Waves on fluid-loaded shells and their resonance frequency spectrum
DEFF Research Database (Denmark)
Bao, X.L.; Uberall, H.; Raju, P.K.
2005-01-01
, or axially propagating waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am. 105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum shells; the present study extends this to fluid-filled shells in air......Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of air, or doubly fluid-loaded inside and out. They may support circumferential waves....... For practical applications, steel shells are most important and we have here obtained corresponding results for these. To find the natural frequencies of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are formed around the circumference, or in the axial...
Verginadis, Ioannis I; Simos, Yannis V; Velalopoulou, Anastasia P; Vadalouca, Athina N; Kalfakakou, Vicky P; Karkabounas, Spyridon Ch; Evangelou, Angelos M
2012-12-01
Exposure to various types of electromagnetic fields (EMFs) affects pain specificity (nociception) and pain inhibition (analgesia). Previous study of ours has shown that exposure to the resonant spectra derived from biologically active substances' NMR may induce to live targets the same effects as the substances themselves. The purpose of this study is to investigate the potential analgesic effect of the resonant EMFs derived from the NMR spectrum of morphine. Twenty five Wistar rats were divided into five groups: control group; intraperitoneal administration of morphine 10 mg/kg body wt; exposure of rats to resonant EMFs of morphine; exposure of rats to randomly selected non resonant EMFs; and intraperitoneal administration of naloxone and simultaneous exposure of rats to the resonant EMFs of morphine. Tail Flick and Hot Plate tests were performed for estimation of the latency time. Results showed that rats exposed to NMR spectrum of morphine induced a significant increase in latency time at time points (p spectrum of morphine. Our results indicate that exposure of rats to the resonant EMFs derived from the NMR spectrum of morphine may exert on animals similar analgesic effects to morphine itself.
International Nuclear Information System (INIS)
Mintz, D.J.; Armstrong, R.L.
1980-01-01
A study of the chlorine nuclear quadrupole resonance spectrum of K 2 OsCl 6 in the vicinity of the structural phase transition using Fourier transform techniques is reported. At high temperatures a single symmetric line spectrum is observed as expected from the high temperature cubic antifluorite structure. Below T(sub)c = 45 K the two symmetric line spectrum characteristic of a tetragonal distortion is seen. At intermediate temperatures, 45< T<150 K the spectrum consists of a single asymmetric line. A detailed analysis reveals that for the single crystal sample the asymmetric line is composed of two symmetric components, a main line, and a weak satellite shifted - 1.5 kHz relative to the main line. This feature is unaffected by changes in temperature near T(sub)c. It is attributed to the influence of interstitial impurities on neighbouring chlorine ions. For the powder sample, the asymmetry is qualitatively different. A detailed analysis shows that the line is a superposition of three components. In addition to the two components present in the single crystal, a third, broad component develops as the temperature approaches T(sub)c. This feature of the spectrum is the cluster induced order-disorder manifestation of the local dynamics. The most probable reason that this third component is not observed in the single crystal spectrum is because it is too broad due to a difference in the detailed dynamics of two samples. (auth)
Centeno, J A
1992-02-01
The resonance Raman spectra of deoxygenated solutions of mixed-valence cyanide-bound and fully reduced cytochrome oxidase derivatives that have been reduced in the presence of aqueous or solid sodium dithionite exhibit two new low-frequency lines centered at 474 and 590 cm-1. These lines were not observed when the reductant system was changed to a solution containing ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Under enzyme turnover conditions, the addition of dithionite to the reoxidized protein (the 428-nm or "oxygenated" form) increases the intensity of these lines, while reoxidation and rereduction of the enzyme in the presence of ascorbate/TMPD resulted in the absence of both lines. Our data suggest that both lines must have contributions from species formed from aqueous dithionite, presumably the SO2 species, since these two lines are also observed in the Raman spectrum of a solution of aqueous dithionite, but not in the spectrum of an ascorbate/TMPD solution. Since heme metal-ligand stretch vibrations are expected to appear in the low-frequency region from 215 to 670 cm-1, our results indicate that special care should be exercised during the interpretation of the cytochrome a3 resonance Raman spectrum.
Directory of Open Access Journals (Sweden)
Rajiv K Gupta
2011-01-01
Full Text Available Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized
Spectrum of resonant plasma oscillations in long Josephson junctions
International Nuclear Information System (INIS)
Holst, T.
1996-01-01
An analysis is presented for the amplitude of the plasma oscillations in the zero-voltage state of a long and narrow Josephson tunnel junction. The calculation is valid for arbitrary normalized junction length and arbitrary bias current. The spectrum of the plasma resonance is found numerically as solutions to an analytical equation. The low-frequency part of the spectrum contains a single resonance, which is known to exist also in the limit of a short and narrow junction. Above a certain cutoff frequency, a series of high-frequency standing wave plasma resonances is excited, a special feature of long Josephson junctions. copyright 1996 The American Physical Society
Magnetodielectric effect of Mn–Zn ferrite at resonant frequency
International Nuclear Information System (INIS)
Pengfei, Pan; Ning, Zhang
2016-01-01
The dielectric properties and the magnetodielectric effect in Mn–Zn ferrite at resonant frequency have been studied in this paper. Dimensional-resonance-induced abnormal dielectric spectrum was observed at f≈1 MHz. The relatively large magnetodielectric ratio of 4500% in a magnetic field of 3.5 kOe was achieved from the Mn–Zn ferrite sample with the initial permeability of 15 K at resonant frequency at room temperature. Theoretical analysis suggests that the large MD effect at resonant frequency is attributed to the enhanced magnetostriction effect. - Highlights: • Dimensional resonance was measured in dielectric spectrum at f≈1 MHz. • The MD ratio of 4500% was induced by H = 3.5 kOe at resonant frequency. • The magnetostriction effect leads to the large MD effect at resonant frequency.
The frequency spectrum crisis - Issues and answers
Armes, G. L.
The frequency spectrum represents a unique resource which can be overtaxed. In the present investigation, it is attempted to evalute the demand for satellite and microwave services. Dimensions of increased demand are discussed, taking into account developments related to the introduction of the personal computer, the activities of the computer and communications industries in preparation for the office of the future, and electronic publishing. Attention is given to common carrier spectrum congestion, common carrier microwave, satellite communications, teleports, international implications, satellite frequency bands, satellite spectrum implications, alternatives regarding the utilization of microwave frequency bands, U.S. Government spectrum utilization, and the impact at C-band.
Device for frequency modulation of a laser output spectrum
Beene, J.R.; Bemis, C.E. Jr.
1984-07-17
A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.
Missing baryonic resonances in the Hagedorn spectrum
Energy Technology Data Exchange (ETDEWEB)
Man Lo, Pok [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); GSI, Extreme Matter Institute EMMI, Darmstadt (Germany); Marczenko, Michal; Sasaki, Chihiro [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Redlich, Krzysztof [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); GSI, Extreme Matter Institute EMMI, Darmstadt (Germany); Duke University, Department of Physics, Durham, NC (United States)
2016-08-15
The hadronic medium of QCD is modeled as a gas of point-like hadrons, with its composition determined by the Hagedorn mass spectrum. The spectrum consists of a discrete and a continuous part. The former is determined by the experimentally confirmed resonances tabulated by the Particle Data Group (PDG), while the latter can be extracted from the existing lattice data. This formulation of the hadron resonance gas (HRG) provides a transparent framework to relate the fluctuation of conserved charges as calculated in the lattice QCD approach to the particle content of the medium. A comparison of the two approaches shows that the equation of state is well described by the standard HRG model, which includes only a discrete spectrum of known hadrons. The corresponding description in the strange sector, however, shows clear discrepancies, thus a continuous spectrum is added to incorporate the effect of missing resonances. We propose a method to extract the strange-baryon spectrum from the lattice data. The result is consistent with the trend set by the unconfirmed strange baryons resonances listed by the PDG, suggesting that most of the missing interaction strength for the strange baryons reside in the S = 1 sector. This scenario is also supported by recent lattice calculations, and might be important in the energy region covered by the NICA accelerator in Dubna, where in the heavy-ion collisions, baryons are the dominating degrees of freedom in the final state. (orig.)
Chen, Peili; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli
2011-01-01
The interaction between palladium(II)-aminophylline and fluorescein sodium was investigated by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum. In pH 4.4 Britton-Robinson (BR) buffer medium, aminophylline (Ami) reacted with palladium(II) to form chelate cation([Pd(Ami)]2+), which further reacted with fluorescein sodium (FS) to form ternary mixed ligand complex [Pd(Ami)(FS)2]. As a result, resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering spectrum (FDS) were enhanced. The maximum scattering wavelengths of [Pd(Ami)(FS)2] were located at 300 nm (RRS), 650 nm (SOS) and 304 nm (FDS). The scattering intensities were proportional to the Ami concentration in a certain range and the detection limits were 7.3 ng mL(-1) (RRS), 32.9 ng mL(-1) (SOS) and 79.1 ng mL(-1) (FDS), respectively. Based on it, the new simple, rapid, and sensitive scattering methods have been proposed to determine Ami in urine and serum samples. Moreover, the formation mechanism of [Pd(Ami)(FS)2] and the reasons for enhancement of RRS were fully discussed. Crown Copyright Â© 2010. Published by Elsevier B.V. All rights reserved.
Exponential Frequency Spectrum in Magnetized Plasmas
International Nuclear Information System (INIS)
Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.
2008-01-01
Measurements of a magnetized plasma with a controlled electron temperature gradient show the development of a broadband spectrum of density and temperature fluctuations having an exponential frequency dependence at frequencies below the ion cyclotron frequency. The origin of the exponential frequency behavior is traced to temporal pulses of Lorentzian shape. Similar exponential frequency spectra are also found in limiter-edge plasma turbulence associated with blob transport. This finding suggests a universal feature of magnetized plasma turbulence leading to nondiffusive, cross-field transport, namely, the presence of Lorentzian shaped pulses
Toroidal coupling and frequency spectrum of tearing modes
International Nuclear Information System (INIS)
Edery, D.; Samain, A.
1989-05-01
The frequency spectrum of tearing modes is analyzed with the help of a mode coupling model including toroidal effects in the MHD regions and various non linear effects in the resonant layers. In particular it is shown that the sudden damping of the mode rotation and the simultaneous enhancement of the growth rate observed in tokamak, could be explained as a bifurcating solution of the dispersion equation
3C-SiC microdisk mechanical resonators with multimode resonances at radio frequencies
Lee, Jaesung; Zamani, Hamidrera; Rajgopal, Srihari; Zorman, Christian A.; X-L Feng, Philip
2017-07-01
We report on the design, modeling, fabrication and measurement of single-crystal 3C-silicon carbide (SiC) microdisk mechanical resonators with multimode resonances operating at radio frequencies (RF). These microdisk resonators (center-clamped on a vertical stem pedestal) offer multiple flexural-mode resonances with frequencies dependent on both disk and anchor dimensions. The resonators are made using a novel fabrication method comprised of focused ion beam nanomachining and hydroflouic : nitric : acetic (HNA) acid etching. Resonance peaks (in the frequency spectrum) are detected through laser-interferometry measurements. Resonators with different dimensions are tested, and multimode resonances, mode splitting, energy dissipation (in the form of quality factor measurement) are investigated. Further, we demonstrate a feedback oscillator based on a passive 3C-SiC resonator. This investigation provides important guidelines for microdisk resonator development, ranging from an analytical prediction of frequency scaling law to fabrication, suggesting RF microdisk resonators can be good candidates for future sensing applications in harsh environments.
Frequency spectrum of Calder Hall reactor noise
International Nuclear Information System (INIS)
Cummins, J.D.
1960-01-01
The frequency spectrum of the noise power of Calder Hall reactor No. 1 has been obtained by analysing a tape recording of the backed off power. The root mean square noise power due to all frequencies above 0.001 cycles per second was found to be 0.13%. The noise power for this reactor, is due mainly to modulations of the power level by reactivity variations caused in turn by gas temperature changes. These gas temperature changes are caused by a Cyclic variation in the feedwater regulator to the heat exchanger. The apparatus and method used to determine the noise power are described in this memorandum. It is shown that for frequencies in the range 0.001 to 0.030 cycles per second the noise spectrum falls at 60 decibels per decade of frequency. (author)
Directory of Open Access Journals (Sweden)
Jian Li
2016-09-01
Full Text Available A high-overtone bulk acoustic resonator (HBAR consisting of a piezoelectric film with two electrodes on a substrate exhibits a high quality factor (Q and multi-mode resonance spectrum. By analyzing the influences of each layer’s material and structure (thickness parameters on the effective electromechanical coupling coefficient (Keff2, the resonance spectrum characteristics of Keff2 have been investigated systematically, and the optimal design of HBAR has been provided. Besides, a device, corresponding to one of the theoretical cases studied, is fabricated and evaluated. The experimental results are basically consistent with the theoretical results. Finally, the effects of Keff2 on the function of the crystal oscillators constructed with HBARs are proposed. The crystal oscillators can operate in more modes and have a larger frequency hopping bandwidth by using the HBARs with a larger Keff2·Q.
ON THE RESONANT FREQUENCIES OF THE OJA
African Journals Online (AJOL)
Dr Obe
1997-09-01
Oja' (a traditional Nigerian musical instrument) is developed. Support for the theory is provided by data derived from experimentally measured spectra of typical oja tones. It is also shown that for resonant frequencies below about ...
Electrothermal Frequency Modulated Resonator for Mechanical Memory
Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.
2016-01-01
In this paper, we experimentally demonstrate a mechanical memory device based on the nonlinear dynamics of an electrostatically actuated microelectromechanical resonator utilizing an electrothermal frequency modulation scheme. The microstructure
On Resonant Heating Below the Cyclotron Frequency
International Nuclear Information System (INIS)
Chen, Liu; Lin, Zhihong; White, R.
2001-01-01
Resonant heating of particles by an electrostatic wave propagating perpendicular to a confining uniform magnetic field is examined. It is shown that, with a sufficiently large wave amplitude, significant perpendicular stochastic heating can be obtained with wave frequency at a fraction of the cyclotron frequency
On Frequency Combs in Monolithic Resonators
Directory of Open Access Journals (Sweden)
Savchenkov A. A.
2016-06-01
Full Text Available Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.
On Frequency Combs in Monolithic Resonators
Savchenkov, A. A.; Matsko, A. B.; Maleki, L.
2016-06-01
Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.
Triplet State Resonance Raman Spectrum of all-trans-diphenylbutadiene
DEFF Research Database (Denmark)
Wilbrandt, Robert Walter; Grossman, W.E.L.; Killough, P.M
1984-01-01
The resonance Raman spectrum of all-trans-diphenylbutadiene (DPB) in its ground state and the resonance Raman spectrum (RRS) of DPB in its short-lived electronically excited triplet state are reported. Transient spectra were obtained by a pump-probe technique using two pulsed lasers...
Superconducting high frequency high power resonators
International Nuclear Information System (INIS)
Hobbis, C.; Vardiman, R.; Weinman, L.
1974-01-01
A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)
Resonant magnetic pumping at very low frequency
International Nuclear Information System (INIS)
Canobbio, Ernesto
1978-01-01
We propose to exploit for plasma heating purposes the very low frequency limit of the Alfven wave resonance condition, which reduces essentially to safety factor q=m/n, a rational number. It is shown that a substantial fraction of the total RF-energy can be absorbed by the plasma. The lowest possible frequency value is determined by the maximum tolerable width of the RF-magnetic islands which develop near the singular surface. The obvious interest of the proposed scheme is the low frequency value (f<=10 KHz) which allows the RF-coils to be protected by stainless steel or even to be put outside the liner
Frequency division using a micromechanical resonance cascade
Energy Technology Data Exchange (ETDEWEB)
Qalandar, K. R., E-mail: kamala@engineering.ucsb.edu; Gibson, B.; Sharma, M.; Ma, A.; Turner, K. L. [Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106 (United States); Strachan, B. S. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Electrical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Shaw, S. W. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48823 (United States)
2014-12-15
A coupled micromechanical resonator array demonstrates a mechanical realization of multi-stage frequency division. The mechanical structure consists of a set of N sequentially perpendicular microbeams that are connected by relatively weak elastic elements such that the system vibration modes are localized to individual microbeams and have natural frequencies with ratios close to 1:2:⋯:2{sup N}. Conservative (passive) nonlinear inter-modal coupling provides the required energy transfer between modes and is achieved by finite deformation kinematics. When the highest frequency beam is excited, this arrangement promotes a cascade of subharmonic resonances that achieve frequency division of 2{sup j} at microbeam j for j = 1, …, N. Results are shown for a capacitively driven three-stage divider in which an input signal of 824 kHz is passively divided through three modal stages, producing signals at 412 kHz, 206 kHz, and 103 kHz. The system modes are characterized and used to delineate the range of AC input voltages and frequencies over which the cascade occurs. This narrow band frequency divider has simple design rules that are scalable to higher frequencies and can be extended to a larger number of modal stages.
Andersen, Christian Kraglund; Mølmer, Klaus
2015-03-01
A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.
High quality factor gigahertz frequencies in nanomechanical diamond resonators
Gaidarzhy, Alexei; Imboden, Matthias; Mohanty, Pritiraj; Rankin, Janet; Sheldon, Brian W.
2007-01-01
We report actuation and detection of gigahertz-range resonance frequencies in nano-crystalline diamond mechanical resonators. High order transverse vibration modes are measured in coupled-beam resonators exhibiting frequencies up to 1.441 GHz. The cantilever-array design of the resonators translates the gigahertz-range resonant motion of micron-long cantilever elements to the displacement of the central supporting structure. Use of nano-crystalline diamond further increases the frequency comp...
Electrothermal Frequency Modulated Resonator for Mechanical Memory
Hafiz, Md Abdullah Al
2016-08-18
In this paper, we experimentally demonstrate a mechanical memory device based on the nonlinear dynamics of an electrostatically actuated microelectromechanical resonator utilizing an electrothermal frequency modulation scheme. The microstructure is deliberately fabricated as an in-plane shallow arch to achieve geometric quadratic nonlinearity. We exploit this inherent nonlinearity of the arch and drive it at resonance with minimal actuation voltage into the nonlinear regime, thereby creating softening behavior, hysteresis, and coexistence of states. The hysteretic frequency band is controlled by the electrothermal actuation voltage. Binary values are assigned to the two allowed dynamical states on the hysteretic response curve of the arch resonator with respect to the electrothermal actuation voltage. Set-and-reset operations of the memory states are performed by applying controlled dc pulses provided through the electrothermal actuation scheme, while the read-out operation is performed simultaneously by measuring the motional current through a capacitive detection technique. This novel memory device has the advantages of operating at low voltages and under room temperature. [2016-0043
Cognitive radio transmitter with a broadband clean frequency spectrum
Subhan, S.
2014-01-01
The tremendous increase in wireless communication over the last few decades has led to a congestion of the radio frequency (RF) spectrum, which is utilized for transmission and reception of information. As suitable RF spectrum is scarce, attempts are being made to use the RF spectrum in a more
NRSC, Neutron Resonance Spectrum Calculation System
International Nuclear Information System (INIS)
Leszczynski, Francisco
2004-01-01
1 - Description of program or function: The NRSC system is a package of four programs for calculating detailed neutron spectra and related quantities, for homogeneous mixtures of isotopes and cylindrical reactor pin cells, in the energy resonance region, using ENDF/B evaluated nuclear data pre-processed with NJOY or Cullen's codes up to the Doppler Broadening and unresolved resonance level. 2 - Methods: NRSC consists of four programs: GEXSCO, RMET21, ALAMBDA and WLUTIL. GEXSCO prepares the nuclear data from ENDF/B evaluated nuclear data pre-processed with NJOY or Cullen's codes up to the Doppler Broadening or unresolved resonance level for RMET21 input. RMET21 calculates spectra and related quantities for homogeneous mixtures of isotopes and cylindrical reactor pin cells, in the energy resonance region, using slowing-down algorithms and, in the case of pin cells, the collision probability method. ALAMBDA obtains lambda factors (Goldstein-Cohen intermediate resonance factors in the formalism of WIMSD code) of different isotopes for including on WIMSD-type multigroup libraries for WIMSD or other cell-codes, from output of RMET21 program. WLUTIL is an auxiliary program for extracting tabulated parameters related with RMET21 program calculations from WIMSD libraries for comparisons, and for producing new WIMSD libraries with parameters calculated with RMET21 and ALAMBDA programs. 3 - Restrictions on the complexity of the problem: GEXSCO program has fixed array dimensions that are suitable for processing all reasonable outputs from nuclear data pre-processing programs. RMET21 program uses variable dimension method from a fixed general array. ALAMBDA and WLUTIL programs have fixed arrays that are adapted to standard WIMSD libraries. All programs can be easily modified to adapt to special requirements
Miniaturization of metamaterial electrical resonators at the terahertz spectrum
Karamanos, Theodosios D.; Kantartzis, Nikolaos V.
2014-05-01
An efficient methodology for the modification of electrical resonators in order to be readily applicable at the terahertz regime is developed in this paper. To this aim, the proposed miniaturization technique starts from the conventional resonator which, without any change, exhibits the lowest possible electrical resonance for minimum dimensions. Subsequently, a set of interdigital capacitors is embedded in the original structure to increase capaci- tance, while their impact on the main resonance is investigated through computational simulations. Furthermore, to augment the inductance of the initial resonator, and, hence reduce the resonance frequency, the concept of spiral inductor elements is introduced. Again, results for the featured configuration with the additional elements are numerically obtained and all effects due to their presence are carefully examined. Finally, the new alterations are combined together and their in influence on the resonance position and quality is thoroughly studied.
Stochastic resonance in a single-mode laser driven by frequency modulated signal and coloured noises
Institute of Scientific and Technical Information of China (English)
Jin Guo-Xiang; Zhang Liang-Ying; Cao Li
2009-01-01
By adding frequency modulated signals to the intensity equation of gain-noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.
A vibration energy harvesting device with bidirectional resonance frequency tunability
International Nuclear Information System (INIS)
Challa, Vinod R; Prasad, M G; Shi Yong; Fisher, Frank T
2008-01-01
Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22–32 Hz to enable a continuous power output 240–280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined
Temperature dependence of the resonance frequency of thermogravimetric devices
Iervolino, E.; Riccio, M.; Van Herwaarden, A.W.; Irace, A.; Breglio, G.; Van der Vlist, W.; Sarro, P.M.
2010-01-01
This paper investigates the temperature dependence of the resonance frequency of thermogravimetric (TG) devices for tip heating over the temperature range of View the MathML source 25–600?C. The resonance frequency of a fabricated TG device shows to be temperature independent for tip heating up to
On the Resonant Frequencies of the Oja | Nwachukwu | Nigerian ...
African Journals Online (AJOL)
A method for calculating the unblown resonant frequencies of an 'Oja' (a traditional Nigerian musical instrument) is developed. Support for the theory is provided by data derived from experimentally measured spectra of typical oja tones. It is also shown that for resonant frequencies below about 2000Hz, the differences ...
Mixed frequency excitation of an electrostatically actuated resonator
Ramini, Abdallah
2015-04-24
We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler vibrometer to reveal the interesting dynamics of the system when subjected to two-source excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation. © 2015 Springer-Verlag Berlin Heidelberg
High-Frequency Axial Fatigue Test Procedures for Spectrum Loading
2016-07-20
cycle runout limit. PURPOSE 2. To develop the capability to perform High-Frequency (H-F) Spectrum Fatigue tests, an in- house Basic and...response of the test specimen to the command input signal for load cycling . These cycle -by- cycle errors accumulate over the life of the test specimen...fatigue life model. It is expected that the cycle -by- cycle P-V error may vary substantially depending on the load spectrum content, the compensation
Radio frequency quadrupole resonator for linear accelerator
Moretti, Alfred
1985-01-01
An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.
Variable frequency iteration MPPT for resonant power converters
Zhang, Qian; Bataresh, Issa; Chen, Lin
2015-06-30
A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.
Resonant difference-frequency atomic force ultrasonic microscope
Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)
2010-01-01
A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.
Resonance Raman Spectrum of the Transient (SCN)2 Free Radical Anion
DEFF Research Database (Denmark)
Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn
1979-01-01
The resonance Raman spectrum of the transient species (λmax = 475 nm, τ½ = 1.6 μs) formed by pulse radiolysis of aqueous solutions of thiocyanate, SCN2−, is reported. The spectrum is discussed in terms of the previous assignment of this transient to the radical anion, (SCN)−2. The observed...... vibrational frequencies of the radical anion are consistent with substantial weakening of the S---S and the Ctriple bond; length as m-dashN bonds are compared with neutral thiocyanogen....
Extragalactic Peaked-spectrum Radio Sources at Low Frequencies
Energy Technology Data Exchange (ETDEWEB)
Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.; Lenc, E. [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Ekers, R. D.; Bell, M. E. [CSIRO Astronomy and Space Science (CASS), Marsfield, NSW 2122 (Australia); Line, J. L. B.; Hancock, P. J.; Kapińska, A. D.; McKinley, B.; Procopio, P. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO) (Australia); Hurley-Walker, N.; Tingay, S. J.; Franzen, T. M. O.; Morgan, J. [International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102 (Australia); Dwarakanath, K. S. [Raman Research Institute (RRI), Bangalore 560080 (India); For, B.-Q. [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia); Hindson, L.; Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Offringa, A. R., E-mail: joseph.callingham@sydney.edu.au [Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo (Netherlands); and others
2017-02-20
We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.
Imaging atoms from resonance fluorescence spectrum beyond the diffraction limit
Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail
2014-03-01
We calculate the resonance fluorescence spectrum of a linear chain of two-level atoms driven by a gradient coherent laser field. The result shows that we can determine the positions of atoms from the spectrum even when the atoms locate within subwavelength range and the dipole-dipole interaction is significant. This far-field resonance fluorescence localization microscopy method does not require point-by-point scanning and it may be more time-efficient. We also give a possible scheme to extract the position information in an extended region without requiring more peak power of laser. We also briefly discuss how to do a 2D imaging based on our scheme. This work is supported by grants from the King Abdulaziz City for Science and Technology (KACST) and the Qatar National Research Fund (QNRF) under the NPRP project.
A Quarter Ellipse Microstrip Resonator for Filters in Microwave Frequencies
Directory of Open Access Journals (Sweden)
Samuel Á. Jaramillo-Flórez
2013-11-01
Full Text Available This work describes the results of computational simulations and construction of quadrant elliptical resonators excited by coplanar slot line waveguide for designing microwave filters in RF communications systems. By means of the equation of optics, are explained the fundamentals of these geometry of resonators proposed. Are described the construction of quadrant elliptical resonators, one of microstrip and other two of cavity, of size different, and an array of four quadrant elliptical resonators in cascade. The results of the measures and the computational calculus of scattering S11 and S21 of elliptical resonators is made for to identify the resonant frequencies of the resonators studied, proving that these have performance in frequency as complete ellipses by the image effect due to their two mirror in both semiaxis, occupying less area, and the possible applications are discussed.
Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites
Institute of Scientific and Technical Information of China (English)
Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong
2013-01-01
As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.
Frequency-wavenumber spectrum for GATE phase I rainfields
Nakamoto, Shoichiro; Valdes, Juan B.; North, Gerald R.
1990-01-01
The oceanic rainfall frequency-wavenumber spectrum and its associated space-time correlation have been evaluated from subsets of GATE phase I data. The records, of a duration of four days, were sampled at 15 minutes intervals in 4 x 4 km grid boxes over a 400 km diameter hexagon. In the low frequencies-low wavenumber region the results coincide with those obtained by using the stochastic model proposed by North and Nakomoto (1989). From the derived spectrum the inherent time and space scales of the stochastic model were determined to be approximately 13 hours and 36 km. The formalism proposed by North and Nakamoto was taken together with the derived spectrum to compute the mean square sampling error due to intermittent visits of a spaceborne sensor.
Application of frequency spectrum analysis in the rotator moving equilibrium
International Nuclear Information System (INIS)
Liu Ruilan; Su Guanghui; Shang Zhi; Jia Dounan
2001-01-01
The experimental equipment is developed to simulate the rotator vibration. The running state of machine is simulated by using different running conditions. The vibration caused by non-equilibrium mass is analyzed and discussed for first order with focus load. The effective method is found out by using frequency spectrum analysis
Energy Technology Data Exchange (ETDEWEB)
Ma, Xiaojun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Xing; Wang, Zongwei [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Chen, Qian; Qian, Menglu [Institute of Acoustic, Tongji University, Shanghai 200433 (China); Meng, Jie [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Zou, Yaming; Shen, Hao [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Gao, Dangzhong, E-mail: dgaocn@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)
2017-01-15
Highlights: • The frequency equation of isotropic multi-layer hollow spheres was derived using three-dimension (3D) elasticity theory and transfer matrix method. • The natural frequencies of the capsules with a millimeter-sized diameter are determined experimentally using resonant ultrasound spectrum (RUS) system. • The predicted natural frequencies of the frequency equation accord well with the observed results. • The theoretical and experimental investigation has proved the potential applicability of RUS to both metallic and non-metallic capsules. - Abstract: The natural frequency problem of laser inertial confinement fusion (ICF) capsules is one of the basic problems for determining non-destructively the elasticity modulus of each layer material using resonant ultrasound spectroscopy (RUS). In this paper, the frequency equation of isotropic one-layer hollow spheres was derived using three dimension (3D) elasticity theory and some simplified frequency equations were discussed under axisymmetric and spherical symmetry conditions. The corresponding equation of isotropic multi-layer hollow spheres was given employing transfer matrix method. To confirm the validity of the frequency equation and explore the feasibility of RUS for characterizing the ICF capsules, three representative capsules with a millimeter-sized diameter were determined by piezoelectric-based resonant ultrasound spectroscopy (PZT-RUS) and laser-based resonant ultrasound spectroscopy (LRUS) techniques. On the basis of both theoretical and experimental results, it is proved that the calculated and measured natural frequencies are accurate enough for determining the ICF capsules.
Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V
2007-01-01
Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.
Resonance Frequency Readout Circuit for a 900 MHz SAW Device.
Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua
2017-09-15
A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.
Skuk, Verena G.; Schweinberger, Stefan R.
2014-01-01
Purpose: To determine the relative importance of acoustic parameters (fundamental frequency [F0], formant frequencies [FFs], aperiodicity, and spectrum level [SL]) on voice gender perception, the authors used a novel parameter-morphing approach that, unlike spectral envelope shifting, allows the application of nonuniform scale factors to transform…
High Energy Single Frequency Resonant Amplifier, Phase I
National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...
RF MEMS Fractal Capacitors With High Self-Resonant Frequencies
Elshurafa, Amro M.; Emira, Ahmed; Radwan, Ahmed Gomaa; Salama, Khaled N.
2012-01-01
This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality
Method and apparatus for resonant frequency waveform modulation
Taubman, Matthew S [Richland, WA
2011-06-07
A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.
Magnetic Resonance Mediated Radio Frequency Coagulation for Vascular Repair
Zhao, Ming
Purpose. Magnetic Resonance Mediated Radiofrequency Coagulation employs the RF heating effect of MRI scanning to coagulate biomaterials for repair of vascular defects. Coagulation of a protein biomaterial by MR-induced RF heating is a novel means to effect repair of defects such as aneurysms or arteriovenous malformations. Our novel method is to coagulate a thermosetting material (such as egg white, which can be used for investigating heat coagulation behavior and MR relaxation properties) delivered endovascularly by catheter and coagulated by RF-induced heating of an intracatheter resonant wire antenna in the scanner. Methods. Experiments were performed on a Siemens 1.5 T MRI scanner and a Bruker 14T NMR spectrometer. Egg white was brought to equilibrium at seven temperatures (20, 30, 40, 50, 60, 70 and 37 °C) in sequence. Measurement of the water spin-lattice relaxation time Ti, spin-spin relaxation time T2, spin-lattice relaxation time in the rotating frame T1p, or full width at half maximum of the MT spectrum were performed at each temperature. Relaxation parameters of raw egg white and egg white after coagulation at 70 °C were measured in the scanner at 20 °C to determine optimum inversion time, echo time and offset frequency for good image contrast between coagulated and uncoagulated protein. Finally, coagulation of egg white within a glass aneurysm phantom by RF heating in the scanner was performed to demonstrate the MR coagulation methodology and the ability to achieve image contrast between coagulated and uncoagulated biomaterial. Results. Water T2, T1p and MT gave the most definitive indication of the change from uncoagulated at low temperature to fully coagulated at 60 °C, while water T1 showed only the expected gradual increase with temperature, and no response to coagulation. MT weighted imaging is expected to be the optimum method to establish the coagulation condition of the biomaterial.
Chemisorption-Induced Resonance Frequency Shift of a Microcantilever
International Nuclear Information System (INIS)
Zhang Ji-Qiao; Feng Xi-Qiao; Yu Shou-Wen; Huang Gan-Yun
2012-01-01
The autonomy and property of atoms/molecules adsorbed on the surface of a microcantilever can be probed by measuring its resonance frequency shift due to adsorption. The resonance frequency change of a cantilever induced by chemisorption is theoretically studied. Oxygen chemisorbed on the Si(100) surface is taken as a representative example. We demonstrate that the resonant response of the cantilever is mainly determined by the chemisorption-induced bending stiffness variation, which depends on the bond configurations formed by the adsorbed atoms and substrate atoms. This study is helpful for optimal design of microcantilever-based sensors for various applications. (condensed matter: structure, mechanical and thermal properties)
Vibrational resonances in biological systems at microwave frequencies.
Adair, Robert K
2002-03-01
Many biological systems can be expected to exhibit resonance behavior involving the mechanical vibration of system elements. The natural frequencies of such resonances will, generally, be in the microwave frequency range. Some of these systems will be coupled to the electromagnetic field by the charge distributions they carry, thus admitting the possibility that microwave exposures may generate physiological effects in man and other species. However, such microwave excitable resonances are expected to be strongly damped by interaction with their aqueous biological environment. Although those dissipation mechanisms have been studied, the limitations on energy transfers that follow from the limited coupling of these resonances to the electromagnetic field have not generally been considered. We show that this coupling must generally be very small and thus the absorbed energy is so strongly limited that such resonances cannot affect biology significantly even if the systems are much less strongly damped than expected from basic dissipation models.
Resonance cones below the ion cyclotron frequency: theory and experiment
International Nuclear Information System (INIS)
Bellan, P.
1976-03-01
The resonance cones existing below the ion cyclotron frequency, ω/sub c/sub i//, are shown, theoretically and experimentally, to be the asymptotes of hyperbolic constant-phase surfaces of low-frequency ion acoustic waves. Above ω/sub c/sub i// the surfaces transform into ellipses that are related to the electrostatic ion cyclotron waves and ion acoustic waves
A high-switching-frequency flyback converter in resonant mode
Li, Jianting; van Horck, Frank B.M.; Daniel, Bobby J.; Bergveld, Henk Jan
2017-01-01
The demand of miniaturization of power systems has accelerated the research on high-switching-frequency power converters. A flyback converter in resonant mode that features low switching losses, less transformer losses, and low switching noise at high switching frequency is investigated in this
Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum
Lee, Seungwon
2012-01-01
This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.
Directory of Open Access Journals (Sweden)
Hilmi Volkan Demir
2009-11-01
Full Text Available We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity.
Open Resonator for Summation of Powers in Sub-Terahertz and Terahertz Frequencies
Kuz'michev, I. K.; Yeryomka, V. D.; May, A. V.; Troshchilo, A. S.
2017-03-01
Purpose: Study of excitation features for the first higher axialasymmetric type oscillations in an open resonator connected into the waveguide transmission line. Design/methodology/approach: To determine the efficiency of higher oscillation excitation in the resonator by using the highest wave of a rectangular waveguide, the coefficient of the antenna surface utilization is used. The coefficient of reflection from the open resonator is determined by the known method of summation of the partial coefficients of reflection from the resonant system. Findings: The excitation efficiency of the first higher axial asymmetric type TEM10q oscillations in an open resonator connected into the waveguide transmission line, using the TE20 type wave, is considered. The research efforts were made with accounting for the electromagnetic field vector nature. It is shown that for certain sizes of exciting coupler the excitation efficiency of the working excitation is equal to 0.867. Besides, this resonant system has a single frequency response within a wide band of frequencies. Due to this, it can be applied for summation of powers for individual sources of oscillations. Since this resonant system allows separating the matching functions as to the field and coupling, it is possible to provide any prescribed coupling of sources with a resonant volume. For this purpose, one- dimensional diffraction gratings (E-polarization) are used. Conclusions: With the matched excitation of axially asymmetric modes of oscillations the resonant system has an angular and frequency spectrum selection that is of great practical importance for powers summation. By application of one- dimensional diffraction gratings (E-polarization), located in apertures of coupling elements, the active elements can be matched with the resonant volume.
A consistent response spectrum analysis including the resonance range
International Nuclear Information System (INIS)
Schmitz, D.; Simmchen, A.
1983-01-01
The report provides a complete consistent Response Spectrum Analysis for any component. The effect of supports with different excitation is taken into consideration, at is the description of the resonance ranges. It includes information explaining how the contributions of the eigenforms with higher eigenfrequencies are to be considered. Stocking of floor response spectra is also possible using the method described here. However, modified floor response spectra must now be calculated for each building mode. Once these have been prepared, the calculation of the dynamic component values is practically no more complicated than with the conventional, non-consistent methods. The consistent Response Spectrum Analysis can supply smaller and larger values than the conventional theory, a fact which can be demonstrated using simple examples. The report contains a consistent Response Spectrum Analysis (RSA), which, as far as we know, has been formulated in this way for the first time. A consistent RSA is so important because today this method is preferentially applied as an important tool for the earthquake proof of components in nuclear power plants. (orig./HP)
Ion–Cyclotron Resonance Frequency Interval Dependence on the O ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... The frequency intervals in which O VI ions get in resonance with ion–cyclotron waves are calculated using the kinetic model, for the latest six values found in literature on O VI ion number densities in the 1.5–3 region of the NPCH. It is found that the common resonance interval is 1.5 kHz to 3 kHz.
Constant-frequency, clamped-mode resonant converters
Tsai, Fu-Sheng; Materu, Peter; Lee, Fred C.
1987-01-01
Two novel clamped-mode resonant converters are proposed which operate at a constant frequency while retaining many desired features of conventional series- and parallel-resonant converters. State-plane analysis techniques are used to identify all possible operating modes and define their mode boundaries. Control-to-output characteristics are derived that specify the regions for natural and forced commutation. The predicted operating modes are verified using a prototype circuit.
Relationship between wingbeat frequency and resonant frequency of the wing in insects
International Nuclear Information System (INIS)
Ha, Ngoc San; Truong, Quang Tri; Goo, Nam Seo; Park, Hoon Cheol
2013-01-01
In this study, we experimentally studied the relationship between wingbeat frequency and resonant frequency of 30 individuals of eight insect species from five orders: Odonata (Sympetrum flaveolum), Lepidoptera (Pieris rapae, Plusia gamma and Ochlodes), Hymenoptera (Xylocopa pubescens and Bombus rupestric), Hemiptera (Tibicen linnei) and Coleoptera (Allomyrina dichotoma). The wingbeat frequency of free-flying insects was measured using a high-speed camera while the natural frequency was determined using a laser displacement sensor along with a Bruel and Kjaer fast Fourier transform analyzer based on the base excitation method. The results showed that the wingbeat frequency was related to body mass (m) and forewing area (A f ), following the proportionality f ∼ m 1/2 /A f , while the natural frequency was significantly correlated with area density (f 0 ∼ m w /A f , m w is the wing mass). In addition, from the comparison of wingbeat frequency to natural frequency, the ratio between wingbeat frequency and natural frequency was found to be, in general, between 0.13 and 0.67 for the insects flapping at a lower wingbeat frequency (less than 100 Hz) and higher than 1.22 for the insects flapping at a higher wingbeat frequency (higher than 100 Hz). These results suggest that wingbeat frequency does not have a strong relation with resonance frequency: in other words, insects have not been evolved sufficiently to flap at their wings' structural resonant frequency. This contradicts the general conclusion of other reports-–that insects flap at their wings' resonant frequency to take advantage of passive deformation to save energy. (paper)
Frequency-difference-dependent stochastic resonance in neural systems
Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong
2017-08-01
Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.
Artificial excitation of ELF waves with frequency of Schumann resonance
Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.
2014-11-01
We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.
Liu, W. Y.; Xu, H. K.; Su, F. F.; Li, Z. Y.; Tian, Ye; Han, Siyuan; Zhao, S. P.
2018-03-01
Superconducting quantum multilevel systems coupled to resonators have recently been considered in some applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity to the present phase device.
Dynamics of multi-frequency oscillator ensembles with resonant coupling
Lück, S.; Pikovsky, A.
2011-07-01
We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.
Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye
2017-10-01
Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.
Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency
Wu, Jun
2016-06-01
Complete absorption in a graphene monolayer at terahertz frequency through the critical coupling effect is investigated. It is achieved by sandwiching the graphene monolayer between a dielectric grating and a Bragg grating. The designed graphene absorber exhibits near-unity absorption at resonance but with an ultranarrow spectrum and antenna-like response, which is attributed to the combined effects of guided mode resonance with dielectric grating and the photonic band gap with Bragg grating. In addition to numerical simulation, the electric field distributions are also illustrated to provide a physical understanding of the perfect absorption effect. Furthermore, the absorption performance can be tuned by only changing the Fermi level of graphene, which is beneficial for real application. It is believed that this study may be useful for designing next-generation graphene-based optoelectronic devices.
Experimental characterization of graphene by electrostatic resonance frequency tuning
Sajadi, B.; Alijani, F.; Davidovikj, D.; Goosen, J.F.L.; Steeneken, P.G.; van Keulen, A.
2017-01-01
In the last decade, graphene membranes have drawn tremendous attention due to their potential application in Nano-Electro-Mechanical Systems. In this paper, we show that the frequency response curves of graphene resonators are powerful tools for their dynamic characterization and for extracting
Helium gas purity monitor based on low frequency acoustic resonance
Kasthurirengan, S.; Jacob, S.; Karunanithi, R.; Karthikeyan, A.
1996-05-01
Monitoring gas purity is an important aspect of gas recovery stations where air is usually one of the major impurities. Purity monitors of Katherometric type are commercially available for this purpose. Alternatively, we discuss here a helium gas purity monitor based on acoustic resonance of a cavity at audio frequencies. It measures the purity by monitoring the resonant frequency of a cylindrical cavity filled with the gas under test and excited by conventional telephone transducers fixed at the ends. The use of the latter simplifies the design considerably. The paper discusses the details of the resonant cavity and the electronic circuit along with temperature compensation. The unit has been calibrated with helium gas of known purities. The unit has a response time of the order of 10 minutes and measures the gas purity to an accuracy of 0.02%. The unit has been installed in our helium recovery system and is found to perform satisfactorily.
Band Width of Acoustic Resonance Frequency Relatively Natural Frequency of Fuel Rod Vibration
Energy Technology Data Exchange (ETDEWEB)
Proskuryakov, Konstantin Nicolaevich; Moukhine, V.S.; Novikov, K.S.; Galivets, E.Yu. [MPEI - TU, 14, Krasnokazarmennaya str., Moscow, 111250 (Russian Federation)
2009-06-15
In flow induced vibrations the fluid flow is the energy source that causes vibration. Acoustic resonance in piping may lead to severe problems due to over-stressing of components or significant losses of efficiency. Steady oscillatory flow in NPP primary loop can be induced by the pulsating flow introduced by reactor circulating pump or may be set up by self-excitation. Dynamic forces generated by the turbulent flow of coolant in reactor cores cause fuel rods (FR) and fuel assembly (FA) to vibrate. Flow-induced FR and FA vibrations can generally be broken into three groups: large amplitude 'resonance type' vibrations, which can cause immediate rod failure or severe damage to the rod and its support structure, middle amplitude 'within bandwidth of resonance frequency type' vibrations responsible for more gradual wear and fatigue at the contact surface between the fuel cladding and rod support and small amplitude vibrations, 'out of bandwidth of resonance frequency type' responsible for permissible wear and fatigue at the contact surface between the fuel cladding and rod support. Ultimately, these vibration types can result in a cladding breach, and therefore must be accounted for in the thermal hydraulic design of FR and FA and reactor internals. In paper the technique of definition of quality factor (Q) of acoustic contour of the coolant is presented. The value of Q defines a range of frequencies of acoustic fluctuations of the coolant within which the resonance of oscillations of the structure and the coolant is realized. Method of evaluation of so called band width (BW) of acoustic resonance frequency is worked out and presented in the paper. BW characterises the range of the frequency of coolant pressure oscillations within which the frequency of coolant pressure oscillations matches the fuel assembly's natural frequency of vibration (its resonance frequency). Paper show the way of detuning acoustic resonance from natural
Jump resonant frequency islands in nonlinear feedback control systems
Koenigsberg, W. D.; Dunn, J. C.
1975-01-01
A new type of jump resonance is predicted and observed in certain nonlinear feedback control systems. The new jump resonance characteristic is described as a 'frequency island' due to the fact that a portion of the input-output transfer characteristic is disjoint from the main body. The presence of such frequency islands was predicted by using a sinusoidal describing function characterization of the dynamics of an inertial gyro employing nonlinear ternary rebalance logic. While the general conditions under which such islands are possible has not been examined, a numerical approach is presented which can aid in establishing their presence. The existence of the frequency islands predicted for the ternary rebalanced gyro was confirmed by simulating the nonlinear system and measuring the transfer function.
Outer hair cell piezoelectricity: frequency response enhancement and resonance behavior.
Weitzel, Erik K; Tasker, Ron; Brownell, William E
2003-09-01
Stretching or compressing an outer hair cell alters its membrane potential and, conversely, changing the electrical potential alters its length. This bi-directional energy conversion takes place in the cell's lateral wall and resembles the direct and converse piezoelectric effects both qualitatively and quantitatively. A piezoelectric model of the lateral wall has been developed that is based on the electrical and material parameters of the lateral wall. An equivalent circuit for the outer hair cell that includes piezoelectricity shows a greater admittance at high frequencies than one containing only membrane resistance and capacitance. The model also predicts resonance at ultrasonic frequencies that is inversely proportional to cell length. These features suggest all mammals use outer hair cell piezoelectricity to support the high-frequency receptor potentials that drive electromotility. It is also possible that members of some mammalian orders use outer hair cell piezoelectric resonance in detecting species-specific vocalizations.
Dynamics of multi-frequency oscillator ensembles with resonant coupling
International Nuclear Information System (INIS)
Lueck, S.; Pikovsky, A.
2011-01-01
We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. -- Highlights: → Kuramoto model is generalized on the case of resonantly interacting oscillators having frequency ratio 2:1. → Regimes of full and partial synchrony, as well as non-synchronous ones are reported. → Analytical description is developed on the basis of the Watanabe-Strogatz approach.
Dynamics of multi-frequency oscillator ensembles with resonant coupling
Energy Technology Data Exchange (ETDEWEB)
Lueck, S. [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany); Pikovsky, A., E-mail: pikovsky@stat.physik.uni-potsdam.de [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)
2011-07-11
We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. -- Highlights: → Kuramoto model is generalized on the case of resonantly interacting oscillators having frequency ratio 2:1. → Regimes of full and partial synchrony, as well as non-synchronous ones are reported. → Analytical description is developed on the basis of the Watanabe-Strogatz approach.
Thin Co films with tunable ferromagnetic resonance frequency
International Nuclear Information System (INIS)
Maklakov, Sergey S.; Maklakov, Sergey A.; Ryzhikov, Ilya A.; Rozanov, Konstantin N.; Osipov, Alexey V.
2012-01-01
The tailored production of thin Co films of 50 nm thick with ferromagnetic resonance frequency in a range from 2.9 to 7.3 GHz using the DC magnetron sputtering is reported. The ferromagnetic resonance frequency, coercivity, effective magnetic field and nanocrystalline structure parameters are shown to be governed by the Co deposition rate. For this investigation, FMR, VSM and TEM techniques were used. - Highlights: ► Thin Co films with FMR frequency in a range from 2.9 to 7.3 GHz are obtained. ► The films' properties are governed by the deposition rate during DC magnetron sputtering. ► FMR, VSM and TEM techniques were used during the study.
Javed, Faizan; Middleton, Paul M; Malouf, Philip; Chan, Gregory S H; Savkin, Andrey V; Lovell, Nigel H; Steel, Elizabeth; Mackie, James
2010-09-01
This study investigates the peripheral circulatory and autonomic response to volume withdrawal in haemodialysis based on spectral analysis of photoplethysmographic waveform variability (PPGV). Frequency spectrum analysis was performed on the baseline and pulse amplitude variabilities of the finger infrared photoplethysmographic (PPG) waveform and on heart rate variability extracted from the ECG signal collected from 18 kidney failure patients undergoing haemodialysis. Spectral powers were calculated from the low frequency (LF, 0.04-0.145 Hz) and high frequency (HF, 0.145-0.45 Hz) bands. In eight stable fluid overloaded patients (fluid removal of >2 L) not on alpha blockers, progressive reduction in relative blood volume during haemodialysis resulted in significant increase in LF and HF powers of PPG baseline and amplitude variability (P analysis of finger PPGV may provide valuable information on the autonomic vascular response to blood volume reduction in haemodialysis, and can be potentially utilized as a non-invasive tool for assessing peripheral circulatory control during routine dialysis procedure.
Digital system to monitor the natural frequency of mechanical resonators
International Nuclear Information System (INIS)
Brengartner, Tobias; Siegel, Michael; Urban, Martin; Monse, Benjamin; Frühauf, Dietmar
2013-01-01
Mechanical resonators are often used in process or condition monitoring. They are used for liquid-level limit detection or for viscosity and density sensing. Therefore, the resonator is preferably actuated at its natural frequency. In industrial applications, this is achieved by analogue closed resonant circuits. These circuits have been established because of the low energy consumption and low component costs. Due to the future trend of microprocessors, digital systems are now an interesting alternative and can achieve better results compared to analogue realizations. In this context, this paper presents a novel digital system for monitoring the natural frequency of mechanical resonators. The system is realized with newly developed algorithms and is based on a simple signal processing procedure with minimum computational cost. This allows the use of a low-power microcontroller, thus making the system interesting for industrial use. It is shown that the natural frequency can be measured in respect of high industrial requirements on reliability, fastness and accuracy, combined with the possibility of reducing energy consumption. (paper)
Resonance frequencies of AFM cantilevers in contact with a surface
Energy Technology Data Exchange (ETDEWEB)
Verbiest, G.J., E-mail: Verbiest@physik.rwth-aachen.de [JARA-FIT and II. Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Rost, M.J., E-mail: Rost@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)
2016-12-15
To make the forces in an Atomic Force Microscope that operates in a dynamic mode with one or multiple vibrations applied to the cantilever, quantitative, one needs to relate a change in resonance frequency of the cantilever to a specific tip–sample interaction. Due to the time dependence of the force between the tip and sample caused by the vibrations, this task is not only difficult, but in fact only possible to solve for certain limiting cases, if one follows common theoretical approaches with a Taylor expansion around the deflection point. Here, we present an analytical method for calculating the resonance frequencies of the cantilever that is valid for any tip–sample interaction. Instead of linearizing the tip–sample interaction locally, we calculate an averaged, weighted linearization taking into account all positions of the tip while vibrating. Our method bridges, therefore, the difficult gap between a free oscillating cantilever and a cantilever that is pushed infinitely hard into contact with a surface, which describes a clamped-pinned boundary condition. For a correct description of the cantilever dynamics, we take into account both the tip mass and the tip moment of inertia. Applying our model, we show that it is possible to calculate the modal response of a cantilever as a function of the tip–sample interaction strength. Based on these modal vibration characteristics, we show that the higher resonance frequencies of a cantilever are completely insensitive to the strength of the tip–sample interaction. - Highlights: • A method to calculate the resonances of AFM cantilevers under any force is proposed. • The analytical model is based on Euler-beam theory. • The shift in resonance frequency due to forces decrease with increasing mode number. • The proposed method enables quantitative ultrasound AFM experiments. • Our results explain also the applicability of the higher modes in SubSurface-AFM.
Superthin resonator dye laser with THz intermode frequency separation
International Nuclear Information System (INIS)
Rudych, P D; Surovtsev, N V
2014-01-01
Two-color laser irradiation is considered an effective way to pump THz excitations for numerous scientific and applied goals. We present a design for convenient laser source with THz intermode frequency separation. The setup is based on dye laser with superthin resonator pumped by a subnanosecond pulse laser. It was proven that the superthin resonator dye laser is useful, possesses high stability and high energy conversion, and generates narrow laser modes. The ability of this laser to pump CARS processes for THz vibrations is demonstrated. (letter)
Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators
International Nuclear Information System (INIS)
Eriksson, A M; Midtvedt, D; Croy, A; Isacsson, A
2013-01-01
We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings. (paper)
The aggregate site frequency spectrum for comparative population genomic inference.
Xue, Alexander T; Hickerson, Michael J
2015-12-01
Understanding how assemblages of species responded to past climate change is a central goal of comparative phylogeography and comparative population genomics, an endeavour that has increasing potential to integrate with community ecology. New sequencing technology now provides the potential to perform complex demographic inference at unprecedented resolution across assemblages of nonmodel species. To this end, we introduce the aggregate site frequency spectrum (aSFS), an expansion of the site frequency spectrum to use single nucleotide polymorphism (SNP) data sets collected from multiple, co-distributed species for assemblage-level demographic inference. We describe how the aSFS is constructed over an arbitrary number of independent population samples and then demonstrate how the aSFS can differentiate various multispecies demographic histories under a wide range of sampling configurations while allowing effective population sizes and expansion magnitudes to vary independently. We subsequently couple the aSFS with a hierarchical approximate Bayesian computation (hABC) framework to estimate degree of temporal synchronicity in expansion times across taxa, including an empirical demonstration with a data set consisting of five populations of the threespine stickleback (Gasterosteus aculeatus). Corroborating what is generally understood about the recent postglacial origins of these populations, the joint aSFS/hABC analysis strongly suggests that the stickleback data are most consistent with synchronous expansion after the Last Glacial Maximum (posterior probability = 0.99). The aSFS will have general application for multilevel statistical frameworks to test models involving assemblages and/or communities, and as large-scale SNP data from nonmodel species become routine, the aSFS expands the potential for powerful next-generation comparative population genomic inference. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Resonant-frequency discharge in a multi-cell radio frequency cavity
International Nuclear Information System (INIS)
Popović, S.; Upadhyay, J.; Nikolić, M.; Vušković, L.; Mammosser, J.
2014-01-01
We are reporting experimental results on a microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency cryo-module. This discharge offers a mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the issues related to resonant detuning due to sustained multi-cell cavity plasma. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal
Repetition rate multiplication of frequency comb using all-pass fiber resonator
International Nuclear Information System (INIS)
Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan
2016-01-01
We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.
Repetition rate multiplication of frequency comb using all-pass fiber resonator
Energy Technology Data Exchange (ETDEWEB)
Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan, E-mail: liyan@mail.tsinghua.edu.cn [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China)
2016-09-15
We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.
Functional magnetic resonance imaging of autism spectrum disorders
Dichter, Gabriel S.
2012-01-01
This review presents an overview of functional magnetic resonance imaging findings in autism spectrum disorders (ASDs), Although there is considerable heterogeneity with respect to results across studies, common themes have emerged, including: (i) hypoactivation in nodes of the “social brain” during social processing tasks, including regions within the prefrontal cortex, the posterior superior temporal sulcus, the amygdala, and the fusiform gyrus; (ii) aberrant frontostriatal activation during cognitive control tasks relevant to restricted and repetitive behaviors and interests, including regions within the dorsal prefrontal cortex and the basal ganglia; (iii) differential lateralization and activation of language processing and production regions during communication tasks; (iv) anomalous mesolimbic responses to social and nonsocial rewards; (v) task-based long-range functional hypoconnectivity and short-range hyper-connectivity; and (vi) decreased anterior-posterior functional connectivity during resting states. These findings provide mechanistic accounts of ASD pathophysiology and suggest directions for future research aimed at elucidating etiologic models and developing rationally derived and targeted treatments. PMID:23226956
Resonant interactions between cometary ions and low frequency electromagnetic waves
Thorne, Richard M.; Tsurutani, Bruce T.
1987-01-01
The conditions for resonant wave amplification in a plasma with a ring-beam distribution which is intended to model pick-up ions in a cometary environment are investigated. The inclination between the interplanetary field and the solar wind is found to play a crucial role in governing both the resonant frequency and the growth rate of any unstable mode. It is suggested that the low-frequency MHD mode should experience the most rapid amplification for intermediate inclination. In the frame of the solar wind, such waves should propagate along the field in the direction upstream toward the sun with a phase speed lower than the beaming velocity of the pick-up ions. This mechanism may account for the presence of the interior MHD waves noted by satellites over a region surrounding comets Giacobini-Zinner and Halley.
A MEMS coupled resonator for frequency filtering in air
Ilyas, Saad
2018-02-03
We present design, fabrication, and characterization of a mechanically coupled MEMS H resonator capable of performing simultaneous mechanical amplification and filtering in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multi-layer surface micromachining process. A special fabrication process and device design is employed to enable operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter for low frequency applications. It is demonstrated that through the multi-source harmonic excitation and the operation in air, an improved band-pass filter with flat response and minimal ripples can be achieved.
Two Novel Measurements for the Drive-Mode Resonant Frequency of a Micromachined Vibratory Gyroscope
Directory of Open Access Journals (Sweden)
Ancheng Wang
2013-11-01
Full Text Available To investigate the drive-mode resonance frequency of a micromachined vibratory gyroscope (MVG, one needs to measure it accurately and efficiently. The conventional approach to measure the resonant frequency is by performing a sweep frequency test and spectrum analysis. The method is time-consuming and inconvenient because of the requirements of many test points, a lot of data storage and off-line analyses. In this paper, we propose two novel measurement methods, the search method and track method, respectively. The former is based on the magnitude-frequency characteristics of the drive mode, utilizing a one-dimensional search technique. The latter is based on the phase-frequency characteristics, applying a feedback control loop. Their performances in precision, noise resistivity and efficiency are analyzed through detailed simulations. A test system is implemented based on a field programmable gate array (FPGA and experiments are carried out. By comparing with the common approach, feasibility and superiorities of the proposed methods are validated. In particular, significant efficiency improvements are achieved whereby the conventional frequency method consumes nearly 5,000 s to finish a measurement, while only 5 s is needed for the track method and 1 s for the search method.
Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas
International Nuclear Information System (INIS)
Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.
2008-01-01
Two different experiments involving pressure gradients across the confinement magnetic field in a large plasma column are found to exhibit a broadband turbulence that displays an exponential frequency spectrum for frequencies below the ion cyclotron frequency. The exponential feature has been traced to the presence of solitary pulses having a Lorentzian temporal signature. These pulses arise from nonlinear interactions of drift-Alfven waves driven by the pressure gradients. In both experiments the width of the pulses is narrowly distributed resulting in exponential spectra with a single characteristic time scale. The temporal width of the pulses is measured to be a fraction of a period of the drift-Alfven waves. The experiments are performed in the Large Plasma Device (LAPD-U) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] operated by the Basic Plasma Science Facility at the University of California, Los Angeles. One experiment involves a controlled, pure electron temperature gradient associated with a microscopic (6 mm gradient length) hot electron temperature filament created by the injection a small electron beam embedded in the center of a large, cold magnetized plasma. The other experiment is a macroscopic (3.5 cm gradient length) limiter-edge experiment in which a density gradient is established by inserting a metallic plate at the edge of the nominal plasma column of the LAPD-U. The temperature filament experiment permits a detailed study of the transition from coherent to turbulent behavior and the concomitant change from classical to anomalous transport. In the limiter experiment the turbulence sampled is always fully developed. The similarity of the results in the two experiments strongly suggests a universal feature of pressure-gradient driven turbulence in magnetized plasmas that results in nondiffusive cross-field transport. This may explain previous observations in helical confinement devices, research tokamaks, and arc plasmas.
Low-frequency nuclear quadrupole resonance with a dc SQUID
International Nuclear Information System (INIS)
Chang, J.W.
1991-07-01
Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs
Directory of Open Access Journals (Sweden)
Peter Dzurko
2007-01-01
Full Text Available Operation states analysis of a series-parallel converter working above resonance frequency is described in the paper. Principal equations are derived for individual operation states. On the basis of them the diagrams are made out. The diagrams give the complex image of the converter behaviour for individual circuit parameters. The waveforms may be utilised at designing the inverter individual parts.
Operation Analysis of the Series-Parallel Resonant Converter Working above Resonance Frequency
Directory of Open Access Journals (Sweden)
Peter Dzurko
2006-01-01
Full Text Available The present article deals with theoretical analysis of operation of a series-parallel converter working above resonance frequency. Derived are principal equations for individual operation intervals. Based on these made out are waveforms of individual quantities during both the inverter operation at load and no-load operation. The waveforms may be utilised at designing the inverter individual parts.
Nano-resonator frequency response based on strain gradient theory
International Nuclear Information System (INIS)
Miandoab, Ehsan Maani; Yousefi-Koma, Aghil; Pishkenari, Hossein Nejat; Fathi, Mohammad
2014-01-01
This paper aims to explore the dynamic behaviour of a nano-resonator under ac and dc excitation using strain gradient theory. To achieve this goal, the partial differential equation of nano-beam vibration is first converted to an ordinary differential equation by the Galerkin projection method and the lumped model is derived. Lumped parameters of the nano-resonator, such as linear and nonlinear springs and damper coefficients, are compared with those of classical theory and it is demonstrated that beams with smaller thickness display greater deviation from classical parameters. Stable and unstable equilibrium points based on classic and non-classical theories are also compared. The results show that, regarding the applied dc voltage, the dynamic behaviours expected by classical and non-classical theories are significantly different, such that one theory predicts the un-deformed shape as the stable condition, while the other theory predicts that the beam will experience bi-stability. To obtain the frequency response of the nano-resonator, a general equation including cubic and quadratic nonlinearities in addition to parametric electrostatic excitation terms is derived, and the analytical solution is determined using a second-order multiple scales method. Based on frequency response analysis, the softening and hardening effects given by two theories are investigated and compared, and it is observed that neglecting the size effect can lead to two completely different predictions in the dynamic behaviour of the resonators. The findings of this article can be helpful in the design and characterization of the size-dependent dynamic behaviour of resonators on small scales. (paper)
Long Elastic Open Neck Acoustic Resonator for low frequency absorption
Simon, Frank
2018-05-01
Passive acoustic liners, used in aeronautic engine nacelles to reduce radiated fan noise, have a quarter-wavelength behavior, because of perforated sheets backed by honeycombs (with one or two degrees of freedom). However, their acoustic absorption ability is naturally limited to medium and high frequencies because of constraints in thickness. The low ratio "plate thickness/hole diameter" generates impedance levels dependent on the incident sound pressure level and the grazing mean flow (by a mechanism of nonlinear dissipation through vortex shedding), which penalises the optimal design of liners. The aim of this paper is to overcome this problem by a concept called LEONAR ("Long Elastic Open Neck Acoustic Resonator"), in which a perforated plate is coupled with tubes of variable lengths inserted in a limited volume of a back cavity. To do this, experimental and theoretical studies, using different types of liners (material nature, hole diameter, tube length, cavity thickness) are described in this paper. It is shown that the impedance can be precisely determined with an analytical approach based on parallel transfer matrices of tubes coupled to the cavity. Moreover, the introduction of tubes in a cavity of a conventional resonator generates a significant shift in the frequency range of absorption towards lower frequencies or allows a reduction of cavity thickness. The impedance is practically independent of sound pressure level because of a high ratio "tube length/tube hole diameter". Finally, a test led in an aeroacoustic bench suggests that a grazing flow at a bulk Mach number of 0.3 has little impact on the impedance value. These first results allow considering these resonators with linear behavior as an alternative to classical resonators, in particular, as needed for future Ultra High Bypass Ratio engines with shorter and thinner nacelles.
Nammari, Abdullah; Caskey, Logan; Negrete, Johnny; Bardaweel, Hamzeh
2018-03-01
This article presents a non-resonant magneto-mechanical vibration energy harvester. When externally excited, the energy harvester converts vibrations into electric charge using a guided levitated magnet oscillating inside a multi-turn coil that is fixed around the exterior of the energy harvester. The levitated magnet is guided using four oblique mechanical springs. A prototype of the energy harvester is fabricated using additive manufacturing. Both experiment and model are used to characterize the static and dynamic behavior of the energy harvester. Measured restoring forces show that the fabricated energy harvester retains a mono-stable potential energy well with desired stiffness nonlinearities. Results show that magnetic spring results in hardening effect which increases the resonant frequency of the energy harvester. Additionally, oblique mechanical springs introduce geometric, negative, nonlinear stiffness which improves the harvester's response towards lower frequency spectrum. The unique design can produce a tunable energy harvester with multi-well potential energy characteristics. A finite element model is developed to estimate the average radial flux density experienced by the multi-turn coil. Also, a lumped parameter model of the energy harvester is developed and validated against measured data. Both upward and downward frequency sweeps are performed to determine the frequency response of the harvester. Results show that at higher excitation levels hardening effects become more apparent, and the system dynamic response turns into non-resonant. Frequency response curves exhibit frequency jump phenomena as a result of coexistence of multiple energy states at the frequency branch. The fabricated energy harvester is hand-held and measures approximately 100.5 [cm3] total volume. For a base excitation of 1.0 g [m/s2], the prototype generates a peak voltage and normalized power density of approximately 3.5 [V] and 0.133 [mW/cm3 g2], respectively, at 15.5 [Hz].
Xing, Shuai; Wu, Tengfei; Li, Shuyi; Xia, Chuanqing; Han, Jibo; Zhang, Lei; Zhao, Chunbo
2018-03-01
As a bridge connecting microwave frequency and optical frequency, femtosecond laser has important significance in optical frequency measurement. Compared with the traditional Ti-sapphire femtosecond optical frequency comb, with the advantages of compact structure, strong anti-interference ability and low cost, the fiber femtosecond optical frequency comb has a wider application prospect. An experiment of spectrum broadening in a highly nonlinear photonic crystal fiber pumped by an Er-fiber mode-locked femtosecond laser is studied in this paper. Based on optical amplification and frequency doubling, the central wavelength of the output spectrum is 780nm and the average power is 232mW. With the femtosecond pulses coupled into two different photonic crystal fibers, the coverage of visible spectrum is up to 500nm-960nm. The spectral shape and width can be optimized by changing the polarization state for satisfying the requirments of different optical frequencies measurement.
Whispering gallery mode resonators for frequency metrology applications
Baumgartel, Lukas
This dissertation describes an investigation into the use of whispering gallery mode (WGM) resonators for applications towards frequency reference and metrology. Laser stabilization and the measurement of optical frequencies have enabled myriad technologies of both academic and commercial interest. A technology which seems to span both motivations is optical atomic clocks. These devices are virtually unimaginable without the ultra stable lasers plus frequency measurement and down-conversion afforded by Fabry Perot (FP) cavities and model-locked laser combs, respectively. However, WGM resonators can potentially perform both of these tasks while having the distinct advantages of compactness and simplicity. This work represents progress towards understanding and mitigating the performance limitations of WGM cavities for such applications. A system for laser frequency stabilization to a the cavity via the Pound-Drever-Hall (PDH) method is described. While the laser lock itself is found to perform at the level of several parts in 1015, a variety of fundamental and technical mechanisms destabilize the WGM frequency itself. Owing to the relatively large thermal expansion coefficients in optical crystals, environmental temperature drifts set the stability limit at time scales greater than the thermal relaxation time of the crystal. Uncompensated, these drifts pull WGM frequencies about 3 orders of magnitude more than they would in an FP cavity. Thus, two temperature compensation schemes are developed. An active scheme measures and stabilizes the mode volume temperature to the level of several nK, reducing the effective temperature coefficient of the resonator to 1.7x10-7 K-1; simulations suggest that the value could eventually be as low as 3.5x10-8 K-1, on par with the aforementioned FP cavities. A second, passive scheme is also described, which employs a heterogeneous resonator structure that capitalizes on the thermo-mechanical properties of one material and the optical
Directory of Open Access Journals (Sweden)
Alessandro Cosci
2016-08-01
Full Text Available This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate (PMMA box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system.
Use of advanced magnetic resonance imaging techniques in neuromyelitis optica spectrum disorder
S. Kremer (Stephane); F. Renard (Felix); S. Achard (Sophie); M.A. Lana-Peixoto (Marco A.); J. Palace (Jacqueline); N. Asgari (Nasrin); E.C. Klawiter (Eric C.); S. Tenembaum (Silvia); B. Banwell (Brenda); B.M. Greenberg (Benjamin M.); J.L. Bennett (Jeffrey); M. Levy (Michael); P. Villoslada (Pablo); A. Saiz (Albert Abe); K. Fujihara (Kazuo); K.H. Chan (Koon Ho); S. Schippling (Sven); F. Paul (Friedemann); H.J. Kim (Ho Jin); J. De Seze (Jerome); J.T. Wuerfel (Jens T.); P. Cabre (Philippe); R. Marignier (Romain); T. Tedder (Thomas); E.D. van Pelt - Gravesteijn (Daniëlle); S. Broadley (Simon); T. Chitnis (Tanuja); D. Wingerchuk (Dean); L. Pandit (Lekha); M.I. Leite (M. Isabel); M. Apiwattanakul (Metha); I. Kleiter (Ingo); N. Prayoonwiwat (Naraporn); M. Han (May); K. Hellwig (Kerstin); K. Van Herle (Katja); G. John (Gareth); D.C. Hooper (D. Craig); I. Nakashima (Ichiro); D. Sato (Douglas); M.R. Yeaman (Michael R.); E. Waubant (Emmanuelle); S. Zamvil (Scott); O. Stüve (Olaf); O. Aktas (Orhan); T.J. Smith (Terry J.); A. Jacob (Anu); K. O'Connor (Kevin)
2015-01-01
textabstractBrain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other
Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang
2018-06-01
Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.
Resonant frequency and elastic modulus measurements on hardened cement pastes
International Nuclear Information System (INIS)
Lee, D.J.
1982-12-01
A new technique for measuring resonant frequency and elastic modulus is described. This has been used on specimens of hardened cement paste containing water with no simulated waste, and the results compared with measurements of ultrasonic pulse velocity, dimensional movements and compressive strength made on the same formulations. In addition, measurements were made on a specimen containing simulated waste which demonstrated the applicability of the new technique for following the development of the mechanical properties of cemented simulant radioactive waste in the laboratory. (U.K.)
RF MEMS Fractal Capacitors With High Self-Resonant Frequencies
Elshurafa, Amro M.
2012-07-23
This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.
Low frequency noise in resonant Josephson soliton oscillators
DEFF Research Database (Denmark)
Hansen, Jørn Bindslev; Holst, T.; Wellstood, Frederick C.
1991-01-01
The noise in the resonant soliton mode of long and narrow Josephson tunnel junctions (Josephson transmission lines or JTLs) have been measured in the frequency range from 0.1 Hz to 25 kHz by means of a DC SQUID. The measured white noise was found, to within a factor of two, to be equal...... to the Nyquist voltage noise in a resistance equal to the dynamic resistance RD of the current-voltage characteristic of the bias point. In contrast, measurements of the linewidth of the microwave radiation from the same JTL showed that the spectral density of the underlying noise voltage scaled as R D2/RS where...
Resonant behavior of a fractional oscillator with fluctuating frequency
Soika, Erkki; Mankin, Romi; Ainsaar, Ain
2010-01-01
The long-time behavior of the first moment for the output signal of a fractional oscillator with fluctuating frequency subjected to an external periodic force is considered. Colored fluctuations of the oscillator eigenfrequency are modeled as a dichotomous noise. The viscoelastic type friction kernel with memory is assumed as a power-law function of time. Using the Shapiro-Loginov formula, exact expressions for the response to an external periodic field and for the complex susceptibility are presented. On the basis of the exact formulas it is demonstrated that interplay of colored noise and memory can generate a variety of cooperation effects, such as multiresonances versus the driving frequency and the friction coefficient as well as stochastic resonance versus noise parameters. The necessary and sufficient conditions for the cooperation effects are also discussed. Particularly, two different critical memory exponents have been found, which mark dynamical transitions in the behavior of the system.
High-frequency acoustic spectrum analyzer based on polymer integrated optics
Yacoubian, Araz
This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.
Effect of water depth on wind-wave frequency spectrum I. Spectral form
Wen, Sheng-Chang; Guan, Chang-Long; Sun, Shi-Cai; Wu, Ke-Jian; Zhang, Da-Cuo
1996-06-01
Wen et al's method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m 0 and peak frequency {ie97-1}, contains in addition to the peakness factor {ie97-2} a depth parameter η=(2π m o)1/2/ d ( d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.
DEFF Research Database (Denmark)
El-Ella, Haitham; Ahmadi, Sepehr; Wojciechowski, Adam
2017-01-01
transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≥ 1=4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate......Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional...... to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin...
Resonant-frequency discharge in a multi-cell radio frequency cavity
Energy Technology Data Exchange (ETDEWEB)
Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L
2014-11-07
We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.
Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis.
Johns, Lennart D
2002-07-01
To present the frequency resonance hypothesis, a possible mechanical mechanism by which treatment with non-thermal levels of ultrasound stimulates therapeutic effects. The review encompasses a 4-decade history but focuses on recent reports describing the effects of nonthermal therapeutic levels of ultrasound at the cellular and molecular levels. A search of MEDLINE from 1965 through 2000 using the terms ultrasound and therapeutic ultrasound. The literature provides a number of examples in which exposure of cells to therapeutic ultrasound under nonthermal conditions modified cellular functions. Nonthermal levels of ultrasound are reported to modulate membrane properties, alter cellular proliferation, and produce increases in proteins associated with inflammation and injury repair. Combined, these data suggest that nonthermal effects of therapeutic ultrasound can modify the inflammatory response. The concept of the absorption of ultrasonic energy by enzymatic proteins leading to changes in the enzymes activity is not novel. However, recent reports demonstrating that ultrasound affects enzyme activity and possibly gene regulation provide sufficient data to present a probable molecular mechanism of ultrasound's nonthermal therapeutic action. The frequency resonance hypothesis describes 2 possible biological mechanisms that may alter protein function as a result of the absorption of ultrasonic energy. First, absorption of mechanical energy by a protein may produce a transient conformational shift (modifying the 3-dimensional structure) and alter the protein's functional activity. Second, the resonance or shearing properties of the wave (or both) may dissociate a multimolecular complex, thereby disrupting the complex's function. This review focuses on recent studies that have reported cellular and molecular effects of therapeutic ultrasound and presents a mechanical mechanism that may lead to a better understanding of how the nonthermal effects of ultrasound may be
Resonance chains in open systems, generalized zeta functions and clustering of the length spectrum
International Nuclear Information System (INIS)
Barkhofen, S; Faure, F; Weich, T
2014-01-01
In many non-integrable open systems in physics and mathematics, resonances have been found to be surprisingly ordered along curved lines in the complex plane. In this article we provide a unifying approach to these resonance chains by generalizing dynamical zeta functions. By means of a detailed numerical study we show that these generalized zeta functions explain the mechanism that creates the chains of quantum resonance and classical Ruelle resonances for three-disk systems as well as geometric resonances on Schottky surfaces. We also present a direct system-intrinsic definition of the continuous lines on which the resonances are strung together as a projection of an analytic variety. Additionally, this approach shows that the existence of resonance chains is directly related to a clustering of the classical length spectrum on multiples of a base length. Finally, this link is used to construct new examples where several different structures of resonance chains coexist. (paper)
DEFF Research Database (Denmark)
Chen, Yangyang; Yang, Ming; Hu, Kun
2017-01-01
High-stiffness servo system is easy to cause mechanical resonance in elastic coupling servo system. Although on-line adaptive notch filter is effective in most cases, it will lead to a severer resonance when resonance frequency deviated from the natural torsional frequency. To explain...
Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle
Carreño, F.; Antón, M. A.; Arrieta-Yáñez, Francisco
2013-11-01
The resonance fluorescence spectrum (RFS) of a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle (MNP) is analyzed. The quantum dot is described as a four-level atomlike system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle, which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions, which is accompanied by very minor local field corrections. This manifests into dramatic modifications in the RFS of the hybrid system in contrast to the one obtained for the isolated QD. The RFS is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field applied in the Voigt geometry, and the Rabi frequency of the driving field. It is shown that the spin of the QD is imprinted onto certain sidebands of the RFS, and that the signal at these sidebands can be optimized by engineering the shape of the MNP.
An automatic method to determine cutoff frequency based on image power spectrum
International Nuclear Information System (INIS)
Beis, J.S.; Vancouver Hospital and Health Sciences Center, British Columbia; Celler, A.; Barney, J.S.
1995-01-01
The authors present an algorithm for automatically choosing filter cutoff frequency (F c ) using the power spectrum of the projections. The method is based on the assumption that the expectation of the image power spectrum is the sum of the expectation of the blurred object power spectrum (dominant at low frequencies) plus a constant value due to Poisson noise. By considering the discrete components of the noise-dominated high-frequency spectrum as a Gaussian distribution N(μ,σ), the Student t-test determines F c as the highest frequency for which the image frequency components are unlikely to be drawn from N (μ,σ). The method is general and can be applied to any filter. In this work, the authors tested the approach using the Metz restoration filter on simulated, phantom, and patient data with good results. Quantitative performance of the technique was evaluated by plotting recovery coefficient (RC) versus NMSE of reconstructed images
Wan, Chenchen
Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate
Effect of metal coating and residual stress on the resonant frequency ...
Indian Academy of Sciences (India)
CranesSci MEMS Laboratory, Department of Mechanical Engineering, Indian. Institute of ... Finally, it is found that the analytical models give an error of ... As a resonator, the most important characteristics are the resonant frequency and.
The Real-time Frequency Spectrum Analysis of Neutron Pulse Signal Series
International Nuclear Information System (INIS)
Tang Yuelin; Ren Yong; Wei Biao; Feng Peng; Mi Deling; Pan Yingjun; Li Jiansheng; Ye Cenming
2009-01-01
The frequency spectrum analysis of neutron pulse signal is a very important method in nuclear stochastic signal processing Focused on the special '0' and '1' of neutron pulse signal series, this paper proposes new rotation-table and realizes a real-time frequency spectrum algorithm under 1G Hz sample rate based on PC with add, address and SSE. The numerical experimental results show that under the count rate of 3X10 6 s -1 , this algorithm is superior to FFTW in time-consumption and can meet the real-time requirement of frequency spectrum analysis. (authors)
Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke
2011-05-01
The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.
International Nuclear Information System (INIS)
Kapaev, V. V.; Kopaev, Yu. V.; Savinov, S. A.; Murzin, V. N.
2013-01-01
The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schrödinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In 0.53 Ga 0.47 As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V dc in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.
DEFF Research Database (Denmark)
Ghasemi, Negareh; Zare, Firuz; Davari, Pooya
2017-01-01
Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric...... was excited at different frequencies. Different excitation signals were generated using a linear power amplifier and a multilevel converter within a range of 30–200 V. Empirical relation was developed to express the resistance of the piezoelectric transducer as a nonlinear function of both excitation voltage...... and resonance frequency. The impedance measurements revealed that at higher voltage ranges, the piezoelectric transducer can be easily saturated. Also, it was shown that for the developed ultrasound system composed of two transducers (one transmitter and one receiver), the output voltage measured across...
Resonant frequencies of massless scalar field in rotating black-brane spacetime
Institute of Scientific and Technical Information of China (English)
Jing Ji-Liang; Pan Qi-Yuan
2008-01-01
This paper investigates the resonant frequencies of the massless scalar field in the near extremal Kerr-like black-brahe spacetime. It is shown that the different angular quantum number will present different resonant frequencies. It is also shown that the real part of the resonant frequencies increases as the compact dimensions parameter μi increases, but the magnitude of the imaginary part decreases as μi increases.
Frequency spectrum analysis of 252Cf neutron source based on LabVIEW
International Nuclear Information System (INIS)
Mi Deling; Li Pengcheng
2011-01-01
The frequency spectrum analysis of 252 Cf Neutron source is an extremely important method in nuclear stochastic signal processing. Focused on the special '0' and '1' structure of neutron pulse series, this paper proposes a fast-correlation algorithm to improve the computational rate of the spectrum analysis system. And the multi-core processor technology is employed as well as multi-threaded programming techniques of LabVIEW to construct frequency spectrum analysis system of 252 Cf neutron source based on LabVIEW. It not only obtains the auto-correlation and cross correlation results, but also auto-power spectrum,cross-power spectrum and ratio of spectral density. The results show that: analysis tools based on LabVIEW improve the fast auto-correlation and cross correlation code operating efficiency about by 25% to 35%, also verify the feasibility of using LabVIEW for spectrum analysis. (authors)
El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L
2017-06-26
Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.
International Nuclear Information System (INIS)
Sushilov, N.V.; Kholodkevich, E.D.
1995-01-01
An analytical expression is derived for the polarization induced by a weak probe field with periodically modulated amplitude in a two-level medium saturated by a strong amplitude-and phase-modulated resonance field. It is shown that the absorption spectrum of the probe field includes parametric resonances, the maxima corresponding to the condition δ= 2nΓ-Ω w and the minima to that of δ= (2n + 1)Γ- w , where δ is the probe-field detuning front the resonance frequency, Ω w is the modulation frequency of the probe-field amplitude, and Γ is the transition line width, n = 1, 2, 3, hor-ellipsis. At the specific modulation parameters, a substantial region of negative values (i.e., the region of amplification without the population inversion) exists in the absorption spectrum of the probe field
Alexander, LYSENKO; Iurii, VOLK
2018-03-01
We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
Energy Technology Data Exchange (ETDEWEB)
Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)
2011-07-15
We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.
RF MEMS suspended band-stop resonator and filter for frequency and bandwidth continuous fine tuning
International Nuclear Information System (INIS)
Jang, Yun-Ho; Kim, Yong-Kweon; Llamas-Garro, Ignacio; Kim, Jung-Mu
2012-01-01
We firstly propose the concept of a frequency and bandwidth fine-tuning method using an RF MEMS-based suspended tunable band-stop resonator. We experimentally show the feasibility of the continuously tuned resonator, including a second-order filter, which consists of cascaded resonators to achieve center frequency and bandwidth fine tuning. The structure consists of a freestanding half-wavelength (λ/2) resonator connected to a large displacement comb actuator. The lateral movement of the λ/2 resonator over the main transmission line produces different electromagnetic decoupling values from the main transmission line. The decoupled energy leads to continuous center frequency and bandwidth tuning using the band-stop resonator circuit for fine-tuning applications. The freestanding λ/2 resonator plays the role of a variable capacitor as well as a decoupling resonator in the proposed structure. The fabricated tunable filter shows suitability for Ku-band wireless communication system applications with continuous reconfiguration
International Nuclear Information System (INIS)
Suter, J.J.
1988-01-01
This work examines the radiation-induced effects in alpha-quartz crystal resonators and distinguishes the various acoustic losses responsible for the frequency susceptibility over these dose ranges. Simulation of low-earth-orbit proton radiation was accomplished with protons from the Harvard University Cyclotron using a novel proton-beam modulator, which was designed to emulate a 10-120 MeV proton spectrum for the radiation susceptibility and acoustic-loss studies on AT quartz resonators. Quartz resonators having aluminum defect center concentrations between 0.01 and 19 ppm experienced proton-induced frequency shifts not correlated to their aluminum impurity content. It was also found that AT quartz resonators of the electrode-less BVA design experienced the smallest frequency shifts. Experiments conducted with 1.25-MeV gamma rays from a cobalt 60 source demonstrated identical frequency shifts in quartz, indicating that the energy losses of gamma rays and protons in quartz over the examined dose and energy ranges were similar. Acoustic-loss measurements conducted over the 0.3-70 K range revealed that the phonon-phonon and two-level energy excitation peaks near 20 and 5 K, respectively, were not affected by proton or cobalt 60 radiation
Spectrum monitoring: Radio Frequency Interferences (RFI) profile for ...
African Journals Online (AJOL)
It was crucial to monitor the Radio Frequency Interference (RFI) in order to conduct the radio astronomical research with very minimum RFI. These RFI will be distorted the astronomical data. In this work, we have investigated the RFI strength (dBm) and presenting on how the nearby RFI affect to the OH lines window (1600 ...
Linear Optimization of Frequency Spectrum Assignments Across System
2016-03-01
selection tools, frequency allocation, transmission optimization, electromagnetic maneuver warfare, electronic protection, assignment model 15. NUMBER ...Characteristics Modeled ...............................................................29 Table 10. Antenna Systems Modeled , Number of Systems and...surveillance EW early warning GAMS general algebraic modeling system GHz gigahertz IDE integrated development environment ILP integer linear program
The Tracking Resonance Frequency Method for Photoacoustic Measurements Based on the Phase Response
Suchenek, Mariusz
2017-04-01
One of the major issues in the use of the resonant photoacoustic cell is the resonance frequency of the cell. The frequency is not stable, and its changes depend mostly on temperature and gas mixture. This paper presents a new method for tracking resonance frequency, where both the amplitude and phase are calculated from the input samples. The stimulating frequency can be adjusted to the resonance frequency of the cell based on the phase. This method was implemented using a digital measurement system with an analog to digital converter, field programmable gate array (FPGA) and a microcontroller. The resonance frequency was changed by the injection of carbon dioxide into the cell. A theoretical description and experimental results are also presented.
The Hagedorn Spectrum and the Dual Resonance Model: An Old Love Affair
Veneziano, Gabriele
2016-01-01
In this contribution I recall how people working in the late 1960s on the dual resonance model came to the surprising discovery of a Hagedorn-like spectrum, and why they should not have been surprised. I will then turn to discussing the Hagedorn spectrum from a string theory viewpoint (which adds a huge degeneracy to the exponential spectrum). Finally, I will discuss how all this can be reinterpreted in the new incarnation of string theory through the properties of quantum black holes.
International Nuclear Information System (INIS)
Streitberger, Kaspar-Josche; Fehlner, Andreas; Sack, Ingolf; Pache, Florence; Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander; Bellmann-Strobl, Judith; Ruprecht, Klemens; Braun, Juergen; Paul, Friedemann; Wuerfel, Jens
2017-01-01
Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Streitberger, Kaspar-Josche [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Fehlner, Andreas; Sack, Ingolf [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Pache, Florence [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Bellmann-Strobl, Judith [Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Ruprecht, Klemens [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Braun, Juergen [Charite - Universitaetsmedizin Berlin, Institute of Medical Informatics, Berlin (Germany); Paul, Friedemann [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Wuerfel, Jens [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Medical Image Analysis Center (MIAC AG), Basel (Switzerland)
2017-05-15
Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)
Pina-Camacho, Laura; Villero, Sonia; Boada, Leticia; Fraguas, David; Janssen, Joost; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara
2013-01-01
This systematic review aims to determine whether or not structural magnetic resonance imaging (sMRI) data support the DSM-5 proposal of an autism spectrum disorder (ASD) diagnostic category, and whether or not classical DSM-IV autistic disorder (AD) and Asperger syndrome (AS) categories should be subsumed into it. The most replicated sMRI findings…
Outphasing control of gallium nitride based very high frequency resonant converters
DEFF Research Database (Denmark)
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2015-01-01
In this paper an outphasing modulation control method suitable for line regulation of very high frequency resonant converters is described. The pros and cons of several control methods suitable for very high frequency resonant converters are described and compared to outphasing modulation...
Radio-frequency quadrupole resonator for linear accelerator
Moretti, A.
1982-10-19
An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.
Insertion torque, resonance frequency, and removal torque analysis of microimplants.
Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen
2016-09-01
This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups. Copyright © 2016. Published by Elsevier Taiwan.
Directory of Open Access Journals (Sweden)
V. A. Mazur
2006-07-01
Full Text Available A new concept is proposed for the emergence of ULF geomagnetic oscillations with a discrete spectrum of frequencies (0.8, 1.3, 1.9, 2.6 ...mHz registered in the magnetosphere's midnight-morning sector. The concept relies on the assumption that these oscillations are MHD-resonator eigenmodes in the near-Earth plasma sheet. This magnetospheric area is where conditions are met for fast magnetosonic waves to be confined. The confinement is a result of the velocity values of fast magnetosonic waves in the near-Earth plasma sheet which differ greatly from those in the magnetotail lobes, leading to turning points forming in the tailward direction for the waves under study. To compute the eigenfrequency spectrum of such a resonator, we used a model magnetosphere with parabolic geometry. The fundamental harmonics of this resonator's eigenfrequencies are shown to be capable of being clustered into groups with average frequencies matching, with good accuracy, the frequencies of the observed oscillations. A possible explanation for the stability of the observed oscillation frequencies is that such a resonator might only form when the magnetosphere is in a certain unperturbed state.
Directory of Open Access Journals (Sweden)
V. A. Mazur
2006-07-01
Full Text Available A new concept is proposed for the emergence of ULF geomagnetic oscillations with a discrete spectrum of frequencies (0.8, 1.3, 1.9, 2.6 ...mHz registered in the magnetosphere's midnight-morning sector. The concept relies on the assumption that these oscillations are MHD-resonator eigenmodes in the near-Earth plasma sheet. This magnetospheric area is where conditions are met for fast magnetosonic waves to be confined. The confinement is a result of the velocity values of fast magnetosonic waves in the near-Earth plasma sheet which differ greatly from those in the magnetotail lobes, leading to turning points forming in the tailward direction for the waves under study. To compute the eigenfrequency spectrum of such a resonator, we used a model magnetosphere with parabolic geometry. The fundamental harmonics of this resonator's eigenfrequencies are shown to be capable of being clustered into groups with average frequencies matching, with good accuracy, the frequencies of the observed oscillations. A possible explanation for the stability of the observed oscillation frequencies is that such a resonator might only form when the magnetosphere is in a certain unperturbed state.
Evaluation of elastic constants of materials using the frequency spectrum
International Nuclear Information System (INIS)
Silva Neto, Ramiro J. da; Baroni, Douglas B.; Bittencourt, Marcelo de S.Q.
2015-01-01
The characterization of materials made with the support of non-destructive techniques has great importance in industrial applications. The ultrasonic techniques are distinguished by good resolution to measure small variations of wave velocities as a result of changes in the character suffered by a particular material. In general these ultrasonic techniques are studied in the time domain, which represents an experimental difficulties when thin materials are analyzed, as well as to attenuate the ultrasonic signal drastically. An ultrasonic technique that uses the frequency domain is used in this study aiming to provide good time measurements to calculate the elastic constants of the first order in an aluminum alloy 6351. With the aid of a statistical approach was possible to have good results of tests performed when compared by a time domain technique already well explored in Ultrasound works produced in the Nuclear Engineering Institute Laboratory (LABUS / IEN) and also presented in most of the package, in good agreement with the theoretical model established in literature and used to validate the experiment, which was found in the results with good approximation. The relevance of this work in the nuclear area is associated with the interest to know the mechanical properties of structural components of the nuclear industry, which is currently studied as a rule, resorting to the computer simulations or previously during the operation of the system. (author)
Evaluation of elastic constants of materials using the frequency spectrum
Energy Technology Data Exchange (ETDEWEB)
Silva Neto, Ramiro J. da; Baroni, Douglas B.; Bittencourt, Marcelo de S.Q., E-mail: ramirobd@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Departamento de Materiais Nucleares. Laboratorio de Ultrassom
2015-07-01
The characterization of materials made with the support of non-destructive techniques has great importance in industrial applications. The ultrasonic techniques are distinguished by good resolution to measure small variations of wave velocities as a result of changes in the character suffered by a particular material. In general these ultrasonic techniques are studied in the time domain, which represents an experimental difficulties when thin materials are analyzed, as well as to attenuate the ultrasonic signal drastically. An ultrasonic technique that uses the frequency domain is used in this study aiming to provide good time measurements to calculate the elastic constants of the first order in an aluminum alloy 6351. With the aid of a statistical approach was possible to have good results of tests performed when compared by a time domain technique already well explored in Ultrasound works produced in the Nuclear Engineering Institute Laboratory (LABUS / IEN) and also presented in most of the package, in good agreement with the theoretical model established in literature and used to validate the experiment, which was found in the results with good approximation. The relevance of this work in the nuclear area is associated with the interest to know the mechanical properties of structural components of the nuclear industry, which is currently studied as a rule, resorting to the computer simulations or previously during the operation of the system. (author)
Resonance Analysis of High-Frequency Electrohydraulic Exciter Controlled by 2D Valve
Directory of Open Access Journals (Sweden)
Guojun Pan
2015-01-01
Full Text Available The resonant characteristic of hydraulic system has not been described yet because it is necessarily restricted by linear assumptions in classical fluid theory. A way of the resonance analysis is presented for an electrohydraulic exciter controlled by 2D valve. The block diagram of this excitation system is established by extracting nonlinear parts from the traditional linearization analysis; as a result the resonant frequency is obtained. According to input energy from oil source which is equal to the reverse energy to oil source, load pressure and load flow are solved analytically as the working frequency reaches the natural frequency. The analytical expression of resonant peak is also derived without damping. Finally, the experimental system is built to verify the theoretical analysis. The initial research on resonant characteristic will lay theoretical foundation and make useful complement for resonance phenomena of classical fluid theory in hydraulic system.
High Frequency LLC Resonant Converter with Magnetic Shunt Integrated Planar Transformer
DEFF Research Database (Denmark)
Li, Mingxiao; Ouyang, Ziwei; Andersen, Michael A. E.
2018-01-01
High Frequency LLC requires a smaller resonant inductance which is usually implemented by transformer leakage inductance. However, this small resonant inductance is difficult to deal with a wide input voltage range. This paper proposes a new method to implement a larger resonant inductance by using...... a magnetic shunt integrated into planar transformer. The switching frequency can be greatly narrowed by designing a smaller inductance ratio of magnetizing inductance to resonant inductance. Since this method can well deal with a wide input voltage range without adding extra inductor and increasing the size...... of the transformer, the power density can be improved. The precise leakage inductance calculation method for this transformer and detailed LLC converter design procedure are presented. A 280-380V and 48V-100W half bridge LLC resonant converter with 1 MHz resonant frequency is built to verify the design methodology....
Frequency-domain analysis of resonant-type ring magnet power supplies
International Nuclear Information System (INIS)
Kim, J.M.S.; Reiniger, K.W.
1993-01-01
For fast-cycling synchrotrons, resonant-type ring magnet power supplies are commonly used to provide a dc-biased ac excitation for the ring magnets. Up to the present, this power supply system has been analyzed using simplified analytical approximation, namely assuming the resonant frequency of the ring magnet network is fixed and equal to the accelerator frequency. This paper presents a frequency-domain analysis technique for a more accurate analysis of resonant-type ring magnet power supplies. This approach identifies that, with the variation of the resonant frequency, the operating conditions of the power supply changes quite dramatically because of the high Q value of the resonant network. The analytical results are verified, using both experimental results and simulation results
Method for Estimating Optimum Free Resonant Frequencies in Overcoupled WPT System
Directory of Open Access Journals (Sweden)
Dong-Wook Seo
2017-01-01
Full Text Available In our previous work, we proposed the method to maximize the output power even in the overcoupled state of the wireless power transfer (WPT system by controlling free resonant frequencies and derived closed-form expression for optimum free resonant frequencies of the primary and secondary resonators. In this paper, we propose the mutual coupling approach to derive the optimum free resonant frequencies and show the measured power transfer efficiency (PTE using the transmission efficiency as well as the system energy efficiency. The results of the proposed approach exactly coincide with those of the previous work, and the fabricated prototype achieves the transmission efficiency of about 80% by tuning the free resonant frequencies to the optimum values in the overcoupled state.
Design of etch holes to compensate spring width loss for reliable resonant frequencies
International Nuclear Information System (INIS)
Jang, Yun-Ho; Kim, Jong-Wan; Kim, Yong-Kweon; Kim, Jung-Mu
2012-01-01
A pattern width loss during the fabrication of lateral silicon resonators degrades resonant frequency reliability since such a width loss causes the significant deviation of spring stiffness. Here we present a design guide for etch holes to obtain reliable resonant frequencies by controlling etch holes geometries. The new function of an etch hole is to generate the comparable amount of the width loss between springs and etch holes, in turn to minimize the effect of the spring width loss on resonant frequency shift and deviation. An analytic expression reveals that a compensation factor (CF), defined by the circumference (C u ) of a unit etch hole divided by its silicon area (A u ), is a key parameter for reliable frequencies. The protrusive etch holes were proposed and compared with square etch holes to demonstrate the frequency reliability according to CF values and etch hole shapes. The normalized resonant frequency shift and deviation of the protrusive etch hole (−13.0% ± 6.9%) were significantly improved compared to those of a square etch hole with a small CF value (−42.8% ± 14.8%). The proposed design guide based on the CF value and protrusive shapes can be used to achieve reliable resonant frequencies for high performance silicon resonators. (technical note)
International Nuclear Information System (INIS)
Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.
2012-01-01
Plasma series resonance (PSR) effect is well known in geometrically asymmetric capacitively couple radio frequency plasma. However, plasma series resonance effect in geometrically symmetric plasma has not been properly investigated. In this work, a theoretical approach is made to investigate the plasma series resonance effect and its influence on Ohmic and stochastic heating in geometrically symmetric discharge. Electrical asymmetry effect by means of dual frequency voltage waveform is applied to excite the plasma series resonance. The results show considerable variation in heating with phase difference between the voltage waveforms, which may be applicable in controlling the plasma parameters in such plasma.
A MEMS coupled resonator for frequency filtering in air
Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.
2018-01-01
We present design, fabrication, and characterization of a mechanically coupled MEMS H resonator capable of performing simultaneous mechanical amplification and filtering in air. The device comprises of two doubly clamped polyimide microbeams joined
Frequency Characteristics of Double-Walled Carbon Nanotube Resonator with Different Length
Directory of Open Access Journals (Sweden)
Jun-Ha LEE
2016-05-01
Full Text Available In this paper, we have conducted classical molecular dynamics simulations for DWCNTs of various wall lengths to investigate their use as ultrahigh frequency nano-mechanical resonators. We sought to determine the variations in the frequency of these resonators according to changes in the DWCNT wall lengths. For a double-walled carbon nanotube resonator with a shorter inner nanotube, the shorter inner nanotube can be considered to be a flexible core, and thus, the length influences the fundamental frequency. In this paper, we analyze the variation in frequency of ultra-high frequency nano-mechnical resonators constructed from DWCNTs with different wall lengths.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12951
Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials
Qin, Chengzhi; Zhou, Feng; Peng, Yugui; Sounas, Dimitrios; Zhu, Xuefeng; Wang, Bing; Dong, Jianji; Zhang, Xinliang; Alù; , Andrea; Lu, Peixiang
2018-03-01
By using optical phase modulators in a fiber-optical circuit, we theoretically and experimentally demonstrate large control over the spectrum of an impinging signal, which may evolve analogously to discrete diffraction in spatial waveguide arrays. The modulation phase acts as a photonic gauge potential in the frequency dimension, realizing efficient control of the central frequency and bandwidth of frequency combs. We experimentally achieve a 50 GHz frequency shift and threefold bandwidth expansion of an impinging comb, as well as the frequency analogue of various refraction phenomena, including negative refraction and perfect focusing in the frequency domain, both for discrete and continuous incident spectra. Our study paves a promising way towards versatile frequency management for optical communications and signal processing using time modulation schemes.
On the frequency and field linewidth conversion of ferromagnetic resonance spectra
International Nuclear Information System (INIS)
Wei, Yajun; Svedlindh, Peter; Liang Chin, Shin
2015-01-01
Both frequency swept and field swept ferromagnetic resonance measurements have been carried out for a number of different samples with negligible, moderate and significant extrinsic frequency independent linewidth contribution to analyze the correlation between the experimentally measured frequency and field linewidths. Contrary to the belief commonly held by many researchers, it is found that the frequency and field linewidth conversion relation does not hold for all cases. Instead it holds only for samples with negligible frequency independent linewidth contributions. For samples with non-negligible frequency independent linewidth contribution, the field linewidth values converted from the measured frequency linewidth are larger than the experimentally measured field linewidth. A close examination of the literature reveals that previously reported results support our findings, with successful conversions related to samples with negligible frequency independent linewidth contributions and unsuccessful conversions related to samples with significant frequency independent linewidth. The findings are important in providing guidance in ferromagnetic resonance linewidth conversions. (paper)
Frequency spectrum might act as communication code between retina and visual cortex I
Directory of Open Access Journals (Sweden)
Xu Yang
2015-12-01
Full Text Available AIM: To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1. METHODS: Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG and pattern visually evoked potential (PVEP and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS: The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION: The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.
Frequency spectrum might act as communication code between retina and visual cortex I.
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.
Radiation-induced frequency transients in AT, BT, and SC cut quartz resonators
International Nuclear Information System (INIS)
Koehler, D.R.
1979-01-01
Earlier studies of transient frequency changes in high-purity swept AT quartz resonators led to the conclusion that impurity-induced effects were small, while the observed changes were qualitatively and quantitatively well characterized in terms of the time changing temperature of the vibrating quartz and its effect on frequency. 5 MHz, AT cut fifth overtone, and BT and SC cut third overtone resonators were prepared from a single stone of Sawyer swept Premium-Q quartz. The resonators were operated in precision ovenized oscillators at or near their turnover temperatures. Pulsed irradiation, at dose levels of the order of 10 4 rads (Si) per pulse, was accomplished at Sandia. The experimental data display negative frequency transients for the AT cut resonators, positive frequency transients for the BT cut resonators, and very small transient effects for the SC cut resonators. From these experimental results, it is concluded that no measurable impurity-induced frequency changes are observed in this high-purity swept-quartz and that the frequency transients are accurately modelled in terms of transient temperature effects stemming from the thermal characteristics of the resonator structure
External Ear Resonant Amplitude and Frequency of 3-7 Year Old Children
Directory of Open Access Journals (Sweden)
Amir Hossein Zare
2004-06-01
Full Text Available Objective: To measure external ear resonant amplitude and frequency in children (3-7 years old and to compare with adult measures. Method and materials: The external ear resonance peak amplitude and frequency of 63 children 3-7 years old were recorded. All of the children had normal tympanogram and there was no cerumen in external auditory canal. 20 adult of 21-24 years old (10 male , 10 female were selected in order to compare with children that had normal tympanogram. The tests included : 1-otoscopy 2- tympanometry 3-microphone probe tube test. Results: The average of resonance peak frequency for children and adult is 4200 Hz and 3200 Hz , respectively. The resonance frequency of children had significantly diffrence with average of resonance frequency in adults. The average of resonance peak amplitude for children and adult is 17.70 dB and 17.17 dB , respectively. Conclusion: Resonant frequency and amplitude affect the hearing aid prescription and fitting process and calculating insertion gain; so, this measures seem should be considered in children hearing aid fitting.
Structure of bending resonances frequencies in supercritical rotors of gaseous centrifuges
International Nuclear Information System (INIS)
Andronov, I.N.; Grigor'ev, G.Yu.; Vyazovetskij, Yu.V.; Senchenkov, A.P.; Senchenkov, S.A.
2000-01-01
The position and the structure bending resonances for the model supercritical rotors with different construction of the tube are measured. Considerable complication of the resonance system for the tubes with nonuniform properties was established. The effect of the structure of the resonance on the complication of its realization and the ways of optimization of the rotor resonance system is discussed. Made measuring point to possibility for creation highly productive centrifuges relating to supercritical rotors with uniform concrete size carbon composite tube and structure of winding, working after the third bending resonance. The frequency of the fifth resonance falls in the zone of the performance frequency on the rotors with bellows crimps. Carbon composite tubes with the areas of raised flexibility is provided with greater in several times decrement [ru
The yule approximation for the site frequency spectrum after a selective sweep.
Directory of Open Access Journals (Sweden)
Sebastian Bossert
Full Text Available In the area of evolutionary theory, a key question is which portions of the genome of a species are targets of natural selection. Genetic hitchhiking is a theoretical concept that has helped to identify various such targets in natural populations. In the presence of recombination, a severe reduction in sequence diversity is expected around a strongly beneficial allele. The site frequency spectrum is an important tool in genome scans for selection and is composed of the numbers S(1,...,S(n-1, where S(k is the number of single nucleotide polymorphisms (SNPs present in k from n individuals. Previous work has shown that both the number of low- and high-frequency variants are elevated relative to neutral evolution when a strongly beneficial allele fixes. Here, we follow a recent investigation of genetic hitchhiking using a marked Yule process to obtain an analytical prediction of the site frequency spectrum in a panmictic population at the time of fixation of a highly beneficial mutation. We combine standard results from the neutral case with the effects of a selective sweep. As simulations show, the resulting formula produces predictions that are more accurate than previous approaches for the whole frequency spectrum. In particular, the formula correctly predicts the elevation of low- and high-frequency variants and is significantly more accurate than previously derived formulas for intermediate frequency variants.
Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder
DEFF Research Database (Denmark)
Kremer, S.; Renard, F.; Achard, S.
2015-01-01
Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder but the specific morphological and temporal patterns distinguishing them uneqtaivcally from lesions caused by other disorders have...... not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR voltametry, and ultrahigh...... diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MR I techniques may further our understanding of the pathogenic processes hi NMO spectrum disorders and may...
Single-Chip Multiple-Frequency RF MEMS Resonant Platform for Wireless Communications, Phase I
National Aeronautics and Space Administration — A novel, single-chip, multiple-frequency platform for RF/IF filtering and clock reference based on contour-mode aluminum nitride (AlN) MEMS piezoelectric resonators...
GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I
National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...
Time-frequency analysis of the restricted three-body problem: transport and resonance transitions
International Nuclear Information System (INIS)
Vela-Arevalo, Luz V; Marsden, Jerrold E
2004-01-01
A method of time-frequency analysis based on wavelets is applied to the problem of transport between different regions of the solar system, using the model of the circular restricted three-body problem in both the planar and the spatial versions of the problem. The method is based on the extraction of instantaneous frequencies from the wavelet transform of numerical solutions. Time-varying frequencies provide a good diagnostic tool to discern chaotic trajectories from regular ones, and we can identify resonance islands that greatly affect the dynamics. Good accuracy in the calculation of time-varying frequencies allows us to determine resonance trappings of chaotic trajectories and resonance transitions. We show the relation between resonance transitions and transport in different regions of the phase space
International Nuclear Information System (INIS)
Ohta, N; Niki, T; Kirihara, S
2011-01-01
Terahertz wave resonators composed of alumina photonic crystals with diamond lattice structures were designed and fabricated by using micro stereolithography. These three dimensional periodic structures can reflect perfectly electromagnetic waves through Bragg diffraction. A micro glass cell including water solutions was put between the photonic crystals as a novel resonance sensor with terahertz frequency range. The localized and amplified waves in the resonators were measured by a spectroscopy, and visualized by theoretical simulations.
International Nuclear Information System (INIS)
Dhonukshe, B.L.
1981-01-01
Induced mutation studies were carried with three dwarf wheat varieties viz., ''Sonalika'', ''Chhoti Lerma'' and ''Hira'', considered to be single, double and trible dwarfs, respectively. Gamma-rays were used as a source of irradiation. Frequency of chlorophyll mutations were comparatively low and the spectrum was narrow. Chlorophyll mutations were altogether absent in the variety ''Sonalika''. A very wide spectrum of viable mutations affecting stem, leaf, ear growth habit, maturity and fertility characteristics was observed in the M 2 . The cumulative frequency of all the mutants together was quite high, which varied with the varieties. There were varietal differences in the composition and width of the spectrum induced by gamma-rays. The dwarf mutants having desirable leaf and spike characters were isolated in all the three varieties. (author)
Image enhancement of x-ray microscope using frequency spectrum analysis
International Nuclear Information System (INIS)
Li Wenjie; Chen Jie; Tian Jinping; Zhang Xiaobo; Liu Gang; Tian Yangchao; Liu Yijin; Wu Ziyu
2009-01-01
We demonstrate a new method for x-ray microscope image enhancement using frequency spectrum analysis. Fine sample characteristics are well enhanced with homogeneous visibility and better contrast from single image. This method is easy to implement and really helps to improve the quality of image taken by our imaging system.
Image enhancement of x-ray microscope using frequency spectrum analysis
Energy Technology Data Exchange (ETDEWEB)
Li Wenjie; Chen Jie; Tian Jinping; Zhang Xiaobo; Liu Gang; Tian Yangchao [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China); Liu Yijin; Wu Ziyu, E-mail: wuzy@ihep.ac.c, E-mail: ychtian@ustc.edu.c [Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049 (China)
2009-09-01
We demonstrate a new method for x-ray microscope image enhancement using frequency spectrum analysis. Fine sample characteristics are well enhanced with homogeneous visibility and better contrast from single image. This method is easy to implement and really helps to improve the quality of image taken by our imaging system.
DEFF Research Database (Denmark)
Cabral, Orlando; Meucci, Filippo; Mihovska, Albena D.
2011-01-01
This paper proposes an integrated Common Radio Resource Management (iCRRM). The iCRRM performs classic CRRM functionalities jointly with Spectrum Aggregation (SA), being able to switch users between non-contiguous frequency bands. The SA scheduling is obtained with an optimised General Multi...
Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern
DEFF Research Database (Denmark)
Schunk, Gerhard; Fuerst, Josef U.; Förtsch, Michael
2014-01-01
Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMR...
Low frequency torsional vibration gaps in the shaft with locally resonant structures
International Nuclear Information System (INIS)
Yu Dianlong; Liu Yaozong; Wang Gang; Cai Li; Qiu Jing
2006-01-01
The propagation of torsional wave in the shaft with periodically attached local resonators is studied with the transfer matrix theory and the finite element method. The analytical dispersion relation and the complex band structure of such a structure is presented for the first time, which indicates the existence of low frequency gaps. The effect of shaft material on the vibration attenuation in band gap is investigated. The frequency response function of the shaft with finite periodic locally resonant oscillators is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The low frequency torsional gap in shafts provides a new idea for vibration control
International Nuclear Information System (INIS)
Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.
2009-01-01
At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies
Use of a radio-frequency resonance circuit in studies of alkali ionization in flames
International Nuclear Information System (INIS)
Borgers, A.J.
1978-01-01
The construction of a radio-frequency resonance system and its use in the study of alkali metal ionization in flames is described. The author re-determines the values of the alkali ionization rate constants for a CO flame with N 2 as diluent gas of known temperature using the RF resonance method. (Auth.)
Resonant effects on the low frequency vlasov stability of axisymmetric field reversed configurations
International Nuclear Information System (INIS)
Finn, J.M.; Sudan, R.N.
We investigate the effect of particle resonances on low frequency MHD modes in field-reversed geometries, e.g., an ion ring. It is shown that, for sufficiently high field reversal, modes which are hydromagnetically stable can be driven unstable by ion resonances. The stabilizing effect of a toroidal magnetic field is discussed
Impedance-Based High Frequency Resonance Analysis of DFIG System in Weak Grids
DEFF Research Database (Denmark)
Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
Resonance (SSR). However, the High Frequency Resonance (HFR) of DFIG systems due to the impedance interaction between DFIG system and parallel compensated weak network is often overlooked. This paper thus investigates the impedance characteristics of DFIG systems for the analysis of HFR. The influences...
Deng, Wei; Wang, Ya
2017-09-01
This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.
Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei
2016-12-01
In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.
Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.
2017-11-01
In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.
Directory of Open Access Journals (Sweden)
Celina A. Reis Paula
2017-01-01
Full Text Available Autism spectrum disorder (ASD is a neuropsychiatric disorder characterized by the impairment in the social reciprocity, interaction/language, and behavior, with stereotypes and signs of sensory function deficits. Electroencephalography (EEG is a well-established and noninvasive tool for neurophysiological characterization and monitoring of the brain electrical activity, able to identify abnormalities related to frequency range, connectivity, and lateralization of brain functions. This research aims to evidence quantitative differences in the frequency spectrum pattern between EEG signals of children with and without ASD during visualization of human faces in three different expressions: neutral, happy, and angry. Quantitative clinical evaluations, neuropsychological evaluation, and EEG of children with and without ASD were analyzed paired by age and gender. The results showed stronger activation in higher frequencies (above 30 Hz in frontal, central, parietal, and occipital regions in the ASD group. This pattern of activation may correlate with developmental characteristics in the children with ASD.
International Nuclear Information System (INIS)
Majewski, M; Magalas, L B
2012-01-01
In this paper, we compare the values of the resonant frequency f 0 of free decaying oscillations computed according to the parametric OMI method (Optimization in Multiple Intervals) and nonparametric DFT-based (discrete Fourier transform) methods as a function of the sampling frequency. The analysis is carried out for free decaying signals embedded in an experimental noise recorded for metallic samples in a low-frequency resonant mechanical spectrometer. The Yoshida method (Y), the Agrez' method (A), and new interpolated discrete Fourier transform (IpDFT) methods, that is, the Yoshida-Magalas (YM) and (YM C ) methods developed by the authors are carefully compared for the resonant frequency f 0 = 1.12345 Hz and the logarithmic decrement, δ = 0.0005. Precise estimation of the resonant frequency (Youngs' modulus ∼ f 0 2 ) for real experimental conditions, i.e., for exponentially damped harmonic signals embedded in an experimental noise, is a complex task. In this work, various computing methods are analyzed as a function of the sampling frequency used to digitize free decaying oscillations. The importance of computing techniques to obtain reliable and precise values of the resonant frequency (i.e. Young's modulus) in materials science is emphasized.
Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.
Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O
2017-04-01
The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω + ), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω + quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω + frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω + frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.
Dual resonant structure for energy harvesting from random vibration sources at low frequency
Directory of Open Access Journals (Sweden)
Shanshan Li
2016-01-01
Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.
Experimental results of high power dual frequency resonant magnet excitation at TRIUMF
International Nuclear Information System (INIS)
Reiniger, K.W.; Heritier, G.
1988-06-01
We present some results of duel frequency resonant magnet excitation at full power using the old NINA synchrotron dipoles. These tests will simulate a typical resonant cell as proposed for the accelerating rings of the TRIUMF KAON Factory. These test have two main purposes: to verify circuit parameters and component ratings for the dual frequency resonant power supply system; and to measure directly electrical losses in a transverse magnet field, such as eddy current losses in magnet conductors, vacuum tubes and core losses in laminations. These data will be required for the detailed design of the accelerator system components. (Author) (Ref., 9 figs., tab.)
International Nuclear Information System (INIS)
Abbasov, I.I.; Bolotovskij, B.M.; Davydov, V.A.
1986-01-01
Electromagnetic radiation appears as a result of a charged particle movement in free space and also in heterogeneous and non-stationary medium. The radiation spectrum depends on the charged particle motion law, as well as on the law of the medium property chage in space and time. The asymptotics of radiation spectrum, i.e. behaviour of spectral intensity at high frequencies, is studied. It is shown that if a charged particle moves along smooth trajectory or if the change in the medium properties takes place accordng to the law described by a smooth function, the radiation spectrum at high frequencies decreases according to exponential law. Thus, radiation spectrum of a charged particle moving along a smooth trajectory in the medium with gradual heterogeneity and (or) instability is rapidly cut, starting from a certain frequency value. The smooth trajectory means that the charge moves according to the law r = r(t), where vector-function r(t) is continuous with all its derivatives. In much the same way the medium with gradual heterogeneities (or with gradual instability) is described by the functions which are continuous with all their derivatives of any order. The method permitting to determine the upper boundary of radiation spectra is presented
Increase in effectiveness of low frequency acoustic liners by use of coupled Helmholtz resonators
Dean, L. W.
1977-01-01
Coupling of Helmholtz resonators in a low-frequency absorber array was studied as a means for increasing the effectiveness for absorbing low-frequency core engine noise. The equations for the impedance of the coupled-resonator systems were developed in terms of uncoupled-resonator parameters, and the predicted impedance for a parallel-coupled scheme is shown to compare favorably with measurements from a test model. In addition, attenuation measurements made in a flow duct on test coupled-resonator panels are shown to compare favorably with predicted values. Finally, the parallel-coupled concept is shown to give significantly more attenuation than that of a typical uncoupled resonator array of the same total volume.
Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Suryo Wasisto, Hutomo; Peiner, Erwin
2016-10-01
The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor (Q) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10-6. This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor.
International Nuclear Information System (INIS)
Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Wasisto, Hutomo Suryo; Peiner, Erwin
2016-01-01
The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor ( Q ) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10 -6 . This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor. (paper)
International Nuclear Information System (INIS)
Li Zhikang; Zhao Libo; Ye Zhiying; Zhao Yulong; Jiang Zhuangde; Wang Hongyan
2013-01-01
The resonant frequency of a microplate is influenced by various physical parameters such as mass, surface stress, hydrostatic pressure and electrostatic force. In this paper, the effects of both electrostatic force and uniform hydrostatic pressure on the resonant frequency of a clamped circular microplate are investigated. An approximate solution is derived for the fundamental resonance frequency of the mciroplate under both types of loads using an energy equivalent method. It is found that both electrostatic force and uniform hydrostatic pressure decrease the resonant frequency of the microplate under small deflections. Additionally, the linearized expression of this solution shows that the resonant frequency varies linearly with pressure in the low and ultra-low range, and the corresponding pressure sensitivity depends on the voltage applied to the microplate. The analytical results are well validated by the finite element method. This study may be helpful for the design and optimization of electrostatically actuated resonance devices based on microplates, especially electrostatically actuated low- or ultra-low-pressure sensors. (paper)
Resonant frequencies and Q factors of dielectric parallelepipeds by measurement and by FDTD
Energy Technology Data Exchange (ETDEWEB)
Trueman, C.W. [Concordia Univ., Montreal, Quebec (Canada); Mishra, S.R.; Larose, C.L. [David Florida Lab., Ottawa (Canada)] [and others
1994-12-31
This paper describes the measurement and computation of the resonant frequencies and the associated Q factors of dielectric parallelepipeds made of high-permittivity, low-loss ceramic materials. Each resonance peak is measured separately with a fine frequency step. A curve-fitting method is used to accurately estimate the resonant frequency and 3 dB bandwidth from the somewhat noisy measured data. The finite-difference time-domain method is used to compute the initial portion of the backscattered field due to a Gaussian pulse plane wave. The time response is then extended to zero value by Prony`s method. The measured and computed data is compared for a parallelepiped resonator of permittivity 37.84.
Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout.
Song, Xuefeng; Oksanen, Mika; Sillanpää, Mika A; Craighead, H G; Parpia, J M; Hakonen, Pertti J
2012-01-11
We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f = 5-6 GHz producing modulation sidebands at f ± f(m). A mechanical resonance frequency up to f(m) = 178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of dc bias voltage V(dc) indicates that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large V(dc). © 2011 American Chemical Society
DEFF Research Database (Denmark)
Tang, Meng; Cagliani, Alberto; Escouflaire, Marie
2010-01-01
the frequency noise of the system. A capacitor cancellation circuit is used to subtract the parasitic capacitor. Measurements are conducted before and after the cancellation, and results show that after cancellation, the anti resonance is suppressed and the frequency noise is decreased, thus decreasing...
Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy
DEFF Research Database (Denmark)
Zhang, Liang; Lu, Ping; Chen, Li
2012-01-01
A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fib...
Low power very high frequency resonant converter with high step down ratio
DEFF Research Database (Denmark)
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2013-01-01
This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...
Ostenson, Jason; Robison, Ryan K; Zwart, Nicholas R; Welch, E Brian
2017-09-01
Magnetic resonance fingerprinting (MRF) pulse sequences often employ spiral trajectories for data readout. Spiral k-space acquisitions are vulnerable to blurring in the spatial domain in the presence of static field off-resonance. This work describes a blurring correction algorithm for use in spiral MRF and demonstrates its effectiveness in phantom and in vivo experiments. Results show that image quality of T1 and T2 parametric maps is improved by application of this correction. This MRF correction has negligible effect on the concordance correlation coefficient and improves coefficient of variation in regions of off-resonance relative to uncorrected measurements. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.
2011-01-01
Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.
Sok, J; Lee, E H
1998-01-01
An applied dc voltage varies the dielectric constant of ferroelectric SrTiO sub 3 films. A tuning mechanism for superconducting microwave resonators was realized by using the variation in the dielectric constant of SrTiO sub 3 films. In order to estimate the values of the capacitance, C, and the loss tangent, tan delta, of SrTiO sub 3 ferroelectric capacitors, we used high-temperature superconducting microwave resonators which were composed of two ports, two poles, and dc bias circuits at the zero-field points. SrTiO sub 3 ferroelectric capacitors successfully controlled the resonant frequency of the resonator. Resonant frequencies of 3.98 GHz and 4.20 GHz were measured at bias voltages of 0 V and 50 V which correspond to capacitance values of 0.94 pF and 0.7pF, respectively. The values of the loss tangent, tan delta sub e sub f sub f , obtained in this measurements, were about 0.01.
Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications
Zhang, Yuefeng
1995-01-01
To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has
Active cooling of an audio-frequency electrical resonator to microkelvin temperatures
Vinante, A.; Bonaldi, M.; Mezzena, R.; Falferi, P.
2010-11-01
We have cooled a macroscopic LC electrical resonator using feedback-cooling combined with an ultrasensitive dc Superconducting Quantum Interference Device (SQUID) current amplifier. The resonator, with resonance frequency of 11.5 kHz and bath temperature of 135 mK, is operated in the high coupling limit so that the SQUID back-action noise overcomes the intrinsic resonator thermal noise. The effect of correlations between the amplifier noise sources clearly show up in the experimental data, as well as the interplay of the amplifier noise with the resonator thermal noise. The lowest temperature achieved by feedback is 14 μK, corresponding to 26 resonator photons, and approaches the limit imposed by the noise energy of the SQUID amplifier.
Design and analysis of planar spiral resonator bandstop filter for microwave frequency
Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad
2017-11-01
In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.
Off-resonance frequency operation for power transfer in a loosely coupled air core transformer
Scudiere, Matthew B
2012-11-13
A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.
Li, Quanfeng; Lu, Qingyou
2011-05-01
We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).
Scattering anomalies in a resonator above the thresholds of the continuous spectrum
Energy Technology Data Exchange (ETDEWEB)
Nazarov, S A [St. Petersburg State Politechnical University, St. Petersburg (Russian Federation)
2015-06-30
We consider the Dirichlet spectral problem for the Laplace operator in a multi-dimensional domain with a cylindrical outlet to infinity, a Helmholtz resonator. Using asymptotic analysis of the scattering matrix we demonstrate different types of reflection of high-amplitude near-threshold waves. One scattering type or another, unstable or stable with respect to variations of the resonator shapes, is determined by the presence or absence of stabilizing solutions at the threshold frequency, respectively. In a waveguide with two cylindrical outlets to infinity, we discover the effect of almost complete passage of the wave under 'fine tuning' of the resonator. Bibliography: 26 titles.
Improved measurements of elastic properties at acoustic resonant frequencies
International Nuclear Information System (INIS)
Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.
1976-01-01
The choice of specimens of rectangular cross section for determination of dynamic elastic moduli by the resonant bar technique is often dictated by specimen fabrication problems. The specimen of rectangular cross section lends itself to accurate determination of elastic vibration shapes by a method in which a simple noncontacting optical transducer is used. The unequivocal indexing of the various vibration modes obtained in this way more than compensates for the added computational difficulties associated with rectangular geometry. The approximations used in the calculations of Young's modulus and the shear modulus for bars of rectangular cross section are tested experimentally and it is shown that high precision can be obtained. Determinations of changes in dynamic elastic moduli with temperature or stress are also described. (author)
International Nuclear Information System (INIS)
Reuss, J.D.; Misguich, J.H.
1996-02-01
An important point for turbulent transport consists in determining the scaling law for the diffusion coefficient D due to electrostatic turbulence. It is well-known that for weak amplitudes or large frequencies, the reduced diffusion coefficient has a quasi-linear like (or gyro-Bohm like) scaling, while for large amplitudes or small frequencies it has been traditionally believed that the scaling is Bohm-like. The aim of this work consists to test this prediction for a given realistic model. This problem is studied by direct simulation of particle trajectories. Guiding centre diffusion in a spectrum of electrostatic turbulence is computed for test particles in a model spectrum, by means of a new parallelized code RADIGUET 2. The results indicate a continuous transition for large amplitudes toward a value which is compatible with the Isichenko percolation prediction. (author)
The continuous spectrum and the effect of parametric resonance. The case of bounded operators
International Nuclear Information System (INIS)
Skazka, V V
2014-01-01
The paper is concerned with the Mathieu-type differential equation u ″ =−A 2 u+εB(t)u in a Hilbert space H. It is assumed that A is a bounded self-adjoint operator which only has an absolutely continuous spectrum and B(t) is almost periodic operator-valued function. Sufficient conditions are obtained under which the Cauchy problem for this equation is stable for small ε and hence free of parametric resonance. Bibliography: 10 titles
Is the resonance C(1480) in the φπ0 mass spectrum a new meson?
International Nuclear Information System (INIS)
Achasov, N.N.; Kozhevnikov, A.A.
1988-01-01
It is shown that the recently discovered resonance structure C (1480) in the φπ 0 mass spectrum of the reaction π - p → φπ 0 n can originate from the rare decay p' (1600) → φπ 0 arising as a result of the OZI-rule violation via intermediate processes p' (1600) → K * anti K+anti K * K → φπ 0 . The study of the reaction e + e - → p' (1600) → φπ 0 is the crucial test of this explanation. (orig.)
Calculation of the fine spectrum and integration of the resonance cross sections in the cells
International Nuclear Information System (INIS)
Paratte, J.M.
1986-10-01
The code BOXER is used for the neutronics calculations of two-dimensional LWR arrays. During the calculation of the group constants of the cells (pin, clad and moderator), the program SLOFIN, a BOXER module, allows taking into account the self-shielding of the resonances. The resonance range is devided into two parts: - above 907 eV the cross sections are condensed into groups by the library code ETOBOX. In SLOFIN, these values are interpolated over the equivalent cross section and the temperature. The interpolation formula chosen gives an accuracy better than 1% for values of the equivalent cross section larger than 5 barns. - between 4 and 907 eV, the cross sections are given in pointwise form as a function of the lethargy. At first a list of pointwise macroscopic cross section is established. Then the fine spectrum in the cell is calculated in 2 or 3 zones by means of the collision probability theory. In the central zone one resonant pseudo-nuclide is considered for the calculation of the scattering source, while the light nuclides are explicitly treated but under the assumption of energy independent cross sections. The fine spectrum is then used as a weihting function for the condensation of the pointwise cross sections of the resonant nuclides into energy groups. The procedure was checked on the basis of the TRX-1 to -4 and BAPL-UO 2 -1 to -3 experiments which are used as benchmarks for the tests of the ENDF/B libraries. The comparisons with other calculation results show that the deviations observed are typical for the basic cross sections. The method proposed shows a good accuracy in the application range foreseen for BOXER. It is also fast enough to be used as a standard method in a cell code. (author)
Resonator as high frequency electromagnetic field oscillation generator
International Nuclear Information System (INIS)
Svoroba, O.V.; Scherbina, V.O.
2007-01-01
The problem of finding the u(x-vector) field potential in a specific waveguide with generalized corrugated core geometry is considered. The perturbation is brought to the system by high energy electron beam, injected in a waveguide. It is shown that the Neumann spectral problem can be reduced to finding Green approximation solution, and how it can be solved by the discretization technique. Considered parameterization allow to optimize the u(x-vector) field for specific frequency tuning. This method can be used as plasma heating method for thermonuclear temperature control
On the nature of dissipative Timoshenko systems at light of the second spectrum of frequency
Almeida Júnior, D. S.; Ramos, A. J. A.
2017-12-01
In the present work, we prove that there exists a relation between a physical inconsistence known as second spectrum of frequency or non-physical spectrum and the exponential decay of a dissipative Timoshenko system where the damping mechanism acts on angle rotation. The so-called second spectrum is addressed into stabilization scenario and, in particular, we show that the second spectrum of the classical Timoshenko model can be truncated by taking a damping mechanism. Also, we show that dissipative Timoshenko type systems which are free of the second spectrum [based on important physical and historical observations made by Elishakoff (Advances mathematical modeling and experimental methods for materials and structures, solid mechanics and its applications, Springer, Berlin, pp 249-254, 2010), Elishakoff et al. (ASME Am Soc Mech Eng Appl Mech Rev 67(6):1-11 2015) and Elishakoff et al. (Int J Solids Struct 109:143-151, 2017)] are exponential stable for any values of the coefficients of system. In this direction, we provide physical explanations why weakly dissipative Timoshenko systems decay exponentially according to equality between velocity of wave propagation as proved in pioneering works by Soufyane (C R Acad Sci 328(8):731-734, 1999) and also by Muñoz Rivera and Racke (Discrete Contin Dyn Syst B 9:1625-1639, 2003). Therefore, the second spectrum of the classical Timoshenko beam model plays an important role in explaining some results on exponential decay and our investigations suggest to pay attention to the eventual consequences of this spectrum on stabilization setting for dissipative Timoshenko type systems.
Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John
2011-03-01
We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.
Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.
Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold
2014-09-26
We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.
A model for precalculus students to determine the resonance frequency of a trumpet mouthpiece
Chapman, Robert C.
2004-05-01
The trumpet mouthpiece as a Helmholtz resonator is used to show precalculus students a mathematical model for determining the approximate resonance frequency of the mouthpiece. The mathematics is limited to algebra and trigonometry. Using a system of mouthpieces that have interchangeable cups and backbores, students are introduced to the acoustics of this resonator. By gathering data on 51 different configurations of mouthpieces, the author modifies the existing Helmholtz resonator equation to account for both cup volumes and backbore configurations. Students then use this model for frequency predictions. Included are how to measure the different physical attributes of a trumpet mouthpiece at minimal cost. This includes methods for measuring cup volume, backbore volume, backbore length, throat area, etc. A portion of this phase is de-signed for students to become acquainted with some of the vocabulary of acoustics and the physics of sound.
Directory of Open Access Journals (Sweden)
Kyung Ho Sun
2014-10-01
Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.
Energy Technology Data Exchange (ETDEWEB)
Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)
2014-10-15
While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.
International Nuclear Information System (INIS)
Hu, M.; Bai, Y. Z.; Zhou, Z. B.; Li, Z. X.; Luo, J.
2014-01-01
The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided
Energy Technology Data Exchange (ETDEWEB)
Hu, M.; Bai, Y. Z., E-mail: abai@mail.hust.edu.cn; Zhou, Z. B., E-mail: zhouzb@mail.hust.edu.cn; Li, Z. X.; Luo, J. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)
2014-05-15
The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided.
Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings
Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.
2017-08-01
Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.
The resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators
International Nuclear Information System (INIS)
Jin, Ke; Kou, Yong; Zheng, Xiaojing
2012-01-01
This paper focuses on the resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators. A 3D nonlinear dynamic model to describe the magneto-thermo-elastic coupling behavior of actuators is proposed based on a nonlinear constitutive model. The coupled interactions among stress- and magnetic-field-dependent variables for actuators are solved iteratively using the finite element method. The model simulations show a good correlation with the experimental data, which demonstrates that this model can capture the coupled resonance frequency shift features for magnetostrictive actuators well. Moreover, a comprehensive description for temperature, pre-stress and bias field dependences of resonance frequency is discussed in detail. These essential and important investigations will be of significant benefit to both theoretical research and the applications of magnetostrictive materials in smart or intelligent structures and systems. (paper)
Low frequency wireless power transfer using modified parallel resonance matching at a complex load
Directory of Open Access Journals (Sweden)
Artit Rittiplang
2016-10-01
Full Text Available In the Impedance Matching (IM condition of Wireless Power Transfer (WPT, series resonant and strong coupling structures have been widely studied which operate at an optimal parameter, a resistive load, and the high resonant frequency of greater than 1 MHz. However, i The optimal parameter (particular value limits the design, ii the common loads are complex, iii The high frequency RF sources are usually inefficient. This paper presents a modified parallel resonant structure that can operate at a low frequency of 15 kHz without an optimal parameter under the IM condition with a complex load, and the calculated efficiency is equal to 71.2 % at 5-cm transfer distance.
Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo
In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.
Dependence of excitation frequency of resonant circuit on RF irradiation position of MRI equipment
International Nuclear Information System (INIS)
Shimizu, Masato; Yamada, Tsutomu; Takemura, Yasushi; Niwa, Touru; Inoue, Tomio
2010-01-01
Hyperthermia using implants is a cancer treatment in which cancer tissue is heated to over 42.5 deg C to selectively kill the cancer cells. In this study, a resonant circuit was used as an implant, and a weak magnetic field of radiofrequency (RF) pulses from a magnetic resonance imaging (MRI) device was used as an excitation source. We report here how the temperature of the resonant circuit was controlled by changing the excitation frequency of the MRI. As a result, the temperature rise of the resonant circuit was successfully found to depend on its position in the MRI device. This significant result indicates that the temperature of the resonant circuit can be controlled only by adjusting the excitation position. Accurate temperature control is therefore expected to be possible by combining this control technique with the temperature measurement function of MRI equipment. (author)
A measurement of the low frequency spectrum of the cosmic microwave background radiation
International Nuclear Information System (INIS)
Levin, S.M.
1987-04-01
As part of a larger effort to measure the spectrum of the Cosmic Background Radiation (CBR) at low frequencies, the intensity of the CBR has been measured at a frequency of 1.410 GHz. The measurement was made by comparing the power received from the sky with the power received from a specially designed cooled calibration target with known properties. Sources of radiation other than the CBR were then identified and subtracted to calculate the antenna temperature of the CBR at 1.410 GHz. The instrument used to measure the CBR was a total-power microwave radiometer with a 25 MHz bandwidth centered at 1.410 GHz. The radiometer had a noise temperature of 80 K, and sufficient data were taken that radiometer noise did not contribute significantly to the total measurement error. The sources of error were predominantly systematic in nature, and the largest error was due to uncertainty in the reflection characteristics of the cold-load calibrator. Identification and subtraction of signals from the Galaxy (0.7 K) and the Earth's atmosphere (0.8 K) were also significant parts of the data reduction and error analysis. The brightness temperature of the Cosmic Background Radiation at 1.410 GHz is 222. +- 0.55 Kelvin. The spectrum of the CBR, as determined by this measurement and other published results, is consistent with a blackbody spectrum of temperature 2.741 +- 0.016. Constraints on the amount by which the CBR spectrum deviates from Planck spectrum are used to place limits on energy releases early in the history of the universe. 55 refs., 25 figs., 8 tabs
Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.
2018-03-01
Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.
Rooze, J.; Rebrov, E.V.; Schouten, J.C.; Keurentjes, J.T.F.
2011-01-01
The sonochemical oxidation efficiency (¿ox) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to
All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer.
Kretschmann, H M; Heine, F; Huber, G; Halldórsson, T
1997-10-01
A new resonator design for doubly resonant continuous-wave intracavity sum-frequency mixing is presented. We generated 212 mW of coherent radiation at 618 nm by mixing the radiation of a 1080-nm Nd(3+):YAlO(3) laser and a 1444-nm Nd(3+):YAG laser. Two different mixing resonator setups and several nonlinear-optical crystals were investigated. So far output is limited by unequal performance of the two fundamental lasers and coating problems of the nonlinear crystals.
An analytical model for the determination of resonance frequencies of perforated beams
International Nuclear Information System (INIS)
Luschi, Luca; Pieri, Francesco
2014-01-01
In this paper, we develop closed expressions for the equivalent bending and shear stiffness of beams with regular square perforations, and apply them to the problem of determining the resonance frequencies of slender, regularly perforated clamped–clamped beams, which are of interest in the development of MEMS resonant devices. We prove that, depending on the perforation size, the Euler–Bernoulli equation or the more complex shear equation needs to be used to obtain accurate values for these frequencies. Extensive finite element method simulations are used to validate the proposed model over the full practical range of possible hole sizes. An experimental verification of the model is also presented. (paper)
Analysis of the Behavior of Undamped and Unstable High-Frequency Resonance in DFIG System
DEFF Research Database (Denmark)
Song, Yipeng; Blaabjerg, Frede
2017-01-01
As the wind power generation develops, the Doubly Fed Induction Generator (DFIG) based wind power system may suffer Sub Synchronous Resonance (SSR) and High Frequency Resonance (HFR) in the series and parallel compensated weak network. The principle and frequency of HFR have been discussed using...... the Bode diagram as an analysis tool. However, the HFR can be categorized into two different types: undamped HFR (which exists in steady state) and unstable HFR (which eventually results in complete instability and divergence), both of them are not investigated before. Since both the undamped HFR...
Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles
2010-10-01
Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.
International Nuclear Information System (INIS)
Maslovsky, D.; Levitt, B.; Mauel, M. E.
2003-01-01
Interchange instabilities excited by energetic electrons trapped by a magnetic dipole nonlinearly saturate and exhibit complex, coherent spectral characteristics and frequency sweeping [H. P. Warren and M. E. Mauel, Phys. Plasmas 2, 4185 (1995)]. When monochromatic radio frequency (rf) fields are applied in the range of 100-1000 MHz, the saturation behavior of the interchange instability changes dramatically. For applied fields of sufficient intensity and pulse-length, coherent interchange fluctuations are suppressed and frequency sweeping is eliminated. When rf fields are switched off, coherent frequency sweeping reappears. Since low frequency interchange instabilities preserve the electron's first and second adiabatic invariants, these observations can be interpreted as resulting from nonlinear resonant wave-particle interactions described within a particle phase-space, (ψ,φ), comprised of the third adiabatic invariant and the azimuthal angle. Self-consistent numerical simulation is used to study (1) the nonlinear development of the instability, (2) the radial mode structure of the interchange instability, and (3) the suppression of frequency sweeping. When the applied rf heating is modeled as an 'rf collisionality', the simulation reproduces frequency sweeping suppression and suggests an explanation for the observations that is consistent with Berk and co-workers [H. L. Berk et al., Phys. Plasmas 6, 3102 (1999)
Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder
Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A.; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C.; Tenembaum, Silvia N.; Banwell, Brenda; Greenberg, Benjamin M.; Bennett, Jeffrey L.; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T.
2016-01-01
Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease. PMID:26010909
Proton magnetic resonance spectroscopy in children with fetal alcohol spectrum disorders
Energy Technology Data Exchange (ETDEWEB)
Goncalves, Rita de Cassia Ferreira; Vasconcelos, Marcio Moacyr; Faleiros, Leticia Oliveira; Brito, Adriana Rocha; Werner Junior, Jairo; Herdy, Gesmar Volga Haddad [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Faculdade de Medicina], e-mail: rcgonc@hotmail.com; Cruz Junior, Luiz Celso Hygino da; Domingues, Romeu Cortes [Multi-Imagem, Rio de Janeiro, RJ (Brazil)
2009-06-15
To analyze the metabolic constitution of brain areas through proton magnetic resonance spectroscopy in children affected with fetal alcohol spectrum disorder compared with normal children. Method: The sample of this case-control study included eight boys with epidemiologic history of in utero exposure to alcohol (median age 13.6{+-}3.8 years) who were diagnosed with fetal alcohol spectrum disorder, and eight controls (median age 12.1{+-}3,4 years). An 8 cm{sup 3} single voxel approach was used, with echo time 30 ms, repetition time 1500 ms, and 128 acquisitions in a 1.5T scanner, and four brain areas were analyzed: anterior cingulate, left frontal lobe, left striatum, and left cerebellar hemisphere. Peaks and ratios of metabolites N-acetylaspartate, choline, creatine, and myo-inositol were measured. Results: Children with fetal alcohol spectrum disorder showed a decrease in choline/creatine ratio (p=0.020) in left striatum and an increase in myo-inositol/creatine ratio (p=0.048) in left cerebellum compared with controls. There was no statistically significant difference in all peaks and ratios from the anterior cingulate and frontal lobe between the two groups. Conclusion: This study found evidence that the left striatum and left cerebellum are affected by intrauterine exposure to alcohol. Additional studies with larger samples are necessary to expand our knowledge of the effects of fetal exposure to alcohol. (author)
Proton magnetic resonance spectroscopy in children with fetal alcohol spectrum disorders
International Nuclear Information System (INIS)
Goncalves, Rita de Cassia Ferreira; Vasconcelos, Marcio Moacyr; Faleiros, Leticia Oliveira; Brito, Adriana Rocha; Werner Junior, Jairo; Herdy, Gesmar Volga Haddad
2009-01-01
To analyze the metabolic constitution of brain areas through proton magnetic resonance spectroscopy in children affected with fetal alcohol spectrum disorder compared with normal children. Method: The sample of this case-control study included eight boys with epidemiologic history of in utero exposure to alcohol (median age 13.6±3.8 years) who were diagnosed with fetal alcohol spectrum disorder, and eight controls (median age 12.1±3,4 years). An 8 cm 3 single voxel approach was used, with echo time 30 ms, repetition time 1500 ms, and 128 acquisitions in a 1.5T scanner, and four brain areas were analyzed: anterior cingulate, left frontal lobe, left striatum, and left cerebellar hemisphere. Peaks and ratios of metabolites N-acetylaspartate, choline, creatine, and myo-inositol were measured. Results: Children with fetal alcohol spectrum disorder showed a decrease in choline/creatine ratio (p=0.020) in left striatum and an increase in myo-inositol/creatine ratio (p=0.048) in left cerebellum compared with controls. There was no statistically significant difference in all peaks and ratios from the anterior cingulate and frontal lobe between the two groups. Conclusion: This study found evidence that the left striatum and left cerebellum are affected by intrauterine exposure to alcohol. Additional studies with larger samples are necessary to expand our knowledge of the effects of fetal exposure to alcohol. (author)
R. F. plasmoids and resonant discharges; Plasmoides a haute frequence et decharges resonnantes
Energy Technology Data Exchange (ETDEWEB)
Taillet, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-06-15
In R.F. discharges at reduced pressure a resonance can increase by an order of magnitude the intensity of the plasma R.F. electric field. The electron density of the plasma adjusts itself to keep the resonant frequency equal to the excitation frequency. This behaviour has been observed by an electron beam technique. When such a discharge is excited in electronegative gases, the negative ion density may be higher than the electron density. Therefore, the D.C. potential distribution in plasma and sheath is modified. The plasma appears as a luminous body isolated from the walls by a large sheath (R.F. plasmoid). (author) [French] Dans les decharges H.F. a faible pression une resonance peut elever d'un ordre de grandeur l'intensite du champ electrique interne du plasma. La densite electronique s'ajuste elle-meme de facon a rendre egales la frequence d'excitation et la frequence de la resonance. Ce mecanisme a ete observe a l'aide de faisceaux electroniques. Lorsqu'une telle decharge est excitee dans un gaz electronegatif, la densite des ions negatifs peut etre plus elevee, que la densite electronique, ce qui modifie la distribution du potentiel continu dans le plasma et la gaine. Le plasma apparait comme un corps lumineux isole des parois par une large gaine (plasmoide a haute frequence). (auteur)
R. F. plasmoids and resonant discharges; Plasmoides a haute frequence et decharges resonnantes
Energy Technology Data Exchange (ETDEWEB)
Taillet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-06-15
In R.F. discharges at reduced pressure a resonance can increase by an order of magnitude the intensity of the plasma R.F. electric field. The electron density of the plasma adjusts itself to keep the resonant frequency equal to the excitation frequency. This behaviour has been observed by an electron beam technique. When such a discharge is excited in electronegative gases, the negative ion density may be higher than the electron density. Therefore, the D.C. potential distribution in plasma and sheath is modified. The plasma appears as a luminous body isolated from the walls by a large sheath (R.F. plasmoid). (author) [French] Dans les decharges H.F. a faible pression une resonance peut elever d'un ordre de grandeur l'intensite du champ electrique interne du plasma. La densite electronique s'ajuste elle-meme de facon a rendre egales la frequence d'excitation et la frequence de la resonance. Ce mecanisme a ete observe a l'aide de faisceaux electroniques. Lorsqu'une telle decharge est excitee dans un gaz electronegatif, la densite des ions negatifs peut etre plus elevee, que la densite electronique, ce qui modifie la distribution du potentiel continu dans le plasma et la gaine. Le plasma apparait comme un corps lumineux isole des parois par une large gaine (plasmoide a haute frequence). (auteur)
Pulse width modulation based pneumatic frequency tuner of the superconducting resonators at IUAC
International Nuclear Information System (INIS)
Pandey, A.; Suman, S.K.; Mathuria, D.S.
2015-01-01
The existing phase locking scheme of the quarter wave resonators (QWR) used in superconducting linear accelerator (LINAC) of IUAC consists of a fast time (electronic) and a slow time (pneumatic) control. Presently, piezo based mechanical tuners are being used to phase lock the resonators installed in the second and third accelerating modules of LINAC. However, due to space constraint, the piezo tuner can't be implemented on the resonators of the first accelerating module. Therefore, helium gas operated mechanical tuners are being used to phase lock the resonators against the master oscillator (MO) frequency. The present pneumatic frequency tuner has limitations of non-linearity, hysteresis and slow response time. To overcome these problems and to improve the dynamics of the existing tuner, a new pulse width modulation (PWM) based pneumatic frequency tuning system was adopted and successfully tested. After successful test, the PWM based pneumatic frequency tuner was installed in four QWR of the first accelerating module of LINAC. During beam run the PWM based frequency tuner performed well and the cavities could be phase locked at comparatively higher accelerating fields. A comparison of the existing tuning mechanism and the PWM based tuning system along with the test results will be presented in the paper. (author)
Peak alpha frequency is a neural marker of cognitive function across the autism spectrum.
Dickinson, Abigail; DiStefano, Charlotte; Senturk, Damla; Jeste, Shafali Spurling
2018-03-01
Cognitive function varies substantially and serves as a key predictor of outcome and response to intervention in autism spectrum disorder (ASD), yet we know little about the neurobiological mechanisms that underlie cognitive function in children with ASD. The dynamics of neuronal oscillations in the alpha range (6-12 Hz) are associated with cognition in typical development. Peak alpha frequency is also highly sensitive to developmental changes in neural networks, which underlie cognitive function, and therefore, it holds promise as a developmentally sensitive neural marker of cognitive function in ASD. Here, we measured peak alpha band frequency under a task-free condition in a heterogeneous sample of children with ASD (N = 59) and age-matched typically developing (TD) children (N = 38). At a group level, peak alpha frequency was decreased in ASD compared to TD children. Moreover, within the ASD group, peak alpha frequency correlated strongly with non-verbal cognition. As peak alpha frequency reflects the integrity of neural networks, our results suggest that deviations in network development may underlie cognitive function in individuals with ASD. By shedding light on the neurobiological correlates of cognitive function in ASD, our findings lay the groundwork for considering peak alpha frequency as a useful biomarker of cognitive function within this population which, in turn, will facilitate investigations of early markers of cognitive impairment and predictors of outcome in high risk infants. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads
Energy Technology Data Exchange (ETDEWEB)
Olama, Mohammed M [ORNL; Sharma, Isha [ORNL; Kuruganti, Teja [ORNL; Fugate, David L [ORNL
2017-01-01
In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis of building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.
Resonant acoustic radiation force optical coherence elastography
Qi, Wenjuan; Li, Rui; Ma, Teng; Li, Jiawen; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping
2013-01-01
We report on a resonant acoustic radiation force optical coherence elastography (ARF-OCE) technique that uses mechanical resonant frequency to characterize and identify tissues of different types. The linear dependency of the resonant frequency on the square root of Young's modulus was validated on silicone phantoms. Both the frequency response spectrum and the 3D imaging results from the agar phantoms with hard inclusions confirmed the feasibility of deploying the resonant frequency as a mec...
Compensation of temperature frequency pushing in microwave resonator-meters on the basis VCO
Directory of Open Access Journals (Sweden)
Drobakhin O. O.
2008-02-01
Full Text Available It is shown that the influence of temperature oscillations on the error of measurements of parameters in the case of the application of microwave resonator meters on the basis of a voltage-controlled oscillator (VCO can be minimized by software using a special algorithm of VCO frequency setting correction. An algorithm of VCO frequency setting correction for triangle control voltage is proposed.
Lider, M. C.; Yurtseven, H.
2018-05-01
The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.
Resonance fluorescence spectrum in a two-band photonic bandgap crystal
Lee, Ray-Kuang; Lai, Yinchieh
2003-05-01
Steady state resonance fluorescence spectra from a two-level atom embedded in a photonic bandgap crystal and resonantly driven by a classical pump light are calculated. The photonic crystal is considered to be with a small bandgap which is in the order of magnitude of the Rabi frequency and is modeled by the anisotropic two-band dispersion relation. Non-Markovian noises caused by the non-uniform distribution of photon density states near the photonic bandgap are taken into account by a new approach which linearizes the optical Bloch equations by using the Liouville operator expansion. Fluorescence spectra that only exhibit sidebands of the Mollow triplet are found, indicating that there is no coherent Rayleigh scattering process.
International Nuclear Information System (INIS)
Kharkwal, M.C.
1998-01-01
A comparative study of frequency and spectrum of chlorophyll mutations induced by two physical (gamma rays, fast neutrons) and two chemical mutagens (NMU, EMS) in relation to the effects in M1 plants and induction of mutations in M2 was made in four chickpea (Cicer arietinum L.) varieties, two desi (G 130 & H 214) one Kabuli (C 104) and one green seeded (L 345). The treatments included three doses each of gamma rays (400, 500 & 600 Gy) and fast neutrons (5, 10 & 15 Gy) and two concentrations with two different durations of two chemical mutagens, NMU [0.01% (20h), & 0.02% (8h)] and EMS [0.1% (20h) & 0.2% (8h)]. The frequencies and spectrum of three different kinds of induced chlorophyll mutations in the order albina (43.5%), chlorina (27.3%) and xantha (24.2%) were recorded. Chemical mutagens were found to be efficient in inducing chlorophyll mutations in chickpea. Highest frequency of mutations was observed in green seeded var. L 345 (83% of M1 families and 19.9/1000 M2 plants). Kabuli var. C 104 was least responsive for chlorophyll mutations
Samaitis, Vykintas; Mažeika, Liudas
2017-08-08
Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng
2015-09-01
In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.
Ceyhun Şahin, Fatma; Schiffmann, Jürg
2018-02-01
A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to
DEFF Research Database (Denmark)
Høgfeldt Hansen, Leif
2016-01-01
The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....
DEFF Research Database (Denmark)
De Poorter, J; De Wagter, C; De Deene, Y
1995-01-01
The noninvasive thermometry method is based on the temperature dependence of the proton resonance frequency (PRF). High-quality temperature images can be obtained from phase information of standard gradient-echo sequences with an accuracy of 0.2 degrees C in phantoms. This work was focused on the...
High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network
DEFF Research Database (Denmark)
Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...
Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method
DEFF Research Database (Denmark)
Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry
2011-01-01
Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...
A study of the high frequency limitations of series resonant converters
Stuart, T. A.; King, R. J.
1982-01-01
A transformer induced oscillation in series resonant (SR) converters is studied. It may occur in the discontinuous current mode. The source of the oscillation is an unexpected resonant circuit formed by normal resonance components in series with the magnetizing inductance of the output transformers. The methods for achieving cyclic stability are: to use a half bridge SR converter where q0.5. Q should be as close to 1.0 as possible. If 0.5q1.0, the instability will be avoided if psi2/3q-1/3. The second objective was to investigate a power field effect transistor (FET) version of the SR converter capable of operating at frequencies above 100 KHz, to study component stress and losses at various frequencies.
Mostafapour, A; Davoodi, S; Ghareaghaji, M
2014-12-01
In this study, the theories of wavelet transform and cross-time frequency spectrum (CTFS) are used to locate AE source with frequency-varying wave velocity in plate-type structures. A rectangular array of four sensors is installed on the plate. When an impact is generated by an artificial AE source such as Hsu-Nielsen method of pencil lead breaking (PLB) at any position of the plate, the AE signals will be detected by four sensors at different times. By wavelet packet decomposition, a packet of signals with frequency range of 0.125-0.25MHz is selected. The CTFS is calculated by the short-time Fourier transform of the cross-correlation between considered packets captured by AE sensors. The time delay is calculated when the CTFS reaches the maximum value and the corresponding frequency is extracted per this maximum value. The resulting frequency is used to calculate the group velocity of wave velocity in combination with dispersive curve. The resulted locating error shows the high precision of proposed algorithm. Copyright © 2014 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Küblböck, M.
2015-01-01
Over the course of the last two decades, functional magnetic resonance imaging (fMRI) has emerged as a widely used, highly accepted and very popular method for the assessment of neuronal activity in the human brain. It is a completely non-invasive imaging technique with high temporal resolution, which relies on the measurement of local differences in magnetic susceptibility between oxygenated and deoxygenated blood. Therefore, fMRI can be regarded as an indirect measure of neuronal activity via measurement of localised changes in cerebral blood flow and cerebral oxygen consumption. Maps of neuronal activity are calculated from fMRI data acquired either in the presence of an explicit task (task-based fMRI) or in absence of a task (resting-state fMRI). While in task-based fMRI task-specific patterns of brain activity are subject to research, resting-state fMRI reveals fundamental networks of intrinsic brain activity. These networks are characterized by low-frequency oscillations in the power spectrum of resting-state fMRI data. In the present work, we first introduce the physical principles and the technical background that allow us to measure these changes in blood oxygenation, followed by an introduction to the blood oxygenation level dependent (BOLD) effect and to analysis methods for both task-based and resting-state fMRI data. We also analyse the temporal signal-to-noise ratio (tSNR) of a novel 2D-EPI sequence, which allows the experimenter to acquire several slices simultaneously in order to assess the optimal parameter settings for this sequence at 3T. We then proceed to investigate the temporal properties of measures for the amplitude of low-frequency oscillations in resting-state fMRI data, which are regarded as potential biomarkers for a wide range of mental diseases in various clinical studies and show the high stability and robustness of these data, which are important prerequisites for application as a biomarker as well as their dependency on head motion
Frequency shifts of resonant modes of the Sun due to near-surface convective scattering
Bhattacharya, J.; Hanasoge, S. M.; Antia, H. M.
Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the ``surface term.'' The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3D flows, can be reduced to an effective ``quiet-Sun'' wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.
FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING
International Nuclear Information System (INIS)
Bhattacharya, J.; Hanasoge, S.; Antia, H. M.
2015-01-01
Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection
Automatic DGD and GVD compensation at 640 Gb/s based on scalar radio-frequency spectrum measurement
DEFF Research Database (Denmark)
Paquot, Yvan; Schröder, Jochen; Palushani, Evarist
2013-01-01
of separate GVD and DGD compensators using an impairment monitor based on an integrated all-optical radio-frequency (RF) spectrum analyzer. We show that low-bandwidth measurement of only a single tone in the RF spectrum is sufficient for automatic compensation for multiple degrees of freedom using...
Fadel, M A; Mohamed, S A; Abdelbacki, A M; El-Sharkawy, A H
2014-08-01
Typhoid is a serious disease difficult to be treated with conventional drugs. The aim of this study was to demonstrate a new method for the control of Salmonella typhi growth, through the interference with the bioelectric signals generated from the microbe during cell division by extremely low frequency electromagnetic waves (ELF-EMW-ELF-EM) at resonance frequency. Isolated Salmonella typhi was subjected to square amplitude modulated waves (QAMW) with different modulation frequencies from two generators with constant carrier frequency of 10 MHz, amplitude of 10 Vpp, modulating depth ± 2 Vpp and constant field strength of 200 V m(-1) at 37°C. Both the control and exposed samples were incubated at the same conditions during the experiment. The results showed that there was highly significant inhibition effect for Salm. typhi exposed to 0·8 Hz QAMW for a single exposure for 75 min. Dielectric relaxation, TEM and DNA results indicated highly significant changes in the molecular structure of the DNA and cellular membrane resulting from the exposure to the inhibiting EM waves. It was concluded that finding out the inhibiting resonance frequency of ELF-EM waves that deteriorates Salm. typhi growth will be promising method for the treatment of Salm. typhi infection either in vivo or in vitro. This new non-invasive technique for treatment of bacterial infections is of considerable interest for the use in medical and biotechnological applications. © 2014 The Society for Applied Microbiology.
Electron energy spectrum produced in radio sources by turbulent, resonant acceleration
International Nuclear Information System (INIS)
Eilek, J.A.; Henriksen, R.N.
1984-01-01
We consider relativistic particle acceleration by resonant Alfven waves which are driven internally in a radio source from fully developed fluid turbulence. We find that self-similar behavior as described by Lacombe, f(p)proportionalp - /sup s/ but with sroughly-equal4.5, arises self-consistently when this turbulent wave driving coexists with synchrotron losses. The coupling of the wave and particle distributions provides feedback which drives an arbitrary initial distribution to the form-stable, self-similar form. The model predicts that turbulent plasma in a radio source should evolve toward a synchrotron spectral index, 0.5< or approx. =α< or approx. =1.0 in one particle lifetime, and that the average spectrum of most sources should also be in this range. The theory may also be applicable to other turbulent sites, such as cosmic-ray reaccelertion in the interstellar medium
Magnetic resonance imaging of acute trauma of the cervical spine: spectrum of findings
Energy Technology Data Exchange (ETDEWEB)
Forster, B.B.; Koopmans, R.A. [British Columbia Univ., Vancouver, BC (Canada). Faculty of Medicine
1995-06-01
The magnetic resonance imaging (MRI) spectrum of acute injury to the cervical spine was illustrated in this pictorial essay. The appearance of the traumatized cord was discussed, including intramedullary hemorrhage, and the causes of spinal cord compression, such as disk herniation, epidural hematoma, fracture, dislocation and underlying spinal stenosis. The ability of MRI to directly reveal the severity of cord injury and simultaneously indicate the cause of cord compression proved particularly useful in the management of incomplete injury, for which surgical intervention may prevent further deterioration. The protocol for MRI of cervical spinal trauma included sagittal T1-weighted and T2-weighted conventional spin-echo sequences. In addition, transverse T2-weighted gradient-echo images were obtained. MRI`s ability to directly reveal the extent of cord injury was said to be a powerful tool in the management of incomplete injuries where further deterioration could be prevented by timely surgical intervention. 7 refs., 12 figs.
International Nuclear Information System (INIS)
Tian, Si-Cong; Tong, Cun-Zhu; Ning, Yong-Qiang; Qin, Li; Liu, Yun; Wan, Ren-Gang
2014-01-01
Optical spectroscopy, a powerful tool for probing and manipulating quantum dots (QDs), has been used to investigate the resonance fluorescence spectrum from linear triple quantum dot molecules controlled by tunneling, using atomic physics methods. Interesting features such as quenching and narrowing of the fluorescence are observed. In such molecules the tunneling between the quantum dots can also induce a dark state. The results are explained by the transition properties of the dressed states generated by the coupling of the laser and the tunneling. Unlike the atomic system, in such quantum dot molecules quantum coherence can be induced using tunneling, requiring no coupling lasers, which will allow tunneling controllable quantum dot molecules to be applied to quantum optics and photonics. (paper)
Study on the dependence of the resonance frequency of accelerators on the cavities internal diameter
International Nuclear Information System (INIS)
Serrao, V.A.; Franco, M.A.R.; Fuhrmann, C.
1988-05-01
The resonance frequencies of individual cavities and of a six cell disk-loaded prototype of an accelerating structure were measured as a function of cavity inner diameter. A linear relationship between the indidual cavity frequency and the six cell stack 2Π/3 mode frequency was obtained that will be very useful during the final tuning of the accelerating strutures of the IEAV linac. The dispersion diagrams were also obtained for various internal cavity diameters; these diagrams were utilized to estimate the group velocity and the RF filling time of the accelerating structure. (author) [pt
Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator
Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.
2014-02-01
We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.
Schunk, Gerhard; Fürst, Josef U; Förtsch, Michael; Strekalov, Dmitry V; Vogl, Ulrich; Sedlmeir, Florian; Schwefel, Harald G L; Leuchs, Gerd; Marquardt, Christoph
2014-12-15
Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs. The radial mode numbers q and the angular mode numbers p = ℓ-m are identified and labeled via far-field imaging. The polar mode numbers ℓ are determined unambiguously by fitting the frequency differences between individual whispering gallery modes (WGMs). This allows for the accurate determination of the geometry and the refractive index at different temperatures of the WGMR. For future applications in classical and quantum optics, this mode analysis enables one to control the narrow-band phase-matching conditions in nonlinear processes such as second-harmonic generation or parametric down-conversion.
Stachiv, I.; Sittner, P.; Olejnicek, J.; Landa, M.; Heller, L.
2017-11-01
Shape memory alloy (SMA) films are very attractive materials for microactuators because of their high energy density. However, all currently developed SMA actuators utilize martensitic transformation activated by periodically generated heating and cooling; therefore, they have a slow actuation speed, just a few Hz, which restricts their use in most of the nanotechnology applications such as high frequency microcantilever based physical and chemical sensors, atomic force microscopes, or RF filters. Here, we design tunable high frequency SMA microcantilevers for nanotechnology applications. They consist of a phase transforming NiTi SMA film sputtered on the common elastic substrate material; in our case, it is a single-crystal silicon. The reversible tuning of microcantilever resonant frequencies is then realized by intentionally changing the Young's modulus and the interlayer stress of the NiTi film by temperature, while the elastic substrate guarantees the high frequency actuation (up to hundreds of kHz) of the microcantilever. The experimental results qualitatively agree with predictions obtained from the dedicated model based on the continuum mechanics theory and a phase characteristic of NiTi. The present design of SMA microcantilevers expands the capability of current micro-/nanomechanical resonators by enabling tunability of several consecutive resonant frequencies.
Effect of annealing induced residual stress on the resonance frequency of SiO2 microcantilevers
Balasubramanian, S.; Prabakar, K.; Tripura Sundari, S.
2018-04-01
In the present work, effect of residual stress, induced due to annealing of SiO2 microcantilevers (MCs) on their resonance frequency is studied. SiO2MCs of various dimensions were fabricated using direct laser writer & wet chemical etching method and were annealed at 800 °C in oxygen environment, post release. The residual stress was estimated from the deflection profile of the MCs measured using 3D optical microscope, before and after annealing. Resonance frequency of the MCs was measured using nano-vibration analyzer and was found to change after annealing. Further the frequency shift was found to depend on the MC dimensions. This is attributed to the large stress gradients induced by annealing and associated stiffness changes.
Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey
Ismail, Marwa M. T.; Keynton, Robert S.; Mostapha, Mahmoud M. M. O.; ElTanboly, Ahmed H.; Casanova, Manuel F.; Gimel'farb, Georgy L.; El-Baz, Ayman
2016-01-01
Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics. PMID:27242476
International Nuclear Information System (INIS)
Bulgakov, M.I.; Dzheparov, F.S.; Gul'ko, A.D.; Shestopal, V.E.; Stepanov, S.V.; Trostin, S.S.
1989-01-01
β-NMR-spectroscopy investigations of the resonance at double Larmor frequency of β-active nuclei 8 Li in LiF polycrystals are presented. The qualitative analysis of the dislocation influence on this resonance is developed. An important role of correlations in dislocation distributions as well as high responsivity of this resonance to quadrupole interactions are found. 13 refs.; 2 figs
Study of clay behaviour around a heat source by frequency spectrum analysis of seismic waves
International Nuclear Information System (INIS)
Sloovere, P. de.
1993-01-01
Wave propagated into soft rock is not completely described by purely linear elastic theory. Through spectrum analysis of wave, one can see that several frequencies are selected by the ground. ME2i uses this method to check grouting, piles a.s.o. The Mol experiment (on Radioactive Waste Disposal) aims to prove that little changes into heated clay can be detected by 'frequential seismic'. A cross-hole investigation system has been installed and tests have been performed for two years with a shear-hammer named MARGOT built to work inside horizontal boreholes: - Before heating the tests show the same results every time: . main frequency at 330 hertz; . maximal frequency at 520 hertz; - During heating: . the rays at 330 and 520 hertz disappear; . The frequencies in the range 100 - 300 hertz are prevailing; - After heating spectra have again their original shape. These results show that the effect is clear around an heated zone. The next steps should be: - Interpretation with computer's codes treating of wave propagation into a viscoelastic body; - Experimentations: . at the opening of a new gallery; . on big samples; . on granites and salt. 9 refs., 4 appendices
International Nuclear Information System (INIS)
Hong, Dae Seok; Lee, Kun Jai
2003-01-01
Electron Spin Resonance (ESR) spectroscopy is one of the methods applicable to retrospective dosimetry. The retrospective dosimetry is a part of dose reconstruction for estimation of exposed dose occurred years before the estimation. A tooth can be separated as enamel, dentine and cementum. Among the three parts, enamel is known as to show the best sensitivity to the absorbed dose and is most widely used. Since the later 80s, ESR dosimetry with tooth enamel has been studied and applied for the retrospective dosimetry. There are some factors affecting the sensitivity of enamel to absorbed dose. One of the factors is a size of enamel. Grain size of the 1.0mm∼0.1mm range is commonly used and 0.6mm∼0.25mm is recommended in other study. But the sensitivity can be varied by the grain size. In this study, the granular effect of enamel to the sensitivity is examined for application to retrospective dosimetry. In the enamel separation, to minimize the physically induced ESR spectrum, only chemical separation method was used. Separated enamels were divided by their size. The sizes of each sample is 1.0mm∼0.71mm, 0.5mm∼0.3mm, and below 0.1mm, respectively. All enamel samples show ESR spectrum related to the absorbed dose and the ESR spectrum shows linearity to the absorbed dose. The sensitivities are similar for each sample. But the enamel of size below 0.1mm shows poor characteristics relative to other enamel size. So, it is not recommended to use enamel samples below 0.1mm
Directory of Open Access Journals (Sweden)
N. I. Polzikova
2018-05-01
Full Text Available We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE dc voltage driven by an acoustic spin pumping (ASP in a bulk acoustic wave (BAW resonator formed by a Al-ZnO-Al-YIG(1-GGG-YIG(2-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ∼ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2 to Pt in the area ∼ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H on the (f, H plane. At the same time a significant asymmetry of the VISHE(fn(H value in reference to the magnetoelastic resonance (MER line fMER(H position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.
Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Luzanov, V. A.; Raevskiy, A. O.; Kotov, V. A.
2018-05-01
We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE) dc voltage driven by an acoustic spin pumping (ASP) in a bulk acoustic wave (BAW) resonator formed by a Al-ZnO-Al-YIG(1)-GGG-YIG(2)-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ˜ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2) to Pt in the area ˜ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H) together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H) on the (f, H) plane. At the same time a significant asymmetry of the VISHE(fn(H)) value in reference to the magnetoelastic resonance (MER) line fMER(H) position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.
Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics
International Nuclear Information System (INIS)
Zhou, Changjian; Shu, Yi; Yang, Yi; Ren, Tian-Ling; Jin, Hao; Dong, Shu-Rong; Chan, Mansun
2015-01-01
Flexible electronics have inspired many novel and very important applications in recent years and various flexible electronic devices such as diodes, transistors, circuits, sensors, and radiofrequency (RF) passive devices including antennas and inductors have been reported. However, the lack of a high-performance RF resonator is one of the key bottlenecks to implement flexible wireless electronics. In this study, for the first time, a novel ultra-flexible structured film bulk acoustic resonator (FBAR) is proposed. The flexible FBAR is fabricated on a flexible polyimide substrate using piezoelectric thin film aluminum nitride (AlN) for acoustic wave excitation. Both the shear wave and longitudinal wave can be excited under the surface interdigital electrodes configuration we proposed. In the case of the thickness extension mode, a flexible resonator with a working frequency as high as of 5.2325 GHz has been realized. The resonators stay fully functional under bending status and after repeated bending and re-flattening operations. This flexible high-frequency resonator will serve as a key building block for the future flexible wireless electronics, greatly expanding the application scope of flexible electronics. (paper)
International Nuclear Information System (INIS)
Hong, Liu; He, X.T.; Chen, S.G.; Zhang, W.Y.; He, X.T.; Hong, Liu
2004-01-01
We propose a new particle acceleration mechanism. Electrons can be accelerated to relativistic energy within a few electromagnetic wave cycles through the mechanism which is named electromagnetic and magnetic field resonance acceleration (EMRA). We find that the electron acceleration depends not only on the electromagnetic wave intensity, but also on the ratio between electron Larmor frequency and electromagnetic wave frequency. As the ratio approaches to unity, a clear resonance peak is observed, corresponding to the EMRA. Near the resonance regime, the strong magnetic fields still affect the electron acceleration dramatically. We derive an approximate analytical solution of the relativistic electron energy in adiabatic limit, which provides a full understanding of this phenomenon. In typical parameters of pulsar magnetospheres, the mechanism allows particles to increase their energies through the resonance of high magnetic field and high frequency electromagnetic wave in each electromagnetic wave period. The energy spectra of the accelerated particles exhibit the synchrotron radiation behavior. These can help to understand the remaining emission of high energy electron from radio pulsar within supernova remnant. The other potential application of our theory in fast ignition scheme of inertial confinement fusion is also discussed. (authors)
A frequency controlled LCL - T resonant converter for H- ion source
International Nuclear Information System (INIS)
Gauttam, V.K.; Kasliwal, A.; Banwari, R.; Pandit, T.G.; Thakurta, A.C.
2013-01-01
An H - ion source is being developed at Raja Ramanna Centre for Advanced Technology, Indore. An LCL-T resonant power converter with variable frequency control is proposed which is utilized to develop a -20 kV/100 mA high voltage (HV) power supply for extraction of H - ions. The LCL-T resonant topology offers many advantages like gainful utilization of the transformer parasitics as a part of resonant network and low circulating current. The power converter is operated with variable frequency control and above resonance to get well known zero-voltage switching (ZVS) advantages for full bridge semiconductor switches in full load range. The converter energizes the symmetrical Cockcroft-Walton (CW) based HV generator to achieve required high voltage. The CW circuit is an attractive solution for HV generation since it has features like low stored energy and low output ripple. The HV power supply is operated in constant current (CC) mode with closed loop control and soft start of the power supply is achieved by sweeping the switching frequency from 40 kHz to defined operating point. Design parameters, simulation results and experimental results of the power converter are presented in this paper. (author)
DEFF Research Database (Denmark)
Iwaszczuk, Krzysztof; Bisgaard, Christer Zoffmann; Andronico, Alessio
2013-01-01
We investigate the electromagnetic design of whispering gallery mode (WGM) terahertz (THz) resonators. Terahertz radiation is generated by difference-frequency mixing of two electrically pumped high-order near-infrared laser WGM's at room temperature in the active cavity. Due to the leaky nature...... this symmetry by modification of the dielectric environment of the resonator, and demonstrate a fabrication-optimized structure based on a concentric grating design which efficiently couples the emitted radiation into a narrow, near-gaussian forward-propagating cone of well-defined linear or circular...
Very High Frequency Resonant DC/DC Converters for LED Lighting
DEFF Research Database (Denmark)
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2013-01-01
This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...... with 40 V input and 15 V output are made. The simulation shows possibility of achieving efficiency up to 87 % even with a HEXFET Power MOSFET. Three prototypes of the simulated converter are implemented showing good correlation with simulations. The prototypes have efficiencies up to 84 % and power...
Carnero Contentti, Edgar; Daccach Marques, Vanessa; Soto de Castillo, Ibis; Tkachuk, Veronica; Antunes Barreira, Amilton; Armas, Elizabeth; Chiganer, Edson; de Aquino Cruz, Camila; Di Pace, José Luis; Hryb, Javier Pablo; Lavigne Moreira, Carolina; Lessa, Carmen; Molina, Omaira; Perassolo, Monica; Soto, Arnoldo; Caride, Alejandro
2018-01-01
Brain magnetic resonance imaging (BMRI) lesions were classically not reported in neuromyelitis optica (NMO). However, BMRI lesions are not uncommon in NMO spectrum disorder (NMOSD) patients. To report BMRI characteristic abnormalities (location and configuration) in NMOSD patients at presentation. Medical records and BMRI characteristics of 79 patients with NMOSD (during the first documented attack) in Argentina, Brazil and Venezuela were reviewed retrospectively. BMRI abnormalities were observed in 81.02% of NMOSD patients at presentation. Forty-two patients (53.1%) showed typical-NMOSD abnormalities. We found BMRI abnormalities at presentation in the brainstem/cerebellum (n = 26; 32.9%), optic chiasm (n = 16; 20.2%), area postrema (n = 13; 16.4%), thalamus/hypothalamus (n = 11; 13.9%), corpus callosum (n = 11; 13.9%), periependymal-third ventricle (n = 9; 11.3%), corticospinal tract (n = 7; 8.8%), hemispheric white matter (n = 1; 1.2%) and nonspecific areas (n = 49; 62.03%). Asymptomatic BMRI lesions were more common. The frequency of brain MRI abnormalities did not differ between patients who were positive and negative for aquaporin 4 antibodies at presentation. Typical brain MRI abnormalities are frequent in NMOSD at disease onset. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications
Chandran, Akhil A.
2016-09-15
Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator\\'s nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli\\'s beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.
International Nuclear Information System (INIS)
Krakover, Naftaly; Krylov, Slava; Ilic, B Robert
2016-01-01
The ability to control nonlinear interactions of suspended mechanical structures offers a unique opportunity to engineer rich dynamical behavior that extends the dynamic range and ultimate device sensitivity. We demonstrate a displacement sensing technique based on resonant frequency monitoring of curved, doubly clamped, bistable micromechanical beams interacting with a movable electrode. In this configuration, the electrode displacement influences the nonlinear electrostatic interactions, effective stiffness and frequency of the curved beam. Increased sensitivity is made possible by dynamically operating the beam near the snap-through bistability onset. Various in-plane device architectures were fabricated from single crystal silicon and measured under ambient conditions using laser Doppler vibrometry. In agreement with the reduced order Galerkin-based model predictions, our experimental results show a significant resonant frequency reduction near critical snap-through, followed by a frequency increase within the post-buckling configuration. Interactions with a stationary electrode yield a voltage sensitivity up to ≈560 Hz V −1 and results with a movable electrode allow motion sensitivity up to ≈1.5 Hz nm −1 . Our theoretical and experimental results collectively reveal the potential of displacement sensing using nonlinear interactions of geometrically curved beams near instabilities, with possible applications ranging from highly sensitive resonant inertial detectors to complex optomechanical platforms providing an interface between the classical and quantum domains. (paper)
HIGHER MODE FREQUENCY EFFECTS ON RESONANCE IN MACHINERY, STRUCTURES, AND PIPE SYSTEMS
Energy Technology Data Exchange (ETDEWEB)
Leishear, R.
2010-05-02
The complexities of resonance in multi-degree of freedom systems (multi-DOF) may be clarified using graphic presentations. Multi-DOF systems represent actual systems, such as beams or springs, where multiple, higher order, natural frequencies occur. Resonance occurs when a cyclic load is applied to a structure, and the frequency of the applied load equals one of the natural frequencies. Both equations and graphic presentations are available in the literature for single degree of freedom (SDOF) systems, which describe the response of spring-mass-damper systems to harmonically applied, or cyclic, loads. Loads may be forces, moments, or forced displacements applied to one end of a structure. Multi-DOF systems are typically described only by equations in the literature, and while equations certainly permit a case by case analysis for specific conditions, graphs provide an overall comprehension not gleaned from single equations. In fact, this collection of graphed equations provides novel results, which describe the interactions between multiple natural frequencies, as well as a comprehensive description of increased vibrations near resonance.
Directory of Open Access Journals (Sweden)
Kim Sun Ho
2017-01-01
Full Text Available An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.
International Nuclear Information System (INIS)
Skoblin, A.A.
1994-01-01
Free nonrelativistic electrons in both a static magnetic field and an electromagnetic wave are considered. A plane-polarized wave propagates along a magnetic field, its frequency is close to the electron rotation frequency in a magnetic field. Electron spin is taken into account. An electron quasi energy spectrum and steady states (quasi energy states) are constructed. 6 refs
Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.
2012-01-01
Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…
International Nuclear Information System (INIS)
Schüngel, E; Brandt, S; Schulze, J; Donkó, Z; Korolov, I; Derzsi, A
2015-01-01
The self-excitation of plasma series resonance (PSR) oscillations plays an important role in the electron heating dynamics in capacitively coupled radio-frequency (CCRF) plasmas. In a combined approach of PIC/MCC simulations and a theoretical model based on an equivalent circuit, we investigate the self-excitation of PSR oscillations and their effect on the electron heating in geometrically symmetric CCRF plasmas driven by multiple consecutive harmonics. The discharge symmetry is controlled via the electrical asymmetry effect (EAE), i.e. by varying the total number of harmonics and tuning the phase shifts between them. It is demonstrated that PSR oscillations will be self-excited under both symmetric and asymmetric conditions, if (i) the charge–voltage relation of the plasma sheaths deviates from a simple quadratic behavior and (ii) the inductance of the plasma bulk exhibits a temporal modulation. These two effects have been neglected up to now, but we show that they must be included in the model in order to properly describe the nonlinear series resonance circuit and reproduce the self-excitation of PSR oscillations, which are observed in the electron current density resulting from simulations of geometrically symmetric CCRF plasmas. Furthermore, the effect of PSR self-excitation on the discharge current and the plasma properties, such as the potential profile, is illustrated by applying Fourier analysis. High-frequency oscillations in the entire spectrum between the applied frequencies and the local electron plasma frequency are observed. As a consequence, the electron heating is strongly enhanced by the presence of PSR oscillations. A complex electron heating dynamics is found during the expansion phase of the sheath, which is fully collapsed, when the PSR is initially self-excited. The nonlinear electron resonance heating (NERH) associated with the PSR oscillations causes a spatial asymmetry in the electron heating. By discussing the resulting ionization
Equitable access to spectrum in further development of the Geneva 2006 frequency plan
Philipp, J.
2011-12-01
Since the frequency plan of the Regional Radiocommunication Conference Geneva 2006 has come into force, many attempts have been made towards its enhancement. The preliminary results, however, seem not to be compliant with elementary principles of distribution justice. Therefore, the planning principles which lead to the observed imbalance will be scrutinized. Furthermore it will be shown that the utilization of spectrum can be advanced in a balanced way when the same (necessary) condition for "equitable access", which has been used by a group of middle European countries for the construction of the original frequency plan, is applied to plan refinements as well. The necessary condition mentioned consists simply in the parity of the number of coverages (constituted of disjoint allotments) configured in the plan for each country. In order to be able to plan enhancements, the concept of coverage number has to be generalized to the case of incomplete coverages of potentially overlapping allotments. The computation of coverage numbers is straightforward and renders the concept of coverage number parity a useful tool to be applied as a necessary condition in testing a frequency plan variant for equitable access.
Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.
2014-01-01
Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.
Energy Technology Data Exchange (ETDEWEB)
Lee, Manhee; Hwang, Jong Geun; Jahng, Junghoon; Kim, QHwan; Noh, Hanaul; An, Sangmin; Jhe, Wonho, E-mail: whjhe@snu.ac.kr [Department of Physics and Astronomy, Institute of Applied Physics and Centre for THz-Bio Application Systems, Seoul National University, Seoul 151-747 (Korea, Republic of)
2016-08-21
We present an electrical feedback method for independent and simultaneous tuning of both the resonance frequency and the quality factor of a harmonic oscillator, the so called “qPlus” configuration of quartz tuning forks. We incorporate a feedback circuit with two electronic gain parameters into the original actuation-detection system, and systematically demonstrate the control of the original resonance frequency of 32 592 Hz from 32 572 Hz to 32 610 Hz and the original quality factor 952 from 408 up to 20 000. This tunable module can be used for enhancing and optimizing the oscillator performance in compliance with specifics of applications.
Computing resonant frequency of C-shaped compact microstrip antennas by using ANFIS
Akdagli, Ali; Kayabasi, Ahmet; Develi, Ibrahim
2015-03-01
In this work, the resonant frequency of C-shaped compact microstrip antennas (CCMAs) operating at UHF band is computed by using the adaptive neuro-fuzzy inference system (ANFIS). For this purpose, 144 CCMAs with various relative dielectric constants and different physical dimensions were simulated by the XFDTD software package based on the finite-difference time domain (FDTD) method. One hundred and twenty-nine CCMAs were employed for training, while the remaining 15 CCMAs were used for testing of the ANFIS model. Average percentage error (APE) values were obtained as 0.8413% and 1.259% for training and testing, respectively. In order to demonstrate its validity and accuracy, the proposed ANFIS model was also tested over the simulation data given in the literature, and APE was obtained as 0.916%. These results show that ANFIS can be successfully used to compute the resonant frequency of CCMAs.
Vibration energy harvester with low resonant frequency based on flexible coil and liquid spring
Wang, Y.; Zhang, Q.; Zhao, L.; Tang, Y.; Shkel, A.; Kim, E. S.
2016-11-01
This paper reports an electromagnetic vibration-energy harvester with low resonant frequency based on liquid spring composed of ferrofluid. Cylinder magnet array formed by four disc NdFeB magnets is suspended by ferrofluid in a laser-machined acrylic tube which is wrapped by flexible planar coil fabricated with microfabrication process. The magnet array and coil are aligned automatically by the ferrofluid. Restoring force when the magnet array is deviated from the balance position is proportional to the deviated distance, which makes the ferrofluid work as a liquid spring obeying Hook's law. Experimental results show that the electromagnetic energy harvester occupying 1.8 cc and weighing 5 g has a resonant frequency of 16 Hz and generates an induced electromotive force of Vrms = 2.58 mV (delivering 79 nW power into matched load of 21 Ω) from 3 g acceleration at 16 Hz.
International Nuclear Information System (INIS)
Lee, Manhee; Hwang, Jong Geun; Jahng, Junghoon; Kim, QHwan; Noh, Hanaul; An, Sangmin; Jhe, Wonho
2016-01-01
We present an electrical feedback method for independent and simultaneous tuning of both the resonance frequency and the quality factor of a harmonic oscillator, the so called “qPlus” configuration of quartz tuning forks. We incorporate a feedback circuit with two electronic gain parameters into the original actuation-detection system, and systematically demonstrate the control of the original resonance frequency of 32 592 Hz from 32 572 Hz to 32 610 Hz and the original quality factor 952 from 408 up to 20 000. This tunable module can be used for enhancing and optimizing the oscillator performance in compliance with specifics of applications.
International Nuclear Information System (INIS)
Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.
2015-01-01
Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities
International Nuclear Information System (INIS)
Pakter, R.; Schneider, R.S.; Rizzato, F.B.
1993-01-01
The cyclotron-resonance laser accelerator (CRLA), where a coherent electromagnetic wave may transfer a large amount of energy to a beam of electrons gravitating in a guide magnetic field is studied. This large amount of transferred energy takes place due to the autoresonance mechanism where, under some ideal conditions, an initial wave-particle synchronism is self-sustained throughout the accelerating period. An improved analysis of the mentioned self-consistent wave-particle interaction, taking into account a possible frequency mismatch between wave and particles. It is also shown how the frequency mismatch can compensate the dispersion effects. (L.C.J.A.)
Fully-resonant, tunable, monolithic frequency conversion as a coherent UVA source.
Zielińska, Joanna A; Zukauskas, Andrius; Canalias, Carlota; Noyan, Mehmet A; Mitchell, Morgan W
2017-01-23
We demonstrate a monolithic frequency converter incorporating up to four tuning degrees of freedom, three temperature and one strain, allowing resonance of pump and generated wavelengths simultaneous with optimal phase-matching. With a Rb-doped periodically-poled potassium titanyl phosphate (KTP) implementation, we demonstrate efficient continuous-wave second harmonic generation from 795 to 397, with low-power efficiency of 72% and high-power slope efficiency of 4.5%. The measured performance shows good agreement with theoretical modeling of the device. We measure optical bistability effects, and show how they can be used to improve the stability of the output against pump frequency and amplitude variations.
Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai
2016-04-01
We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50 mm and the reflected optical path length was 2L=100 mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6 GHz and 4 MHz/h at a detuning of -5.2 GHz were also obtained for the transmitted and reflected light Faraday signal.
Multi-cavity locally resonant structure with the low frequency and broad band-gaps
Directory of Open Access Journals (Sweden)
Jiulong Jiang
2016-11-01
Full Text Available A multi-cavity periodic structure with the characteristic of local resonance was proposed in the paper. The low frequency band-gap structure was comparatively analyzed by the finite element method (FEM and electric circuit analogy (ECA. Low frequency band-gap can be opened through the dual influence of the coupling’s resonance in the cavity and the interaction among the couplings between structures. Finally, the influence of the structural factors on the band-gap was analyzed. The results show that the structure, which is divided into three parts equally, has a broader effective band-gap below the frequency of 200 Hz. It is also proved that reducing the interval between unit structures can increase the intensity of the couplings among the structures. And in this way, the width of band-gap would be expanded significantly. Through the parameters adjustment, the structure enjoys a satisfied sound insulation effect below the frequency of 500Hz. In the area of low frequency noise reduction, the structure has a lot of potential applications.
Process and equipment for automatic measurement of resonant frequencies in seismic detectors
International Nuclear Information System (INIS)
Fredriksson, O.A.; Thomas, E.L.
1977-01-01
This is a process for the automatic indication of the resonant frequency of one or more detector elements which have operated inside a geophysical data-gathering system. Geophones or hydrophones or groups of both instruments are to be understood as comprising the detector elements. The invention concerns the creation of a process and of equipment working with laboratory precision, although it can be used in the field. (orig./RW) [de
Allowance for change in the solvent frequency spectrum in the theory of nonadiabatic transitions
International Nuclear Information System (INIS)
Ponomarev, O.A.; Khabibullin, R.M.
1989-01-01
An explicit expression is obtained for the correlation function of a vibrational subsystem that takes into account memory of the state of the electron subsystem. The correlation function is represented in terms of the retarded Green's functions of the vibrational subsystem for different electron states. The singular equation for the correlation function are solved by reducing them to a canonical system and to the Riemann problem of the jump of a vector function with subsequent nonlinear factorization. This made it possible to solve exactly the problem for an arbitrary initial correlation function and calculate the effect that a change in the frequency spectrum of the solvent has on the process rate constant in the case of a nonradiative transition
Influence of optical feedback on laser frequency spectrum and threshold conditions
DEFF Research Database (Denmark)
Osmundsen, Jens Henrik; Gade, Niels
1983-01-01
The steady state behavior of the external cavity operated laser has been analyzed, taking into account multiple reflections. The effect of optical feedback is included in the phase- and gain-conditions by a factor which is shown to have a simple geometrical representation. From this representation...... it is easily seen how the laser frequency spectrum and the threshold gain depend on external parameters such as distance to the reflection point and the amount of optical feedback. Furthermore, by inserting a variable attenuator in the external cavity and measuring the threshold current versus transmittance we...... have simultaneously determined the photon lifetime and the absolute amount of optical feedback. For the laser considered we found the photon lifetimetau_{p} = 1.55ps....
Lebouteux, M-V; Franques, J; Guillevin, R; Delmont, E; Lenglet, T; Bede, P; Desnuelle, C; Pouget, J; Pascal-Mousselard, H; Pradat, P-F
2014-09-01
The 'snake eyes' sign refers to bilateral hyperintensities of the anterior horns on axial spinal cord imaging. Based on sporadic reports, it has been associated with a range of lower motor neuron (LMN) syndromes, such as spondylotic amyotrophy and Hirayama disease, as well as spinal cord infarction. The objective of our study was to comprehensively characterize the full diagnostic spectrum of LMN syndromes with this radiological clue and discuss potential aetiological factors. A large patient cohort with snake eyes sign and upper limb LMN degeneration was recruited from three French neuromuscular units. Patients underwent detailed electrophysiological, radiological, clinical and anamnestic profiling. Twenty-nine patients were ascertained and followed up for 9.5 ± 8.6 years. The majority of the patients were male (86.2%) with a mean age of 37.3 ± 14.4 years. Symptoms were bilateral in most cases (86.2%). Patients with predominantly proximal and distal deficits were equally represented (44.8% and 55.2%, respectively). A history of preceding trauma or intense physical activity was confirmed in 58.6% of the cases; 27.6% of the patients were given an initial clinical diagnosis of amyotrophic lateral sclerosis (ALS), and 51.7% were originally suspected to have multifocal motor neuropathy. None of the patients developed ALS on longitudinal follow-up. The snake eyes sign on magnetic resonance imaging is associated with a wide spectrum of neurological conditions and is more common in young men with a history of strenuous activity or antecedent trauma. The recognition of this syndrome is crucial as many of these patients are initially misdiagnosed with ALS. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.
Directory of Open Access Journals (Sweden)
Krishnan Sridhar
2007-01-01
Full Text Available This paper introduces a novel algorithm to excise single and multicomponent chirp-like interferences in direct sequence spread spectrum (DSSS communications. The excision algorithm consists of two stages: adaptive signal decomposition stage and directional element detection stage based on the Hough-Radon transform (HRT. Initially, the received spread spectrum signal is decomposed into its time-frequency (TF functions using an adaptive signal decomposition algorithm, and the resulting TF functions are mapped onto the TF plane. We then use a line detection algorithm based on the HRT that operates on the image of the TF plane and detects energy varying directional elements that satisfy a parametric constraint. Interference is modeled by reconstructing the corresponding TF functions detected by the HRT, and subtracted from the received signal. The proposed technique has two main advantages: (i it localizes the interferences on the TF plane with no cross-terms, thus facilitating simple filtering techniques based on thresholding of the TF functions, and is an efficient way to excise the interference; (ii it can be used for the detection of any directional interferences that can be parameterized. Simulation results with synthetic models have shown successful performance with linear and quadratic chirp interferences for single and multicomponent interference cases. The proposed method excises the interference even under very low SNR conditions of dB, and the technique could be easily extended to any interferences that could be represented by a parametric equation in the TF plane.
Resonance spectrum of near-extremal Kerr black holes in the eikonal limit
International Nuclear Information System (INIS)
Hod, Shahar
2012-01-01
The fundamental resonances of rapidly rotating Kerr black holes in the eikonal limit are derived analytically. We show that there exists a critical value, μ c =√((15-√(193))/2 ), for the dimensionless ratio μ≡m/l between the azimuthal harmonic index m and the spheroidal harmonic index l of the perturbation mode, above which the perturbations become long lived. In particular, it is proved that above μ c the imaginary parts of the quasinormal frequencies scale like the black-hole temperature: ω I (n;μ>μ c )=2πT BH (n+1/2 ). This implies that for perturbations modes in the interval μ c I of the black hole becomes extremely long as the extremal limit T BH →0 is approached. A generalization of the results to the case of scalar quasinormal resonances of near-extremal Kerr-Newman black holes is also provided. In particular, we prove that only black holes that rotate fast enough (with MΩ≥2/5 , where M and Ω are the black-hole mass and angular velocity, respectively) possess this family of remarkably long-lived perturbation modes.
Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators
Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif
2011-01-01
High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown
Energy Technology Data Exchange (ETDEWEB)
Righini, Andrea; Parazzini, Cecilia; Izzo, Giana [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Cesaretti, Claudia [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Ospedale Maggiore Policlinico, Medical Genetics Unit, Fondazione I.R.C.C.S. Ca' Granda, Milan (Italy); Conte, Giorgio [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); University of Milan, Department of Health Sciences, Milan (Italy); Frassoni, Carolina; Inverardi, Francesca [Fondazione I.R.C.C.S. Istituto Neurologico ' ' C. Besta' ' , Clinical Epileptology and Experimental Neurophysiology Unit, Milan (Italy); Bulfamante, Gaetano; Avagliano, Laura [San Paolo Hospital, Division of Human Pathology, Milan (Italy); Rustico, Mariangela [Children' s Hospital ' ' V. Buzzi' ' , Department of Obstetrics and Gynaecology, Prenatal Diagnosis, Milan (Italy)
2016-03-15
Ganglionic eminence (GE) is a transient fetal brain structure that harvests a significant amount of precursors of cortical GABA-ergic interneurons. Prenatal magnetic resonance (MR) imaging features of GE anomalies (i.e., cavitations) have already been reported associated with severe micro-lissencephaly. The purpose of this report was to illustrate the MR imaging features of GE anomalies in conditions other than severe micro-lissencephalies. Among all the fetuses submitted to prenatal MR imaging at our center from 2005 to 2014, we collected eight cases with GE anomalies and only limited associated brain anomalies. The median gestational age at the time of MR imaging was 21 weeks ranging from 19 to 29 weeks. Two senior pediatric neuroradiologists categorized the anomalies of the GE region in two groups: group one showing cavitation in the GE region and group two showing enlarged GE region. For each fetal case, associated cranial anomalies were also reported. Five out of the eight cases were included in group one and three in group two. Besides the GE region abnormality, all eight cases had additional intracranial anomalies, such as mild partial callosal agenesis, vermian hypoplasia and rotation, cerebellar hypoplasia, ventriculomegaly, enlarged subarachnoid spaces, molar tooth malformation. Ultrasound generally detected most of the associated intracranial anomalies, prompting the MR investigation; on the contrary in none of the cases, GE anomalies had been detected by ultrasound. Our observation expands the spectrum of human GE anomalies, demonstrating that these may take place also without associated severe micro-lissencephalies. (orig.)
Directory of Open Access Journals (Sweden)
Peter eEnticott
2013-05-01
Full Text Available The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD. Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32 and matched neurotypical controls (n = 32 completed a transcranial magnetic stimulation (TMS experiment in which the left primary motor cortex was stimulated during the observation of static hands, individual (i.e., one person hand actions, and interactive (i.e., two person hand actions. Motor-evoked potentials (MEP were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD.
Manogaran, Praveena; Hanson, James V M; Olbert, Elisabeth D; Egger, Christine; Wicki, Carla; Gerth-Kahlert, Christina; Landau, Klara; Schippling, Sven
2016-11-15
Irreversible disability in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) is largely attributed to neuronal and axonal degeneration, which, along with inflammation, is one of the major pathological hallmarks of these diseases. Optical coherence tomography (OCT) is a non-invasive imaging tool that has been used in MS, NMOSD, and other diseases to quantify damage to the retina, including the ganglion cells and their axons. The fact that these are the only unmyelinated axons within the central nervous system (CNS) renders the afferent visual pathway an ideal model for studying axonal and neuronal degeneration in neurodegenerative diseases. Structural magnetic resonance imaging (MRI) can be used to obtain anatomical information about the CNS and to quantify evolving pathology in MS and NMOSD, both globally and in specific regions of the visual pathway including the optic nerve, optic radiations and visual cortex. Therefore, correlations between brain or optic nerve abnormalities on MRI, and retinal pathology using OCT, may shed light on how damage to one part of the CNS can affect others. In addition, these imaging techniques can help identify important differences between MS and NMOSD such as disease-specific damage to the visual pathway, trans-synaptic degeneration, or pathological changes independent of the underlying disease process. This review focuses on the current knowledge of the role of the visual pathway using OCT and MRI in patients with MS and NMOSD. Emphasis is placed on studies that employ both MRI and OCT to investigate damage to the visual system in these diseases.
Enticott, Peter G; Kennedy, Hayley A; Rinehart, Nicole J; Bradshaw, John L; Tonge, Bruce J; Daskalakis, Zafiris J; Fitzgerald, Paul B
2013-01-01
The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD). Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32) and matched neurotypical controls (n = 32) completed a transcranial magnetic stimulation (TMS) experiment in which the left primary motor cortex (M1) was stimulated during the observation of static hands, individual (i.e., one person) hand actions, and interactive (i.e., two person) hand actions. Motor-evoked potentials (MEP) were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity) during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD.
International Nuclear Information System (INIS)
Righini, Andrea; Parazzini, Cecilia; Izzo, Giana; Cesaretti, Claudia; Conte, Giorgio; Frassoni, Carolina; Inverardi, Francesca; Bulfamante, Gaetano; Avagliano, Laura; Rustico, Mariangela
2016-01-01
Ganglionic eminence (GE) is a transient fetal brain structure that harvests a significant amount of precursors of cortical GABA-ergic interneurons. Prenatal magnetic resonance (MR) imaging features of GE anomalies (i.e., cavitations) have already been reported associated with severe micro-lissencephaly. The purpose of this report was to illustrate the MR imaging features of GE anomalies in conditions other than severe micro-lissencephalies. Among all the fetuses submitted to prenatal MR imaging at our center from 2005 to 2014, we collected eight cases with GE anomalies and only limited associated brain anomalies. The median gestational age at the time of MR imaging was 21 weeks ranging from 19 to 29 weeks. Two senior pediatric neuroradiologists categorized the anomalies of the GE region in two groups: group one showing cavitation in the GE region and group two showing enlarged GE region. For each fetal case, associated cranial anomalies were also reported. Five out of the eight cases were included in group one and three in group two. Besides the GE region abnormality, all eight cases had additional intracranial anomalies, such as mild partial callosal agenesis, vermian hypoplasia and rotation, cerebellar hypoplasia, ventriculomegaly, enlarged subarachnoid spaces, molar tooth malformation. Ultrasound generally detected most of the associated intracranial anomalies, prompting the MR investigation; on the contrary in none of the cases, GE anomalies had been detected by ultrasound. Our observation expands the spectrum of human GE anomalies, demonstrating that these may take place also without associated severe micro-lissencephalies. (orig.)
Generation of THz frequency using PANDA ring resonator for THz imaging
Directory of Open Access Journals (Sweden)
Ong CT
2012-02-01
Full Text Available MA Jalil1, Afroozeh Abdolkarim2, T Saktioto2, CT Ong3, Preecha P Yupapin41Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM,81310, Johor Bahru, Malaysia; 2Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM, 81310, Johor Bahru, Malaysia; 3Department of Mathematics, Universiti Teknologi Malaysia 81310 Skudai, Johor Bahru, Malaysia; 4Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, ThailandAbstract: In this study, we have generated terahertz (THz frequency by a novel design of microring resonators for medical applications. The dense wavelength-division multiplexing can be generated and obtained by using a Gaussian pulse propagating within a modified PANDA ring resonator and an add/drop filter system. Our results show that the THz frequency region can be obtained between 40–50 THz. This area of frequency provides a reliable frequency band for THz pulsed imaging.Keywords: THz imaging, THz technology, MRRs, PANDA, add/drop filter
Yu-Jen, Wang; Tsung-Yi, Chuang; Jui-Hsin, Yu
2017-09-01
Vibration-based energy harvesters have been developed as power sources for wireless sensor networks. Because the vibration frequency of the environment is varied with surrounding conditions, how to design an adaptive energy harvester is a practical topic. This paper proposes a design for a piezoelectric energy harvester possessing the ability to self-adjust its resonant frequency in rotational environments. The effective length of a trapezoidal cantilever is extended by centrifugal force from a rotating wheel to vary its area moment of inertia. The analytical solution for the natural frequency of the piezoelectric energy harvester was derived from the parameter design process, which could specify a structure approaching resonance at any wheel rotating frequency. The kinetic equation and electrical damping induced by power generation were derived from a Lagrange method and a mechanical-electrical coupling model, respectively. An energy harvester with adequate parameters can generate power at a wide range of car speeds. The output power of an experimental prototype composed of piezoelectric thin films and connected to a 3.3 MΩ external resistor was approximately 70-140 μW at wheel speeds ranging from 200 to 700 RPM. These results demonstrate that the proposed piezoelectric energy harvester can be applied as a power source for the wireless tire pressure monitoring sensor.
Time resolved high frequency spectrum of Br2 molecules using pulsed photoacoustic technique.
Yehya, Fahem; Chaudhary, A K
2013-11-01
The paper reports the time resolved spectral distribution of higher order acoustic modes generated in Br2 molecules using pulsed Photoacoustic (PA) technique. New time resolved vibrational spectrum of Br2 molecules are recorded using a single 532nm, pulses of 7ns duration at 10Hz repetition rate obtained from Q-switched Nd:YAG laser. Frank-Condon principle based assignments confirms the presence of 12 numbers of (ν″-ν') vibrational transitions covered by a single 532+2nm pulse profile. Inclusions of higher order zeroth modes in Bassel's function expansion series shows the probability of overlapping of different types of acoustic modes in the designed PA cells. These modes appear in the form of clusters which occupies higher frequency range. The study of decay behavior of PA signal with respect to time confirms the photolysis of Br2 at 532nm wavelength. In addition, the shifting and clustering effect of cavity eigen modes in Br2 molecules have been studied between 1 and 10ms time scale. The estimated Q-factor of PA cell (l=16cm, R=1.4cm) is 145±4 at 27kHz frequency. Copyright © 2013 Elsevier B.V. All rights reserved.
Frequency of CNKSR2 mutation in the X-linked epilepsy-aphasia spectrum.
Damiano, John A; Burgess, Rosemary; Kivity, Sara; Lerman-Sagie, Tally; Afawi, Zaid; Scheffer, Ingrid E; Berkovic, Samuel F; Hildebrand, Michael S
2017-03-01
Synaptic proteins are critical to neuronal function in the brain, and their deficiency can lead to seizures and cognitive impairments. CNKSR2 (connector enhancer of KSR2) is a synaptic protein involved in Ras signaling-mediated neuronal proliferation, migration and differentiation. Mutations in the X-linked gene CNKSR2 have been described in patients with seizures and neurodevelopmental deficits, especially those affecting language. In this study, we sequenced 112 patients with phenotypes within the epilepsy-aphasia spectrum (EAS) to determine the frequency of CNKSR2 mutation within this complex set of disorders. We detected a novel nonsense mutation (c.2314 C>T; p.Arg712*) in one Ashkenazi Jewish family, the male proband of which had a severe epileptic encephalopathy with continuous spike-waves in sleep (ECSWS). His affected brother also had ECSWS with better outcome, whereas the sister had childhood epilepsy with centrotemporal spikes. This mutation segregated in the three affected siblings in an X-linked manner, inherited from their mother who had febrile seizures. Although the frequency of point mutation is low, CNKSR2 sequencing should be considered in families with suspected X-linked EAS because of the specific genetic counseling implications. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Directory of Open Access Journals (Sweden)
Aurélien Tellier
Full Text Available Understanding the processes and conditions under which populations diverge to give rise to distinct species is a central question in evolutionary biology. Since recently diverged populations have high levels of shared polymorphisms, it is challenging to distinguish between recent divergence with no (or very low inter-population gene flow and older splitting events with subsequent gene flow. Recently published methods to infer speciation parameters under the isolation-migration framework are based on summarizing polymorphism data at multiple loci in two species using the joint site-frequency spectrum (JSFS. We have developed two improvements of these methods based on a more extensive use of the JSFS classes of polymorphisms for species with high intra-locus recombination rates. First, using a likelihood based method, we demonstrate that taking into account low-frequency polymorphisms shared between species significantly improves the joint estimation of the divergence time and gene flow between species. Second, we introduce a local linear regression algorithm that considerably reduces the computational time and allows for the estimation of unequal rates of gene flow between species. We also investigate which summary statistics from the JSFS allow the greatest estimation accuracy for divergence time and migration rates for low (around 10 and high (around 100 numbers of loci. Focusing on cases with low numbers of loci and high intra-locus recombination rates we show that our methods for the estimation of divergence time and migration rates are more precise than existing approaches.
Fatigue of 1 {mu}m-scale gold by vibration with reduced resonant frequency
Energy Technology Data Exchange (ETDEWEB)
Sumigawa, Takashi, E-mail: sumigawa@cyber.kues.kyoto-u.ac.jp [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Matsumoto, Kenta [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Tsuchiya, Toshiyuki [Department of Micro Engineering, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Kitamura, Takayuki [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan)
2012-10-30
In order to investigate the fatigue strength of micro-metal (1 {mu}m-scale), a testing method using resonant vibration is developed. Although the loading by vibration can solve the difficulties associated with the fatigue experiment of micro-specimen (e.g., specimen gripping and high-cycle loading under tension-compression), it inherently has an excessively high resonance frequency (more than several GHz at least) in a 1 {mu}m-scale metal specimen. For control of the fatigue cycle, the resonance frequency must be reduced to several hundreds of kHz by tuning the specimen shape. We design a cantilever specimen of 1 {mu}m scale gold with a weight at the tip, which reduces the resonant frequency to about 330 kHz. The unique specimen with the test section of 1.26 {mu}m Multiplication-Sign 0.94 {mu}m Multiplication-Sign 1.52 {mu}m is successfully fabricated by a novel technique using a focused ion beam and the tension-compression fatigue cycle is applied to it by means of a piezoelectric actuator. The test section breaks at about 1.6 Multiplication-Sign 10{sup 6} cycles under {Delta}{sigma}/2=230 MPa, which is within the targeted range of this project. It is easy to extend this method to high-cycle fatigue for actual use (including the failure cycles of over 10{sup 8} cycles). The slip bands observed on the surface, which have concavity and convexity similar to the intrusions/extrusions of PSBs, indicate that the failure is induced by the fatigue.
Capabilities, performance, and future possibilities of high frequency polyphase resonant converters
International Nuclear Information System (INIS)
Reass, W.A.; Baca, D.M.; Bradley, J.T. III; Hardek, T.W.; Kwon, S.I.; Lynch, M.T.; Rees, D.E.
2004-01-01
High Frequency Polyphase Resonant Power Conditioning (PRPC) techniques developed at Los Alamos National Laboratory (LANL) are now being utilized for the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) accelerator klystron RF amplifier power systems. Three different styles of polyphase resonant converter modulators were developed for the SNS application. The various systems operate up to 140 kV, or 11 MW pulses, or up to 1.1 MW average power, all from a DC input of +/- 1.2 kV. Component improvements realized with the SNS effort coupled with new applied engineering techniques have resulted in dramatic changes in RF power conditioning topology. As an example, the high-voltage transformers are over 100 times smaller and lighter than equivalent 60 Hz versions. With resonant conversion techniques, load protective networks are not required. A shorted load de-tunes the resonance and little power transfer can occur. This provides for power conditioning systems that are inherently self-protective, with automatic fault 'ride-through' capabilities. By altering the Los Alamos design, higher power and CW power conditioning systems can be realized without further demands of the individual component voltage or current capabilities. This has led to designs that can accommodate 30 MW long pulse applications and megawatt class CW systems with high efficiencies. The same PRPC techniques can also be utilized for lower average power systems (∼250 kW). This permits the use of significantly higher frequency conversion techniques that result in extremely compact systems with short pulse (10 to 100 us) capabilities. These lower power PRPC systems may be suitable for medical Linacs and mobile RF systems. This paper will briefly review the performance achieved for the SNS accelerator and examine designs for high efficiency megawatt class CW systems and 30 MW peak power applications. The devices and designs for compact higher frequency converters utilized for short pulse
Field and frequency modulated sub-THz electron spin resonance spectrometer
Directory of Open Access Journals (Sweden)
Christian Caspers
2016-05-01
Full Text Available 260-GHz radiation is used for a quasi-optical electron spin resonance (ESR spectrometer which features both field and frequency modulation. Free space propagation is used to implement Martin-Puplett interferometry with quasi-optical isolation, mirror beam focusing, and electronic polarization control. Computer-aided design and polarization pathway simulation lead to the design of a compact interferometer, featuring lateral dimensions less than a foot and high mechanical stability, with all components rated for power levels of several Watts suitable for gyrotron radiation. Benchmark results were obtained with ESR standards (BDPA, DPPH using field modulation. Original high-field ESR of 4f electrons in Sm3+-doped Ceria was detected using frequency modulation. Distinct combinations of field and modulation frequency reach a signal-to-noise ratio of 35 dB in spectra of BDPA, corresponding to a detection limit of about 1014 spins.
Frequency and spectrum of Wolcott–Rallison syndrome in Saudi Arabia: a systematic review
Directory of Open Access Journals (Sweden)
Abdelhadi M. Habeb
2013-06-01
Full Text Available Background: Wolcott–Rallison syndrome (WRS is caused by recessive EIF2AK3 gene mutations and characterized by permanent neonatal diabetes (PNDM, skeletal dysplasia, and recurrent hepatitis. The frequency of this rare syndrome is largely unknown. Objectives: To define the frequency and spectrum of WRS in the Kingdom of Saudi Arabia (KSA based on published data. Methods: The Medline database was searched for published articles on WRS. The number of reported cases from KSA was compared to the total number of WRS cases reported worldwide. The genotype and phenotype of WRS patients from KSA were reviewed. Results: Ten articles describing 23 WRS patients from 12 Saudi families from 1995 to 2012 were identified. This figure accounts for 27.7% (23/83 of the patients and 22.2% (12/54 of the families with WRS reported worldwide until January 2013. All Saudi patients with WRS presented with PNDM, and they represent 59% of all PNDM cases from WRS. At reporting, 73% of patients experienced recurrent hepatitis, 56.5% had skeletal abnormalities, and 39.1% of them were dead. There was a variation in the phenotype even between affected siblings. Genetic diagnosis was confirmed in all 12 families with no correlation between the genotype and phenotype. Eight of the nine EIF2AK3 mutations were only reported in these families, and one was shared with a patient from Qatar, a neighboring Arab state. Conclusions: No study on the frequency of WRS has been published. However, the available data indicate that KSA has the largest collection of patients with WRS worldwide, and nine of the identifiable EIF2AK3 mutations appear to be confined to Arabs. Establishing a national or international registry for WRS would provide more reliable data on this rare condition.
Lipovsky, Bradley P.; Dunham, Eric M.
2015-02-01
Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.
Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications
Chandran, Akhil A.; Younis, Mohammad I.
2016-01-01
Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator's nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli's beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.
Energy Technology Data Exchange (ETDEWEB)
Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei
2017-08-15
Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.
Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei
2018-01-01
We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.
A Simplified Analytical Technique for High Frequency Characterization of Resonant Tunneling Diode
Directory of Open Access Journals (Sweden)
DESSOUKI, A. A. S.
2014-11-01
Full Text Available his paper proposes a simplified analytical technique for high frequency characterization of the resonant tunneling diode (RTD. An equivalent circuit of the RTD that consists of a parallel combination of conductance, G (V, f, and capacitance, C (V, f is formulated. The proposed approach uses the measured DC current versus voltage characteristic of the RTD to extract the equivalent circuit elements parameters in the entire bias range. Using the proposed analytical technique, the frequency response - including the high frequency range - of many characteristic aspects of the RTD is investigated. Also, the maximum oscillation frequency of the RTD is calculated. The results obtained have been compared with those concluded and reported in the literature. The reported results in literature were obtained through simulation of the RTD at high frequency using either a computationally complicated quantum simulator or through difficult RF measurements. A similar pattern of results and highly concordant conclusion are obtained. The proposed analytical technique is simple, correct, and appropriate to investigate the behavior of the RTD at high frequency. In addition, the proposed technique can be easily incorporated into SPICE program to simulate circuits containing RTD.
Measurements of resonance frequencies on prestressed concrete beams during post-tensioning
International Nuclear Information System (INIS)
Lundqvist, P.; Ryden, N.
2011-01-01
The reactor containment, which is a concrete structure prestressed vertically and horizontally, is the most essential safety barrier in a nuclear power plant and is designed to withstand a severe internal accident. The safety of the containment depends on the induced compressive stresses in the concrete, however due to various long-term mechanisms the tendon forces will decrease with time. Today, no methods exist for measuring these prestress losses in containments with bonded tendons and thus there is a need for non-destructive methods for estimating the losses in these structures. Recent results from non-linear ultrasonic measurements during uniaxial loading have demonstrated a strong acoustic and elastic effect in concrete. The present research applies resonant acoustic spectroscopy (RAS) during static loading and unloading of three prestressed concrete beams. At each load step multiple modes of vibration are measured using an accelerometer and a small impact source. Measured resonant frequencies increase with increasing compressive stress. The stress dependency of the modulus of elasticity indicates that the change in state of stress in a simple concrete structure can be estimated by simply measuring the resonance frequency
Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications.
Abdolvand, Reza; Lavasani, Hossein M; Ho, Gavin K; Ayazi, Farrokh
2008-12-01
This paper studies the application of lateral bulk acoustic thin-film piezoelectric-on-substrate (TPoS) resonators in high-frequency reference oscillators. Low-motional-impedance TPoS resonators are designed and fabricated in 2 classes--high-order and coupled-array. Devices of each class are used to assemble reference oscillators and the performance characteristics of the oscillators are measured and discussed. Since the motional impedance of these devices is small, the transimpedance amplifier (TIA) in the oscillator loop can be reduced to a single transistor and 3 resistors, a format that is very power-efficient. The lowest reported power consumption is approximately 350 microW for an oscillator operating at approximately 106 MHz. A passive temperature compensation method is also utilized by including the buried oxide layer of the silicon-on-insulator (SOI) substrate in the structural resonant body of the device, and a very small (-2.4 ppm/ degrees C) temperature coefficient of frequency is obtained for an 82-MHz oscillator.
International Nuclear Information System (INIS)
Haverkort, Maurits W.
2016-01-01
Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty , a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org. (paper)
Frequency-Controlled Current-Fed Resonant Converter with No Input Ripple Current
Directory of Open Access Journals (Sweden)
Bor-Ren Lin
2018-02-01
Full Text Available This paper studies a frequency-controlled current-fed resonant circuit. The adopted direct current (DC-to-DC converter contains two boost circuits and a resonant circuit on the primary side. First, two boost circuits are connected in parallel to achieve voltage step-up and reduce input ripple current by using interleaved pulse-width modulation. Therefore, the size and current rating of boost inductors are decreased in the proposed converter. Second, the boost voltage is connected to the resonant circuit to realize the mechanism of the zero-voltage switching of all active switches and zero-current switching of all diodes. Two boost circuits and a resonant circuit use the same power devices in order to lessen the switch counts. The voltage doubler topology is adopted on the secondary side (high-voltage side. Therefore, the voltage rating of diodes on the high-voltage side is clamped at output voltage. The feasibility of the studied circuit is confirmed by the experimental tests with a 1 kW prototype circuit.
Directory of Open Access Journals (Sweden)
Sridhar Krishnan
2007-07-01
Full Text Available This paper introduces a novel algorithm to excise single and multicomponent chirp-like interferences in direct sequence spread spectrum (DSSS communications. The excision algorithm consists of two stages: adaptive signal decomposition stage and directional element detection stage based on the Hough-Radon transform (HRT. Initially, the received spread spectrum signal is decomposed into its time-frequency (TF functions using an adaptive signal decomposition algorithm, and the resulting TF functions are mapped onto the TF plane. We then use a line detection algorithm based on the HRT that operates on the image of the TF plane and detects energy varying directional elements that satisfy a parametric constraint. Interference is modeled by reconstructing the corresponding TF functions detected by the HRT, and subtracted from the received signal. The proposed technique has two main advantages: (i it localizes the interferences on the TF plane with no cross-terms, thus facilitating simple filtering techniques based on thresholding of the TF functions, and is an efficient way to excise the interference; (ii it can be used for the detection of any directional interferences that can be parameterized. Simulation results with synthetic models have shown successful performance with linear and quadratic chirp interferences for single and multicomponent interference cases. The proposed method excises the interference even under very low SNR conditions of Ã¢ÂˆÂ’10Ã¢Â€Â‰dB, and the technique could be easily extended to any interferences that could be represented by a parametric equation in the TF plane.
Fadel, M Ali; El-Gebaly, Reem H; Mohamed, Shaimaa A; Abdelbacki, Ashraf M M
2017-12-09
Isolated Agrobacterium tumefaciens was exposed to different extremely low frequencies of square amplitude modulated waves (QAMW) from two generators to determine the resonance frequency that causes growth inhibition. The carrier was 10 MHz sine wave with amplitude ±10 Vpp which was modulated by a second wave generator with a modulation depth of ± 2Vpp and constant field strength of 200 V/m at 28 °C. The exposure of A. tumefaciens to 1.0 Hz QAMW for 90 min inhibited the bacterial growth by 49.2%. In addition, the tested antibiotics became more effective against A. tumefaciens after the exposure. Furthermore, results of DNA, dielectric relaxation and TEM showed highly significant molecular and morphological changes due to the exposure to 1.0 Hz QAMW for 90 min. An in-vivo study has been carried out on healthy tomato plants to test the pathogenicity of A. tumefaciens before and after the exposure to QAMW at the inhibiting frequency. Symptoms of crown gall and all pathological symptoms were more aggressive in tomato plants treated with non-exposed bacteria, comparing with those treated with exposed bacteria. We concluded that, the exposure of A. tumefaciens to 1.0 Hz QAMW for 90 min modified its cellular activity and DNA structure, which inhibited the growth and affected the microbe pathogenicity. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Kamigaito, Osamu; Goto, Akira; Miyazawa, Yoshitoshi; Chiba, Toshiya; Hemmi, Masatake; Kase, Masayuki; Kohara, Shigeo; Yano, Yasushige
1995-01-01
The beneficial effect of adding a detachable stem to the folded-coaxial resonator of the frequency-variable radio-frequency quadrupole (RFQ) linac previously reported was examined experimentally using a half-scale model as well as by numerical analyses. As a result, this simple modification was found to extend variable frequencies to a high region without increase of rf power consumption. (author)
Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency
Energy Technology Data Exchange (ETDEWEB)
Rekker, A., E-mail: Astrid.Rekker@tlu.ee; Mankin, R., E-mail: Romi.Mankin@tlu.ee [Institute of Mathematics and Natural Sciences, Tallinn University, 29 Narva Road, 10120 Tallinn (Estonia)
2015-10-28
The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer’s response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.
A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator
Directory of Open Access Journals (Sweden)
Xiang Zhao
2017-06-01
Full Text Available Acoustic metasurfaces (AMSs are able to manipulate wavefronts at an anomalous angle through a subwavelength layer. Their application provide a new way to control sound waves in addition to traditional materials. In this work, we introduced the AMS into the design of a Helmholtz resonator (HR and studied the acoustic transmission through the modified HR in a pipe with one branch. The variation of sound insulation capacity with the phase gradient of the AMS was studied, and the results show that the AMS can remarkably lower the frequency band of the sound insulation without increasing the size. Our investigation provides a new degree of freedom for acoustic control with a Helmholtz resonator, which is of great significance in acoustic metasurface theory and sound insulation design.
A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator
Zhao, Xiang; Cai, Li; Yu, Dianlong; Lu, Zhimiao; Wen, Jihong
2017-06-01
Acoustic metasurfaces (AMSs) are able to manipulate wavefronts at an anomalous angle through a subwavelength layer. Their application provide a new way to control sound waves in addition to traditional materials. In this work, we introduced the AMS into the design of a Helmholtz resonator (HR) and studied the acoustic transmission through the modified HR in a pipe with one branch. The variation of sound insulation capacity with the phase gradient of the AMS was studied, and the results show that the AMS can remarkably lower the frequency band of the sound insulation without increasing the size. Our investigation provides a new degree of freedom for acoustic control with a Helmholtz resonator, which is of great significance in acoustic metasurface theory and sound insulation design.
Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency
Rekker, A.; Mankin, R.
2015-10-01
The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer's response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.
Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency
International Nuclear Information System (INIS)
Rekker, A.; Mankin, R.
2015-01-01
The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer’s response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed
Analysis of Middle Frequency Resonance in DFIG System Considering Phase Locked Loop
DEFF Research Database (Denmark)
Song, Yipeng; Blaabjerg, Frede
2018-01-01
compensated weak network. Besides these two resonances, a Middle Frequency Resonance (MFR) between 200 Hz and 800 Hz may appear when the Phase Locked Loop (PLL) with fast control dynamics is applied. In order to analyze the MFR, the DFIG system impedance considering the PLL is studied based on the Vector...... Oriented Control (VOC) strategy in Rotor Side Converter (RSC) and Grid Side Converter (GSC). On the basis of the established impedance modeling of the DFIG system, it is found that the PLL with fast control dynamics may result in the occurrence of MFR due to a decreasing phase margin. The simulation...... results of both a 7.5 kW small scale DFIG system and a 2 MW large scale DFIG system are provided to validate the theoretical analysis of the MFR....
Directory of Open Access Journals (Sweden)
Marco Torresi
2016-12-01
Full Text Available Among the different technologies developed in order to harness wave energy, the Oscillating Water Column devices are the most accredited for an actual diffusion. Recently, Boccotti has patented the REWEC1 (REsonant sea Wave Energy Converter solution 1, a submerged breakwater that performs an active coast protection, embedding an Oscillating Water Column device, which is capable of operating under resonant conditions with that sea state, which gives the highest yearly energy contribution. The REWEC1 dynamic behavior can be approximated by means of a mass-spring-damper system. According to this approximation, a criterion for evaluating the oscillating natural frequency of the REWEC1 has been derived. This criterion has been validated against both experimental results and computational fluid dynamics simulations, performed on a REWEC1 laboratory-scale model. The numerical simulations have shown a good agreement between measurements and predictions.
Directory of Open Access Journals (Sweden)
Yu Xu
2016-02-01
Full Text Available For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.
Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong
2016-02-06
For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.
Energy Technology Data Exchange (ETDEWEB)
Satoh, Kei; Takagi, Yuta; Narahashi, Shoichi [Research Laboratories, NTT DOCOMO, INC., 3-6 Hikari-no-oka Yokosuka, Kanagawa 239-8536 Japan (Japan); Nojima, Toshio, E-mail: satokei@nttdocomo.co.j [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814 Japan (Japan)
2010-06-01
This paper presents a high-temperature superconducting coplanar-waveguide quarter-wavelength resonator that has two different resonant modes for use in a dual-band bandpass filter (DBPF). An RF filter with multiple passbands such as the DBPF is a basic element that is expected to achieve broadband transmission by using separated frequency bands aggregately and simultaneously in future mobile communication systems. The proposed resonator has a folded center conductor and two open stubs that are aligned close to it. The odd- and even-mode resonant frequencies are configured using the space between the folded center conductor and the open stubs. It is easy to configure the odd- and even-mode coupling coefficients independently because the two resonant modes have different current density distributions. Consequently, a DBPF with two different bandwidths can be easily designed. This paper presents three design examples for a four-pole Chebyshev DBPF with different combinations of fractional bandwidths in order to investigate the validity of the proposed resonator. This paper also presents measured results of the DBPF based on the design examples from the standpoint of experimental investigation. The designed and measured frequency responses confirm that the proposed resonator is effective in achieving DBPFs not only with two of the same bandwidths but also with two different bandwidths.
Korolev, Konstantin A.; Wu, Chuanjian; Yu, Zhong; Sun, Ke; Afsar, Mohammed N.; Harris, Vincent G.
2018-05-01
Transmittance measurements have been performed on La-Co substituted barium hexaferrites in millimeter waves. Broadband millimeter-wave measurements have been carried out using the free space quasi-optical spectrometer, equipped with a set of high power backward wave oscillators covering the frequency range of 30 - 120 GHz. Strong absorption zones have been observed in the millimeter-wave transmittance spectra of all La-Co substituted barium hexaferrites due to the ferromagnetic resonance. Linear shift of ferromagnetic resonance frequency as functions of La-Co substitutions have been found. Real and imaginary parts of dielectric permittivity of La-Co substituted barium hexaferrites have been calculated using the analysis of recorded high precision transmittance spectra. Frequency dependences of magnetic permeability of La-Co substituted barium hexaferrites, as well as saturation magnetization and anisotropy field have been determined based on Schlömann's theory for partially magnetized ferrites. La-Co substituted barium hexaferrites have been further investigated by DC magnetization to assess magnetic behavior and compare with millimeter wave data. Consistency of saturation magnetization determined independently by both millimeter wave absorption and DC magnetization have been found for all La-Co substituted barium hexaferrites. These materials seem to be quite promising as tunable millimeter wave absorbers, filters, circulators, based on the adjusting of their substitution parameters.
Directory of Open Access Journals (Sweden)
Jingjing Xue
2017-01-01
Full Text Available An approach for wideband radar cross section (RCS reduction of a microstrip array antenna is presented and discussed. The scheme is based on the microstrip resonators and absorptive frequency selective surface (AFSS with a wideband absorptive property over the low band 1.9–7.5 GHz and a transmission characteristic at high frequency 11.05 GHz. The AFSS is designed to realize the out-of-band RCS reduction and preserve the radiation performance simultaneously, and it is placed above the antenna with the operating frequency of 11.05 GHz. Moreover, the microstrip resonators are loaded to obtain the in-band RCS reduction. As a result, a significant RCS reduction from 1.5 GHz to 13 GHz for both types of polarization has been accomplished. Compared with the reference antenna, the simulated results exhibit that the monostatic RCS of the proposed array antenna in x- and y-polarization can be reduced as much as 17.6 dB and 21.5 dB, respectively. And the measured results agree well with the simulated ones.
Directory of Open Access Journals (Sweden)
Jian Li
2012-01-01
Full Text Available Ultra-high-frequency (UHF approaches have caught increasing attention recently and have been considered as a promising technology for online monitoring partial discharge (PD signals. This paper presents a Peano fractal antenna for UHF PD online monitoring of transformer with small size and multiband. The approximate formula for calculating the first resonant frequency of the Peano fractal antenna is presented. The results show that the first resonant frequency of the Peano fractal antenna is smaller than the Hilbert fractal antenna when the outer dimensions are equivalent approximately. The optimal geometric parameters of the antenna were obtained through simulation. Actual PD experiments had been carried out for two typically artificial insulation defect models, while the proposed antenna and the existing Hilbert antenna were both used for the PD measurement. The experimental results show that Peano fractal antenna is qualified for PD online UHF monitoring and a little more suitable than the Hilbert fractal antenna for pattern recognition by analyzing the waveforms of detected UHF PD signals.
A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation
Directory of Open Access Journals (Sweden)
Cuidong Xu
2015-09-01
Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.
Lemieux, Samuel; Manceau, Mathieu; Sharapova, Polina R.; Tikhonova, Olga V.; Boyd, Robert W.; Leuchs, Gerd; Chekhova, Maria V.
2016-01-01
Bright squeezed vacuum, a promising tool for quantum information, can be generated by high-gain parametric down-conversion. However, its frequency and angular spectra are typically quite broad, which is undesirable for applications requiring single-mode radiation. We tailor the frequency spectrum of high-gain parametric down-conversion using an SU(1,1) interferometer consisting of two nonlinear crystals with a dispersive medium separating them. The dispersive medium allows us to select a narr...
Resonance frequency of fluid-filled and prestressed spherical shell-A model of the human eyeball.
Shih, Po-Jen; Guo, Yi-Ren
2016-04-01
An acoustic tonometer that measures shifts in resonance frequencies associated with intraocular pressure (IOP) could provide an opportunity for a type of tonometer that can be operated at home or worn by patients. However, there is insufficient theoretical background, especially with respect to the uncertainty in operating frequency ranges and the unknown relationships between IOPs and resonance frequencies. The purpose of this paper is to develop a frequency function for application in an acoustic tonometer. A linear wave theory is used to derive an explicit frequency function, consisting of an IOP and seven other physiological parameters. In addition, impulse response experiments are performed to measure the natural frequencies of porcine eyes to validate the provided function. From a real-time detection perspective, explicitly providing a frequency function can be the best way to set up an acoustic tonometer. The theory shows that the resonance oscillation of the eyeball is mainly dominated by liquid inside the eyeball. The experimental validation demonstrates the good prediction of IOPs and resonance frequencies. The proposed explicit frequency function supports further modal analysis not only of the dynamics of eyeballs, but also of the natural frequencies, for further development of the acoustic tonometer.
International Nuclear Information System (INIS)
Spirin, V V; Lopez-Mercado, C A; Megret, P; Fotiadi, A A
2012-01-01
We demonstrate a single-mode Brillouin fiber ring laser, which is passively stabilized at pump resonance frequency by using self-injection locking of semiconductor pump laser. Resonance condition for Stokes radiation is achieved by length fitting of Brillouin laser cavity. The laser generate single-frequency Stokes wave with linewidth less than 0.5 kHz using approximately 17-m length cavity
Veltri, Mario; González-Martín, Oscar; Belser, Urs C
2014-08-01
This study tested the hypothesis of no differences in resonance frequency for standardized amounts of simulated bone-implant contact around implants with different diameters. In addition, it was evaluated if resonance frequency is able to detect a difference between stable and rotation mobile ("spinning") implants. Implants with diameters of 3.3, 4.1 and 4.8 mm were placed in a purposely designed metal mould where liquid polyurethane resin was then poured to obtain a simulated bone-implant specimen. By regulating the mould, it was possible to create the following simulated bone-implant contact groups: 3.3 mm (198.6 mm(2)); 4.1 mm (198.8 mm(2)); 4.8 mm (200.2 mm(2)); 4.8 mm (231.7 mm(2)); 4.8 mm (294.7 mm(2)). Each group included 10 specimens. After resin setting, resonance frequency was measured. On the last group, measurements were repeated after establishing implant rotational mobility. One-way ANOVA tests with post hoc comparisons, a Pearson's correlation coefficient and a t-test for repeated measurements were used to evaluate statistically significant differences. Implants with different diameters but with the same amount of simulated osseointegration revealed no differences in resonance frequency. On the contrary, an increase of simulated bone-implant contact resulted in significantly higher resonance frequency. A clear direct linear correlation resulted between resonance frequency and simulated bone-implant contact. Furthermore, a significant difference resulted between resonance frequency measured before and after creation of rotational mobility. Within the conditions of this study, the secondary stability was correlated with the simulated bone-implant contact. In addition, resonance frequency was able to discern between stable and rotation mobile implants. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Energy Technology Data Exchange (ETDEWEB)
Tzaribachev, N. (Dept. of Hematology, Oncology, and General Pediatrics, Univ. Children' s Hospital, Eberhard-Karls-Univ., Tuebingen (Germany)). e-mail. tzari@o2online.de; Fritz, J. (Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)); Horger, M. (Dept. of Diagnostic Radiology, Eberhard-Karls-Univ., Tuebingen (Germany))
2009-12-15
Background: Temporomandibular joints (TMJ) are frequently involved in children with juvenile idiopathic arthritis (JIA), and gadolinium-enhanced magnetic resonance imaging (MRI) is the only modality for an early diagnosis. However, only very few data exist on the appearance of contrast-enhanced MRI of normal juvenile TMJ. Purpose: To define the spectrum of normal MRI findings of juvenile TMJ, and to assess a possible overlap with findings typical for active synovitis in JIA. Material and Methods: 96 children (192 TMJ), 51 boys and 45 girls with a median age of 7.8 years (range 3-13 years), underwent a head MRI. The presence of autoimmune disease, including JIA, was excluded via chart history, available laboratory findings, and the absence of known typical pathological MRI changes (degree of synovial enhancement, hyperintense signal on T2-weighted images in the synovia or bone marrow, and morphologic changes of the mandibular condyle) of the TMJ affected by JIA. Results: In 90 (94%) children, the TMJ showed no MRI abnormalities compatible with arthritis. In three children (3%), the only abnormal MRI finding was a small bilateral joint effusion. A further three children (3%) had a mild synovial enhancement seen on both axial and coronal MR planes in one child and only in the axial plane in the other two children. Signal hyperintensity on T2-weighted images and other corresponding characteristics of TMJ inflammation were lacking in all these six patients. Conclusion: The vast majority of juvenile TMJ in non-rheumatic children shows no MRI abnormalities. Exceptions, including a discrete enhancement of the synovial membrane (3%) or small joint effusions (3%), can occur in a minority of patients, but none of them are accompanied by other signs of inflammation or morphological changes of the TMJ
Solomon, Marjorie; Ragland, J Daniel; Niendam, Tara A; Lesh, Tyler A; Beck, Jonathan S; Matter, John C; Frank, Michael J; Carter, Cameron S
2015-11-01
To investigate the neural mechanisms underlying impairments in generalizing learning shown by adolescents with autism spectrum disorder (ASD). A total of 21 high-functioning individuals with ASD aged 12 to 18 years, and 23 gender-, IQ-, and age-matched adolescents with typical development (TYP), completed a transitive inference (TI) task implemented using rapid event-related functional magnetic resonance imaging (fMRI). Participants were trained on overlapping pairs in a stimulus hierarchy of colored ovals where A>B>C>D>E>F and then tested on generalizing this training to new stimulus pairings (AF, BD, BE) in a "Big Game." Whole-brain univariate, region of interest, and functional connectivity analyses were used. During training, the TYP group exhibited increased recruitment of the prefrontal cortex (PFC), whereas the group with ASD showed greater functional connectivity between the PFC and the anterior cingulate cortex (ACC). Both groups recruited the hippocampus and caudate comparably; however, functional connectivity between these regions was positively associated with TI performance for only the group with ASD. During the Big Game, the TYP group showed greater recruitment of the PFC, parietal cortex, and the ACC. Recruitment of these regions increased with age in the group with ASD. During TI, TYP individuals recruited cognitive control-related brain regions implicated in mature problem solving/reasoning including the PFC, parietal cortex, and ACC, whereas the group with ASD showed functional connectivity of the hippocampus and the caudate that was associated with task performance. Failure to reliably engage cognitive control-related brain regions may produce less integrated flexible learning in individuals with ASD unless they are provided with task support that, in essence, provides them with cognitive control; however, this pattern may normalize with age. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All
Callens, F; Vanhaelewyn, G; Matthys, P
2002-04-01
Electron Paramagnetic Resonance (EPR) applications like e.g. EPR dosimetry and dating, are usually performed at X-band frequencies because of practical reasons (cost, sample size, etc.). However, it is increasingly recognized that the radiation-induced EPR signals are strongly composite, what might affect dose/age estimates. A few recent examples from both the dosimetry and dating field, illustrating the problems, will be presented. The involved spectra are mainly due to carbonate-derived radicals (CO2-, CO3(3-), etc.). Measurements at higher microwave frequencies are often recommended to improve the insight into the spectra and/or the practical signal quantification. Recent results at Q- and W-band frequencies will show that a multi-frequency approach indeed opens many interesting perspectives in this field but also that each frequency may have specific (dis)advantages depending on the EPR probe and application involved. The discussion will concern carbonate-containing apatite single crystals, shells, modern and fossil tooth enamel.
Frequency Shifts of Micro and Nano Cantilever Beam Resonators Due to Added Masses
Bouchaala, Adam M.
2016-03-21
We present analytical and numerical techniques to accurately calculate the shifts in the natural frequencies of electrically actuated micro and nano (carbon nanotubes (CNTs)) cantilever beams implemented as resonant sensors for mass detection of biological entities, particularly Escherichia coli (E. coli) and prostate specific antigen (PSA) cells. The beams are modeled as Euler-Bernoulli beams, including the nonlinear electrostatic forces and the added biological cells, which are modeled as discrete point masses. The frequency shifts due to the added masses of the cells are calculated for the fundamental and higher-order modes of vibrations. Analytical expressions of the natural frequency shifts under a direct current (DC) voltage and an added mass have been developed using perturbation techniques and the Galerkin approximation. Numerical techniques are also used to calculate the frequency shifts and compared with the analytical technique. We found that a hybrid approach that relies on the analytical perturbation expression and the Galerkin procedure for calculating accurately the static behavior presents the most computationally efficient approach. We found that using higher-order modes of vibration of micro-electro-mechanical-system (MEMS) beams or miniaturizing the sizes of the beams to nanoscale leads to significant improved frequency shifts, and thus increased sensitivities. © 2016 by ASME.
High-Resolution Time-Frequency Spectrum-Based Lung Function Test from a Smartphone Microphone
Directory of Open Access Journals (Sweden)
Tharoeun Thap
2016-08-01
Full Text Available In this paper, a smartphone-based lung function test, developed to estimate lung function parameters using a high-resolution time-frequency spectrum from a smartphone built-in microphone is presented. A method of estimation of the forced expiratory volume in 1 s divided by forced vital capacity (FEV1/FVC based on the variable frequency complex demodulation method (VFCDM is first proposed. We evaluated our proposed method on 26 subjects, including 13 healthy subjects and 13 chronic obstructive pulmonary disease (COPD patients, by comparing with the parameters clinically obtained from pulmonary function tests (PFTs. For the healthy subjects, we found that an absolute error (AE and a root mean squared error (RMSE of the FEV1/FVC ratio were 4.49% ± 3.38% and 5.54%, respectively. For the COPD patients, we found that AE and RMSE from COPD patients were 10.30% ± 10.59% and 14.48%, respectively. For both groups, we compared the results using the continuous wavelet transform (CWT and short-time Fourier transform (STFT, and found that VFCDM was superior to CWT and STFT. Further, to estimate other parameters, including forced vital capacity (FVC, forced expiratory volume in 1 s (FEV1, and peak expiratory flow (PEF, regression analysis was conducted to establish a linear transformation. However, the parameters FVC, FEV1, and PEF had correlation factor r values of 0.323, 0.275, and −0.257, respectively, while FEV1/FVC had an r value of 0.814. The results obtained suggest that only the FEV1/FVC ratio can be accurately estimated from a smartphone built-in microphone. The other parameters, including FVC, FEV1, and PEF, were subjective and dependent on the subject’s familiarization with the test and performance of forced exhalation toward the microphone.
Virtual Resonance and Frequency Difference Generation by van der Waals Interaction
Tetard, L.; Passian, A.; Eslami, S.; Jalili, N.; Farahi, R. H.; Thundat, T.
2011-05-01
The ability to explore the interior of materials for the presence of inhomogeneities was recently demonstrated by mode synthesizing atomic force microscopy [L. Tetard, A. Passian, and T. Thundat, Nature Nanotech. 5, 105 (2009).NNAABX1748-338710.1038/nnano.2009.454]. Proposing a semiempirical nonlinear force, we show that difference frequency ω- generation, regarded as the simplest synthesized mode, occurs optimally when the force is tuned to van der Waals form. From a parametric study of the probe-sample excitation, we show that the predicted ω- oscillation agrees well with experiments. We then introduce the concept of virtual resonance to show that probe oscillations at ω- can efficiently be enhanced.
International Nuclear Information System (INIS)
Fleury, W.H.; Rosinger, H.E.; Ritchie, I.G.
1975-09-01
A set of computer programs for the calculation of the flexural and torsional resonant frequencies of rectangular section bars of materials of orthotropic or higher symmetry are described. The calculations are used in the experimental determination and verification of the elastic constants of anisotropic materials. The simple finite element technique employed separates the inertial and elastic properties of the beam element into station and field transfer matrices respectively. It includes the Timoshenko beam corrections for flexure and Lekhnitskii's theory for torsion-flexure coupling. The programs also calculate the vibration shapes and surface nodal contours or Chladni figures of the vibration modes. (author)
Eriksson, Anders
2014-03-13
Distinguishing between hybridization and population structure in the ancestral species is a key challenge in our understanding of how permeable species boundaries are to gene flow. The doubly conditioned frequency spectrum (dcfs) has been argued to be a powerful metric to discriminate between these two explanations, and it was used to argue for hybridization between Neandertal and anatomically modern humans. The shape of the observed dcfs for these two species cannot be reproduced by a model that represents ancient population structure in Africa with two populations, while adding hybridization produces realistic shapes. In this letter, we show that this result is a consequence of the spatial coarseness of the demographic model and that a spatially structured stepping stone model can generate realistic dcfs without hybridization. This result highlights how inferences on hybridization between recently diverged species can be strongly affected by the choice of how population structure is represented in the underlying demographic model. We also conclude that the dcfs has limited power in distinguishing between the signals left by hybridization and ancient structure. 2014 The Author.
May, Philip A.; Blankenship, Jason; Marais, Anna-Susan; Gossage, J. Phillip; Kalberg, Wendy O.; Joubert, Belinda; Cloete, Marise; Barnard, Ronel; De Vries, Marlene; Hasken, Julie; Robinson, Luther K.; Adnams, Colleen M.; Buckley, David; Manning, Melanie; Parry, Charles; Hoyme, H. Eugene; Tabachnick, Barbara; Seedat, Soraya
2013-01-01
Background Concise, accurate measures of maternal prenatal alcohol use are needed to better understand fetal alcohol spectrum disorders (FASD). Methods Measures of drinking by mothers of children with specific FASD diagnoses and mothers of randomly-selected controls are compared and also correlated with physical and cognitive/behavioral outcomes. Results Measures of maternal alcohol use can differentiate maternal drinking associated with FASD from that of controls and some from mothers of alcohol-exposed normals. Six variables that combine quantity and frequency concepts distinguish mothers of FASD children from normal controls. Alcohol use variables, when applied to each trimester and three months prior to pregnancy, provide insight on critical timing of exposure as well. Measures of drinking, especially bingeing, correlate significantly with increased child dysmorphology and negative cognitive/behavioral outcomes in children, especially low non-verbal IQ, poor attention, and behavioral problems. Logistic regression links (palcohol consumption both within and between diagnostic groupings of mothers bearing children diagnosed within the FASD continuum. Drinking measures are empirically identified and correlated with specific child outcomes. Alcohol use, especially heavy use, should be avoided throughout pregnancy. PMID:23932841
Decomposing the Site Frequency Spectrum: The Impact of Tree Topology on Neutrality Tests.
Ferretti, Luca; Ledda, Alice; Wiehe, Thomas; Achaz, Guillaume; Ramos-Onsins, Sebastian E
2017-09-01
We investigate the dependence of the site frequency spectrum on the topological structure of genealogical trees. We show that basic population genetic statistics, for instance, estimators of θ or neutrality tests such as Tajima's D , can be decomposed into components of waiting times between coalescent events and of tree topology. Our results clarify the relative impact of the two components on these statistics. We provide a rigorous interpretation of positive or negative values of an important class of neutrality tests in terms of the underlying tree shape. In particular, we show that values of Tajima's D and Fay and Wu's H depend in a direct way on a peculiar measure of tree balance, which is mostly determined by the root balance of the tree. We present a new test for selection in the same class as Fay and Wu's H and discuss its interpretation and power. Finally, we determine the trees corresponding to extreme expected values of these neutrality tests and present formulas for these extreme values as a function of sample size and number of segregating sites. Copyright © 2017 by the Genetics Society of America.
Lapierre, Marguerite; Lambert, Amaury; Achaz, Guillaume
2017-05-01
Some methods for demographic inference based on the observed genetic diversity of current populations rely on the use of summary statistics such as the Site Frequency Spectrum (SFS). Demographic models can be either model-constrained with numerous parameters, such as growth rates, timing of demographic events, and migration rates, or model-flexible, with an unbounded collection of piecewise constant sizes. It is still debated whether demographic histories can be accurately inferred based on the SFS. Here, we illustrate this theoretical issue on an example of demographic inference for an African population. The SFS of the Yoruba population (data from the 1000 Genomes Project) is fit to a simple model of population growth described with a single parameter ( e.g. , founding time). We infer a time to the most recent common ancestor of 1.7 million years (MY) for this population. However, we show that the Yoruba SFS is not informative enough to discriminate between several different models of growth. We also show that for such simple demographies, the fit of one-parameter models outperforms the stairway plot, a recently developed model-flexible method. The use of this method on simulated data suggests that it is biased by the noise intrinsically present in the data. Copyright © 2017 by the Genetics Society of America.
Eriksson, Anders; Manica, Andrea
2014-01-01
Distinguishing between hybridization and population structure in the ancestral species is a key challenge in our understanding of how permeable species boundaries are to gene flow. The doubly conditioned frequency spectrum (dcfs) has been argued to be a powerful metric to discriminate between these two explanations, and it was used to argue for hybridization between Neandertal and anatomically modern humans. The shape of the observed dcfs for these two species cannot be reproduced by a model that represents ancient population structure in Africa with two populations, while adding hybridization produces realistic shapes. In this letter, we show that this result is a consequence of the spatial coarseness of the demographic model and that a spatially structured stepping stone model can generate realistic dcfs without hybridization. This result highlights how inferences on hybridization between recently diverged species can be strongly affected by the choice of how population structure is represented in the underlying demographic model. We also conclude that the dcfs has limited power in distinguishing between the signals left by hybridization and ancient structure. 2014 The Author.
Ondongo, Onduru S; Endicott, John F
2009-04-06
The emission spectrum of the tris-(2,2'-bipyridine)osmium(II) metal-to-ligand charge transfer (MLCT) excited-state frozen solution at 77 K differs qualitatively from that expected based on its reported resonance-Raman (rR) parameters in that (1) the dominant vibronic contributions to the emission spectrum are in the low frequency regime (corresponding to nuclear displacements in largely to metal-ligand vibrational modes) and these contributions are negligible in the rR; and (2) the amplitude of the emission sideband components that correspond to envelopes of largely bpy centered vibrational modes is about 40% of that expected (relative to the amplitude observed for the band origin) for a simple vibronic progression in these modes. The distortions in low frequency vibrational modes are attributable to configurational mixing between metal centered (LF) and MLCT excited states, and the small amplitudes of the bpy-mode vibronic components may be a consequence of some intrinsic differences of the distortions of the (3)MLCT and (1)MLCT excited states such as the zero-field splitting of the (3)MLCT excited state and the different distortions of these excited-state components.
Transverse susceptibility as the low-frequency limit of ferromagnetic resonance
International Nuclear Information System (INIS)
Spinu, L.; Dumitru, I.; Stancu, A.; Cimpoesu, D.
2006-01-01
A new theory of transverse susceptibility (TS) based on magnetization vector dynamics, as described by the Landau-Lifshitz equation of motion, is given. It is shown that the traditional TS experiment is, in fact, the zero-frequency limit of the ferromagnetic resonance (FMR). The importance of these results resides in the generality of the approach which allows one to find the TS for virtually any magnetic system if an expression for the magnetic free-energy density is known. Moreover, the effect of the frequency of excitatory AC field on the TS experiments and the effect of energy dissipation through the imaginary part of TS emerge coherently from the new TS model
Resonance-Based Time-Frequency Manifold for Feature Extraction of Ship-Radiated Noise
Yan, Jiaquan; Sun, Haixin; Chen, Hailan; Junejo, Naveed Ur Rehman; Cheng, En
2018-01-01
In this paper, a novel time-frequency signature using resonance-based sparse signal decomposition (RSSD), phase space reconstruction (PSR), time-frequency distribution (TFD) and manifold learning is proposed for feature extraction of ship-radiated noise, which is called resonance-based time-frequency manifold (RTFM). This is suitable for analyzing signals with oscillatory, non-stationary and non-linear characteristics in a situation of serious noise pollution. Unlike the traditional methods which are sensitive to noise and just consider one side of oscillatory, non-stationary and non-linear characteristics, the proposed RTFM can provide the intact feature signature of all these characteristics in the form of a time-frequency signature by the following steps: first, RSSD is employed on the raw signal to extract the high-oscillatory component and abandon the low-oscillatory component. Second, PSR is performed on the high-oscillatory component to map the one-dimensional signal to the high-dimensional phase space. Third, TFD is employed to reveal non-stationary information in the phase space. Finally, manifold learning is applied to the TFDs to fetch the intrinsic non-linear manifold. A proportional addition of the top two RTFMs is adopted to produce the improved RTFM signature. All of the case studies are validated on real audio recordings of ship-radiated noise. Case studies of ship-radiated noise on different datasets and various degrees of noise pollution manifest the effectiveness and robustness of the proposed method. PMID:29565288
DEFF Research Database (Denmark)
Liang, Shanshan; Crovetto, Andrea; Peng, Zhuoteng
2016-01-01
and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to- electricity......This paper reports on a bi-resonant structure of piezoelectric PVDF films energy harvester (PPEH), which consists of two cantilevers with resonant frequencies of 15 Hz and 22 Hz. With increased acceleration, the vibration amplitudes of the two cantilever-mass structures are increased and collision...
Directory of Open Access Journals (Sweden)
Mohamed Sultan Mohamed Ali
2014-07-01
Full Text Available This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF. The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA. The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit’s resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/µm or more for a full out-of-plane travel range of 466 µm and an average actuation velocity of up to 155 µm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device.
Ferromagnetic resonance of a YIG film in the low frequency regime
Energy Technology Data Exchange (ETDEWEB)
Lee, Seongjae [Department of Physics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Grudichak, Scott; Sklenar, Joseph; Ketterson, John B. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States); Tsai, C. C. [Department of Engineering and Management of Advanced Technology, Chang Jung Christian University, Tainan 71101, Taiwan (China); Jang, Moongyu [Department of Materials Science and Engineering, Hallym University, Chuncheon 200-702 (Korea, Republic of); Yang, Qinghui; Zhang, Huaiwu [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology, Chengdu, Sichuan 610054 (China)
2016-07-21
An improved method for characterizing the magnetic anisotropy of films with cubic symmetry is described and is applied to an yttrium iron garnet (111) film. Analysis of the ferromagnetic resonance (FMR) spectra performed both in-plane and out-of-plane from 0.7 to 8 GHz yielded the magnetic anisotropy constants as well as the saturation magnetization. The field at which FMR is observed turns out to be quite sensitive to anisotropy constants (by more than a factor ten) in the low frequency (<2 GHz) regime, and when the orientation of the magnetic field is nearly normal to the sample plane; the restoring force on the magnetization arising from the magnetocrystalline anisotropy fields is then comparable to that from the external field, thereby allowing the anisotropy constants to be determined with greater accuracy. In this region, unusual dynamical behaviors are observed such as multiple resonances and a switching of FMR resonance with only a 1° change in field orientation at 0.7 GHz.
Directory of Open Access Journals (Sweden)
Rasul Zadeh Tabataba’ei K
2011-03-01
Full Text Available Background and Objectives: Some studies have investigated the effects of extremely low frequency magnetic fields (ELF-MFs on brain signals, but only few of them have reported that humans exposed to magnetic fields exhibit changes in brain signals at the frequency of stimulation, i.e. resonance effect. In most investigations, researchers usually take advantage of a uniform field which encompasses the head. The aim of present study was to expose different parts of the brain to ELF-MFs locally and to investigate variation of brain signal and resonance effect.Methods: The subjects consisting of 19 male-students with the mean age of 25.6±1.6 years participated in this study. Local ELF-MFs with 3, 5, 10, 17 and 45Hz frequencies and 240 μT intensity was applied on five points (T3, T4, Cz, F3 and F4 of participants scalp Separately in 10-20 system. In the end, relative power over this points in common frequency bands and at the frequency of magnetic fields was evaluated by paired t-test.Results: Exposure of Central area by local magnetic field caused significant change (p<0.05 in the forehead alpha band. Reduction in the alpha band over central area was observed when temporal area was exposed to ELF MF.Conclusion: The results showed that resonance effect in the brain signals caused by local magnetic field exposure was not observed and change in every part of the relative power spectrum might occur. The changes in the EEG bands were not limited necessarily to the exposure point.
Directory of Open Access Journals (Sweden)
Iwona Janczarek
2016-01-01
Full Text Available Emotional excitability influences horses’ performance in sports and races. The aim of the study was to analyse whether the balance of the autonomic system which can occur when sympathetic system activity is at various levels might impact the horses’ racing performance. The study was carried out on 67 purebred Arabian horses trained for racing. The following indices were analysed: low frequency (LF, high frequency (HF, and the ratio of spectrum power at low frequencies to high frequencies (LF/HF. The autonomic nervous system activity was measured × 3 during the training season, at three-month intervals. Each examination included a 30-min measurement at rest and after a training session. The racing performance indices in these horses were also analysed. Better racing results were found in horses with enhanced LF/HF. The worst racing results were determined in horses with low LF.
Stimulation of Protein Expression Through the Harmonic Resonance of Frequency-Specific Music.
Orhan, Ibrahim Y; Gulbahar, Burak A
2016-12-01
The use of specific frequencies for specific individual amino acids may increase the potential energy of protein molecules in the medium [1]. The resonance would also increase the movement of particles in the cytosol, increasing the collisions necessary for the conduction of protein expression. The clash of two waves that share frequencies will exhibit an increase in energy through an increase in amplitude [2]. The increase in energy would in turn increase the number of collisions forming the tRNA-amino acid, increasing the amino acid acquiry for ribosomes to improve intracellular efficiency in gene expression. To test the hypothesis, Red Fluorescent Protein (RFP) in transformated BL-21 strains of E. coli and p53 protein of MCF-7 were examined after exposure to sounds of specific frequencies. Through the exposure of the experimental systems to a sequence of sounds that match the frequencies of specific amino acids, the levels of RFP exhibition respective to the control groups in the bacterial medium increased two-fold in terms of RFU. The experiments that targeted the p53 protein with the 'music' showed a decrease in the cell prevalence in the MCF-7 type breast cancer cells by 28%, by decreasing the speed of tumour formation. Exposure to 'music' that was designed through assigning a musical note for every single one of the twenty unique amino acids, produced both an analytical and a visible shift in protein synthesis, making it as potential tool for reducing procedural time uptake.
Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal
Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling
2018-05-01
When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.
INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH ION CYCLOTRON RESONANCE FREQUENCY WAVES
International Nuclear Information System (INIS)
CHOI, M.; CHAN, V.S.; CHIU, S.C.; OMELCHENKO, Y.A.; SENTOKU, Y.; STJOH, H.E.
2003-01-01
OAK B202 INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH CYCLOTRON RESONANCE FREQUENCY WAVES. Existing tokamaks such as DIII-D and future experiments like ITER employ both NB injection (NBI) and ion-cyclotron resonance heating (ICRH) for auxiliary heating and current drive. The presence of energetic particles produced by NBI can result in absorption of the Ion cyclotron radio frequency (ICRF) power. ICRF can also interact with the energetic beam ions to alter the characteristics of NBI momentum deposition and resultant impact on current drive and plasma rotation. To study the synergism between NBI and ICRF, a simple physical model for the slowing-down of NB injected fast ions is implemented in a Monte-Carlo rf orbit code. This paper presents the first results. The velocity space distributions of energetic ions generated by ICRF and NBI are calculated and compared. The change in mechanical momentum of the beam and an estimate of its impact on the NB-driven current are presented and compared with ONETWO simulation results
DEFF Research Database (Denmark)
Zhou, Leming; Zhou, Xiaoping; Chen, Yandong
2018-01-01
For the LCL-type grid-connected distributed generation system, the grid-current-feedback active damping (GCFAD) methods have a conflict between the resonance-suppression ability and harmonic-currents amplification. For this, an inverter-current-feedback reso-nance-suppression (ICFRS) method without...... additional sensors is proposed to reduce resonance-frequency offset and grid-inductance effect due to its unattenuated damping characteristic under high-frequency bandwidth. By analyzing two types of equivalent impedance models of ICFRS and GCFAD with a high-pass filter (HPF), GCFAD can suppress...
Conchouso Gonzalez, David
2016-06-28
Scaled-up production of microfluidic droplets, through the parallelization of hundreds of droplet generators, has received a lot of attention to bring novel multiphase microfluidics research to industrial applications. However, apart from droplet generation, other significant challenges relevant to this goal have never been discussed. Examples include monitoring systems, high-throughput processing of droplets and quality control procedures among others. In this paper, we present and compare capacitive and radio frequency (RF) resonator sensors as two candidates that can measure the dielectric properties of emulsions in microfluidic channels. By placing several of these sensors in a parallelization device, the stability of the droplet generation at different locations can be compared, and potential malfunctions can be detected. This strategy enables for the first time the monitoring of scaled-up microfluidic droplet production. Both sensors were prototyped and characterized using emulsions with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction of the emulsions. Although both methods rely on the dielectric properties of the emulsions, the main advantage of the RF resonator sensors is the fact that they can be designed to resonate at multiple frequencies of the broadband transmission line. Consequently with careful design, two or more sensors can be parallelized and read out by a single signal. Finally, a comparison between these sensors based on their sensitivity, readout cost and simplicity, and design flexibility is also discussed. © 2016 The Royal Society of Chemistry.
Energy Technology Data Exchange (ETDEWEB)
Cha, Sung Su; Lee, Byung Cheol [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Yujong; Park, Hyung Dal; Lee, Byeong-No; Joo, Youngwoo; Cha, Hyungki; Lee, Soo Min; Song, Ki Baek [KAERI, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)
2015-05-15
The total components of the accelerator are the magnetron, electron gun, accelerating structure, a set of solenoid magnets, four sets of steering coils, a modulator, and a circulator. One of the accelerator components of the accelerating structure is made of oxygen-free high-conductivity copper (OFHC), and its volume is changed according to the ambient temperature. As the volume changes, the resonant frequency of the accelerating structure is changed. Accordingly, the resonance frequency is mismatched between the source of the magnetron and the accelerating structure. An automatic frequency tuning system is automatically matched with the resonant frequency of the magnetron and accelerating structure, which allows a high output power and reliable accelerator operation. An automatic frequency tuning system is composed of a step motor control part for correcting the frequency of the source and power measuring parts, i.e., the forward and reflected power between the magnetron and accelerating structure. In this paper, the design, fabrication, and RF power test of the automatic frequency tuning system for the X-band linac are presented. A frequency tuning system was developed to overcome an unstable accelerator operation owing to the frequency mismatch between the magnetron and accelerating structure. The frequency measurement accuracy is 100 kHz and 0.72 degree per pulse.
Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM
International Nuclear Information System (INIS)
Paul, William; Lutz, Christopher P.; Heinrich, Andreas J.; Baumann, Susanne
2016-01-01
We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.
Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM
Energy Technology Data Exchange (ETDEWEB)
Paul, William; Lutz, Christopher P.; Heinrich, Andreas J. [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Baumann, Susanne [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)
2016-07-15
We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.
DEFF Research Database (Denmark)
Yang, Dongsheng; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
The LCL-type grid connected inverter has been widely used as the intelligent power interface between the distributed generation unit and the power grid. To reduce the cost and volume of the filter, it is desirable to design the LCL filter with higher resonance frequency provided that the quality...... of injected grid current is not compromised. Actually, it is the typical case for the T-type or NPC three-level inverter to design its LCL resonance frequency close to half of the switching frequency. In this case, however, the sideband effect of SPWM modulation can impose a significant impact on the system...
May, Philip A; Blankenship, Jason; Marais, Anna-Susan; Gossage, J Phillip; Kalberg, Wendy O; Joubert, Belinda; Cloete, Marise; Barnard, Ronel; De Vries, Marlene; Hasken, Julie; Robinson, Luther K; Adnams, Colleen M; Buckley, David; Manning, Melanie; Parry, Charles D H; Hoyme, H Eugene; Tabachnick, Barbara; Seedat, Soraya
2013-12-01
Concise, accurate measures of maternal prenatal alcohol use are needed to better understand fetal alcohol spectrum disorders (FASD). Measures of drinking by mothers of children with specific FASD diagnoses and mothers of randomly-selected controls are compared and also correlated with physical and cognitive/behavioral outcomes. Measures of maternal alcohol use can differentiate maternal drinking associated with FASD from that of controls and some from mothers of alcohol-exposed normals. Six variables that combine quantity and frequency concepts distinguish mothers of FASD children from normal controls. Alcohol use variables, when applied to each trimester and three months prior to pregnancy, provide insight on critical timing of exposure as well. Measures of drinking, especially bingeing, correlate significantly with increased child dysmorphology and negative cognitive/behavioral outcomes in children, especially low non-verbal IQ, poor attention, and behavioral problems. Logistic regression links (p<.001) first trimester drinking (vs. no drinking) with FASD, elevating FASD likelihood 12 times; first and second trimester drinking increases FASD outcomes 61 times; and drinking in all trimesters 65 times. Conversely, a similar regression (p=.008) indicates that drinking only in the first trimester makes the birth of a child with an FASD 5 times less likely than drinking in all trimesters. There is significant variation in alcohol consumption both within and between diagnostic groupings of mothers bearing children diagnosed within the FASD continuum. Drinking measures are empirically identified and correlated with specific child outcomes. Alcohol use, especially heavy use, should be avoided throughout pregnancy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Lazarev, L. A.
2015-07-01
An infinite panel with two types of resonators regularly installed on it is theoretically considered. Each resonator is an air-filled cavity hermetically closed by a plate, which executes piston vibrations. The plate and air inside the cavity play the roles of mass and elasticity, respectively. Every other resonator is reversed. At a certain ratio between the parameters of the resonators at the tuning frequency of the entire system, the acoustic-pressure force that directly affects the panel can be fully compensated by the action forces of the resonators. In this case, the sound-proofing ability (transmission loss) tends to infinity. The presented calculations show that a complete transmission-loss effect can be achieved even with low- Q resonators.
Yuantai Hu; Huiliang Hu; Bin Luo; Huan Xue; Jiemin Xie; Ji Wang
2013-08-01
A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.
International Nuclear Information System (INIS)
Sharma, A.K.; Singh, V.P.; Sarma, M.K.
2006-01-01
In mutation breeding experiment, plants with altered characteristics such as chlorophyll changes, sterility, plant lethality etc. could be the marker of the mutability of a variety. In fact, spectrum and frequency of chlorophyll mutations have been studied in the great detail. The chlorophyll mutation is the clear-cut indication of non-directional nature of mutation and possibility of induction of useful mutations. The spectrum and frequency of chlorophyll mutation was estimated by using gamma rays (100, 200, 300 and 400 Gy doses), EMS (0.2, 0.4, 0.6 and 0.8%) and combination of gamma rays (100, 200, 300 400 Gy) with 0.2 % concentration EMS on two cultivars, namely, Pant Urd-19 and Pant Urd-30 of urdbean ( Vigna mungo L. Hepper). Five different types of chlorophyll mutations viz., albina, xantha, viridis, chlorina and maculata were identified in both the cultivars. Almost all the combination treatments produced maximum frequency and wider spectrum of chlorophyll mutations followed by single treatment of gamma rays or EMS. The frequency of chlorophyll mutation increased with higher doses of mutagens but decreased at highest dose. Proc. Nat. Acad. Sci. India. 76(8), I, 2006. 64-68. (author)
Many-electron effect in the resonant L23-M23V Auger-electron spectrum of Ti metal
International Nuclear Information System (INIS)
Ohno, Masahide
2006-01-01
Above the L23 absorption edge the L 23 -M 23 V resonant Auger-electron spectroscopy (RAES) spectrum of Ti metal shows a normal L 23 -M 23 V Auger decay spectrum at a constant kinetic energy (K.E.). Here LX and MY are the atomic shells Lx and My, respectively. Apart from a weak spectral feature of the L2-M23V Auger transition appearing around the L2 edge, the RAES spectra of Ti meal show a very little difference between the L2 and L3 regions [P. Le Fevre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B69 (2004) 155421]. It is shown that the time scale of relaxation of the resonantly excited L23-hole state to the L23-electron ionized state is much shorter than that of the L23-hole decay so that the L 23 -M 23 V RAES spectrum of Ti metal resembles much the normal L 23 -M 23 V Auger decay spectrum. The relaxation of the resonantly excited L23-hole state to the fully relaxed L23-hole state before the L23-hole decays, explains the extra width which is the primary cause of the discrepancy between the experimental high resolution near edge X-ray absorption spectroscopy (XAS) spectrum of Ti metal and the one calculated by the particle-hole Green's function including the Coulomb exchange interaction between the 2p hole and the 3d electron. The time scale of relaxation of the L3V two-hole state created by the L2-L3V Coster-Kronig (CK) decay to the single L3-hole state is much shorter than that of the L3-hole decay so that the L2-L3V-L3-M23V CK preceded Auger decay spectrum resembles much the L3-M23V Auger decay one
Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph
2018-04-01
The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.
Directory of Open Access Journals (Sweden)
Seunghyun Eom
2016-10-01
Full Text Available In this paper, we proposed a stretchable radio frequency (RF sensor to detect strain direction and level. The stretchable sensor is composed of two complementary split ring resonators (CSRR with microfluidic channels. In order to achieve stretchability, liquid metal (eutectic gallium-indium, EGaIn and Ecoflex substrate are used. Microfluidic channels are built by Ecoflex elastomer and microfluidic channel frames. A three-dimensional (3D printer is used for fabrication of microfluidic channel frames. Two CSRR resonators are designed to resonate 2.03 GHz and 3.68 GHz. When the proposed sensor is stretched from 0 to 8 mm along the +x direction, the resonant frequency is shifted from 3.68 GHz to 3.13 GHz. When the proposed sensor is stretched from 0 to 8 mm along the −x direction, the resonant frequency is shifted from 2.03 GHz to 1.78 GHz. Therefore, we can detect stretched length and direction from independent variation of two resonant frequencies.
Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)
Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo
2016-11-01
A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).
Non-resonant energy harvester with elastic constraints for low rotating frequencies
Machado, Sebastián P.; Febbo, Mariano; Gatti, Claudio D.; Ramirez, José M.
2017-11-01
This paper presents a non-resonant piezoelectric energy harvester (PEH) which is designed to capture energy from low frequency rotational vibration. The proposed device works out of the plane of rotation where the motion of a mass-spring system is transferred to a piezoelectric layer with the intention to generate energy to power wireless structural monitoring systems or sensors. The mechanical structure is formed by two beams with rigid and elastic boundary conditions at the clamped end. On the free boundaries, heavy masses connected by a spring are placed in order to increase voltage generation and diminish the natural frequency. A mathematical framework and the equations governing the energy-harvesting system are presented. Numerical simulations and experimental verifications are performed for different rotation speeds ranging from 0.7 to 2.5 Hz. An output power of 125 μW is obtained for maximum rotating frequency demonstrating that the proposed design can collect enough energy for the suggested application.
Equilateral Triangular Dielectric Resonator Nantenna at Optical Frequencies for Energy Harvesting
Directory of Open Access Journals (Sweden)
Waleed Tariq Sethi
2015-01-01
Full Text Available The last decade has witnessed a remarkable growth in the telecommunication industry. With the introduction of smart gadgets, the demand for high data rate and bandwidth for wireless applications have increased exponentially at the cost of exponential consumption of energy. The latter is pushing the research and industry communities to devise green communication solutions that require the design of energy saving devices and techniques in one part and ambient energy harvesting techniques in the other part. With the advent of nanocomponents fabrication technology, researchers are now able to tap into the THz frequency regime and fabricate optical low profile antennas at a nanoscale. Optical antennas have proved their potential and are revolutionizing a class of novel optical detectors, interconnectors, sensors, and energy harvesting related fields. Authors in this paper propose an equilateral triangular dielectric resonator nantenna (ETDRNA working at 193.5 THz standard optical frequency. The simulated antenna achieves an impedance bandwidth from 192.3 THz to 197.3 THz with an end-fire directivity of 8.6 dBi, covering the entire standard optical window of C-band. Numerical demonstrations prove the efficiency of the nantenna at the frequencies of interest, making it a viable candidate for future green energy harvesting and high speed optical applications.
Prawoko, S. S.; Nelwan, L. C.; Odang, R. W.; Kusdhany, L. S.
2017-08-01
The histomorphometric test is the gold standard for dental implant stability quantification; however, it is invasive, and therefore, it is inapplicable to clinical patients. Consequently, accurate and objective alternative methods are required. Resonance frequency analysis (RFA) and digital radiographic analysis are noninvasive methods with excellent objectivity and reproducibility. To analyze the correlation between the radiographic analysis of alveolar bone density around a dental implant and the resonance frequency of the dental implant. Digital radiographic images for 35 samples were obtained, and the resonance frequency of the dental implant was acquired using Osstell ISQ immediately after dental implant placement and on third-month follow-up. The alveolar bone density around the dental implant was subsequently analyzed using SIDEXIS-XG software. No significant correlation was reported between the alveolar bone density around the dental implant and the resonance frequency of the dental implant (r = -0.102 at baseline, r = 0.146 at follow-up, p > 0.05). However, the alveolar bone density and resonance frequency showed a significant difference throughout the healing period (p = 0.005 and p = 0.000, respectively). Conclusion: Digital dental radiographs and Osstell ISQ showed excellent objectivity and reproducibility in quantifying dental implant stability. Nonetheless, no significant correlation was observed between the results obtained using these two methods.
Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation
International Nuclear Information System (INIS)
Li, Rui
2016-01-01
The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin; the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field. (paper)
Optical sum-frequency generation in a whispering-gallery-mode resonator
International Nuclear Information System (INIS)
Strekalov, Dmitry V; Kowligy, Abijith S; Huang, Yu-Ping; Kumar, Prem
2014-01-01
We demonstrate sum-frequency generation between a telecom wavelength and the Rb D2 line, achieved through natural phase matching in a nonlinear whispering gallery mode resonator. Due to the strong optical field confinement and ultra high Q of the cavity, the process saturates already at sub-mW pump peak power, at least two orders of magnitude lower than in existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory based on spherical geometry. Our experimental and theoretical results point toward a new platform for manipulating the color and quantum states of light waves for applications such as atomic memory based quantum networking and logic operations with optical signals. (paper)
Adjustable ferromagnetic resonance frequency in CoO/CoFeB system
Energy Technology Data Exchange (ETDEWEB)
Bonneau-Brault, A. [CEA Le Ripault, BP16, 37260 Monts (France); GREMAN, CNRS UMR 7347, University of Tours, 37200 Tours (France); Dubourg, S. [CEA Le Ripault, BP16, 37260 Monts (France); Thiaville, A. [LPS, CNRS UMR 8502, University of Paris-Sud, 91405 Orsay Cedex (France); Rioual, S. [LMB EA4522, University of Brest, 6 av. Le Gorgeu, 29238 Brest Cedex 3 (France); Valente, D. [GREMAN, CNRS UMR 7347, University of Tours, 37200 Tours (France)
2015-01-21
Static and dynamic properties of (CoO/CoFeB){sub n} multilayers have been investigated. An anisotropy field enhancement was evidenced when the CoO layer was deposited under the CoFeB layer. Tuning the relative CoFeB and CoO layers thicknesses, high ferromagnetic resonance frequencies up to 4 GHz were achieved. The coupling effect between the CoO and CoFeB layers was induced by a dipolar coupling due to the anisotropic roughness topology of the CoO layer. This anisotropic roughness was induced by the deposition geometry and evidenced by atomic force microscopy. The strength of the dipolar interfacial coupling was calculated thanks to Schlömann's model. Multilayer stacks were fabricated and the magnetic properties observed for the trilayers could be maintained.
Analysis of High Frequency Resonance in DFIG-based Offshore Wind Farm via Long Transmission Cable
DEFF Research Database (Denmark)
Song, Yipeng; Ebrahimzadeh, Esmaeil; Blaabjerg, Frede
2018-01-01
During the past two decades, the Doubly Fed Induction Generator (DFIG) based wind farm has been under rapid growth, and the increasing wind power penetration has been seen. Practically, these wind farms are connected to the three-phase AC grid through long transmission cable which can be modelled...... as several II units. The impedance of this cable cannot be neglected and requires careful investigation due to its long distance. As a result, the impedance interaction between the DFIG based wind farm and the long cable is inevitable, and may produce High Frequency Resonance (HFR) in the wind farm....... This paper discusses the HFR of the large scale DFIG based wind farm connected to the long cable. Several influencing factors, including 1) the length of the cable, 2) the output active power and 3) the rotor speed, are investigated. Simulation validations using MATLAB / Simulink have been conducted...
Adjustable ferromagnetic resonance frequency in CoO/CoFeB system
International Nuclear Information System (INIS)
Bonneau-Brault, A.; Dubourg, S.; Thiaville, A.; Rioual, S.; Valente, D.
2015-01-01
Static and dynamic properties of (CoO/CoFeB) n multilayers have been investigated. An anisotropy field enhancement was evidenced when the CoO layer was deposited under the CoFeB layer. Tuning the relative CoFeB and CoO layers thicknesses, high ferromagnetic resonance frequencies up to 4 GHz were achieved. The coupling effect between the CoO and CoFeB layers was induced by a dipolar coupling due to the anisotropic roughness topology of the CoO layer. This anisotropic roughness was induced by the deposition geometry and evidenced by atomic force microscopy. The strength of the dipolar interfacial coupling was calculated thanks to Schlömann's model. Multilayer stacks were fabricated and the magnetic properties observed for the trilayers could be maintained
Akiel, R D; Stepanov, V; Takahashi, S
2017-06-01
Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.
Use of a radio-frequency resonance circuit in studies of alkali ionization in flames
International Nuclear Information System (INIS)
Borgers, A.J.
1978-01-01
The context of the investigations are outlined with a short review about recent flame studies at Utrecht University and a discussion about discrepancies and agreements in the literature concerning alkali ionization in flames. The measuring technique chosen is described and the general design of the radio-frequency resonance system presented. The optical track measurements and the theoretical calculations of flame rise velocity are dealt with. The collisional ionization rate constants for Na, K and Cs are determined. The collisional-ionization rate constant for lithium is treated separately by reason of the hydroxide formation. Finally a theoretical model for the conducting flame in a weak, alternating electric field is developed. The relation betaeen the admittance and the flame conductivity in first order approximations is derived. (Auth.)
Hirth, Michael; Kuhn, Jochen; Müller, Andreas
2015-02-01
Recent articles about smartphone experiments have described their applications as experimental tools in different physical contexts.1-4 They have established that smartphones facilitate experimental setups, thanks to the small size and diverse functions of mobile devices, in comparison to setups with computer-based measurements. In the experiment described in this article, the experimental setup is reduced to a minimum. The objective of the experiment is to determine the speed of sound with a high degree of accuracy using everyday tools. An article published recently proposes a time-of-flight method where sound or acoustic pulses are reflected at the ends of an open tube.5 In contrast, the following experiment idea is based on the harmonic resonant frequencies of such a tube, simultaneously triggered by a noise signal.
Applicability of ultralow-frequency global resonances for investigating lightning activity on Venus
International Nuclear Information System (INIS)
Nikolaenko, A.P.; Rabinovich, L.M.
1987-01-01
The application to experiments on Venus of methods of investigating global lightning activity that are used on earth in the ultralow-frequency range is discussed. Calculations of the electromagnetic fields in the range from a few Hertz to tens of Hertz are carried out in the framework of the model of the lower ionosphere of Venus, which generalizes the information about the planet's atmosphere which is presently available. The calculations showed that observations of global resonances on Venus must, as on the earth, allow one to obtain data about the global distribution of lightning in space and time, and to make the values of the parameters of the lower ionosphere model more precise
International Nuclear Information System (INIS)
Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan
2016-01-01
We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10"1"7 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.
International Nuclear Information System (INIS)
King, J.F.; Baity, F.W.; Hoffman, D.J.; Walls, J.C.; Taylor, D.J.
1988-01-01
The ion cyclotron resonant frequency (ICRF) antennas for heating fusion plasmas require careful analysis of the materials selected for the design and the successful fabrication of high integrity braze bonds. Graphite tiles are brazed to Inconel 625 Faraday shield tubes to protect the antenna from the plasma. The bond between the graphite and Inconel tube is difficult to achieve due to the different coefficients of thermal expansion. A 2-D stress analysis showed the graphite could be bonded to Inconel with a Ag-Cu-Ti braze alloy without cracking the graphite. Brazing procedures and nondestructive examination methods have been developed for these joints. This paper presents the results of our joining development and proof testing. 2 refs., 3 figs
Einerson, Brett D; Rodriguez, Christina E; Kennedy, Anne M; Woodward, Paula J; Donnelly, Meghan A; Silver, Robert M
2018-06-01
Magnetic resonance imaging is reported to have good sensitivity and specificity in the diagnosis of placenta accreta spectrum disorders, and is often used as an adjunct to ultrasound. But the additional utility of obtaining magnetic resonance imaging to assist in the clinical management of patients with placenta accreta spectrum disorders, above and beyond the information provided by ultrasound, is unknown. We aimed to determine whether magnetic resonance imaging provides data that may inform clinical management by changing the sonographic diagnosis of placenta accreta spectrum disorders. In all, 78 patients with sonographic evidence or clinical suspicion of placenta accreta spectrum underwent magnetic resonance imaging of the abdomen and pelvis in orthogonal planes through the uterus utilizing T1- and T2-weighted imaging sequences at the University of Utah and the University of Colorado from 1997 through 2017. The magnetic resonance imaging was interpreted by radiologists with expertise in diagnosis of placenta accreta spectrum who had knowledge of the sonographic interpretation and clinical risk factors for placenta accreta spectrum disorders. The primary outcome was a change in diagnosis from sonographic interpretation that could alter clinical management, which was defined a priori. Diagnostic accuracy was verified by surgical and histopathologic diagnosis at the time of delivery. A change in diagnosis that could potentially alter clinical management occurred in 28 (36%) cases. Magnetic resonance imaging correctly changed the diagnosis in 15 (19%), and correctly confirmed the diagnosis in 34 (44%), but resulted in an incorrect change in diagnosis in 13 (17%), and an incorrect confirmation of ultrasound diagnosis in 15 (21%). Magnetic resonance imaging was not more likely to change a diagnosis in the 24 cases of posterior and lateral placental location compared to anterior location (33% vs 37%, P = .84). Magnetic resonance imaging resulted in overdiagnosis in
International Nuclear Information System (INIS)
Seemann, K.; Leiste, H.; Krüger, K.
2013-01-01
Soft ferromagnetic Fe-Co-Hf-N films, produced by reactive r.f. magnetron sputtering, are useful to study the ferromagnetic resonance (FMR) by means of frequency domain permeability measurements up to the GHz range. Films with the composition Fe 33 Co 43 Hf 10 N 14 exhibit a saturation polarisation J s of around 1.35 T. They are consequently considered as being uniformly magnetised due to an in-plane uniaxial anisotropy of approximately μ 0 H u ≈4.5 m T after annealing them, e.g., at 400 °C in a static magnetic field for 1 h. Being exposed to a high-frequency field, the precession of magnetic moments leads to a marked frequency-dependent permeability with a sharp Lorentzian shaped imaginary part at around 2.33 GHz (natural resonance peak), which is in a very good agreement with the modified Landau–Lifschitz–Gilbert (LLG) differential equation. A slightly increased FMR frequency and a clear increase in the resonance line broadening due to an increase of the exciting high-frequency power (1–25.1 mW), considered as an additional perturbation of the precessing system of magnetic moments, could be discovered. By solving the homogenous LLG differential equation with respect to the in-plane uniaxial anisotropy, it was revealed that the high-frequency field perturbation impacts the resonance peak position f FMR and resonance line broadening Δf FMR characterised by a completed damping parameter α=α eff +Δα. Adapted from this result, the increase in f FMR and decrease in lifetime of the excited level of magnetic moments associated with Δf FMR , similar to a spin-½ particle in a static magnetic field, was theoretically elaborated as well as compared with experimental data. - Highlights: • Impact on the resonance frequency and resonance line by the high-frequency power. • Theoretic approach by solving the LLG differential equation. • Experimental verification and magnon processes. • Theoretical and experimental determination of the resonance state
Zheng, Bin; Tublin, Mitchell E.; Lederman, Dror; Klym, Amy H.; Brown, Erica D.; Gur, David
2012-02-01
The incidence of thyroid cancer is rising faster than other malignancies and has nearly doubled in the United States (U.S.) in the last 30 years. However, classifying between malignant and benign thyroid nodules is often difficult. Although ultrasound guided Fine Needle Aspiration Biopsy (FNAB) is considered an excellent tool for triaging patients, up to 25% of FNABs are inconclusive. As a result, definitive diagnosis requires an exploratory surgery and a large number of these are performed in the U.S. annually. It would be extremely beneficial to develop a non-invasive tool or procedure that could assist in assessing the likelihood of malignancy of otherwise indeterminate thyroid nodules, thereby reducing the number of exploratory thyroidectomies that are performed under general anesthesia. In this preliminary study we demonstrate a unique hand-held Resonance-frequency based Electrical Impedance Spectroscopy (REIS) device with six pairs of detection probes to detect and classify thyroid nodules using multi-channel EIS output signal sweeps. Under an Institutional Review Board (IRB)-approved case collection protocol, this REIS device is being tested in our clinical facility and we have been collecting an initial patient data set since March of this year. Between March and August of 2011, 65 EIS tests were conducted on 65 patients. Among these cases, six depicted pathology-verified malignant cells. Our initial assessment indicates the feasibility of easily applying this REIS device and measurement approach in a very busy clinical setting. The measured resonance frequency differences between malignant and benign nodules could potentially make it possible to accurately classify indeterminate thyroid nodules.
Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS
Energy Technology Data Exchange (ETDEWEB)
Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.
2011-10-01
A search for narrow resonances with a mass of at least 1 TeV in the dijet mass spectrum is performed using pp collisions at sqrt(s)=7 TeV corresponding to an integrated luminosity of 1 inverse femtobarn, collected by the CMS experiment at the LHC. No resonances are observed. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, and gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% confidence level: string resonances with mass less than 4.00 TeV, E6 diquarks with mass less than 3.52 TeV, excited quarks with mass less than 2.49 TeV, axigluons and colorons with mass less than 2.47 TeV, and W' bosons with mass less than 1.51 TeV.
Corley, Steven
1997-01-01
We present a method for computing the spectrum of black hole radiation of a scalar field satisfying a wave equation with high frequency dispersion. The method involves a combination of Laplace transform and WKB techniques for finding approximate solutions to ordinary differential equations. The modified wave equation is obtained by adding a higher order derivative term suppressed by powers of a fundamental momentum scale $k_0$ to the ordinary wave equation. Depending on the sign of this new t...
International Nuclear Information System (INIS)
Por, G.; Izsak, E.; Valko, J.
1984-09-01
The pressure fluctuations were measured in the cooling system of the Paks-1 reactor. A shift of the peak was detected in low frequency component of the pressure fluctuation spectrum which is due to the fluctuations of water level in the pressurizer. Using the model of Katona and Nagy (1983), the eigenfrequencies, the magnitude of the shift and the sensitivity to the pressurizer water level were reproduced in good accordance with the experimental data. (D.Gy.)
Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.; Shirota, Hideaki
2018-05-01
In this study, we investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3-200 cm-1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf2]- salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr]+, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm]+, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr]+, 1-benzyl-3-methylimidazolium [BzMIm]+, and N-benzylpyridinium [BzPy]+ cations. The aim of this study is to better understand the effects of aromaticity in the cations' constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but the temperature-dependent spectrum of [CHxmMPyrr][NTf2] is different from that of other ILs. While [CHxmMPyrr][NTf2] shows spectral changes with temperature in the low-frequency region below 50 cm-1, the other ILs also show spectral changes in the high-frequency region above 80 cm-1 (above 50 cm-1 in the case of [BzMPyrr][NTf2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.
Electron paramagnetic resonance of Cu(II) and vibrational spectrum of chalcanthite
International Nuclear Information System (INIS)
Reddy, B.J.; Sreeramulu, P.; Ramesh, K.; Reddy, Y.P.; Botto, I.L.
1988-01-01
The EPR spectrum of Cu(II) in Chalcanthite has the characteristic features of D 4h symmetry. Optical and EPR results are correlated. The parameters g parallel, g perpendicular, k parallel and k perpendicular are evaluated. The nature of the bonding between the metal ion and the ligand environment is analized. On the other hand, the vibrational spectrum confirms the information about the site symmetry of the SO 4 group in the lattice. (Author) [es
Directory of Open Access Journals (Sweden)
Guojun Zhang
2015-04-01
Full Text Available The MEMS vector hydrophone developed by the North University of China has advantages of high Signal to Noise Ratio, ease of array integration, etc. However, the resonance frequency of the MEMS device in the liquid is different from that in the air due to the fluid-structure interaction (FSI. Based on the theory of Fluid-Solid Coupling, a generalized distributed mass attached on the micro-structure has been found, which results in the resonance frequency of the microstructure in the liquid being lower than that in the air. Then, an FSI simulation was conducted by ANSYS software. Finally, the hydrophone was measured by using a shaking table and a vector hydrophone calibration system respectively. Results show that, due to the FSI, the resonance frequency of the MEMS devices of the bionic vector hydrophone in the liquid declines approximately 30% compared to the case in the air.
Directory of Open Access Journals (Sweden)
E. H. Hara
2006-01-01
Full Text Available In this article, the hearing process is considered from a system engineering perspective. For those with total hearing loss, a cochlear implant is the only direct remedy. It first acts as a spectrum analyser and then electronically stimulates the neurons in the cochlea with a number of electrodes. Each electrode carries information on the separate frequency bands (i.e., spectrum of the original sound signal. The neurons then relay the signals in a parallel manner to the section of the brain where sound signals are processed. Photonic and tactile hearing systems displaying the spectrum of sound are proposed as alternative paths to the section of the brain that processes sound. In view of the plasticity of the brain, which can rewire itself, the following conjectures are offered. After a certain period of training, a person without the ability to hear should be able to decipher the patterns of photonic or tactile displays of the sound spectrum and learn to ‘hear’. This is very similar to the case of a blind person learning to ‘read’ by recognizing the patterns created by the series of bumps as their fingers scan the Braille writing. The conjectures are yet to be tested. Designs of photonic and tactile systems displaying the sound spectrum are outlined.
Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator
Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.
2017-07-01
A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.
Shape of a clamped stiff harpsichord wire driven at a resonant frequency
Hanson, Roger J.; Macomber, Hilliard Kent; Boucher, Mathew A.
2002-05-01
A wire transversely driven by a sinusoidal force at the resonant frequency of a vibrational mode vibrates at the driving frequency and at harmonics generated by nonlinear processes in the wire. If the amplitude of a harmonic is measured as a function of position along the wire, its shape is revealed. It differs significantly from a sinusoid in the vicinity of either end of the wire because the ends are clamped and the wire has significant stiffness. The shapes of various harmonics have been determined for a brass harpsichord wire, 70 cm long, from optical detector measurements made at different distances from a clamped end. Knowledge of shape facilitates the determination of antinode amplitudes of harmonics when the gross motion of the wire is so large that the detectors must be positioned near an end of the wire because of their very limited dynamic range. Some observations of harmonics and related phenomena were reported previously [Hanson et al., J. Acoust Soc. Am. 108, 2592 (2000); 106, 2141 (1999)]. The shape information is also needed to help separate nonlinear effects possibly occurring in the detectors from those of interest, occurring in the wire itself.
Effect of non-ideal clamping shape on the resonance frequencies of silicon nanocantilevers
Energy Technology Data Exchange (ETDEWEB)
Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Nicu, Liviu [CNRS, LAAS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France); Perisanu, Sorin; Vincent, Pascal [LPMCN, Universite Claude Bernard Lyon 1 et CNRS, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Lazarus, Arnaud; Thomas, Olivier, E-mail: sguillon@laas.fr [Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Metiers, 2 rue Conte, 75003 Paris (France)
2011-06-17
In this paper, we investigate the effects of non-ideal clamping shapes on the dynamic behavior of silicon nanocantilevers. We fabricated silicon nanocantilevers using silicon on insulator (SOI) wafers by employing stepper ultraviolet (UV) lithography, which permits a resolution of under 100 nm. The nanocantilevers were driven by electrostatic force inside a scanning electron microscope (SEM). Both lateral and out-of-plane resonance frequencies were visually detected with the SEM. Next, we discuss overhanging of the cantilever support and curvature at the clamping point in the silicon nanocantilevers, which generally arises in the fabrication process. We found that the fundamental out-of-plane frequency of a realistically clamped cantilever is always lower than that for a perfectly clamped cantilever, and depends on the cantilever width and the geometry of the clamping point structure. Using simulation with the finite-elements method, we demonstrate that this discrepancy is attributed to the particular geometry of the clamping point (non-zero joining curvatures and a flexible overhanging) that is obtained in the fabrication process. The influence of the material orthotropy is also investigated and is shown to be negligible.
Vibration-response due to thickness loss on steel plate excited by resonance frequency
Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.
2018-04-01
The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.
Comprehensive high frequency electron paramagnetic resonance studies of single molecule magnets
Lawrence, Jonathan D.
This dissertation presents research on a number of single molecule magnet (SMM) compounds conducted using high frequency, low temperature magnetic resonance spectroscopy of single crystals. By developing a new technique that incorporated other devices such as a piezoelectric transducer or Hall magnetometer with our high frequency microwaves, we were able to collect unique measurements on SMMs. This class of materials, which possess a negative, axial anisotropy barrier, exhibit unique magnetic properties such as quantum tunneling of a large magnetic moment vector. There are a number of spin Hamiltonians used to model these systems, the most common one being the giant spin approximation. Work done on two nickel systems with identical symmetry and microenvironments indicates that this model can contain terms that lack any physical significance. In this case, one must turn to a coupled single ion approach to model the system. This provides information on the nature of the exchange interactions between the constituent ions of the molecule. Additional studies on two similar cobalt systems show that, for these compounds, one must use a coupled single ion approach since the assumptions of the giant spin model are no longer valid. Finally, we conducted a collection of studies on the most famous SMM, Mn12Ac. Three different techniques were used to study magnetization dynamics in this system: stand-alone HFEPR in two different magnetization relaxation regimes, HFEPR combined with magnetometry, and HFEPR combined with surface acoustic waves. All of this research gives insight into the relaxation mechanisms in Mn12Ac.
Patch Antenna based on a Photovoltaic Cell with a Dual resonance Frequency
Directory of Open Access Journals (Sweden)
C. Baccouch
2016-11-01
Full Text Available The present work was to use photovoltaic solar cells in patch antenna structures. The radiating patch element of a patch antenna was replaced by a solar cell. Direct Current (DC generation remained the original feature of the solar cell, but additionally it was now able to receive and transmit electromagnetic waves. Here, we used a new patch antenna structure based on a photovoltaic solar cell. It was then used to collect photo-generated current as well as Radio Frequency (RF transmission. A mathematical model which would serve the minimization of power losses of the cell and therefore the improvement in the conversion efficiency was studied. A simulation allowed analysing the performance of the antenna, with a silicon material, and testing its parameters such as the reflection coefficient (S11, gain, directivity and radiated power. The performance analysis of the solar cell patch antenna was conducted using Advanced Design System (ADS software. Simulation results for this antenna showed a dual resonance frequency of 5.77 GHz and of 6.18 GHz with an effective return loss of -38.22dB and a gain of 1.59dBi.
Broadband frequency ECR ion source concepts with large resonant plasma volumes
International Nuclear Information System (INIS)
Alton, G.D.
1995-01-01
New techniques are proposed for enhancing the performances of ECR ion sources. The techniques are based on the use of high-power, variable-frequency, multiple-discrete-frequency, or broadband microwave radiation, derived from standard TWT technology, to effect large resonant ''volume'' ECR sources. The creation of a large ECR plasma ''volume'' permits coupling of more power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present forms of the ECR ion source. If successful, these developments could significantly impact future accelerator designs and accelerator-based, heavy-ion-research programs by providing multiply-charged ion beams with the energies and intensities required for nuclear physics research from existing ECR ion sources. The methods described in this article can be used to retrofit any ECR ion source predicated on B-minimum plasma confinement techniques
A Dual-Bridge LLC Resonant Converter with Fixed-Frequency PWM Control for Wide Input Applications
DEFF Research Database (Denmark)
Xiaofeng, Sun; Li, Xiaohua; Shen, Yanfeng
2017-01-01
This paper proposes a dual-bridge (DB) LLC resonant converter for wide input applications. The topology is an integration of a half-bridge (HB) LLC circuit and a full-bridge (FB) LLC circuit. The fixed-frequency PWM control is employed and a range of twice the minimum input voltage can be covered....... Compared with the traditional pulse frequency modulation (PFM) controlled HB/FB LLC resonant converter, the voltage gain range is independent of the quality factor and the magnetizing inductor has little influence on the voltage gain, which can simplify the parameter selection process and benefit...
Beyer, Hannes; Wagner, Tino; Stemmer, Andreas
2016-01-01
Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.
Ahmadizadeh, Y.; Jazi, B.; Abdoli-Arani, A.
2014-01-01
Response of a prolate spheroid plasma and/or an oblate spheroid plasma in presence of long wavelength electromagnetic wave has been studied. The resonance frequencies of these objects are obtained and it is found that they reduce to the resonance frequency of spherical cold plasma. Moreover, the resonant frequencies of prolate spheroid plasma and oblate spheroid plasma covered by a dielectric are investigated as well. Furthermore, their dependency on dielectric permittivity and geometry dimensions is simulated.
Directory of Open Access Journals (Sweden)
Nor Zakiah Yahaya
2014-01-01
Full Text Available This paper presents an intercomparison between the finite element method, method of moment, and the variational method to determine the effect of moisture content on the resonant frequency shift of a microstrip patch loaded with wet material. The samples selected for this study were Hevea rubber latex with different percentages of moisture content from 35% to 85%. The results were compared with the measurement data in the frequency range between 1 GHz and 4 GHz. It was found that the finite element method is the most accurate among all the three computational techniques with 0.1 mean error when compared to the measured resonant frequency shift. A calibration equation was obtained to predict moisture content from the measured frequency shift with an accuracy of 2%.
Effects of Weekly Low-Frequency rTMS on Autonomic Measures in Children with Autism Spectrum Disorder
Directory of Open Access Journals (Sweden)
Manuel Fernando Casanova
2014-10-01
Full Text Available The term autism spectrum disorder (ASD describes a range of conditions characterized by impairments in social interactions, communication, and by restricted and repetitive behaviors. ASD may also present with symptoms suggestive of autonomic nervous system (ANS dysfunction. The objective of this study was to determine the effect of 18 sessions of low frequency repetitive transcranial magnetic stimulation (rTMS on autonomic function in children with ASD by recording electrocardiogram (EKG and electrodermal activity pre-, post- and during each rTMS session. The autonomic measures of interest in this study were R-R cardiointervals in EKG (R-R, time and frequency domain measures of heart rate variability (HRV and skin conductance level (SCL. HRV measures such as R-R intervals, standard deviation of cardiac intervals, pNN50 (percentage of cardiointervals>50 ms different from preceding interval, power of high frequency (HF and low frequency (LF components of HRV spectrum, LF/HF ratio, were then derived from the recorded EKG. We expected that the course of 18 weekly inhibitory low-frequency rTMS applied to the dorsolateral prefrontal cortex (DLPFC would enhance autonomic balance by facilitating frontal inhibition of limbic activity thus resulting in decreased overall heart rate, increased HRV (in a form of increased HF power, decreased LF power (resulting in decreased LF/HF ratio, and decreased SCL. Behavioral evaluations post-18 TMS showed decreased irritability, hyperactivity, stereotype behavior and compulsive behavior ratings while autonomic measures indicated a significant increase in cardiac interval variability and a decrease of tonic SCL. The results suggest that 18 sessions of low frequency rTMS in ASD results in increased cardiac vagal control and reduced sympathetic arousal.
Energy Technology Data Exchange (ETDEWEB)
Nakagawa, S.
2011-04-01
Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.
Han, Sunwoo; Lee, Bong Jae
2016-01-25
In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.
Detailed analysis of the resonant backscattering spectrum for deeply penetrating protons in carbon
International Nuclear Information System (INIS)
Tosaki, Mitsuo; Ito, Shin; Maeda, Nobuhiro
2000-01-01
In order to study the spectral response in Rutherford backscattering spectroscopy (RBS) for deeply penetrating ions in matter, the resonant backscattering spectra for 5.05-, 5.5- and 6.0-MeV proton incidence on solid carbon material have been measured at a scattering angle of 179.2 deg. (in lab.). Prominent peaks resulting from the sharp 4.8-MeV resonance in 12 C(p,p) 12 C nuclear elastic scattering are observed, even for a penetration depth of 79 μm. Detailed numerical calculations based on an algorithm of straightforward step-by-step evaluation have been made to simulate the observed spectra. The algorithm enables one to rigorously treat both the effect of sharp resonance structure and that of energy-dependent energy loss. Calculations with the SIMNRA code are also made. Through comparison of these calculations with the measured results, some conclusions on the two effects above are presented. In addition, it is demonstrated that the peak profile due to a sharp resonance is very sensitive to the degree of energy straggling
Choudhuri, Samir; Bharadwaj, Somnath; Ghosh, Abhik; Ali, Sk. Saiyad
2014-01-01
We present two estimators to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio interferometric observations. This is relevant for both the foregrounds and the cosmological 21-cm signal buried therein. The discussion here is restricted to the
International Nuclear Information System (INIS)
Uchiyama, Yuta; Morita, Ryo
2012-01-01
Flow-induced acoustic resonances of piping system containing closed side-branches are sometimes encountered in power plants. Acoustic standing waves with large amplitude pressure fluctuation in closed side-branches are excited by the unstable shear layer which separates the mean flow in the main piping from the stagnant fluid in the branch. In U.S. NPP, the steam dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a power uprating condition. Our previous research developed the method for evaluating the acoustic resonance at the branch sections in actual power plants by using CFD. In the method, sound speed in wet steam is evaluated by its theory on the assumption of homogeneous flow, although it may be different from practical sound speed in wet steam. So, it is necessary to consider and introduce the most suitable model of practical sound speed in wet steam. In addition, we tried to develop simplified prediction method of the amplitude and frequency of pressure fluctuation in wet steam flow. Our previous experimental research clarified that resonance amplitude of fluctuating pressure at the top of the branch in wet steam. However, the resonance frequency in steam condition could not be estimated by using theoretical equation as the end correction in steam condition and sound speed in wet steam is not clarified as same reason as CFD. Therefore, in this study, we tried to evaluate the end correction in each dry and wet steam and sound speed of wet steam from experimental results. As a result, method for predicting resonance frequency by using theoretical equation in each wet and dry steam condition was proposed. (author)
Nigmatullin, R. R.; Gubaidullin, I. A.
2018-03-01
In this paper, we essentially modernize the NAFASS (Non-orthogonal Amplitude Frequency Analysis of the Smoothed Signals) approach suggested earlier. Actually, we solved two important problems: (a) new and effective algorithm was proposed and (b) we proved that the segment of the Prony spectrum could be used as the fitting function for description of the desired frequency spectrum. These two basic elements open an alternative way for creation of the fluctuation spectroscopy when the segment of the Fourier series can fit any random signal with trend but the dispersion spectrum of the Fourier series ω0 · k(ω0 ≡ 2 π / T) ⇒Ωk(k = 0 , 1 , 2 , . . . , K - 1) is replaced by the specific dispersion law Ωk calculated with the help of original algorithm described below. It implies that any finite signal will have a compact amplitude-frequency response (AFR), where the number of the modes is much less in comparison with the number of data points (K economic data and compare 30-years world prices for meat (beef, chicken, lamb and pork) entering as the basic components to every-day food consumption. These data were taken from the official site http://www.indexmundi.com/commodities/. We fitted these random functions with the high accuracy and calculated the desired ;amplitude-frequency; response for these random price fluctuations. The calculated distribution of the amplitudes (Ack, Ask) and frequency spectrum Ωk (k = 0, 1,…, K-1) allows one to compress initial data (K (number of modes) << N (number of data points), N/K ≅ 20-40) and receive an additional information for their comparison with each other. As the second example, we considered the transcendental/irrational numbers description in the frame of the proposed NAFASS approach, as well. This possibility was demonstrated on the quantitative description of the transcendental number π = 3.1415926535897932…, containing initially 6ṡ104 digits. The results obtained for the second type of data can be useful for
DEFF Research Database (Denmark)
Liu, Qing Zhong
1992-01-01
Unified analytical expressions have been derived for calculating the resonant frequencies, transimpedance and equivalent input noise current densities of the four most widely used tuned optical receiver front ends built with FETs and p-i-n diodes. A more accurate FET model has been used to improve...
Ye, LvZhou; Zhang, Hou-Dao; Wang, Yao; Zheng, Xiao; Yan, YiJing
2017-08-21
An efficient low-frequency logarithmic discretization (LFLD) scheme for the decomposition of fermionic reservoir spectrum is proposed for the investigation of quantum impurity systems. The scheme combines the Padé spectrum decomposition (PSD) and a logarithmic discretization of the residual part in which the parameters are determined based on an extension of the recently developed minimum-dissipaton ansatz [J. J. Ding et al., J. Chem. Phys. 145, 204110 (2016)]. A hierarchical equations of motion (HEOM) approach is then employed to validate the proposed scheme by examining the static and dynamic system properties in both the Kondo and noninteracting regimes. The LFLD scheme requires a much smaller number of exponential functions than the conventional PSD scheme to reproduce the reservoir correlation function and thus facilitates the efficient implementation of the HEOM approach in extremely low temperature regimes.
Spatial-frequency spectrum of patterns changes the visibility of spatial-phase differences
Lawton, T. B.
1985-01-01
It is shown that spatial-frequency components over a 4-octave range affected the visibility of spatial-phase differences. Contrast thresholds were measured for discrimination between two (+45- and -45-deg) spatial phases of a sinusoidal test grating added to a background grating. The background could contain one or several sinusoidal components, all in 0-deg phase. Phase differences between the test and the background were visible at lower contrasts when test and background frequencies were harmonically related than when they were not, when test and background frequencies were within 1 octave than when they were farther apart, when the fundamental frequency of the background was low than when it was high, and for some discriminations more than for others, after practice. The visibility of phase differences was not affected by additional components in the background if the fundamental and difference frequencies of the background remained unchanged. Observers' reports of their strategies gave information about the types of attentive processing that were used to discriminate phase differences. Attentive processing facilitated phase discrimination for multifrequency gratings spanning a much wider range of spatial frequencies than would be possible by using only local preattentive processing. These results were consistent with the visibility of phase differences being processed by some combination of even- and odd-symmetric simple cells tuned to a wide range of different spatial frequencies.
Energy Technology Data Exchange (ETDEWEB)
Dewey, Marc [Departments of Radiology, Charite, Medical School, Humboldt-Universitaet zu Berlin (Germany)]. E-mail: marc.dewey@charite.de; Schink, Tania [Medical Biometry, Charite, Medical School, Humboldt-Universitaet zu Berlin (Germany)]. E-mail: tania.schink@charite.de; Dewey, Charles F. [Radiology, Outpatient Centre Loebau, Poststr. 20, 02738 Loebau (Germany)]. E-mail: dewey@t-online.de
2007-07-15
Purpose: To analyse the frequency of patients with absolute and relative contraindications to magnetic resonance (MR) imaging who were actually referred to an outpatient imaging centre for an MR examination Materials and methods: Altogether a total of 51,547 consecutive patients were included between November 1997 and December 2005. Reasons preventing MR imaging were classified into the following categories: absolute and relative contraindications. Results: The referral frequency of patients with absolute contraindications to MR imaging was 0.41% (211 of 51,547 patients; 95% CI, 0.36-0.47%). The absolute contraindications were shrapnels located in biologically sensitive areas (121 patients, 0.23%; 95% CI, 0.20-0.28%), cardiac pacemakers (42 patients, 0.08%; 95% CI, 0.06-0.11%), and other unsafe implants (48 patients, 0.09%; 95% CI, 0.07-0.12%). Also patients with a relative contraindication to MR imaging were referred such as women with a first-trimester pregnancy (13 patients, 0.03%; 95% CI, 0.01-0.04%). Conclusion: Surprisingly, a considerable number of patients (0.41%) with cardiac pacemakers, other metallic implants (not approved for MR), or shrapnels are referred to MR facilities despite the well-known recommendations not to examine such patients. Thus, absolute contraindications to MR imaging are commonly found among patients referred for MR examinations and every effort needs to be made to screen patients prior to MR imaging for such contraindications to avoid detrimental results. Also, institutions placing implants (approved and unapproved for MR) should become legally responsible for providing the required information to the patients and their physicians.
International Nuclear Information System (INIS)
Dewey, Marc; Schink, Tania; Dewey, Charles F.
2007-01-01
Purpose: To analyse the frequency of patients with absolute and relative contraindications to magnetic resonance (MR) imaging who were actually referred to an outpatient imaging centre for an MR examination Materials and methods: Altogether a total of 51,547 consecutive patients were included between November 1997 and December 2005. Reasons preventing MR imaging were classified into the following categories: absolute and relative contraindications. Results: The referral frequency of patients with absolute contraindications to MR imaging was 0.41% (211 of 51,547 patients; 95% CI, 0.36-0.47%). The absolute contraindications were shrapnels located in biologically sensitive areas (121 patients, 0.23%; 95% CI, 0.20-0.28%), cardiac pacemakers (42 patients, 0.08%; 95% CI, 0.06-0.11%), and other unsafe implants (48 patients, 0.09%; 95% CI, 0.07-0.12%). Also patients with a relative contraindication to MR imaging were referred such as women with a first-trimester pregnancy (13 patients, 0.03%; 95% CI, 0.01-0.04%). Conclusion: Surprisingly, a considerable number of patients (0.41%) with cardiac pacemakers, other metallic implants (not approved for MR), or shrapnels are referred to MR facilities despite the well-known recommendations not to examine such patients. Thus, absolute contraindications to MR imaging are commonly found among patients referred for MR examinations and every effort needs to be made to screen patients prior to MR imaging for such contraindications to avoid detrimental results. Also, institutions placing implants (approved and unapproved for MR) should become legally responsible for providing the required information to the patients and their physicians
International Nuclear Information System (INIS)
García-González, M A; Fernández-Chimeno, M; Benítez, A; Ramos-Castro, J; Ferrer, J; Escorihuela, R M; Parrado, E; Capdevila, L; Angulo, R; Rodríguez, F A; Iglesias, X; Bescós, R; Marina, M; Padullés, J M
2011-01-01
This paper presents a new family of indices for the frequency domain analysis of heart rate variability time series that do not need any frequency band definition. After proper detrending of the time series, a cumulated power spectrum is obtained and frequencies that contain a certain percentage of the power below them are identified, so median frequency, bandwidth and a measure of the power spectrum asymmetry are proposed to complement or improve the classical spectral indices as the ratio of the powers of LF and HF bands (LF/HF). In normal conditions the median frequency provides similar information as the classical indices, while the bandwidth and asymmetry can be complementary measures of the physiological state of the tested subject. The proposed indices seem to be a good choice for tracking changes in the power spectrum in exercise stress, and they can guide in the determination of frequency band limits in other animal species
Directory of Open Access Journals (Sweden)
Daniela eGandolfi
2013-04-01
Full Text Available The neuronal circuits of the brain are thought to use resonance and oscillations to improve communication over specific frequency bands (Llinas, 1988; Buzsaki, 2006. However, the properties and mechanism of these phenomena in brain circuits remain largely unknown. Here we show that, at the cerebellum input stage, the granular layer generates its maximum response at 5-7 Hz both in vivo following tactile sensory stimulation of the whisker pad and in acute slices following mossy fiber-bundle stimulation. The spatial analysis of granular layer activity performed using voltage-sensitive dye (VSD imaging revealed 5-7 Hz resonance covering large granular layer areas. In single granule cells, resonance appeared as a reorganization of output spike bursts on the millisecond time-scale, such that the first spike occurred earlier and with higher temporal precision and the probability of spike generation increased. Resonance was independent from circuit inhibition, as it persisted with little variation in the presence of the GABAA receptor blocker, gabazine. However, circuit inhibition reduced the resonance area more markedly at 7 Hz. Simulations with detailed computational models suggested that resonance depended on intrinsic granule cells ionic mechanisms: specifically, Kslow (M-like and KA currents acted as resonators and the persistent Na current and NMDA current acted as amplifiers. This form of resonance may play an important role for enhancing coherent spike emission from the granular layer when theta-frequency bursts are transmitted by the cerebral cortex and peripheral sensory structures during sensory-motor processing, cognition and learning.
Frequency Selective Filtering of the Modulation Spectrum and its Impact on Consonant Identification
DEFF Research Database (Denmark)
Christiansen, Thomas Ulrich; Greenberg, Steven
2005-01-01
The spectro-temporal coding of Danish consonants was investigated using an information-theoretic approach. Listeners were asked to identify eleven different consonants spoken in a CV[l] syllable context (where C refers to the initial consonant, V refers to one of three vowels, [I, a, u], and [l] ....... In addition, the analysis provides a means to associate specific portions of the modulation spectrum with phonetic feature properties. Such analyses indicate that: (1) Accurate, robust decoding of place-of-articulation information requires broadband cross-spectral integration (2) Place......-of-articulation information is associated most closely with the modulation spectrum above 6 Hz, with the most significant contribution coming from the region above 12 Hz. (3) Place-of-articulation information is crucial for accurate consonant recognition. Hence, consonant decoding requires cross-spectral integration...
Implementation Aspects of a Flexible Frequency Spectrum Usage Algorithm for Cognitive OFDM Systems
DEFF Research Database (Denmark)
Sacchi, Claudio; Tonelli, Oscar; Cattoni, Andrea Fabio
2011-01-01
time on a shared spectrum chunk, emphasizes the role of resource allocation as a critical system design issue. This work is aimed at analyzing the practical issues related to the Software Defined Radio (SDR)-based implementation of a dynamic spectrum allocation algorithm, designed for OFDM...... on a Xilinx ML506 development board is performed. The main novelty proposed in this paper consists in the SDR-based implementation of a computationally-sustainable resource allocation algorithm for FSU on low-cost commercial FPGA platforms. The proposed implementation is competitive with respect to other ones...... on a Virtex 5 FPGA. Experimental results will illustrate that the selected core functionalities are effectively implementable with around 3% or less of the total FPGA computing resources....
Melnychuk, O; Grassellino, A; Romanenko, A
2014-12-01
In this paper, we discuss error analysis for intrinsic quality factor (Q0) and accelerating gradient (Eacc) measurements in superconducting radio frequency (SRF) resonators. The analysis is applicable for cavity performance tests that are routinely performed at SRF facilities worldwide. We review the sources of uncertainties along with the assumptions on their correlations and present uncertainty calculations with a more complete procedure for treatment of correlations than in previous publications [T. Powers, in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27]. Applying this approach to cavity data collected at Vertical Test Stand facility at Fermilab, we estimated total uncertainty for both Q0 and Eacc to be at the level of approximately 4% for input coupler coupling parameter β1 in the [0.5, 2.5] range. Above 2.5 (below 0.5) Q0 uncertainty increases (decreases) with β1 whereas Eacc uncertainty, in contrast with results in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27], is independent of β1. Overall, our estimated Q0 uncertainty is approximately half as large as that in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27].
Shokri, Mehran; Daraeighadikolaei, Arash
2013-01-01
Background. There is no doubt that the success of the dental implants depends on the stability. The aim of this work was to measure the stability of dental implants prior to loading the implants, using a resonance frequency analysis (RFA) by Osstell mentor device. Methods. Ten healthy and nonsmoker patients over 40 years of age with at least six months of complete or partial edentulous mouth received screw-type dental implants by a 1-stage procedure. RFA measurements were obtained at surgery and 1, 2, 3, 4, 5, 7, and 11 weeks after the implant surgery. Results. Among fifteen implants, the lowest mean stability measurement was for the 4th week after surgery in all bone types. At placement, the mean ISQ obtained with the magnetic device was 77.2 with 95% confidence interval (CI) = 2.49, and then it decreased until the 4th week to 72.13 (95% CI = 2.88), and at the last measurement, the mean implant stability significantly (P value implant placement. These suggestions need to be further assessed through future studies. PMID:23737790
Varma, Ruchi; Ghosh, Jayanta
2018-06-01
A new hybrid technique, which is a combination of neural network (NN) and support vector machine, is proposed for designing of different slotted dual band proximity coupled microstrip antennas. Slots on the patch are employed to produce the second resonance along with size reduction. The proposed hybrid model provides flexibility to design the dual band antennas in the frequency range from 1 to 6 GHz. This includes DCS (1.71-1.88 GHz), PCS (1.88-1.99 GHz), UMTS (1.92-2.17 GHz), LTE2300 (2.3-2.4 GHz), Bluetooth (2.4-2.485 GHz), WiMAX (3.3-3.7 GHz), and WLAN (5.15-5.35 GHz, 5.725-5.825 GHz) bands applications. Also, the comparative study of this proposed technique is done with the existing methods like knowledge based NN and support vector machine. The proposed method is found to be more accurate in terms of % error and root mean square % error and the results are in good accord with the measured values.
Electron paramagnetic resonance spectrum of fresh fruits processed by gamma-rays
International Nuclear Information System (INIS)
Jesus, E.F.O. de; Lopes, R.T.
1999-01-01
Pulp of irradiated kiwi fruits, after extraction by ethyl alcohol of part of the water and sugars, has been analyzed by electron paramagnetic resonance in order to study the possibility of identifying irradiated fruits. The results allow to confirm that for a period of approximately 12 weeks a triplet with a coupling isotropic constant of 3.05 mT, intensity ratio 1:2:1 and a factor g=2,0026 is visible in irradiated fruits
TV White Space the first step towards better utilization of frequency spectrum
Wah Oh, Ser; Tao, Ming-Hung; Peh, Edward
2017-01-01
This book covers the full spectrum of TVWS technology including regulations, technology, standardizations, and worldwide deployments. It begins with an introduction to cognitive radio and TVWS. The regulation activities in TVWS throughout North America, Europe, and Asia Pacific are covered in depth. After a discussion of regulations, the authors examine the standardizations developed to specify the enabling technologies of TVWS systems. The following chapter focuses on the key technologies that differentiate TVWS from a conventional wireless communication system.
Orthostatic Tremor: A Spectrum of Fast and Slow Frequencies or Distinct Entities?
Rigby, Heather B.; Rigby, Matthew H.; Caviness, John N.
2015-01-01
Background: Orthostatic tremor (OT) is defined by the presence of a high-frequency (13–18 Hz) tremor of the legs upon standing associated with a feeling of unsteadiness. However, some patients have discharge frequencies of <13 Hz, so-called “slow OT”. The aim of this study was to characterize patients with unsteadiness upon standing found to have <13 Hz tremor discharges on neurophysiologic testing. Methods: A retrospective review was performed on all subjects with a d...
Gu, Li-Na; Zhang, Min; Zhu, Hui; Liu, Jing-Yao
2016-10-01
Neuromyelitis optica spectrum disorder often co-exists with primary Sjögren's syndrome. We compared the clinical features of 16 neuromyelitis optica spectrum disorder patients with ( n = 6) or without primary Sjögren's syndrome ( n = 10). All patients underwent extensive clinical, laboratory, and MRI evaluations. There were no statistical differences in demographics or first neurological involvement at onset between neuromyelitis optica spectrum disorder patients with and without primary Sjögren's syndrome. The laboratory findings of cerebrospinal fluid oligoclonal banding, serum C-reactive protein, antinuclear autoantibody, anti-Sjögren's-syndrome-related antigen A antibodies, anti-Sjögren's-syndrome-related antigen B antibodies, and anti-Sm antibodies were significantly higher in patients with primary Sjögren's syndrome than those without. Anti-aquaporin 4 antibodies were detectable in 67% (4/6) of patients with primary Sjögren's syndrome and in 60% (6/10) of patients without primary Sjögren's syndrome. More brain abnormalities were observed in patients without primary Sjögren's syndrome than in those with primary Sjögren's syndrome. Segments lesions (> 3 centrum) were noted in 50% (5/10) of patients without primary Sjögren's syndrome and in 67% (4/6) of patients with primary Sjögren's syndrome. These findings indicate that the clinical characteristics of neuromyelitis optica spectrum disorder patients with and without primary Sjögren's syndrome are similar. However, neuromyelitis optica spectrum disorder patients without primary Sjögren's syndrome have a high frequency of brain abnormalities.
Moritsuka, Fumi; Wada, Naoya; Sakamoto, Takahide; Kawanishi, Tetsuya; Komai, Yuki; Anzai, Shimako; Izutsu, Masayuki; Kodate, Kashiko
2007-06-11
In optical packet switching (OPS) and optical code division multiple access (OCDMA) systems, label generation and processing are key technologies. Recently, several label processors have been proposed and demonstrated. However, in order to recognize N different labels, N separate devices are required. Here, we propose and experimentally demonstrate a large-scale, multiple optical code (OC)-label generation and processing technology based on multi-port, a fully tunable optical spectrum synthesizer (OSS) and a multi-wavelength electro-optic frequency comb generator. The OSS can generate 80 different OC-labels simultaneously and can perform 80-parallel matched filtering. We also demonstrated its application to OCDMA.
Energy Technology Data Exchange (ETDEWEB)
Berthelot, J.M.; Maugars, Y.; Delecrin, Y.; Caillon, F.; Prost, A. [Hopital Hotel-Dieu de Nantes, 44 (France)
1995-10-01
Magnetic resonance imaging (MRI) has had an impressive impact on evaluation of degenerative diseases of the spine. Nevertheless, false negatives can occur on images involving lumbar discs. Degenerative disc diseases documented on discography and/or pathology examination of the discs can go unrecognized. Likewise sensitivity for the detection of protruding disc hernias is not totally satisfactory (20% false negatives). Finally, a magnetic resonance image visualizing displacement of the disc is not specific (10 to 15% false positives); images showing protrusion or hernia can be seen in 30% of asymptomatic patients. Although MRI gives slightly more information than other imaging techniques, false images do exist. Moreover, the usefulness of MRI to demonstrate disc disease in case of a negative CT-scan remains to be demonstrated. (authors). 26 refs.
International Nuclear Information System (INIS)
Gewirth, D.T.; Moore, P.B.
1987-01-01
The imino proton spectra of several mutants of the 5S RNA of Escherichia coli are compared with that of the wild type. Three of the variants discussed are point mutations, and the fourth is a deletion mutant lacking bases 11-69 of the parent sequence, all obtained by site-directed mutagenesis techniques. The spectroscopic effects of mutation are limited in all cases, and the differences between normal and mutant spectra can be used to make or confirm the assignments of resonances. Several new assignments in the 5S spectrum are reported. Spectroscopic differences due to sequence differences permit the products of single genes within the 5S gene family to be distinguished and their fates followed by NMR
International Nuclear Information System (INIS)
Bhan, A.K.; Kaul, M.L.H.
1976-01-01
Three varieties of rice were treated with gamma rays and two alkylating agents EMS and DES, separately and in combinations, with a view to finding out the frequency and spectrum of chlorophyll mutations in relation to the genotype and the nature of the mutagen. Chlorophyll mutation frequency was enhanced with increasing dose but dropped at very high doses (doses that induced over 90% seeding lethality in M 1 ). The fall was attributed to either the increased mutated sector and diplontic selection after exposure to very high doses or relatively high resistance of some of the seeds. Among chlorophyll mutants in M 2 induced by radiations as well as alkylating agents, the albina type formed the majority class. EMS induced a significantly higher proportion of albinas than did gamma rays
Li, Shilei; Ding, Yinxing; Jiao, Rongzhen; Duan, Gaoyan; Yu, Li
2018-03-01
Nanoscale pulsed light is highly desirable in nano-integrated optics. In this paper, we obtained femtosecond pulses with THz repetition frequency via the coupling between quantum emitters (QEs) and plasmonic resonators. Our structure consists of a V -groove (VG) plasmonic resonator and a nanowire embedded with two-level QEs. The influences of the incident light intensity and QE number density on the transmission response for this hybrid system are investigated through semiclassical theory and simulation. The results show that the transmission response can be modulated to the pulse form. And the repetition frequency and extinction ratio of the pulses can be controlled by the incident light intensity and QE number density. The reason is that the coupling causes the output power of nanowire to behave as an oscillating form, the oscillating output power in turn causes the field amplitude in the resonator to oscillate over time. A feedback system is formed between the plasmonic resonator and the QEs in the nanowire. This provides a method for generating narrow pulsed lasers with ultrahigh repetition frequencies in plasmonic systems using a continuous wave input, which has potential applications in generating optical clock signals at the nanoscale.
Directory of Open Access Journals (Sweden)
Ahmet Kayabasi
2015-12-01
Full Text Available An application of support vector machine (SVM to compute the resonant frequency at dominant mode TM11 of annular ring compact microstrip antennas (ARCMAs is presented in this paper. ARCMAs have some useful features; resonant modes can be adjusted by controlling the ratio of the outer radius to the inner radius. The resonant frequencies of 100 ARCMAs with varied dimensions and electrical parameters in accordance with UHF band covering GSM, LTE, WLAN, and WiMAX applications were simulated with IE3D™ which is a robust numerical electromagnetic computational tool. Then, the SVM model was built with simulation data and 88 simulated ARCMAs were operated for training and the remaining 12 ARCMAs were used for testing this model. The proposed model has been confirmed by comparing with the suggestions reported elsewhere via measurement data published earlier in the literature, and it has further validated on an ARCMA operating at 3 GHz fabricated in this study. The obtained results show that this technique can be successfully used to compute the resonant frequency of ARCMAs without involving any sophisticated methods. The novelty of the approach described here is to offer ease of designing the process using this method.
Control of the long period grating spectrum through low frequency flexural acoustic waves
International Nuclear Information System (INIS)
Oliveira, Roberson A; Possetti, Gustavo R C; Kamikawachi, Ricardo C; Fabris, José L; Muller, Marcia; Pohl, Alexandre A P; Marques, Carlos A F; Nogueira, Rogério N; Neves, Paulo T Jr; Cook, Kevin; Canning, John; Bavastri, C
2011-01-01
We have shown experimental results of the excitation of long period fiber gratings by means of flexural acoustic waves with a wavelength larger than the grating period, validated by numerical simulations. The effect of the acoustic wave on the grating is modeled with the method of assumed modes, which delivers the strain field inside the grating, then used as the input to the transfer matrix method, needed for calculating the grating spectrum. The experimental and numerical results are found to be in good agreement, even though only the strain-optic effects are taken into account
International Nuclear Information System (INIS)
Dechenaux, B.
2013-01-01
This report presents the analysis conducted with the ATLAS experiment at the LHC and searching for resonant production of new particles decaying into a pair of top quarks. Top quark reconstruction is mainly build upon the notion of hadronic jets, whose identification and reconstruction is a crucial issue for any measure trying to sign top quark decays from proton-proton collisions processes. After a general description of the theoretical and experimental features of jet reconstruction in the ATLAS detector, we present a first attempt to validate the local hadronic calibration method, which aim at correcting the measurement of these objects from inaccuracies caused by detector effects. In the second part, we present the analysis conducted on 14 fb -1 of proton-proton collision data at √(s)=8 TeV collected during the year 2012 and searching for resonant creation of new heavy particles in top-anti-top invariant mass spectrum. For heavy particles, the quarks produced in the decay of the latter have a high impulsion with respect to their mass and those top quark decays often results in a so called 'boosted topology', where the hadronic-decaying top quark is often reconstructed as a single jet of large radius parameter. In this context, we present a preliminary study to reconstruct and identify as precisely as possible this type of boosted topologies, based on the study of jet substructure. (author)
Directory of Open Access Journals (Sweden)
Ahmad Ghasemloonia
2011-01-01
Full Text Available The role of gears in industry for speed and torque variation purposes is obvious. The gearbox diagnostic methods have been improved quickly in recent years. In this paper, two of the newest methods, the resonance demodulation technique (R.D, and the instantaneous power spectrum technique (IPS are applied to gearbox vibration signals and their capabilities in fault detection are compared. Yet, the important role of time averaging should not be dispensed with, as it is the primary step for both techniques. In the present study, the mathematical method of these techniques, according to the mathematical vibration model of gears, is introduced, these techniques are applied to the test rig data, and finally the results of both methods are compared. The results indicate that in each method, the location of fault can be estimated and it is located in the same angular position in both methods. The IPS method is applicable to severe faults, whereas the resonance demodulation technique is a simple tool to recognize the fault at each severity and at the early stages of fault generation.
Rooze, Joost; Rebrov, Evgeny V; Schouten, Jaap C; Keurentjes, Jos T F
2011-01-01
The sonochemical oxidation efficiency (η(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, η(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest η(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on η(ox). This is supported by the luminol images, the measured dependence of η(ox) on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on η(ox). Copyright © 2010 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Usharani, K.S.; Ananda Kumar, C.R.
2015-01-01
Chlorophyll mutations act as a significant index in the judgment of induced genetic variations in mutagen treated populations. Different types of chlorophyll mutation have been observed in various crop plants. In the current study, the effect of different concentrations (40 kR, 50 kR and 60 kR) of gamma rays, Ethyl Methane Sulphonate (50 mM, 60 mM and 70 mM) in single and combination dose/concentration on the frequency and spectrum of chlorophyll mutation and the effect of VBN 4 urdbean variety to such irradiation dose was observed. Results showed induction of broad spectrum of chlorophyll mutations which included albina, xantha, chlorina and viridis. Among these chlorina type was predominant in all the mutagenic treatments. The albina type of chlorophyll mutants occurred very rarely and was found only at 60 mM of EMS treatment and at 40 kR + 50 mM, 60 kR + 70 mM of combination treatments. Based on the chlorophyll mutation frequency, gamma rays were most effective followed by EMS and combination of treatments. (author)
International Nuclear Information System (INIS)
Mantsinen, M.
1999-01-01
Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in
Energy Technology Data Exchange (ETDEWEB)
Mantsinen, M. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics
1999-06-01
Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in
The direct l-type resonance spectrum of CF3CCH in the vibrational state ν 10 = 2
International Nuclear Information System (INIS)
Woetzel, Ulf; Maeder, Heinrich; Harder, Hauke; Pracna, Petr; Sarka, Kamil
2005-01-01
The direct l-type resonance spectrum of CF 3 CCH in the vibrational state ν 10 = 2 has been measured by means of waveguide microwave Fourier transform spectroscopy in the range 8-26 GHz. Two types of direct l-type resonance transitions induced by the (Δk = ±2, Δl = ±2) interaction could be observed: 262 transitions following the ΔJ = 0, Δk = Δl = 2 selection rule covering values of J = 17-64 and G vertical bar k - l vertical bar from 2 to 15, and 75 transitions following the ΔJ = 0, Δk = Δl = 4 selection rule covering values of J = 44-70 and G up to 3. The strong (2, 2) resonance furthermore allowed the observation of A 1 -A 2 splittings of the k = l = ±2 states from J = 63-70. The transitions with G = 3 showed splittings due to the (4, -2) and (0, 6) interactions. The corresponding energy level systems and part of the Hamiltonian matrix are discussed. Strong perturbations due to Δ(k - l) = 3 interactions coupling the states k = ±1, l = ±2 and k = ±4, l ±2 made possible the observation of perturbation-allowed transitions with selection rule k = ±1, l =± 2 ↔ k = 0, l = ±2. Additionally, the J = 2-1 and 3-2 rotational transitions have been measured. A multiple fitting analysis has been performed in which the experimental data have been fitted using five reduced forms of the effective Hamiltonian as proposed by Sarka and Harder [J. Mol. Spectrosc. 197 (1999) 254]. Parameters up to sixth order have been determined including the axial rotational constant A for both values of vertical bar l vertical bar and the unitary equivalence of the determined parameter sets has been demonstrated
Stroganova, Tatiana A; Butorina, Anna V; Sysoeva, Olga V; Prokofyev, Andrey O; Nikolaeva, Anastasia Yu; Tsetlin, Marina M; Orekhova, Elena V
2015-01-01
Recent studies link autism spectrum disorders (ASD) with an altered balance between excitation and inhibition (E/I balance) in cortical networks. The brain oscillations in high gamma-band (50-120 Hz) are sensitive to the E/I balance and may appear useful biomarkers of certain ASD subtypes. The frequency of gamma oscillations is mediated by level of excitation of the fast-spiking inhibitory basket cells recruited by increasing strength of excitatory input. Therefore, the experimental manipulations affecting gamma frequency may throw light on inhibitory networks dysfunction in ASD. Here, we used magnetoencephalography (MEG) to investigate modulation of visual gamma oscillation frequency by speed of drifting annular gratings (1.2, 3.6, 6.0 °/s) in 21 boys with ASD and 26 typically developing boys aged 7-15 years. Multitaper method was used for analysis of spectra of gamma power change upon stimulus presentation and permutation test was applied for statistical comparisons. We also assessed in our participants visual orientation discrimination thresholds, which are thought to depend on excitability of inhibitory networks in the visual cortex. Although frequency of the oscillatory gamma response increased with increasing velocity of visual motion in both groups of participants, the velocity effect was reduced in a substantial proportion of children with ASD. The range of velocity-related gamma frequency modulation correlated inversely with the ability to discriminate oblique line orientation in the ASD group, while no such correlation has been observed in the group of typically developing participants. Our findings suggest that abnormal velocity-related gamma frequency modulation in ASD may constitute a potential biomarker for reduced excitability of fast-spiking inhibitory neurons in a subset of children with ASD.
Energy Technology Data Exchange (ETDEWEB)
Wang, Ming-Liang; Wei, Xiao-Er [School of Medicine, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China); Lu, Li-Yan [Nanjing Medical University, Department of Radiology, Nanjing First Hospital, Nanjing (China); Li, Wen-Bin [School of Medicine, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China); Kashgar Prefecture Second People' s Hospital, Imaging Center, Kashgar (China)
2017-03-15
This study aims to elucidate the frequency, nondetection rate, and clinical importance of incidental extracerebral findings (IECFs) on brain nonenhanced magnetic resonance imaging (MRI). A total of 8284 brain MRIs performed between January 1, 2015 and December 31, 2015 were evaluated for the presence of IECFs and the distribution of IECFs was analyzed. IECFs were categorized as E1 (clinically unimportant, e.g., sinus mucosal thickening); E2 (likely unimportant, e.g., pharyngeal mucosal symmetrical thickening); and E3 (potentially important, e.g., pharyngeal mucosal asymmetrical thickening). The nondetection rate was determined by comparing the results of the structured approach with the initial MRI reports. The medical records were examined for patients with E3 IECFs to assess clinical importance and outcome of these lesions. A total of 5992 IECFs were found in 4469 of the 8284 patients (54.0%). E1 findings constituted 82.2% (4924/5992) of all IECFs; E2 constituted 16.6% (995/5992) and E3 constituted 1.2% (73/5992). Overall IECFs and E1 findings were significantly more common in male patients (P < 0.05). Statistically significant difference was also seen between the different age groups (P < 0.001). The nondetection rate was 56.9% (3409/5992) for overall IECFs and 32.9% (24/73) for E3 IECFs. Of the 73 patients with E3 IECFs, 34 (46.6%) received final diagnosis and appropriate treatment during the study period. IECFs are prevalent in clinical patients on brain MR images with a nondetection rate of 32.9% for potentially important (E3) findings. The reporting of IECFs according to clinical importance is helpful for patients' management. (orig.)
International Nuclear Information System (INIS)
Oh, Seungjae; Wang, Semyung; Cho, Sungman
2015-01-01
Highlights: • Development of Energy Efficiency Design Map. • Experimental validation of Energy Efficiency Design Map. • Suggestion regarding the Acoustically Supercharged Energy Efficiency. • Sensitivity analysis of the Energy Efficiency Ratio with respect to acoustic pressure. • Suggestion regarding the hybrid coupling method for acoustic analysis in compressor. - Abstract: The volumetric efficiency of the Internal Combustion (IC) engine and compressor can be increased by properly adjusting the acoustic resonance frequency of the suction muffler or the suction valve timing without any additional equipment or power source. This effect is known as acoustic supercharging. However, the energy efficiency has become more important than the volumetric efficiency because of the energy shortage issue and factors influencing consumers’ purchasing decisions. Therefore, methods for increasing the energy efficiency using the acoustic effect in the suction part of IC engine and compressor should be considered. In this study, a systematic method for improving the energy efficiency using the acoustic effect in the suction part of the compressor used in refrigerators and air conditioners was developed for the first time. This effect is named as the Acoustically Supercharged Energy Efficiency (ASEE). For the ASEE, first, a hybrid coupling method was suggested for the acoustical analysis in the suction part of the compressor. Next, an Energy Efficiency Design Map (EEDM) was proposed. This can serve as a design guide for suction mufflers in terms of the energy efficiency. Finally, sensitivity analyses of the Energy Efficiency Ratio (EER) and total massflow rate with respect to the acoustic pressure were conducted to identify the relationship between the acoustic pressure and the suction valve motion. This provides the physical background for the EEDM
Directory of Open Access Journals (Sweden)
Patrick R. Steffen
2017-08-01
Full Text Available Heart rate variability biofeedback (HRVB significantly improves heart rate variability (HRV. Breathing at resonance frequency (RF, approximately 6 breaths/min constitutes a key part of HRVB training and is hypothesized to be a pathway through which biofeedback improves HRV. No studies to date, however, have experimentally examined whether RF breathing impacts measures of HRV. The present study addressed this question by comparing three groups: the RF group breathed at their determined RF for 15 min; the RF + 1 group breathed at 1 breath/min higher than their determined RF for 15 min; and the third group sat quietly for 15 min. After this 15-min period, all groups participated in the Paced Auditory Serial Addition Task (PASAT for 8 min, and then sat quietly during a 10-min recovery period. HRV, blood pressure, and mood were measured throughout the experiment. Groups were not significantly different on any of the measures at baseline. After the breathing exercise, the RF group reported higher positive mood than the other two groups and a significantly higher LF/HF HRV ratio relative to the control group, a key goal in HRVB training (p < 0.05. Additionally, the RF group showed lower systolic blood pressure during the PASAT and during the recovery period relative to the control group, with the RF + 1 group not being significantly different from either group (p < 0.05. Overall, RF breathing appears to play an important role in the positive effect HRVB has on measures of HRV.
Flattening of the resonance spectrum of hadrons from κ-deformed Poincare algebra
International Nuclear Information System (INIS)
Dey, J.; Ferreira, P.L.; Tomio, L.; Choudhury, R.R.
1994-02-01
It was recently defined by Lukierski a κ-deformed Poincare algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ε ≡ 1/κ < 1 fm. It is shown that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ε ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum. (author)
A power filter for the detection of burst events based on time-frequency spectrum estimation
International Nuclear Information System (INIS)
Guidi, G M; Cuoco, E; Vicere, A
2004-01-01
We propose as a statistic for the detection of bursts in a gravitational wave interferometer the 'energy' of the events estimated with a time-dependent calculation of the spectrum. This statistic has an asymptotic Gaussian distribution with known statistical moments, which makes it possible to perform a uniformly most powerful test (McDonough R N and Whalen A D 1995 Detection of Signals in Noise (New York: Academic)) on the energy mean. We estimate the receiver operating characteristic (ROC, from the same book) of this statistic for different levels of the signal-to-noise ratio in the specific case of a simulated noise having the spectral density expected for Virgo, using test signals taken from a library of possible waveforms emitted during the collapse of the core of type II supernovae
Frequency of microbial spectrum of spontaneous bacterial peritonitis in established cirrhosis liver
International Nuclear Information System (INIS)
Zaman, A.; Kareem, R.; Khan, E.M.
2011-01-01
Background: Spontaneous bacterial peritonitis is one of the most frequent and serious complication in patients with liver cirrhosis and ascites associated with high mortality. Empiric antibiotic therapy should be initiated before the results of ascitic fluid cultures are available, guided by knowledge of the microbial spectrum of spontaneous bacterial peritonitis in a particular population. Methods: This is a descriptive study which was carried out in the Department of Gastroenterology and Hepatology, Postgraduate Medical Institute Hayatabad Medical Complex, Peshawar from January 2007 to December 2007. Fifty consecutive patients of established cirrhosis liver with ascites presenting with suspicion and or risk factors for spontaneous bacterial peritonitis were included in the study after informed consent. All selected patients were subjected to ascitic fluid tap. Twenty ml of ascitic fluid was aspirated in a heparinised disposable syringe; out of it 10 ml was immediately inoculated into blood culture bottle at bedside and sent for bacterial culture along with the remaining 10 ml for routine biochemical and cytological examination. Results: Out of 50 patients, 28 (56%) were diagnosed to have spontaneous bacterial peritonitis or its variants. Classic spontaneous bacterial peritonitis was present in 11 patients (39.28%), 16 (57.14%) patients were found to have culture negative neutrocytic ascites and one patient (3.57%) had bacterascites. Out of 28 cases of spontaneous bacterial peritonitis 12 samples of ascitic fluid showed positive culture reports. E. coli was the most frequently cultured organism isolated in 8 (66.66%) cases, Streptococcus pneumonae in 2 patients (16.66%), Staphylococcus aurus and Klebsiella each in 1 case (8.33%). Conclusion: Spontaneous bacterial peritonitis and its variants is a common complication of liver cirrhosis with ascites. E. coli is the most frequent offending organism in these cases. Knowledge of the microbial spectrum of spontaneous
DEFF Research Database (Denmark)
Tang, Yi; Yao, Wenli; Loh, Poh Chiang
2015-01-01
, and this observation is so far not discussed in the literature. In this case, very cost-effective LCL-filter design can be achieved for grid-connected converters whose dominant switching harmonics may appear at double of the switching frequency, e.g. in unipolar modulated three-level full bridge converters and 12...
DEFF Research Database (Denmark)
Tang, Yi; Yao, Wenli; Loh, Poh Chiang
2016-01-01
, and this observation is so far not discussed in the literature. In this case, a very cost-effective LCL filter design can be achieved for the grid-connected converters, whose dominant switching harmonics may appear at double the switching frequency, e.g., in unipolar-modulated three-level full-bridge converters and 12...
Quadrupole Transition Spectrum Measurement of Single Ca+ Ions Toward Optical Frequency Standards
2007-01-01
Gill, 2005, “Optical frequency standards,” Metrologia , 42, S125-S137. [2] M. Kajita, K. Matsubara, Y. Li, K. Hayasaka, and M. Hosokawa, 2004...Interval (PTTI) Meeting 1 10 100 1000 10-15 10-14 10-13 10-12 10-11 Averaging Time [s] R oo t Al la n Va ria nc e 729nm LD by FC8003 729nm LD by
2014-03-27
within Gold’s algorithm. Appendix B provides a detailed description of each block’s implementation in VHDL . Appendix C contains the VHDL code for the...provides expected timing restrictions of the VHDL design 28 implemented . Specifically, it establishes the minimum clock period, maximum clock frequency...algorithm is vital for VHDL implementation . The transmitter, or source, utilizes a 10-bit LFSR represented by Figure B.1. First, examine the changes in
DEFF Research Database (Denmark)
Petersen, Nils Holger
2014-01-01
A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....
Frequency and spectrum of hemoglobinopathy mutations in a Uruguayan pediatric population
Directory of Open Access Journals (Sweden)
Julio Da Luz
2013-01-01
Full Text Available Hemoglobinopathies are the most common recessive diseases worldwide but their prevalence in Uruguay has not been investigated. In this study, 397 unrelated outpatient children from the Pereira Rosell Hospital Center (CHPR, as well as 31 selected patients with microcytic anemia and 28 β-thalassemia carriers were analyzed for hemoglobinopathies by using biochemical and molecular biology methods. Parametric and non-parametric methods were used to compare the hematological indices between groups of genotypes. Of the 397 patients in the first group, approximately 1% (0.76% HbS and 0.25% β-thalassemia had a mutation in the HBB gene and 3.3% had α-thalassemia. These mutations had a heterogeneous distribution that varied according to individual ancestry. HbS was found exclusively in individuals with declared African ancestry and had a carrier frequency of 2.2%. The frequency of α-thalassemia carriers in outpatients of European and African ancestry was 1.2% and 6.5%, respectively. In contrast, the frequency of α-thalassemia carriers in patients with microcytic anemia was 25.8%, significantly higher (p < 0.01 than that observed in the sample as a whole and in Afro-descendants and Euro-descendants. Significant differences were observed in the hematological parameters between individuals with thalassemia genotypes and those with a normal genotype. These results indicate that hemoglobinopathies are a relevant health problem in Uruguay.
A series-resonant converter used as an amplitude and frequency function generator
Huisman, H.; Gravendeel, B.
1988-01-01
A series-resonant power converter system is presented which allows generation of multiphase output voltages with very low distortion at high efficiency. The self-commutated resonant operation mode ensures the converter to be short-circuit proof. After a discussion of the control concept, some
Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Goji, Aya; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji
2017-07-01
The pathophysiology of autism spectrum disorder (ASD) is not fully understood. We used proton magnetic resonance spectroscopy to investigate metabolite concentration ratios in the anterior cingulate cortex and left cerebellum in ASD. In the ACC and left cerebellum studies, the ASD group and intelligence quotient- and age-matched control group consisted of 112 and 114 subjects and 65 and 45 subjects, respectively. In the ASD group, γ-aminobutyric acid (GABA)+/ creatine/phosphocreatine (Cr) was significantly decreased in the anterior cingulate cortex, and glutamate (Glu)/Cr was significantly increased and GABA+/Cr was significantly decreased in the left cerebellum compared to those in the control group. In addition, both groups showed negative correlations between Glu/Cr and GABA+/Cr in the left cerebellum, and positive correlations between GABA+/Cr in the anterior cingulate cortex and left cerebellum. ASD subjects have hypoGABAergic alterations in the anterior cingulate cortex and hyperglutamatergic/hypoGABAergic alterations in the left cerebellum.
Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sanchez, Francisco J.; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara
2012-01-01
A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with "autism spectrum disorder" (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported…
Mussenbrock, T; Brinkmann, R P; Lieberman, M A; Lichtenberg, A J; Kawamura, E
2008-08-22
In low-pressure capacitive radio frequency discharges, two mechanisms of electron heating are dominant: (i) Ohmic heating due to collisions of electrons with neutrals of the background gas and (ii) stochastic heating due to momentum transfer from the oscillating boundary sheath. In this work we show by means of a nonlinear global model that the self-excitation of the plasma series resonance which arises in asymmetric capacitive discharges due to nonlinear interaction of plasma bulk and sheath significantly affects both Ohmic heating and stochastic heating. We observe that the series resonance effect increases the dissipation by factors of 2-5. We conclude that the nonlinear plasma dynamics should be taken into account in order to describe quantitatively correct electron heating in asymmetric capacitive radio frequency discharges.
Upadhyay, Puja; Gustavsson, Jonas P. R.; Alvi, Farrukh S.
2016-05-01
For flow control applications requiring high-frequency excitation, very few actuators have sufficient dynamic response and/or control authority to be useful in high-speed flows. Due to this reason, experiments involving high-frequency excitation, attempted in the past, have been limited to either low-frequency actuation with reasonable control authority or moderate-frequency actuation with limited control authority. The current work expands on the previous development of the resonance-enhanced microactuators to design actuators that are capable of producing high-amplitude pulses at much higher frequencies [{O} (10 kHz)]. Using lumped element modeling, two actuators have been designed with nominal frequencies of 20 and 50 kHz. Extensive benchtop characterization using acoustic measurements as well as optical diagnostics using a high-resolution micro-schlieren setup is employed to characterize the dynamic response of these actuators. The actuators performed at a range of frequencies, 20.3-27.8 and 54.8-78.2 kHz, respectively. In addition to providing information on the actuator flow physics and performance at various operating conditions, this study serves to develop easy-to-integrate high-frequency actuators for active control of high-speed jets. Preliminary testing of these actuators is performed by implementing the 20-kHz actuator on a Mach 0.9 free jet flow field for noise reduction. Acoustic measurements in the jet near field demonstrate attenuation of radiated noise at all observation angles.
DEFF Research Database (Denmark)
Nour, Yasser; Knott, Arnold; Petersen, Lars Press
2017-01-01
The need for efficient, smaller, lighter and cheaper power supply units drive the investigation of using high switching frequency soft switching resonant converters. This work presents an 88% efficient 48V nominal input converter switching at 6 MHz and output power of 21 Watts achieving power...... density of 7 W/cm3 for Power-over-Ethernet LED lighting applications. The switching frequency is used to control the output current delivered to the load resistance. The converter was tested using a constant resistance load. The performance and thermal behavior were investigated and reported in this work....
International Nuclear Information System (INIS)
Melin, G.
1967-03-01
In the mere case of a cold plasma with or without static magnetic field, are given two methods of calculation of resonance frequency shift and absorption in a cylindrical cavity crossed by a plasma column: 1. A perturbation method, already known and used for electronic density measurements is restated and its application is used for several high frequency cavity modes. 2. An exact method employing Maxwell's equations, which however necessitates a computer, is compared with the first one; it permits a determination of the validity limits of the perturbation method and to draw conclusions, [fr
Xin Zhao; G. Ciovati; T. R. Bieler
2010-01-01
The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical micro...
Almeida, Javier; Velasco, Nelson; Alvarez, Charlens; Romero, Eduardo
2017-11-01
Autism Spectrum Disorder (ASD) is a complex neurological condition characterized by a triad of signs: stereotyped behaviors, verbal and non-verbal communication problems. The scientific community has been interested on quantifying anatomical brain alterations of this disorder. Several studies have focused on measuring brain cortical and sub-cortical volumes. This article presents a fully automatic method which finds out differences among patients diagnosed with autism and control patients. After the usual pre-processing, a template (MNI152) is registered to an evaluated brain which becomes then a set of regions. Each of these regions is the represented by the normalized histogram of intensities which is approximated by mixture of Gaussian (GMM). The gray and white matter are separated to calculate the mean and standard deviation of each Gaussian. These features are then used to train, region per region, a binary SVM classifier. The method was evaluated in an adult population aged from 18 to 35 years, from the public database Autism Brain Imaging Data Exchange (ABIDE). Highest discrimination values were found for the Right Middle Temporal Gyrus, with an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) the curve of 0.72.
Energy Technology Data Exchange (ETDEWEB)
Slabko, V V; Tsipotan, A S; Aleksandrovsky, A S [Institute of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk (Russian Federation)
2013-05-31
The influence of the oscillation phases of the dipole moments induced in metal nanoparticles and quantum dots by an external laser field on their interaction energy is considered. It is shown that a difference in resonant frequencies leads to the formation of additional minima and maxima, which are absent in the spectral dependence of the interaction energy of identical particles at similar orientations of the pair of particles with respect to the plane of polarisation of radiation. These features are due to the fact that the oscillation phase difference of the induced dipole moments of particles reaches values close to {pi}. (interaction of laser radiation with matter. laser plasma)
Directory of Open Access Journals (Sweden)
Junhao Luo
2018-05-01
Full Text Available As a key factor in the design of a voltage-adjustable LLC resonant converter, frequency regulation range is very important to the optimization of magnetic components and efficiency improvement. This paper presents a novel optimal design method for LLC resonant converters, which can narrow the frequency variation range and ensure high efficiency under the premise of a required gain achievement. A simplified gain model was utilized to simplify the calculation and the expected efficiency was initially set as 96.5%. The restricted area of parameter optimization design can be obtained by taking the intersection of the gain requirement, the efficiency requirement, and three restrictions of ZVS (Zero Voltage Switch. The proposed method was verified by simulation and experiments of a 150 W prototype. The results show that the proposed method can achieve ZVS from full-load to no-load conditions and can reach 1.6 times the normalized voltage gain in the frequency variation range of 18 kHz with a peak efficiency of up to 96.3%. Moreover, the expected efficiency is adjustable, which means a converter with a higher efficiency can be designed. The proposed method can also be used for the design of large-power LLC resonant converters to obtain a wide output voltage range and higher efficiency.
Energy Technology Data Exchange (ETDEWEB)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)
2016-10-15
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.
Energy Technology Data Exchange (ETDEWEB)
Gongzhang, R.; Xiao, B.; Lardner, T.; Gachagan, A. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Li, M. [School of Engineering, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)
2014-02-18
This paper presents a robust frequency diversity based algorithm for clutter reduction in ultrasonic A-scan waveforms. The performance of conventional spectral-temporal techniques like Split Spectrum Processing (SSP) is highly dependent on the parameter selection, especially when the signal to noise ratio (SNR) is low. Although spatial beamforming offers noise reduction with less sensitivity to parameter variation, phased array techniques are not always available. The proposed algorithm first selects an ascending series of frequency bands. A signal is reconstructed for each selected band in which a defect is present when all frequency components are in uniform sign. Combining all reconstructed signals through averaging gives a probability profile of potential defect position. To facilitate data collection and validate the proposed algorithm, Full Matrix Capture is applied on the austenitic steel and high nickel alloy (HNA) samples with 5MHz transducer arrays. When processing A-scan signals with unrefined parameters, the proposed algorithm enhances SNR by 20dB for both samples and consequently, defects are more visible in B-scan images created from the large amount of A-scan traces. Importantly, the proposed algorithm is considered robust, while SSP is shown to fail on the austenitic steel data and achieves less SNR enhancement on the HNA data.
Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.
Directory of Open Access Journals (Sweden)
Xiaonan Wu
Full Text Available When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline.
Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.
Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao
2015-01-01
When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline.
Spectrum 101: An Introduction to Spectrum Management
2004-03-01
produces a Joint Restricted Frequency List (JRFL). The JFRL consolidates and classifies the spectrum uses that are most critical to operations and to...Management Office JRFL Joint Restricted Frequency List JSC Joint Spectrum Center JSIR Joint Spectrum Interference Resolution JSME Joint Spectrum...Multifunctional Information Distribution System MILSATCOM Military Satellite Communications MOA Memorandum of Agreement MRFL Master Radio Frequency
Fu, Min-Wen; Fu, Earl; Lin, Fu-Gong; Chang, Wei-Jeng; Hsieh, Yao-Dung; Shen, E-Chin
To evaluate whether primary implant stability could be used to predict bone quality, the association between the implant stability quotient (ISQ) value and the bone type at the implant site was evaluated. Ninety-five implant sites in 50 patients were included. Bone type (categorized by Lekholm and Zarb) at the implant site was initially assessed using presurgical dental radiography. During the preparation of the implant site, a bone core specimen was carefully obtained. The bone type was assessed by tactile sensation during the drilling operation, according to the Misch criteria. The primary stability of the inserted implant was evaluated by resonance frequency analysis (RFA). The ISQ value was recorded. The bone core specimen was then examined by stereomicroscopy or microcomputed tomography (micro-CT), and the bone type was determined by the surface characteristics of the specimen, based on Lekholm and Zarb classification. Agreement between the bone quality assessed by the four methods (ie, presurgical radiography, tactile sensation, stereomicroscopy, and micro-CT) was tested by Cohen's kappa statistics, whereas the association between the ISQ value and the bone type was evaluated by the generalized linear regression model. The mean ISQ score was 72.6, and the score was significantly influenced by the maxillary or mandibular arch (P = .001). The bone type at the implant sites varied according to the assessment method. However, a significant influence of the arch was repeatedly noted when using radiography or tactile sensation. Among the four bone-quality assessment methods, a weak agreement existed only between stereomicroscopy and micro-CT, especially in the maxilla (κ = 0.469). A negative association between the ISQ value and the bone type assessed by stereomicroscopy or by micro-CT was significant in the maxilla, but not in the mandible, after adjustments for sex, age, and right/left side (P = .013 and P = .027 for stereomicroscopy and micro-CT, respectively
Frequency and spectrum of abnormalities in the bone marrow of the wrist: MR imaging findings
International Nuclear Information System (INIS)
Alam, F.; Schweitzer, M.E.; Malat, J.; Hussain, S.M.; Rijksuniversiteit Leiden
1999-01-01
Objective. To describe the frequency of marrow abnormalities on wrist MR imaging and the MR findings of these various abnormalities.Design and patients. Five hundred and nineteen patients were studied at 1.5 T. Two observers recorded the presence and location of avascular necrosis, occult fractures and arthritic edema [focal osteoarthritis, ulnolunate abutment, rheumatoid arthritis, septic arthritis, gouty arthritis and scapholunate advanced collapse (SLAC)].Results and conclusion. One hundred and eighty-seven (36%) patients demonstrated marrow abnormalities in the wrist, of which 101 were diagnosed as arthritis [64 (34%) as focal osteoarthritis, 17 (9%) as ulnolunate abutment, 15 (8%) as rheumatoid arthritis, 2 as septic arthritis, 2 as SLAC, and 1 as gouty arthritis]. Seventy-two patients had occult fractures and in 27 patients avascular necrosis was seen. MR imaging can reveal various abnormalities in bone marrow of the wrist when findings on radiography are normal or equivocal. (orig.)
Frequency and spectrum of abnormalities in the bone marrow of the wrist: MR imaging findings
Energy Technology Data Exchange (ETDEWEB)
Alam, F.; Schweitzer, M.E. (Thomas Jefferson Univ., Philadelphia, PA (United States). Dept. of Radiology); Li Xiaoxian (Dept. of Radiology, Tangshan Gongren Hospital, Tangshan (China)); Malat, J. (Department of Radiology, Naples Radiologists, Naples (Italy)); Hussain, S.M. (Thomas Jefferson Univ., Philadelphia, PA (United States). Dept. of Radiology Rijksuniversiteit Leiden (Netherlands). Dept. of Diagnostic Radiology)
1999-06-01
Objective. To describe the frequency of marrow abnormalities on wrist MR imaging and the MR findings of these various abnormalities.Design and patients. Five hundred and nineteen patients were studied at 1.5 T. Two observers recorded the presence and location of avascular necrosis, occult fractures and arthritic edema [focal osteoarthritis, ulnolunate abutment, rheumatoid arthritis, septic arthritis, gouty arthritis and scapholunate advanced collapse (SLAC)].Results and conclusion. One hundred and eighty-seven (36%) patients demonstrated marrow abnormalities in the wrist, of which 101 were diagnosed as arthritis [64 (34%) as focal osteoarthritis, 17 (9%) as ulnolunate abutment, 15 (8%) as rheumatoid arthritis, 2 as septic arthritis, 2 as SLAC, and 1 as gouty arthritis]. Seventy-two patients had occult fractures and in 27 patients avascular necrosis was seen. MR imaging can reveal various abnormalities in bone marrow of the wrist when findings on radiography are normal or equivocal. (orig.) With 17 figs., 13 refs.
Tsujino, Jiromaru; Hongoh, Misugi; Yoshikuni, Masafumi; Hashii, Hidekazu; Ueoka, Tetsugi
2004-04-01
The welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems that are driven at only the fundamental-resonance frequency vibration were compared, and also those of the welding systems that were driven at the fundamental and several higher resonance frequencies simultaneously were studied. At high frequency, welding characteristics can be improved due to the larger vibration loss of plastic materials. For welding of rather thin or small specimens, as the fundamental frequency of these welding systems is higher and the numbers of driven higher frequencies are driven simultaneously, larger welded area and weld strength were obtained.
A Fixed-Frequency Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range
DEFF Research Database (Denmark)
Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede
2017-01-01
This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant DC-DC converters, and meanwhile achieves high efficiency...... and characteristics of the proposed converter are analyzed. Finally, a 1-kW converter prototype is built and the experimental results verify the theoretical analyses....
Choudhuri, Samir; Bharadwaj, Somnath; Roy, Nirupam; Ghosh, Abhik; Ali, Sk Saiyad
2016-06-11
It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase centre. Here, we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum C ℓ of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it to provide an unbiased estimation of C ℓ .
International Nuclear Information System (INIS)
Breger, M.; Montgomery, M. H.
2014-01-01
In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day –1 (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day –1 in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.
Energy Technology Data Exchange (ETDEWEB)
Breger, M.; Montgomery, M. H. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)
2014-03-10
In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.
International Nuclear Information System (INIS)
Zelenka, J.
1996-01-01
The comparison of the measured resonant frequency-temperature characteristics of the AT-and BT-cut square and circular quartz resonators with the computed ones is given in the paper. The curves which express the frequency-temperature behavior of the resonators are compared. The influence of the thickness of the silver and gold electrodes on the first order frequency temperature coefficient is presented. The influence of the dimension ratio of the wafer on the orientation for which the zero first order temperature coefficient occurs at the temperature T O = 25 O C are given. (authors)
Bouchaala, Adam M.
2016-03-18
We present analytical formulations to calculate the induced resonance frequency shifts of electrically actuated clamped–clamped micro and nano (Carbon nanotube) beams due to an added mass. Based on the Euler–Bernoulli beam theory, we investigate the linear dynamic responses of the beams added masses, which are modeled as discrete point masses. Analytical expressions based on perturbation techniques and a one-mode Galerkin approximation are developed to calculate accurately the frequency shifts under a DC voltage as a function of the added mass and position. The analytical results are compared to numerical solution of the eigenvalue problem. Results are shown for the fundamental as well as the higher-order modes of the beams. The results indicate a significant increase in the frequency shift, and hence the sensitivity of detection, when scaling down to nano scale and using higher-order modes. © 2016 Springer Science+Business Media Dordrecht
Horder, Jamie; Petrinovic, Marija M; Mendez, Maria A; Bruns, Andreas; Takumi, Toru; Spooren, Will; Barker, Gareth J; Künnecke, Basil; Murphy, Declan G
2018-05-25
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental syndrome with a high human and economic burden. The pathophysiology of ASD is largely unclear, thus hampering development of pharmacological treatments for the core symptoms of the disorder. Abnormalities in glutamate and GABA signaling have been hypothesized to underlie ASD symptoms, and may form a therapeutic target, but it is not known whether these abnormalities are recapitulated in humans with ASD, as well as in rodent models of the disorder. We used translational proton magnetic resonance spectroscopy ([1H]MRS) to compare glutamate and GABA levels in adult humans with ASD and in a panel of six diverse rodent ASD models, encompassing genetic and environmental etiologies. [1H]MRS was performed in the striatum and the medial prefrontal cortex, of the humans, mice, and rats in order to allow for direct cross-species comparisons in specific cortical and subcortical brain regions implicated in ASD. In humans with ASD, glutamate concentration was reduced in the striatum and this was correlated with the severity of social symptoms. GABA levels were not altered in either brain region. The reduction in striatal glutamate was recapitulated in mice prenatally exposed to valproate, and in mice and rats carrying Nlgn3 mutations, but not in rodent ASD models with other etiologies. Our findings suggest that glutamate/GABA abnormalities in the corticostriatal circuitry may be a key pathological mechanism in ASD; and may be linked to alterations in the neuroligin-neurexin signaling complex.
Directory of Open Access Journals (Sweden)
Tejeshwar Singh Jugpal
Full Text Available Abstract Objective: To describe the spectrum of magnetic resonance imaging (MRI findings in patients with neurological manifestations of dengue. Materials and Methods: We included nine patients with dengue fever (three females and six males; age range, 9–30 years, all of whom presented with neurological manifestations. The MRI examinations, performed in 1.5 T or 3 T scanners, included T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR sequences. Diffusion-weighted imaging with apparent diffusion coefficient mapping was also employed. Fast low-angle shot and susceptibility-weighted gradient-recalled echo sequences, as well as contrast-enhanced T1-weighted scans, were also obtained in order to assess parenchymal enhancement. MRI scans were analyzed for lesion distribution and imaging features. Results: All patients showed areas of altered signal intensity that appeared as hyperintensity on T2-weighted and FLAIR sequences. The most commonly affected site was the basal ganglia-thalamus complex. Other affected sites were the cerebellum, cerebral cortex, white matter, and brainstem. In all cases, we observed patchy areas of restricted diffusion and focal areas of hemorrhage. Conclusion: Dengue encephalitis commonly affects the basal ganglia, thalamus, cerebellum, cerebral cortex, and white matter. Therefore, MRI should be an indispensable part of the evaluation of patients with neurological complications of dengue fever.
Directory of Open Access Journals (Sweden)
Muhammad Liman MUHAMMAD
2018-03-01
Full Text Available Insufficient genetic variability is one of the major problems of plant breeding programmes, especially in sesame. Gamma radiation has been reported to be very effective in creating genetic variability in plants. Three varieties of Nigerian sesame were assessed for spectrum and frequency of mutation induced by Gamma radiations in M1 and M2 generations. The varieties (NCRIBEN-04E, NCRIBEN-01M and NCRIBEN-03L were treated with four different doses of gamma rays (250, 350, 450 and 550 Gy. The treated and untreated seeds (control were sown in planting bags (under field condition to raise M1 plants. Four treatments: V1D5, V2D3, V3D2 and V3D4 (from M1 plants were selected and bulked to obtain M2 populations. The results of M1 revealed four mutant fruit traits: multicarpellate capsule, multiple capsule per leaf axil, indehiscent capsule and terminal capsules. The highest frequencies of the traits in M1 generation were 2.50×10-2, 9.17×10-2, 1.67×10-2and3.33×10-2 respectively. The highest branching (7 was from NCRIBEN-01M, while the least (2 was from NCRIBEN-04E. The M2 plants were grouped into eight M2 lines. The dose range (250-550 Gy was proved to be effective in inducing viable mutations in sesame.
International Nuclear Information System (INIS)
Ohno, Masahide
2008-01-01
The L 2,3 -M 2,3 V resonant Auger electron spectroscopy (RAES) spectrum of Ti metal measured by Le Fevre et al. [P. Le Fevre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B69 (2004) 155421] is analyzed in the light of relaxation and decay of the resonantly excited L 2,3 -hole states. The relaxation time of the resonantly excited L 2,3 -hole state to the fully relaxed (screened) one is much shorter than the L 2,3 -hole Auger decay time, whereas the participant Coster-Kronig (CK) decay time of the resonantly excited L 2 -hole state to the fully relaxed L 3 -hole state at the L 2 resonance is as short as the relaxation time of the resonantly excited L 2 -hole state to the fully relaxed one. The excited electron is predominantly either rapidly decoupled from the L 2,3 -hole decay or annihilated by the participant CK decay. Thus, near the L 2,3 edges the L 2,3 -M 2,3 V RAES spectral peak appears at constant kinetic energy. The L 2,3 -M 2,3 V RAES spectrum shows a normal L 2,3 -M 2,3 V Auger decay profile not modulated by the density of empty d states probed by the resonant excitation. Not only the relaxation time but also the participant CK decay time depends on photon energy because they depend on the density of empty d states probed by the resonant excitation. As a result, the L 2,3 X-ray absorption spectroscopy spectral line broadening depends on photon energy
DEFF Research Database (Denmark)
an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...