the observer's frame instead of the comoving frame. Our results support fully the conclusion by Magnan that these changes are, in fact, unreal, at least for this particular model and redistribution function. Future work with other redistribution functions and with nonmonotone velocity fields will be possible using the techniques developed in this paper

  6. The effect of magnetic stress and stiffness modulus on resonant characteristics of Ni-Mn-Ga ferromagnetic shape memory alloy actuators

    International Nuclear Information System (INIS)

    Techapiesancharoenkij, Ratchatee; Kostamo, Jari; Allen, Samuel M.; O'Handley, Robert C.

    2011-01-01

    The prospect of using ferromagnetic shape memory alloys (FSMAs) is promising for a resonant actuator that requires large strain output and a drive frequency below 1 kHz. In this investigation, three FSMA actuators, equipped with tetragonal off-stoichiometric Ni 2 MnGa single crystals, were developed to study their frequency response and resonant characteristics. The first actuator, labeled as A1, was constructed with low-k bias springs and one Ni-Mn-Ga single crystal. The second actuator, labeled as A2, was constructed with high-k bias springs and one Ni-Mn-Ga crystal. The third actuator, labeled as A3, was constructed with high-k bias springs and two Ni-Mn-Ga crystals connected in parallel. The three actuators were magnetically driven over the frequency range of 10 Hz-1 kHz under 2 and 3.5 kOe magnetic-field amplitudes. The field amplitude of 2 kOe is insufficient to generate significant strain output from all three actuators; the maximum magnetic-field-induced strain (MFIS) at resonance is 2%. The resonant MFIS output improves to 5% under 3.5-kOe amplitude. The frequency responses of all three actuators show a strong effect of the spring k constant and the Ni-Mn-Ga modulus stiffness on the resonant frequencies. The resonant frequency of the Ni-Mn-Ga actuator was raised from 450 to 650 Hz by increasing bias spring k constant and/or the number of Ni-Mn-Ga crystals. The higher number of the Ni-Mn-Ga crystals not only increases the magnetic force output but also raises the total stiffness of the actuator resulting in a higher resonant frequency. The effective modulus of the Ni-Mn-Ga is calculated from the measured resonant frequencies using the mass-spring equation; the calculated modulus values for the three actuators fall in the range of 50-60 MPa. The calculated effective modulus appears to be close to the average modulus value between the low twinning modulus and high elastic modulus of the untwined Ni-Mn-Ga crystal. - Highlights: → Dynamic FSMA actuation shows

  7. Disentangling the role of the Y(4260) in e+e- →D*Dbar* and Ds* Dbars* via line shape studies

    Science.gov (United States)

    Xue, Si-Run; Jing, Hao-Jie; Guo, Feng-Kun; Zhao, Qiang

    2018-04-01

    Whether the Y (4260) can couple to open charm channels has been a crucial issue for understanding its nature. The available experimental data suggest that the cross section line shapes of exclusive processes in e+e- annihilations have nontrivial structures around the mass region of the Y (4260). As part of a series of studies of the Y (4260) as mainly a D bar D1 (2420) + c . c . molecular state, we show that the partial widths of the Y (4260) to the two-body open charm channels of e+e- →D*Dbar* and Ds* D bars* are much smaller than that to D bar D* π + c . c . . The line shapes measured by the Belle Collaboration for these two channels can be well described by the vector charmonium states ψ (4040), ψ (4160) and ψ (4415) together with the Y (4260). It turns out that the interference of the Y (4260) with the other charmonia produces a dip around 4.22 GeV in the e+e- →D*Dbar* cross section line shape. The data also show an evidence for the strong coupling of the Y (4260) to the DDbar1 (2420), in line with the expectation in the hadronic molecular scenario for the Y (4260).

  8. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2014-07-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state with a continuum one. During the last decade this concept has been applied in plasmonics where the interference between a narrowband polariton and a broader one has been used to generate electromagnetically induced transparency (EIT) (M. Rahmani, et al., Laser Photon. Rev., 7, 329-349, 2013).

  9. Fourier analysis of the cell shape of paired human urothelial cell lines of the same origin but of different grades of transformation.

    Science.gov (United States)

    Ostrowski, K; Dziedzic-Goclawska, A; Strojny, P; Grzesik, W; Kieler, J; Christensen, B; Mareel, M

    1986-01-01

    The rationale of the present investigation is the observations made by many authors of changes in the molecular structure of the cell surface during the multistep process of malignant transformation. These changes may influence cell-matrix and cell-cell interactions and thereby cause changes in cell adhesiveness and cell shape. The aim of the present work was to investigate whether the development of various grades of transformation in vivo and in vitro of human urothelial cells is accompanied by significant changes in cell shape as measured by Fourier analysis. The following transformation grades (TGr) have been defined (Christensen et al. 1984; Kieler 1984): TGr I = nonmalignant, mortal cell lines that grow independently of fibroblasts and have a prolonged life span. TGr II = nonmalignant cell lines with an infinite life span. TGr III = malignant and immortal cell lines that grow invasively in co-cultures with embryonic chick heart fragments and possess tumorigenic properties after s.c. injection into nude mice. Comparisons of 4 pairs of cell lines were performed; each pair was of the same origin. Two pairs--each including a TGr I cell line (Hu 961b and Hu 1703S) compared to a TGr III cell line (Hu 961a or Hu 1703He)--were derived from two transitional cell carcinomas (TCC) containing a heterogeneous cell population. Two additional cell lines classified as TGr II (HCV-29 and Hu 609) were compared to two TGr III sublines (HCV-29T and Hu 609T, respectively) which arose by "spontaneous" transformation during propagation in vitro of the respective maternal TGr II-cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Implementation of a neural network for digital pulse shape analysis on a FPGA for on-line identification of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, R., E-mail: naharro@uhu.es [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Sanchez-Raya, M.; Gomez-Galan, J.A. [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Flores, J.L. [Departamento Ingenieria Electrica y Termica, Universidad de Huelva, 21071 Huelva (Spain); Duenas, J.A.; Martel, I. [Departamento de Fisica Aplicada, Universidad de Huelva, 21071 Huelva (Spain)

    2012-05-11

    Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using {sup 12,13}C ions produced in heavy ion reactions. The actual latency of the system is about 20 {mu}s when using a clock frequency of 50 MHz.

  11. New analytical calculations of the resonance modes in lens-shaped cavities: applications to the calculations of the energy levels and electronic wavefunctions in quantum dots

    International Nuclear Information System (INIS)

    Even, J; Loualiche, S

    2003-01-01

    The problem of the energy levels and electronic wavefunctions in quantum dots is studied in the parabolic coordinates system. A conventional effective mass Hamiltonian is written. For an infinite potential barrier, it is related to the more general problem of finding the resonance modes in a cavity. The problem is found to be separable for a biconvex-shaped cavity or quantum dot with an infinite potential barrier. This first shape of quantum dot corresponds to the intersection of two orthogonal confocal parabolas. Then plano-convex lens-shaped cavities or quantum dots are studied. This problem is no more separable in the parabolic coordinates but using symmetry properties, we show that the exact solutions of the problem are simple combinations of the previous solutions. The same approach is used for spherical coordinates and hemispherical quantum dots. It is finally shown that convex lens-shaped quantum dots give a good description of self-organized InAs quantum dots grown on InP

  12. [Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging].

    Science.gov (United States)

    Mori, Koichi; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute an MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI.

  13. Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mori, Koichi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute and MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5 T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI. (author)

  14. About the Shape of the Melting Line as a Possible Precursor of a Liquid-Liquid Phase Transition

    Science.gov (United States)

    Imre, Attila R.; Rzoska, Sylwester J.

    Several simple, non-mesogenic liquids can exists in two or more different liquid forms. When the liquid-liquid line, separating two liquid forms, meets the melting line, one can expect some kind of break on the melting line, caused by the different freezing/melting behaviour of the two liquid forms. Unfortunately recently several researchers are using this vein of thinking in reverse; seeing some irregularity on the melting line, they will expect a break and the appearance of a liquid-liquid line. In this short paper, we are going to show, that in the case of the high-pressure nitrogen studied recently by Mukherjee and Boehler, the high-pressure data can be easily described by a smooth, break-free function, the modified Simon-Glatzel equation. In this way, the break, suggested by them and consequently the suggested appearance of a new liquid phase of the nitrogen might be artefacts.

  15. Broadband strip-line ferromagnetic resonance spectroscopy of soft magnetic CoFeTaZr patterned thin films

    Science.gov (United States)

    Gupta, S.; Kumar, D.; Jin, T. L.; Nongjai, R.; Asokan, K.; Ghosh, A.; Aparnadevi, M.; Suri, P.; Piramanayagam, S. N.

    2018-05-01

    In this paper, magnetic and magnetization dynamic properties of compositionally patterned Co46Fe40Ta9Zr5 thin films are investigated. A combination of self-assembly and ion-implantation was employed to locally alter the composition of Co46Fe40Ta9Zr5 thin film in a periodic manner. 20 keV O+ and 60 keV N+ ions were implanted at different doses in order to modify the magnetization dynamic properties of the samples in a controlled fashion. Magnetic hysteresis loop measurements revealed significant changes in the coercivity for higher influences of 5 × 1016 ions per cm2. In particular, N+ implantation was observed to induce two phase formation with high and low coercivities. Broadband strip-line ferromagnetic resonance spectroscopy over wide range of frequency (8 - 20 GHz) was used to study the magnetization dynamics as a function of ion-beam dosage. With higher fluences, damping constant showed a continuous increase from 0.0103 to 0.0430. Such control of magnetic properties at nano-scale using this method is believed to be useful for spintronics and microwave device applications.

  16. Supra-molecular structure of TGBC* phases studied by means of Deuterium NMR line-shape analysis

    Czech Academy of Sciences Publication Activity Database

    Domenici, V.; Veracini, C.A.; Hamplová, Věra; Kašpar, Miroslav

    2008-01-01

    Roč. 495, č. 11 (2008), s. 133-144 ISSN 1542-1406 Institutional research plan: CEZ:AV0Z10100520 Keywords : banana -shaped * deuterium NMR * magnetic field * rod-like * smectic * twist grain boundary Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.537, year: 2008

  17. Effect of Interface energy and electron transfer on shape, plasmon resonance and SERS activity of supported surfactant-free gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP; Dastmalchi, Babak [Ames Laboratory; Suvorova, Alexandra [University of Western Australia; Bianco, Giuseppe V. [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP; Hingerl, Kurt [Johannes Kepler University Linz; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP; Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP

    2014-01-01

    For device integration purposes plasmonic metal nanoparticles must be supported/deposited on substrates. Therefore, it is important to understand the interaction between surfactant-free plasmonic metal nanoparticles and different substrates, as well as to identify factors that drive nanoparticles nucleation and formation. Here we show that for nanoparticles grown directly on supports, the substrate/nanoparticle interfacial energy affects the equilibrium shape of nanoparticles. Therefore, oblate, spherical and prolate Au nanoparticles (NPs) with different shapes have been deposited by radiofrequency sputtering on substrates with different characteristics, namely a dielectric oxide Al2O3 (0001), a narrow bandgap semiconductor Si (100), and a polar piezoelectric wide bandgap semiconductor 4H–SiC (0001). We demonstrate that the higher the substrate surface energy, the higher the interaction with the substrate, resulting in flat prolate Au nanoparticles. The resulting localized surface plasmon resonance characteristics of Au NPs/Al2O3, Au NPs/Si and Au NPs/SiC have been determined by spectroscopic ellipsometry and correlated with their structure and shape studied by transmission electron microscopy. Finally, we have demonstrated the diverse response of the tailored plasmonic substrates as ultrasensitive SERS chemical sensors. Flat oblates Au NPs on SiC result in an enhanced and more stable SERS response. The experimental findings are validated by numerical simulations of electromagnetic fields.

  18. Avoidance of transmission line pressure oscillations in discrete hydraulic systems – by shaping of valve opening characteristics

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Bech, Michael Møller

    2015-01-01

    The architecture of multi pressure line discrete fluid power force systems imposes rapid pressure shifts in the actuator volumes. These fast shifts between pressure levels often introduce pressure oscillations in the actuator chamber and connecting pipes. The topic of this paper is to perform...... pressure shifts by changing the connection between various fixed pressure lines without introducing significant pressure oscillation. As a case study a discrete force system is utilised is a Power Take Off(PTO) system of a wave energy converter. Four pressure shifting algorithms are proposed...

  19. First spectroscopy of 66Se and 65As: Investigating shape coexistence beyond the N=Z line

    International Nuclear Information System (INIS)

    Obertelli, A.; Baugher, T.; Bazin, D.; Boissinot, S.; Delaroche, J.-P.; Dijon, A.; Flavigny, F.; Gade, A.; Girod, M.; Glasmacher, T.; Grinyer, G.F.; Korten, W.; Ljungvall, J.; McDaniel, S.; Ratkiewicz, A.; Sulignano, B.; Van Isacker, P.; Weisshaar, D.

    2011-01-01

    We report on the first γ spectroscopy of 66 Se and 65 As from two-neutron removal at intermediate beam energies. The deduced excitation energies for the first-excited states in 66 Se and 65 As are compared to mean-field-based predictions within a collective Hamiltonian formalism using the Gogny D1S effective interaction and to state-of-the-art shell-model calculations restricted to the pf 5/2 g 9/2 valence space. The obtained Coulomb-energy differences for the first excited states in 66 Se and 65 As are discussed within the shell-model formalism to assess the shape-coexistence picture for both nuclei. Our results support a favored oblate ground-state deformation in 66 Se and 65 As. A shape transition for the ground state of even-odd As isotopes from oblate in 65 As to prolate in 67,69,71 As is suggested.

  20. Concentration dependence of the wings of a dipole-broadened magnetic resonance line in magnetically diluted lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zobov, V. E., E-mail: rsa@iph.krasn.ru [Russian Academy of Sciences, Kirenskii Institute of Physics, Siberian Branch (Russian Federation); Kucherov, M. M. [Siberian Federal University, Institute of Space and Information Technologies (Russian Federation)

    2017-01-15

    The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components are described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different {sup 29}Si concentrations in magnetic fields directed along three crystallographic axes is considered.

  1. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    International Nuclear Information System (INIS)

    Attota, Ravikiran; Dixson, Ronald G.

    2014-01-01

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  2. Properties of laser-produced GaAs plasmas measured from highly resolved X-ray line shapes and ratios

    Science.gov (United States)

    Seely, J. F.; Fein, J.; Manuel, M.; Keiter, P.; Drake, P.; Kuranz, C.; Belancourt, Patrick; Ralchenko, Yu.; Hudson, L.; Feldman, U.

    2018-03-01

    The properties of hot, dense plasmas generated by the irradiation of GaAs targets by the Titan laser at Lawrence Livermore National Laboratory were determined by the analysis of high resolution K shell spectra in the 9 keV to 11 keV range. The laser parameters, such as relatively long pulse duration and large focal spot, were chosen to produce a steady-state plasma with minimal edge gradients, and the time-integrated spectra were compared to non-LTE steady state spectrum simulations using the FLYCHK and NOMAD codes. The bulk plasma streaming velocity was measured from the energy shifts of the Ga He-like transitions and Li-like dielectronic satellites. The electron density and the electron energy distribution, both the thermal and the hot non-thermal components, were determined from the spectral line ratios. After accounting for the spectral line broadening contributions, the plasma turbulent motion was measured from the residual line widths. The ionization balance was determined from the ratios of the He-like through F-like spectral features. The detailed comparison of the experimental Ga spectrum and the spectrum simulated by the FLYCHK code indicates two significant discrepancies, the transition energy of a Li-like dielectronic satellite (designated t) and the calculated intensity of a He-like line (x), that should lead to improvements in the kinetics codes used to simulate the X-ray spectra from highly-charged ions.

  3. Building CX peanut-shaped disk galaxy profiles. The relative importance of the 3D families of periodic orbits bifurcating at the vertical 2:1 resonance

    Science.gov (United States)

    Patsis, P. A.; Harsoula, M.

    2018-05-01

    Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known "frown-smile" side-on morphology, is unstable. Aims: Our goal is to study the differences that occur in the phase space structure at the vertical 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile profiles are stable and support an X-shaped morphology. Methods: The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the vertical stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results: The two bifurcating families at the vertical 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) profile. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions: In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type profile. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a profile reminiscent of the shape of the orbits of the 3D unstable family existing in each model.

  4. Intraoperative Magnetic Resonance Imaging for Cranial and Spinal Cases Using Preexisting "C" Shaped Three Side Open 0.2 Tesla Magnetic Resonance Imaging.

    Science.gov (United States)

    Tewari, Vinod Kumar; Tripathi, Ravindra; Aggarwal, Subodh; Hussain, Mazhar; Das Gupta, Hari Kishan

    2017-01-01

    The existing Intraoperative MRI (IMRI) of developed countries is too costly to be affordable in any developing country and out of the reach of common and poor people of developing country at remote areas. We have used the pre-existing (refurbished) 3 side open "C" shaped 0.2 Tesla MRI for IMRI in a very remote area. In this technique the 0.2 Tesla MRI and the operating theatre were merged. MRI table was used as an operation table. We have operated 36 cases via IMRI from November 2005 to till date. First case operated was on 13 th nov 2005. Low (0.2) Tesla open setup costs very low (around Rs 40 lakhs) so highly affordable to management and thus to patients, used for diagnostic and therapeutic purposes both, the equipments like Nitrous, oxygen and suction is outside the MRI room so no noise inside operative room, positioning the patient didn't take much time due to manual adjustments, no special training to nurses and technicians required because of low (0.2) Tesla power of magnet and same instruments and techniques, sequencing took only 1.31 mints per sequence and re registration is not required since we always note down the two orthogonal axis in x and y axis in preoperative imaging and we were able to operate on posterior fossa tumors as well because of no head fixation except with leucoplast strap. Moreover the images we got intraoperative are highly acceptable. Three side open 0.2 Tesla MRI system, if used for intraoperative guidance, is highly affordable and overcomes the limitations of western setup of IMRI. Postoperative MRI images were highly acceptable and also highly affordable too.

  5. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    International Nuclear Information System (INIS)

    Drakakis, E.; Karabourniotis, D.

    2012-01-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  6. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    Energy Technology Data Exchange (ETDEWEB)

    Drakakis, E. [Technological Educational Institute, Department of Electrical Engineering, 71004 Heraklion (Greece); Karabourniotis, D. [Institute of Plasma Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece)

    2012-09-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  7. 'Two-color' reflection multilayers for He-I and He-II resonance lines for micro-UPS using Schwarzschild objective

    International Nuclear Information System (INIS)

    Ejima, Takeo; Kondo, Yuzi; Watanabe, Makoto

    2000-01-01

    'Two-color' multilayers reflecting both He-I (58.4 nm) and He-II (30.4 nm) resonance lines have been designed and fabricated for reflection coatings of Schwarzschild objectives of micro-UPS instruments. They are designed so that their reflectances for both He-I and He-II resonance lines are more than 20%. The 'two-color' multilayers are piled double layers coated with top single layers. Fabricated are multilayers of SiC(top layer)-Mg/SiC(double layers) and SiC(top layer)-Mg/Y 2 O 3 (double layers), and their reflectances for the He-I and the He-II are 23% and 17%, and 20% and 23%, respectively

  8. The observation of the Ne-like ion resonance line satellites for CrXV ... Ni XIX CO2-laser produced plasma

    International Nuclear Information System (INIS)

    Khakhalin, S.Ya.; Faenov, A.Ya.; Skobelev, I.Yu.; Pikuz, S.A.; Nilsen, J.; Osterheld, A.

    1994-01-01

    We present an analysis of dielectronic satellite spectra of Ne-like ion resonance lines for elements from Cr to Ni. For these low-Z elements, we use spectra from strongly underionized CO 2 -laser produced plasma to minimize the emission from open L-shell ions. This simplifies the spectra and allows the identification of satellite lines caused by radiative transitions from autoionizing states of sodium like ions. Good agreement between the satellite structure calculations and the experimental emission spectra is obtained. (orig.)

  9. The observation of the Ne-like ion resonance line satellites for CrXV. Ni XIX CO[sub 2]-laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khakhalin, S.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Faenov, A.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Skobelev, I.Yu. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Pikuz, S.A. (P. N. Lebedev Physical Inst., Russian Academy of Science, Moscow (Russian Federation)); Nilsen, J. (Lawrence Livermore National Lab., Livermore, CA (United States)); Osterheld, A. (Lawrence Livermore National Lab., Livermore, CA (United States))

    1994-08-01

    We present an analysis of dielectronic satellite spectra of Ne-like ion resonance lines for elements from Cr to Ni. For these low-Z elements, we use spectra from strongly underionized CO[sub 2]-laser produced plasma to minimize the emission from open L-shell ions. This simplifies the spectra and allows the identification of satellite lines caused by radiative transitions from autoionizing states of sodium like ions. Good agreement between the satellite structure calculations and the experimental emission spectra is obtained. (orig.).

  10. Numerical Models for Exact Description of in-situ Digital In-Line Holography Experiments with Irregularly-Shaped Arbitrarily-Located Particles

    Directory of Open Access Journals (Sweden)

    Marc Brunel

    2015-04-01

    Full Text Available We present the development of a numerical simulator for digital in-line holography applications. In-line holograms of arbitrarily shaped and arbitrarily located objects are calculated using generalized Huygens-Fresnel integrals. The objects are 2D opaque or phase objects. The optical set-up is described by its optical transfer matrix. A wide variety of optical systems, involving windows, spherical or cylindrical lenses, can thus be taken into account. It makes the simulator applicable for design and description of in situ experiments. We discuss future applications of this simulator for detection of nanoparticles in droplets, or calibration of airborne instruments that detect and measure ice crystals in the atmosphere.

  11. Power line emission 50/60 Hz and Schumann resonances observed by microsatellite Chibis-M in the Earth's ionosphere

    Science.gov (United States)

    Dudkin, Denys; Pilipenko, Vyacheslav; Dudkin, Fedir; Pronenko, Vira; Klimov, Stanislav

    2015-04-01

    The overhead power lines are the sources of intense wideband electromagnetic (EM) emission, especially in ELF-VLF range, because of significant length (up to a few thousand kilometers) and strong 50/60 Hz currents with noticeable distortion. The radiation efficiency of the power line emission (PLE) increases with the harmonic order, so they are well observed by ground-based EM sensors. However their observations by low orbiting satellites (LEO) are very rare, particularly at basic harmonic 50/60 Hz, because of the ionospheric plasma opacity in ELF band. The Schumann resonance (SR) is the narrow-band EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity. The first five eigenmodes of the SR are 7.8, 14.3, 20.8, 27.3 and 33.8 Hz and, thus, SR harmonics are also strongly absorbed by the Earth ionosphere. The published numerical simulations show that the penetration depth of such an ELF emission into the Earth's ionosphere is limited to 50-70 km for electric field and 120-240 km for magnetic field. From this follows, that PLE and SR can hardly ever be detected by LEO satellites, i.e. above the F-layer of ionosphere. In spite of this fact, these emissions were recently observed with use of the electric field antennas placed on the satellites C/NOFS (USA) and Chibis-M (Russia). Microsatellite Chibis-M was launched on January 24, 2012, at 23:18:30 UTC from the cargo ship "Progress M-13M" to circular orbit with altitude ~500 km and inclination ~52° . Chibis-M mass is about 40 kg where one third is a scientific instrumentation. The dimensions of the microsatellite case are 0.26x0.26x0.54 m with the outside mounted solar panels, service and scientific instrumentation. The main scientific objective of Chibis-M is the theoretical model verification for the atmospheric gamma-ray bursts. It requires the study of the accompanying EM processes such as the plasma waves produced by the lightning discharges in the VLF band. Chibis-M decayed on 15

  12. Shape of electron lines emitted by a fast particle in atomic collisions. Influence of the acceptance function

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Gleizes, A.; Benoit-Cattin, P.; Boudjema, M.

    1980-01-01

    In order to explain the large energy broadening of the lines observed in energy spectra of electrons emitted by fast particles, an accurate knowledge of the angular acceptance function of the electron energy analyser is necessary. A simple method is proposed which can give an accurate function for most atomic collisions: the various approximations are discussed. It is also shown that the analyser transmission depends on the acceptance angle. (author)

  13. A new type of coil structure called pan-shaped coil of wireless charging system based on magnetic resonance

    Science.gov (United States)

    Yue, Z. K.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Liang, L. H.; Cui, S.

    2017-11-01

    The problem that misalignment between the transmitting coil and the receiving coil significantly impairs the transmission power and efficiency of the system has been attached more and more attention. In order to improve the uniformity of the magnetic field between the two coils to solve this problem, a new type of coil called pan-shaped coil is proposed. Three-dimension simulation models of the planar-core coil and the pan-shaped coil are established using Ansoft Maxwell software. The coupling coefficient between the transmitting coil and the receiving coil is obtained by simulating the magnetic field with the receiving coil misalignment or not. And the maximum percentage difference strength along the radial direction which is defined as the magnetic field uniformity factor is calculated. According to the simulation results of the two kinds of coil structures, it is found that the new type of coil structure can obviously improve the uniformity of the magnetic field, coupling coefficient and power transmission properties between the transmitting coil and the receiving coil.

  14. Enhanced spin polarization of elastic electron scattering from alkaline-earth-metal atoms in Ramsauer-Townsend and low-lying shape resonance regions

    International Nuclear Information System (INIS)

    Yuan, J.; Zhang, Z.

    1993-01-01

    Spin polarizations (SP's) of elastic electron scattering from alkaline-earth-metal atoms in Ramsauer-Townsend (RT) and low-lying shape resonance (SR) regions are calculated using a relativistic method. The detailed SP distributions both with scattering angle and with electron energy are presented via the energy- and angle-dependent surfaces of SP parameters. It is shown that the SP effects of the collisions of electrons with Ca, Sr, and Ba atoms in the RT region are significant in a considerable area on the energy-angle plane and that the spin-orbit interaction is well increased around the low-lying p-wave SR states of Be and Mg and the d-wave SR states of Ca, Sr, and Ba

  15. Production of radioactive ion beams and resonance ionization spectroscopy with the laser ion source at on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    Fedosseev, V.N.; )

    2005-01-01

    Full text: The resonance ionisation laser ion source (RILIS) of the ISOLDE on-line isotope separation facility at CERN is based on the method of laser step-wise resonance ionisation of atoms in a hot metal cavity. Using the system of dye lasers pumped by copper vapour lasers the ion beams of many different metallic elements have been produced at ISOLDE with an ionization efficiency of up to 27%. The high selectivity of the resonance ionization is an important asset for the study of short-lived nuclides produced in targets bombarded by the proton beam of the CERN Booster accelerator. Radioactive ion beams of Be, Mg, Al, Mn, Ni, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Tb, Yb, Tl, Pb and Bi have been generated with the RILIS. Setting the RILIS laser in the narrow line-width mode provides conditions for a high-resolution study of hyperfine structure and isotopic shifts of atomic lines for short-lived isotopes. The isomer selective ionization of Cu, Ag and Pb isotopes has been achieved by appropriate tuning of laser wavelengths

  16. Evaluation of acoustic resonance at branch section in main steam line. Part 2. Proposal of method for predicting resonance frequency in steam flow

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Morita, Ryo

    2012-01-01

    Flow-induced acoustic resonances of piping system containing closed side-branches are sometimes encountered in power plants. Acoustic standing waves with large amplitude pressure fluctuation in closed side-branches are excited by the unstable shear layer which separates the mean flow in the main piping from the stagnant fluid in the branch. In U.S. NPP, the steam dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a power uprating condition. Our previous research developed the method for evaluating the acoustic resonance at the branch sections in actual power plants by using CFD. In the method, sound speed in wet steam is evaluated by its theory on the assumption of homogeneous flow, although it may be different from practical sound speed in wet steam. So, it is necessary to consider and introduce the most suitable model of practical sound speed in wet steam. In addition, we tried to develop simplified prediction method of the amplitude and frequency of pressure fluctuation in wet steam flow. Our previous experimental research clarified that resonance amplitude of fluctuating pressure at the top of the branch in wet steam. However, the resonance frequency in steam condition could not be estimated by using theoretical equation as the end correction in steam condition and sound speed in wet steam is not clarified as same reason as CFD. Therefore, in this study, we tried to evaluate the end correction in each dry and wet steam and sound speed of wet steam from experimental results. As a result, method for predicting resonance frequency by using theoretical equation in each wet and dry steam condition was proposed. (author)

  17. Magnetically coupled Fano resonance of dielectric pentamer oligomer

    International Nuclear Information System (INIS)

    Zhang, Fuli; Li, Chang; He, Xuan; Chen, Lei; Fan, Yuancheng; Zhao, Qian; Zhang, Weihong; Zhou, Ji

    2017-01-01

    We present magnetically induced Fano resonance inside a dielectric metamaterial pentamer composed of ceramic bricks. Unlike previous reports where different sizes of dielectric resonators were essential to produce Fano resonance, under external magnetic field excitation, central and outer dielectric bricks with identical sizes exhibit in-phase and out-of-phase magnetic Mie oscillations. An asymmetric line shape of Fano resonance along with enhanced group delay is observed due to the interference between the magnetic resonance of the central brick and the symmetric magnetic resonance of outer bricks. Besides, Fano resonance blueshifts with the increasing resonance of the smaller central brick. The thermal-dependent permittivity of ceramics allows Fano resonance to be reversibly tuned by 300 MHz when temperature varies by 60 °C. (paper)

  18. The multielectron character of the S 2p → 4e{sub g} shape resonance in the SF{sub 6} molecule studied via detection of soft X-ray emission and neutral high-Rydberg fragments

    Energy Technology Data Exchange (ETDEWEB)

    Kivimäki, A., E-mail: kivimaki@iom.cnr.it [CNR—Istituto Officina dei Materiali (IOM), Laboratorio TASC, 34149 Trieste (Italy); Coreno, M. [CNR—Istituto di Struttura della Materia (ISM), Basovizza Area Science Park, 34149 Trieste (Italy); Miotti, P.; Frassetto, F.; Poletto, L. [CNR—Istituto di Fotonica e Nanotecnologie (IFN), via Trasea 7, 35131 Padova (Italy); Stråhlman, C. [MAX IV Laboratory, Lund University, P.O. Box 118, 22100 Lund (Sweden); Simone, M. de [CNR—Istituto Officina dei Materiali (IOM), Laboratorio TASC, 34149 Trieste (Italy); Richter, R. [Elettra-Sincrotrone Trieste, Area Science Park Basovizza, 34149 Trieste (Italy)

    2016-05-15

    Highlights: • The soft X-ray emission spectrum of SF{sub 6} changes at the S 2p → 4e{sub g} shape resonance. • The emission band around 172 eV indicates the population of the 6a{sub 1g} orbital. • Shake-up processes accompanying S 2p ionization can explain the new emissions. • Field ionization of neutral high Rydberg (HR) fragments reveals F and S atoms. • The yield of neutral HR fragments increases at the S 2p → 4e{sub g} shape resonance. - Abstract: We have studied the nature of the S 2p → 4e{sub g} shape resonance in the SF{sub 6} molecule by performing two different experiments. Soft X-ray emission spectra measured at the 4e{sub g} shape resonance reveal features that do not originate from the S 2p{sup −1} states. One of the features can be assigned to the 6a{sub 1g} → S 2p transition. The 6a{sub 1g} orbital, which is empty in the molecular ground state, can be populated either in core–valence double excitations or in S 2p shake-up transitions. Both these channels are considered. We have also studied the fragmentation of SF{sub 6} molecule after the decay of the S 2p core-hole states by observing neutral fragments in high-Rydberg states, where an electron occupies an orbital with n ≥ 20 (n is the principal quantum number). Such neutral fragments become, in relative terms, more abundant at the S 2p → 4e{sub g} shape resonance with respect to the S 2p → 2t{sub 2g} shape resonance, which is a pure one-electron phenomenon.

  19. 3D-shape of objects with straight line-motion by simultaneous projection of color coded patterns

    Science.gov (United States)

    Flores, Jorge L.; Ayubi, Gaston A.; Di Martino, J. Matías; Castillo, Oscar E.; Ferrari, Jose A.

    2018-05-01

    In this work, we propose a novel technique to retrieve the 3D shape of dynamic objects by the simultaneous projection of a fringe pattern and a homogeneous light pattern which are both coded in two of the color channels of a RGB image. The fringe pattern, red channel, is used to retrieve the phase by phase-shift algorithms with arbitrary phase-step, while the homogeneous pattern, blue channel, is used to match pixels from the test object in consecutive images, which are acquired at different positions, and thus, to determine the speed of the object. The proposed method successfully overcomes the standard requirement of projecting fringes of two different frequencies; one frequency to extract object information and the other one to retrieve the phase. Validation experiments are presented.

  20. Modulated solar pressure-based surface shape control of paraboloid space reflectors with an off-axis Sun-line

    Science.gov (United States)

    Liu, Jiafu; McInnes, Colin R.

    2018-03-01

    This paper considers utilizing solar radiation pressure (SRP) to actively control the surface shape of a reflector consisting of a rigid hoop and slack membrane with embedded reflectivity control devices. The full nonlinear static partial differential governing equations for a reflector with negligible elastic deformations are established for the circumferential, radial and transverse directions respectively, in which the SRP force with ideal/non-perfect models, the centripetal force caused by the rotation of the reflector and the internal stresses are considered. The inverse problem is then formulated by assuming that the required surface shape is known, and then the governing algebraic-differential equations used to determine the required surface reflectivity, together with the internal stresses where are presented accordingly. The validity of the approach is verified by comparing the results in this paper with corresponding published results as benchmarks. The feasible regions of the angular velocity and Sun angle for a paraboloidal reflector with an invariant radius and focal length (case 1), and the achievable focal lengths with a specific angular velocity and Sun angle (case 2) are presented for two SRP models respectively, both by considering the constraints on the reflectivity and internal stresses. It is then found that the feasible region is toward a larger angular velocity and Sun angle when using the non-perfect SRP model, compared with the ideal one in case 1. The angular velocity of the spinning reflector should be within a certain range to make the required reflectivity profiles within a practical range, i.e., [0, 0.88], as indicated from prior NASA solar sail studies. In case 2, it is found that the smallest achievable focal length of the reflector with the non-perfect SRP model is smaller than that with the ideal SRP model. It is also found that the stress level is extremely low for all cases considered and that the typical real material strength

  1. The line shape of the Ortho-II superstructure reflection in YBa2Cu3O6.5

    DEFF Research Database (Denmark)

    Schleger, P.; Hadfield, R.; Casalta, H.

    1994-01-01

    Neutron and synchrotron x-ray measurements of the Ortho-II superstructure reflections on a high quality single crystal of YBa2Cu3O6.5 revealed that the intrinsic line shape is a Lorentzian to the power 5/2. It is argued that such a line shape implies late-stage domain coarsening of a quenched...... system ordering in three dimensions (d=3) with a two component order parameter (n=2)....

  2. On the evaluation of temperature dependence of elastic constants of martensitic phases in shape memory alloys from resonant ultrasound spectroscopy studies

    International Nuclear Information System (INIS)

    Landa, Michal; Sedlak, Petr; Sittner, Petr; Seiner, Hanus; Heller, Ludek

    2008-01-01

    Elastic constants of austenite and martensite phases in shape memory alloys reflect fundamental thermodynamic properties of these materials-i.e. important physical information can be deduced not just from the values of the constants but, mainly from their temperature and stress dependencies. As regards to the parent austenite phase, such information is available in the literature for most of the known shape memory alloys. For the martensitic phases, however, only few reliable experimental data exist, due to the experimental difficulties with the preparation of martensite single crystals as well as due to the difficulties with the ultrasonic measurement of elastic properties of strongly anisotropic media with low symmetry. In this work, the temperature dependence of all elastic constants of cubic austenite and orthorhombic 2H martensite phases in Cu-Al-Ni alloy determined by resonance ultrasound spectroscopy (RUS) is reported. Experimental and theoretical improvements of the RUS method which had to be made to perform the successful measurements on strongly anisotropic and martensitic phases are discussed

  3. Laser Doppler vibrometry on rotating structures in coast-down: resonance frequencies and operational deflection shape characterization

    International Nuclear Information System (INIS)

    Martarelli, M; Castellini, P; Santolini, C; Tomasini, E P

    2011-01-01

    In rotating machinery, variations of modal parameters with rotation speed may be extremely important in particular for very light and undamped structures, such as helicopter rotors or wind turbines. The natural frequency dependence on rotation speed is conventionally measured by varying the rotor velocity and plotting natural frequencies versus speed in the so-called Campbell diagram. However, this kind of analysis does not give any information about the vibration spatial distribution i.e. the mode shape variation with the rotation speed must be investigated with dedicated procedures. In several cases it is not possible to fully control the rotating speed of the machine and only coast-down tests can be performed. Due to the reduced inertia of rotors, the coast-down process is usually an abrupt transient and therefore an experimental technique, able to determine operational deflection shapes (ODSs) in short time, with high spatial density and accuracy, appears very promising. Moreover coast-down processes are very difficult to control, causing unsteady vibrations. Hence, a very efficient approach for the rotation control and synchronous acquisition must be developed. In this paper a continuous scanning system able to measure ODSs and natural frequencies excited during rotor coast-down is shown. The method is based on a laser Doppler vibrometer (LDV) whose laser beam is driven to scan continuously over the rotor surface, in order to measure the ODS, and to follow the rotation of the rotor itself even in coast-down. With a single measurement the ODSs can be recovered from the LDV output time history in short time and with huge data saving. This technique has been tested on a laboratory test bench, i.e. a rotating two-blade fan, and compared with a series of non-contact approaches based on LDV: - traditional experimental modal analysis (EMA) results obtained under non-rotating conditions by measuring on a sequence of points on the blade surface excited by an impact

  4. Precise measurements and theoretical calculations of He-like ion resonance line satellites radiated from Be-, B-, C-, N-, O-, and F-like ions

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Pikuz, S.A.; Shlyaptseva, A.S.

    1994-01-01

    Spectra with spectral resolution λ/Δλ∼ =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO 2 laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was ±(0.0005-0.001) A, but in some cases it was ±(0.002-0.003) A. (orig.)

  5. Precise measurements and theoretical calculations of He-like ion resonance line satellites radiated from Be-, B-, C-, N-, O-, and F-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya. [MISDC, NPO `VNIIFTRI`, Mendeleevo (Russian Federation); Pikuz, S.A. [P.N. Lebedev Physical Inst., Russian Academy of Sciences, Moscow (Russian Federation); Shlyaptseva, A.S. [Inst. of Technical Glasses, Moscow (Russian Federation)

    1994-01-01

    Spectra with spectral resolution {lambda}/{Delta}{lambda}{approx} =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO{sub 2} laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was {+-}(0.0005-0.001) A, but in some cases it was {+-}(0.002-0.003) A. (orig.).

  6. Comparison of Power Versus Manual Injection in Bolus Shape and Image Quality on Contrast-Enhanced Magnetic Resonance Angiography: An Experimental Study in a Swine Model.

    Science.gov (United States)

    Tsuboyama, Takahiro; Jost, Gregor; Pietsch, Hubertus; Tomiyama, Noriyuki

    2017-09-01

    The aim of this study was to compare power versus manual injection in bolus shape and image quality on contrast-enhanced magnetic resonance angiography (CE-MRA). Three types of CE-MRA (head-neck 3-dimensional [3D] MRA with a test-bolus technique, thoracic-abdominal 3D MRA with a bolus-tracking technique, and thoracic-abdominal time-resolved 4-dimensional [4D] MRA) were performed after power and manual injection of gadobutrol (0.1 mmol/kg) at 2 mL/s in 12 pigs (6 sets of power and manual injections for each type of CE-MRA). For the quantitative analysis, the signal-to-noise ratio was measured on ascending aorta, descending aorta, brachiocephalic trunk, common carotid artery, and external carotid artery on the 6 sets of head-neck 3D MRA, and on ascending aorta, descending aorta, brachiocephalic trunk, abdominal aorta, celiac trunk, and renal artery on the 6 sets of thoracic-abdominal 3D MRA. Bolus shapes were evaluated on the 6 sets each of test-bolus scans and 4D MRA. For the qualitative analysis, arterial enhancement, superimposition of nontargeted enhancement, and overall image quality were evaluated on 3D MRA. Visibility of bolus transition was assessed on 4D MRA. Intraindividual comparison between power and manual injection was made by paired t test, Wilcoxon rank sum test, and analysis of variance by ranks. Signal-to-noise ratio on 3D MRA was statistically higher with power injection than with manual injection (P < 0.001). Bolus shapes (test-bolus, 4D MRA) were represented by a characteristic standard bolus curve (sharp first-pass peak followed by a gentle recirculation peak) in all the 12 scans with power injection, but only in 1 of the 12 scans with manual injection. Standard deviations of time-to-peak enhancement were smaller in power injection than in manual injection. Qualitatively, although both injection methods achieved diagnostic quality on 3D MRA, power injection exhibited significantly higher image quality than manual injection (P = 0.001) due to

  7. Comparison of explicit calculations for n = 3 to 8 dielectronic satellites of the FeXXV Kα resonance line with experimental data from the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Decaux, V.; Bitter, M.; Hsuan, H.; Hill, K.W.; von Goeler, S.; Park, H.; Bhalla, C.P.

    1991-12-01

    Dielectronic satellite spectra of the FeXXV Kα resonance line observed from the Tokamak Fusion Test Reactor (TFTR) plasmas have been compared with recent explicit calculations for the n = 3 to 8 dielectronic satellites as well as the earlier theoretical predictions, which were based on the 1/n 3 scaling law for n > 4 satellites. The analysis has been performed by least-squares fits of synthetic spectra to the experimental data. The synthetic spectra constructed from both theories are in good agreement with the observed data. However, the electron temperature values obtained from the fit of the present explicit calculations are in better agreement with independent measurements. 20 refs., 4 figs

  8. Resonance lines in the Ag I and Pd I isoelectronic sequences: Cs IX through Sm XVI and Cs X through Nd XV

    International Nuclear Information System (INIS)

    Sugar, J.

    1977-01-01

    Spectra of Cs, Ba, La, Ce, Pr, Nd, and Sm ions were obtained with a low-temperature triggered spark produced with a 14.2 μF capacitor charged to voltages of 3--15 KV. They were photographed with a 10.7 m grazing incidence spectrograph in the range of 60--600 A. Resonance lines in the Pd I isolectronic sequences 4d 10 --4d 9 5p and 4d 10 --4d 9 4f were identified. In the Ag I sequences, spectral lines arising from 5s--5p, 5p--5d, 4f--5d, and 4f--5g transitions were identified

  9. Investigation of 2D photonic crystal structure based channel drop filter using quad shaped photonic crystal ring resonator for CWDM system

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar [Government Engineering College Ajmer, Rajasthan (India); Rajasthan Technical University, Kota, Rajasthan (India)

    2016-05-06

    In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 and 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  10. 2 µm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser

    Science.gov (United States)

    Du, Tuanjie; Li, Weiwei; Ruan, Qiujun; Wang, Kaijie; Chen, Nan; Luo, Zhengqian

    2018-05-01

    We report direct generation of a high-power, large-energy dissipative soliton resonance (DSR) in a 2 µm Tm-doped double-clad fiber laser. A compact σ-shaped cavity is formed by a fiber Bragg grating and a 10/90 fiber loop mirror (FLM). The 10/90 FLM is not only used as an output mirror, but also acts as a nonlinear optical loop mirror for initiating mode locking. The mode-locked laser can deliver high-power, nanosecond DSR pulses at 2005.9 nm. We further perform a comparison study of the effect of the FLM’s loop length on the mode-locking threshold, peak power, pulse energy, and optical spectrum of the DSR pulses. We achieve a maximum average output power as high as 1.4 W, a maximum pulse energy of 353 nJ, and a maximum peak power of 84 W. This is, to the best of our knowledge, the highest power for 2 µm DSR pulses obtained in a mode-locked fiber laser.

  11. Influence of surface geometry on the culture of human cell lines: A comparative study using flat, round-bottom and v-shaped 96 well plates.

    Directory of Open Access Journals (Sweden)

    Sara Shafaie

    Full Text Available In vitro cell based models have been invaluable tools for studying cell behaviour and for investigating drug disposition, toxicity and potential adverse effects of administered drugs. Within this drug discovery pipeline, the ability to assess and prioritise candidate compounds as soon as possible offers a distinct advantage. However, the ability to apply this approach to a cell culture study is limited by the need to provide an accurate, in vitro-like, microenvironment in conjunction with a low cost and high-throughput screening (HTS methodology. Although the geometry and/or alignment of cells has been reported to have a profound influence on cell growth and differentiation, only a handful of studies have directly compared the growth of a single cell line on different shaped multiwell plates the most commonly used substrate for HTS, in vitro, studies. Herein, the impact of various surface geometries (flat, round and v-shaped 96 well plates, as well as fixed volume growth media and fixed growth surface area have been investigated on the characteristics of three commonly used human cell lines in biopharmaceutical research and development, namely ARPE-19 (retinal epithelial, A549 (alveolar epithelial and Malme-3M (dermal fibroblastic cells. The effect of the surface curvature on cells was characterised using a combination of a metabolic activity assay (CellTiter AQ/MTS, LDH release profiles (CytoTox ONE and absolute cell counts (Guava ViaCount, respectively. In addition, cell differentiation and expression of specific marker proteins were determined using flow cytometry. These in vitro results confirmed that surface topography had a significant effect (p < 0.05 on cell activity and morphology. However, although specific marker proteins were expressed on day 1 and 5 of the experiment, no significant differences were seen between the different plate geometries (p < 0.05 at the later time point. Accordingly, these results highlight the impact of

  12. Measurement of line overlap for resonant photopumping of transitions in neonlike ions by nickel-like ions

    International Nuclear Information System (INIS)

    Elliott, S.; Beiersdorfer, P.; Nilsen, J.

    1993-01-01

    A measurement is made of the 3d-4f transition energies in the Ni-like ions Re 47+ , Ir 49+ , Pt 50+ , Au 51+ , and Bi 55+ and the 2p-4d transition energies in the Ne-like ions Br 25+ , Kr 26+ , Rb 27+ , and Y 29+ using the Livermore electron-beam ion trap. The ions studied are candidates for an x-ray laser scheme based on resonant photopumping which predicts lasing among the 3p-3s transitions in a Ne-like ion. The results of the measurements are compared to multiconfiguration Dirac-Fock calculations and systematic differences are found. The best resonance is found for the Pt-Rb pair at 2512 eV, whose energies differ by 0.4±0.1 eV, that is, by only 160 ppm

  13. A Compact Symmetric Microstrip Filter Based on a Rectangular Meandered-Line Stepped Impedance Resonator with a Triple-Band Bandstop Response

    Directory of Open Access Journals (Sweden)

    Rajendra Dhakal

    2013-01-01

    Full Text Available This paper presents a symmetric-type microstrip triple-band bandstop filter incorporating a tri-section meandered-line stepped impedance resonator (SIR. The length of each section of the meandered line is 0.16, 0.15, and 0.83 times the guided wavelength (λg, so that the filter features three stop bands at 2.59 GHz, 6.88 GHz, and 10.67 GHz, respectively. Two symmetric SIRs are employed with a microstrip transmission line to obtain wide bandwidths of 1.12, 1.34, and 0.89 GHz at the corresponding stop bands. Furthermore, an equivalent circuit model of the proposed filter is developed, and the model matches the electromagnetic simulations well. The return losses of the fabricated filter are measured to be −29.90 dB, −28.29 dB, and −26.66 dB while the insertion losses are 0.40 dB, 0.90 dB, and 1.10 dB at the respective stop bands. A drastic reduction in the size of the filter was achieved by using a simplified architecture based on a meandered-line SIR.

  14. Multi-turn multi-gap transmission line resonators - Concept, design and first implementation at 4.7T and 7T.

    Science.gov (United States)

    Frass-Kriegl, Roberta; Laistler, Elmar; Hosseinnezhadian, Sajad; Schmid, Albrecht Ingo; Moser, Ewald; Poirier-Quinot, Marie; Darrasse, Luc; Ginefri, Jean-Christophe

    2016-12-01

    A novel design scheme for monolithic transmission line resonators (TLRs) is presented - the multi-turn multi-gap TLR (MTMG-TLR) design. The MTMG-TLR design enables the construction of TLRs with multiple turns and multiple gaps. This presents an additional degree of freedom in tuning self-resonant TLRs, as their resonance frequency is fully determined by the coil geometry (e.g. diameter, number of turns, conductor width, etc.). The novel design is evaluated at 4.7T and 7T by simulations and experiments, where it is demonstrated that MTMG-TLRs can be used for MRI, and that the B 1 distribution of MTMG-TLRs strongly depends on the number and distribution of turns. A comparison to conventional loop coils revealed that the B 1 performance of MTMG-TLRs is comparable to a loop coil with the same mean diameter; however, lower 10g SAR values were found for MTMG-TLRs. The MTMG-TLR design is expected to bring most benefits at high static field, where it allows for independent size and frequency selection, which cannot be achieved with standard TLR design. However, it also enables more accurate geometric optimization at low static field. Thereby, the MTMG-TLR design preserves the intrinsic advantages of TLRs, i.e. mechanical flexibility, high SAR efficiency, mass production, and coil miniaturization. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Development of a magnetic resonance sensor for on-line monitoring of 99Tc and 23Na in tank waste cleanup processes: Final report and implementation plan

    International Nuclear Information System (INIS)

    Dieckman, S. L.; Jendrzejczyk, J. A.; Raptis, A. C.

    2000-01-01

    In response to US Department of Energy (DOE) requirements for advanced cross-cutting technologies, Argonne National Laboratory is developing an on-line sensor system for the real-time monitoring of 99 Tc and 23 Na in various locations throughout radioactive-waste processing facilities. Based on nuclear magnetic resonance spectroscopy, the highly automated sensor system can provide near-real-time response with minimal sampling. The technology, in the form of a flow-through nuclear-magnetic-resonance-based on-line process sensing and control system, can rapidly monitor 99 Tc speciation and concentration (from 0.1 molar to 10 micro molar) in the feedstocks and eluents of radioactive-waste treatment processes. The system is nonintrusive, capable of withstanding harsh plant environments, and reasonably immune to contaminants. Furthermore, the system is capable of operating over large variations in pH, conductivity, and salinity. This document describes design parameters, results from sensitivity studies, and initial results obtained from oxidation-reduction studies that were conducted on technetium standards and waste specimens obtained from DOE's Hanford site. A cursory investigation of the system's capabilities to monitor 23 Na at high concentrations are also reported, as are descriptions of site requirements, implementation recommendations, and testing techniques

  16. Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide.

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2017-11-01

    We report on Fano resonances in a high-quality (Q) whispering-gallery mode (WGM) spherical resonator coupled to a multi-mode waveguide in the terahertz (THz) frequency range. The asymmetric line shape and phase of the Fano resonances detected with coherent continuous-wave (CW) THz spectroscopy measurements are in excellent agreement with the analytical model. A very high Q factor of 1600, and a finesse of 22 at critical coupling is observed around 0.35 THz. To the best of our knowledge this is the highest Q factor ever reported for a THz WGM resonator.

  17. Nature of mixed symmetry 2+ states in 94Mo from high resolution electron and proton scattering and line shape of the first excited 1/2+ state in 9Be

    International Nuclear Information System (INIS)

    Burda, Oleksiy

    2007-07-01

    The present work contains two parts. The first one is devoted to the investigation of mixed-symmetry structure in 94 Mo and the second one to the astrophysical relevant line shape of the first excited 1/2 + state in 9 Be. In the first part of the thesis the nature of one- and two-phonon symmetric and mixed-symmetric 2 + states in 94 Mo is investigated with high-resolution inelastic electron and proton scattering experiments in a combined analysis. The (e,e') experiments were carried out at the 169 magnetic spectrometer at the S-DALINAC. Data were taken at a beam energy E e=70 MeV and scattering angles Θ e =93 -165 . In dispersion-matching mode an energy resolution Δ E =30-45 keV (full width at half maximum) was achieved. The (p,p') measurements were performed at iThemba LABS, South Africa, using a K600 magnetic spectrometer at a proton energy E p=200 MeV and scattering angles Θ p =4.5 -26 . Typical energy resolutions were Δ E ≅35 keV. The combined analysis reveals a dominant one-phonon structure of the transitions to the first and third 2 + states, as well as an isovector character of the transition to the one-phonon mixed-symmetric state within the valence shell. Quantitatively consistent estimates of the one-phonon admixtures are obtained from both experimental probes when two-step contributions to the proton scattering cross sections are taken into account. In the second part of the thesis the line shape of the first excited 1/2 + state in 9 Be is studied. Spectra of the 9 Be(e,e') reaction were measured at the S-DALINAC at an electron energy E e=73 MeV and scattering angles of 93 and 141 with high energy resolution up to excitation energies E x =8 MeV. The form factor of the first excited state has been extracted from the data. The astrophysical relevant 9 Be(γ,n) cross sections have been extracted from the (e,e') data. The resonance parameters of the first excited 1/2 + state in 9 Be are derived in a one-level R-matrix approximation. The deduced

  18. Nature of mixed symmetry 2{sup +} states in {sup 94}Mo from high resolution electron and proton scattering and line shape of the first excited 1/2{sup +} state in {sup 9}Be

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Oleksiy

    2007-07-15

    The present work contains two parts. The first one is devoted to the investigation of mixed-symmetry structure in {sup 94}Mo and the second one to the astrophysical relevant line shape of the first excited 1/2{sup +} state in {sup 9}Be. In the first part of the thesis the nature of one- and two-phonon symmetric and mixed-symmetric 2{sup +} states in {sup 94}Mo is investigated with high-resolution inelastic electron and proton scattering experiments in a combined analysis. The (e,e') experiments were carried out at the 169 magnetic spectrometer at the S-DALINAC. Data were taken at a beam energy E e=70 MeV and scattering angles {theta}{sub e}=93 -165 . In dispersion-matching mode an energy resolution {delta}{sub E}=30-45 keV (full width at half maximum) was achieved. The (p,p') measurements were performed at iThemba LABS, South Africa, using a K600 magnetic spectrometer at a proton energy E p=200 MeV and scattering angles {theta}{sub p}=4.5 -26 . Typical energy resolutions were {delta}{sub E}{approx_equal}35 keV. The combined analysis reveals a dominant one-phonon structure of the transitions to the first and third 2{sup +} states, as well as an isovector character of the transition to the one-phonon mixed-symmetric state within the valence shell. Quantitatively consistent estimates of the one-phonon admixtures are obtained from both experimental probes when two-step contributions to the proton scattering cross sections are taken into account. In the second part of the thesis the line shape of the first excited 1/2{sup +} state in {sup 9}Be is studied. Spectra of the {sup 9}Be(e,e') reaction were measured at the S-DALINAC at an electron energy E e=73 MeV and scattering angles of 93 and 141 with high energy resolution up to excitation energies E{sub x}=8 MeV. The form factor of the first excited state has been extracted from the data. The astrophysical relevant {sup 9}Be({gamma},n) cross sections have been extracted from the (e,e') data. The

  19. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Ciller, Carlos, E-mail: carlos.cillerruiz@unil.ch [Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne (Switzerland); Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Centre d’Imagerie BioMédicale, University of Lausanne, Lausanne (Switzerland); De Zanet, Sandro I.; Rüegsegger, Michael B. [Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Department of Ophthalmology, Inselspital, Bern University Hospital, Bern (Switzerland); Pica, Alessia [Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern (Switzerland); Sznitman, Raphael [Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Department of Ophthalmology, Inselspital, Bern University Hospital, Bern (Switzerland); Thiran, Jean-Philippe [Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne (Switzerland); Signal Processing Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Maeder, Philippe [Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne (Switzerland); Munier, Francis L. [Unit of Pediatric Ocular Oncology, Jules Gonin Eye Hospital, Lausanne (Switzerland); Kowal, Jens H. [Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Department of Ophthalmology, Inselspital, Bern University Hospital, Bern (Switzerland); and others

    2015-07-15

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

  20. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma.

    Science.gov (United States)

    Ciller, Carlos; De Zanet, Sandro I; Rüegsegger, Michael B; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L; Kowal, Jens H; Cuadra, Meritxell Bach

    2015-07-15

    Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    International Nuclear Information System (INIS)

    Ciller, Carlos; De Zanet, Sandro I.; Rüegsegger, Michael B.; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L.; Kowal, Jens H.

    2015-01-01

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor

  2. Evidence for an anisotropic contact shift. Proton NMR study of line shapes in uranocene and (C5H5)3UCl powders

    International Nuclear Information System (INIS)

    McGarvey, B.R.; Nagy, S.

    1987-01-01

    The proton NMR spectra of solid powders of uranocene and (C 5 H 5 ) 3 UCl were measured from 90 to 298 K. The line shapes of both systems became increasingly anisotropic as the temperature was lowered. The cyclooctatetraene rings in uranocene were found to be rotating at a frequency greater than 100 kHz down to 90 K. The (C 5 H 5 ) 3 UCl molecules were found to be reorienting rapidly above 220 K, but below 140 K the NMR spectra were characteristic of a rigid lattice with no rotation of the cyclopentadienyl rings. The spectra of both compounds could be simulated by assuming an axial paramagnetic shift tensor and an orientation-dependent line width. Comparison of the experimental shift tensor with that calculated for a point dipolar interaction revealed a large and very anisotropic paramagnetic shift for uranocene due to unpaired spin transferred into the ligand orbitals. The shift was large when the magnetic field was along the 8-fold symmetry axis of the molecule and nearly zero perpendicular to the axis. It appears conclusive that the contact shift in uranocene is not isotropic at all. A similar anisotropy in the contact shift associated with the cyclopentadienyl rings is evident also in the results for (C 5 H 5 )UCl. The average solid-state shift of uranocene agreed with the solution shift, within experimental error, but the solid state shift of (C 5 H 5 ) 3 UCl was 42 ppm greater than the solution shift at 298 K, indicating a difference in molecular geometry between the crystalline state and solution. 32 references, 8 figures, 3 tables

  3. Thermal and particle size distribution effects on the ferromagnetic resonance in magnetic fluids

    International Nuclear Information System (INIS)

    Marin, C.N.

    2006-01-01

    Thermal and particle size distribution effects on the ferromagnetic resonance of magnetic fluids were theoretically investigated, assuming negligible interparticle interactions and neglecting the viscosity of the carrier liquid. The model is based on the usual approach for the ferromagnetic resonance description of single-domain magnetic particle systems, which was amended in order to take into account the finite particle size effect, the particle size distribution and the orientation mobility of the particles within the magnetic fluid. Under these circumstances the shape of the resonance line, the resonance field and the line width are found to be strongly affected by the temperature and by the particle size distribution of magnetic fluids

  4. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    Science.gov (United States)

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Height, shape and anterior-posterior diameter of pituitary gland on magnetic resonance imaging among patients with multiple sclerosis compared to normal individuals.

    Science.gov (United States)

    Saba, Mohammad; Ebrahimi, Hossein Ali; Ahmadi-Pour, Habibeh; Khodadoust, Mohammad

    2017-10-07

    Background: Several studies indicate contribution of hypothalamus-pituitary-adrenal (HPA) axis in multiple sclerosis (MS) disease. This study was designed to determine whether there is an effective difference in pituitary height, shape, and anterior-posterior diameter (APD) between patients with MS and the control group. Methods: In this study, sagittal pituitary height and APD of 134 men and women (64 patients with MS and 70 healthy subjects as control group) were measured by T1 sequence magnetic resonance imaging (MRI). All the subjects were free of sellar or parasellar pathology without a history of surgical intervention or prolactin affecting drugs like bromocriptine and cabergoline or corticosteroid consumption. Results: Mean height of pituitary gland was 6.62 ± 1.43 and 5.78 ± 1.15 mm for patients and the control group, respectively, and the difference between the two groups was statistically significant (P = 0.001). Mean APD was 10.40 ± 1.29 mm for the group of patients and 10.25 ± 1.41 mm for the control group, respectively, without significant differences. 46.9%, 37.5%, and 15.6% of patients had flat, convex, and concave hypophyseal surfaces, respectively. This rate was 50%, 30%, and 20% among the control group, respectively. There was no significant difference between our measurements among patients on whom imaging study was performed at time of disease onset with others. Conclusion: Mean height of pituitary gland among patients with MS was significantly greater than the control group (P = 0.001). So can we consider the same etiology for pituitary hypertrophy among patients with MS as a hypothesis?

  6. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke

    International Nuclear Information System (INIS)

    Buckley, B.T.; Wainwright, A.; Meagher, T.; Briley, D.

    2003-01-01

    AIM: To audit the feasibility and use of diffusion-weighted (DW) magnetic resonance imaging (MRI) as initial neuroimaging for in-patients with clinically suspected acute stroke. MATERIALS AND METHODS: In April 2000, MRI with DW and T2-weighted sequence was locally instituted as initial neuroimaging for patients with clinically suspected acute stroke. This retrospective study reviewed imaging performed for in-patients with suspected acute stroke over a 9-month period. Data were collected on image type, result and need for repeat imaging. RESULTS: During the study period, 124 patients had neuroimaging for suspected cerebrovascular accident, and 119 were MRI safe. Eighty-eight (73.9%) patients underwent DW MRI as first-line investigation. Five patients were not MRI safe and 31 had computed tomography (CT) as first-line imaging due to lack of available MRI capacity. Repeat neuroimaging was performed in 16 (12.9%) patients. Study times were comparable for both types of neuroimaging: a mean of 13 min for MRI and 11 min for CT. CONCLUSION: The audit standard was achieved in 88 (73.9%) patients. The use of DW MRI as a first-line investigation for patients with a clinical diagnosis of acute stroke is achievable in a district general hospital setting

  7. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, B.T.; Wainwright, A.; Meagher, T.; Briley, D

    2003-03-01

    AIM: To audit the feasibility and use of diffusion-weighted (DW) magnetic resonance imaging (MRI) as initial neuroimaging for in-patients with clinically suspected acute stroke. MATERIALS AND METHODS: In April 2000, MRI with DW and T2-weighted sequence was locally instituted as initial neuroimaging for patients with clinically suspected acute stroke. This retrospective study reviewed imaging performed for in-patients with suspected acute stroke over a 9-month period. Data were collected on image type, result and need for repeat imaging. RESULTS: During the study period, 124 patients had neuroimaging for suspected cerebrovascular accident, and 119 were MRI safe. Eighty-eight (73.9%) patients underwent DW MRI as first-line investigation. Five patients were not MRI safe and 31 had computed tomography (CT) as first-line imaging due to lack of available MRI capacity. Repeat neuroimaging was performed in 16 (12.9%) patients. Study times were comparable for both types of neuroimaging: a mean of 13 min for MRI and 11 min for CT. CONCLUSION: The audit standard was achieved in 88 (73.9%) patients. The use of DW MRI as a first-line investigation for patients with a clinical diagnosis of acute stroke is achievable in a district general hospital setting.

  8. The scavenging of the precursors of the solvated electrons fom the positron lifetime spectroscopy and the Doppler broadening of annihilation line shape technique

    International Nuclear Information System (INIS)

    Abbe, J.C.; Duplatre, G.; Maddock, A.G.; Haessler, A.

    1979-01-01

    The electron scavenging properties in water of two series of solutes are investigated, using the positron as a probe. For a better interpretation of the data, both the lifetime specroscopy and the Doppler broadening of annihilation line shape technique are used. All solutes inhibit the positronium (Ps) formation, by the scavenging of electron. The first series consists of the halate ions, that should follow the Hunt linear relation between the rate constant for reaction with the solvated electrons, ksub(e - sub(aq)+S) and that for its precursors(s), 1/C 37 . The Ps inhibition constants, k, are 0.14, 1.44 and 3.45M -1 for ClO 3 - , BrO 3 - and IO 3 - respectively. This sequence is quantitatively consistent with that of the respective ksub(e - sub(aq)+S). The second series includes the SeO 4 -- , Te(OH) 6 and BrO 4 - species, and the Ps inhibition constants are 5.62, 10.5 and 14.3 respectively. Theses values are much higher than expected from the ksub(e - sub(aq)+S) constants, on basis of the Hunt relation, in agreement with previous results from pulse radiolysis experiments

  9. Complicated Fermi-type vibronic resonance: Untangling of the single-site quasi-line fluorescence excitation spectra of a methylated dibenzoporphin

    International Nuclear Information System (INIS)

    Arabei, S.M.; Kuzmitsky, V.A.; Solovyov, K.N.

    2008-01-01

    The quasi-line low-temperature (4.2 K) fluorescence excitation spectra of 2,3,12,13-tetramethyldibenzo[g,q]porphin introduced into an n-octane matrix have been measured in the range of the S 2 0 electronic transition at selective fluorescence monitoring for the two main types of impurity centers (sites). A characteristic feature of these spectra is that a conglomerate of quasi-lines - a structured complex band - is observed instead of one 0-0 quasi-line of the S 2 0 transition. In this band, the intensity distributions for the two main sites considerably differ from each other. The occurrence of such conglomerates is interpreted as a result of nonadiabatic vibrational-electronic interaction between the vibronic S 2 and S 1 states (the complex vibronic analogue of the Fermi resonance). The frequencies and intensities of individual transitions determined from the deconvolution of complex conglomerates are used as the initial data for solving the inverse spectroscopic problem: the determination of the unperturbed electronic and vibrational levels of states involved in the resonance and the vibronic-interaction matrix elements between them. This problem is solved with a method developed previously. The experimental results and their analysis are compared to the analogous data obtained earlier for meso-tetraazaporphin and meso-tetrapropylporphin. The energy intervals between the S 2 and S 1 electronic levels (ΔE S 2 S 1 ) of the two main types of impurity centers formed by molecules of a given porphyrin in the crystal matrix are found to significantly differ from each other, the values of this difference (δΔE S 2 S 1 ) being considerably greater for tetramethyldibenzoporphin, δΔE S 2 S 1 =228cm -1 , than for the two other porphyrins. At the same time, the energies of the unperturbed vibrational states of the S 1 electronic level participating in the resonance are very close to each other for these two sites

  10. Tunable superconducting resonators with integrated trap structures for coupling with ultracold atomic gases

    Energy Technology Data Exchange (ETDEWEB)

    Ferdinand, Benedikt; Wiedmaier, Dominik; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Bothner, Daniel [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands)

    2016-07-01

    We intend to investigate a hybrid quantum system where ultracold atomic gases play the role of a long-living quantum memory, coupled to a superconducting qubit via a coplanar waveguide transmission line resonator. As a first step we developed a resonator chip containing a Z-shaped trapping wire for the atom trap. In order to suppress parasitic resonances due to stray capacitances, and to achieve good ground connection we use hybrid superconductor - normal conductor chips. As an additional degree of freedom we add a ferroelectric capacitor making the resonators voltage-tunable. We furthermore show theoretical results on the expected coupling strength between resonator and atomic cloud.

  11. Millimeter-wave sensor based on a λ/2-line resonator for identification and dielectric characterization of non-ionic surfactants.

    Science.gov (United States)

    Rodilla, H; Kim, A A; Jeffries, G D M; Vukusic, J; Jesorka, A; Stake, J

    2016-01-20

    Studies of biological and artificial membrane systems, such as niosomes, currently rely on the use of fluorescent tags, which can influence the system under investigation. For this reason, the development of label-free, non-invasive detection techniques is of great interest. We demonstrate an open-volume label-free millimeter-wave sensing platform based on a coplanar waveguide, developed for identification and characterization of niosome constituents. A design based on a λ/2-line resonator was used and on-wafer measurements of transmission and reflection parameters were performed up to 110 GHz. Our sensor was able to clearly distinguish between common niosome constituents, non-ionic surfactants Tween 20 and Span 80, measuring a resonance shift of 3 GHz between them. The complex permittivities of the molecular compounds have been extracted. Our results indicate insignificant frequency dependence in the investigated frequency range (3 GHz - 110 GHz). Values of permittivity around 3.0 + 0.7i and 2.2 + 0.4i were obtained for Tween 20 and Span 80, respectively.

  12. Autostereogram resonators

    Science.gov (United States)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  13. Resonant line transfer in a fog: using Lyman-alpha to probe tiny structures in atomic gas

    Science.gov (United States)

    Gronke, Max; Dijkstra, Mark; McCourt, Michael; Peng Oh, S.

    2017-11-01

    Motivated by observational and theoretical work that suggest very small-scale (≲ 1 pc) structure in the circumgalactic medium of galaxies and in other environments, we study Lyman-α (Lyα) radiative transfer in an extremely clumpy medium with many clouds of neutral gas along the line of sight. While previous studies have typically considered radiative transfer through sightlines intercepting ≲ 10 clumps, we explored the limit of a very large number of clumps per sightline (up to fc 1000). Our main finding is that, for covering factors greater than some critical threshold, a multiphase medium behaves similarly to a homogeneous medium in terms of the emergent Lyα spectrum. The value of this threshold depends on both the clump column density and the movement of the clumps. We estimated this threshold analytically and compare our findings to radiative transfer simulations with a range of covering factors, clump column densities, radii, and motions. Our results suggest that (I) the success in fitting observed Lyα spectra using homogeneous "shell models" (and the corresponding failure of multiphase models) hints at the presence of very small-scale structure in neutral gas, which is in agreement within a number of other observations; and (II) the recurrent problems of reproducing realistic line profiles from hydrodynamical simulations may be due to their inability to resolve small-scale structure, which causes simulations to underestimate the effective covering factor of neutral gas clouds. The movie associated to Fig. B.2 is available at http://www.aanda.org

  14. Next Day Building Load Predictions based on Limited Input Features Using an On-Line Laterally Primed Adaptive Resonance Theory Artificial Neural Network.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Grid Integration Group; Robinson, Matt [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Mechanical Engineering; Yasaei, Yasser [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering; Caudell, Thomas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering; Martinez-Ramon, Manel [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering; Mammoli, Andrea [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Mechanical Engineering

    2016-07-01

    Optimal integration of thermal energy storage within commercial building applications requires accurate load predictions. Several methods exist that provide an estimate of a buildings future needs. Methods include component-based models and data-driven algorithms. This work implemented a previously untested algorithm for this application that is called a Laterally Primed Adaptive Resonance Theory (LAPART) artificial neural network (ANN). The LAPART algorithm provided accurate results over a two month period where minimal historical data and a small amount of input types were available. These results are significant, because common practice has often overlooked the implementation of an ANN. ANN have often been perceived to be too complex and require large amounts of data to provide accurate results. The LAPART neural network was implemented in an on-line learning manner. On-line learning refers to the continuous updating of training data as time occurs. For this experiment, training began with a singe day and grew to two months of data. This approach provides a platform for immediate implementation that requires minimal time and effort. The results from the LAPART algorithm were compared with statistical regression and a component-based model. The comparison was based on the predictions linear relationship with the measured data, mean squared error, mean bias error, and cost savings achieved by the respective prediction techniques. The results show that the LAPART algorithm provided a reliable and cost effective means to predict the building load for the next day.

  15. Design and fabrication of bandwidth tunable HTS transmit filter using {pi}-shaped waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Harada, H.; Nakagawa, Y. [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ono, S.; Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2010-11-01

    We have developed a method for tuning the bandwidth of a high-temperature superconducting (HTS) microstrip filter. Several {pi}-shaped waveguides are placed between the resonators, and the bandwidth is tuned in discrete steps by changing the switch states of the waveguides, which changes the coupling coefficient between the resonators. The filter contains 3-pole half-wavelength straight-line resonators and two {pi}-shaped waveguides for bandwidth tuning. It also has several electrical pads distributed around the feed lines for trimming after tuning. The filter was fabricated by depositing YBa{sub 2}Cu{sub 3}O{sub 7} thin film on an MgO substrate and has a measured center frequency of 5.17 GHz and bandwidth of 220 MHz. Use of the {pi}-shaped waveguides to adjust the coupling coefficients and the electrical pads to adjust the external quality factors resulted in 80-MHz bandwidth tuning without increased insertion loss.

  16. Iterative Methods for the Non-LTE Transfer of Polarized Radiation: Resonance Line Polarization in One-dimensional Atmospheres

    Science.gov (United States)

    Trujillo Bueno, Javier; Manso Sainz, Rafael

    1999-05-01

    This paper shows how to generalize to non-LTE polarization transfer some operator splitting methods that were originally developed for solving unpolarized transfer problems. These are the Jacobi-based accelerated Λ-iteration (ALI) method of Olson, Auer, & Buchler and the iterative schemes based on Gauss-Seidel and successive overrelaxation (SOR) iteration of Trujillo Bueno and Fabiani Bendicho. The theoretical framework chosen for the formulation of polarization transfer problems is the quantum electrodynamics (QED) theory of Landi Degl'Innocenti, which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. This first paper establishes the grounds of our numerical approach to non-LTE polarization transfer by concentrating on the standard case of scattering line polarization in a gas of two-level atoms, including the Hanle effect due to a weak microturbulent and isotropic magnetic field. We begin demonstrating that the well-known Λ-iteration method leads to the self-consistent solution of this type of problem if one initializes using the ``exact'' solution corresponding to the unpolarized case. We show then how the above-mentioned splitting methods can be easily derived from this simple Λ-iteration scheme. We show that our SOR method is 10 times faster than the Jacobi-based ALI method, while our implementation of the Gauss-Seidel method is 4 times faster. These iterative schemes lead to the self-consistent solution independently of the chosen initialization. The convergence rate of these iterative methods is very high; they do not require either the construction or the inversion of any matrix, and the computing time per iteration is similar to that of the Λ-iteration method.

  17. A numerical investigation of sub-wavelength resonances in polygonal metamaterial cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2009-01-01

    The sub-wavelength resonances, known to exist in metamaterial radiators and scatterers of circular cylindrical shape, are investigated with the aim of determining if these resonances also exist for polygonal cylinders and, if so, how they are affected by the shape of the polygon. To this end, a set...... of polygonal cylinders excited by a nearby electric line current is analyzed numerically and it is shown, through detailed analysis of the near-field distribution and radiation resistance, that these polygonal cylinders do indeed support sub-wavelength resonances similar to those of the circular cylinders...

  18. On-Demand Microwave Generator of Shaped Single Photons

    Science.gov (United States)

    Forn-Díaz, P.; Warren, C. W.; Chang, C. W. S.; Vadiraj, A. M.; Wilson, C. M.

    2017-11-01

    We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.

  19. Magnetic resonance tomography in syringomyelia

    International Nuclear Information System (INIS)

    Koehler, D.; Treisch, J.; Hertel, G.; Schoerner, W.; Fiegler, W.; Staedtisches Rudolf-Virchow Krankenhaus, Berlin

    1985-01-01

    Thirteen patients with a clinical diagnosis of syringomyelia were examined by nuclear tomography (0.35 T magnet) in the spin-echo mode. In all thirteen patients, the T1 images (Se 400/35) showed a longitudinal cavity with a signal intensity of CSF. The shape and extent of the syrinx could be adequately demonstrated in 12 of the 13 examinations. Downward displacement of the cerebellar tonsils was seen in eight cases. The examination took between half and one hour. Advantages of magnetic resonance tomography (nuclear tomography) include the absence of artifacts, images in the line of the lesion and its non-invasiveness. (orig.) [de

  20. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers.

    Science.gov (United States)

    Wang, Chun-Neng; Hsu, Hao-Chun; Wang, Cheng-Chun; Lee, Tzu-Kuei; Kuo, Yan-Fu

    2015-01-01

    The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D) images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D) images by using microcomputed tomography (μCT) and to examine the floral shape variations by using geometric morphometrics (GM). To demonstrate the advantages of the 3D-μCT-GM approach, we applied the approach to a second-generation population of florist's gloxinia (Sinningia speciosa) crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks) from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-μCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.

  1. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers

    Directory of Open Access Journals (Sweden)

    Chun-Neng eWang

    2015-09-01

    Full Text Available The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D images by using microcomputed tomography (μCT and to examine the floral shape variations by using geometric morphometrics (GM. To demonstrate the advantages of the 3D-µCT-GM approach, we applied the approach to a second-generation population of florist’s gloxinia (Sinningia speciosa crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-µCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.

  2. Wideband Bandpass Filter with High Selectivity and an Adjustable Notched-band Adopting a Multi-mode Resonator

    Science.gov (United States)

    Ma, Xing-Bing; Jiang, Ting

    2018-04-01

    A wideband bandpass filter (BPF) with an adjustable notched-band and high selectivity is proposed. The proposed BPF consists of a multi-mode resonator (MMR), two λ/2 resonators, and I/O feed lines with 50 ohm characteristic impedance. The MMR, connected as a whole by a wide stub, is composed of one I-shaped resonator and two open-loop resonators. Tightly coupling is built between MMR and λ/2 resonators. I/O feed lines are directly connected with two λ/2 resonators, respectively. Due to the use of tapped-line coupling, one transmission zero (TZ) is formed near low-edge of aim passband. High-edge of passband with one attendant TZ can be tuned to desired location by adjusting bottom-side position of used wide stub or bottom-side length of I-shaped resonator in MMR. The top-side length of I-shaped resonator is applied to improve upper stopband performance and shift undesired resonant mode of MMR near high-edge of aim passband to proper frequency point. The notched-band in aim passband is dominated by top-side position of wide stub in MMR. Good agreement is observed between simulated and measured results.

  3. Shape effects in the vicinity of the Z=82 line: study of the $\\beta$-decay of $^{182,184,186}$Hg

    CERN Multimedia

    This proposal is aimed at the study of the $\\beta$-decay of the neutron-­deficient $^{182,184,186}$Hg nuclei using the total absorption technique. Recent theoretical results show that, from measurements of the Gamow-­Teller strength distribution, the shapes of the ground states of the decaying Hg nuclei can be inferred. This study offers an independent way to study the phenomenon of shape coexistence in a region of particular interest.

  4. Measurement and computations of line shape parameters for the 12201 ← 03301, 11101 ← 10002 and 12201 ← 11102 self-broadened CO2 Q-branches

    Science.gov (United States)

    Al Mashwood, Abdullah; Predoi-Cross, Adriana; Devi, V. Malathy; Rozario, Hoimonti; Billinghurst, Brant

    2018-06-01

    Pure CO2 spectra recorded at room temperature and different pressures (0.2-140 Torr) have been analyzed with the help of a fitting routine that takes into account asymmetries arising in the spectral lines due to pressure induced effects such as line mixing. The fitting procedure used in this study allows one to adjust the ro-vibrational constants for the band rather than fitting for individual line parameters. These constrained parameters greatly reduce the measurement uncertainties and allow us to observe the behavior of the weak lines corresponding to high J quantum numbers. We have also calculated line mixing parameters using approximations based on exponential nature of the energy difference between ground and upper vibrational states involved in the ro-vibrational band transitions. The calculated results show good agreement when compared with the experimentally determined parameters.

  5. Line width of Josephson flux flow oscillators

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Dmitriev, P.N.; Sobolev, A.S.

    2002-01-01

    to be proven before one initiates real FFO applications. To achieve this goal a comprehensive set of line width measurements of the FFO operating in different regimes has been performed. FFOs with tapered shape have been successfully implemented in order to avoid the superfine resonant structure with voltage...... spacing of about 20 nV and extremely low differential resistance, recently observed in the IVC of the standard rectangular geometry. The obtained results have been compared with existing theories and FFO models in order to understand and possibly eliminate excess noise in the FFO. The intrinsic line width...

  6. Continuous neutron slowing down theory applied to resonances

    International Nuclear Information System (INIS)

    Segev, M.

    1977-01-01

    Neutronic formalisms that discretize the neutron slowing down equations in large numerical intervals currently account for the bulk effect of resonances in a given interval by the narrow resonance approximation (NRA). The NRA reduces the original problem to an efficient numerical formalism through two assumptions: resonance narrowness with respect to the scattering bands in the slowing down equations and resonance narrowness with respect to the numerical intervals. Resonances at low energies are narrow neither with respect to the slowing down ranges nor with respect to the numerical intervals, which are usually of a fixed lethargy width. Thus, there are resonances to which the NRA is not applicable. To stay away from the NRA, the continuous slowing down (CSD) theory of Stacey was invoked. The theory is based on a linear expansion in lethargy of the collision density in integrals of the slowing down equations and had notable success in various problems. Applying CSD theory to the assessment of bulk resonance effects raises the problem of obtaining efficient quadratures for integrals involved in the definition of the so-called ''moderating parameter.'' The problem was solved by two approximations: (a) the integrals were simplified through a rationale, such that the correct integrals were reproduced for very narrow or very wide resonances, and (b) the temperature-broadened resonant line shapes were replaced by nonbroadened line shapes to enable analytical integration. The replacement was made in such a way that the integrated capture and scattering probabilities in each resonance were preserved. The resulting formalism is more accurate than the narrow-resonance formalisms and is equally as efficient

  7. Shape effects along the Z=82 line: study of the $\\beta$- decay of $^{188,190,192}$Pb using total absorption spectroscopy

    CERN Multimedia

    Caballero ontanaya, L; Garcia borge, M J; Malbrunot, S

    2002-01-01

    This proposal is aimed at the study of the $\\beta$- decay of the neutron-deficient $^{188,190,192}$Pb nuclei. The main motivation of the proposed experiment is to determine the Gamow-Teller strength distribution in the daughter nuclei using the Total Absorption Spectrometer "Lucrecia". Recent theoretical results show that from this measurement the shapes of the ground states of the decaying Pb nuclei can be inferred. This study offers an independent way to study the phenomenon of shape co-existence in a region of particular interest.

  8. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement

    Czech Academy of Sciences Publication Activity Database

    Vampola, T.; Horáček, Jaromír; Laukkanen, A. M.; Švec, J. G.

    2015-01-01

    Roč. 40, č. 1 (2015), s. 14-23 ISSN 1401-5439 R&D Projects: GA ČR(CZ) GAP101/12/1306 Institutional support: RVO:61388998 Keywords : acoustic mode shapes of vibration * speaker's and singer's formant * biomechanics of human voice * voice production modelling Subject RIV: BI - Acoustics Impact factor: 0.750, year: 2015

  9. Lumbar Sagittal Shape Variation Vis-à-Vis Sex During Growth: A 3-Year Follow-up Magnetic Resonance Imaging Study in Children From the General Population

    DEFF Research Database (Denmark)

    Masharawi, Y; Kjær, Per; Manniche, C

    2012-01-01

    ABSTRACT: Study Design. A longitudinal descriptive MRI study on the changes of the supine lumbar lordosis (SLL), supine sacral slope (SSS), and sagittal wedging of the vertebral body (VB) and intervertebral discs (IVD) in children from the general population.Objective. To compare the shape...

  10. Scattering analysis of asymmetric metamaterial resonators by the Riemann-Hilbert approach

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Ziolkowski, Richard W.; Arslanagic, Samel

    2016-01-01

    This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell with an ap......This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell...... with an aperture. Exact analytical solution of the problem is derived; it is based on the n-series approach which is casted into the equivalent Riemann-Hilbert problem. The examined configuration leads to large enhancements of the radiated field and to steerable Huygens-like directivity patterns. Particularly...

  11. Cyclotron resonant gas breakdown with a 1.22-nm 13CH3F laser

    International Nuclear Information System (INIS)

    Hacker, M.P.; Lax, B.; Metz, R.N.; Temkin, R.J.

    1979-01-01

    Cyclotron-resonant laser-induced gas breakdown has been studied for the first time in the transverse geometry, using 1.222-nm 13 CH 3 F laser radiation propagating perpendicular to the magnetic field axis. The line shape of absorbed laser radiation versus magnetic field near electron cyclotron resonance (87.75 kG) indicates a strong dependence of the line shape on the focused laser intensity. This dependence is not predicted by the standard equilibrium theory of high-frequency gas breakdown in a magnetic field. We have developed an analytic theory to explain the observed line shapes. The theory takes into account the laser propagation characteristics, in particular that there is nonuniform ionization due to strong resonant absorption of the laser radiation in a length comparable to or shorter than that of the laser focal volume. The transverse geometry simplifies the theoretical analysis because the observed line shapes are not significantly affected by Doppler broadening. Extensive data have been obtained on the fraction of laser pulse energy absorbed in the gas breakdown volume as a function of magnetic field, helium gas pressure, and incident laser pulse energy. Good quantitative agreement is obtained between the observed laser pulse absorption line shapes and the nonuniform ionization theory

  12. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    Directory of Open Access Journals (Sweden)

    Prakash Babu Narasimhan

    2018-04-01

    Full Text Available A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma or to live microfilariae (mf of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β, M2-associated (CCL13, CD206, Mreg-associated (IL-10, TGF-β, and angiogenesis associated (MMP9, VEGF genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  13. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    Science.gov (United States)

    Narasimhan, Prakash Babu; Akabas, Leor; Tariq, Sameha; Huda, Naureen; Bennuru, Sasisekhar; Sabzevari, Helen; Hofmeister, Robert; Nutman, Thomas B; Tolouei Semnani, Roshanak

    2018-04-01

    A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-β), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  14. Spectral shape of one-photon luminescence from single gold nanorods

    Directory of Open Access Journals (Sweden)

    Te Wen

    2017-12-01

    Full Text Available Light emission from gold nanoparticles was investigated with ultra-narrow-band notch filters to obtain the complete spectral shape. The anti-Stokes emission band was observed at all excitation wavelengths. The spectral shape of the anti-Stokes emission could be well fitted by a Fermi–Dirac-like line shape, while the spectral profile of the Stokes emission could be fitted by a Lorentzian line shape. The electron distribution and local surface plasmon resonance jointly determined the spectral shape. Additionally, we found that the anti-Stokes emission intensity increased more rapidly compared with that of the Stokes emission as illumination power was increased. This phenomenon can be understood from the temperature dependence of the electron distribution owing to photothermal effects.

  15. Determination of nuclear moments and nuclear radii changes of the metastable silverisotopes sup(108m)Ag and sup(110m)Ag from the hyperfine structure of silver-I-resonance lines

    International Nuclear Information System (INIS)

    Meier, T.

    1973-01-01

    The hyperfine structure of the resonance lines of the metastable silver isotopes sup(108m), sup(110m)Ag were investigated by means of optical interference spectroscopy. Both radioactive silver isotopes were obtained by irradiating isotope-pure 107 Ag or 109 Ag with neutrons in the reactor. In spite of the slight enrichment of the isotopes to be investigated compared to the stable isotopes ( [de

  16. Wave-dispersive x-ray spectrometer for simultaneous acquisition of several characteristic lines based on strongly and accurately shaped Ge crystal

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Nakajima, Kazuo; Fujiwara, Kozo; Nishikata, Susumu

    2008-01-01

    Si and Ge are widely used as analyzing crystals for x-rays. Drastic and accurate shaping of Si or Ge gives significant advance in the x-ray field, although covalently bonded Si or Ge crystals have long been believed to be not deformable to various shapes. Recently, we developed a deformation technique for obtaining strongly and accurately shaped Si or Ge wafers of high crystal quality, and the use of the deformed wafer made it possible to produce fine-focused x-rays. In the present study, we prepared a cylindrical Ge wafer with a radius of curvature of 50 mm, and acquired fluorescent x-rays simultaneously from four elements by combining the cylindrical Ge wafer with a position-sensitive detector. The energy resolution of the x-ray fluorescence spectrum was as good as that obtained using a flat single crystal, and its gain was over 100. The demonstration of the simultaneous acquisition of high-resolution x-ray fluorescence spectra indicated various possibilities of x-ray spectrometry, such as one-shot x-ray spectroscopy and highly efficient wave-dispersive x-ray spectrometers

  17. Elastic Wave Control Beyond Band-Gaps: Shaping the Flow of Waves in Plates and Half-Spaces with Subwavelength Resonant Rods

    Directory of Open Access Journals (Sweden)

    Andrea Colombi

    2017-08-01

    Full Text Available In metamaterial science, local resonance and hybridization are key phenomena strongly influencing the dispersion properties; the metasurface discussed in this article created by a cluster of resonators, subwavelength rods, atop an elastic surface being an exemplar with these features. On this metasurface, band-gaps, slow or fast waves, negative refraction, and dynamic anisotropy can all be observed by exploring frequencies and wavenumbers from the Floquet–Bloch problem and by using the Brillouin zone. These extreme characteristics, when appropriately engineered, can be used to design and control the propagation of elastic waves along the metasurface. For the exemplar we consider, two parameters are easily tuned: rod height and cluster periodicity. The height is directly related to the band-gap frequency and, hence, to the slow and fast waves, while the periodicity is related to the appearance of dynamic anisotropy. Playing with these two parameters generates a gallery of metasurface designs to control the propagation of both flexural waves in plates and surface Rayleigh waves for half-spaces. Scalability with respect to the frequency and wavelength of the governing physical laws allows the application of these concepts in very different fields and over a wide range of lengthscales.

  18. Distorted cyclotron line profile in Cep X-4 as observed by NuSTAR

    DEFF Research Database (Denmark)

    Fürst, F.; Pottschmidt, K.; Miyasaka, H.

    2015-01-01

    a powerlaw with a Fermi-Dirac cutoff at high energies. Cep X-4 has a very strong cyclotron resonant scattering feature (CRSF) around 30 keV. A simple absorption-like line with a Gaussian optical depth or a pseudo-Lorentzian profile both fail to describe the shape of the CRSF accurately, leaving significant...

  19. Development of a high resolution, high sensitivity cylindrical crystal spectrometer for line shape diagnostics of x-rays emitted from hot plasmas. Progress report, August 1, 1977--July 31, 1978

    International Nuclear Information System (INIS)

    Taylor, P.O.; Schnopper, H.

    1978-05-01

    This report oulines progress towards development of a high resolution, high throughput, curved crystal spectrometer suitable for line shape diagnostics of x-rays emitted from hot plasmas. The instrument is designed to interface with the MIT Tokamak (Alcator) with the initial aim of studying the prominent MoL lines which occur in the x-ray spectrum. However, it will have the versatility to function over an energy range of at least 1.5 keV to 7 keV allowing determination of temperature, charge state and density distributions for important impurity ions. The spectrometer employs a large, cylindrically bent crystal which focuses the dispersed x-rays along the cylinder axis where they are recorded by a position sensitive proportional counter. Thus, a wide energy range of the spectrum can be recorded simultaneously and sensitively from a short duration plasma. Computer control of data acquisition and analysis will allow real-time diagnostics

  20. Unusual Dispersion and Line Shape of the Superconducting State Spectra of Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Norman, M.R.; Ding, H.; Campuzano, J.C.; Takeuchi, T.; Ding, H.; Campuzano, J.C.; Takeuchi, T.; Randeria, M.; Yokoya, T.; Takahashi, T.; Mochiku, T.; Kadowaki, K.; Kadowaki, K.

    1997-01-01

    Photoemission spectra of Bi 2 Sr 2 CaCu 2 O 8+δ below T c show two features near the (π,0) point of the zone: a sharp peak at low energy and a higher binding energy hump. We find that the sharp peak persists at low energy even as one moves towards (0,0), while the broad hump shows significant dispersion which correlates well with the normal state dispersion. We argue that these features are naturally explained by the interaction of electrons with a sharp mode which appears only below T c , and speculate that the latter may be related to the resonance seen in recent neutron data. copyright 1997 The American Physical Society

  1. Fano resonance in anodic aluminum oxide based photonic crystals.

    Science.gov (United States)

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  2. Interaction between confined phonons and photons in periodic silicon resonators

    Science.gov (United States)

    Iskandar, A.; Gwiazda, A.; Younes, J.; Kazan, M.; Bruyant, A.; Tabbal, M.; Lerondel, G.

    2018-03-01

    In this paper, we demonstrate that phonons and photons of different momenta can be confined and interact with each other within the same nanostructure. The interaction between confined phonons and confined photons in silicon resonator arrays is observed by means of Raman scattering. The Raman spectra from large arrays of dielectric silicon resonators exhibited Raman enhancement accompanied with a downshift and broadening. The analysis of the Raman intensity and line shape using finite-difference time-domain simulations and a spatial correlation model demonstrated an interaction between photons confined in the resonators and phonons confined in highly defective regions prompted by the structuring process. It was shown that the Raman enhancement is due to collective lattice resonance inducing field confinement in the resonators, while the spectra downshift and broadening are signatures of the relaxation of the phonon wave vector due to phonon confinement in defective regions located in the surface layer of the Si resonators. We found that as the resonators increase in height and their shape becomes cylindrical, the amplitude of their coherent oscillation increases and hence their ability to confine the incoming electric field increases.

  3. Asymmetries of the solar Ca II lines

    International Nuclear Information System (INIS)

    Heasley, J.N.

    1975-01-01

    A theoretical study of the influence of propagating acoustic pulses in the solar chromosphere upon the line profiles of the Ca II resonance and infrared triplet lines has been made. The major objective has been to explain the observed asymmetries seen in the cores of the H and K lines and to predict the temporal behavior of the infrared lines caused by passing acoustic or shock pulses. The velocities in the pulses, calculated from weak shock theory, have been included consistently in the non-LTE calculations. The results of the calculations show that these lines are very sensitive to perturbations in the background atmosphere caused by the pulses. Only minor changes in the line shapes result from including the velocities consistently in the line source function calculations. The qualitative changes in the line profiles vary markedly with the strength of the shock pulses. The observed differences in the K line profiles seen on the quiet Sun can be explained in terms of a spectrum of pulses with different wavelengths and initial amplitudes in the photosphere. (Auth.)

  4. Resonance vibrations in intake and exhaust pipes of in-line engines III : the inlet process of a four-stroke-cycle engine

    Science.gov (United States)

    Lutz, O

    1940-01-01

    Using a previously developed method, the boundary process of four-stroke-cycle engines are set up. The results deviate considerably from those obtained under the assumption that the velocity fluctuation is proportional to the cylinder piston motion. The deviation is less at the position of resonance frequencies. By the method developed, the effect of the resonance vibrations on the volumetric efficiency can be demonstrated.

  5. Resonance magnetic x-ray scattering study of erbium

    DEFF Research Database (Denmark)

    Sanyal, M.K.; Gibbs, D.; Bohr, J.

    1994-01-01

    The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...... of this magnetic scattering and analyzed it using a simple model based on electric dipole and quadrupole transitions among atomic orbitals. The line shapes can be fitted to a magnetic structure combining both c-axis-modulated and basal-plane components. Below 18 K, we have observed unusual behavior of the magnetic...

  6. In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing.

    Science.gov (United States)

    Wu, Chuang; Liu, Zhengyong; Zhang, A Ping; Guan, Bai-Ou; Tam, Hwa-Yaw

    2014-09-08

    We report an open-cavity optical fiber Fabry-Pérot interferometer (FPI) capable of measuring refractive index with very low temperature cross-sensitivity. The FPI was constructed by splicing a thin piece of C-shaped fiber between two standard single-mode fibers. The refractive index (RI) response of the FPI was characterized using water-ethanol mixtures with RI in the range of 1.33 to 1.36. The RI sensitivity was measured to be 1368 nm/RIU at the wavelength of 1600 nm with good linearity. Thanks to its all-glass structure, the FPI exhibits very low temperature cross-sensitivity of 3.04 × 10⁻⁷ RIU/°C. The effects of cavity length on the performance of the sensor were also studied. A shorter cavity gives rise to broader measurement range while offering larger detection limit, and vice versa. What's more, the effect of material dispersion of analyte on the sensitivity of open-cavity FPIs was identified for the first time. The sensor is compact in size and easy to fabricate. It is potentially useful for label-free optical sensing of chemical and biological samples.

  7. On the interpretation and rotational assignment of degenerate four-wave mixing spectra: Four-photon line strengths for crossover resonances in NO A 2Σ+--X 2Π

    International Nuclear Information System (INIS)

    Friedman-Hill, E.J.; Rahn, L.A.; Farrow, R.L.

    1994-01-01

    We present here a set of equations specifically adapted to simulation of fully resonant, high-resolution, phase-conjugate degenerate four-wave mixing (DFWM) in molecular gases. Signal-intensity dependence on molecular wave functions, lifetimes, and laser beam polarizations is explicitly included in these equations. The emphasis of the presentation is on both physically intuitive interpretation and a practical, ''cookbook'' approach to spectral simulation. We present experimental verification of our calculations drawn from the spectrum of dilute NO in N 2 at low pressures. Both degenerate two-level and three-level (crossover) resonances were observed. The experimental spectral intensities are accurately reproduced by the expressions presented here. We point out some of the subtleties of DFWM spectra that could be used as aids to interpretation, especially the use of laser polarization as a probe for spectral line assignments

  8. Time-domain numerical computations of electromagnetic fields in cylindrical co-ordinates using the transmission line matrix: evaluation of radiaion losses from a charge bunch passing through a pill-box resonator

    International Nuclear Information System (INIS)

    Sarma, J.; Robson, P.N.

    1979-01-01

    The two dimensional transmission line matrix (TLM) numerical method has been adapted to compute electromagnetic field distributions in cylindrical co-ordinates and it is applied to evaluate the radiation loss from a charge bunch passing through a 'pill-box' resonator. The computer program has been developed to calculate not only the total energy loss to the resonator but also that component of it which exists in the TM 010 mode. The numerically computed results are shown to agree very well with the analytically derived values as found in the literature which, therefore, established the degree of accuracy that is obtained with the TLM method. The particular features of computational simplicity, numerical stability and the inherently time-domain solutions produced by the TLM method are cited as additional, attractive reasons for using this numerical procedure in solving such problems. (Auth.)

  9. Comparison of multi-pole shaping and delay line clipping pre-amplifiers for position sensitive NaI(Tl) detectors

    International Nuclear Information System (INIS)

    Freifelder, R.; Karp, J.S.; Wear, J.A.; Lockyer, N.S.; Newcomer, F.M.; Surti, S.; Berg, R. van

    1998-01-01

    NaI(Tl) position sensitive detectors have been used in medical imaging for many years. For PET applications without collimators, the high counting rates place severe demands on such large area detectors. The NaI(Tl) detectors in the PENN-PET scanners are read-out via photomultiplier tubes and preamplifiers. Those preamplifiers use a delay-line clipping technique to shorten the characteristic 240 ns fall time of the NaI(Tl) signal. As an alternative, the authors have investigated a pole-zero network to shorten the signal followed by a multi-pole shaper to produce a symmetric signal suitable for high counting rates. This has been compared to the current design by measuring the energy and spatial resolution of a single detector as a function of different preamplifier designs. Data were taken over a range of ADC integration times and countrates. The new design shows improved energy resolution with short integration times. Effects on spatial resolution and deadtime are reported for large position sensitive detectors at different countrates

  10. Comparative analysis of magnetic resonance in the polaron pair recombination and the triplet exciton-polaron quenching models

    Science.gov (United States)

    Mkhitaryan, V. V.; Danilović, D.; Hippola, C.; Raikh, M. E.; Shinar, J.

    2018-01-01

    We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π -conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing a monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I /I is ∝PL within the PPR model, while it is ∝PL2 crossing over to PL3 within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.

  11. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    International Nuclear Information System (INIS)

    Heib, F.; Hempelmann, R.; Munief, W.M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-01-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ a and the receding θ r contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis

  12. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heib, F., E-mail: f.heib@mx.uni-saarland.de [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Hempelmann, R. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Munief, W.M.; Ingebrandt, S. [Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibrücken (Germany); Fug, F.; Possart, W. [Department of Adhesion and Interphases in Polymers, Saarland University, 66123 Saarbrücken (Germany); Groß, K.; Schmitt, M. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany)

    2015-07-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ{sub a} and the receding θ{sub r} contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple

  13. Status of thorium cycle nuclear data evaluations: Comparison of cross-section line shapes of JENDL-3 and ENDF-B-VI files for 230Th, 232Th, 231Pa, 233Pa, 232U, 233U and 234U

    International Nuclear Information System (INIS)

    Ganesan, S.; McLaughlin, P.K.

    1992-02-01

    Since 1990, one of the most interesting developments in the field of nuclear data for nuclear technology applications is that several new evaluated data files have been finalized and made available to the International Atomic Energy Agency (IAEA) for distribution to its Member States. Improved evaluated nuclear data libraries such as ENDF/B-VI from the United States and JENDL-3 from Japan were developed over a period of 10-15 years. This report is not an evaluation of the evaluations. The report as presented here gives a first look at the cross section line shapes of the isotopes that are important to the thorium fuel cycle derived from the two recently evaluated data files: JENDL-3 and ENDF/B-VI. The basic evaluated data files JENDL-3 and ENDF/B-VI were point-processed successfully using the codes LINEAR and RECENT. The point data were multigrouped in three different group structures using the GROUPIE code. Graphs of intercomparisons of cross section line shapes of JENDL-3 and ENDF/B-VI are presented in this paper for the following isotopes of major interest to studies of the thorium fuel cycle: 230 Th, 232 Th, 231 Pa, 233 Pa, 232 U, 233 U and 234 U. Comparisons between JENDL-3 and ENDF/B-VI which were performed at the point and group levels show large discrepancies in various cross sections. We conclude this report with a general remark that it is necessary to perform sensitivity studies to assess the impacts of the discrepancies between the two different sets of data on calculated reactor design and safety parameters of specific reactor systems and, based on the results of such sensitivity studies, to undertake new tasks of evaluations. (author). 2 refs, 245 figs, 8 tabs

  14. A parabolic model to control quantum interference in T-shaped molecular junctions

    DEFF Research Database (Denmark)

    Nozaki, Daijiro; Sevincli, Haldun; Avdoshenko, Stanislav M.

    2013-01-01

    Quantum interference (QI) effects in molecular devices have drawn increasing attention over the past years due to their unique features observed in the conductance spectrum. For the further development of single molecular devices exploiting QI effects, it is of great theoretical and practical...... interest to develop simple methods controlling the emergence and the positions of QI effects like anti-resonances or Fano line shapes in conductance spectra. In this work, starting from a well-known generic molecular junction with a side group (T-shaped molecule), we propose a simple graphical method...... to visualize the conditions for the appearance of quantum interference, Fano resonances or anti-resonances, in the conductance spectrum. By introducing a simple graphical representation (parabolic diagram), we can easily visualize the relation between the electronic parameters and the positions of normal...

  15. Ramifide resonators for cyclotrons

    International Nuclear Information System (INIS)

    Smirnov, Yu.V.

    2000-01-01

    The resonators with the conductors ramified form for cyclotrons are systematized and separated into the self-contained class - the ramified resonators for cyclotrons (Carr). The ramified resonators are compared with the quarter-wave and half-wave nonramified resonators, accomplished from the transmitting lines fragments. The CRR are classified into two types: ones with the additional structural element, switched in parallel and in series. The CRR may include several additional structural elements. The CRR calculations may be concluded by analytical methods - the method of matrix calculation or the method of telegraph equations and numerical methods - by means of the ISFEL3D, MAFIA and other programs [ru

  16. Statistical reexamination of analytical method on the observed electron spin (or nuclear) resonance curves

    International Nuclear Information System (INIS)

    Kim, J.W.

    1980-01-01

    Observed magnetic resonance curves are statistically reexamined. Typical models of resonance lines are Lorentzian and Gaussian distribution functions. In the case of metallic, alloy or intermetallic compound samples, observed resonance lines are supperposed with the absorption line and the dispersion line. The analyzing methods of supperposed resonance lines are demonstrated. (author)

  17. Proton nuclear magnetic resonance in paramagnetic CoCl2.6H2O

    International Nuclear Information System (INIS)

    Oravcova, J.; Murin, J.; Rakos, M.; Olcak, D.

    1978-01-01

    Nuclear magnetic resonance (NMR) is studied of protons of the crystal water of paramagnetic CoCl 2 .6H 2 O. The measurements were carried out on powdered samples at room temperature, for values of the external magnetic field ranging from 0.3 to 1.0 T. The NMR signals of protons of the crystal water exhibit asymmetric shape which changes with the applied external magnetic field. We found that the second moment of the resonance line shows a linear dependence on the square of the induction of the externally applied magnetic field. The cause of the asymmetry of the NMR line of protons of the crystal water and the dependence of the second moment of the resonance line on the induction of external magnetic field are interpreted. (author)

  18. Resonance gamma-transducer with thin converter

    International Nuclear Information System (INIS)

    Mirzababaev, R.M.

    1993-01-01

    A resonance detector with stainless steel foil (∼3000 A) is more efficient than conventional detectors as regards the recording Rayleigh scattering of Moessbauer effect. If the scatterer contains resonance nuclei (iron), the detector simultaneously records in the same spectrum both Zeeman lines and the line resulted to Rayleigh quanta scattering on electrons. Zeeman lines are formed due to photoabsorption in the converter. The central line is associated with resonance absorption in the converter

  19. Uncertainty quantification in resonance absorption

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2012-01-01

    We assess the uncertainty in the resonance escape probability due to uncertainty in the neutron and radiation line widths for the first 21 resonances in 232 Th as given by . Simulation, quadrature and polynomial chaos methods are used and the resonance data are assumed to obey a beta distribution. We find the uncertainty in the total resonance escape probability to be the equivalent, in reactivity, of 75–130 pcm. Also shown are pdfs of the resonance escape probability for each resonance and the variation of the uncertainty with temperature. The viability of the polynomial chaos expansion method is clearly demonstrated.

  20. Shape Synthesis in Mechanical Design

    OpenAIRE

    C. P. Teng; S. Bai; J. Angeles

    2007-01-01

    The shaping of structural elements in the area of mechanical design is a recurrent problem. The mechanical designer, as a rule, chooses what is believed to be the “simplest” shapes, such as the geometric primitives: lines, circles and, occasionally, conics. The use of higher-order curves is usually not even considered, not to speak of other curves than polynomials. However, the simplest geometric shapes are not necessarily the most suitable when the designed element must withstand loads that ...

  1. Interband optical absorption in the Wannier-Stark ladder under the electron-LO-phonon resonance condition

    International Nuclear Information System (INIS)

    Govorov, A.O.

    1993-08-01

    Interband optical absorption in the Wannier-Stark ladder in the presence of the electron-LO-phonon resonance is investigated theoretically. The electron-LO-phonon resonance occurs when the energy spacing between adjacent Stark-ladder levels coincides with the LO-phonon energy. We propose a model describing the polaron effect in a superlattice. Calculations show that the absorption line shape is strongly modified due to the polaron effect under the electron-LO-phonon resonance condition. We consider optical phenomena in a normal magnetic field that leads to enhancement of polaron effects. (author). 17 refs, 5 figs

  2. Direct and resonance processes of nucleus disintegration by hadrons at intermediate energies (Doppler effect)

    International Nuclear Information System (INIS)

    Balashov, V.V.; Dolinov, V.K.; Korotkikh, V.L.; Lanskoj, D.E.

    1986-01-01

    The possibilities to use coincidence method of scattered particle and daughter nucleus γ-quantum in A+a → a'+b+B[Jπ) B[Jπ) → B(J'π')+γ reaction with doppler line shape measurement to study nucleus disintegration mechanism are investigated. The main idea of the method resides in the fact that if B* state lifetime is small as compared to nucleus slowing-down time in target substance, all changes in emitted particle distributions are directly manifested in respective changes of Doppler line shape corresponding to γ-transition B[Jπ) → γ+B(J'π') in a daughter nucleus. It is concluded that investigation into Doppler line shape may become sensitive method of studying angular distribution of nucleus disintegration products and in solving problem on correlation between direct and resonance processes of nuclei disinegration

  3. Inductive Cross Shaped Metal Meshes in Silicon Substrate

    National Research Council Canada - National Science Library

    Sternberg, O; Moller, K. D; Grebel, H; Stewart, K. P; Henry, R. M

    2002-01-01

    .... The Micro-Stripes program was used for the calculation of resonance wavelength and width of resonance of cross shaped metal meshes and best- fit formulas were developed for the presentation of the data...

  4. Theory of the effect of odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization

    International Nuclear Information System (INIS)

    Payne, M.G.; Deng, L.; Garrett, W.R.

    1998-01-01

    We present a theory for two- and three-photon excitation, optical shifting, and four-wave mixing when a first laser is tuned onto, or near, a two-photon resonance and a second much more intense laser is tuned near or on resonance between the two-photon resonance and a second excited state. When the second excited state has a dipole-allowed transition back to the ground state and the concentration is sufficiently high, a destructive interference is produced between three-photon coupling of the ground state and the second excited state and one-photon coupling between the same states by the internally generated four-wave mixing field. This interference leads to several striking effects. For instance, as the onset of the interference occurs, the optical shifts in the two-photon resonance excitation line shape become smaller in copropagating geometry so that the line shapes for multiphoton ionization enhanced by the two-photon resonance eventually become unaffected by the second laser. In the same range of concentrations the four-wave mixing field evolves to a concentration-independent intensity. With counterpropagating laser beams the line shape exhibits normal optical shifts like those observed for both copropagating and counterpropagating laser beams at very low concentrations. The theoretical work presented here extends our earlier works by including the effect of laser bandwidth and by removing the restriction of having the second laser be tuned far from three-photon resonance. In this way we have now included, as a special case, the effect of both laser bandwidth and interference on laser-induced transparency. Unlike other effects related to odd-photon destructive interference, the effect of a broad bandwidth is to bring about the predicted effects at much lower concentrations. Studies in rubidium show good agreement between theory and experiment for both ionization line shapes and four-wave mixing intensity as a function of concentration. copyright 1998 The

  5. In-line and Real-time Monitoring of Resonant Acoustic Mixing by Near-infrared Spectroscopy Combined with Chemometric Technology for Process Analytical Technology Applications in Pharmaceutical Powder Blending Systems.

    Science.gov (United States)

    Tanaka, Ryoma; Takahashi, Naoyuki; Nakamura, Yasuaki; Hattori, Yusuke; Ashizawa, Kazuhide; Otsuka, Makoto

    2017-01-01

    Resonant acoustic ® mixing (RAM) technology is a system that performs high-speed mixing by vibration through the control of acceleration and frequency. In recent years, real-time process monitoring and prediction has become of increasing interest, and process analytical technology (PAT) systems will be increasingly introduced into actual manufacturing processes. This study examined the application of PAT with the combination of RAM, near-infrared spectroscopy, and chemometric technology as a set of PAT tools for introduction into actual pharmaceutical powder blending processes. Content uniformity was based on a robust partial least squares regression (PLSR) model constructed to manage the RAM configuration parameters and the changing concentration of the components. As a result, real-time monitoring may be possible and could be successfully demonstrated for in-line real-time prediction of active pharmaceutical ingredients and other additives using chemometric technology. This system is expected to be applicable to the RAM method for the risk management of quality.

  6. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  7. Spectra of resonance surface photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G. [Budker Nuclear Physics Institute, Novosibirsk (Russian Federation)

    1995-09-01

    The theory of nonactivated electron transfer between atoms interacting reasonantly with coherent radiation and a metal surface is developed. The spectral resonances in photoabsorption and surface photoionization are found to be related to nonlinear interference effects in the interaction between discrete atomic levels and the continuum formed by the quasi-continuous electron spectrum of a normal metal. The asymmetry in the resonance surface photoionization spectrum is shown to have a shape typical of the Fano autoionization resonances. 18 refs.

  8. On-line high-performance liquid chromatography-ultraviolet-nuclear magnetic resonance method of the markers of nerve agents for verification of the Chemical Weapons Convention.

    Science.gov (United States)

    Mazumder, Avik; Gupta, Hemendra K; Garg, Prabhat; Jain, Rajeev; Dubey, Devendra K

    2009-07-03

    This paper details an on-flow liquid chromatography-ultraviolet-nuclear magnetic resonance (LC-UV-NMR) method for the retrospective detection and identification of alkyl alkylphosphonic acids (AAPAs) and alkylphosphonic acids (APAs), the markers of the toxic nerve agents for verification of the Chemical Weapons Convention (CWC). Initially, the LC-UV-NMR parameters were optimized for benzyl derivatives of the APAs and AAPAs. The optimized parameters include stationary phase C(18), mobile phase methanol:water 78:22 (v/v), UV detection at 268nm and (1)H NMR acquisition conditions. The protocol described herein allowed the detection of analytes through acquisition of high quality NMR spectra from the aqueous solution of the APAs and AAPAs with high concentrations of interfering background chemicals which have been removed by preceding sample preparation. The reported standard deviation for the quantification is related to the UV detector which showed relative standard deviations (RSDs) for quantification within +/-1.1%, while lower limit of detection upto 16mug (in mug absolute) for the NMR detector. Finally the developed LC-UV-NMR method was applied to identify the APAs and AAPAs in real water samples, consequent to solid phase extraction and derivatization. The method is fast (total experiment time approximately 2h), sensitive, rugged and efficient.

  9. Compact Dual-Band Zeroth-Order Resonance Antenna

    International Nuclear Information System (INIS)

    Xu He-Xiu; Wang Guang-Ming; Gong Jian-Qiang

    2012-01-01

    A novel microstrip zeroth-order resonator (ZOR) antenna and its equivalent circuit model are exploited with two zeroth-order resonances. It is constructed based on a resonant-type composite right/left handed transmission line (CRLH TL) using a Wunderlich-shaped extended complementary single split ring resonator pair (W-ECSSRRP) and a series capacitive gap. The gap either can be utilized for double negative (DNG) ZOR antenna or be removed to engineer a simplified elision-negative ZOR (ENG) antenna. For verification, a DNG ZOR antenna sample is fabricated and measured. Numerical and experimental results agree well with each other, indicating that the omnidirectional radiations occur at two frequency bands which are accounted for by two shunt branches in the circuit model. The size of the antenna is 49% more compact than its previous counterpart. The superiority of W-ECSSRRP over CSSRRP lies in the lower fundamental resonance of the antenna by 38.2% and the introduction of a higher zeroth-order resonance. (fundamental areas of phenomenology(including applications))

  10. The Fourier transform method for infinite medium resonance absorption problems

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Sahni, D.C.

    1978-01-01

    A new method, using Fourier transforms, is developed for solving the integral equation of slowing down of neutrons in the resonance region. The transformations replace the slowing down equation with a discontinuous kernel by an integral equation with a continuous kernel over the interval (-infinity, infinity). Further the Doppler broadened line shape functions have simple analytical representations in the transform variable. In the limit of zero temperature, the integral equation reduces to a second order differential equation. Accurate expressions for the zero temperature resonance integrals are derived, using the WKB method. In general, the integral equation is seen to be amenable to solution by Ganss-Hermite quadrature formule. Doppler coefficients of 238 U resonances are given and compared with Monte Carlo calculations. The method is extended to include the effect of interference between neighbouring resonances of an absorber. For the case of two interfering resonances the slowing down equation is transformed to the coupled integral equations that are amenable to solution by methods indicated earlier. Numerical results presented for the low lying thorium-232 doublet show that the Doppler coefficients of the resonances are reduced considerably because of the overlap between them. (author)

  11. An improved intermediate resonance method for heterogeneous media

    International Nuclear Information System (INIS)

    Chiovato, O.; Corno, S.; Pasquantonio, F.Di.

    1977-01-01

    A new formulation is described of the Intermediate Resonance method which incorporates the previous developments suitably modified and improved, together with some new contributions. The 'intermediate' character is directly introduced in the integral operator K, allowing a more rigorous deduction of the equations for evaluating the intermediate parameters related to the nuclides involved in the system. There is no limit to the number of internal (admixed in the fuel) and external moderators. The capability to take into account the interference scattering has been extended to heterogeneous systems. The Doppler broadening is described by means of new accurate rational approximations to the broadened line shape psi. Finally the use of energy mean values suitably defined refines the values of the resonance integrals and resonance absorption cross sections. The Intermediate Resonance method so extended and improved, has been coded in a group of FORTRAN routines, which have been inserted as a calculation option in the fast section of the GGC code for the evaluation of multigroup cross sections. A series of calculations has been carried out, using these routines, and comparisons have been made with Monte Carlo and Nordheim's methods. The results obtained show that the Intermediate Resonance method developed in the present work offers considerable advantages over Nordheim's method: better accuracy in evaluating resonance absorption cross sections, and much smaller computing times. (author)

  12. Design of bandwidth tunable HTS filter using H-shaped waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Nakagawa, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2009-10-15

    We have developed a bandwidth tuning method for use in high-temperature superconducting (HTS) microstrip filters. Several H-shaped waveguides are placed between the resonators, and the bandwidth is adjusted by changing the switch states of the waveguides. The coupling coefficients between the resonators are controlled by switching the connection or isolation of the center gaps of the waveguides so as to tune the bandwidth. The effects of using this method were evaluated by simulation using a filter composed of 3-pole half-wavelength straight-line resonators with an H-shaped waveguide between each pair and additional electric pads for post-tuning trimming. The filter was designed to have a center frequency of 5 GHz and a bandwidth of 100 MHz by using an electromagnetic simulator based on the moment method. The simulation showed that bandwidth tuning of 150 MHz can be obtained by using H-shaped waveguides to adjust the coupling coefficients. It also showed that using additional electric pads around the feed lines, which was previously shown to be useful for trimming to improve insertion loss after center-frequency tuning, is also useful for bandwidth tuning.

  13. Parallel Lines

    Directory of Open Access Journals (Sweden)

    James G. Worner

    2017-05-01

    Full Text Available James Worner is an Australian-based writer and scholar currently pursuing a PhD at the University of Technology Sydney. His research seeks to expose masculinities lost in the shadow of Australia’s Anzac hegemony while exploring new opportunities for contemporary historiography. He is the recipient of the Doctoral Scholarship in Historical Consciousness at the university’s Australian Centre of Public History and will be hosted by the University of Bologna during 2017 on a doctoral research writing scholarship.   ‘Parallel Lines’ is one of a collection of stories, The Shapes of Us, exploring liminal spaces of modern life: class, gender, sexuality, race, religion and education. It looks at lives, like lines, that do not meet but which travel in proximity, simultaneously attracted and repelled. James’ short stories have been published in various journals and anthologies.

  14. SU-C-204-05: Magnetic Resonance-Induced Adaptive Response to Orthovoltage Radiation Therapy in FSa and SA-NH Mouse Tumor Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, K; Miller, R; Murley, J; Sadinski, M; Grdina, D [University of Chicago, Chicago, IL (United States)

    2016-06-15

    Purpose: To assess the effect of pre-treatment Magnetic Resonance Imaging (MRI) on cell survival following orthovoltage radiation therapy. Methods: This in vitro study examined the survival of FSa cells (extracted from methylcholanthrene-induced fibrosarcoma in the flank of a C3H female mouse) and SA-NH cells (derived from a spontaneously arising murine sarcoma tumor) having undergone an MRI scan prior to radiation exposure. Cell cultures were kept at 37 C, in a humidified environment with 5% CO2, and were grown to confluence prior to the start of the experiment. Each cell culture underwent two, 25 minute MRIs spaced 24 hours apart using a standard brain imaging protocol. The cultures were exposed to a 2 Gy dose of radiation beginning 15 minutes after the end of each MRI scan. Irradiations were performed by a Philips RT250 X-ray generator at 250 kVp and 15 mA. All MR imaging was performed on a 1.5 T Philips Achieva scanner using a head and neck vasculature coil. Results: Cells given an MRI scan prior to radiation exhibited an increase in mean surviving fraction of 10.8% and 9.6% in FSa and SA-NH cells, respectively. The difference was found to be statistically significant in both cell types by a student two-tailed t test with P = 0.011 and P < 0.001 for FSa and SA-NH, respectively. Conclusion: MRI may cause an increase in radio-resistance in FSa and SA-NH cells. If this biological effect is found to be consistent across other cell types and voltage ranges, these results could help inform treatment planning by improving our understanding of the joint effects of MRI and ionizing radiation. This work was supported in part under NIH grant numbers T32 EB002103, NCI R01-CA 132998, DOE Low Dose Program/Project Grant DE-413 SC0001271. DJ Grdina is a paid consultant to Pinnacle Biologics. DJ Grdina and JS Murley are minority equity partners in Pinnacle Oncology LLC.

  15. SU-C-204-05: Magnetic Resonance-Induced Adaptive Response to Orthovoltage Radiation Therapy in FSa and SA-NH Mouse Tumor Cell Lines

    International Nuclear Information System (INIS)

    Mendel, K; Miller, R; Murley, J; Sadinski, M; Grdina, D

    2016-01-01

    Purpose: To assess the effect of pre-treatment Magnetic Resonance Imaging (MRI) on cell survival following orthovoltage radiation therapy. Methods: This in vitro study examined the survival of FSa cells (extracted from methylcholanthrene-induced fibrosarcoma in the flank of a C3H female mouse) and SA-NH cells (derived from a spontaneously arising murine sarcoma tumor) having undergone an MRI scan prior to radiation exposure. Cell cultures were kept at 37 C, in a humidified environment with 5% CO2, and were grown to confluence prior to the start of the experiment. Each cell culture underwent two, 25 minute MRIs spaced 24 hours apart using a standard brain imaging protocol. The cultures were exposed to a 2 Gy dose of radiation beginning 15 minutes after the end of each MRI scan. Irradiations were performed by a Philips RT250 X-ray generator at 250 kVp and 15 mA. All MR imaging was performed on a 1.5 T Philips Achieva scanner using a head and neck vasculature coil. Results: Cells given an MRI scan prior to radiation exhibited an increase in mean surviving fraction of 10.8% and 9.6% in FSa and SA-NH cells, respectively. The difference was found to be statistically significant in both cell types by a student two-tailed t test with P = 0.011 and P < 0.001 for FSa and SA-NH, respectively. Conclusion: MRI may cause an increase in radio-resistance in FSa and SA-NH cells. If this biological effect is found to be consistent across other cell types and voltage ranges, these results could help inform treatment planning by improving our understanding of the joint effects of MRI and ionizing radiation. This work was supported in part under NIH grant numbers T32 EB002103, NCI R01-CA 132998, DOE Low Dose Program/Project Grant DE-413 SC0001271. DJ Grdina is a paid consultant to Pinnacle Biologics. DJ Grdina and JS Murley are minority equity partners in Pinnacle Oncology LLC.

  16. Minimally invasive neurosurgery within a 0.5 tesla intraoperative magnetic resonance scanner using an off-line neuro-navigation system.

    Science.gov (United States)

    Mursch, K; Gotthardt, T; Kröger, R; Bublat, M; Behnke-Mursch, J

    2005-08-01

    We evaluated an advanced concept for patient-based navigation during minimally invasive neurosurgical procedures. An infrared-based, off-line neuro-navigation system (LOCALITE, Bonn, Germany) was applied during operations within a 0.5 T intraoperative MRI scanner (iMRI) (Signa SF, GE Medical Systems, Milwaukee, WI, USA) in addition to the conventional real-time system. The three-dimensional (3D) data set was acquired intraoperatively and up-dated when brain-shift was suspected. Twenty-three patients with subcortical lesions were operated upon with the aim to minimise the operative trauma. Small craniotomies (median diameter 30 mm, mean diameter 27 mm) could be placed exactly. In all cases, the primary goal of the operation (total resection or biopsy) was achieved in a straightforward procedure without permanent morbidity. The navigation system could be easily used without technical problems. In contrast to the real-time navigation mode of the MR system, the higher quality as well as the real-time display of the MR images reconstructed from the 3D reference data provided sufficient visual-manual coordination. The system combines the advantages of conventional neuro-navigation with the ability to adapt intraoperatively to the continuously changing anatomy. Thus, small and/or deep lesions can be operated upon in straightforward minimally invasive operations.

  17. Paramagnetic resonance and susceptibility of ilmenite, FeTiO3 crystal

    Science.gov (United States)

    Mcdonald, P. F.; Parasiris, A.; Pandey, R. K.; Gries, B. L.; Kirk, W. P.

    1991-01-01

    Large high-purity single crystals of FeTiO3 with ilmenite structure have been grown from a stoichiometric melt of Fe2O3 and TiO2 under an inert atmosphere using the modified Czochralski technique. Susceptibility and X-band paramagnetic resonance studies have been performed. Susceptibility measurements indicate a Neel temperature of about 59 K. The paramagnetic resonance spectrum for magnetic field perpendicular to the crystal c axis consists of a portion of a single, very intense approximately Lorentzian absorption line with its peak at about 600 G and half width at half maximum almost 1200 G. The absorption extends to zero magnetic field. For magnetic field approximately parallel to the c axis, the paramagnetic absorption is much smaller and may be considered a superposition of two approximately Lorentzian line shapes. The magnetic resonance measurements indicate a weak temperature dependence and large angular anisotropy.

  18. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbaran, M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khalkhali, S.M.H. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2017-02-15

    Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in M{sub x} configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design. - Highlights: • Highly sensitive atomic magnetometers have been used to measure weak magentic filed. • To obtain narrower resonance signal, we impalnted harmonic detection of magnetic resonance. • The nonlinear spin polarization dynamics in detetion of the higher harmonics were imployed.

  19. MARVELS-1: A FACE-ON DOUBLE-LINED BINARY STAR MASQUERADING AS A RESONANT PLANETARY SYSTEM AND CONSIDERATION OF RARE FALSE POSITIVES IN RADIAL VELOCITY PLANET SEARCHES

    International Nuclear Information System (INIS)

    Wright, Jason T.; Roy, Arpita; Mahadevan, Suvrath; Wang, Sharon X.; Fleming, Scott W.; Ford, Eric B.; Payne, Matt; Lee, Brian L.; Ge, Jian; Wang, Ji; Crepp, Justin R.; Gaudi, B. Scott; Eastman, Jason; Pepper, Joshua; Cargile, Phillip; Stassun, Keivan G.; Ghezzi, Luan; González-Hernández, Jonay I.; Wisniewski, John; Dutra-Ferreira, Leticia

    2013-01-01

    We have analyzed new and previously published radial velocity (RV) observations of MARVELS-1, known to have an ostensibly substellar companion in a ∼6 day orbit. We find significant (∼100 m s –1 ) residuals to the best-fit model for the companion, and these residuals are naïvely consistent with an interior giant planet with a P = 1.965 days in a nearly perfect 3:1 period commensurability (|P b /P c – 3| –4 ). We have performed several tests for the reality of such a companion, including a dynamical analysis, a search for photometric variability, and a hunt for contaminating stellar spectra. We find many reasons to be critical of a planetary interpretation, including the fact that most of the three-body dynamical solutions are unstable. We find no evidence for transits, and no evidence of stellar photometric variability. We have discovered two apparent companions to MARVELS-1 with adaptive optics imaging at Keck; both are M dwarfs, one is likely bound, and the other is likely a foreground object. We explore false-alarm scenarios inspired by various curiosities in the data. Ultimately, a line profile and bisector analysis lead us to conclude that the ∼100 m s –1 residuals are an artifact of spectral contamination from a stellar companion contributing ∼15%-30% of the optical light in the system. We conclude that origin of this contamination is the previously detected RV companion to MARVELS-1, which is not, as previously reported, a brown dwarf, but in fact a G dwarf in a face-on orbit.

  20. Listening to the Shape of a Drum

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 10. Listening to the Shape of a Drum - You Cannot Hear the Shape of a Drum! S Kesavan. General Article Volume 3 Issue 10 October 1998 pp 49-58. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Variety of Polarized Line Profiles in Interacting Supernovae

    Science.gov (United States)

    Hoffman, Jennifer L.; Huk, L. N.; Peters, C. L.

    2013-01-01

    The dense circumstellar material that creates strong emission lines in the spectra of interacting supernovae also gives rise to complex line polarization behavior. Viewed in polarized light, the emission line profiles of these supernovae encode information about the geometrical and optical characteristics of their surrounding circumstellar material (CSM) that is inaccessible by other observational techniques. To facilitate quantitative interpretation of these spectropolarimetric signatures, we have created a large grid of model polarized line profiles using a three-dimensional radiative transfer code that simulates polarization via electron and resonant/fluorescent line scattering. The simulated polarized lines take on an array of profile shapes that vary with viewing angle and CSM properties. We present the major results from the grid and investigate the dependence of polarized line profiles on CSM characteristics including temperature, optical depth, and geometry. These results will allow more straightforward interpretation of polarized line profiles in interacting supernovae than has previously been possible. This research is supported by the National Science Foundation through the AAG program and the XSEDE collaboration, and uses the resources of the Texas Advanced Computing Center.

  2. Plasmon resonances in large noble-metal clusters

    International Nuclear Information System (INIS)

    Soennichsen, C; Franzl, T; Wilk, T; Plessen, G von; Feldmann, J

    2002-01-01

    We investigate the optical properties of spherical gold and silver clusters with diameters of 20 nm and larger. The light scattering spectra of individual clusters are measured using dark-field microscopy, thus avoiding inhomogeneous broadening effects. The dipolar plasmon resonances of the clusters are found to have nearly Lorentzian line shapes. With increasing size we observe polaritonic red-shifts of the plasmon line and increased radiation damping for both gold and silver clusters. Apart from some cluster-to-cluster variations of the plasmon lines, agreement with Mie theory is reasonably good for the gold clusters. However, it is less satisfactory for the silver clusters, possibly due to cluster faceting or chemical effects

  3. Shaping light

    CSIR Research Space (South Africa)

    Forbes, A

    2010-01-01

    Full Text Available Laser, a high- power laser to shoot down missiles, fills an entire Boeing 747! By customising the laser resonator it is possible to design light to order. Laser technology has been around for 50 years, yet new research and ideas are ensuring... that it will remain an active area of investigation for years to come. ? Professor Andrew Forbes is Chief Researcher and Research Group Leader at the CSIR National Laser Centre, and holds honorary positions in the Schools of Physics at both the University...

  4. Tunable resonances due to vacancies in graphene nanoribbons

    Science.gov (United States)

    Bahamon, D. A.; Pereira, A. L. C.; Schulz, P. A.

    2010-10-01

    The coherent electron transport along zigzag and metallic armchair graphene nanoribbons in the presence of one or two vacancies is investigated. Having in mind atomic scale tunability of the conductance fingerprints, the primary focus is on the effect of the distance to the edges and intervacancies spacing. An involved interplay of vacancies sublattice location and nanoribbon edge termination, together with the spacing parameters lead to a wide conductance resonance line-shape modification. Turning on a magnetic field introduces a new length scale that unveils counterintuitive aspects of the interplay between purely geometric aspects of the system and the underlying atomic scale nature of graphene.

  5. Properties of spiral resonators

    International Nuclear Information System (INIS)

    Haeuser, J.

    1989-10-01

    The present thesis deals with the calculation and the study of the application possibilities of single and double spiral resonators. The main aim was the development and the construction of reliable and effective high-power spiral resonators for the UNILAC of the GSI in Darmstadt and the H - -injector for the storage ring HERA of DESY in Hamburg. After the presentation of the construction and the properties of spiral resonators and their description by oscillating-circuit models the theoretical foundations of the bunching are presented and some examples of a rebuncher and debuncher and their influence on the longitudinal particle dynamics are shown. After the description of the characteristic accelerator quantities by means of an oscillating-circuit model and the theory of an inhomogeneous λ/4 line it is shown, how the resonance frequency and the efficiency of single and double spiral resonators can be calculated from the geometrical quantities of the structure. In the following the dependence of the maximal reachable resonator voltage in dependence on the gap width and the surface of the drift tubes is studied. Furthermore the high-power resonators are presented, which were built for the different applications for the GSI in Darmstadt, DESY in Hamburg, and for the FOM Institute in Amsterdam. (orig./HSI) [de

  6. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  7. Coordination of hand shape.

    Science.gov (United States)

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-09

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.

  8. Technique for magnetic susceptibility determination in the highly doped semiconductors by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Veinger, A. I.; Zabrodskii, A. G.; Tisnek, T. V.; Goloshchapov, S. I.; Semenikhin, P. V. [Ioffe Institute of the Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2014-08-20

    A method for determining the magnetic susceptibility in the highly doped semiconductors is considered. It is suitable for the semiconductors near the metal - insulator transition when the conductivity changes very quickly with the temperature and the resonance line form distorts. A procedure that is based on double integration of the positive part of the derivative of the absorption line having a Dyson shape and takes into account the depth of the skin layer is described. Analysis is made for the example of arsenic-doped germanium samples at a rather high concentration corresponding to the insulator-metal phase transition.

  9. Prediction of quantum interference in molecular junctions using a parabolic diagram: Understanding the origin of Fano and anti-resonances

    DEFF Research Database (Denmark)

    Nozaki, Daijiro; Avdoshenko, Stanislav M.; Sevincli, Haldun

    2013-01-01

    Recently the interest in quantum interference (QI) phenomena in molecular devices (molecular junctions) has been growing due to the unique features observed in the transmission spectra. In order to design single molecular devices exploiting QI effects as desired, it is necessary to provide simple...... rules for predicting the appearance of QI effects such as anti-resonances or Fano line shapes and for controlling them. In this study, we derive a transmission function of a generic molecular junction with a side group (T-shaped molecular junction) using a minimal toy model. We developed a simple method...... to predict the appearance of quantum interference, Fano resonances or anti- resonances, and its position in the conductance spectrum by introducing a simple graphical representation (parabolic model). Using it we can easily visualize the relation between the key electronic parameters and the positions...

  10. The digital holographic interferometry in resonant acoustic spectroscopy

    International Nuclear Information System (INIS)

    GAPONOV, V.E.; AZAMATOV, Z.T.; REDKORECHEV, V.I.; ISAEV, A.M.

    2014-01-01

    The opportunities of application of digital holographic interferometry method for studies of shapes of resonant modes in resonant acoustic spectroscopy are shown. The results of experimental measurements and analytical calculations are submitted. (authors)

  11. Fano resonance and persistent current of a quantum ring

    International Nuclear Information System (INIS)

    Xiong Yongjian; Liang Xianting

    2004-01-01

    We investigate electron transport and persistent current of a quantum ring weakly attached to current leads. Assuming there is direct coupling (weakly or strongly) between two leads, electrons can transmit by the inter-lead coupling or tunneling through the quantum ring. The interference between the two paths yields asymmetric Fano line shape for conductance. In presence of interior magnetic flux, there is persistent current along the ring with narrow resonance peaks. The positions of the conductance resonances and the persistent current peaks correspond to the quasibound levels of the closed ring. This feature is helpful to determine the energy spectrum of the quantum ring. Our results show that the proposed setup provides a tunable Fano system

  12. Shape coexistence in N = 28 isotones

    International Nuclear Information System (INIS)

    Saxena, G.; Kaushik, M.; Kumawat, M.; Jain, S.K.

    2016-01-01

    Shape coexistence is one of the important nuclear phenomenon which appears throughout the periodic chart from light mass nuclei to superheavy nuclei. The evolution of ground-state shapes in an isotopic or isotonic chain is governed by changes of the shell structure of single-nucleon orbitals. In recent past, evolution of shell structure guiding shape coexistence, has been observed in the N = 20 and N = 28 isotones around proton drip line. In this paper we have investigated shape coexistence phenomenon for N = 28 isotones in the vicinity of proton drip line using Relativistic Mean Field plus BCS approach

  13. Building with a Line

    Science.gov (United States)

    Hubbert, Beth

    2011-01-01

    Architecture is a versatile, multifaceted area to study in the artroom with multiple age levels. It can easily stimulate a study of basic line, shape, and various other art elements and principles. It can then be extended into a more extensive study of architectural elements, styles, specific architects, architecture of different cultures, and…

  14. Coupled-mode theory and Fano resonances in guided-mode resonant gratings: the conical diffraction mounting.

    Science.gov (United States)

    Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A

    2017-01-23

    We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.

  15. Resonant detector of γ-quanta with thin converter

    International Nuclear Information System (INIS)

    Mirzababaev, R.M.

    1994-01-01

    A resonant detector with a converter made from an enriched stainless-steel foil about 3000 angstrom thick is more efficient in detecting spectra of Rayleigh-scattered γ-quanta than conventional detectors. If the scatterer contains resonant nuclei (iron), both Zeeman lines and lines due to Rayleigh scattering by electrons are detected in the same spectrum. Zeeman lines are due to γ-radiation absorption in the converter, while the central line is due to resonant absorption in the converter

  16. Nuclear magnetic resonance of randomly diluted magnetic materials

    International Nuclear Information System (INIS)

    Magon, C.J.

    1985-01-01

    The temperature dependence of the nuclear relaxation rates and line shapes of the F O resonance in the diluted antiferromagnet Fe x Zn 1-x F 2 and Mn x Zn 1-x F 2 are studied over a large temperature range T N 1 ) of the F O nuclei, which are not transfer hyperfine coupled to the Fe (or Mn) spins, have been measured and calculated as a function of the concentration x. Good agreement with experiment is found for the theoretical results, which have been obtained in the range 0.1 ≤ x ≤ 0.8. The temperature dependence of 1/T 1 for T N 1 data near T N was used to study Random Field Effects on the critical behavior of Mn .65 Zn . 3 5 F 2 , for fields applied parallel and perpendicular to the easy (C) axis. It was found that the transition temperature T N depressed substantially with field only for H o || C. The experimental results are in general accord with the theory for Random Field Effects in disordered, anisotropic antiferromagnets. The critical divergence of the inhomogeneously broadened F O NMR was studied in Fe .6 Zn .4 F 2 above T N . The experimental results agree with Heller's calculation of the NMR line broadening by Random Field Effects. With H o || C the line shape changes from Gaussian towards Lozentzian for t -2 and below T N its line width increase qualitatively following the increase in the sublattice magnetization. (author)

  17. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    1977-03-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  18. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  19. Accurate powder patterns and new spectral shape in orthorrombic symmetry

    International Nuclear Information System (INIS)

    Gonzalez-Tovany, L.

    1991-01-01

    The shape of the powder pattern of the center resonance line (M= 1/2 ↔ -1/2) for electron paramagnetic resonance (EPR) in orthorhombic symmetry, or nuclear magnetic resonance (NMR) with quadrupole interaction, is determined for all values of the crystal field symmetry parameter N by means of a general analytical method developed by Beltran-Lopez and Castro-Tello. Analytical functions in terms of elliptical integrals are obtained which are good approximations to the true powder pattern except in a narrow region around the field value corresponding to E=-2n 2 /3. numerical gaussian quadrature of the powder pattern from the single-variable integral arising in the analytical method is shown to be a very efficient semianalytical method of calculation for computer work, being much smoother and requiring only a few seconds of CPU time versus the several minutes needed with the grid of the Monte Carlo methods. The semianalytical powder patterns reveal the existence of a previous unknown EPR spectral feature in orthorhombic symmetry resembling a divergence. This feature which should appear at E=-2n 2 /3 for asymmetry parameter values near N=√ of 2/3, is hidden in the experimental spectra by the broadening effect of the linewidth of the individual crystallites. Comparison of experimental and simulated spectra obtained by convoluting powder patterns with first-derivate lorentzian lineshapes of convenient width are also shown. Semianalytical spectra are much smoother than Monte Carlo simulated spectra, revealing finer spectral features. (Author)

  20. Improved algorithms for the calculation of resolved resonance cross sections with applications to the structural Doppler effect in fast reactors

    International Nuclear Information System (INIS)

    Hwang, R.N.; Toppel, B.J.; Henryson, H. II.

    1980-10-01

    Motivated by a need for an economical yet rigorous tool which can address the computation of the structural material Doppler effect, an extremely efficient improved RABANL capability has been developed utilizing the fact that the Doppler broadened line shape functions become essentially identical to the natural line shape functions or Lorentzian limits beyond about 100 Doppler widths from the resonance energy, or when the natural width exceeds about 200 Doppler widths. The computational efficiency has been further enhanced by preprocessing or screening a significant number of selected resonances during library preparation into composition and temperature independent smooth background cross sections. The resonances which are suitable for such pre-processing are those which are either very broad or those which are very weak. The former contribute very little to the Doppler effect and their self-shielding effect can readily be averaged into slowly varying background cross section data, while the latter contribute very little to either the Doppler or to self-shielding effects. To illustrate the accuracy and efficiency of the improved RABANL algorithms and resonance screening techniques, calculations have been performed for two systems, the first with a composition typical of the STF converter region and the second typical of an LMFBR core composition. Excellent agreement has been found for RABANL compared to the reference Monte Carlo solution obtained using the code VIM, and improved results have also been obtained for the narrow resonance approximation in the ultra-fine-group option of MC 2 -2